My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

planner.cpp 43KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052
  1. /**
  2. * planner.cpp - Buffer movement commands and manage the acceleration profile plan
  3. * Part of Grbl
  4. *
  5. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  6. *
  7. * Grbl is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * Grbl is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. *
  21. * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
  22. *
  23. *
  24. * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  25. *
  26. * s == speed, a == acceleration, t == time, d == distance
  27. *
  28. * Basic definitions:
  29. * Speed[s_, a_, t_] := s + (a*t)
  30. * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  31. *
  32. * Distance to reach a specific speed with a constant acceleration:
  33. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  34. * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  35. *
  36. * Speed after a given distance of travel with constant acceleration:
  37. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  38. * m -> Sqrt[2 a d + s^2]
  39. *
  40. * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  41. *
  42. * When to start braking (di) to reach a specified destination speed (s2) after accelerating
  43. * from initial speed s1 without ever stopping at a plateau:
  44. * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  45. * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  46. *
  47. * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  48. *
  49. */
  50. #include "Marlin.h"
  51. #include "planner.h"
  52. #include "stepper.h"
  53. #include "temperature.h"
  54. #include "ultralcd.h"
  55. #include "language.h"
  56. #if ENABLED(MESH_BED_LEVELING)
  57. #include "mesh_bed_leveling.h"
  58. #endif
  59. //===========================================================================
  60. //============================= public variables ============================
  61. //===========================================================================
  62. millis_t minsegmenttime;
  63. float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
  64. float axis_steps_per_unit[NUM_AXIS];
  65. unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
  66. float minimumfeedrate;
  67. float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  68. float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  69. float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  70. float max_xy_jerk; // The largest speed change requiring no acceleration
  71. float max_z_jerk;
  72. float max_e_jerk;
  73. float mintravelfeedrate;
  74. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  75. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  76. // Transform required to compensate for bed level
  77. matrix_3x3 plan_bed_level_matrix = {
  78. 1.0, 0.0, 0.0,
  79. 0.0, 1.0, 0.0,
  80. 0.0, 0.0, 1.0
  81. };
  82. #endif // AUTO_BED_LEVELING_FEATURE
  83. #if ENABLED(AUTOTEMP)
  84. float autotemp_max = 250;
  85. float autotemp_min = 210;
  86. float autotemp_factor = 0.1;
  87. bool autotemp_enabled = false;
  88. #endif
  89. //===========================================================================
  90. //============ semi-private variables, used in inline functions =============
  91. //===========================================================================
  92. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  93. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  94. volatile unsigned char block_buffer_tail; // Index of the block to process now
  95. //===========================================================================
  96. //============================ private variables ============================
  97. //===========================================================================
  98. // The current position of the tool in absolute steps
  99. long position[NUM_AXIS]; // Rescaled from extern when axis_steps_per_unit are changed by gcode
  100. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  101. static float previous_nominal_speed; // Nominal speed of previous path line segment
  102. uint8_t g_uc_extruder_last_move[EXTRUDERS] = { 0 };
  103. #ifdef XY_FREQUENCY_LIMIT
  104. // Used for the frequency limit
  105. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  106. // Old direction bits. Used for speed calculations
  107. static unsigned char old_direction_bits = 0;
  108. // Segment times (in µs). Used for speed calculations
  109. static long axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} };
  110. #endif
  111. #if ENABLED(FILAMENT_SENSOR)
  112. static char meas_sample; //temporary variable to hold filament measurement sample
  113. #endif
  114. #if ENABLED(DUAL_X_CARRIAGE)
  115. extern bool extruder_duplication_enabled;
  116. #endif
  117. //===========================================================================
  118. //================================ functions ================================
  119. //===========================================================================
  120. // Get the next / previous index of the next block in the ring buffer
  121. // NOTE: Using & here (not %) because BLOCK_BUFFER_SIZE is always a power of 2
  122. FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
  123. FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
  124. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  125. // given acceleration:
  126. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
  127. if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
  128. return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2);
  129. }
  130. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  131. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  132. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  133. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  134. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
  135. if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0
  136. return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4);
  137. }
  138. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  139. void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor) {
  140. unsigned long initial_rate = ceil(block->nominal_rate * entry_factor); // (step/min)
  141. unsigned long final_rate = ceil(block->nominal_rate * exit_factor); // (step/min)
  142. // Limit minimal step rate (Otherwise the timer will overflow.)
