My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

temperature.cpp 47KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "temperature.h"
  26. #include "watchdog.h"
  27. #include "language.h"
  28. #include "Sd2PinMap.h"
  29. //===========================================================================
  30. //================================== macros =================================
  31. //===========================================================================
  32. #ifdef K1 // Defined in Configuration.h in the PID settings
  33. #define K2 (1.0-K1)
  34. #endif
  35. #if defined(PIDTEMPBED) || defined(PIDTEMP)
  36. #define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
  37. #endif
  38. //===========================================================================
  39. //============================= public variables ============================
  40. //===========================================================================
  41. int target_temperature[4] = { 0 };
  42. int target_temperature_bed = 0;
  43. int current_temperature_raw[4] = { 0 };
  44. float current_temperature[4] = { 0.0 };
  45. int current_temperature_bed_raw = 0;
  46. float current_temperature_bed = 0.0;
  47. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  48. int redundant_temperature_raw = 0;
  49. float redundant_temperature = 0.0;
  50. #endif
  51. #ifdef PIDTEMPBED
  52. float bedKp=DEFAULT_bedKp;
  53. float bedKi=(DEFAULT_bedKi*PID_dT);
  54. float bedKd=(DEFAULT_bedKd/PID_dT);
  55. #endif //PIDTEMPBED
  56. #ifdef FAN_SOFT_PWM
  57. unsigned char fanSpeedSoftPwm;
  58. #endif
  59. unsigned char soft_pwm_bed;
  60. #ifdef BABYSTEPPING
  61. volatile int babystepsTodo[3] = { 0 };
  62. #endif
  63. #ifdef FILAMENT_SENSOR
  64. int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  65. #endif
  66. //===========================================================================
  67. //=============================private variables============================
  68. //===========================================================================
  69. static volatile bool temp_meas_ready = false;
  70. #ifdef PIDTEMP
  71. //static cannot be external:
  72. static float temp_iState[EXTRUDERS] = { 0 };
  73. static float temp_dState[EXTRUDERS] = { 0 };
  74. static float pTerm[EXTRUDERS];
  75. static float iTerm[EXTRUDERS];
  76. static float dTerm[EXTRUDERS];
  77. //int output;
  78. static float pid_error[EXTRUDERS];
  79. static float temp_iState_min[EXTRUDERS];
  80. static float temp_iState_max[EXTRUDERS];
  81. static bool pid_reset[EXTRUDERS];
  82. #endif //PIDTEMP
  83. #ifdef PIDTEMPBED
  84. //static cannot be external:
  85. static float temp_iState_bed = { 0 };
  86. static float temp_dState_bed = { 0 };
  87. static float pTerm_bed;
  88. static float iTerm_bed;
  89. static float dTerm_bed;
  90. //int output;
  91. static float pid_error_bed;
  92. static float temp_iState_min_bed;
  93. static float temp_iState_max_bed;
  94. #else //PIDTEMPBED
  95. static unsigned long previous_millis_bed_heater;
  96. #endif //PIDTEMPBED
  97. static unsigned char soft_pwm[EXTRUDERS];
  98. #ifdef FAN_SOFT_PWM
  99. static unsigned char soft_pwm_fan;
  100. #endif
  101. #if HAS_AUTO_FAN
  102. static unsigned long extruder_autofan_last_check;
  103. #endif
  104. #ifdef PIDTEMP
  105. #ifdef PID_PARAMS_PER_EXTRUDER
  106. float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
  107. float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
  108. float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
  109. #ifdef PID_ADD_EXTRUSION_RATE
  110. float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
  111. #endif // PID_ADD_EXTRUSION_RATE
  112. #else //PID_PARAMS_PER_EXTRUDER
  113. float Kp = DEFAULT_Kp;
  114. float Ki = DEFAULT_Ki * PID_dT;
  115. float Kd = DEFAULT_Kd / PID_dT;
  116. #ifdef PID_ADD_EXTRUSION_RATE
  117. float Kc = DEFAULT_Kc;
  118. #endif // PID_ADD_EXTRUSION_RATE
  119. #endif // PID_PARAMS_PER_EXTRUDER
  120. #endif //PIDTEMP
  121. // Init min and max temp with extreme values to prevent false errors during startup
  122. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
  123. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
  124. static int minttemp[EXTRUDERS] = { 0 };
  125. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
  126. //static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
  127. #ifdef BED_MAXTEMP
  128. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  129. #endif
  130. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  131. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  132. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  133. #else
  134. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE, (void *)HEATER_3_TEMPTABLE );
  135. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN );
  136. #endif
  137. static float analog2temp(int raw, uint8_t e);
  138. static float analog2tempBed(int raw);
  139. static void updateTemperaturesFromRawValues();
  140. #ifdef WATCH_TEMP_PERIOD
  141. int watch_start_temp[EXTRUDERS] = { 0 };
  142. unsigned long watchmillis[EXTRUDERS] = { 0 };
  143. #endif //WATCH_TEMP_PERIOD
  144. #ifndef SOFT_PWM_SCALE
  145. #define SOFT_PWM_SCALE 0
  146. #endif
  147. #ifdef FILAMENT_SENSOR
  148. static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
  149. #endif
  150. #ifdef HEATER_0_USES_MAX6675
  151. static int read_max6675();
  152. #endif
  153. //===========================================================================
  154. //============================= functions ============================
  155. //===========================================================================
  156. void PID_autotune(float temp, int extruder, int ncycles)
  157. {
  158. float input = 0.0;
  159. int cycles = 0;
  160. bool heating = true;
  161. unsigned long temp_millis = millis(), t1 = temp_millis, t2 = temp_millis;
  162. long t_high = 0, t_low = 0;
  163. long bias, d;
  164. float Ku, Tu;
  165. float Kp, Ki, Kd;
  166. float max = 0, min = 10000;
  167. #if HAS_AUTO_FAN
  168. unsigned long extruder_autofan_last_check = temp_millis;
  169. #endif
  170. if (extruder >= EXTRUDERS
  171. #if !HAS_TEMP_BED
  172. || extruder < 0
  173. #endif
  174. ) {
  175. SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
  176. return;
  177. }
  178. SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
  179. disable_heater(); // switch off all heaters.
