My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin.pde 32KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063
  1. /*
  2. Reprap firmware based on Sprinter and grbl.
  3. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  4. This program is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 3 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <http://www.gnu.org/licenses/>.
  14. */
  15. /*
  16. This firmware is a mashup between Sprinter and grbl.
  17. (https://github.com/kliment/Sprinter)
  18. (https://github.com/simen/grbl/tree)
  19. It has preliminary support for Matthew Roberts advance algorithm
  20. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  21. */
  22. #include <EEPROM.h>
  23. #include "EEPROMwrite.h"
  24. #include "fastio.h"
  25. #include "Configuration.h"
  26. #include "pins.h"
  27. #include "Marlin.h"
  28. #include "ultralcd.h"
  29. #include "planner.h"
  30. #include "stepper.h"
  31. #include "temperature.h"
  32. #include "motion_control.h"
  33. #include "cardreader.h"
  34. #include "watchdog.h"
  35. #define VERSION_STRING "1.0.0 Alpha 1"
  36. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  37. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  38. //Implemented Codes
  39. //-------------------
  40. // G0 -> G1
  41. // G1 - Coordinated Movement X Y Z E
  42. // G2 - CW ARC
  43. // G3 - CCW ARC
  44. // G4 - Dwell S<seconds> or P<milliseconds>
  45. // G28 - Home all Axis
  46. // G90 - Use Absolute Coordinates
  47. // G91 - Use Relative Coordinates
  48. // G92 - Set current position to cordinates given
  49. //RepRap M Codes
  50. // M104 - Set extruder target temp
  51. // M105 - Read current temp
  52. // M106 - Fan on
  53. // M107 - Fan off
  54. // M109 - Wait for extruder current temp to reach target temp.
  55. // M114 - Display current position
  56. //Custom M Codes
  57. // M20 - List SD card
  58. // M21 - Init SD card
  59. // M22 - Release SD card
  60. // M23 - Select SD file (M23 filename.g)
  61. // M24 - Start/resume SD print
  62. // M25 - Pause SD print
  63. // M26 - Set SD position in bytes (M26 S12345)
  64. // M27 - Report SD print status
  65. // M28 - Start SD write (M28 filename.g)
  66. // M29 - Stop SD write
  67. // M30 - Output time since last M109 or SD card start to serial
  68. // M42 - Change pin status via gcode
  69. // M80 - Turn on Power Supply
  70. // M81 - Turn off Power Supply
  71. // M82 - Set E codes absolute (default)
  72. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  73. // M84 - Disable steppers until next move,
  74. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  75. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  76. // M92 - Set axis_steps_per_unit - same syntax as G92
  77. // M115 - Capabilities string
  78. // M140 - Set bed target temp
  79. // M190 - Wait for bed current temp to reach target temp.
  80. // M200 - Set filament diameter
  81. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  82. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  83. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  84. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  85. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  86. // M220 - set speed factor override percentage S:factor in percent
  87. // M301 - Set PID parameters P I and D
  88. // M400 - Finish all moves
  89. // M500 - stores paramters in EEPROM
  90. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  91. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  92. //Stepper Movement Variables
  93. //===========================================================================
  94. //=============================imported variables============================
  95. //===========================================================================
  96. extern float HeaterPower;
  97. //===========================================================================
  98. //=============================public variables=============================
  99. //===========================================================================
  100. CardReader card;
  101. float homing_feedrate[] = HOMING_FEEDRATE;
  102. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  103. volatile int feedmultiply=100; //100->1 200->2
  104. int saved_feedmultiply;
  105. volatile bool feedmultiplychanged=false;
  106. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  107. //===========================================================================
  108. //=============================private variables=============================
  109. //===========================================================================
  110. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  111. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  112. static float offset[3] = {0.0, 0.0, 0.0};
  113. static bool home_all_axis = true;
  114. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  115. static long gcode_N, gcode_LastN;
  116. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  117. static bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
  118. static uint8_t fanpwm=0;
  119. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  120. static bool fromsd[BUFSIZE];
  121. static int bufindr = 0;
  122. static int bufindw = 0;
  123. static int buflen = 0;
  124. static int i = 0;
  125. static char serial_char;
  126. static int serial_count = 0;
  127. static boolean comment_mode = false;
  128. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  129. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  130. static float tt = 0, bt = 0;
  131. //Inactivity shutdown variables
  132. static unsigned long previous_millis_cmd = 0;
  133. static unsigned long max_inactive_time = 0;
  134. static unsigned long stepper_inactive_time = 0;
  135. static unsigned long starttime=0;
  136. static unsigned long stoptime=0;
  137. //===========================================================================
  138. //=============================ROUTINES=============================
  139. //===========================================================================
  140. extern "C"{
  141. extern unsigned int __bss_end;
  142. extern unsigned int __heap_start;
  143. extern void *__brkval;
  144. int freeMemory() {
  145. int free_memory;
  146. if((int)__brkval == 0)
  147. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  148. else
  149. free_memory = ((int)&free_memory) - ((int)__brkval);
  150. return free_memory;
  151. }
  152. }
  153. inline void get_coordinates()
  154. {
  155. for(int8_t i=0; i < NUM_AXIS; i++) {
  156. if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  157. else destination[i] = current_position[i]; //Are these else lines really needed?
