My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 41KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if HAS_DIGIPOTSS
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //============================= public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //============================= private variables ===========================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static unsigned int cleaning_buffer_counter;
  40. #ifdef Z_DUAL_ENDSTOPS
  41. static bool performing_homing = false,
  42. locked_z_motor = false,
  43. locked_z2_motor = false;
  44. #endif
  45. // Counter variables for the bresenham line tracer
  46. static long counter_x, counter_y, counter_z, counter_e;
  47. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  48. #ifdef ADVANCE
  49. static long advance_rate, advance, final_advance = 0;
  50. static long old_advance = 0;
  51. static long e_steps[4];
  52. #endif
  53. static long acceleration_time, deceleration_time;
  54. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  55. static unsigned short acc_step_rate; // needed for deccelaration start point
  56. static char step_loops;
  57. static unsigned short OCR1A_nominal;
  58. static unsigned short step_loops_nominal;
  59. volatile long endstops_trigsteps[3] = { 0 };
  60. volatile long endstops_stepsTotal, endstops_stepsDone;
  61. static volatile bool endstop_x_hit = false;
  62. static volatile bool endstop_y_hit = false;
  63. static volatile bool endstop_z_hit = false;
  64. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  65. bool abort_on_endstop_hit = false;
  66. #endif
  67. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  68. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  69. #endif
  70. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  71. static bool old_x_min_endstop = false;
  72. #endif
  73. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  74. static bool old_x_max_endstop = false;
  75. #endif
  76. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  77. static bool old_y_min_endstop = false;
  78. #endif
  79. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  80. static bool old_y_max_endstop = false;
  81. #endif
  82. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  83. static bool old_z_min_endstop = false;
  84. #endif
  85. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  86. static bool old_z_max_endstop = false;
  87. #endif
  88. #ifdef Z_DUAL_ENDSTOPS
  89. #if defined(Z2_MIN_PIN) && Z2_MIN_PIN >= 0
  90. static bool old_z2_min_endstop = false;
  91. #endif
  92. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
  93. static bool old_z2_max_endstop = false;
  94. #endif
  95. #endif
  96. #ifdef Z_PROBE_AND_ENDSTOP
  97. static bool old_z_probe_endstop = false;
  98. #endif
  99. static bool check_endstops = true;
  100. volatile long count_position[NUM_AXIS] = { 0 };
  101. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  102. //===========================================================================
  103. //================================ functions ================================
  104. //===========================================================================
  105. #ifdef DUAL_X_CARRIAGE
  106. #define X_APPLY_DIR(v,ALWAYS) \
  107. if (extruder_duplication_enabled || ALWAYS) { \
  108. X_DIR_WRITE(v); \
  109. X2_DIR_WRITE(v); \
  110. } \
  111. else { \
  112. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  113. }
  114. #define X_APPLY_STEP(v,ALWAYS) \
  115. if (extruder_duplication_enabled || ALWAYS) { \
  116. X_STEP_WRITE(v); \
  117. X2_STEP_WRITE(v); \
  118. } \
  119. else { \
  120. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  121. }
  122. #else
  123. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  124. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  125. #endif
  126. #ifdef Y_DUAL_STEPPER_DRIVERS
  127. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  128. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  129. #else
  130. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  131. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  132. #endif
  133. #ifdef Z_DUAL_STEPPER_DRIVERS
  134. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  135. #ifdef Z_DUAL_ENDSTOPS
  136. #define Z_APPLY_STEP(v,Q) \
  137. if (performing_homing) { \
  138. if (Z_HOME_DIR > 0) {\
  139. if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  140. if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  141. } else {\
  142. if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  143. if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  144. } \
  145. } else { \
  146. Z_STEP_WRITE(v); \
  147. Z2_STEP_WRITE(v); \
  148. }
  149. #else
  150. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  151. #endif
  152. #else
  153. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  154. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  155. #endif
  156. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  157. // intRes = intIn1 * intIn2 >> 16
  158. // uses:
  159. // r26 to store 0
  160. // r27 to store the byte 1 of the 24 bit result