  180. if (extruder < 0)
  181. soft_pwm_bed = bias = d = MAX_BED_POWER / 2;
  182. else
  183. soft_pwm[extruder] = bias = d = PID_MAX / 2;
  184. // PID Tuning loop
  185. for(;;) {
  186. unsigned long ms = millis();
  187. if (temp_meas_ready) { // temp sample ready
  188. updateTemperaturesFromRawValues();
  189. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  190. max = max(max, input);
  191. min = min(min, input);
  192. #if HAS_AUTO_FAN
  193. if (ms > extruder_autofan_last_check + 2500) {
  194. checkExtruderAutoFans();
  195. extruder_autofan_last_check = ms;
  196. }
  197. #endif
  198. if (heating == true && input > temp) {
  199. if (ms - t2 > 5000) {
  200. heating = false;
  201. if (extruder < 0)
  202. soft_pwm_bed = (bias - d) >> 1;
  203. else
  204. soft_pwm[extruder] = (bias - d) >> 1;
  205. t1 = ms;
  206. t_high = t1 - t2;
  207. max = temp;
  208. }
  209. }
  210. if (heating == false && input < temp) {
  211. if (ms - t1 > 5000) {
  212. heating = true;
  213. t2 = ms;
  214. t_low = t2 - t1;
  215. if (cycles > 0) {
  216. long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX;
  217. bias += (d*(t_high - t_low))/(t_low + t_high);
  218. bias = constrain(bias, 20, max_pow - 20);
  219. d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
  220. SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias);
  221. SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d);
  222. SERIAL_PROTOCOLPGM(MSG_T_MIN); SERIAL_PROTOCOL(min);
  223. SERIAL_PROTOCOLPGM(MSG_T_MAX); SERIAL_PROTOCOLLN(max);
  224. if (cycles > 2) {
  225. Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
  226. Tu = ((float)(t_low + t_high) / 1000.0);
  227. SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku);
  228. SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu);
  229. Kp = 0.6 * Ku;
  230. Ki = 2 * Kp / Tu;
  231. Kd = Kp * Tu / 8;
  232. SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
  233. SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(Kp);
  234. SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(Ki);
  235. SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(Kd);
  236. /*
  237. Kp = 0.33*Ku;
  238. Ki = Kp/Tu;
  239. Kd = Kp*Tu/3;
  240. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  241. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  242. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  243. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  244. Kp = 0.2*Ku;
  245. Ki = 2*Kp/Tu;
  246. Kd = Kp*Tu/3;
  247. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  248. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  249. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  250. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  251. */
  252. }
  253. }
  254. if (extruder < 0)
  255. soft_pwm_bed = (bias + d) >> 1;
  256. else
  257. soft_pwm[extruder] = (bias + d) >> 1;
  258. cycles++;
  259. min = temp;
  260. }
  261. }
  262. }
  263. if (input > temp + 20) {
  264. SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
  265. return;
  266. }
  267. // Every 2 seconds...
  268. if (ms > temp_millis + 2000) {
  269. int p;
  270. if (extruder < 0) {
  271. p = soft_pwm_bed;
  272. SERIAL_PROTOCOLPGM(MSG_OK_B);
  273. }
  274. else {
  275. p = soft_pwm[extruder];
  276. SERIAL_PROTOCOLPGM(MSG_OK_T);
  277. }
  278. SERIAL_PROTOCOL(input);
  279. SERIAL_PROTOCOLPGM(MSG_AT);
  280. SERIAL_PROTOCOLLN(p);
  281. temp_millis = ms;
  282. } // every 2 seconds
  283. // Over 2 minutes?
  284. if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) {
  285. SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
  286. return;
  287. }
  288. if (cycles > ncycles) {
  289. SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
  290. return;
  291. }
  292. lcd_update();
  293. }
  294. }
  295. void updatePID() {
  296. #ifdef PIDTEMP
  297. for (int e = 0; e < EXTRUDERS; e++) {
  298. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  299. }
  300. #endif
  301. #ifdef PIDTEMPBED
  302. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  303. #endif
  304. }
  305. int getHeaterPower(int heater) {
  306. return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
  307. }
  308. #if HAS_AUTO_FAN
  309. void setExtruderAutoFanState(int pin, bool state)
  310. {
  311. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  312. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  313. pinMode(pin, OUTPUT);
  314. digitalWrite(pin, newFanSpeed);
  315. analogWrite(pin, newFanSpeed);
  316. }
  317. void checkExtruderAutoFans()
  318. {
  319. uint8_t fanState = 0;
  320. // which fan pins need to be turned on?
  321. #if HAS_AUTO_FAN_0
  322. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  323. fanState |= 1;
  324. #endif
  325. #if HAS_AUTO_FAN_1
  326. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  327. {
  328. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  329. fanState |= 1;
  330. else
  331. fanState |= 2;
  332. }
  333. #endif
  334. #if HAS_AUTO_FAN_2
  335. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  336. {
  337. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  338. fanState |= 1;
  339. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  340. fanState |= 2;
  341. else
  342. fanState |= 4;
  343. }
  344. #endif
  345. #if HAS_AUTO_FAN_3
  346. if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  347. {
  348. if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  349. fanState |= 1;
  350. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  351. fanState |= 2;
  352. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN)
  353. fanState |= 4;
  354. else
  355. fanState |= 8;
  356. }
  357. #endif
  358. // update extruder auto fan states
  359. #if HAS_AUTO_FAN_0
  360. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  361. #endif
  362. #if HAS_AUTO_FAN_1
  363. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  364. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  365. #endif
  366. #if HAS_AUTO_FAN_2
  367. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  368. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  369. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  370. #endif
  371. #if HAS_AUTO_FAN_3
  372. if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  373. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN
  374. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
  375. setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0);
  376. #endif
  377. }
  378. #endif // any extruder auto fan pins set
  379. //
  380. // Temperature Error Handlers
  381. //
  382. inline void _temp_error(int e, const char *msg1, const char *msg2) {
  383. if (!IsStopped()) {
  384. SERIAL_ERROR_START;
  385. if (e >= 0) SERIAL_ERRORLN((int)e);
  386. serialprintPGM(msg1);
  387. MYSERIAL.write('\n');
  388. #ifdef ULTRA_LCD
  389. lcd_setalertstatuspgm(msg2);
  390. #endif
  391. }
  392. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  393. Stop();
  394. #endif
  395. }
  396. void max_temp_error(uint8_t e) {
  397. disable_heater();
  398. _temp_error(e, PSTR(MSG_MAXTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MAXTEMP));
  399. }
  400. void min_temp_error(uint8_t e) {
  401. disable_heater();
  402. _temp_error(e, PSTR(MSG_MINTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MINTEMP));
  403. }
  404. void bed_max_temp_error(void) {
  405. #if HAS_HEATER_BED
  406. WRITE_HEATER_BED(0);
  407. #endif
  408. _temp_error(-1, PSTR(MSG_MAXTEMP_BED_OFF), PSTR(MSG_ERR_MAXTEMP_BED));
