My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

Marlin_main.cpp 155KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G31 - Dock sled (Z_PROBE_SLED only)
  67. // G32 - Undock sled (Z_PROBE_SLED only)
  68. // G90 - Use Absolute Coordinates
  69. // G91 - Use Relative Coordinates
  70. // G92 - Set current position to coordinates given
  71. // M Codes
  72. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  73. // M1 - Same as M0
  74. // M17 - Enable/Power all stepper motors
  75. // M18 - Disable all stepper motors; same as M84
  76. // M20 - List SD card
  77. // M21 - Init SD card
  78. // M22 - Release SD card
  79. // M23 - Select SD file (M23 filename.g)
  80. // M24 - Start/resume SD print
  81. // M25 - Pause SD print
  82. // M26 - Set SD position in bytes (M26 S12345)
  83. // M27 - Report SD print status
  84. // M28 - Start SD write (M28 filename.g)
  85. // M29 - Stop SD write
  86. // M30 - Delete file from SD (M30 filename.g)
  87. // M31 - Output time since last M109 or SD card start to serial
  88. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  89. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  90. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  91. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  92. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  93. // M80 - Turn on Power Supply
  94. // M81 - Turn off Power Supply
  95. // M82 - Set E codes absolute (default)
  96. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  97. // M84 - Disable steppers until next move,
  98. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  99. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  100. // M92 - Set axis_steps_per_unit - same syntax as G92
  101. // M104 - Set extruder target temp
  102. // M105 - Read current temp
  103. // M106 - Fan on
  104. // M107 - Fan off
  105. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  106. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  107. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  108. // M112 - Emergency stop
  109. // M114 - Output current position to serial port
  110. // M115 - Capabilities string
  111. // M117 - display message
  112. // M119 - Output Endstop status to serial port
  113. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  114. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  115. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  116. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  117. // M140 - Set bed target temp
  118. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  119. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  120. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  121. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  122. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  123. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  124. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  125. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  126. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  127. // M206 - set additional homing offset
  128. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  129. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  130. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  131. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  132. // M220 S<factor in percent>- set speed factor override percentage
  133. // M221 S<factor in percent>- set extrude factor override percentage
  134. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  135. // M240 - Trigger a camera to take a photograph
  136. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  137. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  138. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  139. // M301 - Set PID parameters P I and D
  140. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  141. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  142. // M304 - Set bed PID parameters P I and D
  143. // M400 - Finish all moves
  144. // M401 - Lower z-probe if present
  145. // M402 - Raise z-probe if present
  146. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  147. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  148. // M406 - Turn off Filament Sensor extrusion control
  149. // M407 - Displays measured filament diameter
  150. // M500 - stores parameters in EEPROM
  151. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  152. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  153. // M503 - print the current settings (from memory not from EEPROM)
  154. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  155. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  156. // M665 - set delta configurations
  157. // M666 - set delta endstop adjustment
  158. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  159. // M907 - Set digital trimpot motor current using axis codes.
  160. // M908 - Control digital trimpot directly.
  161. // M350 - Set microstepping mode.
  162. // M351 - Toggle MS1 MS2 pins directly.
  163. // ************ SCARA Specific - This can change to suit future G-code regulations
  164. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  165. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  166. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  167. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  168. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  169. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  170. //************* SCARA End ***************
  171. // M928 - Start SD logging (M928 filename.g) - ended by M29
  172. // M999 - Restart after being stopped by error
  173. //Stepper Movement Variables
  174. //===========================================================================
  175. //=============================imported variables============================
  176. //===========================================================================
  177. //===========================================================================
  178. //=============================public variables=============================
  179. //===========================================================================
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  185. int feedmultiply=100; //100->1 200->2
  186. int saved_feedmultiply;
  187. int extrudemultiply=100; //100->1 200->2
  188. int extruder_multiply[EXTRUDERS] = {100
  189. #if EXTRUDERS > 1
  190. , 100
  191. #if EXTRUDERS > 2
  192. , 100
  193. #endif
  194. #endif
  195. };
  196. bool volumetric_enabled = false;
  197. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  198. #if EXTRUDERS > 1
  199. , DEFAULT_NOMINAL_FILAMENT_DIA
  200. #if EXTRUDERS > 2
  201. , DEFAULT_NOMINAL_FILAMENT_DIA
  202. #endif
  203. #endif
  204. };
  205. float volumetric_multiplier[EXTRUDERS] = {1.0
  206. #if EXTRUDERS > 1
  207. , 1.0
  208. #if EXTRUDERS > 2
  209. , 1.0
  210. #endif
  211. #endif
  212. };
  213. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  214. float add_homing[3]={0,0,0};
  215. #ifdef DELTA
  216. float endstop_adj[3]={0,0,0};
  217. #endif
  218. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  219. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  220. bool axis_known_position[3] = {false, false, false};
  221. float zprobe_zoffset;
  222. // Extruder offset
  223. #if EXTRUDERS > 1
  224. #ifndef DUAL_X_CARRIAGE
  225. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  226. #else
  227. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  228. #endif
  229. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  230. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  231. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  232. #endif
  233. };
  234. #endif
  235. uint8_t active_extruder = 0;
  236. int fanSpeed=0;
  237. #ifdef SERVO_ENDSTOPS
  238. int servo_endstops[] = SERVO_ENDSTOPS;
  239. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  240. #endif
  241. #ifdef BARICUDA
  242. int ValvePressure=0;
  243. int EtoPPressure=0;
  244. #endif
  245. #ifdef FWRETRACT
  246. bool autoretract_enabled=false;
  247. bool retracted[EXTRUDERS]={false
  248. #if EXTRUDERS > 1
  249. , false
  250. #if EXTRUDERS > 2
  251. , false
  252. #endif
  253. #endif
  254. };
  255. bool retracted_swap[EXTRUDERS]={false
  256. #if EXTRUDERS > 1
  257. , false
  258. #if EXTRUDERS > 2
  259. , false
  260. #endif
  261. #endif
  262. };
  263. float retract_length = RETRACT_LENGTH;
  264. float retract_length_swap = RETRACT_LENGTH_SWAP;
  265. float retract_feedrate = RETRACT_FEEDRATE;
  266. float retract_zlift = RETRACT_ZLIFT;
  267. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  268. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  269. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  270. #endif
  271. #ifdef ULTIPANEL
  272. #ifdef PS_DEFAULT_OFF
  273. bool powersupply = false;
  274. #else
  275. bool powersupply = true;
  276. #endif
  277. #endif
  278. #ifdef DELTA
  279. float delta[3] = {0.0, 0.0, 0.0};
  280. #define SIN_60 0.8660254037844386
  281. #define COS_60 0.5
  282. // these are the default values, can be overriden with M665
  283. float delta_radius= DELTA_RADIUS;
  284. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  285. float delta_tower1_y= -COS_60*delta_radius;
  286. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  287. float delta_tower2_y= -COS_60*delta_radius;
  288. float delta_tower3_x= 0.0; // back middle tower
  289. float delta_tower3_y= delta_radius;
  290. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  291. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  292. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  293. #endif
  294. #ifdef SCARA // Build size scaling
  295. float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
  296. #endif
  297. bool cancel_heatup = false ;
  298. #ifdef FILAMENT_SENSOR
  299. //Variables for Filament Sensor input
  300. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  301. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  302. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  303. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  304. int delay_index1=0; //index into ring buffer
  305. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  306. float delay_dist=0; //delay distance counter
  307. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  308. #endif
  309. const char errormagic[] PROGMEM = "Error:";
  310. const char echomagic[] PROGMEM = "echo:";
  311. //===========================================================================
  312. //=============================Private Variables=============================
  313. //===========================================================================
  314. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  315. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  316. #ifndef DELTA
  317. static float delta[3] = {0.0, 0.0, 0.0};
  318. #endif
  319. static float offset[3] = {0.0, 0.0, 0.0};
  320. static bool home_all_axis = true;
  321. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  322. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  323. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  324. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  325. static bool fromsd[BUFSIZE];
  326. static int bufindr = 0;
  327. static int bufindw = 0;
  328. static int buflen = 0;
  329. //static int i = 0;
  330. static char serial_char;
  331. static int serial_count = 0;
  332. static boolean comment_mode = false;
  333. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  334. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  335. //static float tt = 0;
  336. //static float bt = 0;
  337. //Inactivity shutdown variables
  338. static unsigned long previous_millis_cmd = 0;
  339. static unsigned long max_inactive_time = 0;
  340. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  341. unsigned long starttime=0;
  342. unsigned long stoptime=0;
  343. static uint8_t tmp_extruder;
  344. bool Stopped=false;
  345. #if NUM_SERVOS > 0
  346. Servo servos[NUM_SERVOS];
  347. #endif
  348. bool CooldownNoWait = true;
  349. bool target_direction;
  350. //Insert variables if CHDK is defined
  351. #ifdef CHDK
  352. unsigned long chdkHigh = 0;
  353. boolean chdkActive = false;
  354. #endif
  355. //===========================================================================
  356. //=============================Routines======================================
  357. //===========================================================================
  358. void get_arc_coordinates();
  359. bool setTargetedHotend(int code);
  360. void serial_echopair_P(const char *s_P, float v)
  361. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  362. void serial_echopair_P(const char *s_P, double v)
  363. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  364. void serial_echopair_P(const char *s_P, unsigned long v)
  365. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  366. #ifdef SDSUPPORT
  367. #include "SdFatUtil.h"
  368. int freeMemory() { return SdFatUtil::FreeRam(); }
  369. #else
  370. extern "C" {
  371. extern unsigned int __bss_end;
  372. extern unsigned int __heap_start;
  373. extern void *__brkval;
  374. int freeMemory() {
  375. int free_memory;
  376. if ((int)__brkval == 0)
  377. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  378. else
  379. free_memory = ((int)&free_memory) - ((int)__brkval);
  380. return free_memory;
  381. }
  382. }
  383. #endif //!SDSUPPORT
  384. //adds an command to the main command buffer
  385. //thats really done in a non-safe way.
  386. //needs overworking someday
  387. void enquecommand(const char *cmd)
  388. {
  389. if(buflen < BUFSIZE)
  390. {
  391. //this is dangerous if a mixing of serial and this happens
  392. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  393. SERIAL_ECHO_START;
  394. SERIAL_ECHOPGM(MSG_Enqueing);
  395. SERIAL_ECHO(cmdbuffer[bufindw]);
  396. SERIAL_ECHOLNPGM("\"");
  397. bufindw= (bufindw + 1)%BUFSIZE;
  398. buflen += 1;
  399. }
  400. }
  401. void enquecommand_P(const char *cmd)
  402. {
  403. if(buflen < BUFSIZE)
  404. {
  405. //this is dangerous if a mixing of serial and this happens
  406. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  407. SERIAL_ECHO_START;
  408. SERIAL_ECHOPGM(MSG_Enqueing);
  409. SERIAL_ECHO(cmdbuffer[bufindw]);
  410. SERIAL_ECHOLNPGM("\"");
  411. bufindw= (bufindw + 1)%BUFSIZE;
  412. buflen += 1;
  413. }
  414. }
  415. void setup_killpin()
  416. {
  417. #if defined(KILL_PIN) && KILL_PIN > -1
  418. SET_INPUT(KILL_PIN);
  419. WRITE(KILL_PIN,HIGH);
  420. #endif
  421. }
  422. // Set home pin
  423. void setup_homepin(void)
  424. {
  425. #if defined(HOME_PIN) && HOME_PIN > -1
  426. SET_INPUT(HOME_PIN);
  427. WRITE(HOME_PIN,HIGH);
  428. #endif
  429. }
  430. void setup_photpin()
  431. {
  432. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  433. SET_OUTPUT(PHOTOGRAPH_PIN);
  434. WRITE(PHOTOGRAPH_PIN, LOW);
  435. #endif
  436. }
  437. void setup_powerhold()
  438. {
  439. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  440. SET_OUTPUT(SUICIDE_PIN);
  441. WRITE(SUICIDE_PIN, HIGH);
  442. #endif
  443. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  444. SET_OUTPUT(PS_ON_PIN);
  445. #if defined(PS_DEFAULT_OFF)
  446. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  447. #else
  448. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  449. #endif
  450. #endif
  451. }
  452. void suicide()
  453. {
  454. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  455. SET_OUTPUT(SUICIDE_PIN);
  456. WRITE(SUICIDE_PIN, LOW);
  457. #endif
  458. }
  459. void servo_init()
  460. {
  461. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  462. servos[0].attach(SERVO0_PIN);
  463. #endif
  464. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  465. servos[1].attach(SERVO1_PIN);
  466. #endif
  467. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  468. servos[2].attach(SERVO2_PIN);
  469. #endif
  470. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  471. servos[3].attach(SERVO3_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 5)
  474. #error "TODO: enter initalisation code for more servos"
  475. #endif
  476. // Set position of Servo Endstops that are defined
  477. #ifdef SERVO_ENDSTOPS
  478. for(int8_t i = 0; i < 3; i++)
  479. {
  480. if(servo_endstops[i] > -1) {
  481. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  482. }
  483. }
  484. #endif
  485. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  486. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  487. servos[servo_endstops[Z_AXIS]].detach();
  488. #endif
  489. }
  490. void setup()
  491. {
  492. setup_killpin();
  493. setup_powerhold();
  494. MYSERIAL.begin(BAUDRATE);
  495. SERIAL_PROTOCOLLNPGM("start");
  496. SERIAL_ECHO_START;
  497. // Check startup - does nothing if bootloader sets MCUSR to 0
  498. byte mcu = MCUSR;
  499. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  500. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  501. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  502. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  503. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  504. MCUSR=0;
  505. SERIAL_ECHOPGM(MSG_MARLIN);
  506. SERIAL_ECHOLNPGM(VERSION_STRING);
  507. #ifdef STRING_VERSION_CONFIG_H
  508. #ifdef STRING_CONFIG_H_AUTHOR
  509. SERIAL_ECHO_START;
  510. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  511. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  512. SERIAL_ECHOPGM(MSG_AUTHOR);
  513. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  514. SERIAL_ECHOPGM("Compiled: ");
  515. SERIAL_ECHOLNPGM(__DATE__);
  516. #endif
  517. #endif
  518. SERIAL_ECHO_START;
  519. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  520. SERIAL_ECHO(freeMemory());
  521. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  522. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  523. for(int8_t i = 0; i < BUFSIZE; i++)
  524. {
  525. fromsd[i] = false;
  526. }
  527. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  528. Config_RetrieveSettings();
  529. tp_init(); // Initialize temperature loop
  530. plan_init(); // Initialize planner;
  531. watchdog_init();
  532. st_init(); // Initialize stepper, this enables interrupts!
