My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 327KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. *
  29. * It has preliminary support for Matthew Roberts advance algorithm
  30. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  31. */
  32. /**
  33. * -----------------
  34. * G-Codes in Marlin
  35. * -----------------
  36. *
  37. * Helpful G-code references:
  38. * - http://linuxcnc.org/handbook/gcode/g-code.html
  39. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  40. *
  41. * Help to document Marlin's G-codes online:
  42. * - http://reprap.org/wiki/G-code
  43. * - https://github.com/MarlinFirmware/MarlinDocumentation
  44. *
  45. * -----------------
  46. *
  47. * "G" Codes
  48. *
  49. * G0 -> G1
  50. * G1 - Coordinated Movement X Y Z E
  51. * G2 - CW ARC
  52. * G3 - CCW ARC
  53. * G4 - Dwell S<seconds> or P<milliseconds>
  54. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  55. * G10 - Retract filament according to settings of M207
  56. * G11 - Retract recover filament according to settings of M208
  57. * G12 - Clean tool
  58. * G20 - Set input units to inches
  59. * G21 - Set input units to millimeters
  60. * G28 - Home one or more axes
  61. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  62. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  63. * G31 - Dock sled (Z_PROBE_SLED only)
  64. * G32 - Undock sled (Z_PROBE_SLED only)
  65. * G38 - Probe target - similar to G28 except it uses the Z_MIN endstop for all three axes
  66. * G90 - Use Absolute Coordinates
  67. * G91 - Use Relative Coordinates
  68. * G92 - Set current position to coordinates given
  69. *
  70. * "M" Codes
  71. *
  72. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  73. * M1 - Same as M0
  74. * M17 - Enable/Power all stepper motors
  75. * M18 - Disable all stepper motors; same as M84
  76. * M20 - List SD card. (Requires SDSUPPORT)
  77. * M21 - Init SD card. (Requires SDSUPPORT)
  78. * M22 - Release SD card. (Requires SDSUPPORT)
  79. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  80. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  81. * M25 - Pause SD print. (Requires SDSUPPORT)
  82. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  83. * M27 - Report SD print status. (Requires SDSUPPORT)
  84. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  85. * M29 - Stop SD write. (Requires SDSUPPORT)
  86. * M30 - Delete file from SD: "M30 /path/file.gco"
  87. * M31 - Report time since last M109 or SD card start to serial.
  88. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  89. * Use P to run other files as sub-programs: "M32 P !filename#"
  90. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  91. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  92. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  93. * M43 - Monitor pins & report changes - report active pins
  94. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  95. * M75 - Start the print job timer.
  96. * M76 - Pause the print job timer.
  97. * M77 - Stop the print job timer.
  98. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  99. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  100. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  101. * M82 - Set E codes absolute (default).
  102. * M83 - Set E codes relative while in Absolute (G90) mode.
  103. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  104. * duration after which steppers should turn off. S0 disables the timeout.
  105. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  106. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  107. * M104 - Set extruder target temp.
  108. * M105 - Report current temperatures.
  109. * M106 - Fan on.
  110. * M107 - Fan off.
  111. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  112. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  113. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  114. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  115. * M110 - Set the current line number. (Used by host printing)
  116. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  117. * M112 - Emergency stop.
  118. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  119. * M114 - Report current position.
  120. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  121. * M117 - Display a message on the controller screen. (Requires an LCD)
  122. * M119 - Report endstops status.
  123. * M120 - Enable endstops detection.
  124. * M121 - Disable endstops detection.
  125. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  126. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  127. * M128 - EtoP Open. (Requires BARICUDA)
  128. * M129 - EtoP Closed. (Requires BARICUDA)
  129. * M140 - Set bed target temp. S<temp>
  130. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  131. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  132. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  133. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  134. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  135. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  136. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  137. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  138. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  139. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  140. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  141. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  142. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  143. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  144. * M205 - Set advanced settings. Current units apply:
  145. S<print> T<travel> minimum speeds
  146. B<minimum segment time>
  147. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  148. * M206 - Set additional homing offset.
  149. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  150. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  151. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  152. Every normal extrude-only move will be classified as retract depending on the direction.
  153. * M211 - Enable, Disable, and/or Report software endstops: S<0|1>
  154. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  155. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  156. * M221 - Set Flow Percentage: "M221 S<percent>"
  157. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  158. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  159. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  160. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  162. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  163. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  164. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  165. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  166. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  167. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  168. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  169. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  170. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  171. * M400 - Finish all moves.
  172. * M401 - Lower Z probe. (Requires a probe)
  173. * M402 - Raise Z probe. (Requires a probe)
  174. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  176. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  178. * M410 - Quickstop. Abort all planned moves.
  179. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  180. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  181. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  182. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  183. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  184. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  185. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  186. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  187. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  188. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s>" (Requires DELTA)
  189. * M666 - Set delta endstop adjustment. (Requires DELTA)
  190. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  191. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  192. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  193. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  194. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  195. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  196. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  197. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  198. *
  199. * ************ SCARA Specific - This can change to suit future G-code regulations
  200. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  201. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  202. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  203. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  204. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  205. * ************* SCARA End ***************
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  209. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  215. *
  216. */
  217. #include "Marlin.h"
  218. #include "ultralcd.h"
  219. #include "planner.h"
  220. #include "stepper.h"
  221. #include "endstops.h"
  222. #include "temperature.h"
  223. #include "cardreader.h"
  224. #include "configuration_store.h"
  225. #include "language.h"
  226. #include "pins_arduino.h"
  227. #include "math.h"
  228. #include "nozzle.h"
  229. #include "duration_t.h"
  230. #include "types.h"
  231. #if HAS_ABL
  232. #include "vector_3.h"
  233. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  234. #include "qr_solve.h"
  235. #endif
  236. #elif ENABLED(MESH_BED_LEVELING)
  237. #include "mesh_bed_leveling.h"
  238. #endif
  239. #if ENABLED(BEZIER_CURVE_SUPPORT)
  240. #include "planner_bezier.h"
  241. #endif
  242. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  243. #include "buzzer.h"
  244. #endif
  245. #if ENABLED(USE_WATCHDOG)
  246. #include "watchdog.h"
  247. #endif
  248. #if ENABLED(BLINKM)
  249. #include "blinkm.h"
  250. #include "Wire.h"
  251. #endif
  252. #if HAS_SERVOS
  253. #include "servo.h"
  254. #endif
  255. #if HAS_DIGIPOTSS
  256. #include <SPI.h>
  257. #endif
  258. #if ENABLED(DAC_STEPPER_CURRENT)
  259. #include "stepper_dac.h"
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. #include "twibus.h"
  263. #endif
  264. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  265. #include "endstop_interrupts.h"
  266. #endif
  267. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  268. void gcode_M100();
  269. #endif
  270. #if ENABLED(SDSUPPORT)
  271. CardReader card;
  272. #endif
  273. #if ENABLED(EXPERIMENTAL_I2CBUS)
  274. TWIBus i2c;
  275. #endif
  276. #if ENABLED(G38_PROBE_TARGET)
  277. bool G38_move = false,
  278. G38_endstop_hit = false;
  279. #endif
  280. bool Running = true;
  281. uint8_t marlin_debug_flags = DEBUG_NONE;
  282. /**
  283. * Cartesian Current Position
  284. * Used to track the logical position as moves are queued.
  285. * Used by 'line_to_current_position' to do a move after changing it.
  286. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  287. */
  288. float current_position[XYZE] = { 0.0 };
  289. /**
  290. * Cartesian Destination
  291. * A temporary position, usually applied to 'current_position'.
  292. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  293. * 'line_to_destination' sets 'current_position' to 'destination'.
  294. */
  295. static float destination[XYZE] = { 0.0 };
  296. /**
  297. * axis_homed
  298. * Flags that each linear axis was homed.
  299. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  300. *
  301. * axis_known_position
  302. * Flags that the position is known in each linear axis. Set when homed.
  303. * Cleared whenever a stepper powers off, potentially losing its position.
  304. */
  305. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  306. /**
  307. * GCode line number handling. Hosts may opt to include line numbers when
  308. * sending commands to Marlin, and lines will be checked for sequentiality.
  309. * M110 S<int> sets the current line number.
  310. */
  311. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  312. /**
  313. * GCode Command Queue
  314. * A simple ring buffer of BUFSIZE command strings.
  315. *
  316. * Commands are copied into this buffer by the command injectors
  317. * (immediate, serial, sd card) and they are processed sequentially by
  318. * the main loop. The process_next_command function parses the next
  319. * command and hands off execution to individual handler functions.
  320. */
  321. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  322. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  323. cmd_queue_index_w = 0, // Ring buffer write position
  324. commands_in_queue = 0; // Count of commands in the queue
  325. /**
  326. * Current GCode Command
  327. * When a GCode handler is running, these will be set
  328. */
  329. static char *current_command, // The command currently being executed
  330. *current_command_args, // The address where arguments begin
  331. *seen_pointer; // Set by code_seen(), used by the code_value functions
  332. /**
  333. * Next Injected Command pointer. NULL if no commands are being injected.
  334. * Used by Marlin internally to ensure that commands initiated from within
  335. * are enqueued ahead of any pending serial or sd card commands.
  336. */
  337. static const char *injected_commands_P = NULL;
  338. #if ENABLED(INCH_MODE_SUPPORT)
  339. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  340. #endif
  341. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  342. TempUnit input_temp_units = TEMPUNIT_C;
  343. #endif
  344. /**
  345. * Feed rates are often configured with mm/m
  346. * but the planner and stepper like mm/s units.
  347. */
  348. float constexpr homing_feedrate_mm_s[] = {
  349. #if ENABLED(DELTA)
  350. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  351. #else
  352. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  353. #endif
  354. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  355. };
  356. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  357. int feedrate_percentage = 100, saved_feedrate_percentage,
  358. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  359. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  360. volumetric_enabled = false;
  361. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  362. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  363. // The distance that XYZ has been offset by G92. Reset by G28.
  364. float position_shift[XYZ] = { 0 };
  365. // This offset is added to the configured home position.
  366. // Set by M206, M428, or menu item. Saved to EEPROM.
  367. float home_offset[XYZ] = { 0 };
  368. // Software Endstops are based on the configured limits.
  369. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  370. bool soft_endstops_enabled = true;
  371. #endif
  372. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  373. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  374. #if FAN_COUNT > 0
  375. int fanSpeeds[FAN_COUNT] = { 0 };
  376. #endif
  377. // The active extruder (tool). Set with T<extruder> command.
  378. uint8_t active_extruder = 0;
  379. // Relative Mode. Enable with G91, disable with G90.
  380. static bool relative_mode = false;
  381. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  382. volatile bool wait_for_heatup = true;
  383. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  384. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  385. volatile bool wait_for_user = false;
  386. #endif
  387. const char errormagic[] PROGMEM = "Error:";
  388. const char echomagic[] PROGMEM = "echo:";
  389. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  390. // Number of characters read in the current line of serial input
  391. static int serial_count = 0;
  392. // Inactivity shutdown
  393. millis_t previous_cmd_ms = 0;
  394. static millis_t max_inactive_time = 0;
  395. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  396. // Print Job Timer
  397. #if ENABLED(PRINTCOUNTER)
  398. PrintCounter print_job_timer = PrintCounter();
  399. #else
  400. Stopwatch print_job_timer = Stopwatch();
  401. #endif
  402. // Buzzer - I2C on the LCD or a BEEPER_PIN
  403. #if ENABLED(LCD_USE_I2C_BUZZER)
  404. #define BUZZ(d,f) lcd_buzz(d, f)
  405. #elif PIN_EXISTS(BEEPER)
  406. Buzzer buzzer;
  407. #define BUZZ(d,f) buzzer.tone(d, f)
  408. #else
  409. #define BUZZ(d,f) NOOP
  410. #endif
  411. static uint8_t target_extruder;
  412. #if HAS_BED_PROBE
  413. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  414. #endif
  415. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  416. #if HAS_ABL
  417. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  418. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  419. #elif defined(XY_PROBE_SPEED)
  420. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  421. #else
  422. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  423. #endif
  424. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  425. #if ENABLED(DELTA)
  426. #define ADJUST_DELTA(V) \
  427. if (planner.abl_enabled) { \
  428. const float zadj = bilinear_z_offset(V); \
  429. delta[A_AXIS] += zadj; \
  430. delta[B_AXIS] += zadj; \
  431. delta[C_AXIS] += zadj; \
  432. }
  433. #else
  434. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  435. #endif
  436. #elif IS_KINEMATIC
  437. #define ADJUST_DELTA(V) NOOP
  438. #endif
  439. #if ENABLED(Z_DUAL_ENDSTOPS)
  440. float z_endstop_adj = 0;
  441. #endif
  442. // Extruder offsets
  443. #if HOTENDS > 1
  444. float hotend_offset[XYZ][HOTENDS];
  445. #endif
  446. #if HAS_Z_SERVO_ENDSTOP
  447. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  448. #endif
  449. #if ENABLED(BARICUDA)
  450. int baricuda_valve_pressure = 0;
  451. int baricuda_e_to_p_pressure = 0;
  452. #endif
  453. #if ENABLED(FWRETRACT)
  454. bool autoretract_enabled = false;
  455. bool retracted[EXTRUDERS] = { false };
  456. bool retracted_swap[EXTRUDERS] = { false };
  457. float retract_length = RETRACT_LENGTH;
  458. float retract_length_swap = RETRACT_LENGTH_SWAP;
  459. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  460. float retract_zlift = RETRACT_ZLIFT;
  461. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  462. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  463. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  464. #endif // FWRETRACT
  465. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  466. bool powersupply =
  467. #if ENABLED(PS_DEFAULT_OFF)
  468. false
  469. #else
  470. true
  471. #endif
  472. ;
  473. #endif
  474. #if HAS_CASE_LIGHT
  475. bool case_light_on =
  476. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  477. true
  478. #else
  479. false
  480. #endif
  481. ;
  482. #endif
  483. #if ENABLED(DELTA)
  484. #define SIN_60 0.8660254037844386
  485. #define COS_60 0.5
  486. float delta[ABC],
  487. endstop_adj[ABC] = { 0 };
  488. // these are the default values, can be overriden with M665
  489. float delta_radius = DELTA_RADIUS,
  490. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  491. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  492. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  493. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  494. delta_tower3_x = 0, // back middle tower
  495. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  496. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  497. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  498. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  499. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  500. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  501. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  502. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  503. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  504. delta_clip_start_height = Z_MAX_POS;
  505. float delta_safe_distance_from_top();
  506. #else
  507. static bool home_all_axis = true;
  508. #endif
  509. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  510. #define UNPROBED 9999.0f
  511. int bilinear_grid_spacing[2], bilinear_start[2];
  512. float bed_level_grid[ABL_GRID_MAX_POINTS_X][ABL_GRID_MAX_POINTS_Y];
  513. #endif
  514. #if IS_SCARA
  515. // Float constants for SCARA calculations
  516. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  517. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  518. L2_2 = sq(float(L2));
  519. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  520. delta[ABC];
  521. #endif
  522. float cartes[XYZ] = { 0 };
  523. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  524. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  525. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  526. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  527. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  528. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  529. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  530. #endif
  531. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  532. static bool filament_ran_out = false;
  533. #endif
  534. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  535. FilamentChangeMenuResponse filament_change_menu_response;
  536. #endif
  537. #if ENABLED(MIXING_EXTRUDER)
  538. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  539. #if MIXING_VIRTUAL_TOOLS > 1
  540. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  541. #endif
  542. #endif
  543. static bool send_ok[BUFSIZE];
  544. #if HAS_SERVOS
  545. Servo servo[NUM_SERVOS];
  546. #define MOVE_SERVO(I, P) servo[I].move(P)
  547. #if HAS_Z_SERVO_ENDSTOP
  548. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  549. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  550. #endif
  551. #endif
  552. #ifdef CHDK
  553. millis_t chdkHigh = 0;
  554. boolean chdkActive = false;
  555. #endif
  556. #if ENABLED(PID_EXTRUSION_SCALING)
  557. int lpq_len = 20;
  558. #endif
  559. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  560. static MarlinBusyState busy_state = NOT_BUSY;
  561. static millis_t next_busy_signal_ms = 0;
  562. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  563. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  564. #else
  565. #define host_keepalive() ;
  566. #define KEEPALIVE_STATE(n) ;
  567. #endif // HOST_KEEPALIVE_FEATURE
  568. #define DEFINE_PGM_READ_ANY(type, reader) \
  569. static inline type pgm_read_any(const type *p) \
  570. { return pgm_read_##reader##_near(p); }
  571. DEFINE_PGM_READ_ANY(float, float)
  572. DEFINE_PGM_READ_ANY(signed char, byte)
  573. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  574. static const PROGMEM type array##_P[XYZ] = \
  575. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  576. static inline type array(int axis) \
  577. { return pgm_read_any(&array##_P[axis]); }
  578. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  579. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  580. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  581. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  582. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  583. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  584. /**
  585. * ***************************************************************************
  586. * ******************************** FUNCTIONS ********************************
  587. * ***************************************************************************
  588. */
  589. void stop();
  590. void get_available_commands();
  591. void process_next_command();
  592. void prepare_move_to_destination();
  593. void get_cartesian_from_steppers();
  594. void set_current_from_steppers_for_axis(const AxisEnum axis);
  595. #if ENABLED(ARC_SUPPORT)
  596. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  597. #endif
  598. #if ENABLED(BEZIER_CURVE_SUPPORT)
  599. void plan_cubic_move(const float offset[4]);
  600. #endif
  601. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  602. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  603. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  604. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  605. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  606. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  607. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  608. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  609. static void report_current_position();
  610. #if ENABLED(DEBUG_LEVELING_FEATURE)
  611. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  612. serialprintPGM(prefix);
  613. SERIAL_ECHOPAIR("(", x);
  614. SERIAL_ECHOPAIR(", ", y);
  615. SERIAL_ECHOPAIR(", ", z);
  616. SERIAL_ECHOPGM(")");
  617. if (suffix) serialprintPGM(suffix);
  618. else SERIAL_EOL;
  619. }
  620. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  621. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  622. }
  623. #if HAS_ABL
  624. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  625. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  626. }
  627. #endif
  628. #define DEBUG_POS(SUFFIX,VAR) do { \
  629. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  630. #endif
  631. /**
  632. * sync_plan_position
  633. *
  634. * Set the planner/stepper positions directly from current_position with
  635. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  636. */
  637. inline void sync_plan_position() {
  638. #if ENABLED(DEBUG_LEVELING_FEATURE)
  639. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  640. #endif
  641. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  642. }
  643. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  644. #if IS_KINEMATIC
  645. inline void sync_plan_position_kinematic() {
  646. #if ENABLED(DEBUG_LEVELING_FEATURE)
  647. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  648. #endif
  649. planner.set_position_mm_kinematic(current_position);
  650. }
  651. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  652. #else
  653. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  654. #endif
  655. #if ENABLED(SDSUPPORT)
  656. #include "SdFatUtil.h"
  657. int freeMemory() { return SdFatUtil::FreeRam(); }
  658. #else
  659. extern "C" {
  660. extern char __bss_end;
  661. extern char __heap_start;
  662. extern void* __brkval;
  663. int freeMemory() {
  664. int free_memory;
  665. if ((int)__brkval == 0)
  666. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  667. else
  668. free_memory = ((int)&free_memory) - ((int)__brkval);
  669. return free_memory;
  670. }
  671. }
  672. #endif //!SDSUPPORT
  673. #if ENABLED(DIGIPOT_I2C)
  674. extern void digipot_i2c_set_current(int channel, float current);
  675. extern void digipot_i2c_init();
  676. #endif
  677. /**
  678. * Inject the next "immediate" command, when possible.
  679. * Return true if any immediate commands remain to inject.
  680. */
  681. static bool drain_injected_commands_P() {
  682. if (injected_commands_P != NULL) {
  683. size_t i = 0;
  684. char c, cmd[30];
  685. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  686. cmd[sizeof(cmd) - 1] = '\0';
  687. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  688. cmd[i] = '\0';
  689. if (enqueue_and_echo_command(cmd)) { // success?
  690. if (c) // newline char?
  691. injected_commands_P += i + 1; // advance to the next command
  692. else
  693. injected_commands_P = NULL; // nul char? no more commands
  694. }
  695. }
  696. return (injected_commands_P != NULL); // return whether any more remain
  697. }
  698. /**
  699. * Record one or many commands to run from program memory.
  700. * Aborts the current queue, if any.
  701. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  702. */
  703. void enqueue_and_echo_commands_P(const char* pgcode) {
  704. injected_commands_P = pgcode;
  705. drain_injected_commands_P(); // first command executed asap (when possible)
  706. }
  707. void clear_command_queue() {
  708. cmd_queue_index_r = cmd_queue_index_w;
  709. commands_in_queue = 0;
  710. }
  711. /**
  712. * Once a new command is in the ring buffer, call this to commit it
  713. */
  714. inline void _commit_command(bool say_ok) {
  715. send_ok[cmd_queue_index_w] = say_ok;
  716. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  717. commands_in_queue++;
  718. }
  719. /**
  720. * Copy a command directly into the main command buffer, from RAM.
  721. * Returns true if successfully adds the command
  722. */
  723. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  724. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  725. strcpy(command_queue[cmd_queue_index_w], cmd);
  726. _commit_command(say_ok);
  727. return true;
  728. }
  729. void enqueue_and_echo_command_now(const char* cmd) {
  730. while (!enqueue_and_echo_command(cmd)) idle();
  731. }
  732. /**
  733. * Enqueue with Serial Echo
  734. */
  735. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  736. if (_enqueuecommand(cmd, say_ok)) {
  737. SERIAL_ECHO_START;
  738. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  739. SERIAL_CHAR('"');
  740. SERIAL_EOL;
  741. return true;
  742. }
  743. return false;
  744. }
  745. void setup_killpin() {
  746. #if HAS_KILL
  747. SET_INPUT(KILL_PIN);
  748. WRITE(KILL_PIN, HIGH);
  749. #endif
  750. }
  751. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  752. void setup_filrunoutpin() {
  753. SET_INPUT(FIL_RUNOUT_PIN);
  754. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  755. WRITE(FIL_RUNOUT_PIN, HIGH);
  756. #endif
  757. }
  758. #endif
  759. // Set home pin
  760. void setup_homepin(void) {
  761. #if HAS_HOME
  762. SET_INPUT(HOME_PIN);
  763. WRITE(HOME_PIN, HIGH);
  764. #endif
  765. }
  766. void setup_powerhold() {
  767. #if HAS_SUICIDE
  768. OUT_WRITE(SUICIDE_PIN, HIGH);
  769. #endif
  770. #if HAS_POWER_SWITCH
  771. #if ENABLED(PS_DEFAULT_OFF)
  772. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  773. #else
  774. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  775. #endif
  776. #endif
  777. }
  778. void suicide() {
  779. #if HAS_SUICIDE
  780. OUT_WRITE(SUICIDE_PIN, LOW);
  781. #endif
  782. }
  783. void servo_init() {
  784. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  785. servo[0].attach(SERVO0_PIN);
  786. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  787. #endif
  788. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  789. servo[1].attach(SERVO1_PIN);
  790. servo[1].detach();
  791. #endif
  792. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  793. servo[2].attach(SERVO2_PIN);
  794. servo[2].detach();
  795. #endif
  796. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  797. servo[3].attach(SERVO3_PIN);
  798. servo[3].detach();
  799. #endif
  800. #if HAS_Z_SERVO_ENDSTOP
  801. /**
  802. * Set position of Z Servo Endstop
  803. *
  804. * The servo might be deployed and positioned too low to stow
  805. * when starting up the machine or rebooting the board.
  806. * There's no way to know where the nozzle is positioned until
  807. * homing has been done - no homing with z-probe without init!
  808. *
  809. */
  810. STOW_Z_SERVO();
  811. #endif
  812. }
  813. /**
  814. * Stepper Reset (RigidBoard, et.al.)
  815. */
  816. #if HAS_STEPPER_RESET
  817. void disableStepperDrivers() {
  818. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  819. }
  820. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  821. #endif
  822. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  823. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  824. i2c.receive(bytes);
  825. }
  826. void i2c_on_request() { // just send dummy data for now
  827. i2c.reply("Hello World!\n");
  828. }
  829. #endif
  830. void gcode_line_error(const char* err, bool doFlush = true) {
  831. SERIAL_ERROR_START;
  832. serialprintPGM(err);
  833. SERIAL_ERRORLN(gcode_LastN);
  834. //Serial.println(gcode_N);
  835. if (doFlush) FlushSerialRequestResend();
  836. serial_count = 0;
  837. }
  838. inline void get_serial_commands() {
  839. static char serial_line_buffer[MAX_CMD_SIZE];
  840. static boolean serial_comment_mode = false;
  841. // If the command buffer is empty for too long,
  842. // send "wait" to indicate Marlin is still waiting.
  843. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  844. static millis_t last_command_time = 0;
  845. millis_t ms = millis();
  846. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  847. SERIAL_ECHOLNPGM(MSG_WAIT);
  848. last_command_time = ms;
  849. }
  850. #endif
  851. /**
  852. * Loop while serial characters are incoming and the queue is not full
  853. */
  854. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  855. char serial_char = MYSERIAL.read();
  856. /**
  857. * If the character ends the line
  858. */
  859. if (serial_char == '\n' || serial_char == '\r') {
  860. serial_comment_mode = false; // end of line == end of comment
  861. if (!serial_count) continue; // skip empty lines
  862. serial_line_buffer[serial_count] = 0; // terminate string
  863. serial_count = 0; //reset buffer
  864. char* command = serial_line_buffer;
  865. while (*command == ' ') command++; // skip any leading spaces
  866. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  867. char* apos = strchr(command, '*');
  868. if (npos) {
  869. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  870. if (M110) {
  871. char* n2pos = strchr(command + 4, 'N');
  872. if (n2pos) npos = n2pos;
  873. }
  874. gcode_N = strtol(npos + 1, NULL, 10);
  875. if (gcode_N != gcode_LastN + 1 && !M110) {
  876. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  877. return;
  878. }
  879. if (apos) {
  880. byte checksum = 0, count = 0;
  881. while (command[count] != '*') checksum ^= command[count++];
  882. if (strtol(apos + 1, NULL, 10) != checksum) {
  883. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  884. return;
  885. }
  886. // if no errors, continue parsing
  887. }
  888. else {
  889. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  890. return;
  891. }
  892. gcode_LastN = gcode_N;
  893. // if no errors, continue parsing
  894. }
  895. else if (apos) { // No '*' without 'N'
  896. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  897. return;
  898. }
  899. // Movement commands alert when stopped
  900. if (IsStopped()) {
  901. char* gpos = strchr(command, 'G');
  902. if (gpos) {
  903. int codenum = strtol(gpos + 1, NULL, 10);
  904. switch (codenum) {
  905. case 0:
  906. case 1:
  907. case 2:
  908. case 3:
  909. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  910. LCD_MESSAGEPGM(MSG_STOPPED);
  911. break;
  912. }
  913. }
  914. }
  915. #if DISABLED(EMERGENCY_PARSER)
  916. // If command was e-stop process now
  917. if (strcmp(command, "M108") == 0) {
  918. wait_for_heatup = false;
  919. #if ENABLED(ULTIPANEL)
  920. wait_for_user = false;
  921. #endif
  922. }
  923. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  924. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  925. #endif
  926. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  927. last_command_time = ms;
  928. #endif
  929. // Add the command to the queue
  930. _enqueuecommand(serial_line_buffer, true);
  931. }
  932. else if (serial_count >= MAX_CMD_SIZE - 1) {
  933. // Keep fetching, but ignore normal characters beyond the max length
  934. // The command will be injected when EOL is reached
  935. }
  936. else if (serial_char == '\\') { // Handle escapes
  937. if (MYSERIAL.available() > 0) {
  938. // if we have one more character, copy it over
  939. serial_char = MYSERIAL.read();
  940. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  941. }
  942. // otherwise do nothing
  943. }
  944. else { // it's not a newline, carriage return or escape char
  945. if (serial_char == ';') serial_comment_mode = true;
  946. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  947. }
  948. } // queue has space, serial has data
  949. }
  950. #if ENABLED(SDSUPPORT)
  951. inline void get_sdcard_commands() {
  952. static bool stop_buffering = false,
  953. sd_comment_mode = false;
  954. if (!card.sdprinting) return;
  955. /**
  956. * '#' stops reading from SD to the buffer prematurely, so procedural
  957. * macro calls are possible. If it occurs, stop_buffering is triggered
  958. * and the buffer is run dry; this character _can_ occur in serial com
  959. * due to checksums, however, no checksums are used in SD printing.
  960. */
  961. if (commands_in_queue == 0) stop_buffering = false;
  962. uint16_t sd_count = 0;
  963. bool card_eof = card.eof();
  964. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  965. int16_t n = card.get();
  966. char sd_char = (char)n;
  967. card_eof = card.eof();
  968. if (card_eof || n == -1
  969. || sd_char == '\n' || sd_char == '\r'
  970. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  971. ) {
  972. if (card_eof) {
  973. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  974. card.printingHasFinished();
  975. card.checkautostart(true);
  976. }
  977. else if (n == -1) {
  978. SERIAL_ERROR_START;
  979. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  980. }
  981. if (sd_char == '#') stop_buffering = true;
  982. sd_comment_mode = false; //for new command
  983. if (!sd_count) continue; //skip empty lines
  984. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  985. sd_count = 0; //clear buffer
  986. _commit_command(false);
  987. }
  988. else if (sd_count >= MAX_CMD_SIZE - 1) {
  989. /**
  990. * Keep fetching, but ignore normal characters beyond the max length
  991. * The command will be injected when EOL is reached
  992. */
  993. }
  994. else {
  995. if (sd_char == ';') sd_comment_mode = true;
  996. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  997. }
  998. }
  999. }
  1000. #endif // SDSUPPORT
  1001. /**
  1002. * Add to the circular command queue the next command from:
  1003. * - The command-injection queue (injected_commands_P)
  1004. * - The active serial input (usually USB)
  1005. * - The SD card file being actively printed
  1006. */
  1007. void get_available_commands() {
  1008. // if any immediate commands remain, don't get other commands yet
  1009. if (drain_injected_commands_P()) return;
  1010. get_serial_commands();
  1011. #if ENABLED(SDSUPPORT)
  1012. get_sdcard_commands();
  1013. #endif
  1014. }
  1015. inline bool code_has_value() {
  1016. int i = 1;
  1017. char c = seen_pointer[i];
  1018. while (c == ' ') c = seen_pointer[++i];
  1019. if (c == '-' || c == '+') c = seen_pointer[++i];
  1020. if (c == '.') c = seen_pointer[++i];
  1021. return NUMERIC(c);
  1022. }
  1023. inline float code_value_float() {
  1024. char* e = strchr(seen_pointer, 'E');
  1025. if (!e) return strtod(seen_pointer + 1, NULL);
  1026. *e = 0;
  1027. float ret = strtod(seen_pointer + 1, NULL);
  1028. *e = 'E';
  1029. return ret;
  1030. }
  1031. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1032. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1033. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1034. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1035. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1036. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1037. #if ENABLED(INCH_MODE_SUPPORT)
  1038. inline void set_input_linear_units(LinearUnit units) {
  1039. switch (units) {
  1040. case LINEARUNIT_INCH:
  1041. linear_unit_factor = 25.4;
  1042. break;
  1043. case LINEARUNIT_MM:
  1044. default:
  1045. linear_unit_factor = 1.0;
  1046. break;
  1047. }
  1048. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1049. }
  1050. inline float axis_unit_factor(int axis) {
  1051. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1052. }
  1053. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1054. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1055. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1056. #else
  1057. inline float code_value_linear_units() { return code_value_float(); }
  1058. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1059. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1060. #endif
  1061. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1062. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1063. float code_value_temp_abs() {
  1064. switch (input_temp_units) {
  1065. case TEMPUNIT_C:
  1066. return code_value_float();
  1067. case TEMPUNIT_F:
  1068. return (code_value_float() - 32) * 0.5555555556;
  1069. case TEMPUNIT_K:
  1070. return code_value_float() - 272.15;
  1071. default:
  1072. return code_value_float();
  1073. }
  1074. }
  1075. float code_value_temp_diff() {
  1076. switch (input_temp_units) {
  1077. case TEMPUNIT_C:
  1078. case TEMPUNIT_K:
  1079. return code_value_float();
  1080. case TEMPUNIT_F:
  1081. return code_value_float() * 0.5555555556;
  1082. default:
  1083. return code_value_float();
  1084. }
  1085. }
  1086. #else
  1087. float code_value_temp_abs() { return code_value_float(); }
  1088. float code_value_temp_diff() { return code_value_float(); }
  1089. #endif
  1090. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1091. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1092. bool code_seen(char code) {
  1093. seen_pointer = strchr(current_command_args, code);
  1094. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1095. }
  1096. /**
  1097. * Set target_extruder from the T parameter or the active_extruder
  1098. *
  1099. * Returns TRUE if the target is invalid
  1100. */
  1101. bool get_target_extruder_from_command(int code) {
  1102. if (code_seen('T')) {
  1103. if (code_value_byte() >= EXTRUDERS) {
  1104. SERIAL_ECHO_START;
  1105. SERIAL_CHAR('M');
  1106. SERIAL_ECHO(code);
  1107. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1108. return true;
  1109. }
  1110. target_extruder = code_value_byte();
  1111. }
  1112. else
  1113. target_extruder = active_extruder;
  1114. return false;
  1115. }
  1116. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1117. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1118. #endif
  1119. #if ENABLED(DUAL_X_CARRIAGE)
  1120. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1121. static float x_home_pos(const int extruder) {
  1122. if (extruder == 0)
  1123. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1124. else
  1125. /**
  1126. * In dual carriage mode the extruder offset provides an override of the
  1127. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1128. * This allows soft recalibration of the second extruder home position
  1129. * without firmware reflash (through the M218 command).
  1130. */
  1131. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1132. }
  1133. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1134. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1135. static bool active_extruder_parked = false; // used in mode 1 & 2
  1136. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1137. static millis_t delayed_move_time = 0; // used in mode 1
  1138. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1139. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1140. #endif // DUAL_X_CARRIAGE
  1141. /**
  1142. * Software endstops can be used to monitor the open end of
  1143. * an axis that has a hardware endstop on the other end. Or
  1144. * they can prevent axes from moving past endstops and grinding.
  1145. *
  1146. * To keep doing their job as the coordinate system changes,
  1147. * the software endstop positions must be refreshed to remain
  1148. * at the same positions relative to the machine.
  1149. */
  1150. void update_software_endstops(AxisEnum axis) {
  1151. float offs = LOGICAL_POSITION(0, axis);
  1152. #if ENABLED(DUAL_X_CARRIAGE)
  1153. if (axis == X_AXIS) {
  1154. // In Dual X mode hotend_offset[X] is T1's home position
  1155. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1156. if (active_extruder != 0) {
  1157. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1158. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1159. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1160. }
  1161. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1162. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1163. // but not so far to the right that T1 would move past the end
  1164. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1165. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1166. }
  1167. else {
  1168. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1169. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1170. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1171. }
  1172. }
  1173. #else
  1174. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1175. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1176. #endif
  1177. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1178. if (DEBUGGING(LEVELING)) {
  1179. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1180. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1181. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1182. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1183. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1184. }
  1185. #endif
  1186. #if ENABLED(DELTA)
  1187. if (axis == Z_AXIS)
  1188. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1189. #endif
  1190. }
  1191. /**
  1192. * Change the home offset for an axis, update the current
  1193. * position and the software endstops to retain the same
  1194. * relative distance to the new home.