  158. }
  159. if(code_seen('F')) {
  160. next_feedrate = code_value();
  161. if(next_feedrate > 0.0) feedrate = next_feedrate;
  162. }
  163. }
  164. inline void get_arc_coordinates()
  165. {
  166. get_coordinates();
  167. if(code_seen('I')) offset[0] = code_value();
  168. if(code_seen('J')) offset[1] = code_value();
  169. }
  170. void prepare_move()
  171. {
  172. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
  173. for(int8_t i=0; i < NUM_AXIS; i++) {
  174. current_position[i] = destination[i];
  175. }
  176. }
  177. //adds an command to the main command buffer
  178. //thats really done in a non-safe way.
  179. //needs overworking someday
  180. void enquecommand(const char *cmd)
  181. {
  182. if(buflen < BUFSIZE)
  183. {
  184. //this is dangerous if a mixing of serial and this happsens
  185. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  186. SERIAL_ECHO_START;
  187. SERIAL_ECHOPGM("enqueing \"");
  188. SERIAL_ECHO(cmdbuffer[bufindw]);
  189. SERIAL_ECHOLNPGM("\"");
  190. bufindw= (bufindw + 1)%BUFSIZE;
  191. buflen += 1;
  192. }
  193. }
  194. void setup()
  195. {
  196. Serial.begin(BAUDRATE);
  197. SERIAL_ECHO_START;
  198. SERIAL_ECHOLNPGM(VERSION_STRING);
  199. SERIAL_PROTOCOLLNPGM("start");
  200. SERIAL_ECHO_START;
  201. SERIAL_ECHOPGM("Free Memory:");
  202. SERIAL_ECHOLN(freeMemory());
  203. for(int8_t i = 0; i < BUFSIZE; i++)
  204. {
  205. fromsd[i] = false;
  206. }
  207. RetrieveSettings(); // loads data from EEPROM if available
  208. for(int8_t i=0; i < NUM_AXIS; i++)
  209. {
  210. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  211. }
  212. plan_init(); // Initialize planner;
  213. st_init(); // Initialize stepper;
  214. tp_init(); // Initialize temperature loop
  215. wd_init();
  216. }
  217. void loop()
  218. {
  219. if(buflen<3)
  220. get_command();
  221. card.checkautostart(false);
  222. if(buflen)
  223. {
  224. #ifdef SDSUPPORT
  225. if(card.saving)
  226. {
  227. if(strstr(cmdbuffer[bufindr],"M29") == NULL)
  228. {
  229. card.write_command(cmdbuffer[bufindr]);
  230. SERIAL_PROTOCOLLNPGM("ok");
  231. }
  232. else
  233. {
  234. card.closefile();
  235. SERIAL_PROTOCOLLNPGM("Done saving file.");
  236. }
  237. }
  238. else
  239. {
  240. process_commands();
  241. }
  242. #else
  243. process_commands();
  244. #endif //SDSUPPORT
  245. buflen = (buflen-1);
  246. bufindr = (bufindr + 1)%BUFSIZE;
  247. }
  248. //check heater every n milliseconds
  249. manage_heater();
  250. manage_inactivity(1);
  251. checkHitEndstops();
  252. LCD_STATUS;
  253. }
  254. inline void get_command()
  255. {
  256. while( Serial.available() > 0 && buflen < BUFSIZE) {
  257. serial_char = Serial.read();
  258. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
  259. {
  260. if(!serial_count) return; //if empty line
  261. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  262. if(!comment_mode){
  263. fromsd[bufindw] = false;
  264. if(strstr(cmdbuffer[bufindw], "N") != NULL)
  265. {
  266. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  267. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  268. if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
  269. SERIAL_ERROR_START;
  270. SERIAL_ERRORPGM("Line Number is not Last Line Number+1, Last Line:");
  271. SERIAL_ERRORLN(gcode_LastN);
  272. //Serial.println(gcode_N);
  273. FlushSerialRequestResend();
  274. serial_count = 0;
  275. return;
  276. }
  277. if(strstr(cmdbuffer[bufindw], "*") != NULL)
