My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 155KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  52. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  53. //Implemented Codes
  54. //-------------------
  55. // G0 -> G1
  56. // G1 - Coordinated Movement X Y Z E
  57. // G2 - CW ARC
  58. // G3 - CCW ARC
  59. // G4 - Dwell S<seconds> or P<milliseconds>
  60. // G10 - retract filament according to settings of M207
  61. // G11 - retract recover filament according to settings of M208
  62. // G28 - Home all Axis
  63. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  64. // G30 - Single Z Probe, probes bed at current XY location.
  65. // G31 - Dock sled (Z_PROBE_SLED only)
  66. // G32 - Undock sled (Z_PROBE_SLED only)
  67. // G90 - Use Absolute Coordinates
  68. // G91 - Use Relative Coordinates
  69. // G92 - Set current position to coordinates given
  70. // M Codes
  71. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  72. // M1 - Same as M0
  73. // M17 - Enable/Power all stepper motors
  74. // M18 - Disable all stepper motors; same as M84
  75. // M20 - List SD card
  76. // M21 - Init SD card
  77. // M22 - Release SD card
  78. // M23 - Select SD file (M23 filename.g)
  79. // M24 - Start/resume SD print
  80. // M25 - Pause SD print
  81. // M26 - Set SD position in bytes (M26 S12345)
  82. // M27 - Report SD print status
  83. // M28 - Start SD write (M28 filename.g)
  84. // M29 - Stop SD write
  85. // M30 - Delete file from SD (M30 filename.g)
  86. // M31 - Output time since last M109 or SD card start to serial
  87. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  88. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  89. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  90. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  91. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  92. // M80 - Turn on Power Supply
  93. // M81 - Turn off Power Supply
  94. // M82 - Set E codes absolute (default)
  95. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  96. // M84 - Disable steppers until next move,
  97. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  98. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  99. // M92 - Set axis_steps_per_unit - same syntax as G92
  100. // M104 - Set extruder target temp
  101. // M105 - Read current temp
  102. // M106 - Fan on
  103. // M107 - Fan off
  104. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  105. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  106. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  107. // M112 - Emergency stop
  108. // M114 - Output current position to serial port
  109. // M115 - Capabilities string
  110. // M117 - display message
  111. // M119 - Output Endstop status to serial port
  112. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  113. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  114. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  115. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  116. // M140 - Set bed target temp
  117. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  118. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  119. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  120. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  121. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  122. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  123. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  124. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  125. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  126. // M206 - Set additional homing offset
  127. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  128. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  129. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  130. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  131. // M220 S<factor in percent>- set speed factor override percentage
  132. // M221 S<factor in percent>- set extrude factor override percentage
  133. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  134. // M240 - Trigger a camera to take a photograph
  135. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  136. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  137. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  138. // M301 - Set PID parameters P I and D
  139. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  140. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  141. // M304 - Set bed PID parameters P I and D
  142. // M400 - Finish all moves
  143. // M401 - Lower z-probe if present
  144. // M402 - Raise z-probe if present
  145. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  146. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  147. // M406 - Turn off Filament Sensor extrusion control
  148. // M407 - Displays measured filament diameter
  149. // M500 - Store parameters in EEPROM
  150. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  151. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  152. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  153. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  154. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  155. // M665 - Set delta configurations
  156. // M666 - Set delta endstop adjustment
  157. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  158. // M907 - Set digital trimpot motor current using axis codes.
  159. // M908 - Control digital trimpot directly.
  160. // M350 - Set microstepping mode.
  161. // M351 - Toggle MS1 MS2 pins directly.
  162. // ************ SCARA Specific - This can change to suit future G-code regulations
  163. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  164. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  165. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  166. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  167. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  168. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  169. //************* SCARA End ***************
  170. // M928 - Start SD logging (M928 filename.g) - ended by M29
  171. // M999 - Restart after being stopped by error
  172. #ifdef SDSUPPORT
  173. CardReader card;
  174. #endif
  175. float homing_feedrate[] = HOMING_FEEDRATE;
  176. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  177. int feedmultiply = 100; //100->1 200->2
  178. int saved_feedmultiply;
  179. int extrudemultiply = 100; //100->1 200->2
  180. int extruder_multiply[EXTRUDERS] = { 100
  181. #if EXTRUDERS > 1
  182. , 100
  183. #if EXTRUDERS > 2
  184. , 100
  185. #if EXTRUDERS > 3
  186. , 100
  187. #endif
  188. #endif
  189. #endif
  190. };
  191. bool volumetric_enabled = false;
  192. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  193. #if EXTRUDERS > 1
  194. , DEFAULT_NOMINAL_FILAMENT_DIA
  195. #if EXTRUDERS > 2
  196. , DEFAULT_NOMINAL_FILAMENT_DIA
  197. #if EXTRUDERS > 3
  198. , DEFAULT_NOMINAL_FILAMENT_DIA
  199. #endif
  200. #endif
  201. #endif
  202. };
  203. float volumetric_multiplier[EXTRUDERS] = {1.0
  204. #if EXTRUDERS > 1
  205. , 1.0
  206. #if EXTRUDERS > 2
  207. , 1.0
  208. #if EXTRUDERS > 3
  209. , 1.0
  210. #endif
  211. #endif
  212. #endif
  213. };
  214. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  215. float add_homing[3] = { 0, 0, 0 };
  216. #ifdef DELTA
  217. float endstop_adj[3] = { 0, 0, 0 };
  218. #endif
  219. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  220. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  221. bool axis_known_position[3] = { false, false, false };
  222. float zprobe_zoffset;
  223. // Extruder offset
  224. #if EXTRUDERS > 1
  225. #ifndef DUAL_X_CARRIAGE
  226. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  227. #else
  228. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  229. #endif
  230. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  231. #if defined(EXTRUDER_OFFSET_X)
  232. EXTRUDER_OFFSET_X
  233. #else
  234. 0
  235. #endif
  236. #if defined(EXTRUDER_OFFSET_Y)
  237. EXTRUDER_OFFSET_Y
  238. #else
  239. 0
  240. #endif
  241. };
  242. #endif
  243. uint8_t active_extruder = 0;
  244. int fanSpeed = 0;
  245. #ifdef SERVO_ENDSTOPS
  246. int servo_endstops[] = SERVO_ENDSTOPS;
  247. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  248. #endif
  249. #ifdef BARICUDA
  250. int ValvePressure = 0;
  251. int EtoPPressure = 0;
  252. #endif
  253. #ifdef FWRETRACT
  254. bool autoretract_enabled = false;
  255. bool retracted[EXTRUDERS] = { false
  256. #if EXTRUDERS > 1
  257. , false
  258. #if EXTRUDERS > 2
  259. , false
  260. #if EXTRUDERS > 3
  261. , false
  262. #endif
  263. #endif
  264. #endif
  265. };
  266. bool retracted_swap[EXTRUDERS] = { false
  267. #if EXTRUDERS > 1
  268. , false
  269. #if EXTRUDERS > 2
  270. , false
  271. #if EXTRUDERS > 3
  272. , false
  273. #endif
  274. #endif
  275. #endif
  276. };
  277. float retract_length = RETRACT_LENGTH;
  278. float retract_length_swap = RETRACT_LENGTH_SWAP;
  279. float retract_feedrate = RETRACT_FEEDRATE;
  280. float retract_zlift = RETRACT_ZLIFT;
  281. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  282. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  283. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  284. #endif // FWRETRACT
  285. #ifdef ULTIPANEL
  286. bool powersupply =
  287. #ifdef PS_DEFAULT_OFF
  288. false
  289. #else
  290. true
  291. #endif
  292. ;
  293. #endif
  294. #ifdef DELTA
  295. float delta[3] = { 0, 0, 0 };
  296. #define SIN_60 0.8660254037844386
  297. #define COS_60 0.5
  298. // these are the default values, can be overriden with M665
  299. float delta_radius = DELTA_RADIUS;
  300. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  301. float delta_tower1_y = -COS_60 * delta_radius;
  302. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  303. float delta_tower2_y = -COS_60 * delta_radius;
  304. float delta_tower3_x = 0; // back middle tower
  305. float delta_tower3_y = delta_radius;
  306. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  307. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  308. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  309. #endif
  310. #ifdef SCARA
  311. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  312. #endif
  313. bool cancel_heatup = false;
  314. #ifdef FILAMENT_SENSOR
  315. //Variables for Filament Sensor input
  316. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  317. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  318. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  319. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  320. int delay_index1=0; //index into ring buffer
  321. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  322. float delay_dist=0; //delay distance counter
  323. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  324. #endif
  325. const char errormagic[] PROGMEM = "Error:";
  326. const char echomagic[] PROGMEM = "echo:";
  327. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  328. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  329. #ifndef DELTA
  330. static float delta[3] = { 0, 0, 0 };
  331. #endif
  332. static float offset[3] = { 0, 0, 0 };
  333. static bool home_all_axis = true;
  334. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  335. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  336. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  337. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  338. static bool fromsd[BUFSIZE];
  339. static int bufindr = 0;
  340. static int bufindw = 0;
  341. static int buflen = 0;
  342. static char serial_char;
  343. static int serial_count = 0;
  344. static boolean comment_mode = false;
  345. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  346. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  347. // Inactivity shutdown
  348. static unsigned long previous_millis_cmd = 0;
  349. static unsigned long max_inactive_time = 0;
  350. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  351. unsigned long starttime = 0; ///< Print job start time
  352. unsigned long stoptime = 0; ///< Print job stop time
  353. static uint8_t tmp_extruder;
  354. bool Stopped = false;
  355. #if NUM_SERVOS > 0
  356. Servo servos[NUM_SERVOS];
  357. #endif
  358. bool CooldownNoWait = true;
  359. bool target_direction;
  360. #ifdef CHDK
  361. unsigned long chdkHigh = 0;
  362. boolean chdkActive = false;
  363. #endif
  364. //===========================================================================
  365. //=============================Routines======================================
  366. //===========================================================================
  367. void get_arc_coordinates();
  368. bool setTargetedHotend(int code);
  369. void serial_echopair_P(const char *s_P, float v)
  370. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  371. void serial_echopair_P(const char *s_P, double v)
  372. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  373. void serial_echopair_P(const char *s_P, unsigned long v)
  374. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  375. #ifdef SDSUPPORT
  376. #include "SdFatUtil.h"
  377. int freeMemory() { return SdFatUtil::FreeRam(); }
  378. #else
  379. extern "C" {
  380. extern unsigned int __bss_end;
  381. extern unsigned int __heap_start;
  382. extern void *__brkval;
  383. int freeMemory() {
  384. int free_memory;
  385. if ((int)__brkval == 0)
  386. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  387. else
  388. free_memory = ((int)&free_memory) - ((int)__brkval);
  389. return free_memory;
  390. }
  391. }
  392. #endif //!SDSUPPORT
  393. //adds an command to the main command buffer
  394. //thats really done in a non-safe way.
  395. //needs overworking someday
  396. void enquecommand(const char *cmd)
  397. {
  398. if(buflen < BUFSIZE)
  399. {
  400. //this is dangerous if a mixing of serial and this happens
  401. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  402. SERIAL_ECHO_START;
  403. SERIAL_ECHOPGM(MSG_Enqueing);
  404. SERIAL_ECHO(cmdbuffer[bufindw]);
  405. SERIAL_ECHOLNPGM("\"");
  406. bufindw= (bufindw + 1)%BUFSIZE;
  407. buflen += 1;
  408. }
  409. }
  410. void enquecommand_P(const char *cmd)
  411. {
  412. if(buflen < BUFSIZE)
  413. {
  414. //this is dangerous if a mixing of serial and this happens
  415. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  416. SERIAL_ECHO_START;
  417. SERIAL_ECHOPGM(MSG_Enqueing);
  418. SERIAL_ECHO(cmdbuffer[bufindw]);
  419. SERIAL_ECHOLNPGM("\"");
  420. bufindw= (bufindw + 1)%BUFSIZE;
  421. buflen += 1;
  422. }
  423. }
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. // Set position of Servo Endstops that are defined
  486. #ifdef SERVO_ENDSTOPS
  487. for(int8_t i = 0; i < 3; i++)
  488. {
  489. if(servo_endstops[i] > -1) {
  490. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  491. }
  492. }
  493. #endif
  494. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  495. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  496. servos[servo_endstops[Z_AXIS]].detach();
  497. #endif
  498. }
  499. void setup()
  500. {
  501. setup_killpin();
  502. setup_powerhold();
  503. MYSERIAL.begin(BAUDRATE);
  504. SERIAL_PROTOCOLLNPGM("start");
  505. SERIAL_ECHO_START;
  506. // Check startup - does nothing if bootloader sets MCUSR to 0
  507. byte mcu = MCUSR;
  508. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  509. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  510. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  511. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  512. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  513. MCUSR=0;
  514. SERIAL_ECHOPGM(MSG_MARLIN);
  515. SERIAL_ECHOLNPGM(STRING_VERSION);
  516. #ifdef STRING_VERSION_CONFIG_H
  517. #ifdef STRING_CONFIG_H_AUTHOR
  518. SERIAL_ECHO_START;
  519. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  520. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  521. SERIAL_ECHOPGM(MSG_AUTHOR);
  522. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  523. SERIAL_ECHOPGM("Compiled: ");
  524. SERIAL_ECHOLNPGM(__DATE__);
  525. #endif // STRING_CONFIG_H_AUTHOR
  526. #endif // STRING_VERSION_CONFIG_H
  527. SERIAL_ECHO_START;
  528. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  529. SERIAL_ECHO(freeMemory());
  530. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  531. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  532. for(int8_t i = 0; i < BUFSIZE; i++)
  533. {
  534. fromsd[i] = false;
  535. }
  536. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  537. Config_RetrieveSettings();
  538. tp_init(); // Initialize temperature loop
  539. plan_init(); // Initialize planner;
  540. watchdog_init();
  541. st_init(); // Initialize stepper, this enables interrupts!