  409. }
  410. float get_pid_output(int e) {
  411. float pid_output;
  412. #ifdef PIDTEMP
  413. #ifndef PID_OPENLOOP
  414. pid_error[e] = target_temperature[e] - current_temperature[e];
  415. if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
  416. pid_output = BANG_MAX;
  417. pid_reset[e] = true;
  418. }
  419. else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  420. pid_output = 0;
  421. pid_reset[e] = true;
  422. }
  423. else {
  424. if (pid_reset[e]) {
  425. temp_iState[e] = 0.0;
  426. pid_reset[e] = false;
  427. }
  428. pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
  429. temp_iState[e] += pid_error[e];
  430. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  431. iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
  432. dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
  433. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  434. if (pid_output > PID_MAX) {
  435. if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  436. pid_output = PID_MAX;
  437. }
  438. else if (pid_output < 0) {
  439. if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  440. pid_output = 0;
  441. }
  442. }
  443. temp_dState[e] = current_temperature[e];
  444. #else
  445. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  446. #endif //PID_OPENLOOP
  447. #ifdef PID_DEBUG
  448. SERIAL_ECHO_START;
  449. SERIAL_ECHO(MSG_PID_DEBUG);
  450. SERIAL_ECHO(e);
  451. SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
  452. SERIAL_ECHO(current_temperature[e]);
  453. SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
  454. SERIAL_ECHO(pid_output);
  455. SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
  456. SERIAL_ECHO(pTerm[e]);
  457. SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
  458. SERIAL_ECHO(iTerm[e]);
  459. SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
  460. SERIAL_ECHOLN(dTerm[e]);
  461. #endif //PID_DEBUG
  462. #else /* PID off */
  463. pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
  464. #endif
  465. return pid_output;
  466. }
  467. #ifdef PIDTEMPBED
  468. float get_pid_output_bed() {
  469. float pid_output;
  470. #ifndef PID_OPENLOOP
  471. pid_error_bed = target_temperature_bed - current_temperature_bed;
  472. pTerm_bed = bedKp * pid_error_bed;
  473. temp_iState_bed += pid_error_bed;
  474. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  475. iTerm_bed = bedKi * temp_iState_bed;
  476. dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
  477. temp_dState_bed = current_temperature_bed;
  478. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  479. if (pid_output > MAX_BED_POWER) {
  480. if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  481. pid_output = MAX_BED_POWER;
  482. }
  483. else if (pid_output < 0) {
  484. if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  485. pid_output = 0;
  486. }
  487. #else
  488. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  489. #endif // PID_OPENLOOP
  490. #ifdef PID_BED_DEBUG
  491. SERIAL_ECHO_START;
  492. SERIAL_ECHO(" PID_BED_DEBUG ");
  493. SERIAL_ECHO(": Input ");
  494. SERIAL_ECHO(current_temperature_bed);
  495. SERIAL_ECHO(" Output ");
  496. SERIAL_ECHO(pid_output);
  497. SERIAL_ECHO(" pTerm ");
  498. SERIAL_ECHO(pTerm_bed);
  499. SERIAL_ECHO(" iTerm ");
  500. SERIAL_ECHO(iTerm_bed);
  501. SERIAL_ECHO(" dTerm ");
  502. SERIAL_ECHOLN(dTerm_bed);
  503. #endif //PID_BED_DEBUG
  504. return pid_output;
  505. }
  506. #endif
  507. void manage_heater() {
  508. if (!temp_meas_ready) return;
  509. updateTemperaturesFromRawValues();
  510. #ifdef HEATER_0_USES_MAX6675
  511. float ct = current_temperature[0];
  512. if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
  513. if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
  514. #endif //HEATER_0_USES_MAX6675
  515. #if defined(WATCH_TEMP_PERIOD) || !defined(PIDTEMPBED) || HAS_AUTO_FAN
  516. unsigned long ms = millis();
  517. #endif
  518. // Loop through all extruders
  519. for (int e = 0; e < EXTRUDERS; e++) {
  520. #if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
  521. thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
  522. #endif
  523. float pid_output = get_pid_output(e);
  524. // Check if temperature is within the correct range
  525. soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
  526. #ifdef WATCH_TEMP_PERIOD
  527. if (watchmillis[e] && ms > watchmillis[e] + WATCH_TEMP_PERIOD) {
  528. if (degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE) {
  529. setTargetHotend(0, e);
  530. LCD_MESSAGEPGM(MSG_HEATING_FAILED_LCD); // translatable
  531. SERIAL_ECHO_START;
  532. SERIAL_ECHOLNPGM(MSG_HEATING_FAILED);
  533. }
  534. else {
  535. watchmillis[e] = 0;
  536. }
  537. }
  538. #endif //WATCH_TEMP_PERIOD
  539. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  540. if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  541. disable_heater();
  542. _temp_error(0, PSTR(MSG_EXTRUDER_SWITCHED_OFF), PSTR(MSG_ERR_REDUNDANT_TEMP));
  543. }
  544. #endif //TEMP_SENSOR_1_AS_REDUNDANT
  545. } // Extruders Loop
  546. #if HAS_AUTO_FAN
  547. if (ms > extruder_autofan_last_check + 2500) { // only need to check fan state very infrequently
  548. checkExtruderAutoFans();
  549. extruder_autofan_last_check = ms;
  550. }
  551. #endif
  552. #ifndef PIDTEMPBED
  553. if (ms < previous_millis_bed_heater + BED_CHECK_INTERVAL) return;
  554. previous_millis_bed_heater = ms;
  555. #endif //PIDTEMPBED
  556. #if TEMP_SENSOR_BED != 0
  557. #if defined(THERMAL_RUNAWAY_PROTECTION_BED_PERIOD) && THERMAL_RUNAWAY_PROTECTION_BED_PERIOD > 0
  558. thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, 9, THERMAL_RUNAWAY_PROTECTION_BED_PERIOD, THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS);
  559. #endif
  560. #ifdef PIDTEMPBED
  561. float pid_output = get_pid_output_bed();
  562. soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
  563. #elif !defined(BED_LIMIT_SWITCHING)
  564. // Check if temperature is within the correct range
  565. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  566. soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
  567. }
  568. else {
  569. soft_pwm_bed = 0;
  570. WRITE_HEATER_BED(LOW);
  571. }
  572. #else //#ifdef BED_LIMIT_SWITCHING
  573. // Check if temperature is within the correct band
  574. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  575. if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
  576. soft_pwm_bed = 0;
  577. else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  578. soft_pwm_bed = MAX_BED_POWER >> 1;
  579. }
  580. else {
  581. soft_pwm_bed = 0;
  582. WRITE_HEATER_BED(LOW);
  583. }
  584. #endif
  585. #endif //TEMP_SENSOR_BED != 0
  586. // Control the extruder rate based on the width sensor
  587. #ifdef FILAMENT_SENSOR
  588. if (filament_sensor) {
  589. meas_shift_index = delay_index1 - meas_delay_cm;
  590. if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
  591. // Get the delayed info and add 100 to reconstitute to a percent of
  592. // the nominal filament diameter then square it to get an area
  593. meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
  594. float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
  595. if (vm < 0.01) vm = 0.01;
  596. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
  597. }
  598. #endif //FILAMENT_SENSOR
  599. }
  600. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  601. // Derived from RepRap FiveD extruder::getTemperature()
  602. // For hot end temperature measurement.