  161. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  162. asm volatile ( \
  163. "clr r26 \n\t" \
  164. "mul %A1, %B2 \n\t" \
  165. "movw %A0, r0 \n\t" \
  166. "mul %A1, %A2 \n\t" \
  167. "add %A0, r1 \n\t" \
  168. "adc %B0, r26 \n\t" \
  169. "lsr r0 \n\t" \
  170. "adc %A0, r26 \n\t" \
  171. "adc %B0, r26 \n\t" \
  172. "clr r1 \n\t" \
  173. : \
  174. "=&r" (intRes) \
  175. : \
  176. "d" (charIn1), \
  177. "d" (intIn2) \
  178. : \
  179. "r26" \
  180. )
  181. // intRes = longIn1 * longIn2 >> 24
  182. // uses:
  183. // r26 to store 0
  184. // r27 to store the byte 1 of the 48bit result
  185. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  186. asm volatile ( \
  187. "clr r26 \n\t" \
  188. "mul %A1, %B2 \n\t" \
  189. "mov r27, r1 \n\t" \
  190. "mul %B1, %C2 \n\t" \
  191. "movw %A0, r0 \n\t" \
  192. "mul %C1, %C2 \n\t" \
  193. "add %B0, r0 \n\t" \
  194. "mul %C1, %B2 \n\t" \
  195. "add %A0, r0 \n\t" \
  196. "adc %B0, r1 \n\t" \
  197. "mul %A1, %C2 \n\t" \
  198. "add r27, r0 \n\t" \
  199. "adc %A0, r1 \n\t" \
  200. "adc %B0, r26 \n\t" \
  201. "mul %B1, %B2 \n\t" \
  202. "add r27, r0 \n\t" \
  203. "adc %A0, r1 \n\t" \
  204. "adc %B0, r26 \n\t" \
  205. "mul %C1, %A2 \n\t" \
  206. "add r27, r0 \n\t" \
  207. "adc %A0, r1 \n\t" \
  208. "adc %B0, r26 \n\t" \
  209. "mul %B1, %A2 \n\t" \
  210. "add r27, r1 \n\t" \
  211. "adc %A0, r26 \n\t" \
  212. "adc %B0, r26 \n\t" \
  213. "lsr r27 \n\t" \
  214. "adc %A0, r26 \n\t" \
  215. "adc %B0, r26 \n\t" \
  216. "clr r1 \n\t" \
  217. : \
  218. "=&r" (intRes) \
  219. : \
  220. "d" (longIn1), \
  221. "d" (longIn2) \
  222. : \
  223. "r26" , "r27" \
  224. )
  225. // Some useful constants
  226. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  227. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  228. void endstops_hit_on_purpose() {
  229. endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
  230. }
  231. void checkHitEndstops() {
  232. if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  233. SERIAL_ECHO_START;
  234. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  235. if (endstop_x_hit) {
  236. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  237. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  238. }
  239. if (endstop_y_hit) {
  240. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  241. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  242. }
  243. if (endstop_z_hit) {
  244. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  245. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  246. }
  247. SERIAL_EOL;
  248. endstops_hit_on_purpose();
  249. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  250. if (abort_on_endstop_hit) {
  251. card.sdprinting = false;
  252. card.closefile();
  253. quickStop();
  254. setTargetHotend0(0);
  255. setTargetHotend1(0);
  256. setTargetHotend2(0);
  257. setTargetHotend3(0);
  258. setTargetBed(0);
  259. }
  260. #endif
  261. }
  262. }
  263. void enable_endstops(bool check) { check_endstops = check; }
  264. // __________________________
  265. // /| |\ _________________ ^
  266. // / | | \ /| |\ |
  267. // / | | \ / | | \ s
  268. // / | | | | | \ p
  269. // / | | | | | \ e
  270. // +-----+------------------------+---+--+---------------+----+ e
  271. // | BLOCK 1 | BLOCK 2 | d
  272. //
  273. // time ----->
  274. //
  275. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  276. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  277. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  278. // The slope of acceleration is calculated with the leib ramp alghorithm.
  279. void st_wake_up() {
  280. // TCNT1 = 0;
  281. ENABLE_STEPPER_DRIVER_INTERRUPT();
  282. }
  283. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  284. unsigned short timer;
  285. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  286. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  287. step_rate = (step_rate >> 2) & 0x3fff;
  288. step_loops = 4;
  289. }
  290. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  291. step_rate = (step_rate >> 1) & 0x7fff;
  292. step_loops = 2;
  293. }
  294. else {
  295. step_loops = 1;
  296. }
  297. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  298. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  299. if (step_rate >= (8 * 256)) { // higher step rate
  300. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  301. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  302. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  303. MultiU16X8toH16(timer, tmp_step_rate, gain);
  304. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  305. }
  306. else { // lower step rates
  307. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  308. table_address += ((step_rate)>>1) & 0xfffc;
  309. timer = (unsigned short)pgm_read_word_near(table_address);
  310. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  311. }
  312. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  313. return timer;
  314. }
  315. // Initializes the trapezoid generator from the current block. Called whenever a new
  316. // block begins.