  533. setup_photpin();
  534. servo_init();
  535. lcd_init();
  536. _delay_ms(1000); // wait 1sec to display the splash screen
  537. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  538. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  539. #endif
  540. #ifdef DIGIPOT_I2C
  541. digipot_i2c_init();
  542. #endif
  543. #ifdef Z_PROBE_SLED
  544. pinMode(SERVO0_PIN, OUTPUT);
  545. digitalWrite(SERVO0_PIN, LOW); // turn it off
  546. #endif // Z_PROBE_SLED
  547. setup_homepin();
  548. }
  549. void loop()
  550. {
  551. if(buflen < (BUFSIZE-1))
  552. get_command();
  553. #ifdef SDSUPPORT
  554. card.checkautostart(false);
  555. #endif
  556. if(buflen)
  557. {
  558. #ifdef SDSUPPORT
  559. if(card.saving)
  560. {
  561. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  562. {
  563. card.write_command(cmdbuffer[bufindr]);
  564. if(card.logging)
  565. {
  566. process_commands();
  567. }
  568. else
  569. {
  570. SERIAL_PROTOCOLLNPGM(MSG_OK);
  571. }
  572. }
  573. else
  574. {
  575. card.closefile();
  576. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  577. }
  578. }
  579. else
  580. {
  581. process_commands();
  582. }
  583. #else
  584. process_commands();
  585. #endif //SDSUPPORT
  586. buflen = (buflen-1);
  587. bufindr = (bufindr + 1)%BUFSIZE;
  588. }
  589. //check heater every n milliseconds
  590. manage_heater();
  591. manage_inactivity();
  592. checkHitEndstops();
  593. lcd_update();
  594. }
  595. void get_command()
  596. {
  597. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  598. serial_char = MYSERIAL.read();
  599. if(serial_char == '\n' ||
  600. serial_char == '\r' ||
  601. (serial_char == ':' && comment_mode == false) ||
  602. serial_count >= (MAX_CMD_SIZE - 1) )
  603. {
  604. if(!serial_count) { //if empty line
  605. comment_mode = false; //for new command
  606. return;
  607. }
  608. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  609. if(!comment_mode){
  610. comment_mode = false; //for new command
  611. fromsd[bufindw] = false;
  612. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  613. {
  614. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  615. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  616. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  617. SERIAL_ERROR_START;
  618. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  619. SERIAL_ERRORLN(gcode_LastN);
  620. //Serial.println(gcode_N);
  621. FlushSerialRequestResend();
  622. serial_count = 0;
  623. return;
  624. }
  625. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  626. {
  627. byte checksum = 0;
  628. byte count = 0;
  629. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  630. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  631. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  632. SERIAL_ERROR_START;
  633. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  634. SERIAL_ERRORLN(gcode_LastN);
  635. FlushSerialRequestResend();
  636. serial_count = 0;
  637. return;
  638. }
  639. //if no errors, continue parsing
  640. }
  641. else
  642. {
  643. SERIAL_ERROR_START;
  644. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  645. SERIAL_ERRORLN(gcode_LastN);
  646. FlushSerialRequestResend();
  647. serial_count = 0;
  648. return;
  649. }
  650. gcode_LastN = gcode_N;
  651. //if no errors, continue parsing
  652. }
  653. else // if we don't receive 'N' but still see '*'
  654. {
  655. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  656. {
  657. SERIAL_ERROR_START;
  658. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  659. SERIAL_ERRORLN(gcode_LastN);
  660. serial_count = 0;
  661. return;
  662. }
  663. }
  664. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  665. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  666. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  667. case 0:
  668. case 1:
  669. case 2:
  670. case 3:
  671. if (Stopped == true) {
  672. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  673. LCD_MESSAGEPGM(MSG_STOPPED);
  674. }
  675. break;
  676. default:
  677. break;
  678. }
  679. }
  680. //If command was e-stop process now
  681. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  682. kill();
  683. bufindw = (bufindw + 1)%BUFSIZE;
  684. buflen += 1;
  685. }
  686. serial_count = 0; //clear buffer
  687. }
  688. else
  689. {
  690. if(serial_char == ';') comment_mode = true;
  691. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  692. }
  693. }
  694. #ifdef SDSUPPORT
  695. if(!card.sdprinting || serial_count!=0){
  696. return;
  697. }
  698. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  699. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  700. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  701. static bool stop_buffering=false;
  702. if(buflen==0) stop_buffering=false;
  703. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  704. int16_t n=card.get();
  705. serial_char = (char)n;
  706. if(serial_char == '\n' ||
  707. serial_char == '\r' ||
  708. (serial_char == '#' && comment_mode == false) ||
  709. (serial_char == ':' && comment_mode == false) ||
  710. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  711. {
  712. if(card.eof()){
  713. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  714. stoptime=millis();
  715. char time[30];
  716. unsigned long t=(stoptime-starttime)/1000;
  717. int hours, minutes;
  718. minutes=(t/60)%60;
  719. hours=t/60/60;
  720. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  721. SERIAL_ECHO_START;
  722. SERIAL_ECHOLN(time);
  723. lcd_setstatus(time);
  724. card.printingHasFinished();
  725. card.checkautostart(true);
  726. }
  727. if(serial_char=='#')
  728. stop_buffering=true;
  729. if(!serial_count)
  730. {
  731. comment_mode = false; //for new command
  732. return; //if empty line
  733. }
  734. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  735. // if(!comment_mode){
  736. fromsd[bufindw] = true;
  737. buflen += 1;
  738. bufindw = (bufindw + 1)%BUFSIZE;
  739. // }
  740. comment_mode = false; //for new command
  741. serial_count = 0; //clear buffer
  742. }
  743. else
  744. {
  745. if(serial_char == ';') comment_mode = true;
  746. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  747. }
  748. }
  749. #endif //SDSUPPORT
  750. }
  751. float code_value()
  752. {
  753. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  754. }
  755. long code_value_long()
  756. {
  757. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  758. }
  759. bool code_seen(char code)
  760. {
  761. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  762. return (strchr_pointer != NULL); //Return True if a character was found
  763. }
  764. #define DEFINE_PGM_READ_ANY(type, reader) \
  765. static inline type pgm_read_any(const type *p) \
  766. { return pgm_read_##reader##_near(p); }
  767. DEFINE_PGM_READ_ANY(float, float);
  768. DEFINE_PGM_READ_ANY(signed char, byte);
  769. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  770. static const PROGMEM type array##_P[3] = \
  771. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  772. static inline type array(int axis) \
  773. { return pgm_read_any(&array##_P[axis]); }
  774. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  775. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  776. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  777. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  778. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  779. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  780. #ifdef DUAL_X_CARRIAGE
  781. #if EXTRUDERS == 1 || defined(COREXY) \
  782. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  783. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  784. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  785. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  786. #endif
  787. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  788. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  789. #endif
  790. #define DXC_FULL_CONTROL_MODE 0
  791. #define DXC_AUTO_PARK_MODE 1
  792. #define DXC_DUPLICATION_MODE 2
  793. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  794. static float x_home_pos(int extruder) {
  795. if (extruder == 0)
  796. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  797. else
  798. // In dual carriage mode the extruder offset provides an override of the
  799. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  800. // This allow soft recalibration of the second extruder offset position without firmware reflash
  801. // (through the M218 command).
  802. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  803. }
  804. static int x_home_dir(int extruder) {
  805. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  806. }
  807. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  808. static bool active_extruder_parked = false; // used in mode 1 & 2
  809. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  810. static unsigned long delayed_move_time = 0; // used in mode 1
  811. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  812. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  813. bool extruder_duplication_enabled = false; // used in mode 2
  814. #endif //DUAL_X_CARRIAGE
  815. static void axis_is_at_home(int axis) {
  816. #ifdef DUAL_X_CARRIAGE
  817. if (axis == X_AXIS) {
  818. if (active_extruder != 0) {
  819. current_position[X_AXIS] = x_home_pos(active_extruder);
  820. min_pos[X_AXIS] = X2_MIN_POS;
  821. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  822. return;
  823. }
  824. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  825. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  826. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  827. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  828. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  829. return;
  830. }
  831. }
  832. #endif
  833. #ifdef SCARA
  834. float homeposition[3];
  835. char i;
  836. if (axis < 2)
  837. {
  838. for (i=0; i<3; i++)
  839. {
  840. homeposition[i] = base_home_pos(i);
  841. }
  842. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  843. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  844. // Works out real Homeposition angles using inverse kinematics,
  845. // and calculates homing offset using forward kinematics
  846. calculate_delta(homeposition);
  847. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  848. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  849. for (i=0; i<2; i++)
  850. {
  851. delta[i] -= add_homing[i];
  852. }
  853. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  854. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  855. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  856. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  857. calculate_SCARA_forward_Transform(delta);
  858. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  859. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  860. current_position[axis] = delta[axis];
  861. // SCARA home positions are based on configuration since the actual limits are determined by the
  862. // inverse kinematic transform.
  863. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  864. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  865. }
  866. else
  867. {
  868. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  869. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  870. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  871. }
  872. #else
  873. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  874. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  875. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  876. #endif
  877. }
  878. #ifdef ENABLE_AUTO_BED_LEVELING
  879. #ifdef AUTO_BED_LEVELING_GRID
  880. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  881. {
  882. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  883. planeNormal.debug("planeNormal");
  884. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  885. //bedLevel.debug("bedLevel");
  886. //plan_bed_level_matrix.debug("bed level before");
  887. //vector_3 uncorrected_position = plan_get_position_mm();
  888. //uncorrected_position.debug("position before");
  889. vector_3 corrected_position = plan_get_position();
  890. // corrected_position.debug("position after");
  891. current_position[X_AXIS] = corrected_position.x;
  892. current_position[Y_AXIS] = corrected_position.y;
  893. current_position[Z_AXIS] = corrected_position.z;
  894. // put the bed at 0 so we don't go below it.
  895. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  896. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  897. }
  898. #else // not AUTO_BED_LEVELING_GRID
  899. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  900. plan_bed_level_matrix.set_to_identity();
  901. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  902. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  903. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  904. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  905. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  906. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  907. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  908. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  909. vector_3 corrected_position = plan_get_position();
  910. current_position[X_AXIS] = corrected_position.x;
  911. current_position[Y_AXIS] = corrected_position.y;
  912. current_position[Z_AXIS] = corrected_position.z;
  913. // put the bed at 0 so we don't go below it.
  914. current_position[Z_AXIS] = zprobe_zoffset;
  915. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  916. }
  917. #endif // AUTO_BED_LEVELING_GRID
  918. static void run_z_probe() {
  919. plan_bed_level_matrix.set_to_identity();
  920. feedrate = homing_feedrate[Z_AXIS];
  921. // move down until you find the bed
  922. float zPosition = -10;
  923. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  924. st_synchronize();
  925. // we have to let the planner know where we are right now as it is not where we said to go.
  926. zPosition = st_get_position_mm(Z_AXIS);
  927. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  928. // move up the retract distance
  929. zPosition += home_retract_mm(Z_AXIS);
  930. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  931. st_synchronize();
  932. // move back down slowly to find bed
  933. feedrate = homing_feedrate[Z_AXIS]/4;
  934. zPosition -= home_retract_mm(Z_AXIS) * 2;
  935. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  936. st_synchronize();
  937. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  938. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  939. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  940. }
  941. static void do_blocking_move_to(float x, float y, float z) {
  942. float oldFeedRate = feedrate;
  943. feedrate = homing_feedrate[Z_AXIS];
  944. current_position[Z_AXIS] = z;
  945. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  946. st_synchronize();
  947. feedrate = XY_TRAVEL_SPEED;
  948. current_position[X_AXIS] = x;
  949. current_position[Y_AXIS] = y;
  950. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  951. st_synchronize();
  952. feedrate = oldFeedRate;
  953. }
  954. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  955. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  956. }
  957. static void setup_for_endstop_move() {
  958. saved_feedrate = feedrate;
  959. saved_feedmultiply = feedmultiply;
  960. feedmultiply = 100;
  961. previous_millis_cmd = millis();
  962. enable_endstops(true);
  963. }
  964. static void clean_up_after_endstop_move() {
  965. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  966. enable_endstops(false);
  967. #endif
  968. feedrate = saved_feedrate;
  969. feedmultiply = saved_feedmultiply;
  970. previous_millis_cmd = millis();
  971. }
  972. static void engage_z_probe() {
  973. // Engage Z Servo endstop if enabled
  974. #ifdef SERVO_ENDSTOPS
  975. if (servo_endstops[Z_AXIS] > -1) {
  976. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  977. servos[servo_endstops[Z_AXIS]].attach(0);
  978. #endif
  979. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  980. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  981. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  982. servos[servo_endstops[Z_AXIS]].detach();
  983. #endif
  984. }
  985. #endif
  986. }
  987. static void retract_z_probe() {
  988. // Retract Z Servo endstop if enabled
  989. #ifdef SERVO_ENDSTOPS
  990. if (servo_endstops[Z_AXIS] > -1) {
  991. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  992. servos[servo_endstops[Z_AXIS]].attach(0);
  993. #endif
  994. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  995. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  996. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  997. servos[servo_endstops[Z_AXIS]].detach();
  998. #endif
  999. }
  1000. #endif
  1001. }
  1002. /// Probe bed height at position (x,y), returns the measured z value
  1003. static float probe_pt(float x, float y, float z_before, int retract_action=0) {
  1004. // move to right place
  1005. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1006. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1007. #ifndef Z_PROBE_SLED
  1008. if ((retract_action==0) || (retract_action==1))
  1009. engage_z_probe(); // Engage Z Servo endstop if available
  1010. #endif // Z_PROBE_SLED
  1011. run_z_probe();
  1012. float measured_z = current_position[Z_AXIS];
  1013. #ifndef Z_PROBE_SLED
  1014. if ((retract_action==0) || (retract_action==3))
  1015. retract_z_probe();
  1016. #endif // Z_PROBE_SLED
  1017. SERIAL_PROTOCOLPGM(MSG_BED);
  1018. SERIAL_PROTOCOLPGM(" x: ");
  1019. SERIAL_PROTOCOL(x);
  1020. SERIAL_PROTOCOLPGM(" y: ");
  1021. SERIAL_PROTOCOL(y);
  1022. SERIAL_PROTOCOLPGM(" z: ");
  1023. SERIAL_PROTOCOL(measured_z);
  1024. SERIAL_PROTOCOLPGM("\n");
  1025. return measured_z;
  1026. }
  1027. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1028. static void homeaxis(int axis) {
  1029. #define HOMEAXIS_DO(LETTER) \
  1030. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1031. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1032. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1033. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1034. 0) {
  1035. int axis_home_dir = home_dir(axis);
  1036. #ifdef DUAL_X_CARRIAGE
  1037. if (axis == X_AXIS)
  1038. axis_home_dir = x_home_dir(active_extruder);
  1039. #endif
  1040. current_position[axis] = 0;
  1041. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1042. #ifndef Z_PROBE_SLED
  1043. // Engage Servo endstop if enabled
  1044. #ifdef SERVO_ENDSTOPS
  1045. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1046. if (axis==Z_AXIS) {
  1047. engage_z_probe();
  1048. }
  1049. else
  1050. #endif
  1051. if (servo_endstops[axis] > -1) {
  1052. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1053. }
  1054. #endif
  1055. #endif // Z_PROBE_SLED
  1056. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1057. feedrate = homing_feedrate[axis];
  1058. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1059. st_synchronize();
  1060. current_position[axis] = 0;
  1061. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1062. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1063. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1064. st_synchronize();
  1065. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1066. #ifdef DELTA
  1067. feedrate = homing_feedrate[axis]/10;
  1068. #else
  1069. feedrate = homing_feedrate[axis]/2 ;
  1070. #endif
  1071. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1072. st_synchronize();
  1073. #ifdef DELTA
  1074. // retrace by the amount specified in endstop_adj
  1075. if (endstop_adj[axis] * axis_home_dir < 0) {
  1076. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1077. destination[axis] = endstop_adj[axis];
  1078. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1079. st_synchronize();
  1080. }
  1081. #endif
  1082. axis_is_at_home(axis);
  1083. destination[axis] = current_position[axis];
  1084. feedrate = 0.0;
  1085. endstops_hit_on_purpose();
  1086. axis_known_position[axis] = true;
  1087. // Retract Servo endstop if enabled
  1088. #ifdef SERVO_ENDSTOPS
  1089. if (servo_endstops[axis] > -1) {
  1090. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1091. }
  1092. #endif
  1093. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1094. #ifndef Z_PROBE_SLED
  1095. if (axis==Z_AXIS) retract_z_probe();
  1096. #endif
  1097. #endif
  1098. }
  1099. }
  1100. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1101. void refresh_cmd_timeout(void)
  1102. {
  1103. previous_millis_cmd = millis();
  1104. }
  1105. #ifdef FWRETRACT
  1106. void retract(bool retracting, bool swapretract = false) {
  1107. if(retracting && !retracted[active_extruder]) {
  1108. destination[X_AXIS]=current_position[X_AXIS];
  1109. destination[Y_AXIS]=current_position[Y_AXIS];
  1110. destination[Z_AXIS]=current_position[Z_AXIS];
  1111. destination[E_AXIS]=current_position[E_AXIS];
  1112. if (swapretract) {
  1113. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1114. } else {
  1115. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1116. }
  1117. plan_set_e_position(current_position[E_AXIS]);
  1118. float oldFeedrate = feedrate;
  1119. feedrate=retract_feedrate*60;
  1120. retracted[active_extruder]=true;
  1121. prepare_move();
  1122. if(retract_zlift > 0.01) {
  1123. current_position[Z_AXIS]-=retract_zlift;
  1124. #ifdef DELTA
  1125. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1126. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1127. #else
  1128. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1129. #endif
  1130. prepare_move();
  1131. }
  1132. feedrate = oldFeedrate;
  1133. } else if(!retracting && retracted[active_extruder]) {
  1134. destination[X_AXIS]=current_position[X_AXIS];
  1135. destination[Y_AXIS]=current_position[Y_AXIS];
  1136. destination[Z_AXIS]=current_position[Z_AXIS];
  1137. destination[E_AXIS]=current_position[E_AXIS];
  1138. if(retract_zlift > 0.01) {
  1139. current_position[Z_AXIS]+=retract_zlift;
  1140. #ifdef DELTA
  1141. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1142. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1143. #else
  1144. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1145. #endif
  1146. //prepare_move();
  1147. }
  1148. if (swapretract) {
  1149. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1150. } else {
  1151. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1152. }
  1153. plan_set_e_position(current_position[E_AXIS]);
  1154. float oldFeedrate = feedrate;
  1155. feedrate=retract_recover_feedrate*60;
  1156. retracted[active_extruder]=false;
  1157. prepare_move();
  1158. feedrate = oldFeedrate;
  1159. }
  1160. } //retract
  1161. #endif //FWRETRACT
  1162. #ifdef Z_PROBE_SLED
  1163. //
  1164. // Method to dock/undock a sled designed by Charles Bell.