  143. NOLESS(initial_rate, 120);
  144. NOLESS(final_rate, 120);
  145. long acceleration = block->acceleration_st;
  146. int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  147. int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  148. // Calculate the size of Plateau of Nominal Rate.
  149. int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
  150. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  151. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  152. // in order to reach the final_rate exactly at the end of this block.
  153. if (plateau_steps < 0) {
  154. accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  155. accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off
  156. accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  157. plateau_steps = 0;
  158. }
  159. #if ENABLED(ADVANCE)
  160. volatile long initial_advance = block->advance * entry_factor * entry_factor;
  161. volatile long final_advance = block->advance * exit_factor * exit_factor;
  162. #endif // ADVANCE
  163. // block->accelerate_until = accelerate_steps;
  164. // block->decelerate_after = accelerate_steps+plateau_steps;
  165. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  166. if (!block->busy) { // Don't update variables if block is busy.
  167. block->accelerate_until = accelerate_steps;
  168. block->decelerate_after = accelerate_steps + plateau_steps;
  169. block->initial_rate = initial_rate;
  170. block->final_rate = final_rate;
  171. #if ENABLED(ADVANCE)
  172. block->initial_advance = initial_advance;
  173. block->final_advance = final_advance;
  174. #endif
  175. }
  176. CRITICAL_SECTION_END;
  177. }
  178. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  179. // acceleration within the allotted distance.
  180. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  181. return sqrt(target_velocity * target_velocity - 2 * acceleration * distance);
  182. }
  183. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  184. // This method will calculate the junction jerk as the euclidean distance between the nominal
  185. // velocities of the respective blocks.
  186. //inline float junction_jerk(block_t *before, block_t *after) {
  187. // return sqrt(
  188. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  189. //}
  190. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  191. void planner_reverse_pass_kernel(block_t* previous, block_t* current, block_t* next) {
  192. if (!current) return;
  193. UNUSED(previous);
  194. if (next) {
  195. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  196. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  197. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  198. float max_entry_speed = current->max_entry_speed;
  199. if (current->entry_speed != max_entry_speed) {
  200. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  201. // for max allowable speed if block is decelerating and nominal length is false.
  202. if (!current->nominal_length_flag && max_entry_speed > next->entry_speed) {
  203. current->entry_speed = min(max_entry_speed,
  204. max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
  205. }
  206. else {
  207. current->entry_speed = max_entry_speed;
  208. }
  209. current->recalculate_flag = true;
  210. }
  211. } // Skip last block. Already initialized and set for recalculation.
  212. }
  213. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  214. // implements the reverse pass.
  215. void planner_reverse_pass() {
  216. uint8_t block_index = block_buffer_head;
  217. //Make a local copy of block_buffer_tail, because the interrupt can alter it
  218. CRITICAL_SECTION_START;
  219. unsigned char tail = block_buffer_tail;
  220. CRITICAL_SECTION_END
  221. if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued
  222. block_index = BLOCK_MOD(block_buffer_head - 3);
  223. block_t* block[3] = { NULL, NULL, NULL };
  224. while (block_index != tail) {
  225. block_index = prev_block_index(block_index);
  226. block[2] = block[1];
  227. block[1] = block[0];
  228. block[0] = &block_buffer[block_index];
  229. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  230. }
  231. }
  232. }
  233. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  234. void planner_forward_pass_kernel(block_t* previous, block_t* current, block_t* next) {
  235. if (!previous) return;
  236. UNUSED(next);
  237. // If the previous block is an acceleration block, but it is not long enough to complete the
  238. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  239. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  240. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  241. if (!previous->nominal_length_flag) {
  242. if (previous->entry_speed < current->entry_speed) {
  243. double entry_speed = min(current->entry_speed,
  244. max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
  245. // Check for junction speed change
  246. if (current->entry_speed != entry_speed) {
  247. current->entry_speed = entry_speed;
  248. current->recalculate_flag = true;
  249. }
  250. }
  251. }
  252. }
  253. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  254. // implements the forward pass.