  542. setup_photpin();
  543. servo_init();
  544. lcd_init();
  545. _delay_ms(1000); // wait 1sec to display the splash screen
  546. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  547. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  548. #endif
  549. #ifdef DIGIPOT_I2C
  550. digipot_i2c_init();
  551. #endif
  552. #ifdef Z_PROBE_SLED
  553. pinMode(SERVO0_PIN, OUTPUT);
  554. digitalWrite(SERVO0_PIN, LOW); // turn it off
  555. #endif // Z_PROBE_SLED
  556. setup_homepin();
  557. }
  558. void loop()
  559. {
  560. if(buflen < (BUFSIZE-1))
  561. get_command();
  562. #ifdef SDSUPPORT
  563. card.checkautostart(false);
  564. #endif
  565. if(buflen)
  566. {
  567. #ifdef SDSUPPORT
  568. if(card.saving)
  569. {
  570. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  571. {
  572. card.write_command(cmdbuffer[bufindr]);
  573. if(card.logging)
  574. {
  575. process_commands();
  576. }
  577. else
  578. {
  579. SERIAL_PROTOCOLLNPGM(MSG_OK);
  580. }
  581. }
  582. else
  583. {
  584. card.closefile();
  585. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  586. }
  587. }
  588. else
  589. {
  590. process_commands();
  591. }
  592. #else
  593. process_commands();
  594. #endif //SDSUPPORT
  595. buflen = (buflen-1);
  596. bufindr = (bufindr + 1)%BUFSIZE;
  597. }
  598. //check heater every n milliseconds
  599. manage_heater();
  600. manage_inactivity();
  601. checkHitEndstops();
  602. lcd_update();
  603. }
  604. void get_command()
  605. {
  606. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  607. serial_char = MYSERIAL.read();
  608. if(serial_char == '\n' ||
  609. serial_char == '\r' ||
  610. (serial_char == ':' && comment_mode == false) ||
  611. serial_count >= (MAX_CMD_SIZE - 1) )
  612. {
  613. if(!serial_count) { //if empty line
  614. comment_mode = false; //for new command
  615. return;
  616. }
  617. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  618. if(!comment_mode){
  619. comment_mode = false; //for new command
  620. fromsd[bufindw] = false;
  621. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  622. {
  623. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  624. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  625. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  626. SERIAL_ERROR_START;
  627. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  628. SERIAL_ERRORLN(gcode_LastN);
  629. //Serial.println(gcode_N);
  630. FlushSerialRequestResend();
  631. serial_count = 0;
  632. return;
  633. }
  634. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  635. {
  636. byte checksum = 0;
  637. byte count = 0;
  638. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  639. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  640. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  641. SERIAL_ERROR_START;
  642. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  643. SERIAL_ERRORLN(gcode_LastN);
  644. FlushSerialRequestResend();
  645. serial_count = 0;
  646. return;
  647. }
  648. //if no errors, continue parsing
  649. }
  650. else
  651. {
  652. SERIAL_ERROR_START;
  653. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  654. SERIAL_ERRORLN(gcode_LastN);
  655. FlushSerialRequestResend();
  656. serial_count = 0;
  657. return;
  658. }
  659. gcode_LastN = gcode_N;
  660. //if no errors, continue parsing
  661. }
  662. else // if we don't receive 'N' but still see '*'
  663. {
  664. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  665. {
  666. SERIAL_ERROR_START;
  667. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  668. SERIAL_ERRORLN(gcode_LastN);
  669. serial_count = 0;
  670. return;
  671. }
  672. }
  673. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  674. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  675. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  676. case 0:
  677. case 1:
  678. case 2:
  679. case 3:
  680. if (Stopped == true) {
  681. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  682. LCD_MESSAGEPGM(MSG_STOPPED);
  683. }
  684. break;
  685. default:
  686. break;
  687. }
  688. }
  689. //If command was e-stop process now
  690. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  691. kill();
  692. bufindw = (bufindw + 1)%BUFSIZE;
  693. buflen += 1;
  694. }
  695. serial_count = 0; //clear buffer
  696. }
  697. else
  698. {
  699. if(serial_char == ';') comment_mode = true;
  700. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  701. }
  702. }
  703. #ifdef SDSUPPORT
  704. if(!card.sdprinting || serial_count!=0){
  705. return;
  706. }
  707. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  708. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  709. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  710. static bool stop_buffering=false;
  711. if(buflen==0) stop_buffering=false;
  712. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  713. int16_t n=card.get();
  714. serial_char = (char)n;
  715. if(serial_char == '\n' ||
  716. serial_char == '\r' ||
  717. (serial_char == '#' && comment_mode == false) ||
  718. (serial_char == ':' && comment_mode == false) ||
  719. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  720. {
  721. if(card.eof()){
  722. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  723. stoptime=millis();
  724. char time[30];
  725. unsigned long t=(stoptime-starttime)/1000;
  726. int hours, minutes;
  727. minutes=(t/60)%60;
  728. hours=t/60/60;
  729. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  730. SERIAL_ECHO_START;
  731. SERIAL_ECHOLN(time);
  732. lcd_setstatus(time);
  733. card.printingHasFinished();
  734. card.checkautostart(true);
  735. }
  736. if(serial_char=='#')
  737. stop_buffering=true;
  738. if(!serial_count)
  739. {
  740. comment_mode = false; //for new command
  741. return; //if empty line
  742. }
  743. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  744. // if(!comment_mode){
  745. fromsd[bufindw] = true;
  746. buflen += 1;
  747. bufindw = (bufindw + 1)%BUFSIZE;
  748. // }
  749. comment_mode = false; //for new command
  750. serial_count = 0; //clear buffer
  751. }
  752. else
  753. {
  754. if(serial_char == ';') comment_mode = true;
  755. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  756. }
  757. }
  758. #endif //SDSUPPORT
  759. }
  760. float code_value()
  761. {
  762. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  763. }
  764. long code_value_long()
  765. {
  766. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  767. }
  768. bool code_seen(char code)
  769. {
  770. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  771. return (strchr_pointer != NULL); //Return True if a character was found
  772. }
  773. #define DEFINE_PGM_READ_ANY(type, reader) \
  774. static inline type pgm_read_any(const type *p) \
  775. { return pgm_read_##reader##_near(p); }
  776. DEFINE_PGM_READ_ANY(float, float);
  777. DEFINE_PGM_READ_ANY(signed char, byte);
  778. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  779. static const PROGMEM type array##_P[3] = \
  780. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  781. static inline type array(int axis) \
  782. { return pgm_read_any(&array##_P[axis]); }
  783. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  784. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  785. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  786. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  787. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  788. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  789. #ifdef DUAL_X_CARRIAGE
  790. #if EXTRUDERS == 1 || defined(COREXY) \
  791. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  792. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  793. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  794. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  795. #endif
  796. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  797. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  798. #endif
  799. #define DXC_FULL_CONTROL_MODE 0
  800. #define DXC_AUTO_PARK_MODE 1
  801. #define DXC_DUPLICATION_MODE 2
  802. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  803. static float x_home_pos(int extruder) {
  804. if (extruder == 0)
  805. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  806. else
  807. // In dual carriage mode the extruder offset provides an override of the
  808. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  809. // This allow soft recalibration of the second extruder offset position without firmware reflash
  810. // (through the M218 command).
  811. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  812. }
  813. static int x_home_dir(int extruder) {
  814. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  815. }
  816. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  817. static bool active_extruder_parked = false; // used in mode 1 & 2
  818. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  819. static unsigned long delayed_move_time = 0; // used in mode 1
  820. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  821. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  822. bool extruder_duplication_enabled = false; // used in mode 2
  823. #endif //DUAL_X_CARRIAGE
  824. static void axis_is_at_home(int axis) {
  825. #ifdef DUAL_X_CARRIAGE
  826. if (axis == X_AXIS) {
  827. if (active_extruder != 0) {
  828. current_position[X_AXIS] = x_home_pos(active_extruder);
  829. min_pos[X_AXIS] = X2_MIN_POS;
  830. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  831. return;
  832. }
  833. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  834. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  835. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  836. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  837. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  838. return;
  839. }
  840. }
  841. #endif
  842. #ifdef SCARA
  843. float homeposition[3];
  844. char i;
  845. if (axis < 2)
  846. {
  847. for (i=0; i<3; i++)
  848. {
  849. homeposition[i] = base_home_pos(i);
  850. }
  851. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  852. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  853. // Works out real Homeposition angles using inverse kinematics,
  854. // and calculates homing offset using forward kinematics
  855. calculate_delta(homeposition);
  856. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  857. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  858. for (i=0; i<2; i++)
  859. {
  860. delta[i] -= add_homing[i];
  861. }
  862. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  863. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  864. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  865. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  866. calculate_SCARA_forward_Transform(delta);
  867. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  868. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  869. current_position[axis] = delta[axis];
  870. // SCARA home positions are based on configuration since the actual limits are determined by the
  871. // inverse kinematic transform.
  872. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  873. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  874. }
  875. else
  876. {
  877. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  878. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  879. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  880. }
  881. #else
  882. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  883. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  884. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  885. #endif
  886. }
  887. #ifdef ENABLE_AUTO_BED_LEVELING
  888. #ifdef AUTO_BED_LEVELING_GRID
  889. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  890. {
  891. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  892. planeNormal.debug("planeNormal");
  893. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  894. //bedLevel.debug("bedLevel");
  895. //plan_bed_level_matrix.debug("bed level before");
  896. //vector_3 uncorrected_position = plan_get_position_mm();
  897. //uncorrected_position.debug("position before");
  898. vector_3 corrected_position = plan_get_position();
  899. // corrected_position.debug("position after");
  900. current_position[X_AXIS] = corrected_position.x;
  901. current_position[Y_AXIS] = corrected_position.y;
  902. current_position[Z_AXIS] = corrected_position.z;
  903. // put the bed at 0 so we don't go below it.
  904. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  905. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  906. }
  907. #else // not AUTO_BED_LEVELING_GRID
  908. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  909. plan_bed_level_matrix.set_to_identity();
  910. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  911. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  912. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  913. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  914. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  915. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  916. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  917. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  918. vector_3 corrected_position = plan_get_position();
  919. current_position[X_AXIS] = corrected_position.x;
  920. current_position[Y_AXIS] = corrected_position.y;
  921. current_position[Z_AXIS] = corrected_position.z;
  922. // put the bed at 0 so we don't go below it.
  923. current_position[Z_AXIS] = zprobe_zoffset;
  924. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  925. }
  926. #endif // AUTO_BED_LEVELING_GRID
  927. static void run_z_probe() {
  928. plan_bed_level_matrix.set_to_identity();
  929. feedrate = homing_feedrate[Z_AXIS];
  930. // move down until you find the bed
  931. float zPosition = -10;
  932. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  933. st_synchronize();
  934. // we have to let the planner know where we are right now as it is not where we said to go.