  278. {
  279. byte checksum = 0;
  280. byte count = 0;
  281. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  282. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  283. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  284. SERIAL_ERROR_START;
  285. SERIAL_ERRORPGM("checksum mismatch, Last Line:");
  286. SERIAL_ERRORLN(gcode_LastN);
  287. FlushSerialRequestResend();
  288. serial_count = 0;
  289. return;
  290. }
  291. //if no errors, continue parsing
  292. }
  293. else
  294. {
  295. SERIAL_ERROR_START;
  296. SERIAL_ERRORPGM("No Checksum with line number, Last Line:");
  297. SERIAL_ERRORLN(gcode_LastN);
  298. FlushSerialRequestResend();
  299. serial_count = 0;
  300. return;
  301. }
  302. gcode_LastN = gcode_N;
  303. //if no errors, continue parsing
  304. }
  305. else // if we don't receive 'N' but still see '*'
  306. {
  307. if((strstr(cmdbuffer[bufindw], "*") != NULL))
  308. {
  309. SERIAL_ERROR_START;
  310. SERIAL_ERRORPGM("No Line Number with checksum, Last Line:");
  311. SERIAL_ERRORLN(gcode_LastN);
  312. serial_count = 0;
  313. return;
  314. }
  315. }
  316. if((strstr(cmdbuffer[bufindw], "G") != NULL)){
  317. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  318. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  319. case 0:
  320. case 1:
  321. case 2:
  322. case 3:
  323. #ifdef SDSUPPORT
  324. if(card.saving)
  325. break;
  326. #endif //SDSUPPORT
  327. SERIAL_PROTOCOLLNPGM("ok");
  328. break;
  329. default:
  330. break;
  331. }
  332. }
  333. bufindw = (bufindw + 1)%BUFSIZE;
  334. buflen += 1;
  335. }
  336. comment_mode = false; //for new command
  337. serial_count = 0; //clear buffer
  338. }
  339. else
  340. {
  341. if(serial_char == ';') comment_mode = true;
  342. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  343. }
  344. }
  345. #ifdef SDSUPPORT
  346. if(!card.sdprinting || serial_count!=0){
  347. return;
  348. }
  349. while( !card.eof() && buflen < BUFSIZE) {
  350. int16_t n=card.get();
  351. serial_char = (char)n;
  352. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  353. {
  354. if(card.eof()){
  355. card.sdprinting = false;
  356. SERIAL_PROTOCOLLNPGM("Done printing file");
  357. stoptime=millis();
  358. char time[30];
  359. unsigned long t=(stoptime-starttime)/1000;
  360. int sec,min;
  361. min=t/60;
  362. sec=t%60;
  363. sprintf(time,"%i min, %i sec",min,sec);
  364. SERIAL_ECHO_START;
  365. SERIAL_ECHOLN(time);
  366. LCD_MESSAGE(time);
  367. card.checkautostart(true);
  368. }
  369. if(!serial_count)
  370. return; //if empty line
  371. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  372. if(!comment_mode){
  373. fromsd[bufindw] = true;
  374. buflen += 1;
  375. bufindw = (bufindw + 1)%BUFSIZE;
  376. }
  377. comment_mode = false; //for new command
  378. serial_count = 0; //clear buffer
  379. }
  380. else
  381. {
  382. if(serial_char == ';') comment_mode = true;
  383. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  384. }
  385. }
  386. #endif //SDSUPPORT
  387. }
  388. inline float code_value()
  389. {
  390. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  391. }
  392. inline long code_value_long()
  393. {
  394. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  395. }
  396. inline bool code_seen(char code_string[]) //Return True if the string was found
  397. {
  398. return (strstr(cmdbuffer[bufindr], code_string) != NULL);
  399. }
  400. inline bool code_seen(char code)