  255. void planner_forward_pass() {
  256. uint8_t block_index = block_buffer_tail;
  257. block_t* block[3] = { NULL, NULL, NULL };
  258. while (block_index != block_buffer_head) {
  259. block[0] = block[1];
  260. block[1] = block[2];
  261. block[2] = &block_buffer[block_index];
  262. planner_forward_pass_kernel(block[0], block[1], block[2]);
  263. block_index = next_block_index(block_index);
  264. }
  265. planner_forward_pass_kernel(block[1], block[2], NULL);
  266. }
  267. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  268. // entry_factor for each junction. Must be called by planner_recalculate() after
  269. // updating the blocks.
  270. void planner_recalculate_trapezoids() {
  271. int8_t block_index = block_buffer_tail;
  272. block_t* current;
  273. block_t* next = NULL;
  274. while (block_index != block_buffer_head) {
  275. current = next;
  276. next = &block_buffer[block_index];
  277. if (current) {
  278. // Recalculate if current block entry or exit junction speed has changed.
  279. if (current->recalculate_flag || next->recalculate_flag) {
  280. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  281. float nom = current->nominal_speed;
  282. calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
  283. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  284. }
  285. }
  286. block_index = next_block_index(block_index);
  287. }
  288. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  289. if (next) {
  290. float nom = next->nominal_speed;
  291. calculate_trapezoid_for_block(next, next->entry_speed / nom, MINIMUM_PLANNER_SPEED / nom);
  292. next->recalculate_flag = false;
  293. }
  294. }
  295. // Recalculates the motion plan according to the following algorithm:
  296. //
  297. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  298. // so that:
  299. // a. The junction jerk is within the set limit
  300. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  301. // acceleration.
  302. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  303. // a. The speed increase within one block would require faster acceleration than the one, true
  304. // constant acceleration.
  305. //
  306. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  307. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  308. // the set limit. Finally it will:
  309. //
  310. // 3. Recalculate trapezoids for all blocks.
  311. void planner_recalculate() {
  312. planner_reverse_pass();
  313. planner_forward_pass();
  314. planner_recalculate_trapezoids();
  315. }
  316. void plan_init() {
  317. block_buffer_head = block_buffer_tail = 0;
  318. memset(position, 0, sizeof(position)); // clear position
  319. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
  320. previous_nominal_speed = 0.0;
  321. }
  322. #if ENABLED(AUTOTEMP)
  323. void getHighESpeed() {
  324. static float oldt = 0;
  325. if (!autotemp_enabled) return;
  326. if (degTargetHotend0() + 2 < autotemp_min) return; // probably temperature set to zero.
  327. float high = 0.0;
  328. uint8_t block_index = block_buffer_tail;
  329. while (block_index != block_buffer_head) {
  330. block_t* block = &block_buffer[block_index];
  331. if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
  332. float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
  333. NOLESS(high, se);
  334. }
  335. block_index = next_block_index(block_index);
  336. }
  337. float t = autotemp_min + high * autotemp_factor;
  338. t = constrain(t, autotemp_min, autotemp_max);
  339. if (oldt > t) {
  340. t *= (1 - AUTOTEMP_OLDWEIGHT);
  341. t += AUTOTEMP_OLDWEIGHT * oldt;
  342. }
  343. oldt = t;
  344. setTargetHotend0(t);
  345. }
  346. #endif //AUTOTEMP
  347. void check_axes_activity() {
  348. unsigned char axis_active[NUM_AXIS] = { 0 },
  349. tail_fan_speed = fanSpeed;
  350. #if ENABLED(BARICUDA)
  351. unsigned char tail_valve_pressure = ValvePressure,
  352. tail_e_to_p_pressure = EtoPPressure;
  353. #endif
  354. block_t* block;
  355. if (blocks_queued()) {
  356. uint8_t block_index = block_buffer_tail;
  357. tail_fan_speed = block_buffer[block_index].fan_speed;
  358. #if ENABLED(BARICUDA)
  359. block = &block_buffer[block_index];
  360. tail_valve_pressure = block->valve_pressure;
  361. tail_e_to_p_pressure = block->e_to_p_pressure;
  362. #endif
  363. while (block_index != block_buffer_head) {
  364. block = &block_buffer[block_index];
  365. for (int i = 0; i < NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
  366. block_index = next_block_index(block_index);
  367. }
  368. }
  369. if (DISABLE_X && !axis_active[X_AXIS]) disable_x();
  370. if (DISABLE_Y && !axis_active[Y_AXIS]) disable_y();
  371. if (DISABLE_Z && !axis_active[Z_AXIS]) disable_z();
  372. if (DISABLE_E && !axis_active[E_AXIS]) {
  373. disable_e0();
  374. disable_e1();
  375. disable_e2();
  376. disable_e3();
  377. }
  378. #if HAS_FAN
  379. #ifdef FAN_KICKSTART_TIME
  380. static millis_t fan_kick_end;
  381. if (tail_fan_speed) {
  382. millis_t ms = millis();
  383. if (fan_kick_end == 0) {
  384. // Just starting up fan - run at full power.
