My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

stepper.cpp 40KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //=============================public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //=============================private variables ============================
  35. //===========================================================================
  36. //static makes it inpossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static long counter_x, // Counter variables for the bresenham line tracer
  40. counter_y,
  41. counter_z,
  42. counter_e;
  43. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  44. #ifdef ADVANCE
  45. static long advance_rate, advance, final_advance = 0;
  46. static long old_advance = 0;
  47. static long e_steps[3];
  48. #endif
  49. static long acceleration_time, deceleration_time;
  50. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  51. static unsigned short acc_step_rate; // needed for deccelaration start point
  52. static char step_loops;
  53. static unsigned short OCR1A_nominal;
  54. static unsigned short step_loops_nominal;
  55. volatile long endstops_trigsteps[3]={0,0,0};
  56. volatile long endstops_stepsTotal,endstops_stepsDone;
  57. static volatile bool endstop_x_hit=false;
  58. static volatile bool endstop_y_hit=false;
  59. static volatile bool endstop_z_hit=false;
  60. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  61. bool abort_on_endstop_hit = false;
  62. #endif
  63. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  64. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  65. #endif
  66. static bool old_x_min_endstop=false;
  67. static bool old_x_max_endstop=false;
  68. static bool old_y_min_endstop=false;
  69. static bool old_y_max_endstop=false;
  70. static bool old_z_min_endstop=false;
  71. static bool old_z_max_endstop=false;
  72. static bool check_endstops = true;
  73. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  74. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  75. //===========================================================================
  76. //=============================functions ============================
  77. //===========================================================================
  78. #define CHECK_ENDSTOPS if(check_endstops)
  79. // intRes = intIn1 * intIn2 >> 16
  80. // uses:
  81. // r26 to store 0
  82. // r27 to store the byte 1 of the 24 bit result
  83. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  84. asm volatile ( \
  85. "clr r26 \n\t" \
  86. "mul %A1, %B2 \n\t" \
  87. "movw %A0, r0 \n\t" \
  88. "mul %A1, %A2 \n\t" \
  89. "add %A0, r1 \n\t" \
  90. "adc %B0, r26 \n\t" \
  91. "lsr r0 \n\t" \
  92. "adc %A0, r26 \n\t" \
  93. "adc %B0, r26 \n\t" \
  94. "clr r1 \n\t" \
  95. : \
  96. "=&r" (intRes) \
  97. : \
  98. "d" (charIn1), \
  99. "d" (intIn2) \
  100. : \
  101. "r26" \
  102. )
  103. // intRes = longIn1 * longIn2 >> 24
  104. // uses:
  105. // r26 to store 0
  106. // r27 to store the byte 1 of the 48bit result
  107. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  108. asm volatile ( \
  109. "clr r26 \n\t" \
  110. "mul %A1, %B2 \n\t" \
  111. "mov r27, r1 \n\t" \
  112. "mul %B1, %C2 \n\t" \
  113. "movw %A0, r0 \n\t" \
  114. "mul %C1, %C2 \n\t" \
  115. "add %B0, r0 \n\t" \
  116. "mul %C1, %B2 \n\t" \
  117. "add %A0, r0 \n\t" \
  118. "adc %B0, r1 \n\t" \
  119. "mul %A1, %C2 \n\t" \
  120. "add r27, r0 \n\t" \
  121. "adc %A0, r1 \n\t" \
  122. "adc %B0, r26 \n\t" \
  123. "mul %B1, %B2 \n\t" \
  124. "add r27, r0 \n\t" \
  125. "adc %A0, r1 \n\t" \
  126. "adc %B0, r26 \n\t" \
  127. "mul %C1, %A2 \n\t" \
  128. "add r27, r0 \n\t" \
  129. "adc %A0, r1 \n\t" \
  130. "adc %B0, r26 \n\t" \
  131. "mul %B1, %A2 \n\t" \
  132. "add r27, r1 \n\t" \
  133. "adc %A0, r26 \n\t" \
  134. "adc %B0, r26 \n\t" \
  135. "lsr r27 \n\t" \
  136. "adc %A0, r26 \n\t" \
  137. "adc %B0, r26 \n\t" \
  138. "clr r1 \n\t" \
  139. : \
  140. "=&r" (intRes) \
  141. : \
  142. "d" (longIn1), \
  143. "d" (longIn2) \
  144. : \
  145. "r26" , "r27" \
  146. )
  147. // Some useful constants
  148. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
  149. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
  150. void checkHitEndstops()
  151. {
  152. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  153. SERIAL_ECHO_START;
  154. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  155. if(endstop_x_hit) {
  156. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  157. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  158. }
  159. if(endstop_y_hit) {
  160. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  161. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  162. }
  163. if(endstop_z_hit) {
  164. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  165. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  166. }
  167. SERIAL_ECHOLN("");
  168. endstop_x_hit=false;
  169. endstop_y_hit=false;
  170. endstop_z_hit=false;
  171. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  172. if (abort_on_endstop_hit)
  173. {
  174. card.sdprinting = false;
  175. card.closefile();
  176. quickStop();
  177. setTargetHotend0(0);
  178. setTargetHotend1(0);
  179. setTargetHotend2(0);
  180. }
  181. #endif
  182. }
  183. }
  184. void endstops_hit_on_purpose()
  185. {
  186. endstop_x_hit=false;
  187. endstop_y_hit=false;
  188. endstop_z_hit=false;
  189. }
  190. void enable_endstops(bool check)
  191. {
  192. check_endstops = check;
  193. }
  194. // __________________________
  195. // /| |\ _________________ ^
  196. // / | | \ /| |\ |
  197. // / | | \ / | | \ s
  198. // / | | | | | \ p
  199. // / | | | | | \ e
  200. // +-----+------------------------+---+--+---------------+----+ e
  201. // | BLOCK 1 | BLOCK 2 | d
  202. //
  203. // time ----->
  204. //
  205. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  206. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  207. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  208. // The slope of acceleration is calculated with the leib ramp alghorithm.