  1165. //
  1166. // dock[in] If true, move to MAX_X and engage the electromagnet
  1167. // offset[in] The additional distance to move to adjust docking location
  1168. //
  1169. static void dock_sled(bool dock, int offset=0) {
  1170. int z_loc;
  1171. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1172. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1173. SERIAL_ECHO_START;
  1174. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1175. return;
  1176. }
  1177. if (dock) {
  1178. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1179. current_position[Y_AXIS],
  1180. current_position[Z_AXIS]);
  1181. // turn off magnet
  1182. digitalWrite(SERVO0_PIN, LOW);
  1183. } else {
  1184. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1185. z_loc = Z_RAISE_BEFORE_PROBING;
  1186. else
  1187. z_loc = current_position[Z_AXIS];
  1188. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1189. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1190. // turn on magnet
  1191. digitalWrite(SERVO0_PIN, HIGH);
  1192. }
  1193. }
  1194. #endif
  1195. void process_commands()
  1196. {
  1197. unsigned long codenum; //throw away variable
  1198. char *starpos = NULL;
  1199. #ifdef ENABLE_AUTO_BED_LEVELING
  1200. float x_tmp, y_tmp, z_tmp, real_z;
  1201. #endif
  1202. if(code_seen('G'))
  1203. {
  1204. switch((int)code_value())
  1205. {
  1206. case 0: // G0 -> G1
  1207. case 1: // G1
  1208. if(Stopped == false) {
  1209. get_coordinates(); // For X Y Z E F
  1210. #ifdef FWRETRACT
  1211. if(autoretract_enabled)
  1212. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1213. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1214. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1215. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1216. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1217. retract(!retracted);
  1218. return;
  1219. }
  1220. }
  1221. #endif //FWRETRACT
  1222. prepare_move();
  1223. //ClearToSend();
  1224. }
  1225. break;
  1226. #ifndef SCARA //disable arc support
  1227. case 2: // G2 - CW ARC
  1228. if(Stopped == false) {
  1229. get_arc_coordinates();
  1230. prepare_arc_move(true);
  1231. }
  1232. break;
  1233. case 3: // G3 - CCW ARC
  1234. if(Stopped == false) {
  1235. get_arc_coordinates();
  1236. prepare_arc_move(false);
  1237. }
  1238. break;
  1239. #endif
  1240. case 4: // G4 dwell
  1241. LCD_MESSAGEPGM(MSG_DWELL);
  1242. codenum = 0;
  1243. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1244. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1245. st_synchronize();
  1246. codenum += millis(); // keep track of when we started waiting
  1247. previous_millis_cmd = millis();
  1248. while(millis() < codenum) {
  1249. manage_heater();
  1250. manage_inactivity();
  1251. lcd_update();
  1252. }
  1253. break;
  1254. #ifdef FWRETRACT
  1255. case 10: // G10 retract
  1256. #if EXTRUDERS > 1
  1257. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1258. retract(true,retracted_swap[active_extruder]);
  1259. #else
  1260. retract(true);
  1261. #endif
  1262. break;
  1263. case 11: // G11 retract_recover
  1264. #if EXTRUDERS > 1
  1265. retract(false,retracted_swap[active_extruder]);
  1266. #else
  1267. retract(false);
  1268. #endif
  1269. break;
  1270. #endif //FWRETRACT
  1271. case 28: //G28 Home all Axis one at a time
  1272. #ifdef ENABLE_AUTO_BED_LEVELING
  1273. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1274. #endif //ENABLE_AUTO_BED_LEVELING
  1275. saved_feedrate = feedrate;
  1276. saved_feedmultiply = feedmultiply;
  1277. feedmultiply = 100;
  1278. previous_millis_cmd = millis();
  1279. enable_endstops(true);
  1280. for(int8_t i=0; i < NUM_AXIS; i++) {
  1281. destination[i] = current_position[i];
  1282. }
  1283. feedrate = 0.0;
  1284. #ifdef DELTA
  1285. // A delta can only safely home all axis at the same time
  1286. // all axis have to home at the same time
  1287. // Move all carriages up together until the first endstop is hit.
  1288. current_position[X_AXIS] = 0;
  1289. current_position[Y_AXIS] = 0;
  1290. current_position[Z_AXIS] = 0;
  1291. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1292. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1293. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1294. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1295. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1296. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1297. st_synchronize();
  1298. endstops_hit_on_purpose();
  1299. current_position[X_AXIS] = destination[X_AXIS];
  1300. current_position[Y_AXIS] = destination[Y_AXIS];
  1301. current_position[Z_AXIS] = destination[Z_AXIS];
  1302. // take care of back off and rehome now we are all at the top
  1303. HOMEAXIS(X);
  1304. HOMEAXIS(Y);
  1305. HOMEAXIS(Z);
  1306. calculate_delta(current_position);
  1307. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1308. #else // NOT DELTA
  1309. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1310. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1311. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1312. HOMEAXIS(Z);
  1313. }
  1314. #endif
  1315. #ifdef QUICK_HOME
  1316. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1317. {
  1318. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1319. #ifndef DUAL_X_CARRIAGE
  1320. int x_axis_home_dir = home_dir(X_AXIS);
  1321. #else
  1322. int x_axis_home_dir = x_home_dir(active_extruder);
  1323. extruder_duplication_enabled = false;
  1324. #endif
  1325. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1326. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1327. feedrate = homing_feedrate[X_AXIS];
  1328. if(homing_feedrate[Y_AXIS]<feedrate)
  1329. feedrate = homing_feedrate[Y_AXIS];
  1330. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1331. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1332. } else {
  1333. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1334. }
  1335. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1336. st_synchronize();
  1337. axis_is_at_home(X_AXIS);
  1338. axis_is_at_home(Y_AXIS);
  1339. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1340. destination[X_AXIS] = current_position[X_AXIS];
  1341. destination[Y_AXIS] = current_position[Y_AXIS];
  1342. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1343. feedrate = 0.0;
  1344. st_synchronize();
  1345. endstops_hit_on_purpose();
  1346. current_position[X_AXIS] = destination[X_AXIS];
  1347. current_position[Y_AXIS] = destination[Y_AXIS];
  1348. #ifndef SCARA
  1349. current_position[Z_AXIS] = destination[Z_AXIS];
  1350. #endif
  1351. }
  1352. #endif
  1353. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1354. {
  1355. #ifdef DUAL_X_CARRIAGE
  1356. int tmp_extruder = active_extruder;
  1357. extruder_duplication_enabled = false;
  1358. active_extruder = !active_extruder;
  1359. HOMEAXIS(X);
  1360. inactive_extruder_x_pos = current_position[X_AXIS];
  1361. active_extruder = tmp_extruder;
  1362. HOMEAXIS(X);
  1363. // reset state used by the different modes
  1364. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1365. delayed_move_time = 0;
  1366. active_extruder_parked = true;
  1367. #else
  1368. HOMEAXIS(X);
  1369. #endif
  1370. }
  1371. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1372. HOMEAXIS(Y);
  1373. }
  1374. if(code_seen(axis_codes[X_AXIS]))
  1375. {
  1376. if(code_value_long() != 0) {
  1377. #ifdef SCARA
  1378. current_position[X_AXIS]=code_value();
  1379. #else
  1380. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1381. #endif
  1382. }
  1383. }
  1384. if(code_seen(axis_codes[Y_AXIS])) {
  1385. if(code_value_long() != 0) {
  1386. #ifdef SCARA
  1387. current_position[Y_AXIS]=code_value();
  1388. #else
  1389. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1390. #endif
  1391. }
  1392. }
  1393. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1394. #ifndef Z_SAFE_HOMING
  1395. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1396. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1397. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1398. feedrate = max_feedrate[Z_AXIS];
  1399. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1400. st_synchronize();
  1401. #endif
  1402. HOMEAXIS(Z);
  1403. }
  1404. #else // Z Safe mode activated.
  1405. if(home_all_axis) {
  1406. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1407. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1408. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1409. feedrate = XY_TRAVEL_SPEED/60;
  1410. current_position[Z_AXIS] = 0;
  1411. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1412. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1413. st_synchronize();
  1414. current_position[X_AXIS] = destination[X_AXIS];
  1415. current_position[Y_AXIS] = destination[Y_AXIS];
  1416. HOMEAXIS(Z);
  1417. }
  1418. // Let's see if X and Y are homed and probe is inside bed area.
  1419. if(code_seen(axis_codes[Z_AXIS])) {
  1420. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1421. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1422. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1423. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1424. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1425. current_position[Z_AXIS] = 0;
  1426. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1427. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1428. feedrate = max_feedrate[Z_AXIS];
  1429. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1430. st_synchronize();
  1431. HOMEAXIS(Z);
  1432. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1433. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1434. SERIAL_ECHO_START;
  1435. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1436. } else {
  1437. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1438. SERIAL_ECHO_START;
  1439. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1440. }
  1441. }
  1442. #endif
  1443. #endif
  1444. if(code_seen(axis_codes[Z_AXIS])) {
  1445. if(code_value_long() != 0) {
  1446. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1447. }
  1448. }
  1449. #ifdef ENABLE_AUTO_BED_LEVELING
  1450. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1451. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1452. }
  1453. #endif
  1454. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1455. #endif // else DELTA
  1456. #ifdef SCARA
  1457. calculate_delta(current_position);
  1458. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1459. #endif // SCARA
  1460. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1461. enable_endstops(false);
  1462. #endif
  1463. feedrate = saved_feedrate;
  1464. feedmultiply = saved_feedmultiply;
  1465. previous_millis_cmd = millis();
  1466. endstops_hit_on_purpose();
  1467. break;
  1468. #ifdef ENABLE_AUTO_BED_LEVELING
  1469. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1470. {
  1471. #if Z_MIN_PIN == -1
  1472. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1473. #endif
  1474. // Prevent user from running a G29 without first homing in X and Y
  1475. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1476. {
  1477. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1478. SERIAL_ECHO_START;
  1479. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1480. break; // abort G29, since we don't know where we are
  1481. }
  1482. #ifdef Z_PROBE_SLED
  1483. dock_sled(false);
  1484. #endif // Z_PROBE_SLED
  1485. st_synchronize();
  1486. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1487. //vector_3 corrected_position = plan_get_position_mm();
  1488. //corrected_position.debug("position before G29");
  1489. plan_bed_level_matrix.set_to_identity();
  1490. vector_3 uncorrected_position = plan_get_position();
  1491. //uncorrected_position.debug("position durring G29");
  1492. current_position[X_AXIS] = uncorrected_position.x;
  1493. current_position[Y_AXIS] = uncorrected_position.y;
  1494. current_position[Z_AXIS] = uncorrected_position.z;
  1495. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1496. setup_for_endstop_move();
  1497. feedrate = homing_feedrate[Z_AXIS];
  1498. #ifdef AUTO_BED_LEVELING_GRID
  1499. // probe at the points of a lattice grid
  1500. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1501. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1502. // solve the plane equation ax + by + d = z
  1503. // A is the matrix with rows [x y 1] for all the probed points
  1504. // B is the vector of the Z positions
  1505. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1506. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1507. // "A" matrix of the linear system of equations
  1508. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1509. // "B" vector of Z points
  1510. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1511. int probePointCounter = 0;
  1512. bool zig = true;
  1513. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1514. {
  1515. int xProbe, xInc;
  1516. if (zig)
  1517. {
  1518. xProbe = LEFT_PROBE_BED_POSITION;
  1519. //xEnd = RIGHT_PROBE_BED_POSITION;
  1520. xInc = xGridSpacing;
  1521. zig = false;
  1522. } else // zag
  1523. {
  1524. xProbe = RIGHT_PROBE_BED_POSITION;
  1525. //xEnd = LEFT_PROBE_BED_POSITION;
  1526. xInc = -xGridSpacing;
  1527. zig = true;
  1528. }
  1529. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1530. {
  1531. float z_before;
  1532. if (probePointCounter == 0)
  1533. {
  1534. // raise before probing
  1535. z_before = Z_RAISE_BEFORE_PROBING;
  1536. } else
  1537. {
  1538. // raise extruder
  1539. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1540. }
  1541. float measured_z;
  1542. //Enhanced G29 - Do not retract servo between probes
  1543. if (code_seen('E') || code_seen('e') )
  1544. {
  1545. if ((yProbe==FRONT_PROBE_BED_POSITION) && (xCount==0))
  1546. {
  1547. measured_z = probe_pt(xProbe, yProbe, z_before,1);
  1548. } else if ((yProbe==FRONT_PROBE_BED_POSITION + (yGridSpacing * (AUTO_BED_LEVELING_GRID_POINTS-1))) && (xCount == AUTO_BED_LEVELING_GRID_POINTS-1))
  1549. {
  1550. measured_z = probe_pt(xProbe, yProbe, z_before,3);
  1551. } else {
  1552. measured_z = probe_pt(xProbe, yProbe, z_before,2);
  1553. }
  1554. } else {
  1555. measured_z = probe_pt(xProbe, yProbe, z_before);
  1556. }
  1557. eqnBVector[probePointCounter] = measured_z;
  1558. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1559. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1560. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1561. probePointCounter++;
  1562. xProbe += xInc;
  1563. }
  1564. }
  1565. clean_up_after_endstop_move();
  1566. // solve lsq problem
  1567. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1568. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1569. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1570. SERIAL_PROTOCOLPGM(" b: ");
  1571. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1572. SERIAL_PROTOCOLPGM(" d: ");
  1573. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1574. set_bed_level_equation_lsq(plane_equation_coefficients);
  1575. free(plane_equation_coefficients);
  1576. #else // AUTO_BED_LEVELING_GRID not defined
  1577. // Probe at 3 arbitrary points
  1578. // Enhanced G29
  1579. float z_at_pt_1,z_at_pt_2,z_at_pt_3;
  1580. if (code_seen('E') || code_seen('e') )
  1581. {
  1582. // probe 1
  1583. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING,1);
  1584. // probe 2
  1585. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,2);
  1586. // probe 3
  1587. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,3);
  1588. }
  1589. else
  1590. {
  1591. // probe 1
  1592. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1593. // probe 2
  1594. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1595. // probe 3
  1596. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1597. }
  1598. clean_up_after_endstop_move();
  1599. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1600. #endif // AUTO_BED_LEVELING_GRID
  1601. st_synchronize();
  1602. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1603. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1604. // When the bed is uneven, this height must be corrected.