  385. fan_kick_end = ms + FAN_KICKSTART_TIME;
  386. tail_fan_speed = 255;
  387. }
  388. else if (fan_kick_end > ms)
  389. // Fan still spinning up.
  390. tail_fan_speed = 255;
  391. }
  392. else {
  393. fan_kick_end = 0;
  394. }
  395. #endif //FAN_KICKSTART_TIME
  396. #if ENABLED(FAN_MIN_PWM)
  397. #define CALC_FAN_SPEED (tail_fan_speed ? ( FAN_MIN_PWM + (tail_fan_speed * (255 - FAN_MIN_PWM)) / 255 ) : 0)
  398. #else
  399. #define CALC_FAN_SPEED tail_fan_speed
  400. #endif // FAN_MIN_PWM
  401. #if ENABLED(FAN_SOFT_PWM)
  402. fanSpeedSoftPwm = CALC_FAN_SPEED;
  403. #else
  404. analogWrite(FAN_PIN, CALC_FAN_SPEED);
  405. #endif // FAN_SOFT_PWM
  406. #endif // HAS_FAN
  407. #if ENABLED(AUTOTEMP)
  408. getHighESpeed();
  409. #endif
  410. #if ENABLED(BARICUDA)
  411. #if HAS_HEATER_1
  412. analogWrite(HEATER_1_PIN, tail_valve_pressure);
  413. #endif
  414. #if HAS_HEATER_2
  415. analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
  416. #endif
  417. #endif
  418. }
  419. float junction_deviation = 0.1;
  420. // Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in
  421. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  422. // calculation the caller must also provide the physical length of the line in millimeters.
  423. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  424. void plan_buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder)
  425. #else
  426. void plan_buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder)
  427. #endif // AUTO_BED_LEVELING_FEATURE
  428. {
  429. // Calculate the buffer head after we push this byte
  430. int next_buffer_head = next_block_index(block_buffer_head);
  431. // If the buffer is full: good! That means we are well ahead of the robot.
  432. // Rest here until there is room in the buffer.
  433. while (block_buffer_tail == next_buffer_head) idle();
  434. #if ENABLED(MESH_BED_LEVELING)
  435. if (mbl.active) z += mbl.get_z(x, y);
  436. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  437. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  438. #endif
  439. // The target position of the tool in absolute steps
  440. // Calculate target position in absolute steps
  441. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  442. long target[NUM_AXIS];
  443. target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]);
  444. target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]);
  445. target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);
  446. target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  447. long dx = target[X_AXIS] - position[X_AXIS],
  448. dy = target[Y_AXIS] - position[Y_AXIS],
  449. dz = target[Z_AXIS] - position[Z_AXIS];
  450. // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
  451. if (marlin_debug_flags & DEBUG_DRYRUN)
  452. position[E_AXIS] = target[E_AXIS];
  453. long de = target[E_AXIS] - position[E_AXIS];
  454. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  455. if (de) {
  456. if (degHotend(extruder) < extrude_min_temp) {
  457. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  458. de = 0; // no difference
  459. SERIAL_ECHO_START;
  460. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  461. }
  462. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  463. if (labs(de) > axis_steps_per_unit[E_AXIS] * EXTRUDE_MAXLENGTH) {
  464. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  465. de = 0; // no difference
  466. SERIAL_ECHO_START;
  467. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  468. }
  469. #endif
  470. }
  471. #endif
  472. // Prepare to set up new block
  473. block_t* block = &block_buffer[block_buffer_head];
  474. // Mark block as not busy (Not executed by the stepper interrupt)
  475. block->busy = false;
  476. // Number of steps for each axis
  477. #if ENABLED(COREXY)
  478. // corexy planning
  479. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  480. block->steps[A_AXIS] = labs(dx + dy);
  481. block->steps[B_AXIS] = labs(dx - dy);
  482. block->steps[Z_AXIS] = labs(dz);
  483. #elif ENABLED(COREXZ)
  484. // corexz planning
  485. block->steps[A_AXIS] = labs(dx + dz);
  486. block->steps[Y_AXIS] = labs(dy);
  487. block->steps[C_AXIS] = labs(dx - dz);
  488. #else
  489. // default non-h-bot planning
  490. block->steps[X_AXIS] = labs(dx);
  491. block->steps[Y_AXIS] = labs(dy);
  492. block->steps[Z_AXIS] = labs(dz);
  493. #endif
  494. block->steps[E_AXIS] = labs(de);