  401. {
  402. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  403. return (strchr_pointer != NULL); //Return True if a character was found
  404. }
  405. #define HOMEAXIS(LETTER) \
  406. if ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))\
  407. { \
  408. current_position[LETTER##_AXIS] = 0; \
  409. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); \
  410. destination[LETTER##_AXIS] = 1.5 * LETTER##_MAX_LENGTH * LETTER##_HOME_DIR; \
  411. feedrate = homing_feedrate[LETTER##_AXIS]; \
  412. prepare_move(); \
  413. st_synchronize();\
  414. \
  415. current_position[LETTER##_AXIS] = 0;\
  416. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  417. destination[LETTER##_AXIS] = -5 * LETTER##_HOME_DIR;\
  418. prepare_move(); \
  419. st_synchronize();\
  420. \
  421. destination[LETTER##_AXIS] = 10 * LETTER##_HOME_DIR;\
  422. feedrate = homing_feedrate[LETTER##_AXIS]/2 ; \
  423. prepare_move(); \
  424. st_synchronize();\
  425. \
  426. current_position[LETTER##_AXIS] = (LETTER##_HOME_DIR == -1) ? 0 : LETTER##_MAX_LENGTH;\
  427. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  428. destination[LETTER##_AXIS] = current_position[LETTER##_AXIS];\
  429. feedrate = 0.0;\
  430. st_synchronize();\
  431. endstops_hit_on_purpose();\
  432. }
  433. inline void process_commands()
  434. {
  435. unsigned long codenum; //throw away variable
  436. char *starpos = NULL;
  437. if(code_seen('G'))
  438. {
  439. switch((int)code_value())
  440. {
  441. case 0: // G0 -> G1
  442. case 1: // G1
  443. get_coordinates(); // For X Y Z E F
  444. prepare_move();
  445. previous_millis_cmd = millis();
  446. //ClearToSend();
  447. return;
  448. //break;
  449. case 2: // G2 - CW ARC
  450. get_arc_coordinates();
  451. prepare_arc_move(true);
  452. previous_millis_cmd = millis();
  453. return;
  454. case 3: // G3 - CCW ARC
  455. get_arc_coordinates();
  456. prepare_arc_move(false);
  457. previous_millis_cmd = millis();
  458. return;
  459. case 4: // G4 dwell
  460. LCD_MESSAGEPGM("DWELL...");
  461. codenum = 0;
  462. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  463. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  464. codenum += millis(); // keep track of when we started waiting
  465. while(millis() < codenum ){
  466. manage_heater();
  467. }
  468. break;
  469. case 28: //G28 Home all Axis one at a time
  470. saved_feedrate = feedrate;
  471. saved_feedmultiply = feedmultiply;
  472. feedmultiply = 100;
  473. for(int8_t i=0; i < NUM_AXIS; i++) {
  474. destination[i] = current_position[i];
  475. }
  476. feedrate = 0.0;
  477. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  478. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  479. {
  480. HOMEAXIS(X);
  481. }
  482. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  483. HOMEAXIS(Y);
  484. }
  485. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  486. HOMEAXIS(Z);
  487. }
  488. feedrate = saved_feedrate;
  489. feedmultiply = saved_feedmultiply;
  490. previous_millis_cmd = millis();
  491. endstops_hit_on_purpose();
  492. break;
  493. case 90: // G90
  494. relative_mode = false;
  495. break;
  496. case 91: // G91
  497. relative_mode = true;
  498. break;
  499. case 92: // G92
  500. if(!code_seen(axis_codes[E_AXIS]))
  501. st_synchronize();
  502. for(int8_t i=0; i < NUM_AXIS; i++) {
  503. if(code_seen(axis_codes[i])) current_position[i] = code_value();
  504. }