  935. zPosition = st_get_position_mm(Z_AXIS);
  936. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  937. // move up the retract distance
  938. zPosition += home_retract_mm(Z_AXIS);
  939. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  940. st_synchronize();
  941. // move back down slowly to find bed
  942. feedrate = homing_feedrate[Z_AXIS]/4;
  943. zPosition -= home_retract_mm(Z_AXIS) * 2;
  944. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  945. st_synchronize();
  946. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  947. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  948. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  949. }
  950. static void do_blocking_move_to(float x, float y, float z) {
  951. float oldFeedRate = feedrate;
  952. feedrate = homing_feedrate[Z_AXIS];
  953. current_position[Z_AXIS] = z;
  954. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  955. st_synchronize();
  956. feedrate = XY_TRAVEL_SPEED;
  957. current_position[X_AXIS] = x;
  958. current_position[Y_AXIS] = y;
  959. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  960. st_synchronize();
  961. feedrate = oldFeedRate;
  962. }
  963. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  964. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  965. }
  966. static void setup_for_endstop_move() {
  967. saved_feedrate = feedrate;
  968. saved_feedmultiply = feedmultiply;
  969. feedmultiply = 100;
  970. previous_millis_cmd = millis();
  971. enable_endstops(true);
  972. }
  973. static void clean_up_after_endstop_move() {
  974. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  975. enable_endstops(false);
  976. #endif
  977. feedrate = saved_feedrate;
  978. feedmultiply = saved_feedmultiply;
  979. previous_millis_cmd = millis();
  980. }
  981. static void engage_z_probe() {
  982. // Engage Z Servo endstop if enabled
  983. #ifdef SERVO_ENDSTOPS
  984. if (servo_endstops[Z_AXIS] > -1) {
  985. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  986. servos[servo_endstops[Z_AXIS]].attach(0);
  987. #endif
  988. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  989. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  990. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  991. servos[servo_endstops[Z_AXIS]].detach();
  992. #endif
  993. }
  994. #endif
  995. }
  996. static void retract_z_probe() {
  997. // Retract Z Servo endstop if enabled
  998. #ifdef SERVO_ENDSTOPS
  999. if (servo_endstops[Z_AXIS] > -1) {
  1000. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1001. servos[servo_endstops[Z_AXIS]].attach(0);
  1002. #endif
  1003. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1004. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1005. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1006. servos[servo_endstops[Z_AXIS]].detach();
  1007. #endif
  1008. }
  1009. #endif
  1010. }
  1011. /// Probe bed height at position (x,y), returns the measured z value
  1012. static float probe_pt(float x, float y, float z_before, int retract_action=0) {
  1013. // move to right place
  1014. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1015. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1016. #ifndef Z_PROBE_SLED
  1017. if ((retract_action==0) || (retract_action==1))
  1018. engage_z_probe(); // Engage Z Servo endstop if available
  1019. #endif // Z_PROBE_SLED
  1020. run_z_probe();
  1021. float measured_z = current_position[Z_AXIS];
  1022. #ifndef Z_PROBE_SLED
  1023. if ((retract_action==0) || (retract_action==3))
  1024. retract_z_probe();
  1025. #endif // Z_PROBE_SLED
  1026. SERIAL_PROTOCOLPGM(MSG_BED);
  1027. SERIAL_PROTOCOLPGM(" x: ");
  1028. SERIAL_PROTOCOL(x);
  1029. SERIAL_PROTOCOLPGM(" y: ");
  1030. SERIAL_PROTOCOL(y);
  1031. SERIAL_PROTOCOLPGM(" z: ");
  1032. SERIAL_PROTOCOL(measured_z);
  1033. SERIAL_PROTOCOLPGM("\n");
  1034. return measured_z;
  1035. }
  1036. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1037. static void homeaxis(int axis) {
  1038. #define HOMEAXIS_DO(LETTER) \
  1039. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1040. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1041. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1042. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1043. 0) {
  1044. int axis_home_dir = home_dir(axis);
  1045. #ifdef DUAL_X_CARRIAGE
  1046. if (axis == X_AXIS)
  1047. axis_home_dir = x_home_dir(active_extruder);
  1048. #endif
  1049. current_position[axis] = 0;
  1050. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1051. #ifndef Z_PROBE_SLED
  1052. // Engage Servo endstop if enabled
  1053. #ifdef SERVO_ENDSTOPS
  1054. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1055. if (axis==Z_AXIS) {
  1056. engage_z_probe();
  1057. }
  1058. else
  1059. #endif
  1060. if (servo_endstops[axis] > -1) {
  1061. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1062. }
  1063. #endif
  1064. #endif // Z_PROBE_SLED
  1065. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1066. feedrate = homing_feedrate[axis];
  1067. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1068. st_synchronize();
  1069. current_position[axis] = 0;
  1070. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1071. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1072. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1073. st_synchronize();
  1074. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1075. #ifdef DELTA
  1076. feedrate = homing_feedrate[axis]/10;
  1077. #else
  1078. feedrate = homing_feedrate[axis]/2 ;
  1079. #endif
  1080. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1081. st_synchronize();
  1082. #ifdef DELTA
  1083. // retrace by the amount specified in endstop_adj
  1084. if (endstop_adj[axis] * axis_home_dir < 0) {
  1085. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1086. destination[axis] = endstop_adj[axis];
  1087. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1088. st_synchronize();
  1089. }
  1090. #endif
  1091. axis_is_at_home(axis);
  1092. destination[axis] = current_position[axis];
  1093. feedrate = 0.0;
  1094. endstops_hit_on_purpose();
  1095. axis_known_position[axis] = true;
  1096. // Retract Servo endstop if enabled
  1097. #ifdef SERVO_ENDSTOPS
  1098. if (servo_endstops[axis] > -1) {
  1099. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1100. }
  1101. #endif
  1102. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1103. #ifndef Z_PROBE_SLED
  1104. if (axis==Z_AXIS) retract_z_probe();
  1105. #endif
  1106. #endif
  1107. }
  1108. }
  1109. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1110. void refresh_cmd_timeout(void)
  1111. {
  1112. previous_millis_cmd = millis();
  1113. }
  1114. #ifdef FWRETRACT
  1115. void retract(bool retracting, bool swapretract = false) {
  1116. if(retracting && !retracted[active_extruder]) {
  1117. destination[X_AXIS]=current_position[X_AXIS];
  1118. destination[Y_AXIS]=current_position[Y_AXIS];
  1119. destination[Z_AXIS]=current_position[Z_AXIS];
  1120. destination[E_AXIS]=current_position[E_AXIS];
  1121. if (swapretract) {
  1122. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1123. } else {
  1124. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1125. }
  1126. plan_set_e_position(current_position[E_AXIS]);
  1127. float oldFeedrate = feedrate;
  1128. feedrate=retract_feedrate*60;
  1129. retracted[active_extruder]=true;
  1130. prepare_move();
  1131. if(retract_zlift > 0.01) {
  1132. current_position[Z_AXIS]-=retract_zlift;
  1133. #ifdef DELTA
  1134. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1135. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1136. #else
  1137. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1138. #endif
  1139. prepare_move();
  1140. }
  1141. feedrate = oldFeedrate;
  1142. } else if(!retracting && retracted[active_extruder]) {
  1143. destination[X_AXIS]=current_position[X_AXIS];
  1144. destination[Y_AXIS]=current_position[Y_AXIS];
  1145. destination[Z_AXIS]=current_position[Z_AXIS];
  1146. destination[E_AXIS]=current_position[E_AXIS];
  1147. if(retract_zlift > 0.01) {
  1148. current_position[Z_AXIS]+=retract_zlift;
  1149. #ifdef DELTA
  1150. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1151. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1152. #else
  1153. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1154. #endif
  1155. //prepare_move();
  1156. }
  1157. if (swapretract) {
  1158. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1159. } else {
  1160. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1161. }
  1162. plan_set_e_position(current_position[E_AXIS]);
  1163. float oldFeedrate = feedrate;
  1164. feedrate=retract_recover_feedrate*60;
  1165. retracted[active_extruder]=false;
  1166. prepare_move();
  1167. feedrate = oldFeedrate;
  1168. }
  1169. } //retract
  1170. #endif //FWRETRACT
  1171. #ifdef Z_PROBE_SLED
  1172. //
  1173. // Method to dock/undock a sled designed by Charles Bell.
  1174. //
  1175. // dock[in] If true, move to MAX_X and engage the electromagnet
  1176. // offset[in] The additional distance to move to adjust docking location
  1177. //
  1178. static void dock_sled(bool dock, int offset=0) {
  1179. int z_loc;
  1180. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1181. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1182. SERIAL_ECHO_START;
  1183. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1184. return;
  1185. }
  1186. if (dock) {
  1187. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1188. current_position[Y_AXIS],
  1189. current_position[Z_AXIS]);
  1190. // turn off magnet
  1191. digitalWrite(SERVO0_PIN, LOW);
  1192. } else {
  1193. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1194. z_loc = Z_RAISE_BEFORE_PROBING;
  1195. else
  1196. z_loc = current_position[Z_AXIS];
  1197. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1198. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1199. // turn on magnet
  1200. digitalWrite(SERVO0_PIN, HIGH);
  1201. }
  1202. }
  1203. #endif
  1204. void process_commands()
  1205. {
  1206. unsigned long codenum; //throw away variable
  1207. char *starpos = NULL;
  1208. #ifdef ENABLE_AUTO_BED_LEVELING
  1209. float x_tmp, y_tmp, z_tmp, real_z;
  1210. #endif
  1211. if(code_seen('G'))
  1212. {
  1213. switch((int)code_value())
  1214. {
  1215. case 0: // G0 -> G1
  1216. case 1: // G1
  1217. if(Stopped == false) {
  1218. get_coordinates(); // For X Y Z E F
  1219. #ifdef FWRETRACT
  1220. if(autoretract_enabled)
  1221. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1222. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1223. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1224. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1225. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1226. retract(!retracted);
  1227. return;
  1228. }
  1229. }
  1230. #endif //FWRETRACT
  1231. prepare_move();
  1232. //ClearToSend();
  1233. }
  1234. break;
  1235. #ifndef SCARA //disable arc support
  1236. case 2: // G2 - CW ARC
  1237. if(Stopped == false) {
  1238. get_arc_coordinates();
  1239. prepare_arc_move(true);
  1240. }
  1241. break;
  1242. case 3: // G3 - CCW ARC
  1243. if(Stopped == false) {
  1244. get_arc_coordinates();
  1245. prepare_arc_move(false);
  1246. }
  1247. break;
  1248. #endif
  1249. case 4: // G4 dwell
  1250. LCD_MESSAGEPGM(MSG_DWELL);
  1251. codenum = 0;
  1252. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1253. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1254. st_synchronize();
  1255. codenum += millis(); // keep track of when we started waiting
  1256. previous_millis_cmd = millis();
  1257. while(millis() < codenum) {
  1258. manage_heater();
  1259. manage_inactivity();
  1260. lcd_update();
  1261. }
  1262. break;
  1263. #ifdef FWRETRACT
  1264. case 10: // G10 retract
  1265. #if EXTRUDERS > 1
  1266. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1267. retract(true,retracted_swap[active_extruder]);
  1268. #else
  1269. retract(true);
  1270. #endif
  1271. break;
  1272. case 11: // G11 retract_recover
  1273. #if EXTRUDERS > 1
  1274. retract(false,retracted_swap[active_extruder]);
  1275. #else
  1276. retract(false);
  1277. #endif
  1278. break;
  1279. #endif //FWRETRACT
  1280. case 28: //G28 Home all Axis one at a time
  1281. #ifdef ENABLE_AUTO_BED_LEVELING
  1282. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1283. #endif //ENABLE_AUTO_BED_LEVELING
  1284. saved_feedrate = feedrate;
  1285. saved_feedmultiply = feedmultiply;
  1286. feedmultiply = 100;
  1287. previous_millis_cmd = millis();
  1288. enable_endstops(true);
  1289. for(int8_t i=0; i < NUM_AXIS; i++) {
  1290. destination[i] = current_position[i];
  1291. }
  1292. feedrate = 0.0;
  1293. #ifdef DELTA
  1294. // A delta can only safely home all axis at the same time
  1295. // all axis have to home at the same time
  1296. // Move all carriages up together until the first endstop is hit.