  603. static float analog2temp(int raw, uint8_t e) {
  604. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  605. if (e > EXTRUDERS)
  606. #else
  607. if (e >= EXTRUDERS)
  608. #endif
  609. {
  610. SERIAL_ERROR_START;
  611. SERIAL_ERROR((int)e);
  612. SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
  613. kill();
  614. return 0.0;
  615. }
  616. #ifdef HEATER_0_USES_MAX6675
  617. if (e == 0)
  618. {
  619. return 0.25 * raw;
  620. }
  621. #endif
  622. if(heater_ttbl_map[e] != NULL)
  623. {
  624. float celsius = 0;
  625. uint8_t i;
  626. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  627. for (i=1; i<heater_ttbllen_map[e]; i++)
  628. {
  629. if (PGM_RD_W((*tt)[i][0]) > raw)
  630. {
  631. celsius = PGM_RD_W((*tt)[i-1][1]) +
  632. (raw - PGM_RD_W((*tt)[i-1][0])) *
  633. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  634. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  635. break;
  636. }
  637. }
  638. // Overflow: Set to last value in the table
  639. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  640. return celsius;
  641. }
  642. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  643. }
  644. // Derived from RepRap FiveD extruder::getTemperature()
  645. // For bed temperature measurement.
  646. static float analog2tempBed(int raw) {
  647. #ifdef BED_USES_THERMISTOR
  648. float celsius = 0;
  649. byte i;
  650. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  651. {
  652. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  653. {
  654. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  655. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  656. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  657. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  658. break;
  659. }
  660. }
  661. // Overflow: Set to last value in the table
  662. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  663. return celsius;
  664. #elif defined BED_USES_AD595
  665. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  666. #else
  667. return 0;
  668. #endif
  669. }
  670. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  671. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  672. static void updateTemperaturesFromRawValues() {
  673. #ifdef HEATER_0_USES_MAX6675
  674. current_temperature_raw[0] = read_max6675();
  675. #endif
  676. for(uint8_t e = 0; e < EXTRUDERS; e++) {
  677. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  678. }
  679. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  680. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  681. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  682. #endif
  683. #if HAS_FILAMENT_SENSOR
  684. filament_width_meas = analog2widthFil();
  685. #endif
  686. //Reset the watchdog after we know we have a temperature measurement.
  687. watchdog_reset();
  688. CRITICAL_SECTION_START;
  689. temp_meas_ready = false;
  690. CRITICAL_SECTION_END;
  691. }
  692. #ifdef FILAMENT_SENSOR
  693. // Convert raw Filament Width to millimeters
  694. float analog2widthFil() {
  695. return current_raw_filwidth / 16383.0 * 5.0;
  696. //return current_raw_filwidth;
  697. }
  698. // Convert raw Filament Width to a ratio
  699. int widthFil_to_size_ratio() {
  700. float temp = filament_width_meas;
  701. if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
  702. else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT;
  703. return filament_width_nominal / temp * 100;
  704. }
  705. #endif
  706. void tp_init()
  707. {
  708. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  709. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  710. MCUCR=BIT(JTD);
  711. MCUCR=BIT(JTD);
  712. #endif
  713. // Finish init of mult extruder arrays
  714. for (int e = 0; e < EXTRUDERS; e++) {
  715. // populate with the first value
  716. maxttemp[e] = maxttemp[0];
  717. #ifdef PIDTEMP
  718. temp_iState_min[e] = 0.0;
  719. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  720. #endif //PIDTEMP
  721. #ifdef PIDTEMPBED
  722. temp_iState_min_bed = 0.0;
  723. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  724. #endif //PIDTEMPBED
  725. }
  726. #if HAS_HEATER_0
  727. SET_OUTPUT(HEATER_0_PIN);
  728. #endif
  729. #if HAS_HEATER_1
  730. SET_OUTPUT(HEATER_1_PIN);
  731. #endif
  732. #if HAS_HEATER_2
  733. SET_OUTPUT(HEATER_2_PIN);
  734. #endif
  735. #if HAS_HEATER_3
  736. SET_OUTPUT(HEATER_3_PIN);
  737. #endif
  738. #if HAS_HEATER_BED
  739. SET_OUTPUT(HEATER_BED_PIN);
  740. #endif
  741. #if HAS_FAN
  742. SET_OUTPUT(FAN_PIN);
  743. #ifdef FAST_PWM_FAN
  744. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  745. #endif
  746. #ifdef FAN_SOFT_PWM
  747. soft_pwm_fan = fanSpeedSoftPwm / 2;
  748. #endif
  749. #endif
  750. #ifdef HEATER_0_USES_MAX6675
  751. #ifndef SDSUPPORT
  752. OUT_WRITE(SCK_PIN, LOW);
  753. OUT_WRITE(MOSI_PIN, HIGH);
  754. OUT_WRITE(MISO_PIN, HIGH);
  755. #else
  756. pinMode(SS_PIN, OUTPUT);
  757. digitalWrite(SS_PIN, HIGH);
  758. #endif
  759. OUT_WRITE(MAX6675_SS,HIGH);
  760. #endif //HEATER_0_USES_MAX6675
  761. #ifdef DIDR2