  505. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  506. break;
  507. }
  508. }
  509. else if(code_seen('M'))
  510. {
  511. switch( (int)code_value() )
  512. {
  513. #ifdef SDSUPPORT
  514. case 20: // M20 - list SD card
  515. SERIAL_PROTOCOLLNPGM("Begin file list");
  516. card.ls();
  517. SERIAL_PROTOCOLLNPGM("End file list");
  518. break;
  519. case 21: // M21 - init SD card
  520. card.initsd();
  521. break;
  522. case 22: //M22 - release SD card
  523. card.release();
  524. break;
  525. case 23: //M23 - Select file
  526. starpos = (strchr(strchr_pointer + 4,'*'));
  527. if(starpos!=NULL)
  528. *(starpos-1)='\0';
  529. card.selectFile(strchr_pointer + 4);
  530. break;
  531. case 24: //M24 - Start SD print
  532. card.startFileprint();
  533. starttime=millis();
  534. break;
  535. case 25: //M25 - Pause SD print
  536. card.pauseSDPrint();
  537. break;
  538. case 26: //M26 - Set SD index
  539. if(card.cardOK && code_seen('S')){
  540. card.setIndex(code_value_long());
  541. }
  542. break;
  543. case 27: //M27 - Get SD status
  544. card.getStatus();
  545. break;
  546. case 28: //M28 - Start SD write
  547. starpos = (strchr(strchr_pointer + 4,'*'));
  548. if(starpos != NULL){
  549. char* npos = strchr(cmdbuffer[bufindr], 'N');
  550. strchr_pointer = strchr(npos,' ') + 1;
  551. *(starpos-1) = '\0';
  552. }
  553. card.startFilewrite(strchr_pointer+4);
  554. break;
  555. case 29: //M29 - Stop SD write
  556. //processed in write to file routine above
  557. //card,saving = false;
  558. break;
  559. #endif //SDSUPPORT
  560. case 30: //M30 take time since the start of the SD print or an M109 command
  561. {
  562. stoptime=millis();
  563. char time[30];
  564. unsigned long t=(stoptime-starttime)/1000;
  565. int sec,min;
  566. min=t/60;
  567. sec=t%60;
  568. sprintf(time,"%i min, %i sec",min,sec);
  569. SERIAL_ECHO_START;
  570. SERIAL_ECHOLN(time);
  571. LCD_MESSAGE(time);
  572. }
  573. break;
  574. case 42: //M42 -Change pin status via gcode
  575. if (code_seen('S'))
  576. {
  577. int pin_status = code_value();
  578. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  579. {
  580. int pin_number = code_value();
  581. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  582. {
  583. if (sensitive_pins[i] == pin_number)
  584. {
  585. pin_number = -1;
  586. break;
  587. }
  588. }
  589. if (pin_number > -1)
  590. {
  591. pinMode(pin_number, OUTPUT);
  592. digitalWrite(pin_number, pin_status);
  593. analogWrite(pin_number, pin_status);
  594. }
  595. }
  596. }
  597. break;
  598. case 104: // M104
  599. if (code_seen('S')) setTargetHotend0(code_value());
  600. setWatch();
  601. break;
  602. case 140: // M140 set bed temp
  603. if (code_seen('S')) setTargetBed(code_value());
  604. break;
  605. case 105: // M105
  606. //SERIAL_ECHOLN(freeMemory());
  607. //test watchdog:
  608. //delay(20000);
  609. #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
  610. SERIAL_PROTOCOLPGM("ok T:");
  611. SERIAL_PROTOCOL( degHotend0());
  612. #if TEMP_1_PIN > -1
  613. SERIAL_PROTOCOLPGM(" B:");
  614. SERIAL_PROTOCOL(degBed());
  615. #endif //TEMP_1_PIN
  616. #else
  617. SERIAL_ERROR_START;
  618. SERIAL_ERRORLNPGM("No thermistors - no temp");
  619. #endif
  620. #ifdef PIDTEMP
  621. SERIAL_PROTOCOLPGM(" @:");
  622. SERIAL_PROTOCOL( HeaterPower);
  623. #endif
  624. SERIAL_PROTOCOLLN("");
  625. return;
  626. break;
  627. case 109:
  628. {// M109 - Wait for extruder heater to reach target.