  1195. *
  1196. * Since this changes the current_position, code should
  1197. * call sync_plan_position soon after this.
  1198. */
  1199. static void set_home_offset(AxisEnum axis, float v) {
  1200. current_position[axis] += v - home_offset[axis];
  1201. home_offset[axis] = v;
  1202. update_software_endstops(axis);
  1203. }
  1204. /**
  1205. * Set an axis' current position to its home position (after homing).
  1206. *
  1207. * For Core and Cartesian robots this applies one-to-one when an
  1208. * individual axis has been homed.
  1209. *
  1210. * DELTA should wait until all homing is done before setting the XYZ
  1211. * current_position to home, because homing is a single operation.
  1212. * In the case where the axis positions are already known and previously
  1213. * homed, DELTA could home to X or Y individually by moving either one
  1214. * to the center. However, homing Z always homes XY and Z.
  1215. *
  1216. * SCARA should wait until all XY homing is done before setting the XY
  1217. * current_position to home, because neither X nor Y is at home until
  1218. * both are at home. Z can however be homed individually.
  1219. *
  1220. * Callers must sync the planner position after calling this!
  1221. */
  1222. static void set_axis_is_at_home(AxisEnum axis) {
  1223. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1224. if (DEBUGGING(LEVELING)) {
  1225. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1226. SERIAL_CHAR(')');
  1227. SERIAL_EOL;
  1228. }
  1229. #endif
  1230. axis_known_position[axis] = axis_homed[axis] = true;
  1231. position_shift[axis] = 0;
  1232. update_software_endstops(axis);
  1233. #if ENABLED(DUAL_X_CARRIAGE)
  1234. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1235. current_position[X_AXIS] = x_home_pos(active_extruder);
  1236. return;
  1237. }
  1238. #endif
  1239. #if ENABLED(MORGAN_SCARA)
  1240. /**
  1241. * Morgan SCARA homes XY at the same time
  1242. */
  1243. if (axis == X_AXIS || axis == Y_AXIS) {
  1244. float homeposition[XYZ];
  1245. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1246. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1247. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1248. /**
  1249. * Get Home position SCARA arm angles using inverse kinematics,
  1250. * and calculate homing offset using forward kinematics
  1251. */
  1252. inverse_kinematics(homeposition);
  1253. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1254. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1255. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1256. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1257. /**
  1258. * SCARA home positions are based on configuration since the actual
  1259. * limits are determined by the inverse kinematic transform.
  1260. */
  1261. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1262. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1263. }
  1264. else
  1265. #endif
  1266. {
  1267. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1268. }
  1269. /**
  1270. * Z Probe Z Homing? Account for the probe's Z offset.
  1271. */
  1272. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1273. if (axis == Z_AXIS) {
  1274. #if HOMING_Z_WITH_PROBE
  1275. current_position[Z_AXIS] -= zprobe_zoffset;
  1276. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1277. if (DEBUGGING(LEVELING)) {
  1278. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1279. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1280. }
  1281. #endif
  1282. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1283. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1284. #endif
  1285. }
  1286. #endif
  1287. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1288. if (DEBUGGING(LEVELING)) {
  1289. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1290. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1291. DEBUG_POS("", current_position);
  1292. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1293. SERIAL_CHAR(')');
  1294. SERIAL_EOL;
  1295. }
  1296. #endif
  1297. }
  1298. /**
  1299. * Some planner shorthand inline functions
  1300. */
  1301. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1302. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1303. int hbd = homing_bump_divisor[axis];
  1304. if (hbd < 1) {
  1305. hbd = 10;
  1306. SERIAL_ECHO_START;
  1307. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1308. }
  1309. return homing_feedrate_mm_s[axis] / hbd;
  1310. }
  1311. //
  1312. // line_to_current_position
  1313. // Move the planner to the current position from wherever it last moved
  1314. // (or from wherever it has been told it is located).
  1315. //
  1316. inline void line_to_current_position() {
  1317. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1318. }
  1319. //
  1320. // line_to_destination
  1321. // Move the planner, not necessarily synced with current_position
  1322. //
  1323. inline void line_to_destination(float fr_mm_s) {
  1324. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1325. }
  1326. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1327. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1328. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1329. #if IS_KINEMATIC
  1330. /**
  1331. * Calculate delta, start a line, and set current_position to destination
  1332. */
  1333. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1334. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1335. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1336. #endif
  1337. if ( current_position[X_AXIS] == destination[X_AXIS]
  1338. && current_position[Y_AXIS] == destination[Y_AXIS]
  1339. && current_position[Z_AXIS] == destination[Z_AXIS]
  1340. && current_position[E_AXIS] == destination[E_AXIS]
  1341. ) return;
  1342. refresh_cmd_timeout();
  1343. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1344. set_current_to_destination();
  1345. }
  1346. #endif // IS_KINEMATIC
  1347. /**
  1348. * Plan a move to (X, Y, Z) and set the current_position
  1349. * The final current_position may not be the one that was requested
  1350. */
  1351. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1352. float old_feedrate_mm_s = feedrate_mm_s;
  1353. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1354. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1355. #endif
  1356. #if ENABLED(DELTA)
  1357. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1358. set_destination_to_current(); // sync destination at the start
  1359. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1360. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1361. #endif
  1362. // when in the danger zone
  1363. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1364. if (z > delta_clip_start_height) { // staying in the danger zone
  1365. destination[X_AXIS] = x; // move directly (uninterpolated)
  1366. destination[Y_AXIS] = y;
  1367. destination[Z_AXIS] = z;
  1368. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1369. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1370. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1371. #endif
  1372. return;
  1373. }
  1374. else {
  1375. destination[Z_AXIS] = delta_clip_start_height;
  1376. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1377. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1378. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1379. #endif
  1380. }
  1381. }
  1382. if (z > current_position[Z_AXIS]) { // raising?
  1383. destination[Z_AXIS] = z;
  1384. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1385. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1386. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1387. #endif
  1388. }
  1389. destination[X_AXIS] = x;
  1390. destination[Y_AXIS] = y;
  1391. prepare_move_to_destination(); // set_current_to_destination
  1392. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1393. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1394. #endif
  1395. if (z < current_position[Z_AXIS]) { // lowering?
  1396. destination[Z_AXIS] = z;
  1397. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1398. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1399. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1400. #endif
  1401. }
  1402. #elif IS_SCARA
  1403. set_destination_to_current();
  1404. // If Z needs to raise, do it before moving XY
  1405. if (destination[Z_AXIS] < z) {
  1406. destination[Z_AXIS] = z;
  1407. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1408. }
  1409. destination[X_AXIS] = x;
  1410. destination[Y_AXIS] = y;
  1411. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1412. // If Z needs to lower, do it after moving XY
  1413. if (destination[Z_AXIS] > z) {
  1414. destination[Z_AXIS] = z;
  1415. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1416. }
  1417. #else
  1418. // If Z needs to raise, do it before moving XY
  1419. if (current_position[Z_AXIS] < z) {
  1420. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1421. current_position[Z_AXIS] = z;
  1422. line_to_current_position();
  1423. }
  1424. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1425. current_position[X_AXIS] = x;
  1426. current_position[Y_AXIS] = y;
  1427. line_to_current_position();
  1428. // If Z needs to lower, do it after moving XY
  1429. if (current_position[Z_AXIS] > z) {
  1430. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1431. current_position[Z_AXIS] = z;
  1432. line_to_current_position();
  1433. }
  1434. #endif
  1435. stepper.synchronize();
  1436. feedrate_mm_s = old_feedrate_mm_s;
  1437. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1438. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1439. #endif
  1440. }
  1441. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1442. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1443. }
  1444. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1445. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1446. }
  1447. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1448. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1449. }
  1450. //
  1451. // Prepare to do endstop or probe moves
  1452. // with custom feedrates.
  1453. //
  1454. // - Save current feedrates
  1455. // - Reset the rate multiplier
  1456. // - Reset the command timeout
  1457. // - Enable the endstops (for endstop moves)
  1458. //
  1459. static void setup_for_endstop_or_probe_move() {
  1460. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1461. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1462. #endif
  1463. saved_feedrate_mm_s = feedrate_mm_s;
  1464. saved_feedrate_percentage = feedrate_percentage;
  1465. feedrate_percentage = 100;
  1466. refresh_cmd_timeout();
  1467. }
  1468. static void clean_up_after_endstop_or_probe_move() {
  1469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1470. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1471. #endif
  1472. feedrate_mm_s = saved_feedrate_mm_s;
  1473. feedrate_percentage = saved_feedrate_percentage;
  1474. refresh_cmd_timeout();
  1475. }
  1476. #if HAS_BED_PROBE
  1477. /**
  1478. * Raise Z to a minimum height to make room for a probe to move
  1479. */
  1480. inline void do_probe_raise(float z_raise) {
  1481. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1482. if (DEBUGGING(LEVELING)) {
  1483. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1484. SERIAL_CHAR(')');
  1485. SERIAL_EOL;
  1486. }
  1487. #endif
  1488. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1489. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1490. if (z_dest > current_position[Z_AXIS])
  1491. do_blocking_move_to_z(z_dest);
  1492. }
  1493. #endif //HAS_BED_PROBE
  1494. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1495. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1496. const bool xx = x && !axis_homed[X_AXIS],
  1497. yy = y && !axis_homed[Y_AXIS],
  1498. zz = z && !axis_homed[Z_AXIS];
  1499. if (xx || yy || zz) {
  1500. SERIAL_ECHO_START;
  1501. SERIAL_ECHOPGM(MSG_HOME " ");
  1502. if (xx) SERIAL_ECHOPGM(MSG_X);
  1503. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1504. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1505. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1506. #if ENABLED(ULTRA_LCD)
  1507. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1508. strcat_P(message, PSTR(MSG_HOME " "));
  1509. if (xx) strcat_P(message, PSTR(MSG_X));
  1510. if (yy) strcat_P(message, PSTR(MSG_Y));
  1511. if (zz) strcat_P(message, PSTR(MSG_Z));
  1512. strcat_P(message, PSTR(" " MSG_FIRST));
  1513. lcd_setstatus(message);
  1514. #endif
  1515. return true;
  1516. }
  1517. return false;
  1518. }
  1519. #endif
  1520. #if ENABLED(Z_PROBE_SLED)
  1521. #ifndef SLED_DOCKING_OFFSET
  1522. #define SLED_DOCKING_OFFSET 0
  1523. #endif
  1524. /**
  1525. * Method to dock/undock a sled designed by Charles Bell.
  1526. *
  1527. * stow[in] If false, move to MAX_X and engage the solenoid
  1528. * If true, move to MAX_X and release the solenoid
  1529. */
  1530. static void dock_sled(bool stow) {
  1531. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1532. if (DEBUGGING(LEVELING)) {
  1533. SERIAL_ECHOPAIR("dock_sled(", stow);
  1534. SERIAL_CHAR(')');
  1535. SERIAL_EOL;
  1536. }
  1537. #endif
  1538. // Dock sled a bit closer to ensure proper capturing
  1539. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1540. #if PIN_EXISTS(SLED)
  1541. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1542. #endif
  1543. }
  1544. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1545. void run_deploy_moves_script() {
  1546. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1547. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1548. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1549. #endif
  1550. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1551. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1552. #endif
  1553. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1554. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1555. #endif
  1556. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1557. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1558. #endif
  1559. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1560. #endif
  1561. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1562. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1563. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1564. #endif
  1565. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1566. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1567. #endif
  1568. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1569. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1570. #endif
  1571. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1572. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1573. #endif
  1574. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1575. #endif
  1576. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1577. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1578. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1579. #endif
  1580. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1581. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1582. #endif
  1583. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1584. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1585. #endif
  1586. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1587. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1588. #endif
  1589. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1590. #endif
  1591. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1592. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1593. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1594. #endif
  1595. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1596. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1597. #endif
  1598. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1599. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1600. #endif
  1601. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1602. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1603. #endif
  1604. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1605. #endif
  1606. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1607. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1608. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1609. #endif
  1610. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1611. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1612. #endif
  1613. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1614. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1615. #endif
  1616. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1617. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1618. #endif
  1619. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1620. #endif
  1621. }
  1622. void run_stow_moves_script() {
  1623. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1624. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1625. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1626. #endif
  1627. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1628. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1629. #endif
  1630. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1631. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1632. #endif
  1633. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1634. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1635. #endif
  1636. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1637. #endif
  1638. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1639. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1640. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1641. #endif
  1642. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1643. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1644. #endif
  1645. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1646. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1647. #endif
  1648. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1649. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1650. #endif
  1651. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1652. #endif
  1653. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1654. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1655. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1656. #endif
  1657. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1658. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1659. #endif
  1660. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1661. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1662. #endif
  1663. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1664. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1665. #endif
  1666. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1667. #endif
  1668. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1669. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1670. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1671. #endif
  1672. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1673. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1674. #endif
  1675. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1676. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1677. #endif
  1678. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1679. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1680. #endif
  1681. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1682. #endif
  1683. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1684. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1685. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1686. #endif
  1687. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1688. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1689. #endif
  1690. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1691. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1692. #endif
  1693. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1694. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1695. #endif
  1696. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1697. #endif
  1698. }
  1699. #endif
  1700. #if HAS_BED_PROBE
  1701. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1702. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1703. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1704. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1705. #else
  1706. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1707. #endif
  1708. #endif
  1709. #define DEPLOY_PROBE() set_probe_deployed(true)
  1710. #define STOW_PROBE() set_probe_deployed(false)
  1711. #if ENABLED(BLTOUCH)
  1712. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1713. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1714. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1715. if (DEBUGGING(LEVELING)) {
  1716. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1717. SERIAL_CHAR(')');
  1718. SERIAL_EOL;
  1719. }
  1720. #endif
  1721. }
  1722. #endif
  1723. // returns false for ok and true for failure
  1724. static bool set_probe_deployed(bool deploy) {
  1725. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1726. if (DEBUGGING(LEVELING)) {
  1727. DEBUG_POS("set_probe_deployed", current_position);
  1728. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1729. }
  1730. #endif
  1731. if (endstops.z_probe_enabled == deploy) return false;
  1732. // Make room for probe
  1733. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1734. // When deploying make sure BLTOUCH is not already triggered
  1735. #if ENABLED(BLTOUCH)
  1736. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1737. #elif ENABLED(Z_PROBE_SLED)
  1738. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1739. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1740. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1741. #endif
  1742. float oldXpos = current_position[X_AXIS],
  1743. oldYpos = current_position[Y_AXIS];
  1744. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1745. // If endstop is already false, the Z probe is deployed
  1746. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1747. // Would a goto be less ugly?
  1748. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1749. // for a triggered when stowed manual probe.
  1750. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1751. // otherwise an Allen-Key probe can't be stowed.
  1752. #endif
  1753. #if ENABLED(Z_PROBE_SLED)
  1754. dock_sled(!deploy);
  1755. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1756. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1757. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1758. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1759. #endif
  1760. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1761. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1762. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1763. if (IsRunning()) {
  1764. SERIAL_ERROR_START;
  1765. SERIAL_ERRORLNPGM("Z-Probe failed");
  1766. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1767. }
  1768. stop();
  1769. return true;
  1770. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1771. #endif
  1772. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1773. endstops.enable_z_probe(deploy);
  1774. return false;
  1775. }
  1776. static void do_probe_move(float z, float fr_mm_m) {
  1777. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1778. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1779. #endif
  1780. // Deploy BLTouch at the start of any probe
  1781. #if ENABLED(BLTOUCH)
  1782. set_bltouch_deployed(true);
  1783. #endif
  1784. // Move down until probe triggered
  1785. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1786. // Retract BLTouch immediately after a probe
  1787. #if ENABLED(BLTOUCH)
  1788. set_bltouch_deployed(false);
  1789. #endif
  1790. // Clear endstop flags
  1791. endstops.hit_on_purpose();
  1792. // Get Z where the steppers were interrupted
  1793. set_current_from_steppers_for_axis(Z_AXIS);
  1794. // Tell the planner where we actually are
  1795. SYNC_PLAN_POSITION_KINEMATIC();
  1796. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1797. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1798. #endif
  1799. }
  1800. // Do a single Z probe and return with current_position[Z_AXIS]
  1801. // at the height where the probe triggered.
  1802. static float run_z_probe() {
  1803. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1804. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1805. #endif
  1806. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1807. refresh_cmd_timeout();
  1808. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1809. // Do a first probe at the fast speed
  1810. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1811. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1812. float first_probe_z = current_position[Z_AXIS];
  1813. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1814. #endif
  1815. // move up by the bump distance
  1816. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1817. #else
  1818. // If the nozzle is above the travel height then
  1819. // move down quickly before doing the slow probe
  1820. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1821. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1822. if (z < current_position[Z_AXIS])
  1823. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1824. #endif
  1825. // move down slowly to find bed
  1826. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1827. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1828. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1829. #endif
  1830. // Debug: compare probe heights
  1831. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1832. if (DEBUGGING(LEVELING)) {
  1833. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1834. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1835. }
  1836. #endif
  1837. return current_position[Z_AXIS];
  1838. }
  1839. //
  1840. // - Move to the given XY
  1841. // - Deploy the probe, if not already deployed
  1842. // - Probe the bed, get the Z position
  1843. // - Depending on the 'stow' flag
  1844. // - Stow the probe, or
  1845. // - Raise to the BETWEEN height
  1846. // - Return the probed Z position
  1847. //
  1848. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1849. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1850. if (DEBUGGING(LEVELING)) {
  1851. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1852. SERIAL_ECHOPAIR(", ", y);
  1853. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1854. SERIAL_ECHOLNPGM("stow)");
  1855. DEBUG_POS("", current_position);
  1856. }
  1857. #endif
  1858. float old_feedrate_mm_s = feedrate_mm_s;
  1859. #if ENABLED(DELTA)
  1860. if (current_position[Z_AXIS] > delta_clip_start_height)
  1861. do_blocking_move_to_z(delta_clip_start_height);
  1862. #endif
  1863. // Ensure a minimum height before moving the probe
  1864. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1865. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1866. // Move the probe to the given XY
  1867. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1868. if (DEPLOY_PROBE()) return NAN;
  1869. float measured_z = run_z_probe();
  1870. if (!stow)
  1871. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1872. else
  1873. if (STOW_PROBE()) return NAN;
  1874. if (verbose_level > 2) {
  1875. SERIAL_PROTOCOLPGM("Bed X: ");
  1876. SERIAL_PROTOCOL_F(x, 3);
  1877. SERIAL_PROTOCOLPGM(" Y: ");
  1878. SERIAL_PROTOCOL_F(y, 3);
  1879. SERIAL_PROTOCOLPGM(" Z: ");
  1880. SERIAL_PROTOCOL_F(measured_z, 3);
  1881. SERIAL_EOL;
  1882. }
  1883. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1884. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1885. #endif
  1886. feedrate_mm_s = old_feedrate_mm_s;
  1887. return measured_z;
  1888. }
  1889. #endif // HAS_BED_PROBE
  1890. #if PLANNER_LEVELING
  1891. /**
  1892. * Turn bed leveling on or off, fixing the current
  1893. * position as-needed.
  1894. *
  1895. * Disable: Current position = physical position
  1896. * Enable: Current position = "unleveled" physical position
  1897. */
  1898. void set_bed_leveling_enabled(bool enable/*=true*/) {
  1899. #if ENABLED(MESH_BED_LEVELING)
  1900. if (enable != mbl.active()) {
  1901. if (!enable)
  1902. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1903. mbl.set_active(enable && mbl.has_mesh());
  1904. if (enable) planner.unapply_leveling(current_position);
  1905. }
  1906. #elif HAS_ABL
  1907. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1908. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  1909. #else
  1910. constexpr bool can_change = true;
  1911. #endif
  1912. if (can_change && enable != planner.abl_enabled) {
  1913. planner.abl_enabled = enable;
  1914. if (!enable)
  1915. set_current_from_steppers_for_axis(
  1916. #if ABL_PLANAR
  1917. ALL_AXES
  1918. #else
  1919. Z_AXIS
  1920. #endif
  1921. );
  1922. else
  1923. planner.unapply_leveling(current_position);
  1924. }
  1925. #endif
  1926. }
  1927. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1928. void set_z_fade_height(const float zfh) {
  1929. planner.z_fade_height = zfh;
  1930. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  1931. if (
  1932. #if ENABLED(MESH_BED_LEVELING)
  1933. mbl.active()
  1934. #else
  1935. planner.abl_enabled
  1936. #endif
  1937. ) {
  1938. set_current_from_steppers_for_axis(
  1939. #if ABL_PLANAR
  1940. ALL_AXES
  1941. #else
  1942. Z_AXIS
  1943. #endif
  1944. );
  1945. }
  1946. }
  1947. #endif // LEVELING_FADE_HEIGHT
  1948. /**
  1949. * Reset calibration results to zero.
  1950. */
  1951. void reset_bed_level() {
  1952. set_bed_leveling_enabled(false);
  1953. #if ENABLED(MESH_BED_LEVELING)
  1954. if (mbl.has_mesh()) {
  1955. mbl.reset();
  1956. mbl.set_has_mesh(false);
  1957. }
  1958. #else
  1959. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1960. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1961. #endif
  1962. #if ABL_PLANAR
  1963. planner.bed_level_matrix.set_to_identity();
  1964. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1965. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  1966. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  1967. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  1968. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  1969. bed_level_grid[x][y] = UNPROBED;
  1970. #endif
  1971. #endif
  1972. }
  1973. #endif // PLANNER_LEVELING
  1974. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1975. /**
  1976. * Extrapolate a single point from its neighbors
  1977. */
  1978. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1979. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1980. if (DEBUGGING(LEVELING)) {
  1981. SERIAL_ECHOPGM("Extrapolate [");
  1982. if (x < 10) SERIAL_CHAR(' ');
  1983. SERIAL_ECHO((int)x);
  1984. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  1985. SERIAL_CHAR(' ');
  1986. if (y < 10) SERIAL_CHAR(' ');
  1987. SERIAL_ECHO((int)y);
  1988. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  1989. SERIAL_CHAR(']');
  1990. }
  1991. #endif
  1992. if (bed_level_grid[x][y] != UNPROBED) {
  1993. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1994. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  1995. #endif
  1996. return; // Don't overwrite good values.
  1997. }
  1998. SERIAL_EOL;
  1999. // Get X neighbors, Y neighbors, and XY neighbors
  2000. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  2001. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  2002. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  2003. // Treat far unprobed points as zero, near as equal to far
  2004. if (a2 == UNPROBED) a2 = 0.0; if (a1 == UNPROBED) a1 = a2;
  2005. if (b2 == UNPROBED) b2 = 0.0; if (b1 == UNPROBED) b1 = b2;
  2006. if (c2 == UNPROBED) c2 = 0.0; if (c1 == UNPROBED) c1 = c2;
  2007. float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2008. // Take the average instead of the median
  2009. bed_level_grid[x][y] = (a + b + c) / 3.0;
  2010. // Median is robust (ignores outliers).
  2011. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2012. // : ((c < b) ? b : (a < c) ? a : c);
  2013. }
  2014. //Enable this if your SCARA uses 180° of total area
  2015. //#define EXTRAPOLATE_FROM_EDGE
  2016. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2017. #if ABL_GRID_MAX_POINTS_X < ABL_GRID_MAX_POINTS_Y
  2018. #define HALF_IN_X
  2019. #elif ABL_GRID_MAX_POINTS_Y < ABL_GRID_MAX_POINTS_X
  2020. #define HALF_IN_Y
  2021. #endif
  2022. #endif
  2023. /**
  2024. * Fill in the unprobed points (corners of circular print surface)
  2025. * using linear extrapolation, away from the center.
  2026. */
  2027. static void extrapolate_unprobed_bed_level() {
  2028. #ifdef HALF_IN_X
  2029. const uint8_t ctrx2 = 0, xlen = ABL_GRID_MAX_POINTS_X - 1;
  2030. #else
  2031. const uint8_t ctrx1 = (ABL_GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2032. ctrx2 = ABL_GRID_MAX_POINTS_X / 2, // right-of-center
  2033. xlen = ctrx1;
  2034. #endif
  2035. #ifdef HALF_IN_Y
  2036. const uint8_t ctry2 = 0, ylen = ABL_GRID_MAX_POINTS_Y - 1;
  2037. #else
  2038. const uint8_t ctry1 = (ABL_GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2039. ctry2 = ABL_GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2040. ylen = ctry1;
  2041. #endif
  2042. for (uint8_t xo = 0; xo <= xlen; xo++)
  2043. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2044. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2045. #ifndef HALF_IN_X
  2046. uint8_t x1 = ctrx1 - xo;
  2047. #endif
  2048. #ifndef HALF_IN_Y
  2049. uint8_t y1 = ctry1 - yo;
  2050. #ifndef HALF_IN_X
  2051. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2052. #endif
  2053. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2054. #endif
  2055. #ifndef HALF_IN_X
  2056. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2057. #endif
  2058. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2059. }
  2060. }
  2061. /**
  2062. * Print calibration results for plotting or manual frame adjustment.
  2063. */
  2064. static void print_bilinear_leveling_grid() {
  2065. SERIAL_ECHOPGM("Bilinear Leveling Grid:\n ");
  2066. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++) {
  2067. SERIAL_PROTOCOLPGM(" ");
  2068. if (x < 10) SERIAL_PROTOCOLCHAR(' ');
  2069. SERIAL_PROTOCOL((int)x);
  2070. }
  2071. SERIAL_EOL;
  2072. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++) {
  2073. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2074. SERIAL_PROTOCOL((int)y);
  2075. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++) {
  2076. SERIAL_PROTOCOLCHAR(' ');
  2077. float offset = bed_level_grid[x][y];
  2078. if (offset != UNPROBED) {
  2079. if (offset > 0) SERIAL_CHAR('+');
  2080. SERIAL_PROTOCOL_F(offset, 2);
  2081. }
  2082. else
  2083. SERIAL_PROTOCOLPGM(" ====");
  2084. }
  2085. SERIAL_EOL;
  2086. }
  2087. SERIAL_EOL;
  2088. }
  2089. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2090. #define ABL_GRID_POINTS_VIRT_X (ABL_GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2091. #define ABL_GRID_POINTS_VIRT_Y (ABL_GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2092. float bed_level_grid_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2093. float bed_level_grid_virt_temp[ABL_GRID_MAX_POINTS_X + 2][ABL_GRID_MAX_POINTS_Y + 2]; //temporary for calculation (maybe dynamical?)
  2094. int bilinear_grid_spacing_virt[2] = { 0 };
  2095. static void bed_level_virt_print() {
  2096. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2097. for (uint8_t x = 0; x < ABL_GRID_POINTS_VIRT_X; x++) {
  2098. SERIAL_PROTOCOLPGM(" ");
  2099. if (x < 10) SERIAL_PROTOCOLCHAR(' ');
  2100. SERIAL_PROTOCOL((int)x);
  2101. }
  2102. SERIAL_EOL;
  2103. for (uint8_t y = 0; y < ABL_GRID_POINTS_VIRT_Y; y++) {
  2104. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2105. SERIAL_PROTOCOL((int)y);
  2106. for (uint8_t x = 0; x < ABL_GRID_POINTS_VIRT_X; x++) {
  2107. SERIAL_PROTOCOLCHAR(' ');
  2108. float offset = bed_level_grid_virt[x][y];
  2109. if (offset != UNPROBED) {
  2110. if (offset > 0) SERIAL_CHAR('+');
  2111. SERIAL_PROTOCOL_F(offset, 5);
  2112. }
  2113. else
  2114. SERIAL_PROTOCOLPGM(" ====");
  2115. }
  2116. SERIAL_EOL;
  2117. }
  2118. SERIAL_EOL;
  2119. }
  2120. #define LINEAR_EXTRAPOLATION(E, I) (E * 2 - I)
  2121. void bed_level_virt_prepare() {
  2122. for (uint8_t y = 1; y <= ABL_GRID_MAX_POINTS_Y; y++) {
  2123. for (uint8_t x = 1; x <= ABL_GRID_MAX_POINTS_X; x++)
  2124. bed_level_grid_virt_temp[x][y] = bed_level_grid[x - 1][y - 1];
  2125. bed_level_grid_virt_temp[0][y] = LINEAR_EXTRAPOLATION(
  2126. bed_level_grid_virt_temp[1][y],
  2127. bed_level_grid_virt_temp[2][y]
  2128. );
  2129. bed_level_grid_virt_temp[(ABL_GRID_MAX_POINTS_X + 2) - 1][y] =
  2130. LINEAR_EXTRAPOLATION(
  2131. bed_level_grid_virt_temp[(ABL_GRID_MAX_POINTS_X + 2) - 2][y],
  2132. bed_level_grid_virt_temp[(ABL_GRID_MAX_POINTS_X + 2) - 3][y]
  2133. );
  2134. }
  2135. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X + 2; x++) {
  2136. bed_level_grid_virt_temp[x][0] = LINEAR_EXTRAPOLATION(
  2137. bed_level_grid_virt_temp[x][1],
  2138. bed_level_grid_virt_temp[x][2]
  2139. );
  2140. bed_level_grid_virt_temp[x][(ABL_GRID_MAX_POINTS_Y + 2) - 1] =
  2141. LINEAR_EXTRAPOLATION(
  2142. bed_level_grid_virt_temp[x][(ABL_GRID_MAX_POINTS_Y + 2) - 2],
  2143. bed_level_grid_virt_temp[x][(ABL_GRID_MAX_POINTS_Y + 2) - 3]
  2144. );
  2145. }
  2146. }
  2147. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2148. return (
  2149. p[i-1] * -t * sq(1 - t)
  2150. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2151. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2152. - p[i+2] * sq(t) * (1 - t)
  2153. ) * 0.5;
  2154. }
  2155. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2156. float row[4], column[4];
  2157. for (uint8_t i = 0; i < 4; i++) {
  2158. for (uint8_t j = 0; j < 4; j++) // can be memcopy or through memory access
  2159. column[j] = bed_level_grid_virt_temp[i + x - 1][j + y - 1];
  2160. row[i] = bed_level_virt_cmr(column, 1, ty);
  2161. }
  2162. return bed_level_virt_cmr(row, 1, tx);
  2163. }
  2164. void bed_level_virt_interpolate() {
  2165. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  2166. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  2167. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2168. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2169. if ((ty && y == ABL_GRID_MAX_POINTS_Y - 1) || (tx && x == ABL_GRID_MAX_POINTS_X - 1))
  2170. continue;
  2171. bed_level_grid_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2172. bed_level_virt_2cmr(
  2173. x + 1,
  2174. y + 1,
  2175. (float)tx / (BILINEAR_SUBDIVISIONS),
  2176. (float)ty / (BILINEAR_SUBDIVISIONS)
  2177. );
  2178. }
  2179. }
  2180. #endif // ABL_BILINEAR_SUBDIVISION
  2181. #endif // AUTO_BED_LEVELING_BILINEAR
  2182. /**
  2183. * Home an individual linear axis
  2184. */
  2185. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2186. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2187. if (DEBUGGING(LEVELING)) {
  2188. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2189. SERIAL_ECHOPAIR(", ", distance);
  2190. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2191. SERIAL_CHAR(')');
  2192. SERIAL_EOL;
  2193. }
  2194. #endif
  2195. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2196. bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2197. if (deploy_bltouch) set_bltouch_deployed(true);
  2198. #endif
  2199. // Tell the planner we're at Z=0
  2200. current_position[axis] = 0;
  2201. #if IS_SCARA
  2202. SYNC_PLAN_POSITION_KINEMATIC();
  2203. current_position[axis] = distance;
  2204. inverse_kinematics(current_position);
  2205. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2206. #else
  2207. sync_plan_position();
  2208. current_position[axis] = distance;
  2209. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2210. #endif
  2211. stepper.synchronize();
  2212. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2213. if (deploy_bltouch) set_bltouch_deployed(false);
  2214. #endif
  2215. endstops.hit_on_purpose();
  2216. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2217. if (DEBUGGING(LEVELING)) {
  2218. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2219. SERIAL_CHAR(')');
  2220. SERIAL_EOL;
  2221. }
  2222. #endif
  2223. }
  2224. /**
  2225. * Home an individual "raw axis" to its endstop.
  2226. * This applies to XYZ on Cartesian and Core robots, and
  2227. * to the individual ABC steppers on DELTA and SCARA.
  2228. *
  2229. * At the end of the procedure the axis is marked as
  2230. * homed and the current position of that axis is updated.
  2231. * Kinematic robots should wait till all axes are homed
  2232. * before updating the current position.
  2233. */
  2234. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2235. static void homeaxis(AxisEnum axis) {
  2236. #if IS_SCARA
  2237. // Only Z homing (with probe) is permitted
  2238. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2239. #else
  2240. #define CAN_HOME(A) \
  2241. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2242. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2243. #endif
  2244. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2245. if (DEBUGGING(LEVELING)) {
  2246. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2247. SERIAL_CHAR(')');
  2248. SERIAL_EOL;
  2249. }
  2250. #endif
  2251. int axis_home_dir =
  2252. #if ENABLED(DUAL_X_CARRIAGE)
  2253. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2254. #endif
  2255. home_dir(axis);
  2256. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2257. #if HOMING_Z_WITH_PROBE
  2258. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2259. #endif
  2260. // Set a flag for Z motor locking
  2261. #if ENABLED(Z_DUAL_ENDSTOPS)
  2262. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2263. #endif
  2264. // Fast move towards endstop until triggered
  2265. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2266. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2267. #endif
  2268. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2269. // When homing Z with probe respect probe clearance
  2270. const float bump = axis_home_dir * (
  2271. #if HOMING_Z_WITH_PROBE
  2272. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2273. #endif
  2274. home_bump_mm(axis)
  2275. );
  2276. // If a second homing move is configured...
  2277. if (bump) {
  2278. // Move away from the endstop by the axis HOME_BUMP_MM
  2279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2280. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2281. #endif
  2282. do_homing_move(axis, -bump);
  2283. // Slow move towards endstop until triggered
  2284. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2285. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2286. #endif
  2287. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2288. }
  2289. #if ENABLED(Z_DUAL_ENDSTOPS)
  2290. if (axis == Z_AXIS) {
  2291. float adj = fabs(z_endstop_adj);
  2292. bool lockZ1;
  2293. if (axis_home_dir > 0) {
  2294. adj = -adj;
  2295. lockZ1 = (z_endstop_adj > 0);
  2296. }
  2297. else
  2298. lockZ1 = (z_endstop_adj < 0);
  2299. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2300. // Move to the adjusted endstop height
  2301. do_homing_move(axis, adj);
  2302. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2303. stepper.set_homing_flag(false);
  2304. } // Z_AXIS
  2305. #endif
  2306. #if IS_SCARA
  2307. set_axis_is_at_home(axis);
  2308. SYNC_PLAN_POSITION_KINEMATIC();
  2309. #elif ENABLED(DELTA)
  2310. // Delta has already moved all three towers up in G28
  2311. // so here it re-homes each tower in turn.
  2312. // Delta homing treats the axes as normal linear axes.