  762. #define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0)
  763. #else
  764. #define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0)
  765. #endif
  766. // Set analog inputs
  767. ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07;
  768. DIDR0 = 0;
  769. #ifdef DIDR2
  770. DIDR2 = 0;
  771. #endif
  772. #if HAS_TEMP_0
  773. ANALOG_SELECT(TEMP_0_PIN);
  774. #endif
  775. #if HAS_TEMP_1
  776. ANALOG_SELECT(TEMP_1_PIN);
  777. #endif
  778. #if HAS_TEMP_2
  779. ANALOG_SELECT(TEMP_2_PIN);
  780. #endif
  781. #if HAS_TEMP_3
  782. ANALOG_SELECT(TEMP_3_PIN);
  783. #endif
  784. #if HAS_TEMP_BED
  785. ANALOG_SELECT(TEMP_BED_PIN);
  786. #endif
  787. #if HAS_FILAMENT_SENSOR
  788. ANALOG_SELECT(FILWIDTH_PIN);
  789. #endif
  790. // Use timer0 for temperature measurement
  791. // Interleave temperature interrupt with millies interrupt
  792. OCR0B = 128;
  793. TIMSK0 |= BIT(OCIE0B);
  794. // Wait for temperature measurement to settle
  795. delay(250);
  796. #define TEMP_MIN_ROUTINE(NR) \
  797. minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
  798. while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
  799. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  800. minttemp_raw[NR] += OVERSAMPLENR; \
  801. else \
  802. minttemp_raw[NR] -= OVERSAMPLENR; \
  803. }
  804. #define TEMP_MAX_ROUTINE(NR) \
  805. maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
  806. while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
  807. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  808. maxttemp_raw[NR] -= OVERSAMPLENR; \
  809. else \
  810. maxttemp_raw[NR] += OVERSAMPLENR; \
  811. }
  812. #ifdef HEATER_0_MINTEMP
  813. TEMP_MIN_ROUTINE(0);
  814. #endif
  815. #ifdef HEATER_0_MAXTEMP
  816. TEMP_MAX_ROUTINE(0);
  817. #endif
  818. #if EXTRUDERS > 1
  819. #ifdef HEATER_1_MINTEMP
  820. TEMP_MIN_ROUTINE(1);
  821. #endif
  822. #ifdef HEATER_1_MAXTEMP
  823. TEMP_MAX_ROUTINE(1);
  824. #endif
  825. #if EXTRUDERS > 2
  826. #ifdef HEATER_2_MINTEMP
  827. TEMP_MIN_ROUTINE(2);
  828. #endif
  829. #ifdef HEATER_2_MAXTEMP
  830. TEMP_MAX_ROUTINE(2);
  831. #endif
  832. #if EXTRUDERS > 3
  833. #ifdef HEATER_3_MINTEMP
  834. TEMP_MIN_ROUTINE(3);
  835. #endif
  836. #ifdef HEATER_3_MAXTEMP
  837. TEMP_MAX_ROUTINE(3);
  838. #endif
  839. #endif // EXTRUDERS > 3
  840. #endif // EXTRUDERS > 2
  841. #endif // EXTRUDERS > 1
  842. #ifdef BED_MINTEMP
  843. /* No bed MINTEMP error implemented?!? */ /*
  844. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  845. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  846. bed_minttemp_raw += OVERSAMPLENR;
  847. #else
  848. bed_minttemp_raw -= OVERSAMPLENR;
  849. #endif
  850. }
  851. */
  852. #endif //BED_MINTEMP
  853. #ifdef BED_MAXTEMP
  854. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  855. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  856. bed_maxttemp_raw -= OVERSAMPLENR;
  857. #else
  858. bed_maxttemp_raw += OVERSAMPLENR;
  859. #endif
  860. }
  861. #endif //BED_MAXTEMP
  862. }
  863. void setWatch() {
  864. #ifdef WATCH_TEMP_PERIOD
  865. unsigned long ms = millis();
  866. for (int e = 0; e < EXTRUDERS; e++) {
  867. if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2)) {
  868. watch_start_temp[e] = degHotend(e);
  869. watchmillis[e] = ms;
  870. }
  871. }
  872. #endif
  873. }
  874. #if defined(THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
  875. void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc)
  876. {
  877. /*
  878. SERIAL_ECHO_START;
  879. SERIAL_ECHO("Thermal Thermal Runaway Running. Heater ID:");
  880. SERIAL_ECHO(heater_id);
  881. SERIAL_ECHO(" ; State:");
  882. SERIAL_ECHO(*state);
  883. SERIAL_ECHO(" ; Timer:");
  884. SERIAL_ECHO(*timer);
  885. SERIAL_ECHO(" ; Temperature:");
  886. SERIAL_ECHO(temperature);
  887. SERIAL_ECHO(" ; Target Temp:");
  888. SERIAL_ECHO(target_temperature);
  889. SERIAL_ECHOLN("");
  890. */
  891. if ((target_temperature == 0) || thermal_runaway)
  892. {
  893. *state = 0;
  894. *timer = 0;
  895. return;
  896. }
  897. switch (*state)
  898. {
  899. case 0: // "Heater Inactive" state
  900. if (target_temperature > 0) *state = 1;
  901. break;
  902. case 1: // "First Heating" state
  903. if (temperature >= target_temperature) *state = 2;
  904. break;
  905. case 2: // "Temperature Stable" state
  906. {
  907. unsigned long ms = millis();
  908. if (temperature >= (target_temperature - hysteresis_degc))
  909. {
  910. *timer = ms;
  911. }
  912. else if ( (ms - *timer) > ((unsigned long) period_seconds) * 1000)
  913. {
  914. SERIAL_ERROR_START;
  915. SERIAL_ERRORLNPGM(MSG_THERMAL_RUNAWAY_STOP);
  916. SERIAL_ERRORLN((int)heater_id);
  917. LCD_ALERTMESSAGEPGM(MSG_THERMAL_RUNAWAY); // translatable
  918. thermal_runaway = true;
  919. while(1)
  920. {
  921. disable_heater();
  922. disable_x();
  923. disable_y();
  924. disable_z();
  925. disable_e0();
  926. disable_e1();
  927. disable_e2();
  928. disable_e3();
  929. manage_heater();
  930. lcd_update();
  931. }
  932. }
  933. } break;
  934. }
  935. }
  936. #endif //THERMAL_RUNAWAY_PROTECTION_PERIOD