  1605. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1606. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1607. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1608. z_tmp = current_position[Z_AXIS];
  1609. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1610. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1611. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1612. #ifdef Z_PROBE_SLED
  1613. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1614. #endif // Z_PROBE_SLED
  1615. }
  1616. break;
  1617. #ifndef Z_PROBE_SLED
  1618. case 30: // G30 Single Z Probe
  1619. {
  1620. engage_z_probe(); // Engage Z Servo endstop if available
  1621. st_synchronize();
  1622. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1623. setup_for_endstop_move();
  1624. feedrate = homing_feedrate[Z_AXIS];
  1625. run_z_probe();
  1626. SERIAL_PROTOCOLPGM(MSG_BED);
  1627. SERIAL_PROTOCOLPGM(" X: ");
  1628. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1629. SERIAL_PROTOCOLPGM(" Y: ");
  1630. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1631. SERIAL_PROTOCOLPGM(" Z: ");
  1632. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1633. SERIAL_PROTOCOLPGM("\n");
  1634. clean_up_after_endstop_move();
  1635. retract_z_probe(); // Retract Z Servo endstop if available
  1636. }
  1637. break;
  1638. #else
  1639. case 31: // dock the sled
  1640. dock_sled(true);
  1641. break;
  1642. case 32: // undock the sled
  1643. dock_sled(false);
  1644. break;
  1645. #endif // Z_PROBE_SLED
  1646. #endif // ENABLE_AUTO_BED_LEVELING
  1647. case 90: // G90
  1648. relative_mode = false;
  1649. break;
  1650. case 91: // G91
  1651. relative_mode = true;
  1652. break;
  1653. case 92: // G92
  1654. if(!code_seen(axis_codes[E_AXIS]))
  1655. st_synchronize();
  1656. for(int8_t i=0; i < NUM_AXIS; i++) {
  1657. if(code_seen(axis_codes[i])) {
  1658. if(i == E_AXIS) {
  1659. current_position[i] = code_value();
  1660. plan_set_e_position(current_position[E_AXIS]);
  1661. }
  1662. else {
  1663. #ifdef SCARA
  1664. if (i == X_AXIS || i == Y_AXIS) {
  1665. current_position[i] = code_value();
  1666. }
  1667. else {
  1668. current_position[i] = code_value()+add_homing[i];
  1669. }
  1670. #else
  1671. current_position[i] = code_value()+add_homing[i];
  1672. #endif
  1673. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1674. }
  1675. }
  1676. }
  1677. break;
  1678. }
  1679. }
  1680. else if(code_seen('M'))
  1681. {
  1682. switch( (int)code_value() )
  1683. {
  1684. #ifdef ULTIPANEL
  1685. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1686. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1687. {
  1688. char *src = strchr_pointer + 2;
  1689. codenum = 0;
  1690. bool hasP = false, hasS = false;
  1691. if (code_seen('P')) {
  1692. codenum = code_value(); // milliseconds to wait
  1693. hasP = codenum > 0;
  1694. }
  1695. if (code_seen('S')) {
  1696. codenum = code_value() * 1000; // seconds to wait
  1697. hasS = codenum > 0;
  1698. }
  1699. starpos = strchr(src, '*');
  1700. if (starpos != NULL) *(starpos) = '\0';
  1701. while (*src == ' ') ++src;
  1702. if (!hasP && !hasS && *src != '\0') {
  1703. lcd_setstatus(src);
  1704. } else {
  1705. LCD_MESSAGEPGM(MSG_USERWAIT);
  1706. }
  1707. lcd_ignore_click();
  1708. st_synchronize();
  1709. previous_millis_cmd = millis();
  1710. if (codenum > 0){
  1711. codenum += millis(); // keep track of when we started waiting
  1712. while(millis() < codenum && !lcd_clicked()){
  1713. manage_heater();
  1714. manage_inactivity();
  1715. lcd_update();
  1716. }
  1717. lcd_ignore_click(false);
  1718. }else{
  1719. if (!lcd_detected())
  1720. break;
  1721. while(!lcd_clicked()){
  1722. manage_heater();
  1723. manage_inactivity();
  1724. lcd_update();
  1725. }
  1726. }
  1727. if (IS_SD_PRINTING)
  1728. LCD_MESSAGEPGM(MSG_RESUMING);
  1729. else
  1730. LCD_MESSAGEPGM(WELCOME_MSG);
  1731. }
  1732. break;
  1733. #endif
  1734. case 17:
  1735. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1736. enable_x();
  1737. enable_y();
  1738. enable_z();
  1739. enable_e0();
  1740. enable_e1();
  1741. enable_e2();
  1742. break;
  1743. #ifdef SDSUPPORT
  1744. case 20: // M20 - list SD card
  1745. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1746. card.ls();
  1747. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1748. break;
  1749. case 21: // M21 - init SD card
  1750. card.initsd();
  1751. break;
  1752. case 22: //M22 - release SD card
  1753. card.release();
  1754. break;
  1755. case 23: //M23 - Select file
  1756. starpos = (strchr(strchr_pointer + 4,'*'));
  1757. if(starpos!=NULL)
  1758. *(starpos)='\0';
  1759. card.openFile(strchr_pointer + 4,true);
  1760. break;
  1761. case 24: //M24 - Start SD print
  1762. card.startFileprint();
  1763. starttime=millis();
  1764. break;
  1765. case 25: //M25 - Pause SD print
  1766. card.pauseSDPrint();
  1767. break;
  1768. case 26: //M26 - Set SD index
  1769. if(card.cardOK && code_seen('S')) {
  1770. card.setIndex(code_value_long());
  1771. }
  1772. break;
  1773. case 27: //M27 - Get SD status
  1774. card.getStatus();
  1775. break;
  1776. case 28: //M28 - Start SD write
  1777. starpos = (strchr(strchr_pointer + 4,'*'));
  1778. if(starpos != NULL){
  1779. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1780. strchr_pointer = strchr(npos,' ') + 1;
  1781. *(starpos) = '\0';
  1782. }
  1783. card.openFile(strchr_pointer+4,false);
  1784. break;
  1785. case 29: //M29 - Stop SD write
  1786. //processed in write to file routine above
  1787. //card,saving = false;
  1788. break;
  1789. case 30: //M30 <filename> Delete File
  1790. if (card.cardOK){
  1791. card.closefile();
  1792. starpos = (strchr(strchr_pointer + 4,'*'));
  1793. if(starpos != NULL){
  1794. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1795. strchr_pointer = strchr(npos,' ') + 1;
  1796. *(starpos) = '\0';
  1797. }
  1798. card.removeFile(strchr_pointer + 4);
  1799. }
  1800. break;
  1801. case 32: //M32 - Select file and start SD print
  1802. {
  1803. if(card.sdprinting) {
  1804. st_synchronize();
  1805. }
  1806. starpos = (strchr(strchr_pointer + 4,'*'));
  1807. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1808. if(namestartpos==NULL)
  1809. {
  1810. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1811. }
  1812. else
  1813. namestartpos++; //to skip the '!'
  1814. if(starpos!=NULL)
  1815. *(starpos)='\0';
  1816. bool call_procedure=(code_seen('P'));
  1817. if(strchr_pointer>namestartpos)
  1818. call_procedure=false; //false alert, 'P' found within filename
  1819. if( card.cardOK )
  1820. {
  1821. card.openFile(namestartpos,true,!call_procedure);
  1822. if(code_seen('S'))
  1823. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1824. card.setIndex(code_value_long());
  1825. card.startFileprint();
  1826. if(!call_procedure)
  1827. starttime=millis(); //procedure calls count as normal print time.
  1828. }
  1829. } break;
  1830. case 928: //M928 - Start SD write
  1831. starpos = (strchr(strchr_pointer + 5,'*'));
  1832. if(starpos != NULL){
  1833. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1834. strchr_pointer = strchr(npos,' ') + 1;
  1835. *(starpos) = '\0';
  1836. }
  1837. card.openLogFile(strchr_pointer+5);
  1838. break;
  1839. #endif //SDSUPPORT
  1840. case 31: //M31 take time since the start of the SD print or an M109 command
  1841. {
  1842. stoptime=millis();
  1843. char time[30];
  1844. unsigned long t=(stoptime-starttime)/1000;
  1845. int sec,min;
  1846. min=t/60;
  1847. sec=t%60;
  1848. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1849. SERIAL_ECHO_START;
  1850. SERIAL_ECHOLN(time);
  1851. lcd_setstatus(time);
  1852. autotempShutdown();
  1853. }
  1854. break;
  1855. case 42: //M42 -Change pin status via gcode
  1856. if (code_seen('S'))
  1857. {
  1858. int pin_status = code_value();
  1859. int pin_number = LED_PIN;
  1860. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1861. pin_number = code_value();
  1862. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1863. {
  1864. if (sensitive_pins[i] == pin_number)
  1865. {
  1866. pin_number = -1;
  1867. break;
  1868. }
  1869. }
  1870. #if defined(FAN_PIN) && FAN_PIN > -1
  1871. if (pin_number == FAN_PIN)
  1872. fanSpeed = pin_status;
  1873. #endif
  1874. if (pin_number > -1)
  1875. {
  1876. pinMode(pin_number, OUTPUT);
  1877. digitalWrite(pin_number, pin_status);
  1878. analogWrite(pin_number, pin_status);
  1879. }
  1880. }
  1881. break;
  1882. // M48 Z-Probe repeatability measurement function.
  1883. //
  1884. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  1885. //
  1886. // This function assumes the bed has been homed. Specificaly, that a G28 command
  1887. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  1888. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  1889. // regenerated.
  1890. //
  1891. // The number of samples will default to 10 if not specified. You can use upper or lower case
  1892. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  1893. // N for its communication protocol and will get horribly confused if you send it a capital N.
  1894. //
  1895. #ifdef ENABLE_AUTO_BED_LEVELING
  1896. #ifdef Z_PROBE_REPEATABILITY_TEST
  1897. case 48: // M48 Z-Probe repeatability
  1898. {
  1899. #if Z_MIN_PIN == -1
  1900. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  1901. #endif
  1902. double sum=0.0;
  1903. double mean=0.0;
  1904. double sigma=0.0;
  1905. double sample_set[50];
  1906. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  1907. double X_current, Y_current, Z_current;
  1908. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  1909. if (code_seen('V') || code_seen('v')) {
  1910. verbose_level = code_value();
  1911. if (verbose_level<0 || verbose_level>4 ) {
  1912. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  1913. goto Sigma_Exit;
  1914. }
  1915. }
  1916. if (verbose_level > 0) {
  1917. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  1918. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  1919. }
  1920. if (code_seen('n')) {
  1921. n_samples = code_value();
  1922. if (n_samples<4 || n_samples>50 ) {
  1923. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  1924. goto Sigma_Exit;
  1925. }
  1926. }
  1927. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  1928. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  1929. Z_current = st_get_position_mm(Z_AXIS);
  1930. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1931. ext_position = st_get_position_mm(E_AXIS);
  1932. if (code_seen('E') || code_seen('e') )
  1933. engage_probe_for_each_reading++;
  1934. if (code_seen('X') || code_seen('x') ) {
  1935. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  1936. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  1937. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  1938. goto Sigma_Exit;
  1939. }
  1940. }
  1941. if (code_seen('Y') || code_seen('y') ) {
  1942. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1943. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  1944. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  1945. goto Sigma_Exit;
  1946. }
  1947. }
  1948. if (code_seen('L') || code_seen('l') ) {
  1949. n_legs = code_value();
  1950. if ( n_legs==1 )
  1951. n_legs = 2;
  1952. if ( n_legs<0 || n_legs>15 ) {
  1953. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  1954. goto Sigma_Exit;
  1955. }
  1956. }
  1957. //
  1958. // Do all the preliminary setup work. First raise the probe.
  1959. //
  1960. st_synchronize();
  1961. plan_bed_level_matrix.set_to_identity();
  1962. plan_buffer_line( X_current, Y_current, Z_start_location,
  1963. ext_position,
  1964. homing_feedrate[Z_AXIS]/60,
  1965. active_extruder);
  1966. st_synchronize();
  1967. //
  1968. // Now get everything to the specified probe point So we can safely do a probe to
  1969. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  1970. // use that as a starting point for each probe.
  1971. //
  1972. if (verbose_level > 2)
  1973. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  1974. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1975. ext_position,
  1976. homing_feedrate[X_AXIS]/60,
  1977. active_extruder);
  1978. st_synchronize();
  1979. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  1980. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  1981. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1982. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  1983. //
  1984. // OK, do the inital probe to get us close to the bed.