  2313. // retrace by the amount specified in endstop_adj
  2314. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2315. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2316. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2317. #endif
  2318. do_homing_move(axis, endstop_adj[axis]);
  2319. }
  2320. #else
  2321. // For cartesian/core machines,
  2322. // set the axis to its home position
  2323. set_axis_is_at_home(axis);
  2324. sync_plan_position();
  2325. destination[axis] = current_position[axis];
  2326. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2327. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2328. #endif
  2329. #endif
  2330. // Put away the Z probe
  2331. #if HOMING_Z_WITH_PROBE
  2332. if (axis == Z_AXIS && STOW_PROBE()) return;
  2333. #endif
  2334. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2335. if (DEBUGGING(LEVELING)) {
  2336. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2337. SERIAL_CHAR(')');
  2338. SERIAL_EOL;
  2339. }
  2340. #endif
  2341. } // homeaxis()
  2342. #if ENABLED(FWRETRACT)
  2343. void retract(bool retracting, bool swapping = false) {
  2344. static float hop_height;
  2345. if (retracting == retracted[active_extruder]) return;
  2346. float old_feedrate_mm_s = feedrate_mm_s;
  2347. set_destination_to_current();
  2348. if (retracting) {
  2349. feedrate_mm_s = retract_feedrate_mm_s;
  2350. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2351. sync_plan_position_e();
  2352. prepare_move_to_destination();
  2353. if (retract_zlift > 0.01) {
  2354. hop_height = current_position[Z_AXIS];
  2355. // Pretend current position is lower
  2356. current_position[Z_AXIS] -= retract_zlift;
  2357. SYNC_PLAN_POSITION_KINEMATIC();
  2358. // Raise up to the old current_position
  2359. prepare_move_to_destination();
  2360. }
  2361. }
  2362. else {
  2363. // If the height hasn't been altered, undo the Z hop
  2364. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2365. // Pretend current position is higher. Z will lower on the next move
  2366. current_position[Z_AXIS] += retract_zlift;
  2367. SYNC_PLAN_POSITION_KINEMATIC();
  2368. }
  2369. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2370. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2371. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2372. sync_plan_position_e();
  2373. // Lower Z and recover E
  2374. prepare_move_to_destination();
  2375. }
  2376. feedrate_mm_s = old_feedrate_mm_s;
  2377. retracted[active_extruder] = retracting;
  2378. } // retract()
  2379. #endif // FWRETRACT
  2380. #if ENABLED(MIXING_EXTRUDER)
  2381. void normalize_mix() {
  2382. float mix_total = 0.0;
  2383. for (int i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2384. // Scale all values if they don't add up to ~1.0
  2385. if (!NEAR(mix_total, 1.0)) {
  2386. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2387. for (int i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2388. }
  2389. }
  2390. #if ENABLED(DIRECT_MIXING_IN_G1)
  2391. // Get mixing parameters from the GCode
  2392. // The total "must" be 1.0 (but it will be normalized)
  2393. // If no mix factors are given, the old mix is preserved
  2394. void gcode_get_mix() {
  2395. const char* mixing_codes = "ABCDHI";
  2396. byte mix_bits = 0;
  2397. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2398. if (code_seen(mixing_codes[i])) {
  2399. SBI(mix_bits, i);
  2400. float v = code_value_float();
  2401. NOLESS(v, 0.0);
  2402. mixing_factor[i] = RECIPROCAL(v);
  2403. }
  2404. }
  2405. // If any mixing factors were included, clear the rest
  2406. // If none were included, preserve the last mix
  2407. if (mix_bits) {
  2408. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2409. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2410. normalize_mix();
  2411. }
  2412. }
  2413. #endif
  2414. #endif
  2415. /**
  2416. * ***************************************************************************
  2417. * ***************************** G-CODE HANDLING *****************************
  2418. * ***************************************************************************
  2419. */
  2420. /**
  2421. * Set XYZE destination and feedrate from the current GCode command
  2422. *
  2423. * - Set destination from included axis codes
  2424. * - Set to current for missing axis codes
  2425. * - Set the feedrate, if included
  2426. */
  2427. void gcode_get_destination() {
  2428. LOOP_XYZE(i) {
  2429. if (code_seen(axis_codes[i]))
  2430. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2431. else
  2432. destination[i] = current_position[i];
  2433. }
  2434. if (code_seen('F') && code_value_linear_units() > 0.0)
  2435. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2436. #if ENABLED(PRINTCOUNTER)
  2437. if (!DEBUGGING(DRYRUN))
  2438. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2439. #endif
  2440. // Get ABCDHI mixing factors
  2441. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2442. gcode_get_mix();
  2443. #endif
  2444. }
  2445. void unknown_command_error() {
  2446. SERIAL_ECHO_START;
  2447. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2448. SERIAL_CHAR('"');
  2449. SERIAL_EOL;
  2450. }
  2451. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2452. /**
  2453. * Output a "busy" message at regular intervals
  2454. * while the machine is not accepting commands.
  2455. */
  2456. void host_keepalive() {
  2457. millis_t ms = millis();
  2458. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2459. if (PENDING(ms, next_busy_signal_ms)) return;
  2460. switch (busy_state) {
  2461. case IN_HANDLER:
  2462. case IN_PROCESS:
  2463. SERIAL_ECHO_START;
  2464. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2465. break;
  2466. case PAUSED_FOR_USER:
  2467. SERIAL_ECHO_START;
  2468. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2469. break;
  2470. case PAUSED_FOR_INPUT:
  2471. SERIAL_ECHO_START;
  2472. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2473. break;
  2474. default:
  2475. break;
  2476. }
  2477. }
  2478. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2479. }
  2480. #endif //HOST_KEEPALIVE_FEATURE
  2481. bool position_is_reachable(float target[XYZ]
  2482. #if HAS_BED_PROBE
  2483. , bool by_probe=false
  2484. #endif
  2485. ) {
  2486. float dx = RAW_X_POSITION(target[X_AXIS]),
  2487. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2488. #if HAS_BED_PROBE
  2489. if (by_probe) {
  2490. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2491. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2492. }
  2493. #endif
  2494. #if IS_SCARA
  2495. #if MIDDLE_DEAD_ZONE_R > 0
  2496. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2497. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2498. #else
  2499. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2500. #endif
  2501. #elif ENABLED(DELTA)
  2502. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2503. #else
  2504. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2505. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2506. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2507. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2508. #endif
  2509. }
  2510. /**************************************************
  2511. ***************** GCode Handlers *****************
  2512. **************************************************/
  2513. /**
  2514. * G0, G1: Coordinated movement of X Y Z E axes
  2515. */
  2516. inline void gcode_G0_G1(
  2517. #if IS_SCARA
  2518. bool fast_move=false
  2519. #endif
  2520. ) {
  2521. if (IsRunning()) {
  2522. gcode_get_destination(); // For X Y Z E F
  2523. #if ENABLED(FWRETRACT)
  2524. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2525. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2526. // Is this move an attempt to retract or recover?
  2527. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2528. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2529. sync_plan_position_e(); // AND from the planner
  2530. retract(!retracted[active_extruder]);
  2531. return;
  2532. }
  2533. }
  2534. #endif //FWRETRACT
  2535. #if IS_SCARA
  2536. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2537. #else
  2538. prepare_move_to_destination();
  2539. #endif
  2540. }
  2541. }
  2542. /**
  2543. * G2: Clockwise Arc
  2544. * G3: Counterclockwise Arc
  2545. *
  2546. * This command has two forms: IJ-form and R-form.
  2547. *
  2548. * - I specifies an X offset. J specifies a Y offset.
  2549. * At least one of the IJ parameters is required.
  2550. * X and Y can be omitted to do a complete circle.
  2551. * The given XY is not error-checked. The arc ends
  2552. * based on the angle of the destination.
  2553. * Mixing I or J with R will throw an error.
  2554. *
  2555. * - R specifies the radius. X or Y is required.
  2556. * Omitting both X and Y will throw an error.
  2557. * X or Y must differ from the current XY.
  2558. * Mixing R with I or J will throw an error.
  2559. *
  2560. * Examples:
  2561. *
  2562. * G2 I10 ; CW circle centered at X+10
  2563. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2564. */
  2565. #if ENABLED(ARC_SUPPORT)
  2566. inline void gcode_G2_G3(bool clockwise) {
  2567. if (IsRunning()) {
  2568. #if ENABLED(SF_ARC_FIX)
  2569. bool relative_mode_backup = relative_mode;
  2570. relative_mode = true;
  2571. #endif
  2572. gcode_get_destination();
  2573. #if ENABLED(SF_ARC_FIX)
  2574. relative_mode = relative_mode_backup;
  2575. #endif
  2576. float arc_offset[2] = { 0.0, 0.0 };
  2577. if (code_seen('R')) {
  2578. const float r = code_value_axis_units(X_AXIS),
  2579. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2580. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2581. if (r && (x2 != x1 || y2 != y1)) {
  2582. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2583. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2584. d = HYPOT(dx, dy), // Linear distance between the points
  2585. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2586. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2587. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2588. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2589. arc_offset[X_AXIS] = cx - x1;
  2590. arc_offset[Y_AXIS] = cy - y1;
  2591. }
  2592. }
  2593. else {
  2594. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2595. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2596. }
  2597. if (arc_offset[0] || arc_offset[1]) {
  2598. // Send an arc to the planner
  2599. plan_arc(destination, arc_offset, clockwise);
  2600. refresh_cmd_timeout();
  2601. }
  2602. else {
  2603. // Bad arguments
  2604. SERIAL_ERROR_START;
  2605. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2606. }
  2607. }
  2608. }
  2609. #endif
  2610. /**
  2611. * G4: Dwell S<seconds> or P<milliseconds>
  2612. */
  2613. inline void gcode_G4() {
  2614. millis_t dwell_ms = 0;
  2615. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2616. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2617. stepper.synchronize();
  2618. refresh_cmd_timeout();
  2619. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2620. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2621. while (PENDING(millis(), dwell_ms)) idle();
  2622. }
  2623. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2624. /**
  2625. * Parameters interpreted according to:
  2626. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2627. * However I, J omission is not supported at this point; all
  2628. * parameters can be omitted and default to zero.
  2629. */
  2630. /**
  2631. * G5: Cubic B-spline
  2632. */
  2633. inline void gcode_G5() {
  2634. if (IsRunning()) {
  2635. gcode_get_destination();
  2636. float offset[] = {
  2637. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2638. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2639. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2640. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2641. };
  2642. plan_cubic_move(offset);
  2643. }
  2644. }
  2645. #endif // BEZIER_CURVE_SUPPORT
  2646. #if ENABLED(FWRETRACT)
  2647. /**
  2648. * G10 - Retract filament according to settings of M207
  2649. * G11 - Recover filament according to settings of M208
  2650. */
  2651. inline void gcode_G10_G11(bool doRetract=false) {
  2652. #if EXTRUDERS > 1
  2653. if (doRetract) {
  2654. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2655. }
  2656. #endif
  2657. retract(doRetract
  2658. #if EXTRUDERS > 1
  2659. , retracted_swap[active_extruder]
  2660. #endif
  2661. );
  2662. }
  2663. #endif //FWRETRACT
  2664. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2665. /**
  2666. * G12: Clean the nozzle
  2667. */
  2668. inline void gcode_G12() {
  2669. // Don't allow nozzle cleaning without homing first
  2670. if (axis_unhomed_error(true, true, true)) { return; }
  2671. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2672. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2673. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2674. Nozzle::clean(pattern, strokes, objects);
  2675. }
  2676. #endif
  2677. #if ENABLED(INCH_MODE_SUPPORT)
  2678. /**
  2679. * G20: Set input mode to inches
  2680. */
  2681. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2682. /**
  2683. * G21: Set input mode to millimeters
  2684. */
  2685. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2686. #endif
  2687. #if ENABLED(NOZZLE_PARK_FEATURE)
  2688. /**
  2689. * G27: Park the nozzle
  2690. */
  2691. inline void gcode_G27() {
  2692. // Don't allow nozzle parking without homing first
  2693. if (axis_unhomed_error(true, true, true)) { return; }
  2694. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2695. Nozzle::park(z_action);
  2696. }
  2697. #endif // NOZZLE_PARK_FEATURE
  2698. #if ENABLED(QUICK_HOME)
  2699. static void quick_home_xy() {
  2700. // Pretend the current position is 0,0
  2701. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2702. sync_plan_position();
  2703. int x_axis_home_dir =
  2704. #if ENABLED(DUAL_X_CARRIAGE)
  2705. x_home_dir(active_extruder)
  2706. #else
  2707. home_dir(X_AXIS)
  2708. #endif
  2709. ;
  2710. float mlx = max_length(X_AXIS),
  2711. mly = max_length(Y_AXIS),
  2712. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2713. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2714. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2715. endstops.hit_on_purpose(); // clear endstop hit flags
  2716. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2717. }
  2718. #endif // QUICK_HOME
  2719. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2720. void log_machine_info() {
  2721. SERIAL_ECHOPGM("Machine Type: ");
  2722. #if ENABLED(DELTA)
  2723. SERIAL_ECHOLNPGM("Delta");
  2724. #elif IS_SCARA
  2725. SERIAL_ECHOLNPGM("SCARA");
  2726. #elif IS_CORE
  2727. SERIAL_ECHOLNPGM("Core");
  2728. #else
  2729. SERIAL_ECHOLNPGM("Cartesian");
  2730. #endif
  2731. SERIAL_ECHOPGM("Probe: ");
  2732. #if ENABLED(FIX_MOUNTED_PROBE)
  2733. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2734. #elif ENABLED(BLTOUCH)
  2735. SERIAL_ECHOLNPGM("BLTOUCH");
  2736. #elif HAS_Z_SERVO_ENDSTOP
  2737. SERIAL_ECHOLNPGM("SERVO PROBE");
  2738. #elif ENABLED(Z_PROBE_SLED)
  2739. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2740. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2741. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2742. #else
  2743. SERIAL_ECHOLNPGM("NONE");
  2744. #endif
  2745. #if HAS_BED_PROBE
  2746. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2747. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2748. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2749. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2750. SERIAL_ECHOPGM(" (Right");
  2751. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2752. SERIAL_ECHOPGM(" (Left");
  2753. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2754. SERIAL_ECHOPGM(" (Middle");
  2755. #else
  2756. SERIAL_ECHOPGM(" (Aligned With");
  2757. #endif
  2758. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2759. SERIAL_ECHOPGM("-Back");
  2760. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2761. SERIAL_ECHOPGM("-Front");
  2762. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2763. SERIAL_ECHOPGM("-Center");
  2764. #endif
  2765. if (zprobe_zoffset < 0)
  2766. SERIAL_ECHOPGM(" & Below");
  2767. else if (zprobe_zoffset > 0)
  2768. SERIAL_ECHOPGM(" & Above");
  2769. else
  2770. SERIAL_ECHOPGM(" & Same Z as");
  2771. SERIAL_ECHOLNPGM(" Nozzle)");
  2772. #endif
  2773. #if HAS_ABL
  2774. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2775. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2776. SERIAL_ECHOPGM("LINEAR");
  2777. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2778. SERIAL_ECHOPGM("BILINEAR");
  2779. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2780. SERIAL_ECHOPGM("3POINT");
  2781. #endif
  2782. if (planner.abl_enabled) {
  2783. SERIAL_ECHOLNPGM(" (enabled)");
  2784. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)
  2785. float diff[XYZ] = {
  2786. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2787. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2788. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2789. };
  2790. SERIAL_ECHOPGM("ABL Adjustment X");
  2791. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2792. SERIAL_ECHO(diff[X_AXIS]);
  2793. SERIAL_ECHOPGM(" Y");
  2794. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2795. SERIAL_ECHO(diff[Y_AXIS]);
  2796. SERIAL_ECHOPGM(" Z");
  2797. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2798. SERIAL_ECHO(diff[Z_AXIS]);
  2799. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2800. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2801. #endif
  2802. }
  2803. SERIAL_EOL;
  2804. #elif ENABLED(MESH_BED_LEVELING)
  2805. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2806. if (mbl.active()) {
  2807. float lz = current_position[Z_AXIS];
  2808. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  2809. SERIAL_ECHOLNPGM(" (enabled)");
  2810. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  2811. }
  2812. SERIAL_EOL;
  2813. #endif
  2814. }
  2815. #endif // DEBUG_LEVELING_FEATURE
  2816. #if ENABLED(DELTA)
  2817. /**
  2818. * A delta can only safely home all axes at the same time
  2819. * This is like quick_home_xy() but for 3 towers.
  2820. */
  2821. inline void home_delta() {
  2822. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2823. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2824. #endif
  2825. // Init the current position of all carriages to 0,0,0
  2826. ZERO(current_position);
  2827. sync_plan_position();
  2828. // Move all carriages together linearly until an endstop is hit.
  2829. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2830. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2831. line_to_current_position();
  2832. stepper.synchronize();
  2833. endstops.hit_on_purpose(); // clear endstop hit flags
  2834. // At least one carriage has reached the top.
  2835. // Now re-home each carriage separately.
  2836. HOMEAXIS(A);
  2837. HOMEAXIS(B);
  2838. HOMEAXIS(C);
  2839. // Set all carriages to their home positions
  2840. // Do this here all at once for Delta, because
  2841. // XYZ isn't ABC. Applying this per-tower would
  2842. // give the impression that they are the same.
  2843. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2844. SYNC_PLAN_POSITION_KINEMATIC();
  2845. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2846. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2847. #endif
  2848. }
  2849. #endif // DELTA
  2850. #if ENABLED(Z_SAFE_HOMING)
  2851. inline void home_z_safely() {
  2852. // Disallow Z homing if X or Y are unknown
  2853. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2854. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2855. SERIAL_ECHO_START;
  2856. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2857. return;
  2858. }
  2859. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2860. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2861. #endif
  2862. SYNC_PLAN_POSITION_KINEMATIC();
  2863. /**
  2864. * Move the Z probe (or just the nozzle) to the safe homing point
  2865. */
  2866. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2867. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2868. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2869. if (position_is_reachable(
  2870. destination
  2871. #if HOMING_Z_WITH_PROBE
  2872. , true
  2873. #endif
  2874. )
  2875. ) {
  2876. #if HOMING_Z_WITH_PROBE
  2877. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2878. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2879. #endif
  2880. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2881. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2882. #endif
  2883. // This causes the carriage on Dual X to unpark
  2884. #if ENABLED(DUAL_X_CARRIAGE)
  2885. active_extruder_parked = false;
  2886. #endif
  2887. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2888. HOMEAXIS(Z);
  2889. }
  2890. else {
  2891. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2892. SERIAL_ECHO_START;
  2893. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2894. }
  2895. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2896. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2897. #endif
  2898. }
  2899. #endif // Z_SAFE_HOMING
  2900. /**
  2901. * G28: Home all axes according to settings
  2902. *
  2903. * Parameters
  2904. *
  2905. * None Home to all axes with no parameters.
  2906. * With QUICK_HOME enabled XY will home together, then Z.
  2907. *
  2908. * Cartesian parameters
  2909. *
  2910. * X Home to the X endstop
  2911. * Y Home to the Y endstop
  2912. * Z Home to the Z endstop
  2913. *
  2914. */
  2915. inline void gcode_G28() {
  2916. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2917. if (DEBUGGING(LEVELING)) {
  2918. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2919. log_machine_info();
  2920. }
  2921. #endif
  2922. // Wait for planner moves to finish!
  2923. stepper.synchronize();
  2924. // Disable the leveling matrix before homing
  2925. #if PLANNER_LEVELING
  2926. set_bed_leveling_enabled(false);
  2927. #endif
  2928. // Always home with tool 0 active
  2929. #if HOTENDS > 1
  2930. uint8_t old_tool_index = active_extruder;
  2931. tool_change(0, 0, true);
  2932. #endif
  2933. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2934. extruder_duplication_enabled = false;
  2935. #endif
  2936. /**
  2937. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2938. * on again when homing all axis
  2939. */
  2940. #if ENABLED(MESH_BED_LEVELING)
  2941. float pre_home_z = MESH_HOME_SEARCH_Z;
  2942. if (mbl.active()) {
  2943. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2944. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2945. #endif
  2946. // Use known Z position if already homed
  2947. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2948. set_bed_leveling_enabled(false);
  2949. pre_home_z = current_position[Z_AXIS];
  2950. }
  2951. else {
  2952. mbl.set_active(false);
  2953. current_position[Z_AXIS] = pre_home_z;
  2954. }
  2955. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2956. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2957. #endif
  2958. }
  2959. #endif
  2960. setup_for_endstop_or_probe_move();
  2961. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2962. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2963. #endif
  2964. endstops.enable(true); // Enable endstops for next homing move
  2965. #if ENABLED(DELTA)
  2966. home_delta();
  2967. #else // NOT DELTA
  2968. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2969. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2970. set_destination_to_current();
  2971. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2972. if (home_all_axis || homeZ) {
  2973. HOMEAXIS(Z);
  2974. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2975. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2976. #endif
  2977. }
  2978. #else
  2979. if (home_all_axis || homeX || homeY) {
  2980. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2981. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2982. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2983. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2984. if (DEBUGGING(LEVELING))
  2985. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2986. #endif
  2987. do_blocking_move_to_z(destination[Z_AXIS]);
  2988. }
  2989. }
  2990. #endif
  2991. #if ENABLED(QUICK_HOME)
  2992. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2993. #endif
  2994. #if ENABLED(HOME_Y_BEFORE_X)
  2995. // Home Y
  2996. if (home_all_axis || homeY) {
  2997. HOMEAXIS(Y);
  2998. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2999. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3000. #endif
  3001. }
  3002. #endif
  3003. // Home X
  3004. if (home_all_axis || homeX) {
  3005. #if ENABLED(DUAL_X_CARRIAGE)
  3006. // Always home the 2nd (right) extruder first
  3007. active_extruder = 1;
  3008. HOMEAXIS(X);
  3009. // Remember this extruder's position for later tool change
  3010. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3011. // Home the 1st (left) extruder
  3012. active_extruder = 0;
  3013. HOMEAXIS(X);
  3014. // Consider the active extruder to be parked
  3015. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3016. delayed_move_time = 0;
  3017. active_extruder_parked = true;
  3018. #else
  3019. HOMEAXIS(X);
  3020. #endif
  3021. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3022. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3023. #endif
  3024. }
  3025. #if DISABLED(HOME_Y_BEFORE_X)
  3026. // Home Y
  3027. if (home_all_axis || homeY) {
  3028. HOMEAXIS(Y);
  3029. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3030. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3031. #endif
  3032. }
  3033. #endif
  3034. // Home Z last if homing towards the bed
  3035. #if Z_HOME_DIR < 0
  3036. if (home_all_axis || homeZ) {
  3037. #if ENABLED(Z_SAFE_HOMING)
  3038. home_z_safely();
  3039. #else
  3040. HOMEAXIS(Z);
  3041. #endif
  3042. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3043. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3044. #endif
  3045. } // home_all_axis || homeZ
  3046. #endif // Z_HOME_DIR < 0
  3047. SYNC_PLAN_POSITION_KINEMATIC();
  3048. #endif // !DELTA (gcode_G28)
  3049. endstops.not_homing();
  3050. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3051. // move to a height where we can use the full xy-area
  3052. do_blocking_move_to_z(delta_clip_start_height);
  3053. #endif
  3054. // Enable mesh leveling again
  3055. #if ENABLED(MESH_BED_LEVELING)
  3056. if (mbl.has_mesh()) {
  3057. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3058. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  3059. #endif
  3060. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3061. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3062. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  3063. #endif
  3064. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3065. #if Z_HOME_DIR > 0
  3066. + Z_MAX_POS
  3067. #endif
  3068. ;
  3069. SYNC_PLAN_POSITION_KINEMATIC();
  3070. mbl.set_active(true);
  3071. #if ENABLED(MESH_G28_REST_ORIGIN)
  3072. current_position[Z_AXIS] = 0.0;
  3073. set_destination_to_current();
  3074. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3075. stepper.synchronize();
  3076. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3077. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  3078. #endif
  3079. #else
  3080. planner.unapply_leveling(current_position);
  3081. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3082. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  3083. #endif
  3084. #endif
  3085. }
  3086. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  3087. current_position[Z_AXIS] = pre_home_z;
  3088. SYNC_PLAN_POSITION_KINEMATIC();
  3089. mbl.set_active(true);
  3090. planner.unapply_leveling(current_position);
  3091. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3092. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  3093. #endif
  3094. }
  3095. }
  3096. #endif
  3097. clean_up_after_endstop_or_probe_move();
  3098. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3099. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3100. #endif
  3101. // Restore the active tool after homing
  3102. #if HOTENDS > 1
  3103. tool_change(old_tool_index, 0, true);
  3104. #endif
  3105. report_current_position();
  3106. }
  3107. #if HAS_PROBING_PROCEDURE
  3108. void out_of_range_error(const char* p_edge) {
  3109. SERIAL_PROTOCOLPGM("?Probe ");
  3110. serialprintPGM(p_edge);
  3111. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3112. }
  3113. #endif
  3114. #if ENABLED(MESH_BED_LEVELING)
  3115. inline void _mbl_goto_xy(float x, float y) {
  3116. float old_feedrate_mm_s = feedrate_mm_s;
  3117. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3118. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3119. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  3120. + Z_CLEARANCE_BETWEEN_PROBES
  3121. #elif Z_HOMING_HEIGHT > 0
  3122. + Z_HOMING_HEIGHT
  3123. #endif
  3124. ;
  3125. line_to_current_position();
  3126. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3127. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3128. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3129. line_to_current_position();
  3130. #if Z_CLEARANCE_BETWEEN_PROBES > 0 || Z_HOMING_HEIGHT > 0
  3131. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3132. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  3133. line_to_current_position();
  3134. #endif
  3135. feedrate_mm_s = old_feedrate_mm_s;
  3136. stepper.synchronize();
  3137. }
  3138. // Save 130 bytes with non-duplication of PSTR
  3139. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3140. void mbl_mesh_report() {
  3141. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  3142. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  3143. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3144. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3145. for (uint8_t py = 0; py < MESH_NUM_Y_POINTS; py++) {
  3146. for (uint8_t px = 0; px < MESH_NUM_X_POINTS; px++) {
  3147. SERIAL_PROTOCOLPGM(" ");
  3148. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  3149. }
  3150. SERIAL_EOL;
  3151. }
  3152. }
  3153. /**
  3154. * G29: Mesh-based Z probe, probes a grid and produces a
  3155. * mesh to compensate for variable bed height
  3156. *
  3157. * Parameters With MESH_BED_LEVELING:
  3158. *
  3159. * S0 Produce a mesh report
  3160. * S1 Start probing mesh points
  3161. * S2 Probe the next mesh point
  3162. * S3 Xn Yn Zn.nn Manually modify a single point
  3163. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3164. * S5 Reset and disable mesh
  3165. *
  3166. * The S0 report the points as below
  3167. *
  3168. * +----> X-axis 1-n
  3169. * |
  3170. * |
  3171. * v Y-axis 1-n
  3172. *
  3173. */
  3174. inline void gcode_G29() {
  3175. static int probe_point = -1;
  3176. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3177. if (state < 0 || state > 5) {
  3178. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3179. return;
  3180. }
  3181. int8_t px, py;
  3182. switch (state) {
  3183. case MeshReport:
  3184. if (mbl.has_mesh()) {
  3185. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3186. mbl_mesh_report();
  3187. }
  3188. else
  3189. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3190. break;
  3191. case MeshStart:
  3192. mbl.reset();
  3193. probe_point = 0;
  3194. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3195. break;
  3196. case MeshNext:
  3197. if (probe_point < 0) {
  3198. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3199. return;
  3200. }
  3201. // For each G29 S2...
  3202. if (probe_point == 0) {
  3203. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  3204. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3205. #if Z_HOME_DIR > 0
  3206. + Z_MAX_POS
  3207. #endif
  3208. ;
  3209. SYNC_PLAN_POSITION_KINEMATIC();
  3210. }
  3211. else {
  3212. // For G29 S2 after adjusting Z.
  3213. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  3214. }
  3215. // If there's another point to sample, move there with optional lift.
  3216. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  3217. mbl.zigzag(probe_point, px, py);
  3218. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  3219. probe_point++;
  3220. }
  3221. else {
  3222. // One last "return to the bed" (as originally coded) at completion
  3223. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3224. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  3225. + Z_CLEARANCE_BETWEEN_PROBES
  3226. #elif Z_HOMING_HEIGHT > 0
  3227. + Z_HOMING_HEIGHT
  3228. #endif
  3229. ;
  3230. line_to_current_position();
  3231. stepper.synchronize();
  3232. // After recording the last point, activate the mbl and home
  3233. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3234. probe_point = -1;
  3235. mbl.set_has_mesh(true);
  3236. enqueue_and_echo_commands_P(PSTR("G28"));
  3237. }
  3238. break;
  3239. case MeshSet:
  3240. if (code_seen('X')) {
  3241. px = code_value_int() - 1;
  3242. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  3243. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  3244. return;
  3245. }
  3246. }
  3247. else {
  3248. SERIAL_CHAR('X'); say_not_entered();
  3249. return;
  3250. }
  3251. if (code_seen('Y')) {
  3252. py = code_value_int() - 1;
  3253. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  3254. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  3255. return;
  3256. }
  3257. }
  3258. else {
  3259. SERIAL_CHAR('Y'); say_not_entered();
  3260. return;
  3261. }
  3262. if (code_seen('Z')) {
  3263. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3264. }
  3265. else {
  3266. SERIAL_CHAR('Z'); say_not_entered();
  3267. return;
  3268. }
  3269. break;
  3270. case MeshSetZOffset:
  3271. if (code_seen('Z')) {
  3272. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3273. }
  3274. else {
  3275. SERIAL_CHAR('Z'); say_not_entered();
  3276. return;
  3277. }
  3278. break;
  3279. case MeshReset:
  3280. if (mbl.active()) {
  3281. current_position[Z_AXIS] -= MESH_HOME_SEARCH_Z;
  3282. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  3283. mbl.reset();
  3284. SYNC_PLAN_POSITION_KINEMATIC();
  3285. }
  3286. else
  3287. mbl.reset();
  3288. } // switch(state)
  3289. report_current_position();
  3290. }
  3291. #elif HAS_ABL
  3292. /**
  3293. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3294. * Will fail if the printer has not been homed with G28.
  3295. *
  3296. * Enhanced G29 Auto Bed Leveling Probe Routine
  3297. *
  3298. * Parameters With LINEAR and BILINEAR:
  3299. *
  3300. * P Set the size of the grid that will be probed (P x P points).
  3301. * Not supported by non-linear delta printer bed leveling.
  3302. * Example: "G29 P4"
  3303. *
  3304. * S Set the XY travel speed between probe points (in units/min)
  3305. *
  3306. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3307. * or clean the rotation Matrix. Useful to check the topology
  3308. * after a first run of G29.
  3309. *
  3310. * V Set the verbose level (0-4). Example: "G29 V3"
  3311. *
  3312. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3313. * This is useful for manual bed leveling and finding flaws in the bed (to
  3314. * assist with part placement).
  3315. * Not supported by non-linear delta printer bed leveling.
  3316. *
  3317. * F Set the Front limit of the probing grid
  3318. * B Set the Back limit of the probing grid
  3319. * L Set the Left limit of the probing grid
  3320. * R Set the Right limit of the probing grid
  3321. *
  3322. * Parameters with BILINEAR only:
  3323. *
  3324. * Z Supply an additional Z probe offset
  3325. *
  3326. * Global Parameters:
  3327. *
  3328. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  3329. * Include "E" to engage/disengage the Z probe for each sample.
  3330. * There's no extra effect if you have a fixed Z probe.
  3331. * Usage: "G29 E" or "G29 e"
  3332. *
  3333. */
  3334. inline void gcode_G29() {
  3335. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3336. bool query = code_seen('Q');
  3337. uint8_t old_debug_flags = marlin_debug_flags;
  3338. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3339. if (DEBUGGING(LEVELING)) {
  3340. DEBUG_POS(">>> gcode_G29", current_position);
  3341. log_machine_info();
  3342. }
  3343. marlin_debug_flags = old_debug_flags;
  3344. if (query) return;
  3345. #endif
  3346. // Don't allow auto-leveling without homing first
  3347. if (axis_unhomed_error(true, true, true)) return;
  3348. int verbose_level = code_seen('V') ? code_value_int() : 1;
  3349. if (verbose_level < 0 || verbose_level > 4) {
  3350. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3351. return;
  3352. }
  3353. bool dryrun = code_seen('D'),
  3354. stow_probe_after_each = code_seen('E');
  3355. #if ABL_GRID
  3356. if (verbose_level > 0) {
  3357. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3358. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3359. }
  3360. #if ABL_PLANAR
  3361. bool do_topography_map = verbose_level > 2 || code_seen('T');
  3362. // X and Y specify points in each direction, overriding the default
  3363. // These values may be saved with the completed mesh
  3364. int abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_MAX_POINTS_X,
  3365. abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_MAX_POINTS_Y;
  3366. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3367. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3368. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3369. return;
  3370. }
  3371. #else
  3372. const uint8_t abl_grid_points_x = ABL_GRID_MAX_POINTS_X, abl_grid_points_y = ABL_GRID_MAX_POINTS_Y;
  3373. #endif
  3374. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3375. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  3376. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  3377. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  3378. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3379. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3380. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3381. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3382. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3383. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3384. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3385. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3386. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3387. if (left_out || right_out || front_out || back_out) {
  3388. if (left_out) {
  3389. out_of_range_error(PSTR("(L)eft"));
  3390. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3391. }
  3392. if (right_out) {
  3393. out_of_range_error(PSTR("(R)ight"));
  3394. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3395. }
  3396. if (front_out) {
  3397. out_of_range_error(PSTR("(F)ront"));
  3398. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3399. }
  3400. if (back_out) {
  3401. out_of_range_error(PSTR("(B)ack"));
  3402. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3403. }
  3404. return;
  3405. }
  3406. #endif // ABL_GRID
  3407. stepper.synchronize();
  3408. // Disable auto bed leveling during G29
  3409. bool abl_should_enable = planner.abl_enabled;
  3410. planner.abl_enabled = false;
  3411. if (!dryrun) {
  3412. // Re-orient the current position without leveling
  3413. // based on where the steppers are positioned.
  3414. set_current_from_steppers_for_axis(ALL_AXES);
  3415. // Sync the planner to where the steppers stopped
  3416. SYNC_PLAN_POSITION_KINEMATIC();
  3417. }
  3418. setup_for_endstop_or_probe_move();
  3419. // Deploy the probe. Probe will raise if needed.