  937. void disable_heater() {
  938. for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
  939. setTargetBed(0);
  940. #define DISABLE_HEATER(NR) { \
  941. target_temperature[NR] = 0; \
  942. soft_pwm[NR] = 0; \
  943. WRITE_HEATER_ ## NR (LOW); \
  944. }
  945. #if HAS_TEMP_0
  946. target_temperature[0] = 0;
  947. soft_pwm[0] = 0;
  948. WRITE_HEATER_0P(LOW); // Should HEATERS_PARALLEL apply here? Then change to DISABLE_HEATER(0)
  949. #endif
  950. #if EXTRUDERS > 1 && HAS_TEMP_1
  951. DISABLE_HEATER(1);
  952. #endif
  953. #if EXTRUDERS > 2 && HAS_TEMP_2
  954. DISABLE_HEATER(2);
  955. #endif
  956. #if EXTRUDERS > 3 && HAS_TEMP_3
  957. DISABLE_HEATER(3);
  958. #endif
  959. #if HAS_TEMP_BED
  960. target_temperature_bed = 0;
  961. soft_pwm_bed = 0;
  962. #if HAS_HEATER_BED
  963. WRITE_HEATER_BED(LOW);
  964. #endif
  965. #endif
  966. }
  967. #ifdef HEATER_0_USES_MAX6675
  968. #define MAX6675_HEAT_INTERVAL 250
  969. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  970. int max6675_temp = 2000;
  971. static int read_max6675() {
  972. unsigned long ms = millis();
  973. if (ms < max6675_previous_millis + MAX6675_HEAT_INTERVAL)
  974. return max6675_temp;
  975. max6675_previous_millis = ms;
  976. max6675_temp = 0;
  977. #ifdef PRR
  978. PRR &= ~BIT(PRSPI);
  979. #elif defined(PRR0)
  980. PRR0 &= ~BIT(PRSPI);
  981. #endif
  982. SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0);
  983. // enable TT_MAX6675
  984. WRITE(MAX6675_SS, 0);
  985. // ensure 100ns delay - a bit extra is fine
  986. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  987. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  988. // read MSB
  989. SPDR = 0;
  990. for (;(SPSR & BIT(SPIF)) == 0;);
  991. max6675_temp = SPDR;
  992. max6675_temp <<= 8;
  993. // read LSB
  994. SPDR = 0;
  995. for (;(SPSR & BIT(SPIF)) == 0;);
  996. max6675_temp |= SPDR;
  997. // disable TT_MAX6675
  998. WRITE(MAX6675_SS, 1);
  999. if (max6675_temp & 4) {
  1000. // thermocouple open
  1001. max6675_temp = 4000;
  1002. }
  1003. else {
  1004. max6675_temp = max6675_temp >> 3;
  1005. }
  1006. return max6675_temp;
  1007. }
  1008. #endif //HEATER_0_USES_MAX6675
  1009. /**
  1010. * Stages in the ISR loop
  1011. */
  1012. enum TempState {
  1013. PrepareTemp_0,
  1014. MeasureTemp_0,
  1015. PrepareTemp_BED,
  1016. MeasureTemp_BED,
  1017. PrepareTemp_1,
  1018. MeasureTemp_1,
  1019. PrepareTemp_2,
  1020. MeasureTemp_2,
  1021. PrepareTemp_3,
  1022. MeasureTemp_3,
  1023. Prepare_FILWIDTH,
  1024. Measure_FILWIDTH,
  1025. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  1026. };
  1027. static unsigned long raw_temp_value[4] = { 0 };
  1028. static unsigned long raw_temp_bed_value = 0;
  1029. static void set_current_temp_raw() {
  1030. #if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
  1031. current_temperature_raw[0] = raw_temp_value[0];
  1032. #endif
  1033. #if HAS_TEMP_1
  1034. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  1035. redundant_temperature_raw = raw_temp_value[1];
  1036. #else
  1037. current_temperature_raw[1] = raw_temp_value[1];
  1038. #endif
  1039. #if HAS_TEMP_2
  1040. current_temperature_raw[2] = raw_temp_value[2];
  1041. #if HAS_TEMP_3
  1042. current_temperature_raw[3] = raw_temp_value[3];
  1043. #endif
  1044. #endif
  1045. #endif
  1046. current_temperature_bed_raw = raw_temp_bed_value;
  1047. temp_meas_ready = true;
  1048. }
  1049. //
  1050. // Timer 0 is shared with millies
  1051. //
  1052. ISR(TIMER0_COMPB_vect) {
  1053. //these variables are only accesible from the ISR, but static, so they don't lose their value
  1054. static unsigned char temp_count = 0;
  1055. static TempState temp_state = StartupDelay;
  1056. static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
  1057. // Static members for each heater
  1058. #ifdef SLOW_PWM_HEATERS
  1059. static unsigned char slow_pwm_count = 0;
  1060. #define ISR_STATICS(n) \
  1061. static unsigned char soft_pwm_ ## n; \
  1062. static unsigned char state_heater_ ## n = 0; \
  1063. static unsigned char state_timer_heater_ ## n = 0
  1064. #else
  1065. #define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
  1066. #endif
  1067. // Statics per heater
  1068. ISR_STATICS(0);
  1069. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1070. ISR_STATICS(1);
  1071. #if EXTRUDERS > 2
  1072. ISR_STATICS(2);
  1073. #if EXTRUDERS > 3
  1074. ISR_STATICS(3);
  1075. #endif
  1076. #endif
  1077. #endif
  1078. #if HAS_HEATER_BED
  1079. ISR_STATICS(BED);
  1080. #endif
  1081. #if HAS_FILAMENT_SENSOR
  1082. static unsigned long raw_filwidth_value = 0;
  1083. #endif
  1084. #ifndef SLOW_PWM_HEATERS
  1085. /**
  1086. * standard PWM modulation
  1087. */
  1088. if (pwm_count == 0) {
  1089. soft_pwm_0 = soft_pwm[0];
  1090. if (soft_pwm_0 > 0) {
  1091. WRITE_HEATER_0(1);
  1092. }
  1093. else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
  1094. #if EXTRUDERS > 1
  1095. soft_pwm_1 = soft_pwm[1];
  1096. WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
  1097. #if EXTRUDERS > 2