  1985. // Then retrace the right amount and use that in subsequent probes
  1986. //
  1987. engage_z_probe();
  1988. setup_for_endstop_move();
  1989. run_z_probe();
  1990. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1991. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1992. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1993. ext_position,
  1994. homing_feedrate[X_AXIS]/60,
  1995. active_extruder);
  1996. st_synchronize();
  1997. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1998. if (engage_probe_for_each_reading)
  1999. retract_z_probe();
  2000. for( n=0; n<n_samples; n++) {
  2001. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2002. if ( n_legs) {
  2003. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2004. int rotational_direction, l;
  2005. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2006. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2007. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2008. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2009. //SERIAL_ECHOPAIR(" theta: ",theta);
  2010. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2011. //SERIAL_PROTOCOLLNPGM("");
  2012. for( l=0; l<n_legs-1; l++) {
  2013. if (rotational_direction==1)
  2014. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2015. else
  2016. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2017. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2018. if ( radius<0.0 )
  2019. radius = -radius;
  2020. X_current = X_probe_location + cos(theta) * radius;
  2021. Y_current = Y_probe_location + sin(theta) * radius;
  2022. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2023. X_current = X_MIN_POS;
  2024. if ( X_current>X_MAX_POS)
  2025. X_current = X_MAX_POS;
  2026. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2027. Y_current = Y_MIN_POS;
  2028. if ( Y_current>Y_MAX_POS)
  2029. Y_current = Y_MAX_POS;
  2030. if (verbose_level>3 ) {
  2031. SERIAL_ECHOPAIR("x: ", X_current);
  2032. SERIAL_ECHOPAIR("y: ", Y_current);
  2033. SERIAL_PROTOCOLLNPGM("");
  2034. }
  2035. do_blocking_move_to( X_current, Y_current, Z_current );
  2036. }
  2037. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2038. }
  2039. if (engage_probe_for_each_reading) {
  2040. engage_z_probe();
  2041. delay(1000);
  2042. }
  2043. setup_for_endstop_move();
  2044. run_z_probe();
  2045. sample_set[n] = current_position[Z_AXIS];
  2046. //
  2047. // Get the current mean for the data points we have so far
  2048. //
  2049. sum=0.0;
  2050. for( j=0; j<=n; j++) {
  2051. sum = sum + sample_set[j];
  2052. }
  2053. mean = sum / (double (n+1));
  2054. //
  2055. // Now, use that mean to calculate the standard deviation for the
  2056. // data points we have so far
  2057. //
  2058. sum=0.0;
  2059. for( j=0; j<=n; j++) {
  2060. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2061. }
  2062. sigma = sqrt( sum / (double (n+1)) );
  2063. if (verbose_level > 1) {
  2064. SERIAL_PROTOCOL(n+1);
  2065. SERIAL_PROTOCOL(" of ");
  2066. SERIAL_PROTOCOL(n_samples);
  2067. SERIAL_PROTOCOLPGM(" z: ");
  2068. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2069. }
  2070. if (verbose_level > 2) {
  2071. SERIAL_PROTOCOL(" mean: ");
  2072. SERIAL_PROTOCOL_F(mean,6);
  2073. SERIAL_PROTOCOL(" sigma: ");
  2074. SERIAL_PROTOCOL_F(sigma,6);
  2075. }
  2076. if (verbose_level > 0)
  2077. SERIAL_PROTOCOLPGM("\n");
  2078. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2079. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2080. st_synchronize();
  2081. if (engage_probe_for_each_reading) {
  2082. retract_z_probe();
  2083. delay(1000);
  2084. }
  2085. }
  2086. retract_z_probe();
  2087. delay(1000);
  2088. clean_up_after_endstop_move();
  2089. // enable_endstops(true);
  2090. if (verbose_level > 0) {
  2091. SERIAL_PROTOCOLPGM("Mean: ");
  2092. SERIAL_PROTOCOL_F(mean, 6);
  2093. SERIAL_PROTOCOLPGM("\n");
  2094. }
  2095. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2096. SERIAL_PROTOCOL_F(sigma, 6);
  2097. SERIAL_PROTOCOLPGM("\n\n");
  2098. Sigma_Exit:
  2099. break;
  2100. }
  2101. #endif // Z_PROBE_REPEATABILITY_TEST
  2102. #endif // ENABLE_AUTO_BED_LEVELING
  2103. case 104: // M104
  2104. if(setTargetedHotend(104)){
  2105. break;
  2106. }
  2107. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2108. #ifdef DUAL_X_CARRIAGE
  2109. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2110. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2111. #endif
  2112. setWatch();
  2113. break;
  2114. case 112: // M112 -Emergency Stop
  2115. kill();
  2116. break;
  2117. case 140: // M140 set bed temp
  2118. if (code_seen('S')) setTargetBed(code_value());
  2119. break;
  2120. case 105 : // M105
  2121. if(setTargetedHotend(105)){
  2122. break;
  2123. }
  2124. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2125. SERIAL_PROTOCOLPGM("ok T:");
  2126. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2127. SERIAL_PROTOCOLPGM(" /");
  2128. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2129. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2130. SERIAL_PROTOCOLPGM(" B:");
  2131. SERIAL_PROTOCOL_F(degBed(),1);
  2132. SERIAL_PROTOCOLPGM(" /");
  2133. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2134. #endif //TEMP_BED_PIN
  2135. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2136. SERIAL_PROTOCOLPGM(" T");
  2137. SERIAL_PROTOCOL(cur_extruder);
  2138. SERIAL_PROTOCOLPGM(":");
  2139. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2140. SERIAL_PROTOCOLPGM(" /");
  2141. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2142. }
  2143. #else
  2144. SERIAL_ERROR_START;
  2145. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2146. #endif
  2147. SERIAL_PROTOCOLPGM(" @:");
  2148. #ifdef EXTRUDER_WATTS
  2149. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2150. SERIAL_PROTOCOLPGM("W");
  2151. #else
  2152. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2153. #endif
  2154. SERIAL_PROTOCOLPGM(" B@:");
  2155. #ifdef BED_WATTS
  2156. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2157. SERIAL_PROTOCOLPGM("W");
  2158. #else
  2159. SERIAL_PROTOCOL(getHeaterPower(-1));
  2160. #endif
  2161. #ifdef SHOW_TEMP_ADC_VALUES
  2162. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2163. SERIAL_PROTOCOLPGM(" ADC B:");
  2164. SERIAL_PROTOCOL_F(degBed(),1);
  2165. SERIAL_PROTOCOLPGM("C->");
  2166. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2167. #endif
  2168. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2169. SERIAL_PROTOCOLPGM(" T");
  2170. SERIAL_PROTOCOL(cur_extruder);
  2171. SERIAL_PROTOCOLPGM(":");
  2172. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2173. SERIAL_PROTOCOLPGM("C->");
  2174. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2175. }
  2176. #endif
  2177. SERIAL_PROTOCOLLN("");
  2178. return;
  2179. break;
  2180. case 109:
  2181. {// M109 - Wait for extruder heater to reach target.
  2182. if(setTargetedHotend(109)){
  2183. break;
  2184. }
  2185. LCD_MESSAGEPGM(MSG_HEATING);
  2186. #ifdef AUTOTEMP
  2187. autotemp_enabled=false;
  2188. #endif
  2189. if (code_seen('S')) {
  2190. setTargetHotend(code_value(), tmp_extruder);
  2191. #ifdef DUAL_X_CARRIAGE
  2192. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2193. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2194. #endif
  2195. CooldownNoWait = true;
  2196. } else if (code_seen('R')) {
  2197. setTargetHotend(code_value(), tmp_extruder);
  2198. #ifdef DUAL_X_CARRIAGE
  2199. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2200. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2201. #endif
  2202. CooldownNoWait = false;
  2203. }
  2204. #ifdef AUTOTEMP
  2205. if (code_seen('S')) autotemp_min=code_value();
  2206. if (code_seen('B')) autotemp_max=code_value();
  2207. if (code_seen('F'))
  2208. {
  2209. autotemp_factor=code_value();
  2210. autotemp_enabled=true;
  2211. }
  2212. #endif
  2213. setWatch();
  2214. codenum = millis();
  2215. /* See if we are heating up or cooling down */
  2216. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2217. cancel_heatup = false;
  2218. #ifdef TEMP_RESIDENCY_TIME
  2219. long residencyStart;
  2220. residencyStart = -1;
  2221. /* continue to loop until we have reached the target temp
  2222. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2223. while((!cancel_heatup)&&((residencyStart == -1) ||
  2224. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2225. #else
  2226. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2227. #endif //TEMP_RESIDENCY_TIME
  2228. if( (millis() - codenum) > 1000UL )
  2229. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2230. SERIAL_PROTOCOLPGM("T:");
  2231. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2232. SERIAL_PROTOCOLPGM(" E:");
  2233. SERIAL_PROTOCOL((int)tmp_extruder);
  2234. #ifdef TEMP_RESIDENCY_TIME
  2235. SERIAL_PROTOCOLPGM(" W:");
  2236. if(residencyStart > -1)
  2237. {
  2238. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2239. SERIAL_PROTOCOLLN( codenum );
  2240. }
  2241. else
  2242. {
  2243. SERIAL_PROTOCOLLN( "?" );
  2244. }
  2245. #else
  2246. SERIAL_PROTOCOLLN("");
  2247. #endif
  2248. codenum = millis();
  2249. }
  2250. manage_heater();
  2251. manage_inactivity();
  2252. lcd_update();
  2253. #ifdef TEMP_RESIDENCY_TIME
  2254. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2255. or when current temp falls outside the hysteresis after target temp was reached */
  2256. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2257. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2258. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2259. {
  2260. residencyStart = millis();
  2261. }
  2262. #endif //TEMP_RESIDENCY_TIME
  2263. }
  2264. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2265. starttime=millis();
  2266. previous_millis_cmd = millis();
  2267. }
  2268. break;
  2269. case 190: // M190 - Wait for bed heater to reach target.
  2270. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2271. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2272. if (code_seen('S')) {
  2273. setTargetBed(code_value());
  2274. CooldownNoWait = true;
  2275. } else if (code_seen('R')) {
  2276. setTargetBed(code_value());
  2277. CooldownNoWait = false;
  2278. }
  2279. codenum = millis();
  2280. cancel_heatup = false;
  2281. target_direction = isHeatingBed(); // true if heating, false if cooling
  2282. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2283. {
  2284. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2285. {
  2286. float tt=degHotend(active_extruder);
  2287. SERIAL_PROTOCOLPGM("T:");
  2288. SERIAL_PROTOCOL(tt);
  2289. SERIAL_PROTOCOLPGM(" E:");
  2290. SERIAL_PROTOCOL((int)active_extruder);
  2291. SERIAL_PROTOCOLPGM(" B:");
  2292. SERIAL_PROTOCOL_F(degBed(),1);
  2293. SERIAL_PROTOCOLLN("");
  2294. codenum = millis();
  2295. }
  2296. manage_heater();
  2297. manage_inactivity();
  2298. lcd_update();
  2299. }
  2300. LCD_MESSAGEPGM(MSG_BED_DONE);
  2301. previous_millis_cmd = millis();
  2302. #endif
  2303. break;
  2304. #if defined(FAN_PIN) && FAN_PIN > -1
  2305. case 106: //M106 Fan On
  2306. if (code_seen('S')){
  2307. fanSpeed=constrain(code_value(),0,255);
  2308. }
  2309. else {
  2310. fanSpeed=255;
  2311. }
  2312. break;
  2313. case 107: //M107 Fan Off
  2314. fanSpeed = 0;
  2315. break;
  2316. #endif //FAN_PIN
  2317. #ifdef BARICUDA
  2318. // PWM for HEATER_1_PIN
  2319. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2320. case 126: //M126 valve open
  2321. if (code_seen('S')){
  2322. ValvePressure=constrain(code_value(),0,255);
  2323. }
  2324. else {
  2325. ValvePressure=255;
  2326. }
  2327. break;
  2328. case 127: //M127 valve closed
  2329. ValvePressure = 0;
  2330. break;
  2331. #endif //HEATER_1_PIN
  2332. // PWM for HEATER_2_PIN
  2333. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2334. case 128: //M128 valve open
  2335. if (code_seen('S')){
  2336. EtoPPressure=constrain(code_value(),0,255);
  2337. }
  2338. else {
  2339. EtoPPressure=255;
  2340. }
  2341. break;
  2342. case 129: //M129 valve closed
  2343. EtoPPressure = 0;
  2344. break;
  2345. #endif //HEATER_2_PIN
  2346. #endif
  2347. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2348. case 80: // M80 - Turn on Power Supply
  2349. SET_OUTPUT(PS_ON_PIN); //GND
  2350. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2351. // If you have a switch on suicide pin, this is useful
  2352. // if you want to start another print with suicide feature after
  2353. // a print without suicide...
  2354. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2355. SET_OUTPUT(SUICIDE_PIN);
  2356. WRITE(SUICIDE_PIN, HIGH);
  2357. #endif
  2358. #ifdef ULTIPANEL
  2359. powersupply = true;
  2360. LCD_MESSAGEPGM(WELCOME_MSG);
  2361. lcd_update();
  2362. #endif
  2363. break;
  2364. #endif
  2365. case 81: // M81 - Turn off Power Supply
  2366. disable_heater();
  2367. st_synchronize();
  2368. disable_e0();
  2369. disable_e1();
  2370. disable_e2();
  2371. finishAndDisableSteppers();
  2372. fanSpeed = 0;
  2373. delay(1000); // Wait a little before to switch off
  2374. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2375. st_synchronize();
  2376. suicide();
  2377. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2378. SET_OUTPUT(PS_ON_PIN);
  2379. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2380. #endif
  2381. #ifdef ULTIPANEL
  2382. powersupply = false;
  2383. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2384. lcd_update();
  2385. #endif
  2386. break;
  2387. case 82:
  2388. axis_relative_modes[3] = false;
  2389. break;
  2390. case 83:
  2391. axis_relative_modes[3] = true;
  2392. break;
  2393. case 18: //compatibility
  2394. case 84: // M84
  2395. if(code_seen('S')){
  2396. stepper_inactive_time = code_value() * 1000;
  2397. }
  2398. else
  2399. {
  2400. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2401. if(all_axis)
  2402. {
  2403. st_synchronize();
  2404. disable_e0();
  2405. disable_e1();
  2406. disable_e2();
  2407. finishAndDisableSteppers();
  2408. }
  2409. else
  2410. {
  2411. st_synchronize();
  2412. if(code_seen('X')) disable_x();
  2413. if(code_seen('Y')) disable_y();
  2414. if(code_seen('Z')) disable_z();
  2415. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2416. if(code_seen('E')) {
  2417. disable_e0();
  2418. disable_e1();
  2419. disable_e2();
  2420. }
  2421. #endif
  2422. }
  2423. }
  2424. break;
  2425. case 85: // M85
  2426. if(code_seen('S')) {
  2427. max_inactive_time = code_value() * 1000;
  2428. }
  2429. break;
  2430. case 92: // M92
  2431. for(int8_t i=0; i < NUM_AXIS; i++)
  2432. {
  2433. if(code_seen(axis_codes[i]))
  2434. {
  2435. if(i == 3) { // E
  2436. float value = code_value();
  2437. if(value < 20.0) {
  2438. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2439. max_e_jerk *= factor;
  2440. max_feedrate[i] *= factor;
  2441. axis_steps_per_sqr_second[i] *= factor;
  2442. }
  2443. axis_steps_per_unit[i] = value;
  2444. }
  2445. else {
  2446. axis_steps_per_unit[i] = code_value();
  2447. }
  2448. }
  2449. }
  2450. break;
  2451. case 115: // M115
  2452. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2453. break;
  2454. case 117: // M117 display message
  2455. starpos = (strchr(strchr_pointer + 5,'*'));
  2456. if(starpos!=NULL)
  2457. *(starpos)='\0';
  2458. lcd_setstatus(strchr_pointer + 5);
  2459. break;
  2460. case 114: // M114
  2461. SERIAL_PROTOCOLPGM("X:");
  2462. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2463. SERIAL_PROTOCOLPGM(" Y:");
  2464. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2465. SERIAL_PROTOCOLPGM(" Z:");
  2466. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2467. SERIAL_PROTOCOLPGM(" E:");
  2468. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2469. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2470. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2471. SERIAL_PROTOCOLPGM(" Y:");
  2472. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2473. SERIAL_PROTOCOLPGM(" Z:");
  2474. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2475. SERIAL_PROTOCOLLN("");
  2476. #ifdef SCARA
  2477. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2478. SERIAL_PROTOCOL(delta[X_AXIS]);
  2479. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2480. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2481. SERIAL_PROTOCOLLN("");
  2482. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2483. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2484. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2485. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2486. SERIAL_PROTOCOLLN("");
  2487. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2488. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2489. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2490. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2491. SERIAL_PROTOCOLLN("");
  2492. SERIAL_PROTOCOLLN("");
  2493. #endif
  2494. break;
  2495. case 120: // M120
  2496. enable_endstops(false) ;
  2497. break;
  2498. case 121: // M121
  2499. enable_endstops(true) ;
  2500. break;
  2501. case 119: // M119