  209. void st_wake_up() {
  210. // TCNT1 = 0;
  211. ENABLE_STEPPER_DRIVER_INTERRUPT();
  212. }
  213. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  214. unsigned short timer;
  215. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  216. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  217. step_rate = (step_rate >> 2)&0x3fff;
  218. step_loops = 4;
  219. }
  220. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  221. step_rate = (step_rate >> 1)&0x7fff;
  222. step_loops = 2;
  223. }
  224. else {
  225. step_loops = 1;
  226. }
  227. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  228. step_rate -= (F_CPU/500000); // Correct for minimal speed
  229. if(step_rate >= (8*256)){ // higher step rate
  230. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  231. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  232. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  233. MultiU16X8toH16(timer, tmp_step_rate, gain);
  234. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  235. }
  236. else { // lower step rates
  237. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  238. table_address += ((step_rate)>>1) & 0xfffc;
  239. timer = (unsigned short)pgm_read_word_near(table_address);
  240. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  241. }
  242. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  243. return timer;
  244. }
  245. // Initializes the trapezoid generator from the current block. Called whenever a new
  246. // block begins.
  247. FORCE_INLINE void trapezoid_generator_reset() {
  248. #ifdef ADVANCE
  249. advance = current_block->initial_advance;
  250. final_advance = current_block->final_advance;
  251. // Do E steps + advance steps
  252. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  253. old_advance = advance >>8;
  254. #endif
  255. deceleration_time = 0;
  256. // step_rate to timer interval
  257. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  258. // make a note of the number of step loops required at nominal speed
  259. step_loops_nominal = step_loops;
  260. acc_step_rate = current_block->initial_rate;
  261. acceleration_time = calc_timer(acc_step_rate);
  262. OCR1A = acceleration_time;
  263. // SERIAL_ECHO_START;
  264. // SERIAL_ECHOPGM("advance :");
  265. // SERIAL_ECHO(current_block->advance/256.0);
  266. // SERIAL_ECHOPGM("advance rate :");
  267. // SERIAL_ECHO(current_block->advance_rate/256.0);
  268. // SERIAL_ECHOPGM("initial advance :");
  269. // SERIAL_ECHO(current_block->initial_advance/256.0);
  270. // SERIAL_ECHOPGM("final advance :");
  271. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  272. }
  273. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  274. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  275. ISR(TIMER1_COMPA_vect)
  276. {
  277. // If there is no current block, attempt to pop one from the buffer
  278. if (current_block == NULL) {
  279. // Anything in the buffer?
  280. current_block = plan_get_current_block();
  281. if (current_block != NULL) {
  282. current_block->busy = true;
  283. trapezoid_generator_reset();
  284. counter_x = -(current_block->step_event_count >> 1);
  285. counter_y = counter_x;
  286. counter_z = counter_x;
  287. counter_e = counter_x;
  288. step_events_completed = 0;
  289. #ifdef Z_LATE_ENABLE
  290. if(current_block->steps_z > 0) {
  291. enable_z();
  292. OCR1A = 2000; //1ms wait
  293. return;
  294. }
  295. #endif
  296. // #ifdef ADVANCE
  297. // e_steps[current_block->active_extruder] = 0;