  1098. soft_pwm_2 = soft_pwm[2];
  1099. WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
  1100. #if EXTRUDERS > 3
  1101. soft_pwm_3 = soft_pwm[3];
  1102. WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
  1103. #endif
  1104. #endif
  1105. #endif
  1106. #if HAS_HEATER_BED
  1107. soft_pwm_BED = soft_pwm_bed;
  1108. WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
  1109. #endif
  1110. #ifdef FAN_SOFT_PWM
  1111. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1112. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1113. #endif
  1114. }
  1115. if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); }
  1116. #if EXTRUDERS > 1
  1117. if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
  1118. #if EXTRUDERS > 2
  1119. if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
  1120. #if EXTRUDERS > 3
  1121. if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
  1122. #endif
  1123. #endif
  1124. #endif
  1125. #if HAS_HEATER_BED
  1126. if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
  1127. #endif
  1128. #ifdef FAN_SOFT_PWM
  1129. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1130. #endif
  1131. pwm_count += BIT(SOFT_PWM_SCALE);
  1132. pwm_count &= 0x7f;
  1133. #else // SLOW_PWM_HEATERS
  1134. /*
  1135. * SLOW PWM HEATERS
  1136. *
  1137. * for heaters drived by relay
  1138. */
  1139. #ifndef MIN_STATE_TIME
  1140. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1141. #endif
  1142. // Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
  1143. #define _SLOW_PWM_ROUTINE(NR, src) \
  1144. soft_pwm_ ## NR = src; \
  1145. if (soft_pwm_ ## NR > 0) { \
  1146. if (state_timer_heater_ ## NR == 0) { \
  1147. if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1148. state_heater_ ## NR = 1; \
  1149. WRITE_HEATER_ ## NR(1); \
  1150. } \
  1151. } \
  1152. else { \
  1153. if (state_timer_heater_ ## NR == 0) { \
  1154. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1155. state_heater_ ## NR = 0; \
  1156. WRITE_HEATER_ ## NR(0); \
  1157. } \
  1158. }
  1159. #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
  1160. #define PWM_OFF_ROUTINE(NR) \
  1161. if (soft_pwm_ ## NR < slow_pwm_count) { \
  1162. if (state_timer_heater_ ## NR == 0) { \
  1163. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1164. state_heater_ ## NR = 0; \
  1165. WRITE_HEATER_ ## NR (0); \
  1166. } \
  1167. }
  1168. if (slow_pwm_count == 0) {
  1169. SLOW_PWM_ROUTINE(0); // EXTRUDER 0
  1170. #if EXTRUDERS > 1
  1171. SLOW_PWM_ROUTINE(1); // EXTRUDER 1
  1172. #if EXTRUDERS > 2
  1173. SLOW_PWM_ROUTINE(2); // EXTRUDER 2
  1174. #if EXTRUDERS > 3
  1175. SLOW_PWM_ROUTINE(3); // EXTRUDER 3
  1176. #endif
  1177. #endif
  1178. #endif
  1179. #if HAS_HEATER_BED
  1180. _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
  1181. #endif
  1182. } // slow_pwm_count == 0
  1183. PWM_OFF_ROUTINE(0); // EXTRUDER 0
  1184. #if EXTRUDERS > 1
  1185. PWM_OFF_ROUTINE(1); // EXTRUDER 1
  1186. #if EXTRUDERS > 2
  1187. PWM_OFF_ROUTINE(2); // EXTRUDER 2
  1188. #if EXTRUDERS > 3
  1189. PWM_OFF_ROUTINE(3); // EXTRUDER 3
  1190. #endif
  1191. #endif
  1192. #endif
  1193. #if HAS_HEATER_BED
  1194. PWM_OFF_ROUTINE(BED); // BED
  1195. #endif
  1196. #ifdef FAN_SOFT_PWM
  1197. if (pwm_count == 0) {
  1198. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1199. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1200. }
  1201. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1202. #endif //FAN_SOFT_PWM
  1203. pwm_count += BIT(SOFT_PWM_SCALE);
  1204. pwm_count &= 0x7f;
  1205. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1206. if ((pwm_count % 64) == 0) {
  1207. slow_pwm_count++;
  1208. slow_pwm_count &= 0x7f;
  1209. // EXTRUDER 0
  1210. if (state_timer_heater_0 > 0) state_timer_heater_0--;
  1211. #if EXTRUDERS > 1 // EXTRUDER 1
  1212. if (state_timer_heater_1 > 0) state_timer_heater_1--;
  1213. #if EXTRUDERS > 2 // EXTRUDER 2
  1214. if (state_timer_heater_2 > 0) state_timer_heater_2--;
  1215. #if EXTRUDERS > 3 // EXTRUDER 3
  1216. if (state_timer_heater_3 > 0) state_timer_heater_3--;
  1217. #endif
  1218. #endif
  1219. #endif
  1220. #if HAS_HEATER_BED
  1221. if (state_timer_heater_BED > 0) state_timer_heater_BED--;
  1222. #endif
  1223. } // (pwm_count % 64) == 0
  1224. #endif // SLOW_PWM_HEATERS
  1225. #define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
  1226. #ifdef MUX5
  1227. #define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1228. #else
  1229. #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1230. #endif
  1231. switch(temp_state) {
  1232. case PrepareTemp_0:
  1233. #if HAS_TEMP_0
  1234. START_ADC(TEMP_0_PIN);
  1235. #endif
  1236. lcd_buttons_update();
  1237. temp_state = MeasureTemp_0;
  1238. break;
  1239. case MeasureTemp_0:
  1240. #if HAS_TEMP_0
  1241. raw_temp_value[0] += ADC;
  1242. #endif
  1243. temp_state = PrepareTemp_BED;
  1244. break;
  1245. case PrepareTemp_BED:
  1246. #if HAS_TEMP_BED
  1247. START_ADC(TEMP_BED_PIN);
  1248. #endif
  1249. lcd_buttons_update();
  1250. temp_state = MeasureTemp_BED;
  1251. break;