  2502. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2503. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2504. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2505. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2506. #endif
  2507. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2508. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2509. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2510. #endif
  2511. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2512. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2513. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2514. #endif
  2515. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2516. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2517. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2518. #endif
  2519. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2520. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2521. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2522. #endif
  2523. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2524. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2525. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2526. #endif
  2527. break;
  2528. //TODO: update for all axis, use for loop
  2529. #ifdef BLINKM
  2530. case 150: // M150
  2531. {
  2532. byte red;
  2533. byte grn;
  2534. byte blu;
  2535. if(code_seen('R')) red = code_value();
  2536. if(code_seen('U')) grn = code_value();
  2537. if(code_seen('B')) blu = code_value();
  2538. SendColors(red,grn,blu);
  2539. }
  2540. break;
  2541. #endif //BLINKM
  2542. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2543. {
  2544. tmp_extruder = active_extruder;
  2545. if(code_seen('T')) {
  2546. tmp_extruder = code_value();
  2547. if(tmp_extruder >= EXTRUDERS) {
  2548. SERIAL_ECHO_START;
  2549. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2550. break;
  2551. }
  2552. }
  2553. float area = .0;
  2554. if(code_seen('D')) {
  2555. float diameter = (float)code_value();
  2556. if (diameter == 0.0) {
  2557. // setting any extruder filament size disables volumetric on the assumption that
  2558. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2559. // for all extruders
  2560. volumetric_enabled = false;
  2561. } else {
  2562. filament_size[tmp_extruder] = (float)code_value();
  2563. // make sure all extruders have some sane value for the filament size
  2564. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  2565. #if EXTRUDERS > 1
  2566. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  2567. #if EXTRUDERS > 2
  2568. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  2569. #endif
  2570. #endif
  2571. volumetric_enabled = true;
  2572. }
  2573. } else {
  2574. //reserved for setting filament diameter via UFID or filament measuring device
  2575. break;
  2576. }
  2577. calculate_volumetric_multipliers();
  2578. }
  2579. break;
  2580. case 201: // M201
  2581. for(int8_t i=0; i < NUM_AXIS; i++)
  2582. {
  2583. if(code_seen(axis_codes[i]))
  2584. {
  2585. max_acceleration_units_per_sq_second[i] = code_value();
  2586. }
  2587. }
  2588. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2589. reset_acceleration_rates();
  2590. break;
  2591. #if 0 // Not used for Sprinter/grbl gen6
  2592. case 202: // M202
  2593. for(int8_t i=0; i < NUM_AXIS; i++) {
  2594. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2595. }
  2596. break;
  2597. #endif
  2598. case 203: // M203 max feedrate mm/sec
  2599. for(int8_t i=0; i < NUM_AXIS; i++) {
  2600. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2601. }
  2602. break;
  2603. case 204: // M204 acclereration S normal moves T filmanent only moves
  2604. {
  2605. if(code_seen('S')) acceleration = code_value() ;
  2606. if(code_seen('T')) retract_acceleration = code_value() ;
  2607. }
  2608. break;
  2609. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2610. {
  2611. if(code_seen('S')) minimumfeedrate = code_value();
  2612. if(code_seen('T')) mintravelfeedrate = code_value();
  2613. if(code_seen('B')) minsegmenttime = code_value() ;
  2614. if(code_seen('X')) max_xy_jerk = code_value() ;
  2615. if(code_seen('Z')) max_z_jerk = code_value() ;
  2616. if(code_seen('E')) max_e_jerk = code_value() ;
  2617. }
  2618. break;
  2619. case 206: // M206 additional homing offset
  2620. for(int8_t i=0; i < 3; i++)
  2621. {
  2622. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2623. }
  2624. #ifdef SCARA
  2625. if(code_seen('T')) // Theta
  2626. {
  2627. add_homing[X_AXIS] = code_value() ;
  2628. }
  2629. if(code_seen('P')) // Psi
  2630. {
  2631. add_homing[Y_AXIS] = code_value() ;
  2632. }
  2633. #endif
  2634. break;
  2635. #ifdef DELTA
  2636. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2637. if(code_seen('L')) {
  2638. delta_diagonal_rod= code_value();
  2639. }
  2640. if(code_seen('R')) {
  2641. delta_radius= code_value();
  2642. }
  2643. if(code_seen('S')) {
  2644. delta_segments_per_second= code_value();
  2645. }
  2646. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2647. break;
  2648. case 666: // M666 set delta endstop adjustemnt
  2649. for(int8_t i=0; i < 3; i++)
  2650. {
  2651. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2652. }
  2653. break;
  2654. #endif
  2655. #ifdef FWRETRACT
  2656. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2657. {
  2658. if(code_seen('S'))
  2659. {
  2660. retract_length = code_value() ;
  2661. }
  2662. if(code_seen('F'))
  2663. {
  2664. retract_feedrate = code_value()/60 ;
  2665. }
  2666. if(code_seen('Z'))
  2667. {
  2668. retract_zlift = code_value() ;
  2669. }
  2670. }break;
  2671. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2672. {
  2673. if(code_seen('S'))
  2674. {
  2675. retract_recover_length = code_value() ;
  2676. }
  2677. if(code_seen('F'))
  2678. {
  2679. retract_recover_feedrate = code_value()/60 ;
  2680. }
  2681. }break;
  2682. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2683. {
  2684. if(code_seen('S'))
  2685. {
  2686. int t= code_value() ;
  2687. switch(t)
  2688. {
  2689. case 0:
  2690. {
  2691. autoretract_enabled=false;
  2692. retracted[0]=false;
  2693. #if EXTRUDERS > 1
  2694. retracted[1]=false;
  2695. #endif
  2696. #if EXTRUDERS > 2
  2697. retracted[2]=false;
  2698. #endif
  2699. }break;
  2700. case 1:
  2701. {
  2702. autoretract_enabled=true;
  2703. retracted[0]=false;
  2704. #if EXTRUDERS > 1
  2705. retracted[1]=false;
  2706. #endif
  2707. #if EXTRUDERS > 2
  2708. retracted[2]=false;
  2709. #endif
  2710. }break;
  2711. default:
  2712. SERIAL_ECHO_START;
  2713. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2714. SERIAL_ECHO(cmdbuffer[bufindr]);
  2715. SERIAL_ECHOLNPGM("\"");
  2716. }
  2717. }
  2718. }break;
  2719. #endif // FWRETRACT
  2720. #if EXTRUDERS > 1
  2721. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2722. {
  2723. if(setTargetedHotend(218)){
  2724. break;
  2725. }
  2726. if(code_seen('X'))
  2727. {
  2728. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2729. }
  2730. if(code_seen('Y'))
  2731. {
  2732. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2733. }
  2734. #ifdef DUAL_X_CARRIAGE
  2735. if(code_seen('Z'))
  2736. {
  2737. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2738. }
  2739. #endif
  2740. SERIAL_ECHO_START;
  2741. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2742. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2743. {
  2744. SERIAL_ECHO(" ");
  2745. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2746. SERIAL_ECHO(",");
  2747. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2748. #ifdef DUAL_X_CARRIAGE
  2749. SERIAL_ECHO(",");
  2750. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2751. #endif
  2752. }
  2753. SERIAL_ECHOLN("");
  2754. }break;
  2755. #endif
  2756. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2757. {
  2758. if(code_seen('S'))
  2759. {
  2760. feedmultiply = code_value() ;
  2761. }
  2762. }
  2763. break;
  2764. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2765. {
  2766. if(code_seen('S'))
  2767. {
  2768. int tmp_code = code_value();
  2769. if (code_seen('T'))
  2770. {
  2771. if(setTargetedHotend(221)){
  2772. break;
  2773. }
  2774. extruder_multiply[tmp_extruder] = tmp_code;
  2775. }
  2776. else
  2777. {
  2778. extrudemultiply = tmp_code ;
  2779. }
  2780. }
  2781. }
  2782. break;
  2783. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2784. {
  2785. if(code_seen('P')){
  2786. int pin_number = code_value(); // pin number
  2787. int pin_state = -1; // required pin state - default is inverted
  2788. if(code_seen('S')) pin_state = code_value(); // required pin state
  2789. if(pin_state >= -1 && pin_state <= 1){
  2790. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2791. {
  2792. if (sensitive_pins[i] == pin_number)
  2793. {
  2794. pin_number = -1;
  2795. break;
  2796. }
  2797. }
  2798. if (pin_number > -1)
  2799. {
  2800. int target = LOW;
  2801. st_synchronize();
  2802. pinMode(pin_number, INPUT);
  2803. switch(pin_state){
  2804. case 1:
  2805. target = HIGH;
  2806. break;
  2807. case 0:
  2808. target = LOW;
  2809. break;
  2810. case -1:
  2811. target = !digitalRead(pin_number);
  2812. break;
  2813. }
  2814. while(digitalRead(pin_number) != target){
  2815. manage_heater();
  2816. manage_inactivity();
  2817. lcd_update();
  2818. }
  2819. }
  2820. }
  2821. }
  2822. }
  2823. break;
  2824. #if NUM_SERVOS > 0
  2825. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2826. {
  2827. int servo_index = -1;
  2828. int servo_position = 0;
  2829. if (code_seen('P'))
  2830. servo_index = code_value();
  2831. if (code_seen('S')) {
  2832. servo_position = code_value();
  2833. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2834. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2835. servos[servo_index].attach(0);
  2836. #endif
  2837. servos[servo_index].write(servo_position);
  2838. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2839. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2840. servos[servo_index].detach();
  2841. #endif
  2842. }
  2843. else {
  2844. SERIAL_ECHO_START;
  2845. SERIAL_ECHO("Servo ");
  2846. SERIAL_ECHO(servo_index);
  2847. SERIAL_ECHOLN(" out of range");
  2848. }
  2849. }
  2850. else if (servo_index >= 0) {
  2851. SERIAL_PROTOCOL(MSG_OK);
  2852. SERIAL_PROTOCOL(" Servo ");
  2853. SERIAL_PROTOCOL(servo_index);
  2854. SERIAL_PROTOCOL(": ");
  2855. SERIAL_PROTOCOL(servos[servo_index].read());
  2856. SERIAL_PROTOCOLLN("");
  2857. }
  2858. }
  2859. break;
  2860. #endif // NUM_SERVOS > 0
  2861. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2862. case 300: // M300
  2863. {
  2864. int beepS = code_seen('S') ? code_value() : 110;
  2865. int beepP = code_seen('P') ? code_value() : 1000;
  2866. if (beepS > 0)
  2867. {
  2868. #if BEEPER > 0
  2869. tone(BEEPER, beepS);
  2870. delay(beepP);
  2871. noTone(BEEPER);
  2872. #elif defined(ULTRALCD)
  2873. lcd_buzz(beepS, beepP);
  2874. #elif defined(LCD_USE_I2C_BUZZER)
  2875. lcd_buzz(beepP, beepS);
  2876. #endif
  2877. }
  2878. else
  2879. {
  2880. delay(beepP);
  2881. }
  2882. }
  2883. break;
  2884. #endif // M300
  2885. #ifdef PIDTEMP
  2886. case 301: // M301
  2887. {
  2888. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  2889. // default behaviour (omitting E parameter) is to update for extruder 0 only
  2890. int e = 0; // extruder being updated
  2891. if (code_seen('E'))
  2892. {
  2893. e = (int)code_value();
  2894. }
  2895. if (e < EXTRUDERS) // catch bad input value
  2896. {
  2897. if (code_seen('P')) PID_PARAM(Kp,e) = code_value();
  2898. if (code_seen('I')) PID_PARAM(Ki,e) = scalePID_i(code_value());
  2899. if (code_seen('D')) PID_PARAM(Kd,e) = scalePID_d(code_value());
  2900. #ifdef PID_ADD_EXTRUSION_RATE
  2901. if (code_seen('C')) PID_PARAM(Kc,e) = code_value();
  2902. #endif
  2903. updatePID();
  2904. SERIAL_PROTOCOL(MSG_OK);
  2905. #ifdef PID_PARAMS_PER_EXTRUDER
  2906. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  2907. SERIAL_PROTOCOL(e);
  2908. #endif // PID_PARAMS_PER_EXTRUDER
  2909. SERIAL_PROTOCOL(" p:");
  2910. SERIAL_PROTOCOL(PID_PARAM(Kp,e));
  2911. SERIAL_PROTOCOL(" i:");
  2912. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki,e)));
  2913. SERIAL_PROTOCOL(" d:");
  2914. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd,e)));
  2915. #ifdef PID_ADD_EXTRUSION_RATE
  2916. SERIAL_PROTOCOL(" c:");
  2917. //Kc does not have scaling applied above, or in resetting defaults
  2918. SERIAL_PROTOCOL(PID_PARAM(Kc,e));
  2919. #endif
  2920. SERIAL_PROTOCOLLN("");
  2921. }
  2922. else
  2923. {
  2924. SERIAL_ECHO_START;
  2925. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2926. }
  2927. }
  2928. break;
  2929. #endif //PIDTEMP
  2930. #ifdef PIDTEMPBED
  2931. case 304: // M304
  2932. {
  2933. if(code_seen('P')) bedKp = code_value();
  2934. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2935. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2936. updatePID();
  2937. SERIAL_PROTOCOL(MSG_OK);
  2938. SERIAL_PROTOCOL(" p:");
  2939. SERIAL_PROTOCOL(bedKp);
  2940. SERIAL_PROTOCOL(" i:");
  2941. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2942. SERIAL_PROTOCOL(" d:");
  2943. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2944. SERIAL_PROTOCOLLN("");
  2945. }
  2946. break;
  2947. #endif //PIDTEMP
  2948. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2949. {
  2950. #ifdef CHDK
  2951. SET_OUTPUT(CHDK);
  2952. WRITE(CHDK, HIGH);
  2953. chdkHigh = millis();
  2954. chdkActive = true;
  2955. #else
  2956. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2957. const uint8_t NUM_PULSES=16;
  2958. const float PULSE_LENGTH=0.01524;
  2959. for(int i=0; i < NUM_PULSES; i++) {
  2960. WRITE(PHOTOGRAPH_PIN, HIGH);
  2961. _delay_ms(PULSE_LENGTH);
  2962. WRITE(PHOTOGRAPH_PIN, LOW);
  2963. _delay_ms(PULSE_LENGTH);
  2964. }
  2965. delay(7.33);
  2966. for(int i=0; i < NUM_PULSES; i++) {
  2967. WRITE(PHOTOGRAPH_PIN, HIGH);
  2968. _delay_ms(PULSE_LENGTH);
  2969. WRITE(PHOTOGRAPH_PIN, LOW);
  2970. _delay_ms(PULSE_LENGTH);
  2971. }
  2972. #endif
  2973. #endif //chdk end if
  2974. }
  2975. break;
  2976. #ifdef DOGLCD
  2977. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2978. {
  2979. if (code_seen('C')) {
  2980. lcd_setcontrast( ((int)code_value())&63 );
  2981. }
  2982. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2983. SERIAL_PROTOCOL(lcd_contrast);
  2984. SERIAL_PROTOCOLLN("");
  2985. }
  2986. break;
  2987. #endif
  2988. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2989. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2990. {
  2991. float temp = .0;
  2992. if (code_seen('S')) temp=code_value();
  2993. set_extrude_min_temp(temp);
  2994. }
  2995. break;
  2996. #endif
  2997. case 303: // M303 PID autotune
  2998. {
  2999. float temp = 150.0;
  3000. int e=0;
  3001. int c=5;
  3002. if (code_seen('E')) e=code_value();
  3003. if (e<0)
  3004. temp=70;
  3005. if (code_seen('S')) temp=code_value();
  3006. if (code_seen('C')) c=code_value();
  3007. PID_autotune(temp, e, c);
  3008. }
  3009. break;
  3010. #ifdef SCARA
  3011. case 360: // M360 SCARA Theta pos1
  3012. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3013. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3014. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3015. if(Stopped == false) {
  3016. //get_coordinates(); // For X Y Z E F
  3017. delta[X_AXIS] = 0;
  3018. delta[Y_AXIS] = 120;
  3019. calculate_SCARA_forward_Transform(delta);
  3020. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3021. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3022. prepare_move();
  3023. //ClearToSend();
  3024. return;
  3025. }
  3026. break;
  3027. case 361: // SCARA Theta pos2
  3028. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3029. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3030. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3031. if(Stopped == false) {
  3032. //get_coordinates(); // For X Y Z E F
  3033. delta[X_AXIS] = 90;
  3034. delta[Y_AXIS] = 130;
  3035. calculate_SCARA_forward_Transform(delta);
  3036. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3037. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3038. prepare_move();
  3039. //ClearToSend();
  3040. return;
  3041. }
  3042. break;
  3043. case 362: // SCARA Psi pos1
  3044. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3045. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3046. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3047. if(Stopped == false) {
  3048. //get_coordinates(); // For X Y Z E F
  3049. delta[X_AXIS] = 60;
  3050. delta[Y_AXIS] = 180;
  3051. calculate_SCARA_forward_Transform(delta);
  3052. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3053. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3054. prepare_move();
  3055. //ClearToSend();
  3056. return;
  3057. }
  3058. break;
  3059. case 363: // SCARA Psi pos2
  3060. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3061. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3062. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3063. if(Stopped == false) {
  3064. //get_coordinates(); // For X Y Z E F