  1297. current_position[X_AXIS] = 0;
  1298. current_position[Y_AXIS] = 0;
  1299. current_position[Z_AXIS] = 0;
  1300. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1301. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1302. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1303. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1304. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1305. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1306. st_synchronize();
  1307. endstops_hit_on_purpose();
  1308. current_position[X_AXIS] = destination[X_AXIS];
  1309. current_position[Y_AXIS] = destination[Y_AXIS];
  1310. current_position[Z_AXIS] = destination[Z_AXIS];
  1311. // take care of back off and rehome now we are all at the top
  1312. HOMEAXIS(X);
  1313. HOMEAXIS(Y);
  1314. HOMEAXIS(Z);
  1315. calculate_delta(current_position);
  1316. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1317. #else // NOT DELTA
  1318. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1319. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1320. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1321. HOMEAXIS(Z);
  1322. }
  1323. #endif
  1324. #ifdef QUICK_HOME
  1325. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1326. {
  1327. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1328. #ifndef DUAL_X_CARRIAGE
  1329. int x_axis_home_dir = home_dir(X_AXIS);
  1330. #else
  1331. int x_axis_home_dir = x_home_dir(active_extruder);
  1332. extruder_duplication_enabled = false;
  1333. #endif
  1334. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1335. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1336. feedrate = homing_feedrate[X_AXIS];
  1337. if(homing_feedrate[Y_AXIS]<feedrate)
  1338. feedrate = homing_feedrate[Y_AXIS];
  1339. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1340. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1341. } else {
  1342. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1343. }
  1344. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1345. st_synchronize();
  1346. axis_is_at_home(X_AXIS);
  1347. axis_is_at_home(Y_AXIS);
  1348. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1349. destination[X_AXIS] = current_position[X_AXIS];
  1350. destination[Y_AXIS] = current_position[Y_AXIS];
  1351. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1352. feedrate = 0.0;
  1353. st_synchronize();
  1354. endstops_hit_on_purpose();
  1355. current_position[X_AXIS] = destination[X_AXIS];
  1356. current_position[Y_AXIS] = destination[Y_AXIS];
  1357. #ifndef SCARA
  1358. current_position[Z_AXIS] = destination[Z_AXIS];
  1359. #endif
  1360. }
  1361. #endif
  1362. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1363. {
  1364. #ifdef DUAL_X_CARRIAGE
  1365. int tmp_extruder = active_extruder;
  1366. extruder_duplication_enabled = false;
  1367. active_extruder = !active_extruder;
  1368. HOMEAXIS(X);
  1369. inactive_extruder_x_pos = current_position[X_AXIS];
  1370. active_extruder = tmp_extruder;
  1371. HOMEAXIS(X);
  1372. // reset state used by the different modes
  1373. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1374. delayed_move_time = 0;
  1375. active_extruder_parked = true;
  1376. #else
  1377. HOMEAXIS(X);
  1378. #endif
  1379. }
  1380. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1381. HOMEAXIS(Y);
  1382. }
  1383. if(code_seen(axis_codes[X_AXIS]))
  1384. {
  1385. if(code_value_long() != 0) {
  1386. #ifdef SCARA
  1387. current_position[X_AXIS]=code_value();
  1388. #else
  1389. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1390. #endif
  1391. }
  1392. }
  1393. if(code_seen(axis_codes[Y_AXIS])) {
  1394. if(code_value_long() != 0) {
  1395. #ifdef SCARA
  1396. current_position[Y_AXIS]=code_value();
  1397. #else
  1398. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1399. #endif
  1400. }
  1401. }
  1402. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1403. #ifndef Z_SAFE_HOMING
  1404. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1405. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1406. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1407. feedrate = max_feedrate[Z_AXIS];
  1408. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1409. st_synchronize();
  1410. #endif
  1411. HOMEAXIS(Z);
  1412. }
  1413. #else // Z Safe mode activated.
  1414. if(home_all_axis) {
  1415. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1416. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1417. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1418. feedrate = XY_TRAVEL_SPEED/60;
  1419. current_position[Z_AXIS] = 0;
  1420. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1421. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1422. st_synchronize();
  1423. current_position[X_AXIS] = destination[X_AXIS];
  1424. current_position[Y_AXIS] = destination[Y_AXIS];
  1425. HOMEAXIS(Z);
  1426. }
  1427. // Let's see if X and Y are homed and probe is inside bed area.
  1428. if(code_seen(axis_codes[Z_AXIS])) {
  1429. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1430. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1431. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1432. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1433. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1434. current_position[Z_AXIS] = 0;
  1435. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1436. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1437. feedrate = max_feedrate[Z_AXIS];
  1438. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1439. st_synchronize();
  1440. HOMEAXIS(Z);
  1441. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1442. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1443. SERIAL_ECHO_START;
  1444. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1445. } else {
  1446. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1447. SERIAL_ECHO_START;
  1448. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1449. }
  1450. }
  1451. #endif
  1452. #endif
  1453. if(code_seen(axis_codes[Z_AXIS])) {
  1454. if(code_value_long() != 0) {
  1455. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1456. }
  1457. }
  1458. #ifdef ENABLE_AUTO_BED_LEVELING
  1459. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1460. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1461. }
  1462. #endif
  1463. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1464. #endif // else DELTA
  1465. #ifdef SCARA
  1466. calculate_delta(current_position);
  1467. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1468. #endif // SCARA
  1469. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1470. enable_endstops(false);
  1471. #endif
  1472. feedrate = saved_feedrate;
  1473. feedmultiply = saved_feedmultiply;
  1474. previous_millis_cmd = millis();
  1475. endstops_hit_on_purpose();
  1476. break;
  1477. #ifdef ENABLE_AUTO_BED_LEVELING
  1478. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1479. {
  1480. #if Z_MIN_PIN == -1
  1481. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1482. #endif
  1483. // Prevent user from running a G29 without first homing in X and Y
  1484. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1485. {
  1486. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1487. SERIAL_ECHO_START;
  1488. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1489. break; // abort G29, since we don't know where we are
  1490. }
  1491. #ifdef Z_PROBE_SLED
  1492. dock_sled(false);
  1493. #endif // Z_PROBE_SLED
  1494. st_synchronize();
  1495. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1496. //vector_3 corrected_position = plan_get_position_mm();
  1497. //corrected_position.debug("position before G29");
  1498. plan_bed_level_matrix.set_to_identity();
  1499. vector_3 uncorrected_position = plan_get_position();
  1500. //uncorrected_position.debug("position durring G29");
  1501. current_position[X_AXIS] = uncorrected_position.x;
  1502. current_position[Y_AXIS] = uncorrected_position.y;
  1503. current_position[Z_AXIS] = uncorrected_position.z;
  1504. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1505. setup_for_endstop_move();
  1506. feedrate = homing_feedrate[Z_AXIS];
  1507. #ifdef AUTO_BED_LEVELING_GRID
  1508. // probe at the points of a lattice grid
  1509. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1510. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1511. // solve the plane equation ax + by + d = z
  1512. // A is the matrix with rows [x y 1] for all the probed points
  1513. // B is the vector of the Z positions
  1514. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1515. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1516. // "A" matrix of the linear system of equations
  1517. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1518. // "B" vector of Z points
  1519. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1520. int probePointCounter = 0;
  1521. bool zig = true;
  1522. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1523. {
  1524. int xProbe, xInc;
  1525. if (zig)
  1526. {
  1527. xProbe = LEFT_PROBE_BED_POSITION;
  1528. //xEnd = RIGHT_PROBE_BED_POSITION;
  1529. xInc = xGridSpacing;
  1530. zig = false;
  1531. } else // zag
  1532. {
  1533. xProbe = RIGHT_PROBE_BED_POSITION;
  1534. //xEnd = LEFT_PROBE_BED_POSITION;
  1535. xInc = -xGridSpacing;
  1536. zig = true;
  1537. }
  1538. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1539. {
  1540. float z_before;
  1541. if (probePointCounter == 0)
  1542. {
  1543. // raise before probing
  1544. z_before = Z_RAISE_BEFORE_PROBING;
  1545. } else
  1546. {
  1547. // raise extruder
  1548. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1549. }
  1550. float measured_z;
  1551. //Enhanced G29 - Do not retract servo between probes
  1552. if (code_seen('E') || code_seen('e') )
  1553. {
  1554. if ((yProbe==FRONT_PROBE_BED_POSITION) && (xCount==0))
  1555. {
  1556. measured_z = probe_pt(xProbe, yProbe, z_before,1);
  1557. } else if ((yProbe==FRONT_PROBE_BED_POSITION + (yGridSpacing * (AUTO_BED_LEVELING_GRID_POINTS-1))) && (xCount == AUTO_BED_LEVELING_GRID_POINTS-1))
  1558. {
  1559. measured_z = probe_pt(xProbe, yProbe, z_before,3);
  1560. } else {
  1561. measured_z = probe_pt(xProbe, yProbe, z_before,2);
  1562. }
  1563. } else {
  1564. measured_z = probe_pt(xProbe, yProbe, z_before);
  1565. }
  1566. eqnBVector[probePointCounter] = measured_z;
  1567. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1568. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1569. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1570. probePointCounter++;
  1571. xProbe += xInc;
  1572. }
  1573. }
  1574. clean_up_after_endstop_move();
  1575. // solve lsq problem
  1576. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1577. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1578. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1579. SERIAL_PROTOCOLPGM(" b: ");
  1580. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1581. SERIAL_PROTOCOLPGM(" d: ");
  1582. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1583. set_bed_level_equation_lsq(plane_equation_coefficients);
  1584. free(plane_equation_coefficients);
  1585. #else // AUTO_BED_LEVELING_GRID not defined
  1586. // Probe at 3 arbitrary points
  1587. // Enhanced G29
  1588. float z_at_pt_1,z_at_pt_2,z_at_pt_3;
  1589. if (code_seen('E') || code_seen('e') )
  1590. {
  1591. // probe 1
  1592. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING,1);
  1593. // probe 2
  1594. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,2);
  1595. // probe 3
  1596. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,3);
  1597. }
  1598. else
  1599. {
  1600. // probe 1
  1601. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1602. // probe 2
  1603. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1604. // probe 3
  1605. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1606. }
  1607. clean_up_after_endstop_move();
  1608. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1609. #endif // AUTO_BED_LEVELING_GRID
  1610. st_synchronize();
  1611. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1612. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1613. // When the bed is uneven, this height must be corrected.