  317. FORCE_INLINE void trapezoid_generator_reset() {
  318. #ifdef ADVANCE
  319. advance = current_block->initial_advance;
  320. final_advance = current_block->final_advance;
  321. // Do E steps + advance steps
  322. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  323. old_advance = advance >>8;
  324. #endif
  325. deceleration_time = 0;
  326. // step_rate to timer interval
  327. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  328. // make a note of the number of step loops required at nominal speed
  329. step_loops_nominal = step_loops;
  330. acc_step_rate = current_block->initial_rate;
  331. acceleration_time = calc_timer(acc_step_rate);
  332. OCR1A = acceleration_time;
  333. // SERIAL_ECHO_START;
  334. // SERIAL_ECHOPGM("advance :");
  335. // SERIAL_ECHO(current_block->advance/256.0);
  336. // SERIAL_ECHOPGM("advance rate :");
  337. // SERIAL_ECHO(current_block->advance_rate/256.0);
  338. // SERIAL_ECHOPGM("initial advance :");
  339. // SERIAL_ECHO(current_block->initial_advance/256.0);
  340. // SERIAL_ECHOPGM("final advance :");
  341. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  342. }
  343. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  344. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  345. ISR(TIMER1_COMPA_vect) {
  346. if(cleaning_buffer_counter)
  347. {
  348. current_block = NULL;
  349. plan_discard_current_block();
  350. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  351. cleaning_buffer_counter--;
  352. OCR1A = 200;
  353. return;
  354. }
  355. // If there is no current block, attempt to pop one from the buffer
  356. if (!current_block) {
  357. // Anything in the buffer?
  358. current_block = plan_get_current_block();
  359. if (current_block) {
  360. current_block->busy = true;
  361. trapezoid_generator_reset();
  362. counter_x = -(current_block->step_event_count >> 1);
  363. counter_y = counter_z = counter_e = counter_x;
  364. step_events_completed = 0;
  365. #ifdef Z_LATE_ENABLE
  366. if (current_block->steps[Z_AXIS] > 0) {
  367. enable_z();
  368. OCR1A = 2000; //1ms wait
  369. return;
  370. }
  371. #endif
  372. // #ifdef ADVANCE
  373. // e_steps[current_block->active_extruder] = 0;
  374. // #endif
  375. }
  376. else {
  377. OCR1A = 2000; // 1kHz.
  378. }
  379. }
  380. if (current_block != NULL) {
  381. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  382. out_bits = current_block->direction_bits;
  383. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  384. if (TEST(out_bits, X_AXIS)) {
  385. X_APPLY_DIR(INVERT_X_DIR,0);
  386. count_direction[X_AXIS] = -1;
  387. }
  388. else {
  389. X_APPLY_DIR(!INVERT_X_DIR,0);
  390. count_direction[X_AXIS] = 1;
  391. }
  392. if (TEST(out_bits, Y_AXIS)) {
  393. Y_APPLY_DIR(INVERT_Y_DIR,0);
  394. count_direction[Y_AXIS] = -1;
  395. }
  396. else {
  397. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  398. count_direction[Y_AXIS] = 1;
  399. }
  400. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  401. bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
  402. if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps[AXIS ##_AXIS] > 0)) { \
  403. endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
  404. endstop_## axis ##_hit = true; \
  405. step_events_completed = current_block->step_event_count; \
  406. } \
  407. old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
  408. // Check X and Y endstops
  409. if (check_endstops) {
  410. #ifdef COREXY
  411. // Head direction in -X axis for CoreXY bots.
  412. // If DeltaX == -DeltaY, the movement is only in Y axis
  413. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
  414. if (TEST(out_bits, X_HEAD))
  415. #else
  416. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
  417. #endif
  418. { // -direction
  419. #ifdef DUAL_X_CARRIAGE
  420. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  421. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  422. #endif
  423. {
  424. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  425. UPDATE_ENDSTOP(x, X, min, MIN);
  426. #endif
  427. }
  428. }
  429. else { // +direction
  430. #ifdef DUAL_X_CARRIAGE
  431. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  432. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  433. #endif
  434. {
  435. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  436. UPDATE_ENDSTOP(x, X, max, MAX);
  437. #endif
  438. }
  439. }
  440. #ifdef COREXY
  441. }
  442. // Head direction in -Y axis for CoreXY bots.
  443. // If DeltaX == DeltaY, the movement is only in X axis
  444. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  445. if (TEST(out_bits, Y_HEAD))
  446. #else
  447. if (TEST(out_bits, Y_AXIS)) // -direction
  448. #endif
  449. { // -direction
  450. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  451. UPDATE_ENDSTOP(y, Y, min, MIN);
  452. #endif
  453. }
  454. else { // +direction
  455. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  456. UPDATE_ENDSTOP(y, Y, max, MAX);
  457. #endif
  458. }
  459. #ifdef COREXY
  460. }
  461. #endif
  462. }
  463. if (TEST(out_bits, Z_AXIS)) { // -direction
  464. Z_APPLY_DIR(INVERT_Z_DIR,0);
  465. count_direction[Z_AXIS] = -1;
  466. if (check_endstops)
  467. {
  468. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  469. #ifndef Z_DUAL_ENDSTOPS
  470. UPDATE_ENDSTOP(z, Z, min, MIN);
  471. #else
  472. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  473. #if defined(Z2_MIN_PIN) && Z2_MIN_PIN > -1
  474. bool z2_min_endstop=(READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING);
  475. #else
  476. bool z2_min_endstop=z_min_endstop;
  477. #endif
  478. if(((z_min_endstop && old_z_min_endstop) || (z2_min_endstop && old_z2_min_endstop)) && (current_block->steps[Z_AXIS] > 0))
  479. {
  480. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  481. endstop_z_hit=true;
  482. if (!(performing_homing) || ((performing_homing)&&(z_min_endstop && old_z_min_endstop)&&(z2_min_endstop && old_z2_min_endstop))) //if not performing home or if both endstops were trigged during homing...