  3065. delta[X_AXIS] = 50;
  3066. delta[Y_AXIS] = 90;
  3067. calculate_SCARA_forward_Transform(delta);
  3068. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3069. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3070. prepare_move();
  3071. //ClearToSend();
  3072. return;
  3073. }
  3074. break;
  3075. case 364: // SCARA Psi pos3 (90 deg to Theta)
  3076. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3077. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3078. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3079. if(Stopped == false) {
  3080. //get_coordinates(); // For X Y Z E F
  3081. delta[X_AXIS] = 45;
  3082. delta[Y_AXIS] = 135;
  3083. calculate_SCARA_forward_Transform(delta);
  3084. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3085. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3086. prepare_move();
  3087. //ClearToSend();
  3088. return;
  3089. }
  3090. break;
  3091. case 365: // M364 Set SCARA scaling for X Y Z
  3092. for(int8_t i=0; i < 3; i++)
  3093. {
  3094. if(code_seen(axis_codes[i]))
  3095. {
  3096. axis_scaling[i] = code_value();
  3097. }
  3098. }
  3099. break;
  3100. #endif
  3101. case 400: // M400 finish all moves
  3102. {
  3103. st_synchronize();
  3104. }
  3105. break;
  3106. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3107. case 401:
  3108. {
  3109. engage_z_probe(); // Engage Z Servo endstop if available
  3110. }
  3111. break;
  3112. case 402:
  3113. {
  3114. retract_z_probe(); // Retract Z Servo endstop if enabled
  3115. }
  3116. break;
  3117. #endif
  3118. #ifdef FILAMENT_SENSOR
  3119. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3120. {
  3121. #if (FILWIDTH_PIN > -1)
  3122. if(code_seen('N')) filament_width_nominal=code_value();
  3123. else{
  3124. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3125. SERIAL_PROTOCOLLN(filament_width_nominal);
  3126. }
  3127. #endif
  3128. }
  3129. break;
  3130. case 405: //M405 Turn on filament sensor for control
  3131. {
  3132. if(code_seen('D')) meas_delay_cm=code_value();
  3133. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3134. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3135. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3136. {
  3137. int temp_ratio = widthFil_to_size_ratio();
  3138. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3139. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3140. }
  3141. delay_index1=0;
  3142. delay_index2=0;
  3143. }
  3144. filament_sensor = true ;
  3145. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3146. //SERIAL_PROTOCOL(filament_width_meas);
  3147. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3148. //SERIAL_PROTOCOL(extrudemultiply);
  3149. }
  3150. break;
  3151. case 406: //M406 Turn off filament sensor for control
  3152. {
  3153. filament_sensor = false ;
  3154. }
  3155. break;
  3156. case 407: //M407 Display measured filament diameter
  3157. {
  3158. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3159. SERIAL_PROTOCOLLN(filament_width_meas);
  3160. }
  3161. break;
  3162. #endif
  3163. case 500: // M500 Store settings in EEPROM
  3164. {
  3165. Config_StoreSettings();
  3166. }
  3167. break;
  3168. case 501: // M501 Read settings from EEPROM
  3169. {
  3170. Config_RetrieveSettings();
  3171. }
  3172. break;
  3173. case 502: // M502 Revert to default settings
  3174. {
  3175. Config_ResetDefault();
  3176. }
  3177. break;
  3178. case 503: // M503 print settings currently in memory
  3179. {
  3180. Config_PrintSettings();
  3181. }
  3182. break;
  3183. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3184. case 540:
  3185. {
  3186. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3187. }
  3188. break;
  3189. #endif
  3190. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3191. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3192. {
  3193. float value;
  3194. if (code_seen('Z'))
  3195. {
  3196. value = code_value();
  3197. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3198. {
  3199. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3200. SERIAL_ECHO_START;
  3201. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3202. SERIAL_PROTOCOLLN("");
  3203. }
  3204. else
  3205. {
  3206. SERIAL_ECHO_START;
  3207. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3208. SERIAL_ECHOPGM(MSG_Z_MIN);
  3209. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3210. SERIAL_ECHOPGM(MSG_Z_MAX);
  3211. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3212. SERIAL_PROTOCOLLN("");
  3213. }
  3214. }
  3215. else
  3216. {
  3217. SERIAL_ECHO_START;
  3218. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3219. SERIAL_ECHO(-zprobe_zoffset);
  3220. SERIAL_PROTOCOLLN("");
  3221. }
  3222. break;
  3223. }
  3224. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3225. #ifdef FILAMENTCHANGEENABLE
  3226. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3227. {
  3228. float target[4];
  3229. float lastpos[4];
  3230. target[X_AXIS]=current_position[X_AXIS];
  3231. target[Y_AXIS]=current_position[Y_AXIS];
  3232. target[Z_AXIS]=current_position[Z_AXIS];
  3233. target[E_AXIS]=current_position[E_AXIS];
  3234. lastpos[X_AXIS]=current_position[X_AXIS];
  3235. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3236. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3237. lastpos[E_AXIS]=current_position[E_AXIS];
  3238. //retract by E
  3239. if(code_seen('E'))
  3240. {
  3241. target[E_AXIS]+= code_value();
  3242. }
  3243. else
  3244. {
  3245. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3246. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3247. #endif
  3248. }
  3249. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3250. //lift Z
  3251. if(code_seen('Z'))
  3252. {
  3253. target[Z_AXIS]+= code_value();
  3254. }
  3255. else
  3256. {
  3257. #ifdef FILAMENTCHANGE_ZADD
  3258. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3259. #endif
  3260. }
  3261. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3262. //move xy
  3263. if(code_seen('X'))
  3264. {
  3265. target[X_AXIS]+= code_value();
  3266. }
  3267. else
  3268. {
  3269. #ifdef FILAMENTCHANGE_XPOS
  3270. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3271. #endif
  3272. }
  3273. if(code_seen('Y'))
  3274. {
  3275. target[Y_AXIS]= code_value();
  3276. }
  3277. else
  3278. {
  3279. #ifdef FILAMENTCHANGE_YPOS
  3280. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3281. #endif
  3282. }
  3283. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3284. if(code_seen('L'))
  3285. {
  3286. target[E_AXIS]+= code_value();
  3287. }
  3288. else
  3289. {
  3290. #ifdef FILAMENTCHANGE_FINALRETRACT
  3291. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3292. #endif
  3293. }
  3294. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3295. //finish moves
  3296. st_synchronize();
  3297. //disable extruder steppers so filament can be removed
  3298. disable_e0();
  3299. disable_e1();
  3300. disable_e2();
  3301. delay(100);
  3302. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3303. uint8_t cnt=0;
  3304. while(!lcd_clicked()){
  3305. cnt++;
  3306. manage_heater();
  3307. manage_inactivity(true);
  3308. lcd_update();
  3309. if(cnt==0)
  3310. {
  3311. #if BEEPER > 0
  3312. SET_OUTPUT(BEEPER);
  3313. WRITE(BEEPER,HIGH);
  3314. delay(3);
  3315. WRITE(BEEPER,LOW);
  3316. delay(3);
  3317. #else
  3318. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3319. lcd_buzz(1000/6,100);
  3320. #else
  3321. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3322. #endif
  3323. #endif
  3324. }
  3325. }
  3326. //return to normal
  3327. if(code_seen('L'))
  3328. {
  3329. target[E_AXIS]+= -code_value();
  3330. }
  3331. else
  3332. {
  3333. #ifdef FILAMENTCHANGE_FINALRETRACT
  3334. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  3335. #endif
  3336. }
  3337. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3338. plan_set_e_position(current_position[E_AXIS]);
  3339. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  3340. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  3341. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  3342. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  3343. }
  3344. break;
  3345. #endif //FILAMENTCHANGEENABLE
  3346. #ifdef DUAL_X_CARRIAGE
  3347. case 605: // Set dual x-carriage movement mode:
  3348. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3349. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3350. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3351. // millimeters x-offset and an optional differential hotend temperature of
  3352. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3353. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3354. //
  3355. // Note: the X axis should be homed after changing dual x-carriage mode.
  3356. {
  3357. st_synchronize();
  3358. if (code_seen('S'))
  3359. dual_x_carriage_mode = code_value();
  3360. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3361. {
  3362. if (code_seen('X'))
  3363. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3364. if (code_seen('R'))
  3365. duplicate_extruder_temp_offset = code_value();
  3366. SERIAL_ECHO_START;
  3367. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3368. SERIAL_ECHO(" ");
  3369. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3370. SERIAL_ECHO(",");
  3371. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3372. SERIAL_ECHO(" ");
  3373. SERIAL_ECHO(duplicate_extruder_x_offset);
  3374. SERIAL_ECHO(",");
  3375. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3376. }
  3377. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3378. {
  3379. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3380. }
  3381. active_extruder_parked = false;
  3382. extruder_duplication_enabled = false;
  3383. delayed_move_time = 0;
  3384. }
  3385. break;
  3386. #endif //DUAL_X_CARRIAGE
  3387. case 907: // M907 Set digital trimpot motor current using axis codes.
  3388. {
  3389. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3390. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3391. if(code_seen('B')) digipot_current(4,code_value());
  3392. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3393. #endif
  3394. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3395. if(code_seen('X')) digipot_current(0, code_value());
  3396. #endif
  3397. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3398. if(code_seen('Z')) digipot_current(1, code_value());
  3399. #endif
  3400. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3401. if(code_seen('E')) digipot_current(2, code_value());
  3402. #endif
  3403. #ifdef DIGIPOT_I2C
  3404. // this one uses actual amps in floating point
  3405. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3406. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3407. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3408. #endif
  3409. }
  3410. break;
  3411. case 908: // M908 Control digital trimpot directly.
  3412. {
  3413. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3414. uint8_t channel,current;
  3415. if(code_seen('P')) channel=code_value();
  3416. if(code_seen('S')) current=code_value();
  3417. digitalPotWrite(channel, current);
  3418. #endif
  3419. }
  3420. break;
  3421. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3422. {
  3423. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3424. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3425. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3426. if(code_seen('B')) microstep_mode(4,code_value());
  3427. microstep_readings();
  3428. #endif
  3429. }
  3430. break;
  3431. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3432. {
  3433. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3434. if(code_seen('S')) switch((int)code_value())
  3435. {
  3436. case 1:
  3437. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3438. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3439. break;
  3440. case 2:
  3441. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3442. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3443. break;
  3444. }
  3445. microstep_readings();
  3446. #endif
  3447. }
  3448. break;
  3449. case 999: // M999: Restart after being stopped
  3450. Stopped = false;
  3451. lcd_reset_alert_level();
  3452. gcode_LastN = Stopped_gcode_LastN;
  3453. FlushSerialRequestResend();
  3454. break;
  3455. }
  3456. }
  3457. else if(code_seen('T'))
  3458. {
  3459. tmp_extruder = code_value();
  3460. if(tmp_extruder >= EXTRUDERS) {
  3461. SERIAL_ECHO_START;
  3462. SERIAL_ECHO("T");
  3463. SERIAL_ECHO(tmp_extruder);
  3464. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3465. }
  3466. else {
  3467. boolean make_move = false;
  3468. if(code_seen('F')) {
  3469. make_move = true;
  3470. next_feedrate = code_value();
  3471. if(next_feedrate > 0.0) {
  3472. feedrate = next_feedrate;
  3473. }
  3474. }
  3475. #if EXTRUDERS > 1
  3476. if(tmp_extruder != active_extruder) {
  3477. // Save current position to return to after applying extruder offset
  3478. memcpy(destination, current_position, sizeof(destination));
  3479. #ifdef DUAL_X_CARRIAGE
  3480. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3481. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3482. {
  3483. // Park old head: 1) raise 2) move to park position 3) lower
  3484. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3485. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3486. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3487. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3488. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3489. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3490. st_synchronize();
  3491. }
  3492. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3493. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3494. extruder_offset[Y_AXIS][active_extruder] +
  3495. extruder_offset[Y_AXIS][tmp_extruder];
  3496. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3497. extruder_offset[Z_AXIS][active_extruder] +
  3498. extruder_offset[Z_AXIS][tmp_extruder];
  3499. active_extruder = tmp_extruder;
  3500. // This function resets the max/min values - the current position may be overwritten below.
  3501. axis_is_at_home(X_AXIS);
  3502. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3503. {
  3504. current_position[X_AXIS] = inactive_extruder_x_pos;
  3505. inactive_extruder_x_pos = destination[X_AXIS];
  3506. }
  3507. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3508. {
  3509. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3510. if (active_extruder == 0 || active_extruder_parked)
  3511. current_position[X_AXIS] = inactive_extruder_x_pos;
  3512. else
  3513. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3514. inactive_extruder_x_pos = destination[X_AXIS];
  3515. extruder_duplication_enabled = false;
  3516. }
  3517. else
  3518. {
  3519. // record raised toolhead position for use by unpark
  3520. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3521. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3522. active_extruder_parked = true;
  3523. delayed_move_time = 0;
  3524. }
  3525. #else
  3526. // Offset extruder (only by XY)
  3527. int i;
  3528. for(i = 0; i < 2; i++) {
  3529. current_position[i] = current_position[i] -
  3530. extruder_offset[i][active_extruder] +
  3531. extruder_offset[i][tmp_extruder];
  3532. }
  3533. // Set the new active extruder and position
  3534. active_extruder = tmp_extruder;
  3535. #endif //else DUAL_X_CARRIAGE
  3536. #ifdef DELTA
  3537. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3538. //sent position to plan_set_position();
  3539. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3540. #else
  3541. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3542. #endif
  3543. // Move to the old position if 'F' was in the parameters
  3544. if(make_move && Stopped == false) {
  3545. prepare_move();
  3546. }
  3547. }
  3548. #endif
  3549. SERIAL_ECHO_START;
  3550. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3551. SERIAL_PROTOCOLLN((int)active_extruder);
  3552. }
  3553. }
  3554. else
  3555. {
  3556. SERIAL_ECHO_START;
  3557. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3558. SERIAL_ECHO(cmdbuffer[bufindr]);
  3559. SERIAL_ECHOLNPGM("\"");
  3560. }
  3561. ClearToSend();
  3562. }
  3563. void FlushSerialRequestResend()
  3564. {
  3565. //char cmdbuffer[bufindr][100]="Resend:";
  3566. MYSERIAL.flush();
  3567. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3568. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3569. ClearToSend();
  3570. }
  3571. void ClearToSend()
  3572. {
  3573. previous_millis_cmd = millis();
  3574. #ifdef SDSUPPORT
  3575. if(fromsd[bufindr])
  3576. return;
  3577. #endif //SDSUPPORT
  3578. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3579. }
  3580. void get_coordinates()
  3581. {
  3582. bool seen[4]={false,false,false,false};
  3583. for(int8_t i=0; i < NUM_AXIS; i++) {
  3584. if(code_seen(axis_codes[i]))
  3585. {
  3586. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3587. seen[i]=true;
  3588. }
  3589. else destination[i] = current_position[i]; //Are these else lines really needed?