  1614. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1615. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1616. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1617. z_tmp = current_position[Z_AXIS];
  1618. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1619. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1620. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1621. #ifdef Z_PROBE_SLED
  1622. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1623. #endif // Z_PROBE_SLED
  1624. }
  1625. break;
  1626. #ifndef Z_PROBE_SLED
  1627. case 30: // G30 Single Z Probe
  1628. {
  1629. engage_z_probe(); // Engage Z Servo endstop if available
  1630. st_synchronize();
  1631. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1632. setup_for_endstop_move();
  1633. feedrate = homing_feedrate[Z_AXIS];
  1634. run_z_probe();
  1635. SERIAL_PROTOCOLPGM(MSG_BED);
  1636. SERIAL_PROTOCOLPGM(" X: ");
  1637. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1638. SERIAL_PROTOCOLPGM(" Y: ");
  1639. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1640. SERIAL_PROTOCOLPGM(" Z: ");
  1641. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1642. SERIAL_PROTOCOLPGM("\n");
  1643. clean_up_after_endstop_move();
  1644. retract_z_probe(); // Retract Z Servo endstop if available
  1645. }
  1646. break;
  1647. #else
  1648. case 31: // dock the sled
  1649. dock_sled(true);
  1650. break;
  1651. case 32: // undock the sled
  1652. dock_sled(false);
  1653. break;
  1654. #endif // Z_PROBE_SLED
  1655. #endif // ENABLE_AUTO_BED_LEVELING
  1656. case 90: // G90
  1657. relative_mode = false;
  1658. break;
  1659. case 91: // G91
  1660. relative_mode = true;
  1661. break;
  1662. case 92: // G92
  1663. if(!code_seen(axis_codes[E_AXIS]))
  1664. st_synchronize();
  1665. for(int8_t i=0; i < NUM_AXIS; i++) {
  1666. if(code_seen(axis_codes[i])) {
  1667. if(i == E_AXIS) {
  1668. current_position[i] = code_value();
  1669. plan_set_e_position(current_position[E_AXIS]);
  1670. }
  1671. else {
  1672. #ifdef SCARA
  1673. if (i == X_AXIS || i == Y_AXIS) {
  1674. current_position[i] = code_value();
  1675. }
  1676. else {
  1677. current_position[i] = code_value()+add_homing[i];
  1678. }
  1679. #else
  1680. current_position[i] = code_value()+add_homing[i];
  1681. #endif
  1682. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1683. }
  1684. }
  1685. }
  1686. break;
  1687. }
  1688. }
  1689. else if(code_seen('M'))
  1690. {
  1691. switch( (int)code_value() )
  1692. {
  1693. #ifdef ULTIPANEL
  1694. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1695. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1696. {
  1697. char *src = strchr_pointer + 2;
  1698. codenum = 0;
  1699. bool hasP = false, hasS = false;
  1700. if (code_seen('P')) {
  1701. codenum = code_value(); // milliseconds to wait
  1702. hasP = codenum > 0;
  1703. }
  1704. if (code_seen('S')) {
  1705. codenum = code_value() * 1000; // seconds to wait
  1706. hasS = codenum > 0;
  1707. }
  1708. starpos = strchr(src, '*');
  1709. if (starpos != NULL) *(starpos) = '\0';
  1710. while (*src == ' ') ++src;
  1711. if (!hasP && !hasS && *src != '\0') {
  1712. lcd_setstatus(src);
  1713. } else {
  1714. LCD_MESSAGEPGM(MSG_USERWAIT);
  1715. }
  1716. lcd_ignore_click();
  1717. st_synchronize();
  1718. previous_millis_cmd = millis();
  1719. if (codenum > 0){
  1720. codenum += millis(); // keep track of when we started waiting
  1721. while(millis() < codenum && !lcd_clicked()){
  1722. manage_heater();
  1723. manage_inactivity();
  1724. lcd_update();
  1725. }
  1726. lcd_ignore_click(false);
  1727. }else{
  1728. if (!lcd_detected())
  1729. break;
  1730. while(!lcd_clicked()){
  1731. manage_heater();
  1732. manage_inactivity();
  1733. lcd_update();
  1734. }
  1735. }
  1736. if (IS_SD_PRINTING)
  1737. LCD_MESSAGEPGM(MSG_RESUMING);
  1738. else
  1739. LCD_MESSAGEPGM(WELCOME_MSG);
  1740. }
  1741. break;
  1742. #endif
  1743. case 17:
  1744. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1745. enable_x();
  1746. enable_y();
  1747. enable_z();
  1748. enable_e0();
  1749. enable_e1();
  1750. enable_e2();
  1751. break;
  1752. #ifdef SDSUPPORT
  1753. case 20: // M20 - list SD card
  1754. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1755. card.ls();
  1756. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1757. break;
  1758. case 21: // M21 - init SD card
  1759. card.initsd();
  1760. break;
  1761. case 22: //M22 - release SD card
  1762. card.release();
  1763. break;
  1764. case 23: //M23 - Select file
  1765. starpos = (strchr(strchr_pointer + 4,'*'));
  1766. if(starpos!=NULL)
  1767. *(starpos)='\0';
  1768. card.openFile(strchr_pointer + 4,true);
  1769. break;
  1770. case 24: //M24 - Start SD print
  1771. card.startFileprint();
  1772. starttime=millis();
  1773. break;
  1774. case 25: //M25 - Pause SD print
  1775. card.pauseSDPrint();
  1776. break;
  1777. case 26: //M26 - Set SD index
  1778. if(card.cardOK && code_seen('S')) {
  1779. card.setIndex(code_value_long());
  1780. }
  1781. break;
  1782. case 27: //M27 - Get SD status
  1783. card.getStatus();
  1784. break;
  1785. case 28: //M28 - Start SD write
  1786. starpos = (strchr(strchr_pointer + 4,'*'));
  1787. if(starpos != NULL){
  1788. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1789. strchr_pointer = strchr(npos,' ') + 1;
  1790. *(starpos) = '\0';
  1791. }
  1792. card.openFile(strchr_pointer+4,false);
  1793. break;
  1794. case 29: //M29 - Stop SD write
  1795. //processed in write to file routine above
  1796. //card,saving = false;
  1797. break;
  1798. case 30: //M30 <filename> Delete File
  1799. if (card.cardOK){
  1800. card.closefile();
  1801. starpos = (strchr(strchr_pointer + 4,'*'));
  1802. if(starpos != NULL){
  1803. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1804. strchr_pointer = strchr(npos,' ') + 1;
  1805. *(starpos) = '\0';
  1806. }
  1807. card.removeFile(strchr_pointer + 4);
  1808. }
  1809. break;
  1810. case 32: //M32 - Select file and start SD print
  1811. {
  1812. if(card.sdprinting) {
  1813. st_synchronize();
  1814. }
  1815. starpos = (strchr(strchr_pointer + 4,'*'));
  1816. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1817. if(namestartpos==NULL)
  1818. {
  1819. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1820. }
  1821. else
  1822. namestartpos++; //to skip the '!'
  1823. if(starpos!=NULL)
  1824. *(starpos)='\0';
  1825. bool call_procedure=(code_seen('P'));
  1826. if(strchr_pointer>namestartpos)
  1827. call_procedure=false; //false alert, 'P' found within filename
  1828. if( card.cardOK )
  1829. {
  1830. card.openFile(namestartpos,true,!call_procedure);
  1831. if(code_seen('S'))
  1832. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1833. card.setIndex(code_value_long());
  1834. card.startFileprint();
  1835. if(!call_procedure)
  1836. starttime=millis(); //procedure calls count as normal print time.
  1837. }
  1838. } break;
  1839. case 928: //M928 - Start SD write
  1840. starpos = (strchr(strchr_pointer + 5,'*'));
  1841. if(starpos != NULL){
  1842. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1843. strchr_pointer = strchr(npos,' ') + 1;
  1844. *(starpos) = '\0';
  1845. }
  1846. card.openLogFile(strchr_pointer+5);
  1847. break;
  1848. #endif //SDSUPPORT
  1849. case 31: //M31 take time since the start of the SD print or an M109 command
  1850. {
  1851. stoptime=millis();
  1852. char time[30];
  1853. unsigned long t=(stoptime-starttime)/1000;
  1854. int sec,min;
  1855. min=t/60;
  1856. sec=t%60;
  1857. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1858. SERIAL_ECHO_START;
  1859. SERIAL_ECHOLN(time);
  1860. lcd_setstatus(time);
  1861. autotempShutdown();
  1862. }
  1863. break;
  1864. case 42: //M42 -Change pin status via gcode
  1865. if (code_seen('S'))
  1866. {
  1867. int pin_status = code_value();
  1868. int pin_number = LED_PIN;
  1869. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1870. pin_number = code_value();
  1871. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1872. {
  1873. if (sensitive_pins[i] == pin_number)
  1874. {
  1875. pin_number = -1;
  1876. break;
  1877. }
  1878. }
  1879. #if defined(FAN_PIN) && FAN_PIN > -1
  1880. if (pin_number == FAN_PIN)
  1881. fanSpeed = pin_status;
  1882. #endif
  1883. if (pin_number > -1)
  1884. {
  1885. pinMode(pin_number, OUTPUT);
  1886. digitalWrite(pin_number, pin_status);
  1887. analogWrite(pin_number, pin_status);
  1888. }
  1889. }
  1890. break;
  1891. // M48 Z-Probe repeatability measurement function.
  1892. //
  1893. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  1894. //
  1895. // This function assumes the bed has been homed. Specificaly, that a G28 command
  1896. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  1897. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  1898. // regenerated.
  1899. //
  1900. // The number of samples will default to 10 if not specified. You can use upper or lower case
  1901. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  1902. // N for its communication protocol and will get horribly confused if you send it a capital N.
  1903. //
  1904. #ifdef ENABLE_AUTO_BED_LEVELING
  1905. #ifdef Z_PROBE_REPEATABILITY_TEST
  1906. case 48: // M48 Z-Probe repeatability
  1907. {
  1908. #if Z_MIN_PIN == -1
  1909. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  1910. #endif
  1911. double sum=0.0;
  1912. double mean=0.0;
  1913. double sigma=0.0;
  1914. double sample_set[50];
  1915. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  1916. double X_current, Y_current, Z_current;
  1917. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  1918. if (code_seen('V') || code_seen('v')) {
  1919. verbose_level = code_value();
  1920. if (verbose_level<0 || verbose_level>4 ) {
  1921. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  1922. goto Sigma_Exit;
  1923. }
  1924. }
  1925. if (verbose_level > 0) {
  1926. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  1927. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  1928. }
  1929. if (code_seen('n')) {
  1930. n_samples = code_value();
  1931. if (n_samples<4 || n_samples>50 ) {
  1932. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  1933. goto Sigma_Exit;
  1934. }
  1935. }
  1936. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  1937. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  1938. Z_current = st_get_position_mm(Z_AXIS);
  1939. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1940. ext_position = st_get_position_mm(E_AXIS);
  1941. if (code_seen('E') || code_seen('e') )
  1942. engage_probe_for_each_reading++;
  1943. if (code_seen('X') || code_seen('x') ) {
  1944. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  1945. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  1946. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  1947. goto Sigma_Exit;
  1948. }
  1949. }
  1950. if (code_seen('Y') || code_seen('y') ) {
  1951. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1952. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  1953. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  1954. goto Sigma_Exit;
  1955. }
  1956. }
  1957. if (code_seen('L') || code_seen('l') ) {
  1958. n_legs = code_value();
  1959. if ( n_legs==1 )
  1960. n_legs = 2;
  1961. if ( n_legs<0 || n_legs>15 ) {
  1962. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  1963. goto Sigma_Exit;
  1964. }
  1965. }
  1966. //
  1967. // Do all the preliminary setup work. First raise the probe.
  1968. //
  1969. st_synchronize();
  1970. plan_bed_level_matrix.set_to_identity();
  1971. plan_buffer_line( X_current, Y_current, Z_start_location,
  1972. ext_position,
  1973. homing_feedrate[Z_AXIS]/60,
  1974. active_extruder);
  1975. st_synchronize();
  1976. //
  1977. // Now get everything to the specified probe point So we can safely do a probe to
  1978. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  1979. // use that as a starting point for each probe.
  1980. //
  1981. if (verbose_level > 2)
  1982. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  1983. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1984. ext_position,
  1985. homing_feedrate[X_AXIS]/60,
  1986. active_extruder);
  1987. st_synchronize();
  1988. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  1989. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  1990. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1991. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  1992. //
  1993. // OK, do the inital probe to get us close to the bed.