  629. LCD_MESSAGEPGM("Heating...");
  630. if (code_seen('S')) setTargetHotend0(code_value());
  631. setWatch();
  632. codenum = millis();
  633. /* See if we are heating up or cooling down */
  634. bool target_direction = isHeatingHotend0(); // true if heating, false if cooling
  635. #ifdef TEMP_RESIDENCY_TIME
  636. long residencyStart;
  637. residencyStart = -1;
  638. /* continue to loop until we have reached the target temp
  639. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  640. while((target_direction ? (isHeatingHotend0()) : (isCoolingHotend0()) ||
  641. (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
  642. #else
  643. while ( target_direction ? (isHeatingHotend0()) : (isCoolingHotend0()) ) {
  644. #endif //TEMP_RESIDENCY_TIME
  645. if( (millis() - codenum) > 1000 )
  646. { //Print Temp Reading every 1 second while heating up/cooling down
  647. SERIAL_PROTOCOLPGM("T:");
  648. SERIAL_PROTOCOLLN( degHotend0() );
  649. codenum = millis();
  650. }
  651. manage_heater();
  652. LCD_STATUS;
  653. #ifdef TEMP_RESIDENCY_TIME
  654. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  655. or when current temp falls outside the hysteresis after target temp was reached */
  656. if ((residencyStart == -1 && target_direction && !isHeatingHotend0()) ||
  657. (residencyStart == -1 && !target_direction && !isCoolingHotend0()) ||
  658. (residencyStart > -1 && labs(degHotend0() - degTargetHotend0()) > TEMP_HYSTERESIS) )
  659. {
  660. residencyStart = millis();
  661. }
  662. #endif //TEMP_RESIDENCY_TIME
  663. }
  664. LCD_MESSAGEPGM("Heating done.");
  665. starttime=millis();
  666. }
  667. break;
  668. case 190: // M190 - Wait bed for heater to reach target.
  669. #if TEMP_1_PIN > -1
  670. LCD_MESSAGEPGM("Bed Heating.");
  671. if (code_seen('S')) setTargetBed(code_value());
  672. codenum = millis();
  673. while(isHeatingBed())
  674. {
  675. if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  676. {
  677. float tt=degHotend0();
  678. SERIAL_PROTOCOLPGM("T:");
  679. SERIAL_PROTOCOLLN(tt );
  680. SERIAL_PROTOCOLPGM("ok T:");
  681. SERIAL_PROTOCOL(tt );
  682. SERIAL_PROTOCOLPGM(" B:");
  683. SERIAL_PROTOCOLLN(degBed() );
  684. codenum = millis();
  685. }
  686. manage_heater();
  687. }
  688. LCD_MESSAGEPGM("Bed done.");
  689. #endif
  690. break;
  691. #if FAN_PIN > -1
  692. case 106: //M106 Fan On
  693. if (code_seen('S')){
  694. WRITE(FAN_PIN,HIGH);
  695. fanpwm=constrain(code_value(),0,255);
  696. analogWrite(FAN_PIN, fanpwm);
  697. }
  698. else {
  699. WRITE(FAN_PIN,HIGH);
  700. fanpwm=255;
  701. analogWrite(FAN_PIN, fanpwm);
  702. }
  703. break;
  704. case 107: //M107 Fan Off
  705. WRITE(FAN_PIN,LOW);
  706. analogWrite(FAN_PIN, 0);
  707. break;
  708. #endif //FAN_PIN
  709. #if (PS_ON_PIN > -1)
  710. case 80: // M80 - ATX Power On
  711. SET_OUTPUT(PS_ON_PIN); //GND
  712. break;
  713. case 81: // M81 - ATX Power Off
  714. SET_INPUT(PS_ON_PIN); //Floating
  715. break;
  716. #endif
  717. case 82:
  718. axis_relative_modes[3] = false;
  719. break;
  720. case 83:
  721. axis_relative_modes[3] = true;
  722. break;
  723. case 18: //compatibility
  724. case 84:
  725. if(code_seen('S')){
  726. stepper_inactive_time = code_value() * 1000;
  727. }
  728. else
  729. {
  730. st_synchronize();
  731. LCD_MESSAGEPGM("Free move.");
  732. disable_x();
  733. disable_y();