  495. block->steps[E_AXIS] *= volumetric_multiplier[extruder];
  496. block->steps[E_AXIS] *= extruder_multiplier[extruder];
  497. block->steps[E_AXIS] /= 100;
  498. block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
  499. // Bail if this is a zero-length block
  500. if (block->step_event_count <= dropsegments) return;
  501. block->fan_speed = fanSpeed;
  502. #if ENABLED(BARICUDA)
  503. block->valve_pressure = ValvePressure;
  504. block->e_to_p_pressure = EtoPPressure;
  505. #endif
  506. // Compute direction bits for this block
  507. uint8_t db = 0;
  508. #if ENABLED(COREXY)
  509. if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
  510. if (dy < 0) SBI(db, Y_HEAD); // ...and Y
  511. if (dz < 0) SBI(db, Z_AXIS);
  512. if (dx + dy < 0) SBI(db, A_AXIS); // Motor A direction
  513. if (dx - dy < 0) SBI(db, B_AXIS); // Motor B direction
  514. #elif ENABLED(COREXZ)
  515. if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
  516. if (dy < 0) SBI(db, Y_AXIS);
  517. if (dz < 0) SBI(db, Z_HEAD); // ...and Z
  518. if (dx + dz < 0) SBI(db, A_AXIS); // Motor A direction
  519. if (dx - dz < 0) SBI(db, C_AXIS); // Motor B direction
  520. #else
  521. if (dx < 0) SBI(db, X_AXIS);
  522. if (dy < 0) SBI(db, Y_AXIS);
  523. if (dz < 0) SBI(db, Z_AXIS);
  524. #endif
  525. if (de < 0) SBI(db, E_AXIS);
  526. block->direction_bits = db;
  527. block->active_extruder = extruder;
  528. //enable active axes
  529. #if ENABLED(COREXY)
  530. if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
  531. enable_x();
  532. enable_y();
  533. }
  534. #if DISABLED(Z_LATE_ENABLE)
  535. if (block->steps[Z_AXIS]) enable_z();
  536. #endif
  537. #elif ENABLED(COREXZ)
  538. if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
  539. enable_x();
  540. enable_z();
  541. }
  542. if (block->steps[Y_AXIS]) enable_y();
  543. #else
  544. if (block->steps[X_AXIS]) enable_x();
  545. if (block->steps[Y_AXIS]) enable_y();
  546. #if DISABLED(Z_LATE_ENABLE)
  547. if (block->steps[Z_AXIS]) enable_z();
  548. #endif
  549. #endif
  550. // Enable extruder(s)
  551. if (block->steps[E_AXIS]) {
  552. if (DISABLE_INACTIVE_EXTRUDER) { //enable only selected extruder
  553. for (int i = 0; i < EXTRUDERS; i++)
  554. if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
  555. switch(extruder) {
  556. case 0:
  557. enable_e0();
  558. #if ENABLED(DUAL_X_CARRIAGE)
  559. if (extruder_duplication_enabled) {
  560. enable_e1();
  561. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE * 2;
  562. }
  563. #endif
  564. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE * 2;
  565. #if EXTRUDERS > 1
  566. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  567. #if EXTRUDERS > 2
  568. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  569. #if EXTRUDERS > 3
  570. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  571. #endif
  572. #endif
  573. #endif
  574. break;
  575. #if EXTRUDERS > 1
  576. case 1:
  577. enable_e1();
  578. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE * 2;
  579. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  580. #if EXTRUDERS > 2
  581. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  582. #if EXTRUDERS > 3
  583. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  584. #endif
  585. #endif
  586. break;
  587. #if EXTRUDERS > 2
  588. case 2:
  589. enable_e2();
  590. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE * 2;
  591. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  592. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  593. #if EXTRUDERS > 3
  594. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  595. #endif
  596. break;
  597. #if EXTRUDERS > 3
  598. case 3:
  599. enable_e3();
  600. g_uc_extruder_last_move[3] = BLOCK_BUFFER_SIZE * 2;
  601. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  602. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  603. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  604. break;
  605. #endif // EXTRUDERS > 3
  606. #endif // EXTRUDERS > 2
  607. #endif // EXTRUDERS > 1
  608. }
  609. }
  610. else { // enable all
  611. enable_e0();
  612. enable_e1();
  613. enable_e2();
  614. enable_e3();
  615. }
  616. }
  617. if (block->steps[E_AXIS])
  618. NOLESS(feed_rate, minimumfeedrate);
  619. else
  620. NOLESS(feed_rate, mintravelfeedrate);
  621. /**
  622. * This part of the code calculates the total length of the movement.