  1252. case MeasureTemp_BED:
  1253. #if HAS_TEMP_BED
  1254. raw_temp_bed_value += ADC;
  1255. #endif
  1256. temp_state = PrepareTemp_1;
  1257. break;
  1258. case PrepareTemp_1:
  1259. #if HAS_TEMP_1
  1260. START_ADC(TEMP_1_PIN);
  1261. #endif
  1262. lcd_buttons_update();
  1263. temp_state = MeasureTemp_1;
  1264. break;
  1265. case MeasureTemp_1:
  1266. #if HAS_TEMP_1
  1267. raw_temp_value[1] += ADC;
  1268. #endif
  1269. temp_state = PrepareTemp_2;
  1270. break;
  1271. case PrepareTemp_2:
  1272. #if HAS_TEMP_2
  1273. START_ADC(TEMP_2_PIN);
  1274. #endif
  1275. lcd_buttons_update();
  1276. temp_state = MeasureTemp_2;
  1277. break;
  1278. case MeasureTemp_2:
  1279. #if HAS_TEMP_2
  1280. raw_temp_value[2] += ADC;
  1281. #endif
  1282. temp_state = PrepareTemp_3;
  1283. break;
  1284. case PrepareTemp_3:
  1285. #if HAS_TEMP_3
  1286. START_ADC(TEMP_3_PIN);
  1287. #endif
  1288. lcd_buttons_update();
  1289. temp_state = MeasureTemp_3;
  1290. break;
  1291. case MeasureTemp_3:
  1292. #if HAS_TEMP_3
  1293. raw_temp_value[3] += ADC;
  1294. #endif
  1295. temp_state = Prepare_FILWIDTH;
  1296. break;
  1297. case Prepare_FILWIDTH:
  1298. #if HAS_FILAMENT_SENSOR
  1299. START_ADC(FILWIDTH_PIN);
  1300. #endif
  1301. lcd_buttons_update();
  1302. temp_state = Measure_FILWIDTH;
  1303. break;
  1304. case Measure_FILWIDTH:
  1305. #if HAS_FILAMENT_SENSOR
  1306. // raw_filwidth_value += ADC; //remove to use an IIR filter approach
  1307. if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
  1308. raw_filwidth_value -= (raw_filwidth_value>>7); //multiply raw_filwidth_value by 127/128
  1309. raw_filwidth_value += ((unsigned long)ADC<<7); //add new ADC reading
  1310. }
  1311. #endif
  1312. temp_state = PrepareTemp_0;
  1313. temp_count++;
  1314. break;
  1315. case StartupDelay:
  1316. temp_state = PrepareTemp_0;
  1317. break;
  1318. // default:
  1319. // SERIAL_ERROR_START;
  1320. // SERIAL_ERRORLNPGM("Temp measurement error!");
  1321. // break;
  1322. } // switch(temp_state)
  1323. if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
  1324. // Update the raw values if they've been read. Else we could be updating them during reading.
  1325. if (!temp_meas_ready) set_current_temp_raw();
  1326. // Filament Sensor - can be read any time since IIR filtering is used
  1327. #if HAS_FILAMENT_SENSOR
  1328. current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
  1329. #endif
  1330. temp_count = 0;
  1331. for (int i = 0; i < 4; i++) raw_temp_value[i] = 0;
  1332. raw_temp_bed_value = 0;
  1333. #ifndef HEATER_0_USES_MAX6675
  1334. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1335. #define GE0 <=
  1336. #else
  1337. #define GE0 >=
  1338. #endif
  1339. if (current_temperature_raw[0] GE0 maxttemp_raw[0]) max_temp_error(0);
  1340. if (minttemp_raw[0] GE0 current_temperature_raw[0]) min_temp_error(0);
  1341. #endif
  1342. #if EXTRUDERS > 1
  1343. #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
  1344. #define GE1 <=
  1345. #else
  1346. #define GE1 >=
  1347. #endif
  1348. if (current_temperature_raw[1] GE1 maxttemp_raw[1]) max_temp_error(1);
  1349. if (minttemp_raw[1] GE0 current_temperature_raw[1]) min_temp_error(1);
  1350. #if EXTRUDERS > 2
  1351. #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
  1352. #define GE2 <=
  1353. #else
  1354. #define GE2 >=
  1355. #endif
  1356. if (current_temperature_raw[2] GE2 maxttemp_raw[2]) max_temp_error(2);
  1357. if (minttemp_raw[2] GE0 current_temperature_raw[2]) min_temp_error(2);
  1358. #if EXTRUDERS > 3
  1359. #if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
  1360. #define GE3 <=
  1361. #else
  1362. #define GE3 >=
  1363. #endif
  1364. if (current_temperature_raw[3] GE3 maxttemp_raw[3]) max_temp_error(3);
  1365. if (minttemp_raw[3] GE0 current_temperature_raw[3]) min_temp_error(3);
  1366. #endif // EXTRUDERS > 3
  1367. #endif // EXTRUDERS > 2
  1368. #endif // EXTRUDERS > 1
  1369. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1370. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1371. #define GEBED <=
  1372. #else
  1373. #define GEBED >=
  1374. #endif
  1375. if (current_temperature_bed_raw GEBED bed_maxttemp_raw) {
  1376. target_temperature_bed = 0;
  1377. bed_max_temp_error();
  1378. }
  1379. #endif
  1380. } // temp_count >= OVERSAMPLENR
  1381. #ifdef BABYSTEPPING
  1382. for (uint8_t axis=X_AXIS; axis<=Z_AXIS; axis++) {
  1383. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1384. if (curTodo > 0) {
  1385. babystep(axis,/*fwd*/true);
  1386. babystepsTodo[axis]--; //less to do next time
  1387. }
  1388. else if(curTodo < 0) {
  1389. babystep(axis,/*fwd*/false);
  1390. babystepsTodo[axis]++; //less to do next time
  1391. }
  1392. }
  1393. #endif //BABYSTEPPING
  1394. }
  1395. #ifdef PIDTEMP
  1396. // Apply the scale factors to the PID values
  1397. float scalePID_i(float i) { return i * PID_dT; }
  1398. float unscalePID_i(float i) { return i / PID_dT; }
  1399. float scalePID_d(float d) { return d / PID_dT; }
  1400. float unscalePID_d(float d) { return d * PID_dT; }
  1401. #endif //PIDTEMP