  1994. // Then retrace the right amount and use that in subsequent probes
  1995. //
  1996. engage_z_probe();
  1997. setup_for_endstop_move();
  1998. run_z_probe();
  1999. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2000. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2001. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2002. ext_position,
  2003. homing_feedrate[X_AXIS]/60,
  2004. active_extruder);
  2005. st_synchronize();
  2006. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2007. if (engage_probe_for_each_reading)
  2008. retract_z_probe();
  2009. for( n=0; n<n_samples; n++) {
  2010. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2011. if ( n_legs) {
  2012. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2013. int rotational_direction, l;
  2014. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2015. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2016. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2017. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2018. //SERIAL_ECHOPAIR(" theta: ",theta);
  2019. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2020. //SERIAL_PROTOCOLLNPGM("");
  2021. for( l=0; l<n_legs-1; l++) {
  2022. if (rotational_direction==1)
  2023. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2024. else
  2025. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2026. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2027. if ( radius<0.0 )
  2028. radius = -radius;
  2029. X_current = X_probe_location + cos(theta) * radius;
  2030. Y_current = Y_probe_location + sin(theta) * radius;
  2031. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2032. X_current = X_MIN_POS;
  2033. if ( X_current>X_MAX_POS)
  2034. X_current = X_MAX_POS;
  2035. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2036. Y_current = Y_MIN_POS;
  2037. if ( Y_current>Y_MAX_POS)
  2038. Y_current = Y_MAX_POS;
  2039. if (verbose_level>3 ) {
  2040. SERIAL_ECHOPAIR("x: ", X_current);
  2041. SERIAL_ECHOPAIR("y: ", Y_current);
  2042. SERIAL_PROTOCOLLNPGM("");
  2043. }
  2044. do_blocking_move_to( X_current, Y_current, Z_current );
  2045. }
  2046. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2047. }
  2048. if (engage_probe_for_each_reading) {
  2049. engage_z_probe();
  2050. delay(1000);
  2051. }
  2052. setup_for_endstop_move();
  2053. run_z_probe();
  2054. sample_set[n] = current_position[Z_AXIS];
  2055. //
  2056. // Get the current mean for the data points we have so far
  2057. //
  2058. sum=0.0;
  2059. for( j=0; j<=n; j++) {
  2060. sum = sum + sample_set[j];
  2061. }
  2062. mean = sum / (double (n+1));
  2063. //
  2064. // Now, use that mean to calculate the standard deviation for the
  2065. // data points we have so far
  2066. //
  2067. sum=0.0;
  2068. for( j=0; j<=n; j++) {
  2069. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2070. }
  2071. sigma = sqrt( sum / (double (n+1)) );
  2072. if (verbose_level > 1) {
  2073. SERIAL_PROTOCOL(n+1);
  2074. SERIAL_PROTOCOL(" of ");
  2075. SERIAL_PROTOCOL(n_samples);
  2076. SERIAL_PROTOCOLPGM(" z: ");
  2077. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2078. }
  2079. if (verbose_level > 2) {
  2080. SERIAL_PROTOCOL(" mean: ");
  2081. SERIAL_PROTOCOL_F(mean,6);
  2082. SERIAL_PROTOCOL(" sigma: ");
  2083. SERIAL_PROTOCOL_F(sigma,6);
  2084. }
  2085. if (verbose_level > 0)
  2086. SERIAL_PROTOCOLPGM("\n");
  2087. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2088. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2089. st_synchronize();
  2090. if (engage_probe_for_each_reading) {
  2091. retract_z_probe();
  2092. delay(1000);
  2093. }
  2094. }
  2095. retract_z_probe();
  2096. delay(1000);
  2097. clean_up_after_endstop_move();
  2098. // enable_endstops(true);
  2099. if (verbose_level > 0) {
  2100. SERIAL_PROTOCOLPGM("Mean: ");
  2101. SERIAL_PROTOCOL_F(mean, 6);
  2102. SERIAL_PROTOCOLPGM("\n");
  2103. }
  2104. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2105. SERIAL_PROTOCOL_F(sigma, 6);
  2106. SERIAL_PROTOCOLPGM("\n\n");
  2107. Sigma_Exit:
  2108. break;
  2109. }
  2110. #endif // Z_PROBE_REPEATABILITY_TEST
  2111. #endif // ENABLE_AUTO_BED_LEVELING
  2112. case 104: // M104
  2113. if(setTargetedHotend(104)){
  2114. break;
  2115. }
  2116. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2117. #ifdef DUAL_X_CARRIAGE
  2118. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2119. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2120. #endif
  2121. setWatch();
  2122. break;
  2123. case 112: // M112 -Emergency Stop
  2124. kill();
  2125. break;
  2126. case 140: // M140 set bed temp
  2127. if (code_seen('S')) setTargetBed(code_value());
  2128. break;
  2129. case 105 : // M105
  2130. if(setTargetedHotend(105)){
  2131. break;
  2132. }
  2133. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2134. SERIAL_PROTOCOLPGM("ok T:");
  2135. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2136. SERIAL_PROTOCOLPGM(" /");
  2137. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2138. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2139. SERIAL_PROTOCOLPGM(" B:");
  2140. SERIAL_PROTOCOL_F(degBed(),1);
  2141. SERIAL_PROTOCOLPGM(" /");
  2142. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2143. #endif //TEMP_BED_PIN
  2144. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2145. SERIAL_PROTOCOLPGM(" T");
  2146. SERIAL_PROTOCOL(cur_extruder);
  2147. SERIAL_PROTOCOLPGM(":");
  2148. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2149. SERIAL_PROTOCOLPGM(" /");
  2150. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2151. }
  2152. #else
  2153. SERIAL_ERROR_START;
  2154. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2155. #endif
  2156. SERIAL_PROTOCOLPGM(" @:");
  2157. #ifdef EXTRUDER_WATTS
  2158. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2159. SERIAL_PROTOCOLPGM("W");
  2160. #else
  2161. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2162. #endif
  2163. SERIAL_PROTOCOLPGM(" B@:");
  2164. #ifdef BED_WATTS
  2165. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2166. SERIAL_PROTOCOLPGM("W");
  2167. #else
  2168. SERIAL_PROTOCOL(getHeaterPower(-1));
  2169. #endif
  2170. #ifdef SHOW_TEMP_ADC_VALUES
  2171. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2172. SERIAL_PROTOCOLPGM(" ADC B:");
  2173. SERIAL_PROTOCOL_F(degBed(),1);
  2174. SERIAL_PROTOCOLPGM("C->");
  2175. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2176. #endif
  2177. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2178. SERIAL_PROTOCOLPGM(" T");
  2179. SERIAL_PROTOCOL(cur_extruder);
  2180. SERIAL_PROTOCOLPGM(":");
  2181. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2182. SERIAL_PROTOCOLPGM("C->");
  2183. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2184. }
  2185. #endif
  2186. SERIAL_PROTOCOLLN("");
  2187. return;
  2188. break;
  2189. case 109:
  2190. {// M109 - Wait for extruder heater to reach target.
  2191. if(setTargetedHotend(109)){
  2192. break;
  2193. }
  2194. LCD_MESSAGEPGM(MSG_HEATING);
  2195. #ifdef AUTOTEMP
  2196. autotemp_enabled=false;
  2197. #endif
  2198. if (code_seen('S')) {
  2199. setTargetHotend(code_value(), tmp_extruder);
  2200. #ifdef DUAL_X_CARRIAGE
  2201. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2202. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2203. #endif
  2204. CooldownNoWait = true;
  2205. } else if (code_seen('R')) {
  2206. setTargetHotend(code_value(), tmp_extruder);
  2207. #ifdef DUAL_X_CARRIAGE
  2208. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2209. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2210. #endif
  2211. CooldownNoWait = false;
  2212. }
  2213. #ifdef AUTOTEMP
  2214. if (code_seen('S')) autotemp_min=code_value();
  2215. if (code_seen('B')) autotemp_max=code_value();
  2216. if (code_seen('F'))
  2217. {
  2218. autotemp_factor=code_value();
  2219. autotemp_enabled=true;
  2220. }
  2221. #endif
  2222. setWatch();
  2223. codenum = millis();
  2224. /* See if we are heating up or cooling down */
  2225. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2226. cancel_heatup = false;
  2227. #ifdef TEMP_RESIDENCY_TIME
  2228. long residencyStart;
  2229. residencyStart = -1;
  2230. /* continue to loop until we have reached the target temp
  2231. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2232. while((!cancel_heatup)&&((residencyStart == -1) ||
  2233. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2234. #else
  2235. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2236. #endif //TEMP_RESIDENCY_TIME
  2237. if( (millis() - codenum) > 1000UL )
  2238. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2239. SERIAL_PROTOCOLPGM("T:");
  2240. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2241. SERIAL_PROTOCOLPGM(" E:");
  2242. SERIAL_PROTOCOL((int)tmp_extruder);
  2243. #ifdef TEMP_RESIDENCY_TIME
  2244. SERIAL_PROTOCOLPGM(" W:");
  2245. if(residencyStart > -1)
  2246. {
  2247. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2248. SERIAL_PROTOCOLLN( codenum );
  2249. }
  2250. else
  2251. {
  2252. SERIAL_PROTOCOLLN( "?" );
  2253. }
  2254. #else
  2255. SERIAL_PROTOCOLLN("");
  2256. #endif
  2257. codenum = millis();
  2258. }
  2259. manage_heater();
  2260. manage_inactivity();
  2261. lcd_update();
  2262. #ifdef TEMP_RESIDENCY_TIME
  2263. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2264. or when current temp falls outside the hysteresis after target temp was reached */
  2265. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2266. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2267. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2268. {
  2269. residencyStart = millis();
  2270. }
  2271. #endif //TEMP_RESIDENCY_TIME
  2272. }
  2273. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2274. starttime=millis();
  2275. previous_millis_cmd = millis();
  2276. }
  2277. break;
  2278. case 190: // M190 - Wait for bed heater to reach target.
  2279. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2280. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2281. if (code_seen('S')) {
  2282. setTargetBed(code_value());
  2283. CooldownNoWait = true;
  2284. } else if (code_seen('R')) {
  2285. setTargetBed(code_value());
  2286. CooldownNoWait = false;
  2287. }
  2288. codenum = millis();
  2289. cancel_heatup = false;
  2290. target_direction = isHeatingBed(); // true if heating, false if cooling
  2291. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2292. {
  2293. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2294. {
  2295. float tt=degHotend(active_extruder);
  2296. SERIAL_PROTOCOLPGM("T:");
  2297. SERIAL_PROTOCOL(tt);
  2298. SERIAL_PROTOCOLPGM(" E:");
  2299. SERIAL_PROTOCOL((int)active_extruder);
  2300. SERIAL_PROTOCOLPGM(" B:");
  2301. SERIAL_PROTOCOL_F(degBed(),1);
  2302. SERIAL_PROTOCOLLN("");
  2303. codenum = millis();
  2304. }
  2305. manage_heater();
  2306. manage_inactivity();
  2307. lcd_update();
  2308. }
  2309. LCD_MESSAGEPGM(MSG_BED_DONE);
  2310. previous_millis_cmd = millis();
  2311. #endif
  2312. break;
  2313. #if defined(FAN_PIN) && FAN_PIN > -1
  2314. case 106: //M106 Fan On
  2315. if (code_seen('S')){
  2316. fanSpeed=constrain(code_value(),0,255);
  2317. }
  2318. else {
  2319. fanSpeed=255;
  2320. }
  2321. break;
  2322. case 107: //M107 Fan Off
  2323. fanSpeed = 0;
  2324. break;
  2325. #endif //FAN_PIN
  2326. #ifdef BARICUDA
  2327. // PWM for HEATER_1_PIN
  2328. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2329. case 126: //M126 valve open
  2330. if (code_seen('S')){
  2331. ValvePressure=constrain(code_value(),0,255);
  2332. }
  2333. else {
  2334. ValvePressure=255;
  2335. }
  2336. break;
  2337. case 127: //M127 valve closed
  2338. ValvePressure = 0;
  2339. break;
  2340. #endif //HEATER_1_PIN
  2341. // PWM for HEATER_2_PIN
  2342. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2343. case 128: //M128 valve open
  2344. if (code_seen('S')){
  2345. EtoPPressure=constrain(code_value(),0,255);
  2346. }
  2347. else {
  2348. EtoPPressure=255;
  2349. }
  2350. break;
  2351. case 129: //M129 valve closed
  2352. EtoPPressure = 0;
  2353. break;
  2354. #endif //HEATER_2_PIN
  2355. #endif
  2356. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2357. case 80: // M80 - Turn on Power Supply
  2358. SET_OUTPUT(PS_ON_PIN); //GND
  2359. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2360. // If you have a switch on suicide pin, this is useful
  2361. // if you want to start another print with suicide feature after
  2362. // a print without suicide...