  298. // #endif
  299. }
  300. else {
  301. OCR1A=2000; // 1kHz.
  302. }
  303. }
  304. if (current_block != NULL) {
  305. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  306. out_bits = current_block->direction_bits;
  307. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  308. if((out_bits & (1<<X_AXIS))!=0){
  309. #ifdef DUAL_X_CARRIAGE
  310. if (extruder_duplication_enabled){
  311. WRITE(X_DIR_PIN, INVERT_X_DIR);
  312. WRITE(X2_DIR_PIN, INVERT_X_DIR);
  313. }
  314. else{
  315. if (current_block->active_extruder != 0)
  316. WRITE(X2_DIR_PIN, INVERT_X_DIR);
  317. else
  318. WRITE(X_DIR_PIN, INVERT_X_DIR);
  319. }
  320. #else
  321. WRITE(X_DIR_PIN, INVERT_X_DIR);
  322. #endif
  323. count_direction[X_AXIS]=-1;
  324. }
  325. else{
  326. #ifdef DUAL_X_CARRIAGE
  327. if (extruder_duplication_enabled){
  328. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  329. WRITE(X2_DIR_PIN, !INVERT_X_DIR);
  330. }
  331. else{
  332. if (current_block->active_extruder != 0)
  333. WRITE(X2_DIR_PIN, !INVERT_X_DIR);
  334. else
  335. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  336. }
  337. #else
  338. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  339. #endif
  340. count_direction[X_AXIS]=1;
  341. }
  342. if((out_bits & (1<<Y_AXIS))!=0){
  343. WRITE(Y_DIR_PIN, INVERT_Y_DIR);
  344. #ifdef Y_DUAL_STEPPER_DRIVERS
  345. WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  346. #endif
  347. count_direction[Y_AXIS]=-1;
  348. }
  349. else{
  350. WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
  351. #ifdef Y_DUAL_STEPPER_DRIVERS
  352. WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  353. #endif
  354. count_direction[Y_AXIS]=1;
  355. }
  356. // Set direction en check limit switches
  357. #ifndef COREXY
  358. if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
  359. #else
  360. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
  361. #endif
  362. CHECK_ENDSTOPS
  363. {
  364. #ifdef DUAL_X_CARRIAGE
  365. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  366. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1)
  367. || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  368. #endif
  369. {
  370. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  371. bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  372. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
  373. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  374. endstop_x_hit=true;
  375. step_events_completed = current_block->step_event_count;
  376. }
  377. old_x_min_endstop = x_min_endstop;
  378. #endif
  379. }
  380. }
  381. }
  382. else { // +direction
  383. CHECK_ENDSTOPS
  384. {
  385. #ifdef DUAL_X_CARRIAGE
  386. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  387. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1)
  388. || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  389. #endif
  390. {
  391. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  392. bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  393. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
  394. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  395. endstop_x_hit=true;
  396. step_events_completed = current_block->step_event_count;
  397. }
  398. old_x_max_endstop = x_max_endstop;
  399. #endif
  400. }
  401. }
  402. }
  403. #ifndef COREXY
  404. if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
  405. #else
  406. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
  407. #endif
  408. CHECK_ENDSTOPS
  409. {
  410. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  411. bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  412. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
  413. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  414. endstop_y_hit=true;
  415. step_events_completed = current_block->step_event_count;
  416. }
  417. old_y_min_endstop = y_min_endstop;
  418. #endif
  419. }
  420. }
  421. else { // +direction
  422. CHECK_ENDSTOPS
  423. {
  424. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  425. bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  426. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
  427. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  428. endstop_y_hit=true;
  429. step_events_completed = current_block->step_event_count;
  430. }
  431. old_y_max_endstop = y_max_endstop;
  432. #endif
  433. }
  434. }
  435. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  436. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  437. #ifdef Z_DUAL_STEPPER_DRIVERS
  438. WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
  439. #endif
  440. count_direction[Z_AXIS]=-1;
  441. CHECK_ENDSTOPS
  442. {
  443. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  444. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  445. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
  446. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  447. endstop_z_hit=true;
  448. step_events_completed = current_block->step_event_count;
  449. }
  450. old_z_min_endstop = z_min_endstop;
  451. #endif
  452. }
  453. }
  454. else { // +direction
  455. WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
  456. #ifdef Z_DUAL_STEPPER_DRIVERS
  457. WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
  458. #endif
  459. count_direction[Z_AXIS]=1;
  460. CHECK_ENDSTOPS
  461. {
  462. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  463. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  464. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
  465. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  466. endstop_z_hit=true;
  467. step_events_completed = current_block->step_event_count;
  468. }
  469. old_z_max_endstop = z_max_endstop;
  470. #endif
  471. }
  472. }
  473. #ifndef ADVANCE
  474. if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
  475. REV_E_DIR();
  476. count_direction[E_AXIS]=-1;
  477. }
  478. else { // +direction
  479. NORM_E_DIR();
  480. count_direction[E_AXIS]=1;