  483. {
  484. step_events_completed = current_block->step_event_count;
  485. }
  486. }
  487. old_z_min_endstop = z_min_endstop;
  488. old_z2_min_endstop = z2_min_endstop;
  489. #endif
  490. #endif
  491. #if defined(Z_PROBE_PIN) && Z_PROBE_PIN > -1
  492. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  493. z_probe_endstop=(READ(Z_PROBE_PIN) != Z_MIN_ENDSTOP_INVERTING);
  494. if(z_probe_endstop && old_z_probe_endstop)
  495. {
  496. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  497. endstop_z_hit=true;
  498. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  499. }
  500. old_z_probe_endstop = z_probe_endstop;
  501. #endif
  502. }
  503. }
  504. else { // +direction
  505. Z_APPLY_DIR(!INVERT_Z_DIR,0);
  506. count_direction[Z_AXIS] = 1;
  507. if (check_endstops) {
  508. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  509. #ifndef Z_DUAL_ENDSTOPS
  510. UPDATE_ENDSTOP(z, Z, max, MAX);
  511. #else
  512. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  513. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
  514. bool z2_max_endstop=(READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING);
  515. #else
  516. bool z2_max_endstop=z_max_endstop;
  517. #endif
  518. if(((z_max_endstop && old_z_max_endstop) || (z2_max_endstop && old_z2_max_endstop)) && (current_block->steps[Z_AXIS] > 0))
  519. {
  520. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  521. endstop_z_hit=true;
  522. // if (z_max_endstop && old_z_max_endstop) SERIAL_ECHOLN("z_max_endstop = true");
  523. // if (z2_max_endstop && old_z2_max_endstop) SERIAL_ECHOLN("z2_max_endstop = true");
  524. if (!(performing_homing) || ((performing_homing)&&(z_max_endstop && old_z_max_endstop)&&(z2_max_endstop && old_z2_max_endstop))) //if not performing home or if both endstops were trigged during homing...
  525. {
  526. step_events_completed = current_block->step_event_count;
  527. }
  528. }
  529. old_z_max_endstop = z_max_endstop;
  530. old_z2_max_endstop = z2_max_endstop;
  531. #endif
  532. #endif
  533. #if defined(Z_PROBE_PIN) && Z_PROBE_PIN > -1
  534. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  535. z_probe_endstop=(READ(Z_PROBE_PIN) != Z_MAX_ENDSTOP_INVERTING);
  536. if(z_probe_endstop && old_z_probe_endstop)
  537. {
  538. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  539. endstop_z_hit=true;
  540. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  541. }
  542. old_z_probe_endstop = z_probe_endstop;
  543. #endif
  544. }
  545. }
  546. #ifndef ADVANCE
  547. if (TEST(out_bits, E_AXIS)) { // -direction
  548. REV_E_DIR();
  549. count_direction[E_AXIS]=-1;
  550. }
  551. else { // +direction
  552. NORM_E_DIR();
  553. count_direction[E_AXIS]=1;
  554. }
  555. #endif //!ADVANCE
  556. // Take multiple steps per interrupt (For high speed moves)
  557. for (int8_t i=0; i < step_loops; i++) {
  558. #ifndef AT90USB
  559. MSerial.checkRx(); // Check for serial chars.
  560. #endif
  561. #ifdef ADVANCE
  562. counter_e += current_block->steps[E_AXIS];
  563. if (counter_e > 0) {
  564. counter_e -= current_block->step_event_count;
  565. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  566. }
  567. #endif //ADVANCE
  568. #ifdef CONFIG_STEPPERS_TOSHIBA
  569. /**
  570. * The Toshiba stepper controller require much longer pulses.