  3420. if (DEPLOY_PROBE()) {
  3421. planner.abl_enabled = abl_should_enable;
  3422. return;
  3423. }
  3424. float xProbe = 0, yProbe = 0, measured_z = 0;
  3425. #if ABL_GRID
  3426. // probe at the points of a lattice grid
  3427. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3428. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3429. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3430. float zoffset = zprobe_zoffset;
  3431. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3432. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3433. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3434. || left_probe_bed_position != bilinear_start[X_AXIS]
  3435. || front_probe_bed_position != bilinear_start[Y_AXIS]
  3436. ) {
  3437. // Before reset bed level, re-enable to correct the position
  3438. planner.abl_enabled = abl_should_enable;
  3439. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3440. reset_bed_level();
  3441. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3442. bilinear_grid_spacing_virt[X_AXIS] = xGridSpacing / (BILINEAR_SUBDIVISIONS);
  3443. bilinear_grid_spacing_virt[Y_AXIS] = yGridSpacing / (BILINEAR_SUBDIVISIONS);
  3444. #endif
  3445. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3446. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3447. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3448. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3449. // Can't re-enable (on error) until the new grid is written
  3450. abl_should_enable = false;
  3451. }
  3452. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3453. /**
  3454. * solve the plane equation ax + by + d = z
  3455. * A is the matrix with rows [x y 1] for all the probed points
  3456. * B is the vector of the Z positions
  3457. * the normal vector to the plane is formed by the coefficients of the
  3458. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3459. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3460. */
  3461. int abl2 = abl_grid_points_x * abl_grid_points_y,
  3462. indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3463. probePointCounter = -1;
  3464. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3465. eqnBVector[abl2], // "B" vector of Z points
  3466. mean = 0.0;
  3467. #endif // AUTO_BED_LEVELING_LINEAR
  3468. #if ENABLED(PROBE_Y_FIRST)
  3469. #define PR_OUTER_VAR xCount
  3470. #define PR_OUTER_END abl_grid_points_x
  3471. #define PR_INNER_VAR yCount
  3472. #define PR_INNER_END abl_grid_points_y
  3473. #else
  3474. #define PR_OUTER_VAR yCount
  3475. #define PR_OUTER_END abl_grid_points_y
  3476. #define PR_INNER_VAR xCount
  3477. #define PR_INNER_END abl_grid_points_x
  3478. #endif
  3479. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3480. // Outer loop is Y with PROBE_Y_FIRST disabled
  3481. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3482. int8_t inStart, inStop, inInc;
  3483. if (zig) { // away from origin
  3484. inStart = 0;
  3485. inStop = PR_INNER_END;
  3486. inInc = 1;
  3487. }
  3488. else { // towards origin
  3489. inStart = PR_INNER_END - 1;
  3490. inStop = -1;
  3491. inInc = -1;
  3492. }
  3493. zig = !zig; // zag
  3494. // Inner loop is Y with PROBE_Y_FIRST enabled
  3495. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3496. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3497. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3498. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3499. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3500. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3501. indexIntoAB[xCount][yCount] = ++probePointCounter;
  3502. #endif
  3503. #if IS_KINEMATIC
  3504. // Avoid probing outside the round or hexagonal area
  3505. float pos[XYZ] = { xProbe, yProbe, 0 };
  3506. if (!position_is_reachable(pos, true)) continue;
  3507. #endif
  3508. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3509. if (measured_z == NAN) {
  3510. planner.abl_enabled = abl_should_enable;
  3511. return;
  3512. }
  3513. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3514. mean += measured_z;
  3515. eqnBVector[probePointCounter] = measured_z;
  3516. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3517. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3518. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3519. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3520. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3521. #endif
  3522. idle();
  3523. } //xProbe
  3524. } //yProbe
  3525. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3526. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3527. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3528. #endif
  3529. // Probe at 3 arbitrary points
  3530. vector_3 points[3] = {
  3531. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3532. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3533. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3534. };
  3535. for (uint8_t i = 0; i < 3; ++i) {
  3536. // Retain the last probe position
  3537. xProbe = LOGICAL_X_POSITION(points[i].x);
  3538. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3539. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3540. }
  3541. if (measured_z == NAN) {
  3542. planner.abl_enabled = abl_should_enable;
  3543. return;
  3544. }
  3545. if (!dryrun) {
  3546. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3547. if (planeNormal.z < 0) {
  3548. planeNormal.x *= -1;
  3549. planeNormal.y *= -1;
  3550. planeNormal.z *= -1;
  3551. }
  3552. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3553. // Can't re-enable (on error) until the new grid is written
  3554. abl_should_enable = false;
  3555. }
  3556. #endif // AUTO_BED_LEVELING_3POINT
  3557. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3558. if (STOW_PROBE()) {
  3559. planner.abl_enabled = abl_should_enable;
  3560. return;
  3561. }
  3562. //
  3563. // Unless this is a dry run, auto bed leveling will
  3564. // definitely be enabled after this point
  3565. //
  3566. // Restore state after probing
  3567. clean_up_after_endstop_or_probe_move();
  3568. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3569. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3570. #endif
  3571. // Calculate leveling, print reports, correct the position
  3572. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3573. if (!dryrun) extrapolate_unprobed_bed_level();
  3574. print_bilinear_leveling_grid();
  3575. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3576. bed_level_virt_prepare();
  3577. bed_level_virt_interpolate();
  3578. bed_level_virt_print();
  3579. #endif
  3580. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3581. // For LINEAR leveling calculate matrix, print reports, correct the position
  3582. // solve lsq problem
  3583. float plane_equation_coefficients[3];
  3584. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3585. mean /= abl2;
  3586. if (verbose_level) {
  3587. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3588. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3589. SERIAL_PROTOCOLPGM(" b: ");
  3590. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3591. SERIAL_PROTOCOLPGM(" d: ");
  3592. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3593. SERIAL_EOL;
  3594. if (verbose_level > 2) {
  3595. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3596. SERIAL_PROTOCOL_F(mean, 8);
  3597. SERIAL_EOL;
  3598. }
  3599. }
  3600. // Create the matrix but don't correct the position yet
  3601. if (!dryrun) {
  3602. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3603. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3604. );
  3605. }
  3606. // Show the Topography map if enabled
  3607. if (do_topography_map) {
  3608. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3609. " +--- BACK --+\n"
  3610. " | |\n"
  3611. " L | (+) | R\n"
  3612. " E | | I\n"
  3613. " F | (-) N (+) | G\n"
  3614. " T | | H\n"
  3615. " | (-) | T\n"
  3616. " | |\n"
  3617. " O-- FRONT --+\n"
  3618. " (0,0)");
  3619. float min_diff = 999;
  3620. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3621. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3622. int ind = indexIntoAB[xx][yy];
  3623. float diff = eqnBVector[ind] - mean,
  3624. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3625. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3626. z_tmp = 0;
  3627. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3628. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3629. if (diff >= 0.0)
  3630. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3631. else
  3632. SERIAL_PROTOCOLCHAR(' ');
  3633. SERIAL_PROTOCOL_F(diff, 5);
  3634. } // xx
  3635. SERIAL_EOL;
  3636. } // yy
  3637. SERIAL_EOL;
  3638. if (verbose_level > 3) {
  3639. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3640. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3641. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3642. int ind = indexIntoAB[xx][yy];
  3643. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3644. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3645. z_tmp = 0;
  3646. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3647. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3648. if (diff >= 0.0)
  3649. SERIAL_PROTOCOLPGM(" +");
  3650. // Include + for column alignment
  3651. else
  3652. SERIAL_PROTOCOLCHAR(' ');
  3653. SERIAL_PROTOCOL_F(diff, 5);
  3654. } // xx
  3655. SERIAL_EOL;
  3656. } // yy
  3657. SERIAL_EOL;
  3658. }
  3659. } //do_topography_map
  3660. #endif // AUTO_BED_LEVELING_LINEAR
  3661. #if ABL_PLANAR
  3662. // For LINEAR and 3POINT leveling correct the current position
  3663. if (verbose_level > 0)
  3664. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3665. if (!dryrun) {
  3666. //
  3667. // Correct the current XYZ position based on the tilted plane.
  3668. //
  3669. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3670. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3671. #endif
  3672. float converted[XYZ];
  3673. memcpy(converted, current_position, sizeof(converted));
  3674. planner.abl_enabled = true;
  3675. planner.unapply_leveling(converted); // use conversion machinery
  3676. planner.abl_enabled = false;
  3677. // Use the last measured distance to the bed, if possible
  3678. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3679. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3680. ) {
  3681. float simple_z = current_position[Z_AXIS] - (measured_z - (-zprobe_zoffset));
  3682. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3683. if (DEBUGGING(LEVELING)) {
  3684. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3685. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  3686. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  3687. }
  3688. #endif
  3689. converted[Z_AXIS] = simple_z;
  3690. }
  3691. // The rotated XY and corrected Z are now current_position
  3692. memcpy(current_position, converted, sizeof(converted));
  3693. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3694. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3695. #endif
  3696. }
  3697. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3698. if (!dryrun) {
  3699. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3700. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3701. #endif
  3702. // Unapply the offset because it is going to be immediately applied
  3703. // and cause compensation movement in Z
  3704. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3705. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3706. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3707. #endif
  3708. }
  3709. #endif // ABL_PLANAR
  3710. #ifdef Z_PROBE_END_SCRIPT
  3711. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3712. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3713. #endif
  3714. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3715. stepper.synchronize();
  3716. #endif
  3717. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3718. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3719. #endif
  3720. report_current_position();
  3721. KEEPALIVE_STATE(IN_HANDLER);
  3722. // Auto Bed Leveling is complete! Enable if possible.
  3723. planner.abl_enabled = dryrun ? abl_should_enable : true;
  3724. if (planner.abl_enabled)
  3725. SYNC_PLAN_POSITION_KINEMATIC();
  3726. }
  3727. #endif // HAS_ABL
  3728. #if HAS_BED_PROBE
  3729. /**
  3730. * G30: Do a single Z probe at the current XY
  3731. * Usage:
  3732. * G30 <X#> <Y#> <S#>
  3733. * X = Probe X position (default=current probe position)
  3734. * Y = Probe Y position (default=current probe position)
  3735. * S = Stows the probe if 1 (default=1)
  3736. */
  3737. inline void gcode_G30() {
  3738. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3739. Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3740. float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
  3741. if (!position_is_reachable(pos, true)) return;
  3742. bool stow = code_seen('S') ? code_value_bool() : true;
  3743. // Disable leveling so the planner won't mess with us
  3744. #if PLANNER_LEVELING
  3745. set_bed_leveling_enabled(false);
  3746. #endif
  3747. setup_for_endstop_or_probe_move();
  3748. float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
  3749. SERIAL_PROTOCOLPGM("Bed X: ");
  3750. SERIAL_PROTOCOL(X_probe_location + 0.0001);
  3751. SERIAL_PROTOCOLPGM(" Y: ");
  3752. SERIAL_PROTOCOL(Y_probe_location + 0.0001);
  3753. SERIAL_PROTOCOLPGM(" Z: ");
  3754. SERIAL_PROTOCOLLN(measured_z + 0.0001);
  3755. clean_up_after_endstop_or_probe_move();
  3756. report_current_position();
  3757. }
  3758. #if ENABLED(Z_PROBE_SLED)
  3759. /**
  3760. * G31: Deploy the Z probe
  3761. */
  3762. inline void gcode_G31() { DEPLOY_PROBE(); }
  3763. /**
  3764. * G32: Stow the Z probe
  3765. */
  3766. inline void gcode_G32() { STOW_PROBE(); }
  3767. #endif // Z_PROBE_SLED
  3768. #endif // HAS_BED_PROBE
  3769. #if ENABLED(G38_PROBE_TARGET)
  3770. static bool G38_run_probe() {
  3771. bool G38_pass_fail = false;
  3772. // Get direction of move and retract
  3773. float retract_mm[XYZ];
  3774. LOOP_XYZ(i) {
  3775. float dist = destination[i] - current_position[i];
  3776. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  3777. }
  3778. stepper.synchronize(); // wait until the machine is idle
  3779. // Move until destination reached or target hit
  3780. endstops.enable(true);
  3781. G38_move = true;
  3782. G38_endstop_hit = false;
  3783. prepare_move_to_destination();
  3784. stepper.synchronize();
  3785. G38_move = false;
  3786. endstops.hit_on_purpose();
  3787. set_current_from_steppers_for_axis(ALL_AXES);
  3788. SYNC_PLAN_POSITION_KINEMATIC();
  3789. // Only do remaining moves if target was hit
  3790. if (G38_endstop_hit) {
  3791. G38_pass_fail = true;
  3792. // Move away by the retract distance
  3793. set_destination_to_current();
  3794. LOOP_XYZ(i) destination[i] += retract_mm[i];
  3795. endstops.enable(false);
  3796. prepare_move_to_destination();
  3797. stepper.synchronize();
  3798. feedrate_mm_s /= 4;
  3799. // Bump the target more slowly
  3800. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  3801. endstops.enable(true);
  3802. G38_move = true;
  3803. prepare_move_to_destination();
  3804. stepper.synchronize();
  3805. G38_move = false;
  3806. set_current_from_steppers_for_axis(ALL_AXES);
  3807. SYNC_PLAN_POSITION_KINEMATIC();
  3808. }
  3809. endstops.hit_on_purpose();
  3810. endstops.not_homing();
  3811. return G38_pass_fail;
  3812. }
  3813. /**
  3814. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  3815. * G38.3 - probe toward workpiece, stop on contact
  3816. *
  3817. * Like G28 except uses Z min endstop for all axes
  3818. */
  3819. inline void gcode_G38(bool is_38_2) {
  3820. // Get X Y Z E F
  3821. gcode_get_destination();
  3822. setup_for_endstop_or_probe_move();
  3823. // If any axis has enough movement, do the move
  3824. LOOP_XYZ(i)
  3825. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  3826. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  3827. // If G38.2 fails throw an error
  3828. if (!G38_run_probe() && is_38_2) {
  3829. SERIAL_ERROR_START;
  3830. SERIAL_ERRORLNPGM("Failed to reach target");
  3831. }
  3832. break;
  3833. }
  3834. clean_up_after_endstop_or_probe_move();
  3835. }
  3836. #endif // G38_PROBE_TARGET
  3837. /**
  3838. * G92: Set current position to given X Y Z E
  3839. */
  3840. inline void gcode_G92() {
  3841. bool didXYZ = false,
  3842. didE = code_seen('E');
  3843. if (!didE) stepper.synchronize();
  3844. LOOP_XYZE(i) {
  3845. if (code_seen(axis_codes[i])) {
  3846. #if IS_SCARA
  3847. current_position[i] = code_value_axis_units(i);
  3848. if (i != E_AXIS) didXYZ = true;
  3849. #else
  3850. float p = current_position[i],
  3851. v = code_value_axis_units(i);
  3852. current_position[i] = v;
  3853. if (i != E_AXIS) {
  3854. didXYZ = true;
  3855. position_shift[i] += v - p; // Offset the coordinate space
  3856. update_software_endstops((AxisEnum)i);
  3857. }
  3858. #endif
  3859. }
  3860. }
  3861. if (didXYZ)
  3862. SYNC_PLAN_POSITION_KINEMATIC();
  3863. else if (didE)
  3864. sync_plan_position_e();
  3865. report_current_position();
  3866. }
  3867. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  3868. /**
  3869. * M0: Unconditional stop - Wait for user button press on LCD
  3870. * M1: Conditional stop - Wait for user button press on LCD
  3871. */
  3872. inline void gcode_M0_M1() {
  3873. char* args = current_command_args;
  3874. millis_t codenum = 0;
  3875. bool hasP = false, hasS = false;
  3876. if (code_seen('P')) {
  3877. codenum = code_value_millis(); // milliseconds to wait
  3878. hasP = codenum > 0;
  3879. }
  3880. if (code_seen('S')) {
  3881. codenum = code_value_millis_from_seconds(); // seconds to wait
  3882. hasS = codenum > 0;
  3883. }
  3884. #if ENABLED(ULTIPANEL)
  3885. if (!hasP && !hasS && *args != '\0')
  3886. lcd_setstatus(args, true);
  3887. else {
  3888. LCD_MESSAGEPGM(MSG_USERWAIT);
  3889. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3890. dontExpireStatus();
  3891. #endif
  3892. }
  3893. #else
  3894. if (!hasP && !hasS && *args != '\0') {
  3895. SERIAL_ECHO_START;
  3896. SERIAL_ECHOLN(args);
  3897. }
  3898. #endif
  3899. wait_for_user = true;
  3900. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3901. stepper.synchronize();
  3902. refresh_cmd_timeout();
  3903. if (codenum > 0) {
  3904. codenum += previous_cmd_ms; // wait until this time for a click
  3905. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3906. }
  3907. else {
  3908. #if ENABLED(ULTIPANEL)
  3909. if (lcd_detected()) {
  3910. while (wait_for_user) idle();
  3911. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  3912. }
  3913. #else
  3914. while (wait_for_user) idle();
  3915. #endif
  3916. }
  3917. wait_for_user = false;
  3918. KEEPALIVE_STATE(IN_HANDLER);
  3919. }
  3920. #endif // EMERGENCY_PARSER || ULTIPANEL
  3921. /**
  3922. * M17: Enable power on all stepper motors
  3923. */
  3924. inline void gcode_M17() {
  3925. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3926. enable_all_steppers();
  3927. }
  3928. #if ENABLED(SDSUPPORT)
  3929. /**
  3930. * M20: List SD card to serial output
  3931. */
  3932. inline void gcode_M20() {
  3933. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3934. card.ls();
  3935. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3936. }
  3937. /**
  3938. * M21: Init SD Card
  3939. */
  3940. inline void gcode_M21() { card.initsd(); }
  3941. /**
  3942. * M22: Release SD Card
  3943. */
  3944. inline void gcode_M22() { card.release(); }
  3945. /**
  3946. * M23: Open a file
  3947. */
  3948. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3949. /**
  3950. * M24: Start SD Print
  3951. */
  3952. inline void gcode_M24() {
  3953. card.startFileprint();
  3954. print_job_timer.start();
  3955. }
  3956. /**
  3957. * M25: Pause SD Print
  3958. */
  3959. inline void gcode_M25() { card.pauseSDPrint(); }
  3960. /**
  3961. * M26: Set SD Card file index
  3962. */
  3963. inline void gcode_M26() {
  3964. if (card.cardOK && code_seen('S'))
  3965. card.setIndex(code_value_long());
  3966. }
  3967. /**
  3968. * M27: Get SD Card status
  3969. */
  3970. inline void gcode_M27() { card.getStatus(); }
  3971. /**
  3972. * M28: Start SD Write
  3973. */
  3974. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3975. /**
  3976. * M29: Stop SD Write
  3977. * Processed in write to file routine above
  3978. */
  3979. inline void gcode_M29() {
  3980. // card.saving = false;
  3981. }
  3982. /**
  3983. * M30 <filename>: Delete SD Card file
  3984. */
  3985. inline void gcode_M30() {
  3986. if (card.cardOK) {
  3987. card.closefile();
  3988. card.removeFile(current_command_args);
  3989. }
  3990. }
  3991. #endif // SDSUPPORT
  3992. /**
  3993. * M31: Get the time since the start of SD Print (or last M109)
  3994. */
  3995. inline void gcode_M31() {
  3996. char buffer[21];
  3997. duration_t elapsed = print_job_timer.duration();
  3998. elapsed.toString(buffer);
  3999. lcd_setstatus(buffer);
  4000. SERIAL_ECHO_START;
  4001. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4002. #if ENABLED(AUTOTEMP)
  4003. thermalManager.autotempShutdown();
  4004. #endif
  4005. }
  4006. #if ENABLED(SDSUPPORT)
  4007. /**
  4008. * M32: Select file and start SD Print
  4009. */
  4010. inline void gcode_M32() {
  4011. if (card.sdprinting)
  4012. stepper.synchronize();
  4013. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4014. if (!namestartpos)
  4015. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4016. else
  4017. namestartpos++; //to skip the '!'
  4018. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4019. if (card.cardOK) {
  4020. card.openFile(namestartpos, true, call_procedure);
  4021. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4022. card.setIndex(code_value_long());
  4023. card.startFileprint();
  4024. // Procedure calls count as normal print time.
  4025. if (!call_procedure) print_job_timer.start();
  4026. }
  4027. }
  4028. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4029. /**
  4030. * M33: Get the long full path of a file or folder
  4031. *
  4032. * Parameters:
  4033. * <dospath> Case-insensitive DOS-style path to a file or folder
  4034. *
  4035. * Example:
  4036. * M33 miscel~1/armchair/armcha~1.gco
  4037. *
  4038. * Output:
  4039. * /Miscellaneous/Armchair/Armchair.gcode
  4040. */
  4041. inline void gcode_M33() {
  4042. card.printLongPath(current_command_args);
  4043. }
  4044. #endif
  4045. /**
  4046. * M928: Start SD Write
  4047. */
  4048. inline void gcode_M928() {
  4049. card.openLogFile(current_command_args);
  4050. }
  4051. #endif // SDSUPPORT
  4052. /**
  4053. * Sensitive pin test for M42, M226
  4054. */
  4055. static bool pin_is_protected(uint8_t pin) {
  4056. static const int sensitive_pins[] = SENSITIVE_PINS;
  4057. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4058. if (sensitive_pins[i] == pin) return true;
  4059. return false;
  4060. }
  4061. /**
  4062. * M42: Change pin status via GCode
  4063. *
  4064. * P<pin> Pin number (LED if omitted)
  4065. * S<byte> Pin status from 0 - 255
  4066. */
  4067. inline void gcode_M42() {
  4068. if (!code_seen('S')) return;
  4069. int pin_status = code_value_int();
  4070. if (pin_status < 0 || pin_status > 255) return;
  4071. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4072. if (pin_number < 0) return;
  4073. if (pin_is_protected(pin_number)) {
  4074. SERIAL_ERROR_START;
  4075. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4076. return;
  4077. }
  4078. pinMode(pin_number, OUTPUT);
  4079. digitalWrite(pin_number, pin_status);
  4080. analogWrite(pin_number, pin_status);
  4081. #if FAN_COUNT > 0
  4082. switch (pin_number) {
  4083. #if HAS_FAN0
  4084. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4085. #endif
  4086. #if HAS_FAN1
  4087. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4088. #endif
  4089. #if HAS_FAN2
  4090. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4091. #endif
  4092. }
  4093. #endif
  4094. }
  4095. #if ENABLED(PINS_DEBUGGING)
  4096. #include "pinsDebug.h"
  4097. /**
  4098. * M43: Pin report and debug
  4099. *
  4100. * E<bool> Enable / disable background endstop monitoring
  4101. * - Machine continues to operate
  4102. * - Reports changes to endstops
  4103. * - Toggles LED when an endstop changes
  4104. *
  4105. * or
  4106. *
  4107. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  4108. * W<bool> Watch pins -reporting changes- until reset, click, or M108.
  4109. * I<bool> Flag to ignore Marlin's pin protection.
  4110. *
  4111. */
  4112. inline void gcode_M43() {
  4113. // Enable or disable endstop monitoring
  4114. if (code_seen('E')) {
  4115. endstop_monitor_flag = code_value_bool();
  4116. SERIAL_PROTOCOLPGM("endstop monitor ");
  4117. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  4118. SERIAL_PROTOCOLLNPGM("abled");
  4119. return;
  4120. }
  4121. // Get the range of pins to test or watch
  4122. int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
  4123. if (code_seen('P')) {
  4124. first_pin = last_pin = code_value_byte();
  4125. if (first_pin > NUM_DIGITAL_PINS - 1) return;
  4126. }
  4127. bool ignore_protection = code_seen('I') ? code_value_bool() : false;
  4128. // Watch until click, M108, or reset
  4129. if (code_seen('W') && code_value_bool()) { // watch digital pins
  4130. byte pin_state[last_pin - first_pin + 1];
  4131. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4132. if (pin_is_protected(pin) && !ignore_protection) continue;
  4133. pinMode(pin, INPUT_PULLUP);
  4134. // if (IS_ANALOG(pin))
  4135. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  4136. // else
  4137. pin_state[pin - first_pin] = digitalRead(pin);
  4138. }
  4139. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4140. wait_for_user = true;
  4141. #endif
  4142. for(;;) {
  4143. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4144. if (pin_is_protected(pin)) continue;
  4145. byte val;
  4146. // if (IS_ANALOG(pin))
  4147. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  4148. // else
  4149. val = digitalRead(pin);
  4150. if (val != pin_state[pin - first_pin]) {
  4151. report_pin_state(pin);
  4152. pin_state[pin - first_pin] = val;
  4153. }
  4154. }
  4155. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4156. if (!wait_for_user) break;
  4157. #endif
  4158. safe_delay(500);
  4159. }
  4160. return;
  4161. }
  4162. // Report current state of selected pin(s)
  4163. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  4164. report_pin_state_extended(pin, ignore_protection);
  4165. }
  4166. #endif // PINS_DEBUGGING
  4167. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  4168. /**
  4169. * M48: Z probe repeatability measurement function.
  4170. *
  4171. * Usage:
  4172. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  4173. * P = Number of sampled points (4-50, default 10)
  4174. * X = Sample X position
  4175. * Y = Sample Y position
  4176. * V = Verbose level (0-4, default=1)
  4177. * E = Engage Z probe for each reading
  4178. * L = Number of legs of movement before probe
  4179. * S = Schizoid (Or Star if you prefer)
  4180. *
  4181. * This function assumes the bed has been homed. Specifically, that a G28 command
  4182. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  4183. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4184. * regenerated.
  4185. */
  4186. inline void gcode_M48() {
  4187. if (axis_unhomed_error(true, true, true)) return;
  4188. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4189. if (verbose_level < 0 || verbose_level > 4) {
  4190. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  4191. return;
  4192. }
  4193. if (verbose_level > 0)
  4194. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  4195. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  4196. if (n_samples < 4 || n_samples > 50) {
  4197. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  4198. return;
  4199. }
  4200. float X_current = current_position[X_AXIS],
  4201. Y_current = current_position[Y_AXIS];
  4202. bool stow_probe_after_each = code_seen('E');
  4203. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  4204. #if DISABLED(DELTA)
  4205. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  4206. out_of_range_error(PSTR("X"));
  4207. return;
  4208. }
  4209. #endif
  4210. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4211. #if DISABLED(DELTA)
  4212. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  4213. out_of_range_error(PSTR("Y"));
  4214. return;
  4215. }
  4216. #else
  4217. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  4218. if (!position_is_reachable(pos, true)) {
  4219. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  4220. return;
  4221. }
  4222. #endif
  4223. bool seen_L = code_seen('L');
  4224. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  4225. if (n_legs > 15) {
  4226. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  4227. return;
  4228. }
  4229. if (n_legs == 1) n_legs = 2;
  4230. bool schizoid_flag = code_seen('S');
  4231. if (schizoid_flag && !seen_L) n_legs = 7;
  4232. /**
  4233. * Now get everything to the specified probe point So we can safely do a
  4234. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  4235. * we don't want to use that as a starting point for each probe.
  4236. */
  4237. if (verbose_level > 2)
  4238. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  4239. // Disable bed level correction in M48 because we want the raw data when we probe
  4240. #if HAS_ABL
  4241. const bool abl_was_enabled = planner.abl_enabled;
  4242. set_bed_leveling_enabled(false);
  4243. #endif
  4244. setup_for_endstop_or_probe_move();
  4245. // Move to the first point, deploy, and probe
  4246. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  4247. randomSeed(millis());
  4248. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  4249. for (uint8_t n = 0; n < n_samples; n++) {
  4250. if (n_legs) {
  4251. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  4252. float angle = random(0.0, 360.0),
  4253. radius = random(
  4254. #if ENABLED(DELTA)
  4255. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  4256. #else
  4257. 5, X_MAX_LENGTH / 8
  4258. #endif
  4259. );
  4260. if (verbose_level > 3) {
  4261. SERIAL_ECHOPAIR("Starting radius: ", radius);
  4262. SERIAL_ECHOPAIR(" angle: ", angle);
  4263. SERIAL_ECHOPGM(" Direction: ");
  4264. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4265. SERIAL_ECHOLNPGM("Clockwise");
  4266. }
  4267. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4268. double delta_angle;
  4269. if (schizoid_flag)
  4270. // The points of a 5 point star are 72 degrees apart. We need to
  4271. // skip a point and go to the next one on the star.
  4272. delta_angle = dir * 2.0 * 72.0;
  4273. else
  4274. // If we do this line, we are just trying to move further
  4275. // around the circle.
  4276. delta_angle = dir * (float) random(25, 45);
  4277. angle += delta_angle;
  4278. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4279. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4280. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4281. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4282. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4283. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4284. #if DISABLED(DELTA)
  4285. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4286. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4287. #else
  4288. // If we have gone out too far, we can do a simple fix and scale the numbers
  4289. // back in closer to the origin.
  4290. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4291. X_current /= 1.25;
  4292. Y_current /= 1.25;
  4293. if (verbose_level > 3) {
  4294. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4295. SERIAL_ECHOLNPAIR(", ", Y_current);
  4296. }
  4297. }
  4298. #endif
  4299. if (verbose_level > 3) {
  4300. SERIAL_PROTOCOLPGM("Going to:");
  4301. SERIAL_ECHOPAIR(" X", X_current);
  4302. SERIAL_ECHOPAIR(" Y", Y_current);
  4303. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4304. }
  4305. do_blocking_move_to_xy(X_current, Y_current);
  4306. } // n_legs loop
  4307. } // n_legs
  4308. // Probe a single point
  4309. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4310. /**
  4311. * Get the current mean for the data points we have so far
  4312. */
  4313. double sum = 0.0;
  4314. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4315. mean = sum / (n + 1);
  4316. NOMORE(min, sample_set[n]);
  4317. NOLESS(max, sample_set[n]);
  4318. /**
  4319. * Now, use that mean to calculate the standard deviation for the
  4320. * data points we have so far
  4321. */
  4322. sum = 0.0;
  4323. for (uint8_t j = 0; j <= n; j++)
  4324. sum += sq(sample_set[j] - mean);
  4325. sigma = sqrt(sum / (n + 1));
  4326. if (verbose_level > 0) {
  4327. if (verbose_level > 1) {
  4328. SERIAL_PROTOCOL(n + 1);
  4329. SERIAL_PROTOCOLPGM(" of ");
  4330. SERIAL_PROTOCOL((int)n_samples);
  4331. SERIAL_PROTOCOLPGM(": z: ");
  4332. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4333. if (verbose_level > 2) {
  4334. SERIAL_PROTOCOLPGM(" mean: ");
  4335. SERIAL_PROTOCOL_F(mean, 4);
  4336. SERIAL_PROTOCOLPGM(" sigma: ");
  4337. SERIAL_PROTOCOL_F(sigma, 6);
  4338. SERIAL_PROTOCOLPGM(" min: ");
  4339. SERIAL_PROTOCOL_F(min, 3);
  4340. SERIAL_PROTOCOLPGM(" max: ");
  4341. SERIAL_PROTOCOL_F(max, 3);
  4342. SERIAL_PROTOCOLPGM(" range: ");
  4343. SERIAL_PROTOCOL_F(max-min, 3);
  4344. }
  4345. }
  4346. SERIAL_EOL;
  4347. }
  4348. } // End of probe loop
  4349. if (STOW_PROBE()) return;
  4350. SERIAL_PROTOCOLPGM("Finished!");
  4351. SERIAL_EOL;
  4352. if (verbose_level > 0) {
  4353. SERIAL_PROTOCOLPGM("Mean: ");
  4354. SERIAL_PROTOCOL_F(mean, 6);
  4355. SERIAL_PROTOCOLPGM(" Min: ");
  4356. SERIAL_PROTOCOL_F(min, 3);
  4357. SERIAL_PROTOCOLPGM(" Max: ");
  4358. SERIAL_PROTOCOL_F(max, 3);
  4359. SERIAL_PROTOCOLPGM(" Range: ");
  4360. SERIAL_PROTOCOL_F(max-min, 3);
  4361. SERIAL_EOL;
  4362. }
  4363. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4364. SERIAL_PROTOCOL_F(sigma, 6);
  4365. SERIAL_EOL;
  4366. SERIAL_EOL;
  4367. clean_up_after_endstop_or_probe_move();
  4368. // Re-enable bed level correction if it has been on
  4369. #if HAS_ABL
  4370. set_bed_leveling_enabled(abl_was_enabled);
  4371. #endif
  4372. report_current_position();
  4373. }
  4374. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4375. /**
  4376. * M75: Start print timer
  4377. */
  4378. inline void gcode_M75() { print_job_timer.start(); }
  4379. /**
  4380. * M76: Pause print timer
  4381. */
  4382. inline void gcode_M76() { print_job_timer.pause(); }
  4383. /**
  4384. * M77: Stop print timer
  4385. */
  4386. inline void gcode_M77() { print_job_timer.stop(); }
  4387. #if ENABLED(PRINTCOUNTER)
  4388. /**
  4389. * M78: Show print statistics
  4390. */
  4391. inline void gcode_M78() {
  4392. // "M78 S78" will reset the statistics
  4393. if (code_seen('S') && code_value_int() == 78)
  4394. print_job_timer.initStats();
  4395. else
  4396. print_job_timer.showStats();
  4397. }
  4398. #endif
  4399. /**
  4400. * M104: Set hot end temperature
  4401. */
  4402. inline void gcode_M104() {
  4403. if (get_target_extruder_from_command(104)) return;
  4404. if (DEBUGGING(DRYRUN)) return;
  4405. #if ENABLED(SINGLENOZZLE)
  4406. if (target_extruder != active_extruder) return;
  4407. #endif
  4408. if (code_seen('S')) {
  4409. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4410. #if ENABLED(DUAL_X_CARRIAGE)
  4411. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4412. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4413. #endif
  4414. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4415. /**
  4416. * Stop the timer at the end of print, starting is managed by
  4417. * 'heat and wait' M109.
  4418. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4419. * stand by mode, for instance in a dual extruder setup, without affecting
  4420. * the running print timer.
  4421. */
  4422. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4423. print_job_timer.stop();
  4424. LCD_MESSAGEPGM(WELCOME_MSG);
  4425. }
  4426. #endif
  4427. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4428. }
  4429. #if ENABLED(AUTOTEMP)
  4430. planner.autotemp_M104_M109();
  4431. #endif
  4432. }
  4433. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4434. void print_heaterstates() {
  4435. #if HAS_TEMP_HOTEND
  4436. SERIAL_PROTOCOLPGM(" T:");
  4437. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4438. SERIAL_PROTOCOLPGM(" /");
  4439. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4440. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4441. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4442. SERIAL_CHAR(')');
  4443. #endif
  4444. #endif
  4445. #if HAS_TEMP_BED
  4446. SERIAL_PROTOCOLPGM(" B:");
  4447. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4448. SERIAL_PROTOCOLPGM(" /");
  4449. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4450. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4451. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4452. SERIAL_CHAR(')');
  4453. #endif
  4454. #endif
  4455. #if HOTENDS > 1
  4456. HOTEND_LOOP() {
  4457. SERIAL_PROTOCOLPAIR(" T", e);
  4458. SERIAL_PROTOCOLCHAR(':');
  4459. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4460. SERIAL_PROTOCOLPGM(" /");
  4461. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4462. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4463. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4464. SERIAL_CHAR(')');
  4465. #endif
  4466. }
  4467. #endif
  4468. SERIAL_PROTOCOLPGM(" @:");
  4469. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4470. #if HAS_TEMP_BED
  4471. SERIAL_PROTOCOLPGM(" B@:");
  4472. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  4473. #endif
  4474. #if HOTENDS > 1
  4475. HOTEND_LOOP() {
  4476. SERIAL_PROTOCOLPAIR(" @", e);
  4477. SERIAL_PROTOCOLCHAR(':');
  4478. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  4479. }
  4480. #endif
  4481. }
  4482. #endif
  4483. /**
  4484. * M105: Read hot end and bed temperature
  4485. */
  4486. inline void gcode_M105() {
  4487. if (get_target_extruder_from_command(105)) return;
  4488. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4489. SERIAL_PROTOCOLPGM(MSG_OK);
  4490. print_heaterstates();
  4491. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  4492. SERIAL_ERROR_START;
  4493. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  4494. #endif
  4495. SERIAL_EOL;
  4496. }
  4497. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  4498. static uint8_t auto_report_temp_interval;
  4499. static millis_t next_temp_report_ms;
  4500. /**
  4501. * M155: Set temperature auto-report interval. M155 S<seconds>
  4502. */
  4503. inline void gcode_M155() {
  4504. if (code_seen('S')) {
  4505. auto_report_temp_interval = code_value_byte();
  4506. NOMORE(auto_report_temp_interval, 60);
  4507. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4508. }
  4509. }
  4510. inline void auto_report_temperatures() {
  4511. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  4512. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4513. print_heaterstates();
  4514. SERIAL_EOL;
  4515. }
  4516. }
  4517. #endif // AUTO_REPORT_TEMPERATURES
  4518. #if FAN_COUNT > 0
  4519. /**
  4520. * M106: Set Fan Speed
  4521. *
  4522. * S<int> Speed between 0-255
  4523. * P<index> Fan index, if more than one fan
  4524. */
  4525. inline void gcode_M106() {
  4526. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4527. p = code_seen('P') ? code_value_ushort() : 0;
  4528. NOMORE(s, 255);
  4529. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4530. }
  4531. /**
  4532. * M107: Fan Off
  4533. */
  4534. inline void gcode_M107() {
  4535. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4536. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4537. }
  4538. #endif // FAN_COUNT > 0
  4539. #if DISABLED(EMERGENCY_PARSER)
  4540. /**
  4541. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4542. */
  4543. inline void gcode_M108() { wait_for_heatup = false; }
  4544. /**
  4545. * M112: Emergency Stop
  4546. */
  4547. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4548. /**
  4549. * M410: Quickstop - Abort all planned moves
  4550. *
  4551. * This will stop the carriages mid-move, so most likely they
  4552. * will be out of sync with the stepper position after this.