  623. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  624. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  625. * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  626. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  627. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  628. */
  629. #if ENABLED(COREXY)
  630. float delta_mm[6];
  631. delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
  632. delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
  633. delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
  634. delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
  635. delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
  636. #elif ENABLED(COREXZ)
  637. float delta_mm[6];
  638. delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
  639. delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
  640. delta_mm[Z_HEAD] = dz / axis_steps_per_unit[C_AXIS];
  641. delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_unit[A_AXIS];
  642. delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_unit[C_AXIS];
  643. #else
  644. float delta_mm[4];
  645. delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
  646. delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
  647. delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
  648. #endif
  649. delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
  650. if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
  651. block->millimeters = fabs(delta_mm[E_AXIS]);
  652. }
  653. else {
  654. block->millimeters = sqrt(
  655. #if ENABLED(COREXY)
  656. square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS])
  657. #elif ENABLED(COREXZ)
  658. square(delta_mm[X_HEAD]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_HEAD])
  659. #else
  660. square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])
  661. #endif
  662. );
  663. }
  664. float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
  665. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  666. float inverse_second = feed_rate * inverse_millimeters;
  667. int moves_queued = movesplanned();
  668. // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
  669. #if ENABLED(OLD_SLOWDOWN) || ENABLED(SLOWDOWN)
  670. bool mq = moves_queued > 1 && moves_queued < BLOCK_BUFFER_SIZE / 2;
  671. #if ENABLED(OLD_SLOWDOWN)
  672. if (mq) feed_rate *= 2.0 * moves_queued / BLOCK_BUFFER_SIZE;
  673. #endif
  674. #if ENABLED(SLOWDOWN)
  675. // segment time im micro seconds
  676. unsigned long segment_time = lround(1000000.0/inverse_second);
  677. if (mq) {
  678. if (segment_time < minsegmenttime) {
  679. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  680. inverse_second = 1000000.0 / (segment_time + lround(2 * (minsegmenttime - segment_time) / moves_queued));
  681. #ifdef XY_FREQUENCY_LIMIT
  682. segment_time = lround(1000000.0 / inverse_second);
  683. #endif
  684. }
  685. }
  686. #endif
  687. #endif
  688. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  689. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  690. #if ENABLED(FILAMENT_SENSOR)
  691. //FMM update ring buffer used for delay with filament measurements
  692. if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && delay_index2 > -1) { //only for extruder with filament sensor and if ring buffer is initialized
  693. const int MMD = MAX_MEASUREMENT_DELAY + 1, MMD10 = MMD * 10;
  694. delay_dist += delta_mm[E_AXIS]; // increment counter with next move in e axis
  695. while (delay_dist >= MMD10) delay_dist -= MMD10; // loop around the buffer
  696. while (delay_dist < 0) delay_dist += MMD10;
  697. delay_index1 = delay_dist / 10.0; // calculate index
  698. delay_index1 = constrain(delay_index1, 0, MAX_MEASUREMENT_DELAY); // (already constrained above)
  699. if (delay_index1 != delay_index2) { // moved index
  700. meas_sample = widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
  701. while (delay_index1 != delay_index2) {
  702. // Increment and loop around buffer
  703. if (++delay_index2 >= MMD) delay_index2 -= MMD;
  704. delay_index2 = constrain(delay_index2, 0, MAX_MEASUREMENT_DELAY);
  705. measurement_delay[delay_index2] = meas_sample;
  706. }
  707. }
  708. }
  709. #endif
  710. // Calculate and limit speed in mm/sec for each axis
  711. float current_speed[NUM_AXIS];
  712. float speed_factor = 1.0; //factor <=1 do decrease speed
  713. for (int i = 0; i < NUM_AXIS; i++) {
  714. current_speed[i] = delta_mm[i] * inverse_second;
  715. float cs = fabs(current_speed[i]), mf = max_feedrate[i];
  716. if (cs > mf) speed_factor = min(speed_factor, mf / cs);
  717. }
  718. // Max segement time in us.