  571. * So we 'stage' decompose the pulses between high and low
  572. * instead of doing each in turn. The extra tests add enough
  573. * lag to allow it work with without needing NOPs
  574. */
  575. #define STEP_ADD(axis, AXIS) \
  576. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  577. if (counter_## axis > 0) { AXIS ##_STEP_WRITE(HIGH); }
  578. STEP_ADD(x,X);
  579. STEP_ADD(y,Y);
  580. STEP_ADD(z,Z);
  581. #ifndef ADVANCE
  582. STEP_ADD(e,E);
  583. #endif
  584. #define STEP_IF_COUNTER(axis, AXIS) \
  585. if (counter_## axis > 0) { \
  586. counter_## axis -= current_block->step_event_count; \
  587. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  588. AXIS ##_STEP_WRITE(LOW); \
  589. }
  590. STEP_IF_COUNTER(x, X);
  591. STEP_IF_COUNTER(y, Y);
  592. STEP_IF_COUNTER(z, Z);
  593. #ifndef ADVANCE
  594. STEP_IF_COUNTER(e, E);
  595. #endif
  596. #else // !CONFIG_STEPPERS_TOSHIBA
  597. #define APPLY_MOVEMENT(axis, AXIS) \
  598. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  599. if (counter_## axis > 0) { \
  600. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
  601. counter_## axis -= current_block->step_event_count; \
  602. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  603. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
  604. }
  605. APPLY_MOVEMENT(x, X);
  606. APPLY_MOVEMENT(y, Y);
  607. APPLY_MOVEMENT(z, Z);
  608. #ifndef ADVANCE
  609. APPLY_MOVEMENT(e, E);
  610. #endif
  611. #endif // CONFIG_STEPPERS_TOSHIBA
  612. step_events_completed++;
  613. if (step_events_completed >= current_block->step_event_count) break;
  614. }
  615. // Calculate new timer value
  616. unsigned short timer;
  617. unsigned short step_rate;
  618. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  619. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  620. acc_step_rate += current_block->initial_rate;
  621. // upper limit
  622. if (acc_step_rate > current_block->nominal_rate)
  623. acc_step_rate = current_block->nominal_rate;
  624. // step_rate to timer interval
  625. timer = calc_timer(acc_step_rate);
  626. OCR1A = timer;
  627. acceleration_time += timer;
  628. #ifdef ADVANCE
  629. for(int8_t i=0; i < step_loops; i++) {
  630. advance += advance_rate;
  631. }
  632. //if (advance > current_block->advance) advance = current_block->advance;
  633. // Do E steps + advance steps
  634. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  635. old_advance = advance >>8;
  636. #endif
  637. }
  638. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  639. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  640. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  641. step_rate = current_block->final_rate;
  642. }
  643. else {
  644. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  645. }
  646. // lower limit
  647. if (step_rate < current_block->final_rate)
  648. step_rate = current_block->final_rate;
  649. // step_rate to timer interval
  650. timer = calc_timer(step_rate);
  651. OCR1A = timer;
  652. deceleration_time += timer;
  653. #ifdef ADVANCE
  654. for(int8_t i=0; i < step_loops; i++) {
  655. advance -= advance_rate;
  656. }
  657. if (advance < final_advance) advance = final_advance;
  658. // Do E steps + advance steps
  659. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  660. old_advance = advance >>8;
  661. #endif //ADVANCE
  662. }
  663. else {
  664. OCR1A = OCR1A_nominal;
  665. // ensure we're running at the correct step rate, even if we just came off an acceleration
  666. step_loops = step_loops_nominal;
  667. }
  668. // If current block is finished, reset pointer
  669. if (step_events_completed >= current_block->step_event_count) {
  670. current_block = NULL;
  671. plan_discard_current_block();
  672. }
  673. }
  674. }
  675. #ifdef ADVANCE
  676. unsigned char old_OCR0A;
  677. // Timer interrupt for E. e_steps is set in the main routine;
  678. // Timer 0 is shared with millies
  679. ISR(TIMER0_COMPA_vect)
  680. {
  681. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  682. OCR0A = old_OCR0A;
  683. // Set E direction (Depends on E direction + advance)
  684. for(unsigned char i=0; i<4;i++) {
  685. if (e_steps[0] != 0) {
  686. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  687. if (e_steps[0] < 0) {
  688. E0_DIR_WRITE(INVERT_E0_DIR);
  689. e_steps[0]++;
  690. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  691. }
  692. else if (e_steps[0] > 0) {
  693. E0_DIR_WRITE(!INVERT_E0_DIR);
  694. e_steps[0]--;
  695. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  696. }
  697. }
  698. #if EXTRUDERS > 1
  699. if (e_steps[1] != 0) {
  700. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  701. if (e_steps[1] < 0) {
  702. E1_DIR_WRITE(INVERT_E1_DIR);
  703. e_steps[1]++;
  704. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  705. }