  481. }
  482. #endif //!ADVANCE
  483. for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
  484. #ifndef AT90USB
  485. MSerial.checkRx(); // Check for serial chars.
  486. #endif
  487. #ifdef ADVANCE
  488. counter_e += current_block->steps_e;
  489. if (counter_e > 0) {
  490. counter_e -= current_block->step_event_count;
  491. if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
  492. e_steps[current_block->active_extruder]--;
  493. }
  494. else {
  495. e_steps[current_block->active_extruder]++;
  496. }
  497. }
  498. #endif //ADVANCE
  499. counter_x += current_block->steps_x;
  500. #ifdef CONFIG_STEPPERS_TOSHIBA
  501. /* The toshiba stepper controller require much longer pulses
  502. * tjerfore we 'stage' decompose the pulses between high, and
  503. * low instead of doing each in turn. The extra tests add enough
  504. * lag to allow it work with without needing NOPs */
  505. if (counter_x > 0) {
  506. WRITE(X_STEP_PIN, HIGH);
  507. }
  508. counter_y += current_block->steps_y;
  509. if (counter_y > 0) {
  510. WRITE(Y_STEP_PIN, HIGH);
  511. }
  512. counter_z += current_block->steps_z;
  513. if (counter_z > 0) {
  514. WRITE(Z_STEP_PIN, HIGH);
  515. }
  516. #ifndef ADVANCE
  517. counter_e += current_block->steps_e;
  518. if (counter_e > 0) {
  519. WRITE_E_STEP(HIGH);
  520. }
  521. #endif //!ADVANCE
  522. if (counter_x > 0) {
  523. counter_x -= current_block->step_event_count;
  524. count_position[X_AXIS]+=count_direction[X_AXIS];
  525. WRITE(X_STEP_PIN, LOW);
  526. }
  527. if (counter_y > 0) {
  528. counter_y -= current_block->step_event_count;
  529. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  530. WRITE(Y_STEP_PIN, LOW);
  531. }
  532. if (counter_z > 0) {
  533. counter_z -= current_block->step_event_count;
  534. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  535. WRITE(Z_STEP_PIN, LOW);
  536. }
  537. #ifndef ADVANCE
  538. if (counter_e > 0) {
  539. counter_e -= current_block->step_event_count;
  540. count_position[E_AXIS]+=count_direction[E_AXIS];
  541. WRITE_E_STEP(LOW);
  542. }
  543. #endif //!ADVANCE
  544. #else
  545. if (counter_x > 0) {
  546. #ifdef DUAL_X_CARRIAGE
  547. if (extruder_duplication_enabled){
  548. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  549. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  550. }
  551. else {
  552. if (current_block->active_extruder != 0)
  553. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  554. else
  555. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  556. }
  557. #else
  558. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  559. #endif
  560. counter_x -= current_block->step_event_count;
  561. count_position[X_AXIS]+=count_direction[X_AXIS];
  562. #ifdef DUAL_X_CARRIAGE
  563. if (extruder_duplication_enabled){
  564. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  565. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  566. }
  567. else {
  568. if (current_block->active_extruder != 0)
  569. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  570. else
  571. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  572. }
  573. #else
  574. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  575. #endif
  576. }
  577. counter_y += current_block->steps_y;
  578. if (counter_y > 0) {
  579. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  580. #ifdef Y_DUAL_STEPPER_DRIVERS
  581. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  582. #endif
  583. counter_y -= current_block->step_event_count;
  584. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  585. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  586. #ifdef Y_DUAL_STEPPER_DRIVERS
  587. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  588. #endif
  589. }
  590. counter_z += current_block->steps_z;
  591. if (counter_z > 0) {
  592. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  593. #ifdef Z_DUAL_STEPPER_DRIVERS
  594. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  595. #endif
  596. counter_z -= current_block->step_event_count;
  597. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  598. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  599. #ifdef Z_DUAL_STEPPER_DRIVERS
  600. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  601. #endif
  602. }
  603. #ifndef ADVANCE
  604. counter_e += current_block->steps_e;
  605. if (counter_e > 0) {
  606. WRITE_E_STEP(!INVERT_E_STEP_PIN);
  607. counter_e -= current_block->step_event_count;
  608. count_position[E_AXIS]+=count_direction[E_AXIS];
  609. WRITE_E_STEP(INVERT_E_STEP_PIN);
  610. }
  611. #endif //!ADVANCE
  612. #endif
  613. step_events_completed += 1;
  614. if(step_events_completed >= current_block->step_event_count) break;
  615. }
  616. // Calculare new timer value
  617. unsigned short timer;
  618. unsigned short step_rate;
  619. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  620. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  621. acc_step_rate += current_block->initial_rate;