  2363. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2364. SET_OUTPUT(SUICIDE_PIN);
  2365. WRITE(SUICIDE_PIN, HIGH);
  2366. #endif
  2367. #ifdef ULTIPANEL
  2368. powersupply = true;
  2369. LCD_MESSAGEPGM(WELCOME_MSG);
  2370. lcd_update();
  2371. #endif
  2372. break;
  2373. #endif
  2374. case 81: // M81 - Turn off Power Supply
  2375. disable_heater();
  2376. st_synchronize();
  2377. disable_e0();
  2378. disable_e1();
  2379. disable_e2();
  2380. finishAndDisableSteppers();
  2381. fanSpeed = 0;
  2382. delay(1000); // Wait a little before to switch off
  2383. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2384. st_synchronize();
  2385. suicide();
  2386. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2387. SET_OUTPUT(PS_ON_PIN);
  2388. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2389. #endif
  2390. #ifdef ULTIPANEL
  2391. powersupply = false;
  2392. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2393. lcd_update();
  2394. #endif
  2395. break;
  2396. case 82:
  2397. axis_relative_modes[3] = false;
  2398. break;
  2399. case 83:
  2400. axis_relative_modes[3] = true;
  2401. break;
  2402. case 18: //compatibility
  2403. case 84: // M84
  2404. if(code_seen('S')){
  2405. stepper_inactive_time = code_value() * 1000;
  2406. }
  2407. else
  2408. {
  2409. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2410. if(all_axis)
  2411. {
  2412. st_synchronize();
  2413. disable_e0();
  2414. disable_e1();
  2415. disable_e2();
  2416. finishAndDisableSteppers();
  2417. }
  2418. else
  2419. {
  2420. st_synchronize();
  2421. if(code_seen('X')) disable_x();
  2422. if(code_seen('Y')) disable_y();
  2423. if(code_seen('Z')) disable_z();
  2424. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2425. if(code_seen('E')) {
  2426. disable_e0();
  2427. disable_e1();
  2428. disable_e2();
  2429. }
  2430. #endif
  2431. }
  2432. }
  2433. break;
  2434. case 85: // M85
  2435. if(code_seen('S')) {
  2436. max_inactive_time = code_value() * 1000;
  2437. }
  2438. break;
  2439. case 92: // M92
  2440. for(int8_t i=0; i < NUM_AXIS; i++)
  2441. {
  2442. if(code_seen(axis_codes[i]))
  2443. {
  2444. if(i == 3) { // E
  2445. float value = code_value();
  2446. if(value < 20.0) {
  2447. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2448. max_e_jerk *= factor;
  2449. max_feedrate[i] *= factor;
  2450. axis_steps_per_sqr_second[i] *= factor;
  2451. }
  2452. axis_steps_per_unit[i] = value;
  2453. }
  2454. else {
  2455. axis_steps_per_unit[i] = code_value();
  2456. }
  2457. }
  2458. }
  2459. break;
  2460. case 115: // M115
  2461. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2462. break;
  2463. case 117: // M117 display message
  2464. starpos = (strchr(strchr_pointer + 5,'*'));
  2465. if(starpos!=NULL)
  2466. *(starpos)='\0';
  2467. lcd_setstatus(strchr_pointer + 5);
  2468. break;
  2469. case 114: // M114
  2470. SERIAL_PROTOCOLPGM("X:");
  2471. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2472. SERIAL_PROTOCOLPGM(" Y:");
  2473. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2474. SERIAL_PROTOCOLPGM(" Z:");
  2475. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2476. SERIAL_PROTOCOLPGM(" E:");
  2477. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2478. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2479. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2480. SERIAL_PROTOCOLPGM(" Y:");
  2481. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2482. SERIAL_PROTOCOLPGM(" Z:");
  2483. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2484. SERIAL_PROTOCOLLN("");
  2485. #ifdef SCARA
  2486. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2487. SERIAL_PROTOCOL(delta[X_AXIS]);
  2488. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2489. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2490. SERIAL_PROTOCOLLN("");
  2491. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2492. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2493. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2494. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2495. SERIAL_PROTOCOLLN("");
  2496. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2497. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2498. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2499. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2500. SERIAL_PROTOCOLLN("");
  2501. SERIAL_PROTOCOLLN("");
  2502. #endif
  2503. break;
  2504. case 120: // M120
  2505. enable_endstops(false) ;
  2506. break;
  2507. case 121: // M121
  2508. enable_endstops(true) ;
  2509. break;
  2510. case 119: // M119
  2511. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2512. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2513. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2514. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2515. #endif
  2516. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2517. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2518. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2519. #endif
  2520. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2521. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2522. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2523. #endif
  2524. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2525. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2526. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2527. #endif
  2528. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2529. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2530. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2531. #endif
  2532. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2533. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2534. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2535. #endif
  2536. break;
  2537. //TODO: update for all axis, use for loop
  2538. #ifdef BLINKM
  2539. case 150: // M150
  2540. {
  2541. byte red;
  2542. byte grn;
  2543. byte blu;
  2544. if(code_seen('R')) red = code_value();
  2545. if(code_seen('U')) grn = code_value();
  2546. if(code_seen('B')) blu = code_value();
  2547. SendColors(red,grn,blu);
  2548. }
  2549. break;
  2550. #endif //BLINKM
  2551. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2552. {
  2553. tmp_extruder = active_extruder;
  2554. if(code_seen('T')) {
  2555. tmp_extruder = code_value();
  2556. if(tmp_extruder >= EXTRUDERS) {
  2557. SERIAL_ECHO_START;
  2558. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2559. break;
  2560. }
  2561. }
  2562. float area = .0;
  2563. if(code_seen('D')) {
  2564. float diameter = (float)code_value();
  2565. if (diameter == 0.0) {
  2566. // setting any extruder filament size disables volumetric on the assumption that
  2567. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2568. // for all extruders
  2569. volumetric_enabled = false;
  2570. } else {
  2571. filament_size[tmp_extruder] = (float)code_value();
  2572. // make sure all extruders have some sane value for the filament size
  2573. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  2574. #if EXTRUDERS > 1
  2575. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  2576. #if EXTRUDERS > 2
  2577. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  2578. #if EXTRUDERS > 3
  2579. filament_size[3] = (filament_size[3] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[3]);
  2580. #endif //EXTRUDERS > 3
  2581. #endif //EXTRUDERS > 2
  2582. #endif //EXTRUDERS > 1
  2583. volumetric_enabled = true;
  2584. }
  2585. } else {
  2586. //reserved for setting filament diameter via UFID or filament measuring device
  2587. break;
  2588. }
  2589. calculate_volumetric_multipliers();
  2590. }
  2591. break;
  2592. case 201: // M201
  2593. for(int8_t i=0; i < NUM_AXIS; i++)
  2594. {
  2595. if(code_seen(axis_codes[i]))
  2596. {
  2597. max_acceleration_units_per_sq_second[i] = code_value();
  2598. }
  2599. }
  2600. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2601. reset_acceleration_rates();
  2602. break;
  2603. #if 0 // Not used for Sprinter/grbl gen6
  2604. case 202: // M202
  2605. for(int8_t i=0; i < NUM_AXIS; i++) {
  2606. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2607. }
  2608. break;
  2609. #endif
  2610. case 203: // M203 max feedrate mm/sec
  2611. for(int8_t i=0; i < NUM_AXIS; i++) {
  2612. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2613. }
  2614. break;
  2615. case 204: // M204 acclereration S normal moves T filmanent only moves
  2616. {
  2617. if(code_seen('S')) acceleration = code_value() ;
  2618. if(code_seen('T')) retract_acceleration = code_value() ;
  2619. }
  2620. break;
  2621. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2622. {
  2623. if(code_seen('S')) minimumfeedrate = code_value();
  2624. if(code_seen('T')) mintravelfeedrate = code_value();
  2625. if(code_seen('B')) minsegmenttime = code_value() ;
  2626. if(code_seen('X')) max_xy_jerk = code_value() ;
  2627. if(code_seen('Z')) max_z_jerk = code_value() ;
  2628. if(code_seen('E')) max_e_jerk = code_value() ;
  2629. }
  2630. break;
  2631. case 206: // M206 additional homing offset
  2632. for(int8_t i=0; i < 3; i++)
  2633. {
  2634. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2635. }
  2636. #ifdef SCARA
  2637. if(code_seen('T')) // Theta
  2638. {
  2639. add_homing[X_AXIS] = code_value() ;
  2640. }
  2641. if(code_seen('P')) // Psi
  2642. {
  2643. add_homing[Y_AXIS] = code_value() ;
  2644. }
  2645. #endif
  2646. break;
  2647. #ifdef DELTA
  2648. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2649. if(code_seen('L')) {
  2650. delta_diagonal_rod= code_value();
  2651. }
  2652. if(code_seen('R')) {
  2653. delta_radius= code_value();
  2654. }
  2655. if(code_seen('S')) {
  2656. delta_segments_per_second= code_value();
  2657. }
  2658. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2659. break;
  2660. case 666: // M666 set delta endstop adjustemnt
  2661. for(int8_t i=0; i < 3; i++)
  2662. {
  2663. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2664. }
  2665. break;
  2666. #endif
  2667. #ifdef FWRETRACT
  2668. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2669. {
  2670. if(code_seen('S'))
  2671. {
  2672. retract_length = code_value() ;
  2673. }
  2674. if(code_seen('F'))
  2675. {
  2676. retract_feedrate = code_value()/60 ;
  2677. }
  2678. if(code_seen('Z'))
  2679. {
  2680. retract_zlift = code_value() ;
  2681. }
  2682. }break;
  2683. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2684. {
  2685. if(code_seen('S'))
  2686. {
  2687. retract_recover_length = code_value() ;
  2688. }
  2689. if(code_seen('F'))
  2690. {
  2691. retract_recover_feedrate = code_value()/60 ;
  2692. }
  2693. }break;
  2694. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2695. {
  2696. if(code_seen('S'))
  2697. {
  2698. int t= code_value() ;
  2699. switch(t)
  2700. {
  2701. case 0:
  2702. {
  2703. autoretract_enabled=false;
  2704. retracted[0]=false;
  2705. #if EXTRUDERS > 1
  2706. retracted[1]=false;
  2707. #endif
  2708. #if EXTRUDERS > 2
  2709. retracted[2]=false;
  2710. #endif
  2711. #if EXTRUDERS > 3
  2712. retracted[3]=false;
  2713. #endif
  2714. }break;
  2715. case 1:
  2716. {
  2717. autoretract_enabled=true;
  2718. retracted[0]=false;
  2719. #if EXTRUDERS > 1
  2720. retracted[1]=false;
  2721. #endif
  2722. #if EXTRUDERS > 2
  2723. retracted[2]=false;
  2724. #endif
  2725. #if EXTRUDERS > 3
  2726. retracted[3]=false;
  2727. #endif
  2728. }break;
  2729. default:
  2730. SERIAL_ECHO_START;
  2731. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2732. SERIAL_ECHO(cmdbuffer[bufindr]);
  2733. SERIAL_ECHOLNPGM("\"");
  2734. }
  2735. }
  2736. }break;
  2737. #endif // FWRETRACT
  2738. #if EXTRUDERS > 1
  2739. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2740. {
  2741. if(setTargetedHotend(218)){
  2742. break;
  2743. }
  2744. if(code_seen('X'))
  2745. {
  2746. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2747. }
  2748. if(code_seen('Y'))
  2749. {
  2750. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2751. }
  2752. #ifdef DUAL_X_CARRIAGE
  2753. if(code_seen('Z'))
  2754. {
  2755. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2756. }
  2757. #endif
  2758. SERIAL_ECHO_START;
  2759. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2760. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2761. {
  2762. SERIAL_ECHO(" ");
  2763. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2764. SERIAL_ECHO(",");
  2765. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2766. #ifdef DUAL_X_CARRIAGE
  2767. SERIAL_ECHO(",");
  2768. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2769. #endif
  2770. }
  2771. SERIAL_ECHOLN("");
  2772. }break;
  2773. #endif
  2774. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2775. {
  2776. if(code_seen('S'))
  2777. {
  2778. feedmultiply = code_value() ;
  2779. }
  2780. }
  2781. break;
  2782. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2783. {
  2784. if(code_seen('S'))
  2785. {
  2786. int tmp_code = code_value();
  2787. if (code_seen('T'))
  2788. {
  2789. if(setTargetedHotend(221)){
  2790. break;
  2791. }
  2792. extruder_multiply[tmp_extruder] = tmp_code;
  2793. }
  2794. else
  2795. {
  2796. extrudemultiply = tmp_code ;
  2797. }
  2798. }
  2799. }
  2800. break;
  2801. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2802. {
  2803. if(code_seen('P')){
  2804. int pin_number = code_value(); // pin number
  2805. int pin_state = -1; // required pin state - default is inverted
  2806. if(code_seen('S')) pin_state = code_value(); // required pin state
  2807. if(pin_state >= -1 && pin_state <= 1){
  2808. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2809. {
  2810. if (sensitive_pins[i] == pin_number)
  2811. {
  2812. pin_number = -1;
  2813. break;
  2814. }
  2815. }
  2816. if (pin_number > -1)
  2817. {
  2818. int target = LOW;
  2819. st_synchronize();
  2820. pinMode(pin_number, INPUT);
  2821. switch(pin_state){
  2822. case 1:
  2823. target = HIGH;
  2824. break;
  2825. case 0:
  2826. target = LOW;
  2827. break;
  2828. case -1:
  2829. target = !digitalRead(pin_number);
  2830. break;
  2831. }
  2832. while(digitalRead(pin_number) != target){
  2833. manage_heater();
  2834. manage_inactivity();
  2835. lcd_update();
  2836. }
  2837. }
  2838. }
  2839. }
  2840. }
  2841. break;
  2842. #if NUM_SERVOS > 0
  2843. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2844. {
  2845. int servo_index = -1;
  2846. int servo_position = 0;
  2847. if (code_seen('P'))
  2848. servo_index = code_value();