  706. else if (e_steps[1] > 0) {
  707. E1_DIR_WRITE(!INVERT_E1_DIR);
  708. e_steps[1]--;
  709. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  710. }
  711. }
  712. #endif
  713. #if EXTRUDERS > 2
  714. if (e_steps[2] != 0) {
  715. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  716. if (e_steps[2] < 0) {
  717. E2_DIR_WRITE(INVERT_E2_DIR);
  718. e_steps[2]++;
  719. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  720. }
  721. else if (e_steps[2] > 0) {
  722. E2_DIR_WRITE(!INVERT_E2_DIR);
  723. e_steps[2]--;
  724. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  725. }
  726. }
  727. #endif
  728. #if EXTRUDERS > 3
  729. if (e_steps[3] != 0) {
  730. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  731. if (e_steps[3] < 0) {
  732. E3_DIR_WRITE(INVERT_E3_DIR);
  733. e_steps[3]++;
  734. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  735. }
  736. else if (e_steps[3] > 0) {
  737. E3_DIR_WRITE(!INVERT_E3_DIR);
  738. e_steps[3]--;
  739. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  740. }
  741. }
  742. #endif
  743. }
  744. }
  745. #endif // ADVANCE
  746. void st_init() {
  747. digipot_init(); //Initialize Digipot Motor Current
  748. microstep_init(); //Initialize Microstepping Pins
  749. // initialise TMC Steppers
  750. #ifdef HAVE_TMCDRIVER
  751. tmc_init();
  752. #endif
  753. // initialise L6470 Steppers
  754. #ifdef HAVE_L6470DRIVER
  755. L6470_init();
  756. #endif
  757. // Initialize Dir Pins
  758. #if defined(X_DIR_PIN) && X_DIR_PIN >= 0
  759. X_DIR_INIT;
  760. #endif
  761. #if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
  762. X2_DIR_INIT;
  763. #endif
  764. #if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
  765. Y_DIR_INIT;
  766. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
  767. Y2_DIR_INIT;
  768. #endif
  769. #endif
  770. #if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
  771. Z_DIR_INIT;
  772. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
  773. Z2_DIR_INIT;
  774. #endif
  775. #endif
  776. #if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
  777. E0_DIR_INIT;
  778. #endif
  779. #if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
  780. E1_DIR_INIT;
  781. #endif
  782. #if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
  783. E2_DIR_INIT;
  784. #endif
  785. #if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
  786. E3_DIR_INIT;
  787. #endif
  788. //Initialize Enable Pins - steppers default to disabled.
  789. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
  790. X_ENABLE_INIT;
  791. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  792. #endif
  793. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
  794. X2_ENABLE_INIT;
  795. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  796. #endif
  797. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
  798. Y_ENABLE_INIT;
  799. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  800. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
  801. Y2_ENABLE_INIT;
  802. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  803. #endif
  804. #endif
  805. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
  806. Z_ENABLE_INIT;
  807. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  808. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
  809. Z2_ENABLE_INIT;
  810. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  811. #endif
  812. #endif
  813. #if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
  814. E0_ENABLE_INIT;
  815. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  816. #endif
  817. #if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
  818. E1_ENABLE_INIT;
  819. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  820. #endif
  821. #if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
  822. E2_ENABLE_INIT;
  823. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  824. #endif
  825. #if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
  826. E3_ENABLE_INIT;
  827. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  828. #endif
  829. //endstops and pullups
  830. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  831. SET_INPUT(X_MIN_PIN);
  832. #ifdef ENDSTOPPULLUP_XMIN
  833. WRITE(X_MIN_PIN,HIGH);
  834. #endif
  835. #endif
  836. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  837. SET_INPUT(Y_MIN_PIN);
  838. #ifdef ENDSTOPPULLUP_YMIN
  839. WRITE(Y_MIN_PIN,HIGH);
  840. #endif
  841. #endif
  842. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  843. SET_INPUT(Z_MIN_PIN);
  844. #ifdef ENDSTOPPULLUP_ZMIN
  845. WRITE(Z_MIN_PIN,HIGH);
  846. #endif
  847. #endif
  848. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  849. SET_INPUT(X_MAX_PIN);
  850. #ifdef ENDSTOPPULLUP_XMAX
  851. WRITE(X_MAX_PIN,HIGH);
  852. #endif