  622. // upper limit
  623. if(acc_step_rate > current_block->nominal_rate)
  624. acc_step_rate = current_block->nominal_rate;
  625. // step_rate to timer interval
  626. timer = calc_timer(acc_step_rate);
  627. OCR1A = timer;
  628. acceleration_time += timer;
  629. #ifdef ADVANCE
  630. for(int8_t i=0; i < step_loops; i++) {
  631. advance += advance_rate;
  632. }
  633. //if(advance > current_block->advance) advance = current_block->advance;
  634. // Do E steps + advance steps
  635. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  636. old_advance = advance >>8;
  637. #endif
  638. }
  639. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  640. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  641. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  642. step_rate = current_block->final_rate;
  643. }
  644. else {
  645. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  646. }
  647. // lower limit
  648. if(step_rate < current_block->final_rate)
  649. step_rate = current_block->final_rate;
  650. // step_rate to timer interval
  651. timer = calc_timer(step_rate);
  652. OCR1A = timer;
  653. deceleration_time += timer;
  654. #ifdef ADVANCE
  655. for(int8_t i=0; i < step_loops; i++) {
  656. advance -= advance_rate;
  657. }
  658. if(advance < final_advance) advance = final_advance;
  659. // Do E steps + advance steps
  660. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  661. old_advance = advance >>8;
  662. #endif //ADVANCE
  663. }
  664. else {
  665. OCR1A = OCR1A_nominal;
  666. // ensure we're running at the correct step rate, even if we just came off an acceleration
  667. step_loops = step_loops_nominal;
  668. }
  669. // If current block is finished, reset pointer
  670. if (step_events_completed >= current_block->step_event_count) {
  671. current_block = NULL;
  672. plan_discard_current_block();
  673. }
  674. }
  675. }
  676. #ifdef ADVANCE
  677. unsigned char old_OCR0A;
  678. // Timer interrupt for E. e_steps is set in the main routine;
  679. // Timer 0 is shared with millies
  680. ISR(TIMER0_COMPA_vect)
  681. {
  682. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  683. OCR0A = old_OCR0A;
  684. // Set E direction (Depends on E direction + advance)
  685. for(unsigned char i=0; i<4;i++) {
  686. if (e_steps[0] != 0) {
  687. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  688. if (e_steps[0] < 0) {
  689. WRITE(E0_DIR_PIN, INVERT_E0_DIR);
  690. e_steps[0]++;
  691. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  692. }
  693. else if (e_steps[0] > 0) {
  694. WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
  695. e_steps[0]--;
  696. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  697. }
  698. }
  699. #if EXTRUDERS > 1
  700. if (e_steps[1] != 0) {
  701. WRITE(E1_STEP_PIN, INVERT_E_STEP_PIN);
  702. if (e_steps[1] < 0) {
  703. WRITE(E1_DIR_PIN, INVERT_E1_DIR);
  704. e_steps[1]++;
  705. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  706. }
  707. else if (e_steps[1] > 0) {
  708. WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
  709. e_steps[1]--;
  710. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  711. }
  712. }
  713. #endif
  714. #if EXTRUDERS > 2
  715. if (e_steps[2] != 0) {
  716. WRITE(E2_STEP_PIN, INVERT_E_STEP_PIN);
  717. if (e_steps[2] < 0) {
  718. WRITE(E2_DIR_PIN, INVERT_E2_DIR);
  719. e_steps[2]++;
  720. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  721. }
  722. else if (e_steps[2] > 0) {
  723. WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
  724. e_steps[2]--;
  725. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  726. }
  727. }
  728. #endif
  729. }
  730. }
  731. #endif // ADVANCE
  732. void st_init()
  733. {
  734. digipot_init(); //Initialize Digipot Motor Current
  735. microstep_init(); //Initialize Microstepping Pins
  736. //Initialize Dir Pins
  737. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  738. SET_OUTPUT(X_DIR_PIN);
  739. #endif
  740. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  741. SET_OUTPUT(X2_DIR_PIN);
  742. #endif
  743. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  744. SET_OUTPUT(Y_DIR_PIN);
  745. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  746. SET_OUTPUT(Y2_DIR_PIN);
  747. #endif
  748. #endif
  749. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  750. SET_OUTPUT(Z_DIR_PIN);
  751. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  752. SET_OUTPUT(Z2_DIR_PIN);
  753. #endif
  754. #endif
  755. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  756. SET_OUTPUT(E0_DIR_PIN);
  757. #endif
  758. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  759. SET_OUTPUT(E1_DIR_PIN);
  760. #endif
  761. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  762. SET_OUTPUT(E2_DIR_PIN);
  763. #endif
  764. //Initialize Enable Pins - steppers default to disabled.