  719. #ifdef XY_FREQUENCY_LIMIT
  720. // Check and limit the xy direction change frequency
  721. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  722. old_direction_bits = block->direction_bits;
  723. segment_time = lround((float)segment_time / speed_factor);
  724. long xs0 = axis_segment_time[X_AXIS][0],
  725. xs1 = axis_segment_time[X_AXIS][1],
  726. xs2 = axis_segment_time[X_AXIS][2],
  727. ys0 = axis_segment_time[Y_AXIS][0],
  728. ys1 = axis_segment_time[Y_AXIS][1],
  729. ys2 = axis_segment_time[Y_AXIS][2];
  730. if (TEST(direction_change, X_AXIS)) {
  731. xs2 = axis_segment_time[X_AXIS][2] = xs1;
  732. xs1 = axis_segment_time[X_AXIS][1] = xs0;
  733. xs0 = 0;
  734. }
  735. xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
  736. if (TEST(direction_change, Y_AXIS)) {
  737. ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
  738. ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
  739. ys0 = 0;
  740. }
  741. ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
  742. long max_x_segment_time = max(xs0, max(xs1, xs2)),
  743. max_y_segment_time = max(ys0, max(ys1, ys2)),
  744. min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
  745. if (min_xy_segment_time < MAX_FREQ_TIME) {
  746. float low_sf = speed_factor * min_xy_segment_time / MAX_FREQ_TIME;
  747. speed_factor = min(speed_factor, low_sf);
  748. }
  749. #endif // XY_FREQUENCY_LIMIT
  750. // Correct the speed
  751. if (speed_factor < 1.0) {
  752. for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
  753. block->nominal_speed *= speed_factor;
  754. block->nominal_rate *= speed_factor;
  755. }
  756. // Compute and limit the acceleration rate for the trapezoid generator.
  757. float steps_per_mm = block->step_event_count / block->millimeters;
  758. long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
  759. if (bsx == 0 && bsy == 0 && bsz == 0) {
  760. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  761. }
  762. else if (bse == 0) {
  763. block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  764. }
  765. else {
  766. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  767. }
  768. // Limit acceleration per axis
  769. unsigned long acc_st = block->acceleration_st,
  770. xsteps = axis_steps_per_sqr_second[X_AXIS],
  771. ysteps = axis_steps_per_sqr_second[Y_AXIS],
  772. zsteps = axis_steps_per_sqr_second[Z_AXIS],
  773. esteps = axis_steps_per_sqr_second[E_AXIS];
  774. if ((float)acc_st * bsx / block->step_event_count > xsteps) acc_st = xsteps;
  775. if ((float)acc_st * bsy / block->step_event_count > ysteps) acc_st = ysteps;
  776. if ((float)acc_st * bsz / block->step_event_count > zsteps) acc_st = zsteps;
  777. if ((float)acc_st * bse / block->step_event_count > esteps) acc_st = esteps;
  778. block->acceleration_st = acc_st;
  779. block->acceleration = acc_st / steps_per_mm;
  780. block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
  781. #if 0 // Use old jerk for now
  782. // Compute path unit vector
  783. double unit_vec[3];
  784. unit_vec[X_AXIS] = delta_mm[X_AXIS] * inverse_millimeters;
  785. unit_vec[Y_AXIS] = delta_mm[Y_AXIS] * inverse_millimeters;
  786. unit_vec[Z_AXIS] = delta_mm[Z_AXIS] * inverse_millimeters;
  787. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  788. // Let a circle be tangent to both previous and current path line segments, where the junction
  789. // deviation is defined as the distance from the junction to the closest edge of the circle,
  790. // collinear with the circle center. The circular segment joining the two paths represents the
  791. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  792. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  793. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  794. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  795. // nonlinearities of both the junction angle and junction velocity.
  796. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  797. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  798. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  799. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  800. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  801. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  802. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  803. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  804. // Skip and use default max junction speed for 0 degree acute junction.