  853. #endif
  854. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  855. SET_INPUT(Y_MAX_PIN);
  856. #ifdef ENDSTOPPULLUP_YMAX
  857. WRITE(Y_MAX_PIN,HIGH);
  858. #endif
  859. #endif
  860. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  861. SET_INPUT(Z_MAX_PIN);
  862. #ifdef ENDSTOPPULLUP_ZMAX
  863. WRITE(Z_MAX_PIN,HIGH);
  864. #endif
  865. #endif
  866. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
  867. SET_INPUT(Z2_MAX_PIN);
  868. #ifdef ENDSTOPPULLUP_ZMAX
  869. WRITE(Z2_MAX_PIN,HIGH);
  870. #endif
  871. #endif
  872. #if defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0
  873. SET_INPUT(Z_PROBE_PIN);
  874. #ifdef ENDSTOPPULLUP_ZPROBE
  875. WRITE(Z_PROBE_PIN,HIGH);
  876. #endif
  877. #endif
  878. #define AXIS_INIT(axis, AXIS, PIN) \
  879. AXIS ##_STEP_INIT; \
  880. AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
  881. disable_## axis()
  882. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  883. // Initialize Step Pins
  884. #if defined(X_STEP_PIN) && X_STEP_PIN >= 0
  885. AXIS_INIT(x, X, X);
  886. #endif
  887. #if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
  888. AXIS_INIT(x, X2, X);
  889. #endif
  890. #if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
  891. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
  892. Y2_STEP_INIT;
  893. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  894. #endif
  895. AXIS_INIT(y, Y, Y);
  896. #endif
  897. #if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
  898. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
  899. Z2_STEP_INIT;
  900. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  901. #endif
  902. AXIS_INIT(z, Z, Z);
  903. #endif
  904. #if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
  905. E_AXIS_INIT(0);
  906. #endif
  907. #if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
  908. E_AXIS_INIT(1);
  909. #endif
  910. #if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
  911. E_AXIS_INIT(2);
  912. #endif
  913. #if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
  914. E_AXIS_INIT(3);
  915. #endif
  916. // waveform generation = 0100 = CTC
  917. TCCR1B &= ~BIT(WGM13);
  918. TCCR1B |= BIT(WGM12);
  919. TCCR1A &= ~BIT(WGM11);
  920. TCCR1A &= ~BIT(WGM10);
  921. // output mode = 00 (disconnected)
  922. TCCR1A &= ~(3<<COM1A0);
  923. TCCR1A &= ~(3<<COM1B0);
  924. // Set the timer pre-scaler
  925. // Generally we use a divider of 8, resulting in a 2MHz timer
  926. // frequency on a 16MHz MCU. If you are going to change this, be
  927. // sure to regenerate speed_lookuptable.h with
  928. // create_speed_lookuptable.py
  929. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  930. OCR1A = 0x4000;
  931. TCNT1 = 0;
  932. ENABLE_STEPPER_DRIVER_INTERRUPT();
  933. #ifdef ADVANCE
  934. #if defined(TCCR0A) && defined(WGM01)
  935. TCCR0A &= ~BIT(WGM01);
  936. TCCR0A &= ~BIT(WGM00);
  937. #endif
  938. e_steps[0] = 0;
  939. e_steps[1] = 0;
  940. e_steps[2] = 0;
  941. e_steps[3] = 0;
  942. TIMSK0 |= BIT(OCIE0A);
  943. #endif //ADVANCE
  944. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  945. sei();
  946. }
  947. // Block until all buffered steps are executed
  948. void st_synchronize() {
  949. while (blocks_queued()) {
  950. manage_heater();
  951. manage_inactivity();
  952. lcd_update();
  953. }
  954. }
  955. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  956. CRITICAL_SECTION_START;
  957. count_position[X_AXIS] = x;
  958. count_position[Y_AXIS] = y;
  959. count_position[Z_AXIS] = z;
  960. count_position[E_AXIS] = e;
  961. CRITICAL_SECTION_END;
  962. }
  963. void st_set_e_position(const long &e) {
  964. CRITICAL_SECTION_START;
  965. count_position[E_AXIS] = e;
  966. CRITICAL_SECTION_END;
  967. }
  968. long st_get_position(uint8_t axis) {
  969. long count_pos;
  970. CRITICAL_SECTION_START;
  971. count_pos = count_position[axis];
  972. CRITICAL_SECTION_END;
  973. return count_pos;
  974. }
  975. #ifdef ENABLE_AUTO_BED_LEVELING
  976. float st_get_position_mm(uint8_t axis) {
  977. float steper_position_in_steps = st_get_position(axis);
  978. return steper_position_in_steps / axis_steps_per_unit[axis];
  979. }
  980. #endif // ENABLE_AUTO_BED_LEVELING
  981. void finishAndDisableSteppers() {
  982. st_synchronize();
  983. disable_x();
  984. disable_y();
  985. disable_z();
  986. disable_e0();
  987. disable_e1();
  988. disable_e2();
  989. disable_e3();
  990. }
  991. void quickStop() {
  992. cleaning_buffer_counter = 5000;
  993. DISABLE_STEPPER_DRIVER_INTERRUPT();
  994. while (blocks_queued()) plan_discard_current_block();
  995. current_block = NULL;
  996. ENABLE_STEPPER_DRIVER_INTERRUPT();
  997. }
  998. #ifdef BABYSTEPPING
  999. // MUST ONLY BE CALLED BY AN ISR,
  1000. // No other ISR should ever interrupt this!