  734. disable_z();
  735. disable_e();
  736. }
  737. break;
  738. case 85: // M85
  739. code_seen('S');
  740. max_inactive_time = code_value() * 1000;
  741. break;
  742. case 92: // M92
  743. for(int8_t i=0; i < NUM_AXIS; i++)
  744. {
  745. if(code_seen(axis_codes[i]))
  746. axis_steps_per_unit[i] = code_value();
  747. }
  748. break;
  749. case 115: // M115
  750. SerialprintPGM("FIRMWARE_NAME:Marlin; Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
  751. break;
  752. case 114: // M114
  753. SERIAL_PROTOCOLPGM("X:");
  754. SERIAL_PROTOCOL(current_position[X_AXIS]);
  755. SERIAL_PROTOCOLPGM("Y:");
  756. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  757. SERIAL_PROTOCOLPGM("Z:");
  758. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  759. SERIAL_PROTOCOLPGM("E:");
  760. SERIAL_PROTOCOL(current_position[E_AXIS]);
  761. #ifdef DEBUG_STEPS
  762. SERIAL_PROTOCOLPGM(" Count X:");
  763. SERIAL_PROTOCOL(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
  764. SERIAL_PROTOCOLPGM("Y:");
  765. SERIAL_PROTOCOL(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
  766. SERIAL_PROTOCOLPGM("Z:");
  767. SERIAL_PROTOCOL(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
  768. #endif
  769. SERIAL_PROTOCOLLN("");
  770. break;
  771. case 119: // M119
  772. #if (X_MIN_PIN > -1)
  773. SERIAL_PROTOCOLPGM("x_min:");
  774. SERIAL_PROTOCOL(((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
  775. #endif
  776. #if (X_MAX_PIN > -1)
  777. SERIAL_PROTOCOLPGM("x_max:");
  778. SERIAL_PROTOCOL(((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
  779. #endif
  780. #if (Y_MIN_PIN > -1)
  781. SERIAL_PROTOCOLPGM("y_min:");
  782. SERIAL_PROTOCOL(((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
  783. #endif
  784. #if (Y_MAX_PIN > -1)
  785. SERIAL_PROTOCOLPGM("y_max:");
  786. SERIAL_PROTOCOL(((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
  787. #endif
  788. #if (Z_MIN_PIN > -1)
  789. SERIAL_PROTOCOLPGM("z_min:");
  790. SERIAL_PROTOCOL(((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
  791. #endif
  792. #if (Z_MAX_PIN > -1)
  793. SERIAL_PROTOCOLPGM("z_max:");
  794. SERIAL_PROTOCOL(((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
  795. #endif
  796. SERIAL_PROTOCOLLN("");
  797. break;
  798. //TODO: update for all axis, use for loop
  799. case 201: // M201
  800. for(int8_t i=0; i < NUM_AXIS; i++)
  801. {
  802. if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  803. }
  804. break;
  805. #if 0 // Not used for Sprinter/grbl gen6
  806. case 202: // M202
  807. for(int8_t i=0; i < NUM_AXIS; i++) {
  808. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  809. }
  810. break;
  811. #endif
  812. case 203: // M203 max feedrate mm/sec
  813. for(int8_t i=0; i < NUM_AXIS; i++) {
  814. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
  815. }
  816. break;
  817. case 204: // M204 acclereration S normal moves T filmanent only moves
  818. {
  819. if(code_seen('S')) acceleration = code_value() ;
  820. if(code_seen('T')) retract_acceleration = code_value() ;
  821. }
  822. break;
  823. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  824. {
  825. if(code_seen('S')) minimumfeedrate = code_value()*60 ;
  826. if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
  827. if(code_seen('B')) minsegmenttime = code_value() ;
  828. if(code_seen('X')) max_xy_jerk = code_value()*60 ;