  4553. */
  4554. inline void gcode_M410() { quickstop_stepper(); }
  4555. #endif
  4556. #ifndef MIN_COOLING_SLOPE_DEG
  4557. #define MIN_COOLING_SLOPE_DEG 1.50
  4558. #endif
  4559. #ifndef MIN_COOLING_SLOPE_TIME
  4560. #define MIN_COOLING_SLOPE_TIME 60
  4561. #endif
  4562. /**
  4563. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4564. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4565. */
  4566. inline void gcode_M109() {
  4567. if (get_target_extruder_from_command(109)) return;
  4568. if (DEBUGGING(DRYRUN)) return;
  4569. #if ENABLED(SINGLENOZZLE)
  4570. if (target_extruder != active_extruder) return;
  4571. #endif
  4572. bool no_wait_for_cooling = code_seen('S');
  4573. if (no_wait_for_cooling || code_seen('R')) {
  4574. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4575. #if ENABLED(DUAL_X_CARRIAGE)
  4576. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4577. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4578. #endif
  4579. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4580. /**
  4581. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4582. * stand by mode, for instance in a dual extruder setup, without affecting
  4583. * the running print timer.
  4584. */
  4585. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4586. print_job_timer.stop();
  4587. LCD_MESSAGEPGM(WELCOME_MSG);
  4588. }
  4589. /**
  4590. * We do not check if the timer is already running because this check will
  4591. * be done for us inside the Stopwatch::start() method thus a running timer
  4592. * will not restart.
  4593. */
  4594. else print_job_timer.start();
  4595. #endif
  4596. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4597. }
  4598. #if ENABLED(AUTOTEMP)
  4599. planner.autotemp_M104_M109();
  4600. #endif
  4601. #if TEMP_RESIDENCY_TIME > 0
  4602. millis_t residency_start_ms = 0;
  4603. // Loop until the temperature has stabilized
  4604. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4605. #else
  4606. // Loop until the temperature is very close target
  4607. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4608. #endif //TEMP_RESIDENCY_TIME > 0
  4609. float theTarget = -1.0, old_temp = 9999.0;
  4610. bool wants_to_cool = false;
  4611. wait_for_heatup = true;
  4612. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4613. KEEPALIVE_STATE(NOT_BUSY);
  4614. do {
  4615. // Target temperature might be changed during the loop
  4616. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4617. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4618. theTarget = thermalManager.degTargetHotend(target_extruder);
  4619. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4620. if (no_wait_for_cooling && wants_to_cool) break;
  4621. }
  4622. now = millis();
  4623. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4624. next_temp_ms = now + 1000UL;
  4625. print_heaterstates();
  4626. #if TEMP_RESIDENCY_TIME > 0
  4627. SERIAL_PROTOCOLPGM(" W:");
  4628. if (residency_start_ms) {
  4629. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4630. SERIAL_PROTOCOLLN(rem);
  4631. }
  4632. else {
  4633. SERIAL_PROTOCOLLNPGM("?");
  4634. }
  4635. #else
  4636. SERIAL_EOL;
  4637. #endif
  4638. }
  4639. idle();
  4640. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4641. float temp = thermalManager.degHotend(target_extruder);
  4642. #if TEMP_RESIDENCY_TIME > 0
  4643. float temp_diff = fabs(theTarget - temp);
  4644. if (!residency_start_ms) {
  4645. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4646. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4647. }
  4648. else if (temp_diff > TEMP_HYSTERESIS) {
  4649. // Restart the timer whenever the temperature falls outside the hysteresis.
  4650. residency_start_ms = now;
  4651. }
  4652. #endif //TEMP_RESIDENCY_TIME > 0
  4653. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4654. if (wants_to_cool) {
  4655. // break after MIN_COOLING_SLOPE_TIME seconds
  4656. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4657. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4658. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4659. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4660. old_temp = temp;
  4661. }
  4662. }
  4663. } while (wait_for_heatup && TEMP_CONDITIONS);
  4664. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4665. KEEPALIVE_STATE(IN_HANDLER);
  4666. }
  4667. #if HAS_TEMP_BED
  4668. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4669. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4670. #endif
  4671. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4672. #define MIN_COOLING_SLOPE_TIME_BED 60
  4673. #endif
  4674. /**
  4675. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4676. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4677. */
  4678. inline void gcode_M190() {
  4679. if (DEBUGGING(DRYRUN)) return;
  4680. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4681. bool no_wait_for_cooling = code_seen('S');
  4682. if (no_wait_for_cooling || code_seen('R')) {
  4683. thermalManager.setTargetBed(code_value_temp_abs());
  4684. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4685. if (code_value_temp_abs() > BED_MINTEMP) {
  4686. /**
  4687. * We start the timer when 'heating and waiting' command arrives, LCD
  4688. * functions never wait. Cooling down managed by extruders.
  4689. *
  4690. * We do not check if the timer is already running because this check will
  4691. * be done for us inside the Stopwatch::start() method thus a running timer
  4692. * will not restart.
  4693. */
  4694. print_job_timer.start();
  4695. }
  4696. #endif
  4697. }
  4698. #if TEMP_BED_RESIDENCY_TIME > 0
  4699. millis_t residency_start_ms = 0;
  4700. // Loop until the temperature has stabilized
  4701. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4702. #else
  4703. // Loop until the temperature is very close target
  4704. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4705. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4706. float theTarget = -1.0, old_temp = 9999.0;
  4707. bool wants_to_cool = false;
  4708. wait_for_heatup = true;
  4709. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4710. KEEPALIVE_STATE(NOT_BUSY);
  4711. target_extruder = active_extruder; // for print_heaterstates
  4712. do {
  4713. // Target temperature might be changed during the loop
  4714. if (theTarget != thermalManager.degTargetBed()) {
  4715. wants_to_cool = thermalManager.isCoolingBed();
  4716. theTarget = thermalManager.degTargetBed();
  4717. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4718. if (no_wait_for_cooling && wants_to_cool) break;
  4719. }
  4720. now = millis();
  4721. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4722. next_temp_ms = now + 1000UL;
  4723. print_heaterstates();
  4724. #if TEMP_BED_RESIDENCY_TIME > 0
  4725. SERIAL_PROTOCOLPGM(" W:");
  4726. if (residency_start_ms) {
  4727. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4728. SERIAL_PROTOCOLLN(rem);
  4729. }
  4730. else {
  4731. SERIAL_PROTOCOLLNPGM("?");
  4732. }
  4733. #else
  4734. SERIAL_EOL;
  4735. #endif
  4736. }
  4737. idle();
  4738. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4739. float temp = thermalManager.degBed();
  4740. #if TEMP_BED_RESIDENCY_TIME > 0
  4741. float temp_diff = fabs(theTarget - temp);
  4742. if (!residency_start_ms) {
  4743. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4744. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4745. }
  4746. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4747. // Restart the timer whenever the temperature falls outside the hysteresis.
  4748. residency_start_ms = now;
  4749. }
  4750. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4751. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4752. if (wants_to_cool) {
  4753. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4754. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4755. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4756. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4757. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4758. old_temp = temp;
  4759. }
  4760. }
  4761. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4762. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4763. KEEPALIVE_STATE(IN_HANDLER);
  4764. }
  4765. #endif // HAS_TEMP_BED
  4766. /**
  4767. * M110: Set Current Line Number
  4768. */
  4769. inline void gcode_M110() {
  4770. if (code_seen('N')) gcode_N = code_value_long();
  4771. }
  4772. /**
  4773. * M111: Set the debug level
  4774. */
  4775. inline void gcode_M111() {
  4776. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4777. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4778. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4779. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4780. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4781. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4782. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4783. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4784. #endif
  4785. const static char* const debug_strings[] PROGMEM = {
  4786. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4787. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4788. str_debug_32
  4789. #endif
  4790. };
  4791. SERIAL_ECHO_START;
  4792. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4793. if (marlin_debug_flags) {
  4794. uint8_t comma = 0;
  4795. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4796. if (TEST(marlin_debug_flags, i)) {
  4797. if (comma++) SERIAL_CHAR(',');
  4798. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4799. }
  4800. }
  4801. }
  4802. else {
  4803. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4804. }
  4805. SERIAL_EOL;
  4806. }
  4807. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4808. /**
  4809. * M113: Get or set Host Keepalive interval (0 to disable)
  4810. *
  4811. * S<seconds> Optional. Set the keepalive interval.
  4812. */
  4813. inline void gcode_M113() {
  4814. if (code_seen('S')) {
  4815. host_keepalive_interval = code_value_byte();
  4816. NOMORE(host_keepalive_interval, 60);
  4817. }
  4818. else {
  4819. SERIAL_ECHO_START;
  4820. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4821. }
  4822. }
  4823. #endif
  4824. #if ENABLED(BARICUDA)
  4825. #if HAS_HEATER_1
  4826. /**
  4827. * M126: Heater 1 valve open
  4828. */
  4829. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4830. /**
  4831. * M127: Heater 1 valve close
  4832. */
  4833. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4834. #endif
  4835. #if HAS_HEATER_2
  4836. /**
  4837. * M128: Heater 2 valve open
  4838. */
  4839. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4840. /**
  4841. * M129: Heater 2 valve close
  4842. */
  4843. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4844. #endif
  4845. #endif //BARICUDA
  4846. /**
  4847. * M140: Set bed temperature
  4848. */
  4849. inline void gcode_M140() {
  4850. if (DEBUGGING(DRYRUN)) return;
  4851. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4852. }
  4853. #if ENABLED(ULTIPANEL)
  4854. /**
  4855. * M145: Set the heatup state for a material in the LCD menu
  4856. * S<material> (0=PLA, 1=ABS)
  4857. * H<hotend temp>
  4858. * B<bed temp>
  4859. * F<fan speed>
  4860. */
  4861. inline void gcode_M145() {
  4862. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  4863. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  4864. SERIAL_ERROR_START;
  4865. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4866. }
  4867. else {
  4868. int v;
  4869. if (code_seen('H')) {
  4870. v = code_value_int();
  4871. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4872. }
  4873. if (code_seen('F')) {
  4874. v = code_value_int();
  4875. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  4876. }
  4877. #if TEMP_SENSOR_BED != 0
  4878. if (code_seen('B')) {
  4879. v = code_value_int();
  4880. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4881. }
  4882. #endif
  4883. }
  4884. }
  4885. #endif // ULTIPANEL
  4886. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4887. /**
  4888. * M149: Set temperature units
  4889. */
  4890. inline void gcode_M149() {
  4891. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  4892. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  4893. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  4894. }
  4895. #endif
  4896. #if HAS_POWER_SWITCH
  4897. /**
  4898. * M80: Turn on Power Supply
  4899. */
  4900. inline void gcode_M80() {
  4901. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4902. /**
  4903. * If you have a switch on suicide pin, this is useful
  4904. * if you want to start another print with suicide feature after
  4905. * a print without suicide...
  4906. */
  4907. #if HAS_SUICIDE
  4908. OUT_WRITE(SUICIDE_PIN, HIGH);
  4909. #endif
  4910. #if ENABLED(ULTIPANEL)
  4911. powersupply = true;
  4912. LCD_MESSAGEPGM(WELCOME_MSG);
  4913. lcd_update();
  4914. #endif
  4915. }
  4916. #endif // HAS_POWER_SWITCH
  4917. /**
  4918. * M81: Turn off Power, including Power Supply, if there is one.
  4919. *
  4920. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4921. */
  4922. inline void gcode_M81() {
  4923. thermalManager.disable_all_heaters();
  4924. stepper.finish_and_disable();
  4925. #if FAN_COUNT > 0
  4926. #if FAN_COUNT > 1
  4927. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4928. #else
  4929. fanSpeeds[0] = 0;
  4930. #endif
  4931. #endif
  4932. delay(1000); // Wait 1 second before switching off
  4933. #if HAS_SUICIDE
  4934. stepper.synchronize();
  4935. suicide();
  4936. #elif HAS_POWER_SWITCH
  4937. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4938. #endif
  4939. #if ENABLED(ULTIPANEL)
  4940. #if HAS_POWER_SWITCH
  4941. powersupply = false;
  4942. #endif
  4943. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4944. lcd_update();
  4945. #endif
  4946. }
  4947. /**
  4948. * M82: Set E codes absolute (default)
  4949. */
  4950. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4951. /**
  4952. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4953. */
  4954. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4955. /**
  4956. * M18, M84: Disable all stepper motors
  4957. */
  4958. inline void gcode_M18_M84() {
  4959. if (code_seen('S')) {
  4960. stepper_inactive_time = code_value_millis_from_seconds();
  4961. }
  4962. else {
  4963. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4964. if (all_axis) {
  4965. stepper.finish_and_disable();
  4966. }
  4967. else {
  4968. stepper.synchronize();
  4969. if (code_seen('X')) disable_x();
  4970. if (code_seen('Y')) disable_y();
  4971. if (code_seen('Z')) disable_z();
  4972. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4973. if (code_seen('E')) {
  4974. disable_e0();
  4975. disable_e1();
  4976. disable_e2();
  4977. disable_e3();
  4978. }
  4979. #endif
  4980. }
  4981. }
  4982. }
  4983. /**
  4984. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4985. */
  4986. inline void gcode_M85() {
  4987. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4988. }
  4989. /**
  4990. * Multi-stepper support for M92, M201, M203
  4991. */
  4992. #if ENABLED(DISTINCT_E_FACTORS)
  4993. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  4994. #define TARGET_EXTRUDER target_extruder
  4995. #else
  4996. #define GET_TARGET_EXTRUDER(CMD) NOOP
  4997. #define TARGET_EXTRUDER 0
  4998. #endif
  4999. /**
  5000. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  5001. * (Follows the same syntax as G92)
  5002. *
  5003. * With multiple extruders use T to specify which one.
  5004. */
  5005. inline void gcode_M92() {
  5006. GET_TARGET_EXTRUDER(92);
  5007. LOOP_XYZE(i) {
  5008. if (code_seen(axis_codes[i])) {
  5009. if (i == E_AXIS) {
  5010. float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  5011. if (value < 20.0) {
  5012. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  5013. planner.max_jerk[E_AXIS] *= factor;
  5014. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  5015. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  5016. }
  5017. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  5018. }
  5019. else {
  5020. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  5021. }
  5022. }
  5023. }
  5024. planner.refresh_positioning();
  5025. }
  5026. /**
  5027. * Output the current position to serial
  5028. */
  5029. static void report_current_position() {
  5030. SERIAL_PROTOCOLPGM("X:");
  5031. SERIAL_PROTOCOL(current_position[X_AXIS]);
  5032. SERIAL_PROTOCOLPGM(" Y:");
  5033. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  5034. SERIAL_PROTOCOLPGM(" Z:");
  5035. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  5036. SERIAL_PROTOCOLPGM(" E:");
  5037. SERIAL_PROTOCOL(current_position[E_AXIS]);
  5038. stepper.report_positions();
  5039. #if IS_SCARA
  5040. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  5041. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  5042. SERIAL_EOL;
  5043. #endif
  5044. }
  5045. /**
  5046. * M114: Output current position to serial port
  5047. */
  5048. inline void gcode_M114() { report_current_position(); }
  5049. /**
  5050. * M115: Capabilities string
  5051. */
  5052. inline void gcode_M115() {
  5053. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  5054. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  5055. // EEPROM (M500, M501)
  5056. #if ENABLED(EEPROM_SETTINGS)
  5057. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  5058. #else
  5059. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  5060. #endif
  5061. // AUTOREPORT_TEMP (M155)
  5062. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  5063. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  5064. #else
  5065. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  5066. #endif
  5067. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  5068. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  5069. // AUTOLEVEL (G29)
  5070. #if HAS_ABL
  5071. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  5072. #else
  5073. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  5074. #endif
  5075. // Z_PROBE (G30)
  5076. #if HAS_BED_PROBE
  5077. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  5078. #else
  5079. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  5080. #endif
  5081. // SOFTWARE_POWER (G30)
  5082. #if HAS_POWER_SWITCH
  5083. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  5084. #else
  5085. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  5086. #endif
  5087. // TOGGLE_LIGHTS (M355)
  5088. #if HAS_CASE_LIGHT
  5089. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  5090. #else
  5091. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  5092. #endif
  5093. // EMERGENCY_PARSER (M108, M112, M410)
  5094. #if ENABLED(EMERGENCY_PARSER)
  5095. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  5096. #else
  5097. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  5098. #endif
  5099. #endif // EXTENDED_CAPABILITIES_REPORT
  5100. }
  5101. /**
  5102. * M117: Set LCD Status Message
  5103. */
  5104. inline void gcode_M117() {
  5105. lcd_setstatus(current_command_args);
  5106. }
  5107. /**
  5108. * M119: Output endstop states to serial output
  5109. */
  5110. inline void gcode_M119() { endstops.M119(); }
  5111. /**
  5112. * M120: Enable endstops and set non-homing endstop state to "enabled"
  5113. */
  5114. inline void gcode_M120() { endstops.enable_globally(true); }
  5115. /**
  5116. * M121: Disable endstops and set non-homing endstop state to "disabled"
  5117. */
  5118. inline void gcode_M121() { endstops.enable_globally(false); }
  5119. #if ENABLED(HAVE_TMC2130DRIVER)
  5120. /**
  5121. * M122: Output Trinamic TMC2130 status to serial output. Very bad formatting.
  5122. */
  5123. static void tmc2130_report(Trinamic_TMC2130 &stepr, const char *name) {
  5124. stepr.read_STAT();
  5125. SERIAL_PROTOCOL(name);
  5126. SERIAL_PROTOCOL(": ");
  5127. stepr.isReset() ? SERIAL_PROTOCOLPGM("RESET ") : SERIAL_PROTOCOLPGM("----- ");
  5128. stepr.isError() ? SERIAL_PROTOCOLPGM("ERROR ") : SERIAL_PROTOCOLPGM("----- ");
  5129. stepr.isStallguard() ? SERIAL_PROTOCOLPGM("SLGRD ") : SERIAL_PROTOCOLPGM("----- ");
  5130. stepr.isStandstill() ? SERIAL_PROTOCOLPGM("STILL ") : SERIAL_PROTOCOLPGM("----- ");
  5131. SERIAL_PROTOCOLLN(stepr.debug());
  5132. }
  5133. inline void gcode_M122() {
  5134. SERIAL_PROTOCOLLNPGM("Reporting TMC2130 status");
  5135. #if ENABLED(X_IS_TMC2130)
  5136. tmc2130_report(stepperX, "X");
  5137. #endif
  5138. #if ENABLED(X2_IS_TMC2130)
  5139. tmc2130_report(stepperX2, "X2");
  5140. #endif
  5141. #if ENABLED(Y_IS_TMC2130)
  5142. tmc2130_report(stepperY, "Y");
  5143. #endif
  5144. #if ENABLED(Y2_IS_TMC2130)
  5145. tmc2130_report(stepperY2, "Y2");
  5146. #endif
  5147. #if ENABLED(Z_IS_TMC2130)
  5148. tmc2130_report(stepperZ, "Z");
  5149. #endif
  5150. #if ENABLED(Z2_IS_TMC2130)
  5151. tmc2130_report(stepperZ2, "Z2");
  5152. #endif
  5153. #if ENABLED(E0_IS_TMC2130)
  5154. tmc2130_report(stepperE0, "E0");
  5155. #endif
  5156. #if ENABLED(E1_IS_TMC2130)
  5157. tmc2130_report(stepperE1, "E1");
  5158. #endif
  5159. #if ENABLED(E2_IS_TMC2130)
  5160. tmc2130_report(stepperE2, "E2");
  5161. #endif
  5162. #if ENABLED(E3_IS_TMC2130)
  5163. tmc2130_report(stepperE3, "E3");
  5164. #endif
  5165. }
  5166. #endif // HAVE_TMC2130DRIVER
  5167. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  5168. void set_led_color(const uint8_t r, const uint8_t g, const uint8_t b) {
  5169. #if ENABLED(BLINKM)
  5170. // This variant uses i2c to send the RGB components to the device.
  5171. SendColors(r, g, b);
  5172. #else
  5173. // This variant uses 3 separate pins for the RGB components.
  5174. // If the pins can do PWM then their intensity will be set.
  5175. digitalWrite(RGB_LED_R_PIN, r ? HIGH : LOW);
  5176. digitalWrite(RGB_LED_G_PIN, g ? HIGH : LOW);
  5177. digitalWrite(RGB_LED_B_PIN, b ? HIGH : LOW);
  5178. analogWrite(RGB_LED_R_PIN, r);
  5179. analogWrite(RGB_LED_G_PIN, g);
  5180. analogWrite(RGB_LED_B_PIN, b);
  5181. #endif
  5182. }
  5183. /**
  5184. * M150: Set Status LED Color - Use R-U-B for R-G-B
  5185. *
  5186. * Always sets all 3 components. If a component is left out, set to 0.
  5187. *
  5188. * Examples:
  5189. *
  5190. * M150 R255 ; Turn LED red
  5191. * M150 R255 U127 ; Turn LED orange (PWM only)
  5192. * M150 ; Turn LED off
  5193. * M150 R U B ; Turn LED white
  5194. *
  5195. */
  5196. inline void gcode_M150() {
  5197. set_led_color(
  5198. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5199. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5200. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  5201. );
  5202. }
  5203. #endif // BLINKM || RGB_LED
  5204. /**
  5205. * M200: Set filament diameter and set E axis units to cubic units
  5206. *
  5207. * T<extruder> - Optional extruder number. Current extruder if omitted.
  5208. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  5209. */
  5210. inline void gcode_M200() {
  5211. if (get_target_extruder_from_command(200)) return;
  5212. if (code_seen('D')) {
  5213. // setting any extruder filament size disables volumetric on the assumption that
  5214. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5215. // for all extruders
  5216. volumetric_enabled = (code_value_linear_units() != 0.0);
  5217. if (volumetric_enabled) {
  5218. filament_size[target_extruder] = code_value_linear_units();
  5219. // make sure all extruders have some sane value for the filament size
  5220. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  5221. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  5222. }
  5223. }
  5224. else {
  5225. //reserved for setting filament diameter via UFID or filament measuring device
  5226. return;
  5227. }
  5228. calculate_volumetric_multipliers();
  5229. }
  5230. /**
  5231. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  5232. *
  5233. * With multiple extruders use T to specify which one.
  5234. */
  5235. inline void gcode_M201() {
  5236. GET_TARGET_EXTRUDER(201);
  5237. LOOP_XYZE(i) {
  5238. if (code_seen(axis_codes[i])) {
  5239. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5240. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units(a);
  5241. }
  5242. }
  5243. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5244. planner.reset_acceleration_rates();
  5245. }
  5246. #if 0 // Not used for Sprinter/grbl gen6
  5247. inline void gcode_M202() {
  5248. LOOP_XYZE(i) {
  5249. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  5250. }
  5251. }
  5252. #endif
  5253. /**
  5254. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  5255. *
  5256. * With multiple extruders use T to specify which one.
  5257. */
  5258. inline void gcode_M203() {
  5259. GET_TARGET_EXTRUDER(203);
  5260. LOOP_XYZE(i)
  5261. if (code_seen(axis_codes[i])) {
  5262. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5263. planner.max_feedrate_mm_s[a] = code_value_axis_units(a);
  5264. }
  5265. }
  5266. /**
  5267. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  5268. *
  5269. * P = Printing moves
  5270. * R = Retract only (no X, Y, Z) moves
  5271. * T = Travel (non printing) moves
  5272. *
  5273. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  5274. */
  5275. inline void gcode_M204() {
  5276. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  5277. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  5278. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  5279. }
  5280. if (code_seen('P')) {
  5281. planner.acceleration = code_value_linear_units();
  5282. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  5283. }
  5284. if (code_seen('R')) {
  5285. planner.retract_acceleration = code_value_linear_units();
  5286. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  5287. }
  5288. if (code_seen('T')) {
  5289. planner.travel_acceleration = code_value_linear_units();
  5290. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  5291. }
  5292. }
  5293. /**
  5294. * M205: Set Advanced Settings
  5295. *
  5296. * S = Min Feed Rate (units/s)
  5297. * T = Min Travel Feed Rate (units/s)
  5298. * B = Min Segment Time (µs)
  5299. * X = Max X Jerk (units/sec^2)
  5300. * Y = Max Y Jerk (units/sec^2)
  5301. * Z = Max Z Jerk (units/sec^2)
  5302. * E = Max E Jerk (units/sec^2)
  5303. */
  5304. inline void gcode_M205() {
  5305. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  5306. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  5307. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  5308. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  5309. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5310. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  5311. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  5312. }
  5313. /**
  5314. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  5315. */
  5316. inline void gcode_M206() {
  5317. LOOP_XYZ(i)
  5318. if (code_seen(axis_codes[i]))
  5319. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  5320. #if ENABLED(MORGAN_SCARA)
  5321. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  5322. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  5323. #endif
  5324. SYNC_PLAN_POSITION_KINEMATIC();
  5325. report_current_position();
  5326. }
  5327. #if ENABLED(DELTA)
  5328. /**
  5329. * M665: Set delta configurations
  5330. *
  5331. * L = diagonal rod
  5332. * R = delta radius
  5333. * S = segments per second
  5334. * A = Alpha (Tower 1) diagonal rod trim
  5335. * B = Beta (Tower 2) diagonal rod trim
  5336. * C = Gamma (Tower 3) diagonal rod trim
  5337. */
  5338. inline void gcode_M665() {
  5339. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  5340. if (code_seen('R')) delta_radius = code_value_linear_units();
  5341. if (code_seen('S')) delta_segments_per_second = code_value_float();
  5342. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  5343. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  5344. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  5345. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  5346. }
  5347. /**
  5348. * M666: Set delta endstop adjustment
  5349. */
  5350. inline void gcode_M666() {
  5351. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5352. if (DEBUGGING(LEVELING)) {
  5353. SERIAL_ECHOLNPGM(">>> gcode_M666");
  5354. }
  5355. #endif
  5356. LOOP_XYZ(i) {
  5357. if (code_seen(axis_codes[i])) {
  5358. endstop_adj[i] = code_value_axis_units(i);
  5359. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5360. if (DEBUGGING(LEVELING)) {
  5361. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  5362. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  5363. }
  5364. #endif
  5365. }
  5366. }
  5367. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5368. if (DEBUGGING(LEVELING)) {
  5369. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5370. }
  5371. #endif
  5372. }
  5373. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5374. /**
  5375. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5376. */
  5377. inline void gcode_M666() {
  5378. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5379. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5380. }
  5381. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5382. #if ENABLED(FWRETRACT)
  5383. /**
  5384. * M207: Set firmware retraction values
  5385. *
  5386. * S[+units] retract_length
  5387. * W[+units] retract_length_swap (multi-extruder)
  5388. * F[units/min] retract_feedrate_mm_s
  5389. * Z[units] retract_zlift
  5390. */
  5391. inline void gcode_M207() {
  5392. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5393. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5394. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  5395. #if EXTRUDERS > 1
  5396. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  5397. #endif
  5398. }
  5399. /**
  5400. * M208: Set firmware un-retraction values
  5401. *
  5402. * S[+units] retract_recover_length (in addition to M207 S*)
  5403. * W[+units] retract_recover_length_swap (multi-extruder)
  5404. * F[units/min] retract_recover_feedrate_mm_s
  5405. */
  5406. inline void gcode_M208() {
  5407. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  5408. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5409. #if EXTRUDERS > 1
  5410. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  5411. #endif
  5412. }
  5413. /**
  5414. * M209: Enable automatic retract (M209 S1)
  5415. * For slicers that don't support G10/11, reversed extrude-only
  5416. * moves will be classified as retraction.
  5417. */
  5418. inline void gcode_M209() {
  5419. if (code_seen('S')) {
  5420. autoretract_enabled = code_value_bool();
  5421. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  5422. }
  5423. }
  5424. #endif // FWRETRACT
  5425. /**
  5426. * M211: Enable, Disable, and/or Report software endstops
  5427. *
  5428. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  5429. */
  5430. inline void gcode_M211() {
  5431. SERIAL_ECHO_START;
  5432. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5433. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  5434. #endif
  5435. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5436. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5437. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  5438. #else
  5439. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5440. SERIAL_ECHOPGM(MSG_OFF);
  5441. #endif
  5442. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  5443. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  5444. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  5445. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  5446. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  5447. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  5448. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  5449. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  5450. }
  5451. #if HOTENDS > 1
  5452. /**
  5453. * M218 - set hotend offset (in linear units)
  5454. *
  5455. * T<tool>
  5456. * X<xoffset>
  5457. * Y<yoffset>
  5458. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  5459. */
  5460. inline void gcode_M218() {
  5461. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  5462. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  5463. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  5464. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5465. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  5466. #endif
  5467. SERIAL_ECHO_START;
  5468. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5469. HOTEND_LOOP() {
  5470. SERIAL_CHAR(' ');
  5471. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  5472. SERIAL_CHAR(',');
  5473. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  5474. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5475. SERIAL_CHAR(',');
  5476. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  5477. #endif
  5478. }
  5479. SERIAL_EOL;
  5480. }
  5481. #endif // HOTENDS > 1
  5482. /**
  5483. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  5484. */
  5485. inline void gcode_M220() {
  5486. if (code_seen('S')) feedrate_percentage = code_value_int();
  5487. }
  5488. /**
  5489. * M221: Set extrusion percentage (M221 T0 S95)
  5490. */
  5491. inline void gcode_M221() {
  5492. if (get_target_extruder_from_command(221)) return;
  5493. if (code_seen('S'))
  5494. flow_percentage[target_extruder] = code_value_int();
  5495. }
  5496. /**
  5497. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  5498. */
  5499. inline void gcode_M226() {
  5500. if (code_seen('P')) {
  5501. int pin_number = code_value_int(),
  5502. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  5503. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  5504. int target = LOW;
  5505. stepper.synchronize();
  5506. pinMode(pin_number, INPUT);
  5507. switch (pin_state) {
  5508. case 1:
  5509. target = HIGH;
  5510. break;
  5511. case 0:
  5512. target = LOW;
  5513. break;
  5514. case -1:
  5515. target = !digitalRead(pin_number);
  5516. break;
  5517. }
  5518. while (digitalRead(pin_number) != target) idle();
  5519. } // pin_state -1 0 1 && pin_number > -1
  5520. } // code_seen('P')
  5521. }
  5522. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5523. /**
  5524. * M260: Send data to a I2C slave device
  5525. *
  5526. * This is a PoC, the formating and arguments for the GCODE will
  5527. * change to be more compatible, the current proposal is:
  5528. *
  5529. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  5530. *
  5531. * M260 B<byte-1 value in base 10>
  5532. * M260 B<byte-2 value in base 10>
  5533. * M260 B<byte-3 value in base 10>
  5534. *
  5535. * M260 S1 ; Send the buffered data and reset the buffer
  5536. * M260 R1 ; Reset the buffer without sending data
  5537. *
  5538. */
  5539. inline void gcode_M260() {
  5540. // Set the target address
  5541. if (code_seen('A')) i2c.address(code_value_byte());
  5542. // Add a new byte to the buffer
  5543. if (code_seen('B')) i2c.addbyte(code_value_byte());
  5544. // Flush the buffer to the bus
  5545. if (code_seen('S')) i2c.send();
  5546. // Reset and rewind the buffer
  5547. else if (code_seen('R')) i2c.reset();
  5548. }
  5549. /**
  5550. * M261: Request X bytes from I2C slave device
  5551. *
  5552. * Usage: M261 A<slave device address base 10> B<number of bytes>
  5553. */
  5554. inline void gcode_M261() {
  5555. if (code_seen('A')) i2c.address(code_value_byte());
  5556. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  5557. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  5558. i2c.relay(bytes);
  5559. }
  5560. else {
  5561. SERIAL_ERROR_START;
  5562. SERIAL_ERRORLN("Bad i2c request");
  5563. }
  5564. }
  5565. #endif // EXPERIMENTAL_I2CBUS
  5566. #if HAS_SERVOS
  5567. /**
  5568. * M280: Get or set servo position. P<index> [S<angle>]
  5569. */
  5570. inline void gcode_M280() {
  5571. if (!code_seen('P')) return;
  5572. int servo_index = code_value_int();
  5573. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  5574. if (code_seen('S'))
  5575. MOVE_SERVO(servo_index, code_value_int());
  5576. else {
  5577. SERIAL_ECHO_START;
  5578. SERIAL_ECHOPAIR(" Servo ", servo_index);
  5579. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  5580. }
  5581. }
  5582. else {
  5583. SERIAL_ERROR_START;
  5584. SERIAL_ECHOPAIR("Servo ", servo_index);
  5585. SERIAL_ECHOLNPGM(" out of range");
  5586. }
  5587. }
  5588. #endif // HAS_SERVOS
  5589. #if HAS_BUZZER
  5590. /**
  5591. * M300: Play beep sound S<frequency Hz> P<duration ms>
  5592. */
  5593. inline void gcode_M300() {
  5594. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  5595. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  5596. // Limits the tone duration to 0-5 seconds.