  1001. void babystep(const uint8_t axis, const bool direction) {
  1002. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  1003. enable_## axis(); \
  1004. uint8_t old_pin = AXIS ##_DIR_READ; \
  1005. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
  1006. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
  1007. _delay_us(1U); \
  1008. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
  1009. AXIS ##_APPLY_DIR(old_pin, true); \
  1010. }
  1011. switch(axis) {
  1012. case X_AXIS:
  1013. BABYSTEP_AXIS(x, X, false);
  1014. break;
  1015. case Y_AXIS:
  1016. BABYSTEP_AXIS(y, Y, false);
  1017. break;
  1018. case Z_AXIS: {
  1019. #ifndef DELTA
  1020. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1021. #else // DELTA
  1022. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1023. enable_x();
  1024. enable_y();
  1025. enable_z();
  1026. uint8_t old_x_dir_pin = X_DIR_READ,
  1027. old_y_dir_pin = Y_DIR_READ,
  1028. old_z_dir_pin = Z_DIR_READ;
  1029. //setup new step
  1030. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  1031. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  1032. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  1033. //perform step
  1034. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1035. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1036. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1037. _delay_us(1U);
  1038. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1039. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1040. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1041. //get old pin state back.
  1042. X_DIR_WRITE(old_x_dir_pin);
  1043. Y_DIR_WRITE(old_y_dir_pin);
  1044. Z_DIR_WRITE(old_z_dir_pin);
  1045. #endif
  1046. } break;
  1047. default: break;
  1048. }
  1049. }
  1050. #endif //BABYSTEPPING
  1051. // From Arduino DigitalPotControl example
  1052. void digitalPotWrite(int address, int value) {
  1053. #if HAS_DIGIPOTSS
  1054. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1055. SPI.transfer(address); // send in the address and value via SPI:
  1056. SPI.transfer(value);
  1057. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1058. //delay(10);
  1059. #endif
  1060. }
  1061. // Initialize Digipot Motor Current
  1062. void digipot_init() {
  1063. #if HAS_DIGIPOTSS
  1064. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1065. SPI.begin();
  1066. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1067. for (int i = 0; i <= 4; i++) {
  1068. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1069. digipot_current(i,digipot_motor_current[i]);
  1070. }
  1071. #endif
  1072. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1073. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1074. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1075. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1076. digipot_current(0, motor_current_setting[0]);
  1077. digipot_current(1, motor_current_setting[1]);
  1078. digipot_current(2, motor_current_setting[2]);
  1079. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1080. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1081. #endif
  1082. }
  1083. void digipot_current(uint8_t driver, int current) {
  1084. #if HAS_DIGIPOTSS
  1085. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1086. digitalPotWrite(digipot_ch[driver], current);
  1087. #endif
  1088. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1089. switch(driver) {
  1090. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1091. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1092. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1093. }
  1094. #endif
  1095. }
  1096. void microstep_init() {
  1097. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1098. pinMode(E1_MS1_PIN,OUTPUT);
  1099. pinMode(E1_MS2_PIN,OUTPUT);
  1100. #endif
  1101. #if defined(X_MS1_PIN) && X_MS1_PIN >= 0
  1102. pinMode(X_MS1_PIN,OUTPUT);
  1103. pinMode(X_MS2_PIN,OUTPUT);
  1104. pinMode(Y_MS1_PIN,OUTPUT);
  1105. pinMode(Y_MS2_PIN,OUTPUT);
  1106. pinMode(Z_MS1_PIN,OUTPUT);
  1107. pinMode(Z_MS2_PIN,OUTPUT);
  1108. pinMode(E0_MS1_PIN,OUTPUT);
  1109. pinMode(E0_MS2_PIN,OUTPUT);
  1110. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1111. for (uint16_t i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
  1112. microstep_mode(i, microstep_modes[i]);
  1113. #endif
  1114. }
  1115. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1116. if (ms1 >= 0) switch(driver) {
  1117. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1118. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1119. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1120. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1121. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1122. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1123. #endif
  1124. }
  1125. if (ms2 >= 0) switch(driver) {
  1126. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1127. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1128. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1129. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1130. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1131. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1132. #endif
  1133. }
  1134. }
  1135. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1136. switch(stepping_mode) {
  1137. case 1: microstep_ms(driver,MICROSTEP1); break;
  1138. case 2: microstep_ms(driver,MICROSTEP2); break;
  1139. case 4: microstep_ms(driver,MICROSTEP4); break;
  1140. case 8: microstep_ms(driver,MICROSTEP8); break;
  1141. case 16: microstep_ms(driver,MICROSTEP16); break;
  1142. }
  1143. }
  1144. void microstep_readings() {
  1145. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1146. SERIAL_PROTOCOLPGM("X: ");
  1147. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1148. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1149. SERIAL_PROTOCOLPGM("Y: ");
  1150. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1151. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1152. SERIAL_PROTOCOLPGM("Z: ");
  1153. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1154. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1155. SERIAL_PROTOCOLPGM("E0: ");
  1156. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1157. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1158. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1159. SERIAL_PROTOCOLPGM("E1: ");
  1160. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1161. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1162. #endif
  1163. }
  1164. #ifdef Z_DUAL_ENDSTOPS
  1165. void In_Homing_Process(bool state) { performing_homing = state; }
  1166. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1167. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1168. #endif