  3590. }
  3591. if(code_seen('F')) {
  3592. next_feedrate = code_value();
  3593. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3594. }
  3595. }
  3596. void get_arc_coordinates()
  3597. {
  3598. #ifdef SF_ARC_FIX
  3599. bool relative_mode_backup = relative_mode;
  3600. relative_mode = true;
  3601. #endif
  3602. get_coordinates();
  3603. #ifdef SF_ARC_FIX
  3604. relative_mode=relative_mode_backup;
  3605. #endif
  3606. if(code_seen('I')) {
  3607. offset[0] = code_value();
  3608. }
  3609. else {
  3610. offset[0] = 0.0;
  3611. }
  3612. if(code_seen('J')) {
  3613. offset[1] = code_value();
  3614. }
  3615. else {
  3616. offset[1] = 0.0;
  3617. }
  3618. }
  3619. void clamp_to_software_endstops(float target[3])
  3620. {
  3621. if (min_software_endstops) {
  3622. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3623. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3624. float negative_z_offset = 0;
  3625. #ifdef ENABLE_AUTO_BED_LEVELING
  3626. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  3627. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  3628. #endif
  3629. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  3630. }
  3631. if (max_software_endstops) {
  3632. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3633. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3634. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3635. }
  3636. }
  3637. #ifdef DELTA
  3638. void recalc_delta_settings(float radius, float diagonal_rod)
  3639. {
  3640. delta_tower1_x= -SIN_60*radius; // front left tower
  3641. delta_tower1_y= -COS_60*radius;
  3642. delta_tower2_x= SIN_60*radius; // front right tower
  3643. delta_tower2_y= -COS_60*radius;
  3644. delta_tower3_x= 0.0; // back middle tower
  3645. delta_tower3_y= radius;
  3646. delta_diagonal_rod_2= sq(diagonal_rod);
  3647. }
  3648. void calculate_delta(float cartesian[3])
  3649. {
  3650. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3651. - sq(delta_tower1_x-cartesian[X_AXIS])
  3652. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3653. ) + cartesian[Z_AXIS];
  3654. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3655. - sq(delta_tower2_x-cartesian[X_AXIS])
  3656. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3657. ) + cartesian[Z_AXIS];
  3658. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3659. - sq(delta_tower3_x-cartesian[X_AXIS])
  3660. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3661. ) + cartesian[Z_AXIS];
  3662. /*
  3663. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3664. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3665. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3666. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3667. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3668. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3669. */
  3670. }
  3671. #endif
  3672. void prepare_move()
  3673. {
  3674. clamp_to_software_endstops(destination);
  3675. previous_millis_cmd = millis();
  3676. #ifdef SCARA //for now same as delta-code
  3677. float difference[NUM_AXIS];
  3678. for (int8_t i=0; i < NUM_AXIS; i++) {
  3679. difference[i] = destination[i] - current_position[i];
  3680. }
  3681. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3682. sq(difference[Y_AXIS]) +
  3683. sq(difference[Z_AXIS]));
  3684. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3685. if (cartesian_mm < 0.000001) { return; }
  3686. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3687. int steps = max(1, int(scara_segments_per_second * seconds));
  3688. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3689. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3690. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3691. for (int s = 1; s <= steps; s++) {
  3692. float fraction = float(s) / float(steps);
  3693. for(int8_t i=0; i < NUM_AXIS; i++) {
  3694. destination[i] = current_position[i] + difference[i] * fraction;
  3695. }
  3696. calculate_delta(destination);
  3697. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  3698. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  3699. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  3700. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3701. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3702. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3703. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3704. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3705. active_extruder);
  3706. }
  3707. #endif // SCARA
  3708. #ifdef DELTA
  3709. float difference[NUM_AXIS];
  3710. for (int8_t i=0; i < NUM_AXIS; i++) {
  3711. difference[i] = destination[i] - current_position[i];
  3712. }
  3713. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3714. sq(difference[Y_AXIS]) +
  3715. sq(difference[Z_AXIS]));
  3716. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3717. if (cartesian_mm < 0.000001) { return; }
  3718. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3719. int steps = max(1, int(delta_segments_per_second * seconds));
  3720. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3721. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3722. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3723. for (int s = 1; s <= steps; s++) {
  3724. float fraction = float(s) / float(steps);
  3725. for(int8_t i=0; i < NUM_AXIS; i++) {
  3726. destination[i] = current_position[i] + difference[i] * fraction;
  3727. }
  3728. calculate_delta(destination);
  3729. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3730. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3731. active_extruder);
  3732. }
  3733. #endif // DELTA
  3734. #ifdef DUAL_X_CARRIAGE
  3735. if (active_extruder_parked)
  3736. {
  3737. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3738. {
  3739. // move duplicate extruder into correct duplication position.
  3740. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3741. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3742. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3743. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3744. st_synchronize();
  3745. extruder_duplication_enabled = true;
  3746. active_extruder_parked = false;
  3747. }
  3748. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3749. {
  3750. if (current_position[E_AXIS] == destination[E_AXIS])
  3751. {
  3752. // this is a travel move - skit it but keep track of current position (so that it can later
  3753. // be used as start of first non-travel move)
  3754. if (delayed_move_time != 0xFFFFFFFFUL)
  3755. {
  3756. memcpy(current_position, destination, sizeof(current_position));
  3757. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3758. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3759. delayed_move_time = millis();
  3760. return;
  3761. }
  3762. }
  3763. delayed_move_time = 0;
  3764. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3765. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3766. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3767. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3768. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3769. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3770. active_extruder_parked = false;
  3771. }
  3772. }
  3773. #endif //DUAL_X_CARRIAGE
  3774. #if ! (defined DELTA || defined SCARA)
  3775. // Do not use feedmultiply for E or Z only moves
  3776. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3777. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3778. }
  3779. else {
  3780. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3781. }
  3782. #endif // !(DELTA || SCARA)
  3783. for(int8_t i=0; i < NUM_AXIS; i++) {
  3784. current_position[i] = destination[i];
  3785. }
  3786. }
  3787. void prepare_arc_move(char isclockwise) {
  3788. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3789. // Trace the arc
  3790. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3791. // As far as the parser is concerned, the position is now == target. In reality the
  3792. // motion control system might still be processing the action and the real tool position
  3793. // in any intermediate location.
  3794. for(int8_t i=0; i < NUM_AXIS; i++) {
  3795. current_position[i] = destination[i];
  3796. }
  3797. previous_millis_cmd = millis();
  3798. }
  3799. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3800. #if defined(FAN_PIN)
  3801. #if CONTROLLERFAN_PIN == FAN_PIN
  3802. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3803. #endif
  3804. #endif
  3805. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3806. unsigned long lastMotorCheck = 0;
  3807. void controllerFan()
  3808. {
  3809. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3810. {
  3811. lastMotorCheck = millis();
  3812. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3813. #if EXTRUDERS > 2
  3814. || !READ(E2_ENABLE_PIN)
  3815. #endif
  3816. #if EXTRUDER > 1
  3817. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3818. || !READ(X2_ENABLE_PIN)
  3819. #endif
  3820. || !READ(E1_ENABLE_PIN)
  3821. #endif
  3822. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3823. {
  3824. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3825. }
  3826. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3827. {
  3828. digitalWrite(CONTROLLERFAN_PIN, 0);
  3829. analogWrite(CONTROLLERFAN_PIN, 0);
  3830. }
  3831. else
  3832. {
  3833. // allows digital or PWM fan output to be used (see M42 handling)
  3834. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3835. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3836. }
  3837. }
  3838. }
  3839. #endif
  3840. #ifdef SCARA
  3841. void calculate_SCARA_forward_Transform(float f_scara[3])
  3842. {
  3843. // Perform forward kinematics, and place results in delta[3]
  3844. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3845. float x_sin, x_cos, y_sin, y_cos;
  3846. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3847. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3848. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3849. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3850. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3851. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3852. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  3853. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  3854. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  3855. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  3856. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  3857. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  3858. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  3859. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3860. }
  3861. void calculate_delta(float cartesian[3]){
  3862. //reverse kinematics.
  3863. // Perform reversed kinematics, and place results in delta[3]
  3864. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3865. float SCARA_pos[2];
  3866. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  3867. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  3868. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  3869. #if (Linkage_1 == Linkage_2)
  3870. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  3871. #else
  3872. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  3873. #endif
  3874. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  3875. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  3876. SCARA_K2 = Linkage_2 * SCARA_S2;
  3877. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  3878. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  3879. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  3880. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  3881. delta[Z_AXIS] = cartesian[Z_AXIS];
  3882. /*
  3883. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3884. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3885. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3886. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  3887. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  3888. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3889. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3890. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3891. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  3892. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  3893. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  3894. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  3895. SERIAL_ECHOLN(" ");*/
  3896. }
  3897. #endif
  3898. #ifdef TEMP_STAT_LEDS
  3899. static bool blue_led = false;
  3900. static bool red_led = false;
  3901. static uint32_t stat_update = 0;
  3902. void handle_status_leds(void) {
  3903. float max_temp = 0.0;
  3904. if(millis() > stat_update) {
  3905. stat_update += 500; // Update every 0.5s
  3906. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3907. max_temp = max(max_temp, degHotend(cur_extruder));
  3908. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3909. }
  3910. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3911. max_temp = max(max_temp, degTargetBed());
  3912. max_temp = max(max_temp, degBed());
  3913. #endif
  3914. if((max_temp > 55.0) && (red_led == false)) {
  3915. digitalWrite(STAT_LED_RED, 1);
  3916. digitalWrite(STAT_LED_BLUE, 0);
  3917. red_led = true;
  3918. blue_led = false;
  3919. }
  3920. if((max_temp < 54.0) && (blue_led == false)) {
  3921. digitalWrite(STAT_LED_RED, 0);
  3922. digitalWrite(STAT_LED_BLUE, 1);
  3923. red_led = false;
  3924. blue_led = true;
  3925. }
  3926. }
  3927. }
  3928. #endif
  3929. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  3930. {
  3931. #if defined(KILL_PIN) && KILL_PIN > -1
  3932. static int killCount = 0; // make the inactivity button a bit less responsive
  3933. const int KILL_DELAY = 10000;
  3934. #endif
  3935. #if defined(HOME_PIN) && HOME_PIN > -1
  3936. static int homeDebounceCount = 0; // poor man's debouncing count
  3937. const int HOME_DEBOUNCE_DELAY = 10000;
  3938. #endif
  3939. if(buflen < (BUFSIZE-1))
  3940. get_command();
  3941. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3942. if(max_inactive_time)
  3943. kill();
  3944. if(stepper_inactive_time) {
  3945. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3946. {
  3947. if(blocks_queued() == false && ignore_stepper_queue == false) {
  3948. disable_x();
  3949. disable_y();
  3950. disable_z();
  3951. disable_e0();
  3952. disable_e1();
  3953. disable_e2();
  3954. }
  3955. }
  3956. }
  3957. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3958. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  3959. {
  3960. chdkActive = false;
  3961. WRITE(CHDK, LOW);
  3962. }
  3963. #endif
  3964. #if defined(KILL_PIN) && KILL_PIN > -1
  3965. // Check if the kill button was pressed and wait just in case it was an accidental
  3966. // key kill key press
  3967. // -------------------------------------------------------------------------------
  3968. if( 0 == READ(KILL_PIN) )
  3969. {
  3970. killCount++;
  3971. }
  3972. else if (killCount > 0)
  3973. {
  3974. killCount--;
  3975. }
  3976. // Exceeded threshold and we can confirm that it was not accidental
  3977. // KILL the machine
  3978. // ----------------------------------------------------------------
  3979. if ( killCount >= KILL_DELAY)
  3980. {
  3981. kill();
  3982. }
  3983. #endif
  3984. #if defined(HOME_PIN) && HOME_PIN > -1
  3985. // Check to see if we have to home, use poor man's debouncer
  3986. // ---------------------------------------------------------
  3987. if ( 0 == READ(HOME_PIN) )
  3988. {
  3989. if (homeDebounceCount == 0)
  3990. {
  3991. enquecommand_P((PSTR("G28")));
  3992. homeDebounceCount++;
  3993. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  3994. }
  3995. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  3996. {
  3997. homeDebounceCount++;
  3998. }
  3999. else
  4000. {
  4001. homeDebounceCount = 0;
  4002. }
  4003. }
  4004. #endif
  4005. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4006. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4007. #endif
  4008. #ifdef EXTRUDER_RUNOUT_PREVENT
  4009. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4010. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4011. {
  4012. bool oldstatus=READ(E0_ENABLE_PIN);
  4013. enable_e0();
  4014. float oldepos=current_position[E_AXIS];
  4015. float oldedes=destination[E_AXIS];
  4016. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4017. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4018. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4019. current_position[E_AXIS]=oldepos;
  4020. destination[E_AXIS]=oldedes;
  4021. plan_set_e_position(oldepos);
  4022. previous_millis_cmd=millis();
  4023. st_synchronize();
  4024. WRITE(E0_ENABLE_PIN,oldstatus);
  4025. }
  4026. #endif
  4027. #if defined(DUAL_X_CARRIAGE)
  4028. // handle delayed move timeout
  4029. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4030. {
  4031. // travel moves have been received so enact them
  4032. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4033. memcpy(destination,current_position,sizeof(destination));
  4034. prepare_move();
  4035. }
  4036. #endif
  4037. #ifdef TEMP_STAT_LEDS
  4038. handle_status_leds();
  4039. #endif
  4040. check_axes_activity();
  4041. }
  4042. void kill()
  4043. {
  4044. cli(); // Stop interrupts
  4045. disable_heater();
  4046. disable_x();
  4047. disable_y();
  4048. disable_z();
  4049. disable_e0();
  4050. disable_e1();
  4051. disable_e2();
  4052. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4053. pinMode(PS_ON_PIN,INPUT);
  4054. #endif
  4055. SERIAL_ERROR_START;
  4056. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4057. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4058. // FMC small patch to update the LCD before ending
  4059. sei(); // enable interrupts
  4060. for ( int i=5; i--; lcd_update())
  4061. {
  4062. delay(200);
  4063. }
  4064. cli(); // disable interrupts
  4065. suicide();
  4066. while(1) { /* Intentionally left empty */ } // Wait for reset
  4067. }
  4068. void Stop()
  4069. {
  4070. disable_heater();
  4071. if(Stopped == false) {
  4072. Stopped = true;
  4073. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4074. SERIAL_ERROR_START;
  4075. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4076. LCD_MESSAGEPGM(MSG_STOPPED);
  4077. }
  4078. }
  4079. bool IsStopped() { return Stopped; };
  4080. #ifdef FAST_PWM_FAN
  4081. void setPwmFrequency(uint8_t pin, int val)
  4082. {
  4083. val &= 0x07;
  4084. switch(digitalPinToTimer(pin))
  4085. {
  4086. #if defined(TCCR0A)
  4087. case TIMER0A:
  4088. case TIMER0B:
  4089. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4090. // TCCR0B |= val;
  4091. break;
  4092. #endif
  4093. #if defined(TCCR1A)
  4094. case TIMER1A:
  4095. case TIMER1B:
  4096. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4097. // TCCR1B |= val;
  4098. break;
  4099. #endif
  4100. #if defined(TCCR2)
  4101. case TIMER2:
  4102. case TIMER2:
  4103. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4104. TCCR2 |= val;
  4105. break;
  4106. #endif
  4107. #if defined(TCCR2A)
  4108. case TIMER2A:
  4109. case TIMER2B:
  4110. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4111. TCCR2B |= val;
  4112. break;
  4113. #endif
  4114. #if defined(TCCR3A)
  4115. case TIMER3A:
  4116. case TIMER3B:
  4117. case TIMER3C:
  4118. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4119. TCCR3B |= val;
  4120. break;
  4121. #endif
  4122. #if defined(TCCR4A)
  4123. case TIMER4A:
  4124. case TIMER4B:
  4125. case TIMER4C:
  4126. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4127. TCCR4B |= val;
  4128. break;
  4129. #endif
  4130. #if defined(TCCR5A)
  4131. case TIMER5A:
  4132. case TIMER5B:
  4133. case TIMER5C:
  4134. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4135. TCCR5B |= val;
  4136. break;
  4137. #endif
  4138. }
  4139. }
  4140. #endif //FAST_PWM_FAN
  4141. bool setTargetedHotend(int code){
  4142. tmp_extruder = active_extruder;
  4143. if(code_seen('T')) {
  4144. tmp_extruder = code_value();
  4145. if(tmp_extruder >= EXTRUDERS) {
  4146. SERIAL_ECHO_START;
  4147. switch(code){
  4148. case 104:
  4149. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4150. break;
  4151. case 105:
  4152. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4153. break;
  4154. case 109:
  4155. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4156. break;
  4157. case 218:
  4158. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4159. break;
  4160. case 221:
  4161. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4162. break;
  4163. }
  4164. SERIAL_ECHOLN(tmp_extruder);
  4165. return true;
  4166. }
  4167. }
  4168. return false;
  4169. }
  4170. float calculate_volumetric_multiplier(float diameter) {
  4171. float area = .0;
  4172. float radius = .0;
  4173. radius = diameter * .5;
  4174. if (! volumetric_enabled || radius == 0) {
  4175. area = 1;
  4176. }
  4177. else {
  4178. area = M_PI * pow(radius, 2);
  4179. }
  4180. return 1.0 / area;
  4181. }
  4182. void calculate_volumetric_multipliers() {
  4183. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4184. #if EXTRUDERS > 1
  4185. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4186. #if EXTRUDERS > 2
  4187. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4188. #endif
  4189. #endif
  4190. }