  829. if(code_seen('Z')) max_z_jerk = code_value()*60 ;
  830. }
  831. break;
  832. case 220: // M220 S<factor in percent>- set speed factor override percentage
  833. {
  834. if(code_seen('S'))
  835. {
  836. feedmultiply = code_value() ;
  837. feedmultiplychanged=true;
  838. }
  839. }
  840. break;
  841. #ifdef PIDTEMP
  842. case 301: // M301
  843. {
  844. if(code_seen('P')) Kp = code_value();
  845. if(code_seen('I')) Ki = code_value()*PID_dT;
  846. if(code_seen('D')) Kd = code_value()/PID_dT;
  847. #ifdef PID_ADD_EXTRUSION_RATE
  848. if(code_seen('C')) Kc = code_value();
  849. #endif
  850. updatePID();
  851. SERIAL_PROTOCOL("ok p:");
  852. SERIAL_PROTOCOL(Kp);
  853. SERIAL_PROTOCOL(" i:");
  854. SERIAL_PROTOCOL(Ki/PID_dT);
  855. SERIAL_PROTOCOL(" d:");
  856. SERIAL_PROTOCOL(Kd*PID_dT);
  857. #ifdef PID_ADD_EXTRUSION_RATE
  858. SERIAL_PROTOCOL(" c:");
  859. SERIAL_PROTOCOL(Kc*PID_dT);
  860. #endif
  861. SERIAL_PROTOCOLLN("");
  862. }
  863. break;
  864. #endif //PIDTEMP
  865. case 400: // finish all moves
  866. {
  867. st_synchronize();
  868. }
  869. break;
  870. case 500: // Store settings in EEPROM
  871. {
  872. StoreSettings();
  873. }
  874. break;
  875. case 501: // Read settings from EEPROM
  876. {
  877. RetrieveSettings();
  878. }
  879. break;
  880. case 502: // Revert to default settings
  881. {
  882. RetrieveSettings(true);
  883. }
  884. break;
  885. }
  886. }
  887. else
  888. {
  889. SERIAL_ECHO_START;
  890. SERIAL_ECHOPGM("Unknown command:\"");
  891. SERIAL_ECHO(cmdbuffer[bufindr]);
  892. SERIAL_ECHOLNPGM("\"");
  893. }
  894. ClearToSend();
  895. }
  896. void FlushSerialRequestResend()
  897. {
  898. //char cmdbuffer[bufindr][100]="Resend:";
  899. Serial.flush();
  900. SERIAL_PROTOCOLPGM("Resend:");
  901. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  902. ClearToSend();
  903. }
  904. void ClearToSend()
  905. {
  906. previous_millis_cmd = millis();
  907. #ifdef SDSUPPORT
  908. if(fromsd[bufindr])
  909. return;
  910. #endif //SDSUPPORT
  911. SERIAL_PROTOCOLLNPGM("ok");
  912. }
  913. void prepare_arc_move(char isclockwise) {
  914. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  915. // Trace the arc
  916. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60.0/100.0, r, isclockwise);
  917. // As far as the parser is concerned, the position is now == target. In reality the
  918. // motion control system might still be processing the action and the real tool position
  919. // in any intermediate location.
  920. for(int8_t i=0; i < NUM_AXIS; i++) {
  921. current_position[i] = destination[i];
  922. }
  923. }
  924. void manage_inactivity(byte debug)
  925. {
  926. if( (millis()-previous_millis_cmd) > max_inactive_time )
  927. if(max_inactive_time)
  928. kill();
  929. if( (millis()-previous_millis_cmd) > stepper_inactive_time )
  930. if(stepper_inactive_time)
  931. {
  932. disable_x();
  933. disable_y();
  934. disable_z();
  935. disable_e();
  936. }
  937. check_axes_activity();
  938. }
  939. void kill()
  940. {
  941. disable_heater();
  942. disable_x();
  943. disable_y();
  944. disable_z();
  945. disable_e();
  946. if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  947. SERIAL_ERROR_START;
  948. SERIAL_ERRORLNPGM("Printer halted. kill() called !!");
  949. LCD_MESSAGEPGM("KILLED. ");
  950. while(1); // Wait for reset
  951. }