  805. if (cos_theta < 0.95) {
  806. vmax_junction = min(previous_nominal_speed, block->nominal_speed);
  807. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  808. if (cos_theta > -0.95) {
  809. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  810. double sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
  811. vmax_junction = min(vmax_junction,
  812. sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
  813. }
  814. }
  815. }
  816. #endif
  817. // Start with a safe speed
  818. float vmax_junction = max_xy_jerk / 2;
  819. float vmax_junction_factor = 1.0;
  820. float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2;
  821. float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS];
  822. if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
  823. if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
  824. vmax_junction = min(vmax_junction, block->nominal_speed);
  825. float safe_speed = vmax_junction;
  826. if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
  827. float dsx = current_speed[X_AXIS] - previous_speed[X_AXIS],
  828. dsy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
  829. dsz = fabs(csz - previous_speed[Z_AXIS]),
  830. dse = fabs(cse - previous_speed[E_AXIS]),
  831. jerk = sqrt(dsx * dsx + dsy * dsy);
  832. // if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
  833. vmax_junction = block->nominal_speed;
  834. // }
  835. if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk;
  836. if (dsz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dsz);
  837. if (dse > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / dse);
  838. vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  839. }
  840. block->max_entry_speed = vmax_junction;
  841. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  842. double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
  843. block->entry_speed = min(vmax_junction, v_allowable);
  844. // Initialize planner efficiency flags
  845. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  846. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  847. // the current block and next block junction speeds are guaranteed to always be at their maximum
  848. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  849. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  850. // the reverse and forward planners, the corresponding block junction speed will always be at the
  851. // the maximum junction speed and may always be ignored for any speed reduction checks.
  852. block->nominal_length_flag = (block->nominal_speed <= v_allowable);
  853. block->recalculate_flag = true; // Always calculate trapezoid for new block
  854. // Update previous path unit_vector and nominal speed
  855. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
  856. previous_nominal_speed = block->nominal_speed;
  857. #if ENABLED(ADVANCE)
  858. // Calculate advance rate
  859. if (!bse || (!bsx && !bsy && !bsz)) {
  860. block->advance_rate = 0;
  861. block->advance = 0;
  862. }
  863. else {
  864. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  865. float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * (cse * cse * EXTRUSION_AREA * EXTRUSION_AREA) * 256;
  866. block->advance = advance;
  867. block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
  868. }
  869. /*
  870. SERIAL_ECHO_START;
  871. SERIAL_ECHOPGM("advance :");
  872. SERIAL_ECHO(block->advance/256.0);
  873. SERIAL_ECHOPGM("advance rate :");
  874. SERIAL_ECHOLN(block->advance_rate/256.0);
  875. */
  876. #endif // ADVANCE
  877. calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
  878. // Move buffer head
  879. block_buffer_head = next_buffer_head;
  880. // Update position
  881. for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
  882. planner_recalculate();
  883. st_wake_up();
  884. } // plan_buffer_line()
  885. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(DELTA)
  886. vector_3 plan_get_position() {
  887. vector_3 position = vector_3(st_get_axis_position_mm(X_AXIS), st_get_axis_position_mm(Y_AXIS), st_get_axis_position_mm(Z_AXIS));
  888. //position.debug("in plan_get position");
  889. //plan_bed_level_matrix.debug("in plan_get_position");
  890. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  891. //inverse.debug("in plan_get inverse");
  892. position.apply_rotation(inverse);
  893. //position.debug("after rotation");
  894. return position;
  895. }
  896. #endif // AUTO_BED_LEVELING_FEATURE && !DELTA
  897. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  898. void plan_set_position(float x, float y, float z, const float& e)
  899. #else
  900. void plan_set_position(const float& x, const float& y, const float& z, const float& e)
  901. #endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
  902. {
  903. #if ENABLED(MESH_BED_LEVELING)
  904. if (mbl.active) z += mbl.get_z(x, y);
  905. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  906. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  907. #endif
  908. long nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]),
  909. ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]),
  910. nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]),
  911. ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  912. st_set_position(nx, ny, nz, ne);
  913. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  914. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
  915. }
  916. void plan_set_e_position(const float& e) {
  917. position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  918. st_set_e_position(position[E_AXIS]);
  919. }
  920. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  921. void reset_acceleration_rates() {
  922. for (int i = 0; i < NUM_AXIS; i++)
  923. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  924. }