  5597. NOMORE(duration, 5000);
  5598. BUZZ(duration, frequency);
  5599. }
  5600. #endif // HAS_BUZZER
  5601. #if ENABLED(PIDTEMP)
  5602. /**
  5603. * M301: Set PID parameters P I D (and optionally C, L)
  5604. *
  5605. * P[float] Kp term
  5606. * I[float] Ki term (unscaled)
  5607. * D[float] Kd term (unscaled)
  5608. *
  5609. * With PID_EXTRUSION_SCALING:
  5610. *
  5611. * C[float] Kc term
  5612. * L[float] LPQ length
  5613. */
  5614. inline void gcode_M301() {
  5615. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  5616. // default behaviour (omitting E parameter) is to update for extruder 0 only
  5617. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  5618. if (e < HOTENDS) { // catch bad input value
  5619. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  5620. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  5621. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  5622. #if ENABLED(PID_EXTRUSION_SCALING)
  5623. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  5624. if (code_seen('L')) lpq_len = code_value_float();
  5625. NOMORE(lpq_len, LPQ_MAX_LEN);
  5626. #endif
  5627. thermalManager.updatePID();
  5628. SERIAL_ECHO_START;
  5629. #if ENABLED(PID_PARAMS_PER_HOTEND)
  5630. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  5631. #endif // PID_PARAMS_PER_HOTEND
  5632. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  5633. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  5634. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  5635. #if ENABLED(PID_EXTRUSION_SCALING)
  5636. //Kc does not have scaling applied above, or in resetting defaults
  5637. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  5638. #endif
  5639. SERIAL_EOL;
  5640. }
  5641. else {
  5642. SERIAL_ERROR_START;
  5643. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  5644. }
  5645. }
  5646. #endif // PIDTEMP
  5647. #if ENABLED(PIDTEMPBED)
  5648. inline void gcode_M304() {
  5649. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  5650. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  5651. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  5652. thermalManager.updatePID();
  5653. SERIAL_ECHO_START;
  5654. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  5655. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  5656. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  5657. }
  5658. #endif // PIDTEMPBED
  5659. #if defined(CHDK) || HAS_PHOTOGRAPH
  5660. /**
  5661. * M240: Trigger a camera by emulating a Canon RC-1
  5662. * See http://www.doc-diy.net/photo/rc-1_hacked/
  5663. */
  5664. inline void gcode_M240() {
  5665. #ifdef CHDK
  5666. OUT_WRITE(CHDK, HIGH);
  5667. chdkHigh = millis();
  5668. chdkActive = true;
  5669. #elif HAS_PHOTOGRAPH
  5670. const uint8_t NUM_PULSES = 16;
  5671. const float PULSE_LENGTH = 0.01524;
  5672. for (int i = 0; i < NUM_PULSES; i++) {
  5673. WRITE(PHOTOGRAPH_PIN, HIGH);
  5674. _delay_ms(PULSE_LENGTH);
  5675. WRITE(PHOTOGRAPH_PIN, LOW);
  5676. _delay_ms(PULSE_LENGTH);
  5677. }
  5678. delay(7.33);
  5679. for (int i = 0; i < NUM_PULSES; i++) {
  5680. WRITE(PHOTOGRAPH_PIN, HIGH);
  5681. _delay_ms(PULSE_LENGTH);
  5682. WRITE(PHOTOGRAPH_PIN, LOW);
  5683. _delay_ms(PULSE_LENGTH);
  5684. }
  5685. #endif // !CHDK && HAS_PHOTOGRAPH
  5686. }
  5687. #endif // CHDK || PHOTOGRAPH_PIN
  5688. #if HAS_LCD_CONTRAST
  5689. /**
  5690. * M250: Read and optionally set the LCD contrast
  5691. */
  5692. inline void gcode_M250() {
  5693. if (code_seen('C')) set_lcd_contrast(code_value_int());
  5694. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5695. SERIAL_PROTOCOL(lcd_contrast);
  5696. SERIAL_EOL;
  5697. }
  5698. #endif // HAS_LCD_CONTRAST
  5699. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5700. /**
  5701. * M302: Allow cold extrudes, or set the minimum extrude temperature
  5702. *
  5703. * S<temperature> sets the minimum extrude temperature
  5704. * P<bool> enables (1) or disables (0) cold extrusion
  5705. *
  5706. * Examples:
  5707. *
  5708. * M302 ; report current cold extrusion state
  5709. * M302 P0 ; enable cold extrusion checking
  5710. * M302 P1 ; disables cold extrusion checking
  5711. * M302 S0 ; always allow extrusion (disables checking)
  5712. * M302 S170 ; only allow extrusion above 170
  5713. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  5714. */
  5715. inline void gcode_M302() {
  5716. bool seen_S = code_seen('S');
  5717. if (seen_S) {
  5718. thermalManager.extrude_min_temp = code_value_temp_abs();
  5719. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  5720. }
  5721. if (code_seen('P'))
  5722. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  5723. else if (!seen_S) {
  5724. // Report current state
  5725. SERIAL_ECHO_START;
  5726. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  5727. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  5728. SERIAL_ECHOLNPGM("C)");
  5729. }
  5730. }
  5731. #endif // PREVENT_COLD_EXTRUSION
  5732. /**
  5733. * M303: PID relay autotune
  5734. *
  5735. * S<temperature> sets the target temperature. (default 150C)
  5736. * E<extruder> (-1 for the bed) (default 0)
  5737. * C<cycles>
  5738. * U<bool> with a non-zero value will apply the result to current settings
  5739. */
  5740. inline void gcode_M303() {
  5741. #if HAS_PID_HEATING
  5742. int e = code_seen('E') ? code_value_int() : 0;
  5743. int c = code_seen('C') ? code_value_int() : 5;
  5744. bool u = code_seen('U') && code_value_bool();
  5745. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  5746. if (e >= 0 && e < HOTENDS)
  5747. target_extruder = e;
  5748. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  5749. thermalManager.PID_autotune(temp, e, c, u);
  5750. KEEPALIVE_STATE(IN_HANDLER);
  5751. #else
  5752. SERIAL_ERROR_START;
  5753. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  5754. #endif
  5755. }
  5756. #if ENABLED(MORGAN_SCARA)
  5757. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  5758. if (IsRunning()) {
  5759. forward_kinematics_SCARA(delta_a, delta_b);
  5760. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  5761. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  5762. destination[Z_AXIS] = current_position[Z_AXIS];
  5763. prepare_move_to_destination();
  5764. return true;
  5765. }
  5766. return false;
  5767. }
  5768. /**
  5769. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5770. */
  5771. inline bool gcode_M360() {
  5772. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5773. return SCARA_move_to_cal(0, 120);
  5774. }
  5775. /**
  5776. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5777. */
  5778. inline bool gcode_M361() {
  5779. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5780. return SCARA_move_to_cal(90, 130);
  5781. }
  5782. /**
  5783. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5784. */
  5785. inline bool gcode_M362() {
  5786. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5787. return SCARA_move_to_cal(60, 180);
  5788. }
  5789. /**
  5790. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5791. */
  5792. inline bool gcode_M363() {
  5793. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5794. return SCARA_move_to_cal(50, 90);
  5795. }
  5796. /**
  5797. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5798. */
  5799. inline bool gcode_M364() {
  5800. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5801. return SCARA_move_to_cal(45, 135);
  5802. }
  5803. #endif // SCARA
  5804. #if ENABLED(EXT_SOLENOID)
  5805. void enable_solenoid(uint8_t num) {
  5806. switch (num) {
  5807. case 0:
  5808. OUT_WRITE(SOL0_PIN, HIGH);
  5809. break;
  5810. #if HAS_SOLENOID_1
  5811. case 1:
  5812. OUT_WRITE(SOL1_PIN, HIGH);
  5813. break;
  5814. #endif
  5815. #if HAS_SOLENOID_2
  5816. case 2:
  5817. OUT_WRITE(SOL2_PIN, HIGH);
  5818. break;
  5819. #endif
  5820. #if HAS_SOLENOID_3
  5821. case 3:
  5822. OUT_WRITE(SOL3_PIN, HIGH);
  5823. break;
  5824. #endif
  5825. default:
  5826. SERIAL_ECHO_START;
  5827. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5828. break;
  5829. }
  5830. }
  5831. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5832. void disable_all_solenoids() {
  5833. OUT_WRITE(SOL0_PIN, LOW);
  5834. OUT_WRITE(SOL1_PIN, LOW);
  5835. OUT_WRITE(SOL2_PIN, LOW);
  5836. OUT_WRITE(SOL3_PIN, LOW);
  5837. }
  5838. /**
  5839. * M380: Enable solenoid on the active extruder
  5840. */
  5841. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5842. /**
  5843. * M381: Disable all solenoids
  5844. */
  5845. inline void gcode_M381() { disable_all_solenoids(); }
  5846. #endif // EXT_SOLENOID
  5847. /**
  5848. * M400: Finish all moves
  5849. */
  5850. inline void gcode_M400() { stepper.synchronize(); }
  5851. #if HAS_BED_PROBE
  5852. /**
  5853. * M401: Engage Z Servo endstop if available
  5854. */
  5855. inline void gcode_M401() { DEPLOY_PROBE(); }
  5856. /**
  5857. * M402: Retract Z Servo endstop if enabled
  5858. */
  5859. inline void gcode_M402() { STOW_PROBE(); }
  5860. #endif // HAS_BED_PROBE
  5861. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5862. /**
  5863. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5864. */
  5865. inline void gcode_M404() {
  5866. if (code_seen('W')) {
  5867. filament_width_nominal = code_value_linear_units();
  5868. }
  5869. else {
  5870. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5871. SERIAL_PROTOCOLLN(filament_width_nominal);
  5872. }
  5873. }
  5874. /**
  5875. * M405: Turn on filament sensor for control
  5876. */
  5877. inline void gcode_M405() {
  5878. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5879. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5880. if (code_seen('D')) meas_delay_cm = code_value_int();
  5881. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5882. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5883. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5884. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5885. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5886. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5887. }
  5888. filament_sensor = true;
  5889. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5890. //SERIAL_PROTOCOL(filament_width_meas);
  5891. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5892. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5893. }
  5894. /**
  5895. * M406: Turn off filament sensor for control
  5896. */
  5897. inline void gcode_M406() { filament_sensor = false; }
  5898. /**
  5899. * M407: Get measured filament diameter on serial output
  5900. */
  5901. inline void gcode_M407() {
  5902. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5903. SERIAL_PROTOCOLLN(filament_width_meas);
  5904. }
  5905. #endif // FILAMENT_WIDTH_SENSOR
  5906. void quickstop_stepper() {
  5907. stepper.quick_stop();
  5908. stepper.synchronize();
  5909. set_current_from_steppers_for_axis(ALL_AXES);
  5910. SYNC_PLAN_POSITION_KINEMATIC();
  5911. }
  5912. #if PLANNER_LEVELING
  5913. /**
  5914. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  5915. *
  5916. * S[bool] Turns leveling on or off
  5917. * Z[height] Sets the Z fade height (0 or none to disable)
  5918. * V[bool] Verbose - Print the levelng grid
  5919. */
  5920. inline void gcode_M420() {
  5921. bool to_enable = false;
  5922. if (code_seen('S')) {
  5923. to_enable = code_value_bool();
  5924. set_bed_leveling_enabled(to_enable);
  5925. }
  5926. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  5927. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  5928. #endif
  5929. const bool new_status =
  5930. #if ENABLED(MESH_BED_LEVELING)
  5931. mbl.active()
  5932. #else
  5933. planner.abl_enabled
  5934. #endif
  5935. ;
  5936. if (to_enable && !new_status) {
  5937. SERIAL_ERROR_START;
  5938. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  5939. }
  5940. SERIAL_ECHO_START;
  5941. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  5942. // V to print the matrix or mesh
  5943. if (code_seen('V')) {
  5944. #if ABL_PLANAR
  5945. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  5946. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  5947. if (bilinear_grid_spacing[X_AXIS]) {
  5948. print_bilinear_leveling_grid();
  5949. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  5950. bed_level_virt_print();
  5951. #endif
  5952. }
  5953. #elif ENABLED(MESH_BED_LEVELING)
  5954. if (mbl.has_mesh()) {
  5955. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  5956. mbl_mesh_report();
  5957. }
  5958. #endif
  5959. }
  5960. }
  5961. #endif
  5962. #if ENABLED(MESH_BED_LEVELING)
  5963. /**
  5964. * M421: Set a single Mesh Bed Leveling Z coordinate
  5965. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5966. */
  5967. inline void gcode_M421() {
  5968. int8_t px = 0, py = 0;
  5969. float z = 0;
  5970. bool hasX, hasY, hasZ, hasI, hasJ;
  5971. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5972. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5973. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5974. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5975. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5976. if (hasX && hasY && hasZ) {
  5977. if (px >= 0 && py >= 0)
  5978. mbl.set_z(px, py, z);
  5979. else {
  5980. SERIAL_ERROR_START;
  5981. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5982. }
  5983. }
  5984. else if (hasI && hasJ && hasZ) {
  5985. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5986. mbl.set_z(px, py, z);
  5987. else {
  5988. SERIAL_ERROR_START;
  5989. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5990. }
  5991. }
  5992. else {
  5993. SERIAL_ERROR_START;
  5994. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5995. }
  5996. }
  5997. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  5998. /**
  5999. * M421: Set a single Mesh Bed Leveling Z coordinate
  6000. *
  6001. * M421 I<xindex> J<yindex> Z<linear>
  6002. */
  6003. inline void gcode_M421() {
  6004. int8_t px = 0, py = 0;
  6005. float z = 0;
  6006. bool hasI, hasJ, hasZ;
  6007. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6008. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6009. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6010. if (hasI && hasJ && hasZ) {
  6011. if (px >= 0 && px < ABL_GRID_MAX_POINTS_X && py >= 0 && py < ABL_GRID_MAX_POINTS_X) {
  6012. bed_level_grid[px][py] = z;
  6013. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6014. bed_level_virt_prepare();
  6015. bed_level_virt_interpolate();
  6016. #endif
  6017. }
  6018. else {
  6019. SERIAL_ERROR_START;
  6020. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6021. }
  6022. }
  6023. else {
  6024. SERIAL_ERROR_START;
  6025. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6026. }
  6027. }
  6028. #endif
  6029. /**
  6030. * M428: Set home_offset based on the distance between the
  6031. * current_position and the nearest "reference point."
  6032. * If an axis is past center its endstop position
  6033. * is the reference-point. Otherwise it uses 0. This allows
  6034. * the Z offset to be set near the bed when using a max endstop.
  6035. *
  6036. * M428 can't be used more than 2cm away from 0 or an endstop.
  6037. *
  6038. * Use M206 to set these values directly.
  6039. */
  6040. inline void gcode_M428() {
  6041. bool err = false;
  6042. LOOP_XYZ(i) {
  6043. if (axis_homed[i]) {
  6044. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  6045. diff = current_position[i] - LOGICAL_POSITION(base, i);
  6046. if (diff > -20 && diff < 20) {
  6047. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  6048. }
  6049. else {
  6050. SERIAL_ERROR_START;
  6051. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  6052. LCD_ALERTMESSAGEPGM("Err: Too far!");
  6053. BUZZ(200, 40);
  6054. err = true;
  6055. break;
  6056. }
  6057. }
  6058. }
  6059. if (!err) {
  6060. SYNC_PLAN_POSITION_KINEMATIC();
  6061. report_current_position();
  6062. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  6063. BUZZ(200, 659);
  6064. BUZZ(200, 698);
  6065. }
  6066. }
  6067. /**
  6068. * M500: Store settings in EEPROM
  6069. */
  6070. inline void gcode_M500() {
  6071. Config_StoreSettings();
  6072. }
  6073. /**
  6074. * M501: Read settings from EEPROM
  6075. */
  6076. inline void gcode_M501() {
  6077. Config_RetrieveSettings();
  6078. }
  6079. /**
  6080. * M502: Revert to default settings
  6081. */
  6082. inline void gcode_M502() {
  6083. Config_ResetDefault();
  6084. }
  6085. /**
  6086. * M503: print settings currently in memory
  6087. */
  6088. inline void gcode_M503() {
  6089. Config_PrintSettings(code_seen('S') && !code_value_bool());
  6090. }
  6091. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6092. /**
  6093. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  6094. */
  6095. inline void gcode_M540() {
  6096. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  6097. }
  6098. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6099. #if HAS_BED_PROBE
  6100. inline void gcode_M851() {
  6101. SERIAL_ECHO_START;
  6102. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  6103. SERIAL_CHAR(' ');
  6104. if (code_seen('Z')) {
  6105. float value = code_value_axis_units(Z_AXIS);
  6106. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  6107. zprobe_zoffset = value;
  6108. SERIAL_ECHO(zprobe_zoffset);
  6109. }
  6110. else {
  6111. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  6112. SERIAL_CHAR(' ');
  6113. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  6114. }
  6115. }
  6116. else {
  6117. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  6118. }
  6119. SERIAL_EOL;
  6120. }
  6121. #endif // HAS_BED_PROBE
  6122. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6123. /**
  6124. * M600: Pause for filament change
  6125. *
  6126. * E[distance] - Retract the filament this far (negative value)
  6127. * Z[distance] - Move the Z axis by this distance
  6128. * X[position] - Move to this X position, with Y
  6129. * Y[position] - Move to this Y position, with X
  6130. * L[distance] - Retract distance for removal (manual reload)
  6131. *
  6132. * Default values are used for omitted arguments.
  6133. *
  6134. */
  6135. inline void gcode_M600() {
  6136. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  6137. SERIAL_ERROR_START;
  6138. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  6139. return;
  6140. }
  6141. // Show initial message and wait for synchronize steppers
  6142. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  6143. stepper.synchronize();
  6144. float lastpos[NUM_AXIS];
  6145. // Save current position of all axes
  6146. LOOP_XYZE(i)
  6147. lastpos[i] = destination[i] = current_position[i];
  6148. // Define runplan for move axes
  6149. #if IS_KINEMATIC
  6150. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder);
  6151. #else
  6152. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  6153. #endif
  6154. KEEPALIVE_STATE(IN_HANDLER);
  6155. // Initial retract before move to filament change position
  6156. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  6157. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6158. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  6159. #endif
  6160. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6161. // Lift Z axis
  6162. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  6163. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6164. FILAMENT_CHANGE_Z_ADD
  6165. #else
  6166. 0
  6167. #endif
  6168. ;
  6169. if (z_lift > 0) {
  6170. destination[Z_AXIS] += z_lift;
  6171. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6172. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6173. }
  6174. // Move XY axes to filament exchange position
  6175. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  6176. #ifdef FILAMENT_CHANGE_X_POS
  6177. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  6178. #endif
  6179. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  6180. #ifdef FILAMENT_CHANGE_Y_POS
  6181. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  6182. #endif
  6183. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6184. stepper.synchronize();
  6185. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  6186. // Unload filament
  6187. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  6188. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  6189. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  6190. #endif
  6191. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  6192. // Synchronize steppers and then disable extruders steppers for manual filament changing
  6193. stepper.synchronize();
  6194. disable_e0();
  6195. disable_e1();
  6196. disable_e2();
  6197. disable_e3();
  6198. delay(100);
  6199. #if HAS_BUZZER
  6200. millis_t next_buzz = 0;
  6201. #endif
  6202. // Wait for filament insert by user and press button
  6203. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6204. // LCD click or M108 will clear this
  6205. wait_for_user = true;
  6206. while (wait_for_user) {
  6207. #if HAS_BUZZER
  6208. millis_t ms = millis();
  6209. if (ms >= next_buzz) {
  6210. BUZZ(300, 2000);
  6211. next_buzz = ms + 2500; // Beep every 2.5s while waiting
  6212. }
  6213. #endif
  6214. idle(true);
  6215. }
  6216. // Show load message
  6217. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  6218. // Load filament
  6219. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  6220. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  6221. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  6222. #endif
  6223. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  6224. stepper.synchronize();
  6225. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  6226. do {
  6227. // Extrude filament to get into hotend
  6228. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  6229. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  6230. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  6231. stepper.synchronize();
  6232. // Ask user if more filament should be extruded
  6233. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6234. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  6235. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  6236. KEEPALIVE_STATE(IN_HANDLER);
  6237. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  6238. #endif
  6239. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  6240. KEEPALIVE_STATE(IN_HANDLER);
  6241. // Set extruder to saved position
  6242. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  6243. planner.set_e_position_mm(current_position[E_AXIS]);
  6244. #if IS_KINEMATIC
  6245. // Move XYZ to starting position
  6246. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  6247. #else
  6248. // Move XY to starting position, then Z
  6249. destination[X_AXIS] = lastpos[X_AXIS];
  6250. destination[Y_AXIS] = lastpos[Y_AXIS];
  6251. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6252. destination[Z_AXIS] = lastpos[Z_AXIS];
  6253. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6254. #endif
  6255. stepper.synchronize();
  6256. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6257. filament_ran_out = false;
  6258. #endif
  6259. // Show status screen
  6260. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  6261. }
  6262. #endif // FILAMENT_CHANGE_FEATURE
  6263. #if ENABLED(DUAL_X_CARRIAGE)
  6264. /**
  6265. * M605: Set dual x-carriage movement mode
  6266. *
  6267. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  6268. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  6269. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  6270. * units x-offset and an optional differential hotend temperature of
  6271. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  6272. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  6273. *
  6274. * Note: the X axis should be homed after changing dual x-carriage mode.
  6275. */
  6276. inline void gcode_M605() {
  6277. stepper.synchronize();
  6278. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  6279. switch (dual_x_carriage_mode) {
  6280. case DXC_FULL_CONTROL_MODE:
  6281. case DXC_AUTO_PARK_MODE:
  6282. break;
  6283. case DXC_DUPLICATION_MODE:
  6284. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  6285. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  6286. SERIAL_ECHO_START;
  6287. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6288. SERIAL_CHAR(' ');
  6289. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  6290. SERIAL_CHAR(',');
  6291. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  6292. SERIAL_CHAR(' ');
  6293. SERIAL_ECHO(duplicate_extruder_x_offset);
  6294. SERIAL_CHAR(',');
  6295. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  6296. break;
  6297. default:
  6298. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  6299. break;
  6300. }
  6301. active_extruder_parked = false;
  6302. extruder_duplication_enabled = false;
  6303. delayed_move_time = 0;
  6304. }
  6305. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  6306. inline void gcode_M605() {
  6307. stepper.synchronize();
  6308. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  6309. SERIAL_ECHO_START;
  6310. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  6311. }
  6312. #endif // M605
  6313. #if ENABLED(LIN_ADVANCE)
  6314. /**
  6315. * M905: Set advance factor
  6316. */
  6317. inline void gcode_M905() {
  6318. stepper.synchronize();
  6319. planner.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  6320. }
  6321. #endif
  6322. /**
  6323. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  6324. */
  6325. inline void gcode_M907() {
  6326. #if HAS_DIGIPOTSS
  6327. LOOP_XYZE(i)
  6328. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  6329. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  6330. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  6331. #elif HAS_MOTOR_CURRENT_PWM
  6332. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  6333. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  6334. #endif
  6335. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  6336. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  6337. #endif
  6338. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  6339. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  6340. #endif
  6341. #endif
  6342. #if ENABLED(DIGIPOT_I2C)
  6343. // this one uses actual amps in floating point
  6344. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  6345. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  6346. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  6347. #endif
  6348. #if ENABLED(DAC_STEPPER_CURRENT)
  6349. if (code_seen('S')) {
  6350. float dac_percent = code_value_float();
  6351. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  6352. }
  6353. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  6354. #endif
  6355. }
  6356. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6357. /**
  6358. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  6359. */
  6360. inline void gcode_M908() {
  6361. #if HAS_DIGIPOTSS
  6362. stepper.digitalPotWrite(
  6363. code_seen('P') ? code_value_int() : 0,
  6364. code_seen('S') ? code_value_int() : 0
  6365. );
  6366. #endif
  6367. #ifdef DAC_STEPPER_CURRENT
  6368. dac_current_raw(
  6369. code_seen('P') ? code_value_byte() : -1,
  6370. code_seen('S') ? code_value_ushort() : 0
  6371. );
  6372. #endif
  6373. }
  6374. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6375. inline void gcode_M909() { dac_print_values(); }
  6376. inline void gcode_M910() { dac_commit_eeprom(); }
  6377. #endif
  6378. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6379. #if HAS_MICROSTEPS
  6380. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6381. inline void gcode_M350() {
  6382. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  6383. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  6384. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  6385. stepper.microstep_readings();
  6386. }
  6387. /**
  6388. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  6389. * S# determines MS1 or MS2, X# sets the pin high/low.
  6390. */
  6391. inline void gcode_M351() {
  6392. if (code_seen('S')) switch (code_value_byte()) {
  6393. case 1:
  6394. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  6395. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  6396. break;
  6397. case 2:
  6398. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  6399. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  6400. break;
  6401. }
  6402. stepper.microstep_readings();
  6403. }
  6404. #endif // HAS_MICROSTEPS
  6405. #if HAS_CASE_LIGHT
  6406. uint8_t case_light_brightness = 255;
  6407. void update_case_light() {
  6408. digitalWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  6409. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  6410. }
  6411. #endif // HAS_CASE_LIGHT
  6412. /**
  6413. * M355: Turn case lights on/off and set brightness
  6414. *
  6415. * S<bool> Turn case light on or off
  6416. * P<byte> Set case light brightness (PWM pin required)
  6417. */
  6418. inline void gcode_M355() {
  6419. #if HAS_CASE_LIGHT
  6420. if (code_seen('P')) case_light_brightness = code_value_byte();
  6421. if (code_seen('S')) case_light_on = code_value_bool();
  6422. update_case_light();
  6423. SERIAL_ECHO_START;
  6424. SERIAL_ECHOPGM("Case lights ");
  6425. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  6426. #else
  6427. SERIAL_ERROR_START;
  6428. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  6429. #endif // HAS_CASE_LIGHT
  6430. }
  6431. #if ENABLED(MIXING_EXTRUDER)
  6432. /**
  6433. * M163: Set a single mix factor for a mixing extruder
  6434. * This is called "weight" by some systems.
  6435. *
  6436. * S[index] The channel index to set
  6437. * P[float] The mix value
  6438. *
  6439. */
  6440. inline void gcode_M163() {
  6441. int mix_index = code_seen('S') ? code_value_int() : 0;
  6442. if (mix_index < MIXING_STEPPERS) {
  6443. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  6444. NOLESS(mix_value, 0.0);
  6445. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  6446. }
  6447. }
  6448. #if MIXING_VIRTUAL_TOOLS > 1
  6449. /**
  6450. * M164: Store the current mix factors as a virtual tool.
  6451. *
  6452. * S[index] The virtual tool to store
  6453. *
  6454. */
  6455. inline void gcode_M164() {
  6456. int tool_index = code_seen('S') ? code_value_int() : 0;
  6457. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  6458. normalize_mix();
  6459. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  6460. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  6461. }
  6462. }
  6463. #endif
  6464. #if ENABLED(DIRECT_MIXING_IN_G1)
  6465. /**
  6466. * M165: Set multiple mix factors for a mixing extruder.
  6467. * Factors that are left out will be set to 0.
  6468. * All factors together must add up to 1.0.
  6469. *
  6470. * A[factor] Mix factor for extruder stepper 1
  6471. * B[factor] Mix factor for extruder stepper 2
  6472. * C[factor] Mix factor for extruder stepper 3
  6473. * D[factor] Mix factor for extruder stepper 4
  6474. * H[factor] Mix factor for extruder stepper 5
  6475. * I[factor] Mix factor for extruder stepper 6
  6476. *
  6477. */
  6478. inline void gcode_M165() { gcode_get_mix(); }
  6479. #endif
  6480. #endif // MIXING_EXTRUDER
  6481. /**
  6482. * M999: Restart after being stopped
  6483. *
  6484. * Default behaviour is to flush the serial buffer and request
  6485. * a resend to the host starting on the last N line received.
  6486. *
  6487. * Sending "M999 S1" will resume printing without flushing the
  6488. * existing command buffer.
  6489. *
  6490. */
  6491. inline void gcode_M999() {
  6492. Running = true;
  6493. lcd_reset_alert_level();
  6494. if (code_seen('S') && code_value_bool()) return;
  6495. // gcode_LastN = Stopped_gcode_LastN;
  6496. FlushSerialRequestResend();
  6497. }
  6498. #if ENABLED(SWITCHING_EXTRUDER)
  6499. inline void move_extruder_servo(uint8_t e) {
  6500. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  6501. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  6502. }
  6503. #endif
  6504. inline void invalid_extruder_error(const uint8_t &e) {
  6505. SERIAL_ECHO_START;
  6506. SERIAL_CHAR('T');
  6507. SERIAL_PROTOCOL_F(e, DEC);
  6508. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  6509. }
  6510. /**
  6511. * Perform a tool-change, which may result in moving the
  6512. * previous tool out of the way and the new tool into place.
  6513. */
  6514. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  6515. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  6516. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  6517. return invalid_extruder_error(tmp_extruder);
  6518. // T0-Tnnn: Switch virtual tool by changing the mix
  6519. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  6520. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  6521. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6522. #if HOTENDS > 1
  6523. if (tmp_extruder >= EXTRUDERS)
  6524. return invalid_extruder_error(tmp_extruder);
  6525. float old_feedrate_mm_s = feedrate_mm_s;
  6526. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  6527. if (tmp_extruder != active_extruder) {
  6528. if (!no_move && axis_unhomed_error(true, true, true)) {
  6529. SERIAL_ECHOLNPGM("No move on toolchange");
  6530. no_move = true;
  6531. }
  6532. // Save current position to destination, for use later
  6533. set_destination_to_current();
  6534. #if ENABLED(DUAL_X_CARRIAGE)
  6535. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6536. if (DEBUGGING(LEVELING)) {
  6537. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  6538. switch (dual_x_carriage_mode) {
  6539. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  6540. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  6541. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  6542. }
  6543. }
  6544. #endif
  6545. const float xhome = x_home_pos(active_extruder);
  6546. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  6547. && IsRunning()
  6548. && (delayed_move_time || current_position[X_AXIS] != xhome)
  6549. ) {
  6550. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  6551. #if ENABLED(max_software_endstops)
  6552. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  6553. #endif
  6554. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6555. if (DEBUGGING(LEVELING)) {
  6556. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  6557. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  6558. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  6559. }
  6560. #endif
  6561. // Park old head: 1) raise 2) move to park position 3) lower
  6562. for (uint8_t i = 0; i < 3; i++)
  6563. planner.buffer_line(
  6564. i == 0 ? current_position[X_AXIS] : xhome,
  6565. current_position[Y_AXIS],
  6566. i == 2 ? current_position[Z_AXIS] : raised_z,
  6567. current_position[E_AXIS],
  6568. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  6569. active_extruder
  6570. );
  6571. stepper.synchronize();
  6572. }
  6573. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  6574. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  6575. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  6576. // Activate the new extruder
  6577. active_extruder = tmp_extruder;
  6578. // This function resets the max/min values - the current position may be overwritten below.
  6579. set_axis_is_at_home(X_AXIS);
  6580. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6581. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  6582. #endif
  6583. // Only when auto-parking are carriages safe to move
  6584. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  6585. switch (dual_x_carriage_mode) {
  6586. case DXC_FULL_CONTROL_MODE:
  6587. // New current position is the position of the activated extruder
  6588. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6589. // Save the inactive extruder's position (from the old current_position)
  6590. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6591. break;
  6592. case DXC_AUTO_PARK_MODE:
  6593. // record raised toolhead position for use by unpark
  6594. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  6595. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  6596. #if ENABLED(max_software_endstops)
  6597. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6598. #endif
  6599. active_extruder_parked = true;
  6600. delayed_move_time = 0;
  6601. break;
  6602. case DXC_DUPLICATION_MODE:
  6603. // If the new extruder is the left one, set it "parked"
  6604. // This triggers the second extruder to move into the duplication position
  6605. active_extruder_parked = (active_extruder == 0);
  6606. if (active_extruder_parked)
  6607. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6608. else
  6609. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  6610. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6611. extruder_duplication_enabled = false;
  6612. break;
  6613. }
  6614. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6615. if (DEBUGGING(LEVELING)) {
  6616. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  6617. DEBUG_POS("New extruder (parked)", current_position);
  6618. }
  6619. #endif
  6620. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  6621. #else // !DUAL_X_CARRIAGE
  6622. #if ENABLED(SWITCHING_EXTRUDER)
  6623. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  6624. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  6625. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  6626. // Always raise by some amount (destination copied from current_position earlier)
  6627. destination[Z_AXIS] += z_raise;
  6628. planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6629. stepper.synchronize();
  6630. move_extruder_servo(active_extruder);
  6631. delay(500);
  6632. // Move back down, if needed
  6633. if (z_raise != z_diff) {
  6634. destination[Z_AXIS] = current_position[Z_AXIS] + z_diff;
  6635. planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6636. stepper.synchronize();
  6637. }
  6638. #endif
  6639. /**
  6640. * Set current_position to the position of the new nozzle.
  6641. * Offsets are based on linear distance, so we need to get
  6642. * the resulting position in coordinate space.
  6643. *
  6644. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  6645. * - With mesh leveling, update Z for the new position
  6646. * - Otherwise, just use the raw linear distance
  6647. *
  6648. * Software endstops are altered here too. Consider a case where:
  6649. * E0 at X=0 ... E1 at X=10
  6650. * When we switch to E1 now X=10, but E1 can't move left.
  6651. * To express this we apply the change in XY to the software endstops.
  6652. * E1 can move farther right than E0, so the right limit is extended.
  6653. *
  6654. * Note that we don't adjust the Z software endstops. Why not?
  6655. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  6656. * because the bed is 1mm lower at the new position. As long as
  6657. * the first nozzle is out of the way, the carriage should be
  6658. * allowed to move 1mm lower. This technically "breaks" the
  6659. * Z software endstop. But this is technically correct (and
  6660. * there is no viable alternative).
  6661. */
  6662. #if ABL_PLANAR
  6663. // Offset extruder, make sure to apply the bed level rotation matrix
  6664. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  6665. hotend_offset[Y_AXIS][tmp_extruder],
  6666. 0),
  6667. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  6668. hotend_offset[Y_AXIS][active_extruder],
  6669. 0),
  6670. offset_vec = tmp_offset_vec - act_offset_vec;
  6671. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6672. if (DEBUGGING(LEVELING)) {
  6673. tmp_offset_vec.debug("tmp_offset_vec");
  6674. act_offset_vec.debug("act_offset_vec");
  6675. offset_vec.debug("offset_vec (BEFORE)");
  6676. }
  6677. #endif
  6678. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  6679. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6680. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  6681. #endif
  6682. // Adjustments to the current position
  6683. float xydiff[2] = { offset_vec.x, offset_vec.y };
  6684. current_position[Z_AXIS] += offset_vec.z;
  6685. #else // !ABL_PLANAR
  6686. float xydiff[2] = {
  6687. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  6688. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  6689. };
  6690. #if ENABLED(MESH_BED_LEVELING)
  6691. if (mbl.active()) {
  6692. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6693. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  6694. #endif
  6695. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  6696. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  6697. z1 = current_position[Z_AXIS], z2 = z1;
  6698. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  6699. planner.apply_leveling(x2, y2, z2);
  6700. current_position[Z_AXIS] += z2 - z1;
  6701. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6702. if (DEBUGGING(LEVELING))
  6703. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  6704. #endif
  6705. }
  6706. #endif // MESH_BED_LEVELING
  6707. #endif // !HAS_ABL
  6708. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6709. if (DEBUGGING(LEVELING)) {
  6710. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  6711. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  6712. SERIAL_ECHOLNPGM(" }");
  6713. }
  6714. #endif
  6715. // The newly-selected extruder XY is actually at...