  765. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  766. SET_OUTPUT(X_ENABLE_PIN);
  767. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  768. #endif
  769. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  770. SET_OUTPUT(X2_ENABLE_PIN);
  771. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  772. #endif
  773. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  774. SET_OUTPUT(Y_ENABLE_PIN);
  775. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  776. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  777. SET_OUTPUT(Y2_ENABLE_PIN);
  778. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  779. #endif
  780. #endif
  781. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  782. SET_OUTPUT(Z_ENABLE_PIN);
  783. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  784. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  785. SET_OUTPUT(Z2_ENABLE_PIN);
  786. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  787. #endif
  788. #endif
  789. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  790. SET_OUTPUT(E0_ENABLE_PIN);
  791. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  792. #endif
  793. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  794. SET_OUTPUT(E1_ENABLE_PIN);
  795. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  796. #endif
  797. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  798. SET_OUTPUT(E2_ENABLE_PIN);
  799. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  800. #endif
  801. //endstops and pullups
  802. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  803. SET_INPUT(X_MIN_PIN);
  804. #ifdef ENDSTOPPULLUP_XMIN
  805. WRITE(X_MIN_PIN,HIGH);
  806. #endif
  807. #endif
  808. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  809. SET_INPUT(Y_MIN_PIN);
  810. #ifdef ENDSTOPPULLUP_YMIN
  811. WRITE(Y_MIN_PIN,HIGH);
  812. #endif
  813. #endif
  814. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  815. SET_INPUT(Z_MIN_PIN);
  816. #ifdef ENDSTOPPULLUP_ZMIN
  817. WRITE(Z_MIN_PIN,HIGH);
  818. #endif
  819. #endif
  820. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  821. SET_INPUT(X_MAX_PIN);
  822. #ifdef ENDSTOPPULLUP_XMAX
  823. WRITE(X_MAX_PIN,HIGH);
  824. #endif
  825. #endif
  826. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  827. SET_INPUT(Y_MAX_PIN);
  828. #ifdef ENDSTOPPULLUP_YMAX
  829. WRITE(Y_MAX_PIN,HIGH);
  830. #endif
  831. #endif
  832. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  833. SET_INPUT(Z_MAX_PIN);
  834. #ifdef ENDSTOPPULLUP_ZMAX
  835. WRITE(Z_MAX_PIN,HIGH);
  836. #endif
  837. #endif
  838. //Initialize Step Pins
  839. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  840. SET_OUTPUT(X_STEP_PIN);
  841. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  842. disable_x();
  843. #endif
  844. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  845. SET_OUTPUT(X2_STEP_PIN);
  846. WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  847. disable_x();
  848. #endif
  849. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  850. SET_OUTPUT(Y_STEP_PIN);
  851. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  852. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  853. SET_OUTPUT(Y2_STEP_PIN);
  854. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  855. #endif
  856. disable_y();
  857. #endif
  858. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  859. SET_OUTPUT(Z_STEP_PIN);
  860. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  861. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  862. SET_OUTPUT(Z2_STEP_PIN);
  863. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  864. #endif
  865. disable_z();
  866. #endif
  867. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  868. SET_OUTPUT(E0_STEP_PIN);
  869. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  870. disable_e0();
  871. #endif
  872. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  873. SET_OUTPUT(E1_STEP_PIN);
  874. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  875. disable_e1();
  876. #endif
  877. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  878. SET_OUTPUT(E2_STEP_PIN);
  879. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  880. disable_e2();
  881. #endif
  882. // waveform generation = 0100 = CTC
  883. TCCR1B &= ~(1<<WGM13);
  884. TCCR1B |= (1<<WGM12);
  885. TCCR1A &= ~(1<<WGM11);
  886. TCCR1A &= ~(1<<WGM10);
  887. // output mode = 00 (disconnected)
  888. TCCR1A &= ~(3<<COM1A0);
  889. TCCR1A &= ~(3<<COM1B0);
  890. // Set the timer pre-scaler
  891. // Generally we use a divider of 8, resulting in a 2MHz timer
  892. // frequency on a 16MHz MCU. If you are going to change this, be
  893. // sure to regenerate speed_lookuptable.h with
  894. // create_speed_lookuptable.py