  6716. current_position[X_AXIS] += xydiff[X_AXIS];
  6717. current_position[Y_AXIS] += xydiff[Y_AXIS];
  6718. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  6719. position_shift[i] += xydiff[i];
  6720. update_software_endstops((AxisEnum)i);
  6721. }
  6722. // Set the new active extruder
  6723. active_extruder = tmp_extruder;
  6724. #endif // !DUAL_X_CARRIAGE
  6725. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6726. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  6727. #endif
  6728. // Tell the planner the new "current position"
  6729. SYNC_PLAN_POSITION_KINEMATIC();
  6730. // Move to the "old position" (move the extruder into place)
  6731. if (!no_move && IsRunning()) {
  6732. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6733. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  6734. #endif
  6735. prepare_move_to_destination();
  6736. }
  6737. } // (tmp_extruder != active_extruder)
  6738. stepper.synchronize();
  6739. #if ENABLED(EXT_SOLENOID)
  6740. disable_all_solenoids();
  6741. enable_solenoid_on_active_extruder();
  6742. #endif // EXT_SOLENOID
  6743. feedrate_mm_s = old_feedrate_mm_s;
  6744. #else // HOTENDS <= 1
  6745. // Set the new active extruder
  6746. active_extruder = tmp_extruder;
  6747. UNUSED(fr_mm_s);
  6748. UNUSED(no_move);
  6749. #endif // HOTENDS <= 1
  6750. SERIAL_ECHO_START;
  6751. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  6752. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6753. }
  6754. /**
  6755. * T0-T3: Switch tool, usually switching extruders
  6756. *
  6757. * F[units/min] Set the movement feedrate
  6758. * S1 Don't move the tool in XY after change
  6759. */
  6760. inline void gcode_T(uint8_t tmp_extruder) {
  6761. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6762. if (DEBUGGING(LEVELING)) {
  6763. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  6764. SERIAL_CHAR(')');
  6765. SERIAL_EOL;
  6766. DEBUG_POS("BEFORE", current_position);
  6767. }
  6768. #endif
  6769. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  6770. tool_change(tmp_extruder);
  6771. #elif HOTENDS > 1
  6772. tool_change(
  6773. tmp_extruder,
  6774. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  6775. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  6776. );
  6777. #endif
  6778. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6779. if (DEBUGGING(LEVELING)) {
  6780. DEBUG_POS("AFTER", current_position);
  6781. SERIAL_ECHOLNPGM("<<< gcode_T");
  6782. }
  6783. #endif
  6784. }
  6785. /**
  6786. * Process a single command and dispatch it to its handler
  6787. * This is called from the main loop()
  6788. */
  6789. void process_next_command() {
  6790. current_command = command_queue[cmd_queue_index_r];
  6791. if (DEBUGGING(ECHO)) {
  6792. SERIAL_ECHO_START;
  6793. SERIAL_ECHOLN(current_command);
  6794. }
  6795. // Sanitize the current command:
  6796. // - Skip leading spaces
  6797. // - Bypass N[-0-9][0-9]*[ ]*
  6798. // - Overwrite * with nul to mark the end
  6799. while (*current_command == ' ') ++current_command;
  6800. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  6801. current_command += 2; // skip N[-0-9]
  6802. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  6803. while (*current_command == ' ') ++current_command; // skip [ ]*
  6804. }
  6805. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  6806. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  6807. char *cmd_ptr = current_command;
  6808. // Get the command code, which must be G, M, or T
  6809. char command_code = *cmd_ptr++;
  6810. // Skip spaces to get the numeric part
  6811. while (*cmd_ptr == ' ') cmd_ptr++;
  6812. // Allow for decimal point in command
  6813. #if ENABLED(G38_PROBE_TARGET)
  6814. uint8_t subcode = 0;
  6815. #endif
  6816. uint16_t codenum = 0; // define ahead of goto
  6817. // Bail early if there's no code
  6818. bool code_is_good = NUMERIC(*cmd_ptr);
  6819. if (!code_is_good) goto ExitUnknownCommand;
  6820. // Get and skip the code number
  6821. do {
  6822. codenum = (codenum * 10) + (*cmd_ptr - '0');
  6823. cmd_ptr++;
  6824. } while (NUMERIC(*cmd_ptr));
  6825. // Allow for decimal point in command
  6826. #if ENABLED(G38_PROBE_TARGET)
  6827. if (*cmd_ptr == '.') {
  6828. cmd_ptr++;
  6829. while (NUMERIC(*cmd_ptr))
  6830. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  6831. }
  6832. #endif
  6833. // Skip all spaces to get to the first argument, or nul
  6834. while (*cmd_ptr == ' ') cmd_ptr++;
  6835. // The command's arguments (if any) start here, for sure!
  6836. current_command_args = cmd_ptr;
  6837. KEEPALIVE_STATE(IN_HANDLER);
  6838. // Handle a known G, M, or T
  6839. switch (command_code) {
  6840. case 'G': switch (codenum) {
  6841. // G0, G1
  6842. case 0:
  6843. case 1:
  6844. #if IS_SCARA
  6845. gcode_G0_G1(codenum == 0);
  6846. #else
  6847. gcode_G0_G1();
  6848. #endif
  6849. break;
  6850. // G2, G3
  6851. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  6852. case 2: // G2 - CW ARC
  6853. case 3: // G3 - CCW ARC
  6854. gcode_G2_G3(codenum == 2);
  6855. break;
  6856. #endif
  6857. // G4 Dwell
  6858. case 4:
  6859. gcode_G4();
  6860. break;
  6861. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6862. // G5
  6863. case 5: // G5 - Cubic B_spline
  6864. gcode_G5();
  6865. break;
  6866. #endif // BEZIER_CURVE_SUPPORT
  6867. #if ENABLED(FWRETRACT)
  6868. case 10: // G10: retract
  6869. case 11: // G11: retract_recover
  6870. gcode_G10_G11(codenum == 10);
  6871. break;
  6872. #endif // FWRETRACT
  6873. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  6874. case 12:
  6875. gcode_G12(); // G12: Nozzle Clean
  6876. break;
  6877. #endif // NOZZLE_CLEAN_FEATURE
  6878. #if ENABLED(INCH_MODE_SUPPORT)
  6879. case 20: //G20: Inch Mode
  6880. gcode_G20();
  6881. break;
  6882. case 21: //G21: MM Mode
  6883. gcode_G21();
  6884. break;
  6885. #endif // INCH_MODE_SUPPORT
  6886. #if ENABLED(NOZZLE_PARK_FEATURE)
  6887. case 27: // G27: Nozzle Park
  6888. gcode_G27();
  6889. break;
  6890. #endif // NOZZLE_PARK_FEATURE
  6891. case 28: // G28: Home all axes, one at a time
  6892. gcode_G28();
  6893. break;
  6894. #if PLANNER_LEVELING
  6895. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6896. gcode_G29();
  6897. break;
  6898. #endif // PLANNER_LEVELING
  6899. #if HAS_BED_PROBE
  6900. case 30: // G30 Single Z probe
  6901. gcode_G30();
  6902. break;
  6903. #if ENABLED(Z_PROBE_SLED)
  6904. case 31: // G31: dock the sled
  6905. gcode_G31();
  6906. break;
  6907. case 32: // G32: undock the sled
  6908. gcode_G32();
  6909. break;
  6910. #endif // Z_PROBE_SLED
  6911. #endif // HAS_BED_PROBE
  6912. #if ENABLED(G38_PROBE_TARGET)
  6913. case 38: // G38.2 & G38.3
  6914. if (subcode == 2 || subcode == 3)
  6915. gcode_G38(subcode == 2);
  6916. break;
  6917. #endif
  6918. case 90: // G90
  6919. relative_mode = false;
  6920. break;
  6921. case 91: // G91
  6922. relative_mode = true;
  6923. break;
  6924. case 92: // G92
  6925. gcode_G92();
  6926. break;
  6927. }
  6928. break;
  6929. case 'M': switch (codenum) {
  6930. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  6931. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  6932. case 1: // M1: Conditional stop - Wait for user button press on LCD
  6933. gcode_M0_M1();
  6934. break;
  6935. #endif // ULTIPANEL
  6936. case 17: // M17: Enable all stepper motors
  6937. gcode_M17();
  6938. break;
  6939. #if ENABLED(SDSUPPORT)
  6940. case 20: // M20: list SD card
  6941. gcode_M20(); break;
  6942. case 21: // M21: init SD card
  6943. gcode_M21(); break;
  6944. case 22: // M22: release SD card
  6945. gcode_M22(); break;
  6946. case 23: // M23: Select file
  6947. gcode_M23(); break;
  6948. case 24: // M24: Start SD print
  6949. gcode_M24(); break;
  6950. case 25: // M25: Pause SD print
  6951. gcode_M25(); break;
  6952. case 26: // M26: Set SD index
  6953. gcode_M26(); break;
  6954. case 27: // M27: Get SD status
  6955. gcode_M27(); break;
  6956. case 28: // M28: Start SD write
  6957. gcode_M28(); break;
  6958. case 29: // M29: Stop SD write
  6959. gcode_M29(); break;
  6960. case 30: // M30 <filename> Delete File
  6961. gcode_M30(); break;
  6962. case 32: // M32: Select file and start SD print
  6963. gcode_M32(); break;
  6964. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6965. case 33: // M33: Get the long full path to a file or folder
  6966. gcode_M33(); break;
  6967. #endif
  6968. case 928: // M928: Start SD write
  6969. gcode_M928(); break;
  6970. #endif //SDSUPPORT
  6971. case 31: // M31: Report time since the start of SD print or last M109
  6972. gcode_M31(); break;
  6973. case 42: // M42: Change pin state
  6974. gcode_M42(); break;
  6975. #if ENABLED(PINS_DEBUGGING)
  6976. case 43: // M43: Read pin state
  6977. gcode_M43(); break;
  6978. #endif
  6979. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6980. case 48: // M48: Z probe repeatability test
  6981. gcode_M48();
  6982. break;
  6983. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6984. case 75: // M75: Start print timer
  6985. gcode_M75(); break;
  6986. case 76: // M76: Pause print timer
  6987. gcode_M76(); break;
  6988. case 77: // M77: Stop print timer
  6989. gcode_M77(); break;
  6990. #if ENABLED(PRINTCOUNTER)
  6991. case 78: // M78: Show print statistics
  6992. gcode_M78(); break;
  6993. #endif
  6994. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6995. case 100: // M100: Free Memory Report
  6996. gcode_M100();
  6997. break;
  6998. #endif
  6999. case 104: // M104: Set hot end temperature
  7000. gcode_M104();
  7001. break;
  7002. case 110: // M110: Set Current Line Number
  7003. gcode_M110();
  7004. break;
  7005. case 111: // M111: Set debug level
  7006. gcode_M111();
  7007. break;
  7008. #if DISABLED(EMERGENCY_PARSER)
  7009. case 108: // M108: Cancel Waiting
  7010. gcode_M108();
  7011. break;
  7012. case 112: // M112: Emergency Stop
  7013. gcode_M112();
  7014. break;
  7015. case 410: // M410 quickstop - Abort all the planned moves.
  7016. gcode_M410();
  7017. break;
  7018. #endif
  7019. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  7020. case 113: // M113: Set Host Keepalive interval
  7021. gcode_M113();
  7022. break;
  7023. #endif
  7024. case 140: // M140: Set bed temperature
  7025. gcode_M140();
  7026. break;
  7027. case 105: // M105: Report current temperature
  7028. gcode_M105();
  7029. KEEPALIVE_STATE(NOT_BUSY);
  7030. return; // "ok" already printed
  7031. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  7032. case 155: // M155: Set temperature auto-report interval
  7033. gcode_M155();
  7034. break;
  7035. #endif
  7036. case 109: // M109: Wait for hotend temperature to reach target
  7037. gcode_M109();
  7038. break;
  7039. #if HAS_TEMP_BED
  7040. case 190: // M190: Wait for bed temperature to reach target
  7041. gcode_M190();
  7042. break;
  7043. #endif // HAS_TEMP_BED
  7044. #if FAN_COUNT > 0
  7045. case 106: // M106: Fan On
  7046. gcode_M106();
  7047. break;
  7048. case 107: // M107: Fan Off
  7049. gcode_M107();
  7050. break;
  7051. #endif // FAN_COUNT > 0
  7052. #if ENABLED(BARICUDA)
  7053. // PWM for HEATER_1_PIN
  7054. #if HAS_HEATER_1
  7055. case 126: // M126: valve open
  7056. gcode_M126();
  7057. break;
  7058. case 127: // M127: valve closed
  7059. gcode_M127();
  7060. break;
  7061. #endif // HAS_HEATER_1
  7062. // PWM for HEATER_2_PIN
  7063. #if HAS_HEATER_2
  7064. case 128: // M128: valve open
  7065. gcode_M128();
  7066. break;
  7067. case 129: // M129: valve closed
  7068. gcode_M129();
  7069. break;
  7070. #endif // HAS_HEATER_2
  7071. #endif // BARICUDA
  7072. #if HAS_POWER_SWITCH
  7073. case 80: // M80: Turn on Power Supply
  7074. gcode_M80();
  7075. break;
  7076. #endif // HAS_POWER_SWITCH
  7077. case 81: // M81: Turn off Power, including Power Supply, if possible
  7078. gcode_M81();
  7079. break;
  7080. case 82: // M83: Set E axis normal mode (same as other axes)
  7081. gcode_M82();
  7082. break;
  7083. case 83: // M83: Set E axis relative mode
  7084. gcode_M83();
  7085. break;
  7086. case 18: // M18 => M84
  7087. case 84: // M84: Disable all steppers or set timeout
  7088. gcode_M18_M84();
  7089. break;
  7090. case 85: // M85: Set inactivity stepper shutdown timeout
  7091. gcode_M85();
  7092. break;
  7093. case 92: // M92: Set the steps-per-unit for one or more axes
  7094. gcode_M92();
  7095. break;
  7096. case 114: // M114: Report current position
  7097. gcode_M114();
  7098. break;
  7099. case 115: // M115: Report capabilities
  7100. gcode_M115();
  7101. break;
  7102. case 117: // M117: Set LCD message text, if possible
  7103. gcode_M117();
  7104. break;
  7105. case 119: // M119: Report endstop states
  7106. gcode_M119();
  7107. break;
  7108. case 120: // M120: Enable endstops
  7109. gcode_M120();
  7110. break;
  7111. case 121: // M121: Disable endstops
  7112. gcode_M121();
  7113. break;
  7114. #if ENABLED(HAVE_TMC2130DRIVER)
  7115. case 122: // M122: Diagnose, used to debug TMC2130
  7116. gcode_M122();
  7117. break;
  7118. #endif
  7119. #if ENABLED(ULTIPANEL)
  7120. case 145: // M145: Set material heatup parameters
  7121. gcode_M145();
  7122. break;
  7123. #endif
  7124. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  7125. case 149: // M149: Set temperature units
  7126. gcode_M149();
  7127. break;
  7128. #endif
  7129. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  7130. case 150: // M150: Set Status LED Color
  7131. gcode_M150();
  7132. break;
  7133. #endif // BLINKM
  7134. #if ENABLED(MIXING_EXTRUDER)
  7135. case 163: // M163: Set a component weight for mixing extruder
  7136. gcode_M163();
  7137. break;
  7138. #if MIXING_VIRTUAL_TOOLS > 1
  7139. case 164: // M164: Save current mix as a virtual extruder
  7140. gcode_M164();
  7141. break;
  7142. #endif
  7143. #if ENABLED(DIRECT_MIXING_IN_G1)
  7144. case 165: // M165: Set multiple mix weights
  7145. gcode_M165();
  7146. break;
  7147. #endif
  7148. #endif
  7149. case 200: // M200: Set filament diameter, E to cubic units
  7150. gcode_M200();
  7151. break;
  7152. case 201: // M201: Set max acceleration for print moves (units/s^2)
  7153. gcode_M201();
  7154. break;
  7155. #if 0 // Not used for Sprinter/grbl gen6
  7156. case 202: // M202
  7157. gcode_M202();
  7158. break;
  7159. #endif
  7160. case 203: // M203: Set max feedrate (units/sec)
  7161. gcode_M203();
  7162. break;
  7163. case 204: // M204: Set acceleration
  7164. gcode_M204();
  7165. break;
  7166. case 205: //M205: Set advanced settings
  7167. gcode_M205();
  7168. break;
  7169. case 206: // M206: Set home offsets
  7170. gcode_M206();
  7171. break;
  7172. #if ENABLED(DELTA)
  7173. case 665: // M665: Set delta configurations
  7174. gcode_M665();
  7175. break;
  7176. #endif
  7177. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  7178. case 666: // M666: Set delta or dual endstop adjustment
  7179. gcode_M666();
  7180. break;
  7181. #endif
  7182. #if ENABLED(FWRETRACT)
  7183. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  7184. gcode_M207();
  7185. break;
  7186. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  7187. gcode_M208();
  7188. break;
  7189. case 209: // M209: Turn Automatic Retract Detection on/off
  7190. gcode_M209();
  7191. break;
  7192. #endif // FWRETRACT
  7193. case 211: // M211: Enable, Disable, and/or Report software endstops
  7194. gcode_M211();
  7195. break;
  7196. #if HOTENDS > 1
  7197. case 218: // M218: Set a tool offset
  7198. gcode_M218();
  7199. break;
  7200. #endif
  7201. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  7202. gcode_M220();
  7203. break;
  7204. case 221: // M221: Set Flow Percentage
  7205. gcode_M221();
  7206. break;
  7207. case 226: // M226: Wait until a pin reaches a state
  7208. gcode_M226();
  7209. break;
  7210. #if HAS_SERVOS
  7211. case 280: // M280: Set servo position absolute
  7212. gcode_M280();
  7213. break;
  7214. #endif // HAS_SERVOS
  7215. #if HAS_BUZZER
  7216. case 300: // M300: Play beep tone
  7217. gcode_M300();
  7218. break;
  7219. #endif // HAS_BUZZER
  7220. #if ENABLED(PIDTEMP)
  7221. case 301: // M301: Set hotend PID parameters
  7222. gcode_M301();
  7223. break;
  7224. #endif // PIDTEMP
  7225. #if ENABLED(PIDTEMPBED)
  7226. case 304: // M304: Set bed PID parameters
  7227. gcode_M304();
  7228. break;
  7229. #endif // PIDTEMPBED
  7230. #if defined(CHDK) || HAS_PHOTOGRAPH
  7231. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  7232. gcode_M240();
  7233. break;
  7234. #endif // CHDK || PHOTOGRAPH_PIN
  7235. #if HAS_LCD_CONTRAST
  7236. case 250: // M250: Set LCD contrast
  7237. gcode_M250();
  7238. break;
  7239. #endif // HAS_LCD_CONTRAST
  7240. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7241. case 260: // M260: Send data to an i2c slave
  7242. gcode_M260();
  7243. break;
  7244. case 261: // M261: Request data from an i2c slave
  7245. gcode_M261();
  7246. break;
  7247. #endif // EXPERIMENTAL_I2CBUS
  7248. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7249. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  7250. gcode_M302();
  7251. break;
  7252. #endif // PREVENT_COLD_EXTRUSION
  7253. case 303: // M303: PID autotune
  7254. gcode_M303();
  7255. break;
  7256. #if ENABLED(MORGAN_SCARA)
  7257. case 360: // M360: SCARA Theta pos1
  7258. if (gcode_M360()) return;
  7259. break;
  7260. case 361: // M361: SCARA Theta pos2
  7261. if (gcode_M361()) return;
  7262. break;
  7263. case 362: // M362: SCARA Psi pos1
  7264. if (gcode_M362()) return;
  7265. break;
  7266. case 363: // M363: SCARA Psi pos2
  7267. if (gcode_M363()) return;
  7268. break;
  7269. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  7270. if (gcode_M364()) return;
  7271. break;
  7272. #endif // SCARA
  7273. case 400: // M400: Finish all moves
  7274. gcode_M400();
  7275. break;
  7276. #if HAS_BED_PROBE
  7277. case 401: // M401: Deploy probe
  7278. gcode_M401();
  7279. break;
  7280. case 402: // M402: Stow probe
  7281. gcode_M402();
  7282. break;
  7283. #endif // HAS_BED_PROBE
  7284. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7285. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  7286. gcode_M404();
  7287. break;
  7288. case 405: // M405: Turn on filament sensor for control
  7289. gcode_M405();
  7290. break;
  7291. case 406: // M406: Turn off filament sensor for control
  7292. gcode_M406();
  7293. break;
  7294. case 407: // M407: Display measured filament diameter
  7295. gcode_M407();
  7296. break;
  7297. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  7298. #if PLANNER_LEVELING
  7299. case 420: // M420: Enable/Disable Bed Leveling
  7300. gcode_M420();
  7301. break;
  7302. #endif
  7303. #if ENABLED(MESH_BED_LEVELING)
  7304. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  7305. gcode_M421();
  7306. break;
  7307. #endif
  7308. case 428: // M428: Apply current_position to home_offset
  7309. gcode_M428();
  7310. break;
  7311. case 500: // M500: Store settings in EEPROM
  7312. gcode_M500();
  7313. break;
  7314. case 501: // M501: Read settings from EEPROM
  7315. gcode_M501();
  7316. break;
  7317. case 502: // M502: Revert to default settings
  7318. gcode_M502();
  7319. break;
  7320. case 503: // M503: print settings currently in memory
  7321. gcode_M503();
  7322. break;
  7323. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7324. case 540: // M540: Set abort on endstop hit for SD printing
  7325. gcode_M540();
  7326. break;
  7327. #endif
  7328. #if HAS_BED_PROBE
  7329. case 851: // M851: Set Z Probe Z Offset
  7330. gcode_M851();
  7331. break;
  7332. #endif // HAS_BED_PROBE
  7333. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7334. case 600: // M600: Pause for filament change
  7335. gcode_M600();
  7336. break;
  7337. #endif // FILAMENT_CHANGE_FEATURE
  7338. #if ENABLED(DUAL_X_CARRIAGE)
  7339. case 605: // M605: Set Dual X Carriage movement mode
  7340. gcode_M605();
  7341. break;
  7342. #endif // DUAL_X_CARRIAGE
  7343. #if ENABLED(LIN_ADVANCE)
  7344. case 905: // M905: Set advance K factor.
  7345. gcode_M905();
  7346. break;
  7347. #endif
  7348. case 907: // M907: Set digital trimpot motor current using axis codes.
  7349. gcode_M907();
  7350. break;
  7351. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7352. case 908: // M908: Control digital trimpot directly.
  7353. gcode_M908();
  7354. break;
  7355. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7356. case 909: // M909: Print digipot/DAC current value
  7357. gcode_M909();
  7358. break;
  7359. case 910: // M910: Commit digipot/DAC value to external EEPROM
  7360. gcode_M910();
  7361. break;
  7362. #endif
  7363. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7364. #if HAS_MICROSTEPS
  7365. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7366. gcode_M350();
  7367. break;
  7368. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  7369. gcode_M351();
  7370. break;
  7371. #endif // HAS_MICROSTEPS
  7372. case 355: // M355 Turn case lights on/off
  7373. gcode_M355();
  7374. break;
  7375. case 999: // M999: Restart after being Stopped
  7376. gcode_M999();
  7377. break;
  7378. }
  7379. break;
  7380. case 'T':
  7381. gcode_T(codenum);
  7382. break;
  7383. default: code_is_good = false;
  7384. }
  7385. KEEPALIVE_STATE(NOT_BUSY);
  7386. ExitUnknownCommand:
  7387. // Still unknown command? Throw an error
  7388. if (!code_is_good) unknown_command_error();
  7389. ok_to_send();
  7390. }
  7391. /**
  7392. * Send a "Resend: nnn" message to the host to
  7393. * indicate that a command needs to be re-sent.
  7394. */
  7395. void FlushSerialRequestResend() {
  7396. //char command_queue[cmd_queue_index_r][100]="Resend:";
  7397. MYSERIAL.flush();
  7398. SERIAL_PROTOCOLPGM(MSG_RESEND);
  7399. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  7400. ok_to_send();
  7401. }
  7402. /**
  7403. * Send an "ok" message to the host, indicating
  7404. * that a command was successfully processed.
  7405. *
  7406. * If ADVANCED_OK is enabled also include:
  7407. * N<int> Line number of the command, if any
  7408. * P<int> Planner space remaining
  7409. * B<int> Block queue space remaining
  7410. */
  7411. void ok_to_send() {
  7412. refresh_cmd_timeout();
  7413. if (!send_ok[cmd_queue_index_r]) return;
  7414. SERIAL_PROTOCOLPGM(MSG_OK);
  7415. #if ENABLED(ADVANCED_OK)
  7416. char* p = command_queue[cmd_queue_index_r];
  7417. if (*p == 'N') {
  7418. SERIAL_PROTOCOL(' ');
  7419. SERIAL_ECHO(*p++);
  7420. while (NUMERIC_SIGNED(*p))
  7421. SERIAL_ECHO(*p++);
  7422. }
  7423. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  7424. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  7425. #endif
  7426. SERIAL_EOL;
  7427. }
  7428. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  7429. /**
  7430. * Constrain the given coordinates to the software endstops.
  7431. */
  7432. void clamp_to_software_endstops(float target[XYZ]) {
  7433. #if ENABLED(min_software_endstops)
  7434. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  7435. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  7436. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  7437. #endif
  7438. #if ENABLED(max_software_endstops)
  7439. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  7440. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  7441. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7442. #endif
  7443. }
  7444. #endif
  7445. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7446. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7447. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  7448. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  7449. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  7450. #define ABL_BG_GRID(X,Y) bed_level_grid_virt[X][Y]
  7451. #else
  7452. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  7453. #define ABL_BG_POINTS_X ABL_GRID_MAX_POINTS_X
  7454. #define ABL_BG_POINTS_Y ABL_GRID_MAX_POINTS_Y
  7455. #define ABL_BG_GRID(X,Y) bed_level_grid[X][Y]
  7456. #endif
  7457. // Get the Z adjustment for non-linear bed leveling
  7458. float bilinear_z_offset(float cartesian[XYZ]) {
  7459. // XY relative to the probed area
  7460. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  7461. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  7462. // Convert to grid box units
  7463. float ratio_x = x / ABL_BG_SPACING(X_AXIS),
  7464. ratio_y = y / ABL_BG_SPACING(Y_AXIS);
  7465. // Whole units for the grid line indices. Constrained within bounds.
  7466. const int gridx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1),
  7467. gridy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1),
  7468. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1),
  7469. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  7470. // Subtract whole to get the ratio within the grid box
  7471. ratio_x -= gridx; ratio_y -= gridy;
  7472. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  7473. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  7474. // Z at the box corners
  7475. const float z1 = ABL_BG_GRID(gridx, gridy), // left-front
  7476. z2 = ABL_BG_GRID(gridx, nexty), // left-back
  7477. z3 = ABL_BG_GRID(nextx, gridy), // right-front
  7478. z4 = ABL_BG_GRID(nextx, nexty), // right-back
  7479. // Bilinear interpolate
  7480. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  7481. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  7482. offset = L + ratio_x * (R - L);
  7483. /*
  7484. static float last_offset = 0;
  7485. if (fabs(last_offset - offset) > 0.2) {
  7486. SERIAL_ECHOPGM("Sudden Shift at ");
  7487. SERIAL_ECHOPAIR("x=", x);
  7488. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  7489. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  7490. SERIAL_ECHOPAIR(" y=", y);
  7491. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  7492. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  7493. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  7494. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  7495. SERIAL_ECHOPAIR(" z1=", z1);
  7496. SERIAL_ECHOPAIR(" z2=", z2);
  7497. SERIAL_ECHOPAIR(" z3=", z3);
  7498. SERIAL_ECHOLNPAIR(" z4=", z4);
  7499. SERIAL_ECHOPAIR(" L=", L);
  7500. SERIAL_ECHOPAIR(" R=", R);
  7501. SERIAL_ECHOLNPAIR(" offset=", offset);
  7502. }
  7503. last_offset = offset;
  7504. //*/
  7505. return offset;
  7506. }
  7507. #endif // AUTO_BED_LEVELING_BILINEAR
  7508. #if ENABLED(DELTA)
  7509. /**
  7510. * Recalculate factors used for delta kinematics whenever
  7511. * settings have been changed (e.g., by M665).
  7512. */
  7513. void recalc_delta_settings(float radius, float diagonal_rod) {
  7514. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  7515. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  7516. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  7517. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  7518. delta_tower3_x = 0.0; // back middle tower
  7519. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  7520. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  7521. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  7522. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  7523. }
  7524. #if ENABLED(DELTA_FAST_SQRT)
  7525. /**
  7526. * Fast inverse sqrt from Quake III Arena
  7527. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  7528. */
  7529. float Q_rsqrt(float number) {
  7530. long i;
  7531. float x2, y;
  7532. const float threehalfs = 1.5f;
  7533. x2 = number * 0.5f;
  7534. y = number;
  7535. i = * ( long * ) &y; // evil floating point bit level hacking
  7536. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  7537. y = * ( float * ) &i;
  7538. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  7539. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  7540. return y;
  7541. }
  7542. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  7543. #else
  7544. #define _SQRT(n) sqrt(n)
  7545. #endif
  7546. /**
  7547. * Delta Inverse Kinematics
  7548. *
  7549. * Calculate the tower positions for a given logical
  7550. * position, storing the result in the delta[] array.
  7551. *
  7552. * This is an expensive calculation, requiring 3 square
  7553. * roots per segmented linear move, and strains the limits
  7554. * of a Mega2560 with a Graphical Display.
  7555. *
  7556. * Suggested optimizations include:
  7557. *
  7558. * - Disable the home_offset (M206) and/or position_shift (G92)
  7559. * features to remove up to 12 float additions.
  7560. *
  7561. * - Use a fast-inverse-sqrt function and add the reciprocal.
  7562. * (see above)
  7563. */
  7564. // Macro to obtain the Z position of an individual tower
  7565. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  7566. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  7567. delta_tower##T##_x - raw[X_AXIS], \
  7568. delta_tower##T##_y - raw[Y_AXIS] \
  7569. ) \
  7570. )
  7571. #define DELTA_RAW_IK() do { \
  7572. delta[A_AXIS] = DELTA_Z(1); \
  7573. delta[B_AXIS] = DELTA_Z(2); \
  7574. delta[C_AXIS] = DELTA_Z(3); \
  7575. } while(0)
  7576. #define DELTA_LOGICAL_IK() do { \
  7577. const float raw[XYZ] = { \
  7578. RAW_X_POSITION(logical[X_AXIS]), \
  7579. RAW_Y_POSITION(logical[Y_AXIS]), \
  7580. RAW_Z_POSITION(logical[Z_AXIS]) \
  7581. }; \
  7582. DELTA_RAW_IK(); \
  7583. } while(0)
  7584. #define DELTA_DEBUG() do { \
  7585. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  7586. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  7587. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  7588. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  7589. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  7590. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  7591. } while(0)
  7592. void inverse_kinematics(const float logical[XYZ]) {
  7593. DELTA_LOGICAL_IK();
  7594. // DELTA_DEBUG();
  7595. }
  7596. /**
  7597. * Calculate the highest Z position where the
  7598. * effector has the full range of XY motion.
  7599. */
  7600. float delta_safe_distance_from_top() {
  7601. float cartesian[XYZ] = {
  7602. LOGICAL_X_POSITION(0),
  7603. LOGICAL_Y_POSITION(0),
  7604. LOGICAL_Z_POSITION(0)
  7605. };
  7606. inverse_kinematics(cartesian);
  7607. float distance = delta[A_AXIS];
  7608. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  7609. inverse_kinematics(cartesian);
  7610. return abs(distance - delta[A_AXIS]);
  7611. }
  7612. /**
  7613. * Delta Forward Kinematics
  7614. *
  7615. * See the Wikipedia article "Trilateration"
  7616. * https://en.wikipedia.org/wiki/Trilateration
  7617. *
  7618. * Establish a new coordinate system in the plane of the
  7619. * three carriage points. This system has its origin at
  7620. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  7621. * plane with a Z component of zero.
  7622. * We will define unit vectors in this coordinate system
  7623. * in our original coordinate system. Then when we calculate
  7624. * the Xnew, Ynew and Znew values, we can translate back into
  7625. * the original system by moving along those unit vectors
  7626. * by the corresponding values.
  7627. *
  7628. * Variable names matched to Marlin, c-version, and avoid the
  7629. * use of any vector library.
  7630. *
  7631. * by Andreas Hardtung 2016-06-07
  7632. * based on a Java function from "Delta Robot Kinematics V3"
  7633. * by Steve Graves
  7634. *
  7635. * The result is stored in the cartes[] array.
  7636. */
  7637. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  7638. // Create a vector in old coordinates along x axis of new coordinate
  7639. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  7640. // Get the Magnitude of vector.
  7641. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  7642. // Create unit vector by dividing by magnitude.
  7643. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  7644. // Get the vector from the origin of the new system to the third point.
  7645. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  7646. // Use the dot product to find the component of this vector on the X axis.
  7647. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  7648. // Create a vector along the x axis that represents the x component of p13.
  7649. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  7650. // Subtract the X component from the original vector leaving only Y. We use the
  7651. // variable that will be the unit vector after we scale it.
  7652. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  7653. // The magnitude of Y component
  7654. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  7655. // Convert to a unit vector
  7656. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  7657. // The cross product of the unit x and y is the unit z
  7658. // float[] ez = vectorCrossProd(ex, ey);
  7659. float ez[3] = {
  7660. ex[1] * ey[2] - ex[2] * ey[1],
  7661. ex[2] * ey[0] - ex[0] * ey[2],
  7662. ex[0] * ey[1] - ex[1] * ey[0]
  7663. };
  7664. // We now have the d, i and j values defined in Wikipedia.
  7665. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  7666. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  7667. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  7668. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  7669. // Start from the origin of the old coordinates and add vectors in the
  7670. // old coords that represent the Xnew, Ynew and Znew to find the point
  7671. // in the old system.
  7672. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  7673. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  7674. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  7675. }
  7676. void forward_kinematics_DELTA(float point[ABC]) {
  7677. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  7678. }
  7679. #endif // DELTA
  7680. /**
  7681. * Get the stepper positions in the cartes[] array.
  7682. * Forward kinematics are applied for DELTA and SCARA.
  7683. *
  7684. * The result is in the current coordinate space with
  7685. * leveling applied. The coordinates need to be run through
  7686. * unapply_leveling to obtain the "ideal" coordinates
  7687. * suitable for current_position, etc.
  7688. */
  7689. void get_cartesian_from_steppers() {
  7690. #if ENABLED(DELTA)
  7691. forward_kinematics_DELTA(
  7692. stepper.get_axis_position_mm(A_AXIS),
  7693. stepper.get_axis_position_mm(B_AXIS),
  7694. stepper.get_axis_position_mm(C_AXIS)
  7695. );
  7696. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7697. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7698. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  7699. #elif IS_SCARA
  7700. forward_kinematics_SCARA(
  7701. stepper.get_axis_position_degrees(A_AXIS),
  7702. stepper.get_axis_position_degrees(B_AXIS)
  7703. );
  7704. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7705. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7706. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7707. #else
  7708. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  7709. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  7710. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7711. #endif
  7712. }
  7713. /**
  7714. * Set the current_position for an axis based on
  7715. * the stepper positions, removing any leveling that
  7716. * may have been applied.
  7717. */
  7718. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  7719. get_cartesian_from_steppers();
  7720. #if PLANNER_LEVELING
  7721. planner.unapply_leveling(cartes);
  7722. #endif
  7723. if (axis == ALL_AXES)
  7724. memcpy(current_position, cartes, sizeof(cartes));
  7725. else
  7726. current_position[axis] = cartes[axis];
  7727. }
  7728. #if ENABLED(MESH_BED_LEVELING)
  7729. /**
  7730. * Prepare a mesh-leveled linear move in a Cartesian setup,
  7731. * splitting the move where it crosses mesh borders.
  7732. */
  7733. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  7734. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  7735. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  7736. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  7737. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  7738. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  7739. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  7740. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  7741. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  7742. if (cx1 == cx2 && cy1 == cy2) {
  7743. // Start and end on same mesh square
  7744. line_to_destination(fr_mm_s);
  7745. set_current_to_destination();
  7746. return;
  7747. }
  7748. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  7749. float normalized_dist, end[XYZE];
  7750. // Split at the left/front border of the right/top square
  7751. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  7752. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  7753. memcpy(end, destination, sizeof(end));
  7754. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  7755. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  7756. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  7757. CBI(x_splits, gcx);
  7758. }
  7759. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  7760. memcpy(end, destination, sizeof(end));
  7761. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  7762. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  7763. destination[X_AXIS] = MBL_SEGMENT_END(X);
  7764. CBI(y_splits, gcy);
  7765. }
  7766. else {
  7767. // Already split on a border
  7768. line_to_destination(fr_mm_s);
  7769. set_current_to_destination();
  7770. return;
  7771. }
  7772. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  7773. destination[E_AXIS] = MBL_SEGMENT_END(E);
  7774. // Do the split and look for more borders
  7775. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7776. // Restore destination from stack
  7777. memcpy(destination, end, sizeof(end));
  7778. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7779. }
  7780. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  7781. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / ABL_BG_SPACING(A##_AXIS))
  7782. /**
  7783. * Prepare a bilinear-leveled linear move on Cartesian,
  7784. * splitting the move where it crosses grid borders.