  895. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  896. OCR1A = 0x4000;
  897. TCNT1 = 0;
  898. ENABLE_STEPPER_DRIVER_INTERRUPT();
  899. #ifdef ADVANCE
  900. #if defined(TCCR0A) && defined(WGM01)
  901. TCCR0A &= ~(1<<WGM01);
  902. TCCR0A &= ~(1<<WGM00);
  903. #endif
  904. e_steps[0] = 0;
  905. e_steps[1] = 0;
  906. e_steps[2] = 0;
  907. TIMSK0 |= (1<<OCIE0A);
  908. #endif //ADVANCE
  909. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  910. sei();
  911. }
  912. // Block until all buffered steps are executed
  913. void st_synchronize()
  914. {
  915. while( blocks_queued()) {
  916. manage_heater();
  917. manage_inactivity();
  918. lcd_update();
  919. }
  920. }
  921. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  922. {
  923. CRITICAL_SECTION_START;
  924. count_position[X_AXIS] = x;
  925. count_position[Y_AXIS] = y;
  926. count_position[Z_AXIS] = z;
  927. count_position[E_AXIS] = e;
  928. CRITICAL_SECTION_END;
  929. }
  930. void st_set_e_position(const long &e)
  931. {
  932. CRITICAL_SECTION_START;
  933. count_position[E_AXIS] = e;
  934. CRITICAL_SECTION_END;
  935. }
  936. long st_get_position(uint8_t axis)
  937. {
  938. long count_pos;
  939. CRITICAL_SECTION_START;
  940. count_pos = count_position[axis];
  941. CRITICAL_SECTION_END;
  942. return count_pos;
  943. }
  944. #ifdef ENABLE_AUTO_BED_LEVELING
  945. float st_get_position_mm(uint8_t axis)
  946. {
  947. float steper_position_in_steps = st_get_position(axis);
  948. return steper_position_in_steps / axis_steps_per_unit[axis];
  949. }
  950. #endif // ENABLE_AUTO_BED_LEVELING
  951. void finishAndDisableSteppers()
  952. {
  953. st_synchronize();
  954. disable_x();
  955. disable_y();
  956. disable_z();
  957. disable_e0();
  958. disable_e1();
  959. disable_e2();
  960. }
  961. void quickStop()
  962. {
  963. DISABLE_STEPPER_DRIVER_INTERRUPT();
  964. while(blocks_queued())
  965. plan_discard_current_block();
  966. current_block = NULL;
  967. ENABLE_STEPPER_DRIVER_INTERRUPT();
  968. }
  969. #ifdef BABYSTEPPING
  970. void babystep(const uint8_t axis,const bool direction)
  971. {
  972. //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
  973. //store initial pin states
  974. switch(axis)
  975. {
  976. case X_AXIS:
  977. {
  978. enable_x();
  979. uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  980. //setup new step
  981. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
  982. #ifdef DUAL_X_CARRIAGE
  983. WRITE(X2_DIR_PIN,(INVERT_X_DIR)^direction);
  984. #endif
  985. //perform step
  986. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  987. #ifdef DUAL_X_CARRIAGE
  988. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  989. #endif
  990. _delay_us(1U); // wait 1 microsecond
  991. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  992. #ifdef DUAL_X_CARRIAGE
  993. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  994. #endif
  995. //get old pin state back.
  996. WRITE(X_DIR_PIN,old_x_dir_pin);
  997. #ifdef DUAL_X_CARRIAGE
  998. WRITE(X2_DIR_PIN,old_x_dir_pin);
  999. #endif
  1000. }
  1001. break;
  1002. case Y_AXIS:
  1003. {
  1004. enable_y();
  1005. uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  1006. //setup new step
  1007. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
  1008. #ifdef DUAL_Y_CARRIAGE
  1009. WRITE(Y2_DIR_PIN,(INVERT_Y_DIR)^direction);
  1010. #endif
  1011. //perform step
  1012. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1013. #ifdef DUAL_Y_CARRIAGE
  1014. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  1015. #endif
  1016. _delay_us(1U); // wait 1 microsecond
  1017. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1018. #ifdef DUAL_Y_CARRIAGE
  1019. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  1020. #endif
  1021. //get old pin state back.
  1022. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1023. #ifdef DUAL_Y_CARRIAGE
  1024. WRITE(Y2_DIR_PIN,old_y_dir_pin);
  1025. #endif
  1026. }
  1027. break;
  1028. #ifndef DELTA
  1029. case Z_AXIS:
  1030. {
  1031. enable_z();
  1032. uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  1033. //setup new step
  1034. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1035. #ifdef Z_DUAL_STEPPER_DRIVERS
  1036. WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1037. #endif
  1038. //perform step
  1039. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1040. #ifdef Z_DUAL_STEPPER_DRIVERS
  1041. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  1042. #endif
  1043. _delay_us(1U); // wait 1 microsecond
  1044. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1045. #ifdef Z_DUAL_STEPPER_DRIVERS
  1046. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  1047. #endif
  1048. //get old pin state back.