  7785. */
  7786. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  7787. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  7788. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  7789. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  7790. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  7791. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  7792. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  7793. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  7794. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  7795. if (cx1 == cx2 && cy1 == cy2) {
  7796. // Start and end on same mesh square
  7797. line_to_destination(fr_mm_s);
  7798. set_current_to_destination();
  7799. return;
  7800. }
  7801. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  7802. float normalized_dist, end[XYZE];
  7803. // Split at the left/front border of the right/top square
  7804. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  7805. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  7806. memcpy(end, destination, sizeof(end));
  7807. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  7808. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  7809. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  7810. CBI(x_splits, gcx);
  7811. }
  7812. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  7813. memcpy(end, destination, sizeof(end));
  7814. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  7815. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  7816. destination[X_AXIS] = LINE_SEGMENT_END(X);
  7817. CBI(y_splits, gcy);
  7818. }
  7819. else {
  7820. // Already split on a border
  7821. line_to_destination(fr_mm_s);
  7822. set_current_to_destination();
  7823. return;
  7824. }
  7825. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  7826. destination[E_AXIS] = LINE_SEGMENT_END(E);
  7827. // Do the split and look for more borders
  7828. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  7829. // Restore destination from stack
  7830. memcpy(destination, end, sizeof(end));
  7831. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  7832. }
  7833. #endif // AUTO_BED_LEVELING_BILINEAR
  7834. #if IS_KINEMATIC
  7835. /**
  7836. * Prepare a linear move in a DELTA or SCARA setup.
  7837. *
  7838. * This calls planner.buffer_line several times, adding
  7839. * small incremental moves for DELTA or SCARA.
  7840. */
  7841. inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
  7842. // Get the top feedrate of the move in the XY plane
  7843. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  7844. // If the move is only in Z/E don't split up the move
  7845. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  7846. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  7847. return true;
  7848. }
  7849. // Get the cartesian distances moved in XYZE
  7850. float difference[NUM_AXIS];
  7851. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  7852. // Get the linear distance in XYZ
  7853. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  7854. // If the move is very short, check the E move distance
  7855. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  7856. // No E move either? Game over.
  7857. if (UNEAR_ZERO(cartesian_mm)) return false;
  7858. // Minimum number of seconds to move the given distance
  7859. float seconds = cartesian_mm / _feedrate_mm_s;
  7860. // The number of segments-per-second times the duration
  7861. // gives the number of segments
  7862. uint16_t segments = delta_segments_per_second * seconds;
  7863. // For SCARA minimum segment size is 0.5mm
  7864. #if IS_SCARA
  7865. NOMORE(segments, cartesian_mm * 2);
  7866. #endif
  7867. // At least one segment is required
  7868. NOLESS(segments, 1);
  7869. // The approximate length of each segment
  7870. float segment_distance[XYZE] = {
  7871. difference[X_AXIS] / segments,
  7872. difference[Y_AXIS] / segments,
  7873. difference[Z_AXIS] / segments,
  7874. difference[E_AXIS] / segments
  7875. };
  7876. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  7877. // SERIAL_ECHOPAIR(" seconds=", seconds);
  7878. // SERIAL_ECHOLNPAIR(" segments=", segments);
  7879. // Drop one segment so the last move is to the exact target.
  7880. // If there's only 1 segment, loops will be skipped entirely.
  7881. --segments;
  7882. // Using "raw" coordinates saves 6 float subtractions
  7883. // per segment, saving valuable CPU cycles
  7884. #if ENABLED(USE_RAW_KINEMATICS)
  7885. // Get the raw current position as starting point
  7886. float raw[XYZE] = {
  7887. RAW_CURRENT_POSITION(X_AXIS),
  7888. RAW_CURRENT_POSITION(Y_AXIS),
  7889. RAW_CURRENT_POSITION(Z_AXIS),
  7890. current_position[E_AXIS]
  7891. };
  7892. #define DELTA_VAR raw
  7893. // Delta can inline its kinematics
  7894. #if ENABLED(DELTA)
  7895. #define DELTA_IK() DELTA_RAW_IK()
  7896. #else
  7897. #define DELTA_IK() inverse_kinematics(raw)
  7898. #endif
  7899. #else
  7900. // Get the logical current position as starting point
  7901. float logical[XYZE];
  7902. memcpy(logical, current_position, sizeof(logical));
  7903. #define DELTA_VAR logical
  7904. // Delta can inline its kinematics
  7905. #if ENABLED(DELTA)
  7906. #define DELTA_IK() DELTA_LOGICAL_IK()
  7907. #else
  7908. #define DELTA_IK() inverse_kinematics(logical)
  7909. #endif
  7910. #endif
  7911. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  7912. // Only interpolate XYZ. Advance E normally.
  7913. #define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
  7914. // Get the starting delta if interpolation is possible
  7915. if (segments >= 2) {
  7916. DELTA_IK();
  7917. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7918. }
  7919. // Loop using decrement
  7920. for (uint16_t s = segments + 1; --s;) {
  7921. // Are there at least 2 moves left?
  7922. if (s >= 2) {
  7923. // Save the previous delta for interpolation
  7924. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  7925. // Get the delta 2 segments ahead (rather than the next)
  7926. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  7927. // Advance E normally
  7928. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7929. // Get the exact delta for the move after this
  7930. DELTA_IK();
  7931. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7932. // Move to the interpolated delta position first
  7933. planner.buffer_line(
  7934. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  7935. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  7936. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  7937. DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
  7938. );
  7939. // Advance E once more for the next move
  7940. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7941. // Do an extra decrement of the loop
  7942. --s;
  7943. }
  7944. else {
  7945. // Get the last segment delta. (Used when segments is odd)
  7946. DELTA_NEXT(segment_distance[i]);
  7947. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7948. DELTA_IK();
  7949. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7950. }
  7951. // Move to the non-interpolated position
  7952. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7953. }
  7954. #else
  7955. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
  7956. // For non-interpolated delta calculate every segment
  7957. for (uint16_t s = segments + 1; --s;) {
  7958. DELTA_NEXT(segment_distance[i]);
  7959. DELTA_IK();
  7960. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7961. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7962. }
  7963. #endif
  7964. // Since segment_distance is only approximate,
  7965. // the final move must be to the exact destination.
  7966. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  7967. return true;
  7968. }
  7969. #else // !IS_KINEMATIC
  7970. /**
  7971. * Prepare a linear move in a Cartesian setup.
  7972. * If Mesh Bed Leveling is enabled, perform a mesh move.
  7973. */
  7974. inline bool prepare_move_to_destination_cartesian() {
  7975. // Do not use feedrate_percentage for E or Z only moves
  7976. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  7977. line_to_destination();
  7978. }
  7979. else {
  7980. #if ENABLED(MESH_BED_LEVELING)
  7981. if (mbl.active()) {
  7982. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7983. return false;
  7984. }
  7985. else
  7986. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7987. if (planner.abl_enabled) {
  7988. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7989. return false;
  7990. }
  7991. else
  7992. #endif
  7993. line_to_destination(MMS_SCALED(feedrate_mm_s));
  7994. }
  7995. return true;
  7996. }
  7997. #endif // !IS_KINEMATIC
  7998. #if ENABLED(DUAL_X_CARRIAGE)
  7999. /**
  8000. * Prepare a linear move in a dual X axis setup
  8001. */
  8002. inline bool prepare_move_to_destination_dualx() {
  8003. if (active_extruder_parked) {
  8004. switch (dual_x_carriage_mode) {
  8005. case DXC_FULL_CONTROL_MODE:
  8006. break;
  8007. case DXC_AUTO_PARK_MODE:
  8008. if (current_position[E_AXIS] == destination[E_AXIS]) {
  8009. // This is a travel move (with no extrusion)
  8010. // Skip it, but keep track of the current position
  8011. // (so it can be used as the start of the next non-travel move)
  8012. if (delayed_move_time != 0xFFFFFFFFUL) {
  8013. set_current_to_destination();
  8014. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  8015. delayed_move_time = millis();
  8016. return false;
  8017. }
  8018. }
  8019. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  8020. for (uint8_t i = 0; i < 3; i++)
  8021. planner.buffer_line(
  8022. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  8023. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  8024. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  8025. current_position[E_AXIS],
  8026. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  8027. active_extruder
  8028. );
  8029. delayed_move_time = 0;
  8030. active_extruder_parked = false;
  8031. break;
  8032. case DXC_DUPLICATION_MODE:
  8033. if (active_extruder == 0) {
  8034. // move duplicate extruder into correct duplication position.
  8035. planner.set_position_mm(
  8036. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  8037. current_position[Y_AXIS],
  8038. current_position[Z_AXIS],
  8039. current_position[E_AXIS]
  8040. );
  8041. planner.buffer_line(
  8042. current_position[X_AXIS] + duplicate_extruder_x_offset,
  8043. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  8044. planner.max_feedrate_mm_s[X_AXIS], 1
  8045. );
  8046. SYNC_PLAN_POSITION_KINEMATIC();
  8047. stepper.synchronize();
  8048. extruder_duplication_enabled = true;
  8049. active_extruder_parked = false;
  8050. }
  8051. break;
  8052. }
  8053. }
  8054. return true;
  8055. }
  8056. #endif // DUAL_X_CARRIAGE
  8057. /**
  8058. * Prepare a single move and get ready for the next one
  8059. *
  8060. * This may result in several calls to planner.buffer_line to
  8061. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  8062. */
  8063. void prepare_move_to_destination() {
  8064. clamp_to_software_endstops(destination);
  8065. refresh_cmd_timeout();
  8066. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8067. if (!DEBUGGING(DRYRUN)) {
  8068. if (destination[E_AXIS] != current_position[E_AXIS]) {
  8069. if (thermalManager.tooColdToExtrude(active_extruder)) {
  8070. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8071. SERIAL_ECHO_START;
  8072. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  8073. }
  8074. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  8075. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  8076. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8077. SERIAL_ECHO_START;
  8078. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  8079. }
  8080. #endif
  8081. }
  8082. }
  8083. #endif
  8084. #if IS_KINEMATIC
  8085. if (!prepare_kinematic_move_to(destination)) return;
  8086. #else
  8087. #if ENABLED(DUAL_X_CARRIAGE)
  8088. if (!prepare_move_to_destination_dualx()) return;
  8089. #endif
  8090. if (!prepare_move_to_destination_cartesian()) return;
  8091. #endif
  8092. set_current_to_destination();
  8093. }
  8094. #if ENABLED(ARC_SUPPORT)
  8095. /**
  8096. * Plan an arc in 2 dimensions
  8097. *
  8098. * The arc is approximated by generating many small linear segments.
  8099. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  8100. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  8101. * larger segments will tend to be more efficient. Your slicer should have
  8102. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  8103. */
  8104. void plan_arc(
  8105. float logical[NUM_AXIS], // Destination position
  8106. float* offset, // Center of rotation relative to current_position
  8107. uint8_t clockwise // Clockwise?
  8108. ) {
  8109. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  8110. center_X = current_position[X_AXIS] + offset[X_AXIS],
  8111. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  8112. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  8113. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  8114. r_X = -offset[X_AXIS], // Radius vector from center to current location
  8115. r_Y = -offset[Y_AXIS],
  8116. rt_X = logical[X_AXIS] - center_X,
  8117. rt_Y = logical[Y_AXIS] - center_Y;
  8118. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  8119. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  8120. if (angular_travel < 0) angular_travel += RADIANS(360);
  8121. if (clockwise) angular_travel -= RADIANS(360);
  8122. // Make a circle if the angular rotation is 0
  8123. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  8124. angular_travel += RADIANS(360);
  8125. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  8126. if (mm_of_travel < 0.001) return;
  8127. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  8128. if (segments == 0) segments = 1;
  8129. /**
  8130. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  8131. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  8132. * r_T = [cos(phi) -sin(phi);
  8133. * sin(phi) cos(phi)] * r ;
  8134. *
  8135. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  8136. * defined from the circle center to the initial position. Each line segment is formed by successive
  8137. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  8138. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  8139. * all double numbers are single precision on the Arduino. (True double precision will not have
  8140. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  8141. * tool precision in some cases. Therefore, arc path correction is implemented.
  8142. *
  8143. * Small angle approximation may be used to reduce computation overhead further. This approximation
  8144. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  8145. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  8146. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  8147. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  8148. * issue for CNC machines with the single precision Arduino calculations.
  8149. *
  8150. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  8151. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  8152. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  8153. * This is important when there are successive arc motions.
  8154. */
  8155. // Vector rotation matrix values
  8156. float arc_target[XYZE],
  8157. theta_per_segment = angular_travel / segments,
  8158. linear_per_segment = linear_travel / segments,
  8159. extruder_per_segment = extruder_travel / segments,
  8160. sin_T = theta_per_segment,
  8161. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  8162. // Initialize the linear axis
  8163. arc_target[Z_AXIS] = current_position[Z_AXIS];
  8164. // Initialize the extruder axis
  8165. arc_target[E_AXIS] = current_position[E_AXIS];
  8166. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  8167. millis_t next_idle_ms = millis() + 200UL;
  8168. int8_t count = 0;
  8169. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  8170. thermalManager.manage_heater();
  8171. if (ELAPSED(millis(), next_idle_ms)) {
  8172. next_idle_ms = millis() + 200UL;
  8173. idle();
  8174. }
  8175. if (++count < N_ARC_CORRECTION) {
  8176. // Apply vector rotation matrix to previous r_X / 1
  8177. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  8178. r_X = r_X * cos_T - r_Y * sin_T;
  8179. r_Y = r_new_Y;
  8180. }
  8181. else {
  8182. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  8183. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  8184. // To reduce stuttering, the sin and cos could be computed at different times.
  8185. // For now, compute both at the same time.
  8186. float cos_Ti = cos(i * theta_per_segment),
  8187. sin_Ti = sin(i * theta_per_segment);
  8188. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  8189. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  8190. count = 0;
  8191. }
  8192. // Update arc_target location
  8193. arc_target[X_AXIS] = center_X + r_X;
  8194. arc_target[Y_AXIS] = center_Y + r_Y;
  8195. arc_target[Z_AXIS] += linear_per_segment;
  8196. arc_target[E_AXIS] += extruder_per_segment;
  8197. clamp_to_software_endstops(arc_target);
  8198. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  8199. }
  8200. // Ensure last segment arrives at target location.
  8201. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  8202. // As far as the parser is concerned, the position is now == target. In reality the
  8203. // motion control system might still be processing the action and the real tool position
  8204. // in any intermediate location.
  8205. set_current_to_destination();
  8206. }
  8207. #endif
  8208. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8209. void plan_cubic_move(const float offset[4]) {
  8210. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  8211. // As far as the parser is concerned, the position is now == destination. In reality the
  8212. // motion control system might still be processing the action and the real tool position
  8213. // in any intermediate location.
  8214. set_current_to_destination();
  8215. }
  8216. #endif // BEZIER_CURVE_SUPPORT
  8217. #if HAS_CONTROLLERFAN
  8218. void controllerFan() {
  8219. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  8220. static millis_t nextMotorCheck = 0; // Last time the state was checked
  8221. millis_t ms = millis();
  8222. if (ELAPSED(ms, nextMotorCheck)) {
  8223. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  8224. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  8225. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  8226. #if E_STEPPERS > 1
  8227. || E1_ENABLE_READ == E_ENABLE_ON
  8228. #if HAS_X2_ENABLE
  8229. || X2_ENABLE_READ == X_ENABLE_ON
  8230. #endif
  8231. #if E_STEPPERS > 2
  8232. || E2_ENABLE_READ == E_ENABLE_ON
  8233. #if E_STEPPERS > 3
  8234. || E3_ENABLE_READ == E_ENABLE_ON
  8235. #endif
  8236. #endif
  8237. #endif
  8238. ) {
  8239. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  8240. }
  8241. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  8242. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  8243. // allows digital or PWM fan output to be used (see M42 handling)
  8244. digitalWrite(CONTROLLERFAN_PIN, speed);
  8245. analogWrite(CONTROLLERFAN_PIN, speed);
  8246. }
  8247. }
  8248. #endif // HAS_CONTROLLERFAN
  8249. #if ENABLED(MORGAN_SCARA)
  8250. /**
  8251. * Morgan SCARA Forward Kinematics. Results in cartes[].
  8252. * Maths and first version by QHARLEY.
  8253. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8254. */
  8255. void forward_kinematics_SCARA(const float &a, const float &b) {
  8256. float a_sin = sin(RADIANS(a)) * L1,
  8257. a_cos = cos(RADIANS(a)) * L1,
  8258. b_sin = sin(RADIANS(b)) * L2,
  8259. b_cos = cos(RADIANS(b)) * L2;
  8260. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  8261. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  8262. /*
  8263. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  8264. SERIAL_ECHOPAIR(" b=", b);
  8265. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  8266. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  8267. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  8268. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  8269. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  8270. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  8271. //*/
  8272. }
  8273. /**
  8274. * Morgan SCARA Inverse Kinematics. Results in delta[].
  8275. *
  8276. * See http://forums.reprap.org/read.php?185,283327
  8277. *
  8278. * Maths and first version by QHARLEY.
  8279. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8280. */
  8281. void inverse_kinematics(const float logical[XYZ]) {
  8282. static float C2, S2, SK1, SK2, THETA, PSI;
  8283. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  8284. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  8285. if (L1 == L2)
  8286. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  8287. else
  8288. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  8289. S2 = sqrt(sq(C2) - 1);
  8290. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  8291. SK1 = L1 + L2 * C2;
  8292. // Rotated Arm2 gives the distance from Arm1 to Arm2
  8293. SK2 = L2 * S2;
  8294. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  8295. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  8296. // Angle of Arm2
  8297. PSI = atan2(S2, C2);
  8298. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  8299. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  8300. delta[C_AXIS] = logical[Z_AXIS];
  8301. /*
  8302. DEBUG_POS("SCARA IK", logical);
  8303. DEBUG_POS("SCARA IK", delta);
  8304. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  8305. SERIAL_ECHOPAIR(",", sy);
  8306. SERIAL_ECHOPAIR(" C2=", C2);
  8307. SERIAL_ECHOPAIR(" S2=", S2);
  8308. SERIAL_ECHOPAIR(" Theta=", THETA);
  8309. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  8310. //*/
  8311. }
  8312. #endif // MORGAN_SCARA
  8313. #if ENABLED(TEMP_STAT_LEDS)
  8314. static bool red_led = false;
  8315. static millis_t next_status_led_update_ms = 0;
  8316. void handle_status_leds(void) {
  8317. if (ELAPSED(millis(), next_status_led_update_ms)) {
  8318. next_status_led_update_ms += 500; // Update every 0.5s
  8319. float max_temp = 0.0;
  8320. #if HAS_TEMP_BED
  8321. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  8322. #endif
  8323. HOTEND_LOOP() {
  8324. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  8325. }
  8326. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  8327. if (new_led != red_led) {
  8328. red_led = new_led;
  8329. #if PIN_EXISTS(STAT_LED_RED)
  8330. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  8331. #if PIN_EXISTS(STAT_LED_BLUE)
  8332. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  8333. #endif
  8334. #else
  8335. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  8336. #endif
  8337. }
  8338. }
  8339. }
  8340. #endif
  8341. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8342. void handle_filament_runout() {
  8343. if (!filament_ran_out) {
  8344. filament_ran_out = true;
  8345. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  8346. stepper.synchronize();
  8347. }
  8348. }
  8349. #endif // FILAMENT_RUNOUT_SENSOR
  8350. #if ENABLED(FAST_PWM_FAN)
  8351. void setPwmFrequency(uint8_t pin, int val) {
  8352. val &= 0x07;
  8353. switch (digitalPinToTimer(pin)) {
  8354. #if defined(TCCR0A)
  8355. case TIMER0A:
  8356. case TIMER0B:
  8357. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8358. // TCCR0B |= val;
  8359. break;
  8360. #endif
  8361. #if defined(TCCR1A)
  8362. case TIMER1A:
  8363. case TIMER1B:
  8364. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8365. // TCCR1B |= val;
  8366. break;
  8367. #endif
  8368. #if defined(TCCR2)
  8369. case TIMER2:
  8370. case TIMER2:
  8371. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8372. TCCR2 |= val;
  8373. break;
  8374. #endif
  8375. #if defined(TCCR2A)
  8376. case TIMER2A:
  8377. case TIMER2B:
  8378. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8379. TCCR2B |= val;
  8380. break;
  8381. #endif
  8382. #if defined(TCCR3A)
  8383. case TIMER3A:
  8384. case TIMER3B:
  8385. case TIMER3C:
  8386. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8387. TCCR3B |= val;
  8388. break;
  8389. #endif
  8390. #if defined(TCCR4A)
  8391. case TIMER4A:
  8392. case TIMER4B:
  8393. case TIMER4C:
  8394. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8395. TCCR4B |= val;
  8396. break;
  8397. #endif
  8398. #if defined(TCCR5A)
  8399. case TIMER5A:
  8400. case TIMER5B:
  8401. case TIMER5C:
  8402. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8403. TCCR5B |= val;
  8404. break;
  8405. #endif
  8406. }
  8407. }
  8408. #endif // FAST_PWM_FAN
  8409. float calculate_volumetric_multiplier(float diameter) {
  8410. if (!volumetric_enabled || diameter == 0) return 1.0;
  8411. return 1.0 / (M_PI * diameter * 0.5 * diameter * 0.5);
  8412. }
  8413. void calculate_volumetric_multipliers() {
  8414. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  8415. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  8416. }
  8417. void enable_all_steppers() {
  8418. enable_x();
  8419. enable_y();
  8420. enable_z();
  8421. enable_e0();
  8422. enable_e1();
  8423. enable_e2();
  8424. enable_e3();
  8425. }
  8426. void disable_all_steppers() {
  8427. disable_x();
  8428. disable_y();
  8429. disable_z();
  8430. disable_e0();
  8431. disable_e1();
  8432. disable_e2();
  8433. disable_e3();
  8434. }
  8435. /**
  8436. * Manage several activities:
  8437. * - Check for Filament Runout
  8438. * - Keep the command buffer full
  8439. * - Check for maximum inactive time between commands
  8440. * - Check for maximum inactive time between stepper commands
  8441. * - Check if pin CHDK needs to go LOW
  8442. * - Check for KILL button held down
  8443. * - Check for HOME button held down
  8444. * - Check if cooling fan needs to be switched on
  8445. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  8446. */
  8447. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  8448. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8449. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  8450. handle_filament_runout();
  8451. #endif
  8452. if (commands_in_queue < BUFSIZE) get_available_commands();
  8453. millis_t ms = millis();
  8454. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  8455. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  8456. && !ignore_stepper_queue && !planner.blocks_queued()) {
  8457. #if ENABLED(DISABLE_INACTIVE_X)
  8458. disable_x();
  8459. #endif
  8460. #if ENABLED(DISABLE_INACTIVE_Y)
  8461. disable_y();
  8462. #endif
  8463. #if ENABLED(DISABLE_INACTIVE_Z)
  8464. disable_z();
  8465. #endif
  8466. #if ENABLED(DISABLE_INACTIVE_E)
  8467. disable_e0();
  8468. disable_e1();
  8469. disable_e2();
  8470. disable_e3();
  8471. #endif
  8472. }
  8473. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  8474. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  8475. chdkActive = false;
  8476. WRITE(CHDK, LOW);
  8477. }
  8478. #endif
  8479. #if HAS_KILL
  8480. // Check if the kill button was pressed and wait just in case it was an accidental
  8481. // key kill key press
  8482. // -------------------------------------------------------------------------------
  8483. static int killCount = 0; // make the inactivity button a bit less responsive
  8484. const int KILL_DELAY = 750;
  8485. if (!READ(KILL_PIN))
  8486. killCount++;
  8487. else if (killCount > 0)
  8488. killCount--;
  8489. // Exceeded threshold and we can confirm that it was not accidental
  8490. // KILL the machine
  8491. // ----------------------------------------------------------------
  8492. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  8493. #endif
  8494. #if HAS_HOME
  8495. // Check to see if we have to home, use poor man's debouncer
  8496. // ---------------------------------------------------------
  8497. static int homeDebounceCount = 0; // poor man's debouncing count
  8498. const int HOME_DEBOUNCE_DELAY = 2500;
  8499. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  8500. if (!homeDebounceCount) {
  8501. enqueue_and_echo_commands_P(PSTR("G28"));
  8502. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  8503. }
  8504. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  8505. homeDebounceCount++;
  8506. else
  8507. homeDebounceCount = 0;
  8508. }
  8509. #endif
  8510. #if HAS_CONTROLLERFAN
  8511. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  8512. #endif
  8513. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  8514. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  8515. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  8516. bool oldstatus;
  8517. #if ENABLED(SWITCHING_EXTRUDER)
  8518. oldstatus = E0_ENABLE_READ;
  8519. enable_e0();
  8520. #else // !SWITCHING_EXTRUDER
  8521. switch (active_extruder) {
  8522. case 0:
  8523. oldstatus = E0_ENABLE_READ;
  8524. enable_e0();
  8525. break;
  8526. #if E_STEPPERS > 1
  8527. case 1:
  8528. oldstatus = E1_ENABLE_READ;
  8529. enable_e1();
  8530. break;
  8531. #if E_STEPPERS > 2
  8532. case 2:
  8533. oldstatus = E2_ENABLE_READ;
  8534. enable_e2();
  8535. break;
  8536. #if E_STEPPERS > 3
  8537. case 3:
  8538. oldstatus = E3_ENABLE_READ;
  8539. enable_e3();
  8540. break;
  8541. #endif
  8542. #endif
  8543. #endif
  8544. }
  8545. #endif // !SWITCHING_EXTRUDER
  8546. previous_cmd_ms = ms; // refresh_cmd_timeout()
  8547. #if IS_KINEMATIC
  8548. inverse_kinematics(current_position);
  8549. ADJUST_DELTA(current_position);
  8550. planner.buffer_line(
  8551. delta[A_AXIS], delta[B_AXIS], delta[C_AXIS],
  8552. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  8553. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  8554. );
  8555. #else
  8556. planner.buffer_line(
  8557. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  8558. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  8559. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  8560. );
  8561. #endif
  8562. stepper.synchronize();
  8563. planner.set_e_position_mm(current_position[E_AXIS]);
  8564. #if ENABLED(SWITCHING_EXTRUDER)
  8565. E0_ENABLE_WRITE(oldstatus);
  8566. #else
  8567. switch (active_extruder) {
  8568. case 0:
  8569. E0_ENABLE_WRITE(oldstatus);
  8570. break;
  8571. #if E_STEPPERS > 1
  8572. case 1:
  8573. E1_ENABLE_WRITE(oldstatus);
  8574. break;
  8575. #if E_STEPPERS > 2
  8576. case 2:
  8577. E2_ENABLE_WRITE(oldstatus);
  8578. break;
  8579. #if E_STEPPERS > 3
  8580. case 3:
  8581. E3_ENABLE_WRITE(oldstatus);
  8582. break;
  8583. #endif
  8584. #endif
  8585. #endif
  8586. }
  8587. #endif // !SWITCHING_EXTRUDER
  8588. }
  8589. #endif // EXTRUDER_RUNOUT_PREVENT
  8590. #if ENABLED(DUAL_X_CARRIAGE)
  8591. // handle delayed move timeout
  8592. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  8593. // travel moves have been received so enact them
  8594. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  8595. set_destination_to_current();
  8596. prepare_move_to_destination();
  8597. }
  8598. #endif
  8599. #if ENABLED(TEMP_STAT_LEDS)
  8600. handle_status_leds();
  8601. #endif
  8602. planner.check_axes_activity();
  8603. }
  8604. /**
  8605. * Standard idle routine keeps the machine alive
  8606. */
  8607. void idle(
  8608. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8609. bool no_stepper_sleep/*=false*/
  8610. #endif
  8611. ) {
  8612. lcd_update();
  8613. host_keepalive();
  8614. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8615. auto_report_temperatures();
  8616. #endif
  8617. manage_inactivity(
  8618. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8619. no_stepper_sleep
  8620. #endif
  8621. );
  8622. thermalManager.manage_heater();
  8623. #if ENABLED(PRINTCOUNTER)
  8624. print_job_timer.tick();
  8625. #endif
  8626. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  8627. buzzer.tick();
  8628. #endif
  8629. }
  8630. /**
  8631. * Kill all activity and lock the machine.
  8632. * After this the machine will need to be reset.
  8633. */
  8634. void kill(const char* lcd_msg) {
  8635. SERIAL_ERROR_START;
  8636. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  8637. #if ENABLED(ULTRA_LCD)
  8638. kill_screen(lcd_msg);
  8639. #else
  8640. UNUSED(lcd_msg);
  8641. #endif
  8642. delay(500); // Wait a short time
  8643. cli(); // Stop interrupts
  8644. thermalManager.disable_all_heaters();
  8645. disable_all_steppers();
  8646. #if HAS_POWER_SWITCH
  8647. SET_INPUT(PS_ON_PIN);
  8648. #endif
  8649. suicide();
  8650. while (1) {
  8651. #if ENABLED(USE_WATCHDOG)
  8652. watchdog_reset();
  8653. #endif
  8654. } // Wait for reset
  8655. }
  8656. /**
  8657. * Turn off heaters and stop the print in progress
  8658. * After a stop the machine may be resumed with M999
  8659. */
  8660. void stop() {
  8661. thermalManager.disable_all_heaters();
  8662. if (IsRunning()) {
  8663. Running = false;
  8664. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8665. SERIAL_ERROR_START;
  8666. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  8667. LCD_MESSAGEPGM(MSG_STOPPED);
  8668. }
  8669. }
  8670. /**
  8671. * Marlin entry-point: Set up before the program loop
  8672. * - Set up the kill pin, filament runout, power hold
  8673. * - Start the serial port
  8674. * - Print startup messages and diagnostics
  8675. * - Get EEPROM or default settings
  8676. * - Initialize managers for:
  8677. * • temperature
  8678. * • planner
  8679. * • watchdog
  8680. * • stepper
  8681. * • photo pin
  8682. * • servos
  8683. * • LCD controller
  8684. * • Digipot I2C
  8685. * • Z probe sled
  8686. * • status LEDs
  8687. */
  8688. void setup() {
  8689. #ifdef DISABLE_JTAG
  8690. // Disable JTAG on AT90USB chips to free up pins for IO
  8691. MCUCR = 0x80;
  8692. MCUCR = 0x80;
  8693. #endif
  8694. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8695. setup_filrunoutpin();
  8696. #endif
  8697. setup_killpin();
  8698. setup_powerhold();
  8699. #if HAS_STEPPER_RESET
  8700. disableStepperDrivers();
  8701. #endif
  8702. MYSERIAL.begin(BAUDRATE);
  8703. SERIAL_PROTOCOLLNPGM("start");
  8704. SERIAL_ECHO_START;
  8705. // Check startup - does nothing if bootloader sets MCUSR to 0
  8706. byte mcu = MCUSR;
  8707. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  8708. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  8709. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  8710. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  8711. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  8712. MCUSR = 0;
  8713. SERIAL_ECHOPGM(MSG_MARLIN);
  8714. SERIAL_CHAR(' ');
  8715. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  8716. SERIAL_EOL;
  8717. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  8718. SERIAL_ECHO_START;
  8719. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  8720. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  8721. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  8722. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  8723. #endif
  8724. SERIAL_ECHO_START;
  8725. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  8726. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  8727. // Send "ok" after commands by default
  8728. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  8729. // Load data from EEPROM if available (or use defaults)
  8730. // This also updates variables in the planner, elsewhere
  8731. Config_RetrieveSettings();
  8732. // Initialize current position based on home_offset
  8733. memcpy(current_position, home_offset, sizeof(home_offset));
  8734. // Vital to init stepper/planner equivalent for current_position
  8735. SYNC_PLAN_POSITION_KINEMATIC();
  8736. thermalManager.init(); // Initialize temperature loop
  8737. #if ENABLED(USE_WATCHDOG)
  8738. watchdog_init();
  8739. #endif
  8740. stepper.init(); // Initialize stepper, this enables interrupts!
  8741. servo_init();
  8742. #if HAS_PHOTOGRAPH
  8743. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  8744. #endif
  8745. #if HAS_CASE_LIGHT
  8746. update_case_light();
  8747. #endif
  8748. #if HAS_BED_PROBE
  8749. endstops.enable_z_probe(false);
  8750. #endif
  8751. #if HAS_CONTROLLERFAN
  8752. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  8753. #endif
  8754. #if HAS_STEPPER_RESET
  8755. enableStepperDrivers();
  8756. #endif
  8757. #if ENABLED(DIGIPOT_I2C)
  8758. digipot_i2c_init();
  8759. #endif
  8760. #if ENABLED(DAC_STEPPER_CURRENT)
  8761. dac_init();
  8762. #endif
  8763. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  8764. OUT_WRITE(SLED_PIN, LOW); // turn it off
  8765. #endif // Z_PROBE_SLED
  8766. setup_homepin();
  8767. #if PIN_EXISTS(STAT_LED_RED)
  8768. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  8769. #endif
  8770. #if PIN_EXISTS(STAT_LED_BLUE)
  8771. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  8772. #endif
  8773. #if ENABLED(RGB_LED)
  8774. pinMode(RGB_LED_R_PIN, OUTPUT);
  8775. pinMode(RGB_LED_G_PIN, OUTPUT);
  8776. pinMode(RGB_LED_B_PIN, OUTPUT);
  8777. #endif
  8778. lcd_init();
  8779. #if ENABLED(SHOW_BOOTSCREEN)
  8780. #if ENABLED(DOGLCD)
  8781. safe_delay(BOOTSCREEN_TIMEOUT);
  8782. #elif ENABLED(ULTRA_LCD)
  8783. bootscreen();
  8784. #if DISABLED(SDSUPPORT)
  8785. lcd_init();
  8786. #endif
  8787. #endif
  8788. #endif
  8789. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  8790. // Initialize mixing to 100% color 1
  8791. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8792. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  8793. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  8794. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8795. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  8796. #endif
  8797. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  8798. i2c.onReceive(i2c_on_receive);
  8799. i2c.onRequest(i2c_on_request);
  8800. #endif
  8801. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  8802. setup_endstop_interrupts();
  8803. #endif
  8804. }
  8805. /**
  8806. * The main Marlin program loop
  8807. *
  8808. * - Save or log commands to SD
  8809. * - Process available commands (if not saving)
  8810. * - Call heater manager
  8811. * - Call inactivity manager
  8812. * - Call endstop manager
  8813. * - Call LCD update
  8814. */
  8815. void loop() {
  8816. if (commands_in_queue < BUFSIZE) get_available_commands();
  8817. #if ENABLED(SDSUPPORT)
  8818. card.checkautostart(false);
  8819. #endif
  8820. if (commands_in_queue) {
  8821. #if ENABLED(SDSUPPORT)
  8822. if (card.saving) {
  8823. char* command = command_queue[cmd_queue_index_r];
  8824. if (strstr_P(command, PSTR("M29"))) {
  8825. // M29 closes the file
  8826. card.closefile();
  8827. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  8828. ok_to_send();
  8829. }
  8830. else {
  8831. // Write the string from the read buffer to SD
  8832. card.write_command(command);
  8833. if (card.logging)
  8834. process_next_command(); // The card is saving because it's logging
  8835. else
  8836. ok_to_send();
  8837. }
  8838. }
  8839. else
  8840. process_next_command();
  8841. #else
  8842. process_next_command();
  8843. #endif // SDSUPPORT
  8844. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  8845. if (commands_in_queue) {
  8846. --commands_in_queue;
  8847. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  8848. }
  8849. }
  8850. endstops.report_state();
  8851. idle();
  8852. }