  1049. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1050. #ifdef Z_DUAL_STEPPER_DRIVERS
  1051. WRITE(Z2_DIR_PIN,old_z_dir_pin);
  1052. #endif
  1053. }
  1054. break;
  1055. #else //DELTA
  1056. case Z_AXIS:
  1057. {
  1058. enable_x();
  1059. enable_y();
  1060. enable_z();
  1061. uint8_t old_x_dir_pin= READ(X_DIR_PIN);
  1062. uint8_t old_y_dir_pin= READ(Y_DIR_PIN);
  1063. uint8_t old_z_dir_pin= READ(Z_DIR_PIN);
  1064. //setup new step
  1065. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction^BABYSTEP_INVERT_Z);
  1066. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction^BABYSTEP_INVERT_Z);
  1067. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1068. //perform step
  1069. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  1070. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1071. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1072. _delay_us(1U); // wait 1 microsecond
  1073. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  1074. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1075. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1076. //get old pin state back.
  1077. WRITE(X_DIR_PIN,old_x_dir_pin);
  1078. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1079. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1080. }
  1081. break;
  1082. #endif
  1083. default: break;
  1084. }
  1085. }
  1086. #endif //BABYSTEPPING
  1087. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  1088. {
  1089. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1090. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1091. SPI.transfer(address); // send in the address and value via SPI:
  1092. SPI.transfer(value);
  1093. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1094. //delay(10);
  1095. #endif
  1096. }
  1097. void digipot_init() //Initialize Digipot Motor Current
  1098. {
  1099. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1100. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1101. SPI.begin();
  1102. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1103. for(int i=0;i<=4;i++)
  1104. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1105. digipot_current(i,digipot_motor_current[i]);
  1106. #endif
  1107. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1108. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1109. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1110. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1111. digipot_current(0, motor_current_setting[0]);
  1112. digipot_current(1, motor_current_setting[1]);
  1113. digipot_current(2, motor_current_setting[2]);
  1114. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1115. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1116. #endif
  1117. }
  1118. void digipot_current(uint8_t driver, int current)
  1119. {
  1120. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1121. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1122. digitalPotWrite(digipot_ch[driver], current);
  1123. #endif
  1124. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1125. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1126. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1127. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1128. #endif
  1129. }
  1130. void microstep_init()
  1131. {
  1132. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1133. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1134. pinMode(E1_MS1_PIN,OUTPUT);
  1135. pinMode(E1_MS2_PIN,OUTPUT);
  1136. #endif
  1137. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1138. pinMode(X_MS1_PIN,OUTPUT);
  1139. pinMode(X_MS2_PIN,OUTPUT);
  1140. pinMode(Y_MS1_PIN,OUTPUT);
  1141. pinMode(Y_MS2_PIN,OUTPUT);
  1142. pinMode(Z_MS1_PIN,OUTPUT);
  1143. pinMode(Z_MS2_PIN,OUTPUT);
  1144. pinMode(E0_MS1_PIN,OUTPUT);
  1145. pinMode(E0_MS2_PIN,OUTPUT);
  1146. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1147. #endif
  1148. }
  1149. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1150. {
  1151. if(ms1 > -1) switch(driver)
  1152. {
  1153. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  1154. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  1155. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  1156. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  1157. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1158. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  1159. #endif
  1160. }
  1161. if(ms2 > -1) switch(driver)
  1162. {
  1163. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  1164. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  1165. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  1166. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  1167. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1168. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1169. #endif
  1170. }
  1171. }
  1172. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1173. {
  1174. switch(stepping_mode)
  1175. {
  1176. case 1: microstep_ms(driver,MICROSTEP1); break;
  1177. case 2: microstep_ms(driver,MICROSTEP2); break;
  1178. case 4: microstep_ms(driver,MICROSTEP4); break;
  1179. case 8: microstep_ms(driver,MICROSTEP8); break;
  1180. case 16: microstep_ms(driver,MICROSTEP16); break;
  1181. }
  1182. }
  1183. void microstep_readings()
  1184. {
  1185. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1186. SERIAL_PROTOCOLPGM("X: ");
  1187. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1188. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1189. SERIAL_PROTOCOLPGM("Y: ");
  1190. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1191. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1192. SERIAL_PROTOCOLPGM("Z: ");
  1193. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1194. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1195. SERIAL_PROTOCOLPGM("E0: ");
  1196. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1197. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1198. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1199. SERIAL_PROTOCOLPGM("E1: ");
  1200. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1201. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1202. #endif
  1203. }