  2849. if (code_seen('S')) {
  2850. servo_position = code_value();
  2851. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2852. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2853. servos[servo_index].attach(0);
  2854. #endif
  2855. servos[servo_index].write(servo_position);
  2856. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2857. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2858. servos[servo_index].detach();
  2859. #endif
  2860. }
  2861. else {
  2862. SERIAL_ECHO_START;
  2863. SERIAL_ECHO("Servo ");
  2864. SERIAL_ECHO(servo_index);
  2865. SERIAL_ECHOLN(" out of range");
  2866. }
  2867. }
  2868. else if (servo_index >= 0) {
  2869. SERIAL_PROTOCOL(MSG_OK);
  2870. SERIAL_PROTOCOL(" Servo ");
  2871. SERIAL_PROTOCOL(servo_index);
  2872. SERIAL_PROTOCOL(": ");
  2873. SERIAL_PROTOCOL(servos[servo_index].read());
  2874. SERIAL_PROTOCOLLN("");
  2875. }
  2876. }
  2877. break;
  2878. #endif // NUM_SERVOS > 0
  2879. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2880. case 300: // M300
  2881. {
  2882. int beepS = code_seen('S') ? code_value() : 110;
  2883. int beepP = code_seen('P') ? code_value() : 1000;
  2884. if (beepS > 0)
  2885. {
  2886. #if BEEPER > 0
  2887. tone(BEEPER, beepS);
  2888. delay(beepP);
  2889. noTone(BEEPER);
  2890. #elif defined(ULTRALCD)
  2891. lcd_buzz(beepS, beepP);
  2892. #elif defined(LCD_USE_I2C_BUZZER)
  2893. lcd_buzz(beepP, beepS);
  2894. #endif
  2895. }
  2896. else
  2897. {
  2898. delay(beepP);
  2899. }
  2900. }
  2901. break;
  2902. #endif // M300
  2903. #ifdef PIDTEMP
  2904. case 301: // M301
  2905. {
  2906. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  2907. // default behaviour (omitting E parameter) is to update for extruder 0 only
  2908. int e = 0; // extruder being updated
  2909. if (code_seen('E'))
  2910. {
  2911. e = (int)code_value();
  2912. }
  2913. if (e < EXTRUDERS) // catch bad input value
  2914. {
  2915. if (code_seen('P')) PID_PARAM(Kp,e) = code_value();
  2916. if (code_seen('I')) PID_PARAM(Ki,e) = scalePID_i(code_value());
  2917. if (code_seen('D')) PID_PARAM(Kd,e) = scalePID_d(code_value());
  2918. #ifdef PID_ADD_EXTRUSION_RATE
  2919. if (code_seen('C')) PID_PARAM(Kc,e) = code_value();
  2920. #endif
  2921. updatePID();
  2922. SERIAL_PROTOCOL(MSG_OK);
  2923. #ifdef PID_PARAMS_PER_EXTRUDER
  2924. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  2925. SERIAL_PROTOCOL(e);
  2926. #endif // PID_PARAMS_PER_EXTRUDER
  2927. SERIAL_PROTOCOL(" p:");
  2928. SERIAL_PROTOCOL(PID_PARAM(Kp,e));
  2929. SERIAL_PROTOCOL(" i:");
  2930. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki,e)));
  2931. SERIAL_PROTOCOL(" d:");
  2932. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd,e)));
  2933. #ifdef PID_ADD_EXTRUSION_RATE
  2934. SERIAL_PROTOCOL(" c:");
  2935. //Kc does not have scaling applied above, or in resetting defaults
  2936. SERIAL_PROTOCOL(PID_PARAM(Kc,e));
  2937. #endif
  2938. SERIAL_PROTOCOLLN("");
  2939. }
  2940. else
  2941. {
  2942. SERIAL_ECHO_START;
  2943. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2944. }
  2945. }
  2946. break;
  2947. #endif //PIDTEMP
  2948. #ifdef PIDTEMPBED
  2949. case 304: // M304
  2950. {
  2951. if(code_seen('P')) bedKp = code_value();
  2952. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2953. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2954. updatePID();
  2955. SERIAL_PROTOCOL(MSG_OK);
  2956. SERIAL_PROTOCOL(" p:");
  2957. SERIAL_PROTOCOL(bedKp);
  2958. SERIAL_PROTOCOL(" i:");
  2959. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2960. SERIAL_PROTOCOL(" d:");
  2961. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2962. SERIAL_PROTOCOLLN("");
  2963. }
  2964. break;
  2965. #endif //PIDTEMP
  2966. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2967. {
  2968. #ifdef CHDK
  2969. SET_OUTPUT(CHDK);
  2970. WRITE(CHDK, HIGH);
  2971. chdkHigh = millis();
  2972. chdkActive = true;
  2973. #else
  2974. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2975. const uint8_t NUM_PULSES=16;
  2976. const float PULSE_LENGTH=0.01524;
  2977. for(int i=0; i < NUM_PULSES; i++) {
  2978. WRITE(PHOTOGRAPH_PIN, HIGH);
  2979. _delay_ms(PULSE_LENGTH);
  2980. WRITE(PHOTOGRAPH_PIN, LOW);
  2981. _delay_ms(PULSE_LENGTH);
  2982. }
  2983. delay(7.33);
  2984. for(int i=0; i < NUM_PULSES; i++) {
  2985. WRITE(PHOTOGRAPH_PIN, HIGH);
  2986. _delay_ms(PULSE_LENGTH);
  2987. WRITE(PHOTOGRAPH_PIN, LOW);
  2988. _delay_ms(PULSE_LENGTH);
  2989. }
  2990. #endif
  2991. #endif //chdk end if
  2992. }
  2993. break;
  2994. #ifdef DOGLCD
  2995. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2996. {
  2997. if (code_seen('C')) {
  2998. lcd_setcontrast( ((int)code_value())&63 );
  2999. }
  3000. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3001. SERIAL_PROTOCOL(lcd_contrast);
  3002. SERIAL_PROTOCOLLN("");
  3003. }
  3004. break;
  3005. #endif
  3006. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3007. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3008. {
  3009. float temp = .0;
  3010. if (code_seen('S')) temp=code_value();
  3011. set_extrude_min_temp(temp);
  3012. }
  3013. break;
  3014. #endif
  3015. case 303: // M303 PID autotune
  3016. {
  3017. float temp = 150.0;
  3018. int e=0;
  3019. int c=5;
  3020. if (code_seen('E')) e=code_value();
  3021. if (e<0)
  3022. temp=70;
  3023. if (code_seen('S')) temp=code_value();
  3024. if (code_seen('C')) c=code_value();
  3025. PID_autotune(temp, e, c);
  3026. }
  3027. break;
  3028. #ifdef SCARA
  3029. case 360: // M360 SCARA Theta pos1
  3030. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3031. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3032. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3033. if(Stopped == false) {
  3034. //get_coordinates(); // For X Y Z E F
  3035. delta[X_AXIS] = 0;
  3036. delta[Y_AXIS] = 120;
  3037. calculate_SCARA_forward_Transform(delta);
  3038. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3039. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3040. prepare_move();
  3041. //ClearToSend();
  3042. return;
  3043. }
  3044. break;
  3045. case 361: // SCARA Theta pos2
  3046. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3047. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3048. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3049. if(Stopped == false) {
  3050. //get_coordinates(); // For X Y Z E F
  3051. delta[X_AXIS] = 90;
  3052. delta[Y_AXIS] = 130;
  3053. calculate_SCARA_forward_Transform(delta);
  3054. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3055. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3056. prepare_move();
  3057. //ClearToSend();
  3058. return;
  3059. }
  3060. break;
  3061. case 362: // SCARA Psi pos1
  3062. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3063. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3064. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3065. if(Stopped == false) {
  3066. //get_coordinates(); // For X Y Z E F
  3067. delta[X_AXIS] = 60;
  3068. delta[Y_AXIS] = 180;
  3069. calculate_SCARA_forward_Transform(delta);
  3070. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3071. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3072. prepare_move();
  3073. //ClearToSend();
  3074. return;
  3075. }
  3076. break;
  3077. case 363: // SCARA Psi pos2
  3078. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3079. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3080. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3081. if(Stopped == false) {
  3082. //get_coordinates(); // For X Y Z E F
  3083. delta[X_AXIS] = 50;
  3084. delta[Y_AXIS] = 90;
  3085. calculate_SCARA_forward_Transform(delta);
  3086. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3087. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3088. prepare_move();
  3089. //ClearToSend();
  3090. return;
  3091. }
  3092. break;
  3093. case 364: // SCARA Psi pos3 (90 deg to Theta)
  3094. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3095. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3096. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3097. if(Stopped == false) {
  3098. //get_coordinates(); // For X Y Z E F
  3099. delta[X_AXIS] = 45;
  3100. delta[Y_AXIS] = 135;
  3101. calculate_SCARA_forward_Transform(delta);
  3102. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3103. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3104. prepare_move();
  3105. //ClearToSend();
  3106. return;
  3107. }
  3108. break;
  3109. case 365: // M364 Set SCARA scaling for X Y Z
  3110. for(int8_t i=0; i < 3; i++)
  3111. {
  3112. if(code_seen(axis_codes[i]))
  3113. {
  3114. axis_scaling[i] = code_value();
  3115. }
  3116. }
  3117. break;
  3118. #endif
  3119. case 400: // M400 finish all moves
  3120. {
  3121. st_synchronize();
  3122. }
  3123. break;
  3124. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3125. case 401:
  3126. {
  3127. engage_z_probe(); // Engage Z Servo endstop if available
  3128. }
  3129. break;
  3130. case 402:
  3131. {
  3132. retract_z_probe(); // Retract Z Servo endstop if enabled
  3133. }
  3134. break;
  3135. #endif
  3136. #ifdef FILAMENT_SENSOR
  3137. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3138. {
  3139. #if (FILWIDTH_PIN > -1)
  3140. if(code_seen('N')) filament_width_nominal=code_value();
  3141. else{
  3142. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3143. SERIAL_PROTOCOLLN(filament_width_nominal);
  3144. }
  3145. #endif
  3146. }
  3147. break;
  3148. case 405: //M405 Turn on filament sensor for control
  3149. {
  3150. if(code_seen('D')) meas_delay_cm=code_value();
  3151. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3152. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3153. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3154. {
  3155. int temp_ratio = widthFil_to_size_ratio();
  3156. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3157. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3158. }
  3159. delay_index1=0;
  3160. delay_index2=0;
  3161. }
  3162. filament_sensor = true ;
  3163. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3164. //SERIAL_PROTOCOL(filament_width_meas);
  3165. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3166. //SERIAL_PROTOCOL(extrudemultiply);
  3167. }
  3168. break;
  3169. case 406: //M406 Turn off filament sensor for control
  3170. {
  3171. filament_sensor = false ;
  3172. }
  3173. break;
  3174. case 407: //M407 Display measured filament diameter
  3175. {
  3176. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3177. SERIAL_PROTOCOLLN(filament_width_meas);
  3178. }
  3179. break;
  3180. #endif
  3181. case 500: // M500 Store settings in EEPROM
  3182. {
  3183. Config_StoreSettings();
  3184. }
  3185. break;
  3186. case 501: // M501 Read settings from EEPROM
  3187. {
  3188. Config_RetrieveSettings();
  3189. }
  3190. break;
  3191. case 502: // M502 Revert to default settings
  3192. {
  3193. Config_ResetDefault();
  3194. }
  3195. break;
  3196. case 503: // M503 print settings currently in memory
  3197. {
  3198. Config_PrintSettings(code_seen('S') && code_value == 0);
  3199. }
  3200. break;
  3201. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3202. case 540:
  3203. {
  3204. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3205. }
  3206. break;
  3207. #endif
  3208. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3209. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3210. {
  3211. float value;
  3212. if (code_seen('Z'))
  3213. {
  3214. value = code_value();
  3215. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3216. {
  3217. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3218. SERIAL_ECHO_START;
  3219. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3220. SERIAL_PROTOCOLLN("");
  3221. }
  3222. else
  3223. {
  3224. SERIAL_ECHO_START;
  3225. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3226. SERIAL_ECHOPGM(MSG_Z_MIN);
  3227. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3228. SERIAL_ECHOPGM(MSG_Z_MAX);
  3229. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3230. SERIAL_PROTOCOLLN("");
  3231. }
  3232. }
  3233. else
  3234. {
  3235. SERIAL_ECHO_START;
  3236. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3237. SERIAL_ECHO(-zprobe_zoffset);
  3238. SERIAL_PROTOCOLLN("");
  3239. }
  3240. break;
  3241. }
  3242. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3243. #ifdef FILAMENTCHANGEENABLE
  3244. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3245. {
  3246. float target[4];
  3247. float lastpos[4];
  3248. target[X_AXIS]=current_position[X_AXIS];
  3249. target[Y_AXIS]=current_position[Y_AXIS];
  3250. target[Z_AXIS]=current_position[Z_AXIS];
  3251. target[E_AXIS]=current_position[E_AXIS];
  3252. lastpos[X_AXIS]=current_position[X_AXIS];
  3253. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3254. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3255. lastpos[E_AXIS]=current_position[E_AXIS];
  3256. //retract by E
  3257. if(code_seen('E'))
  3258. {
  3259. target[E_AXIS]+= code_value();
  3260. }
  3261. else
  3262. {
  3263. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3264. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3265. #endif
  3266. }
  3267. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3268. //lift Z
  3269. if(code_seen('Z'))
  3270. {
  3271. target[Z_AXIS]+= code_value();
  3272. }
  3273. else
  3274. {
  3275. #ifdef FILAMENTCHANGE_ZADD
  3276. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3277. #endif
  3278. }
  3279. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3280. //move xy
  3281. if(code_seen('X'))
  3282. {
  3283. target[X_AXIS]+= code_value();
  3284. }
  3285. else
  3286. {
  3287. #ifdef FILAMENTCHANGE_XPOS
  3288. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3289. #endif
  3290. }
  3291. if(code_seen('Y'))
  3292. {
  3293. target[Y_AXIS]= code_value();
  3294. }
  3295. else
  3296. {
  3297. #ifdef FILAMENTCHANGE_YPOS
  3298. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3299. #endif
  3300. }
  3301. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3302. if(code_seen('L'))
  3303. {
  3304. target[E_AXIS]+= code_value();
  3305. }
  3306. else
  3307. {
  3308. #ifdef FILAMENTCHANGE_FINALRETRACT
  3309. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3310. #endif
  3311. }
  3312. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3313. //finish moves
  3314. st_synchronize();
  3315. //disable extruder steppers so filament can be removed
  3316. disable_e0();
  3317. disable_e1();
  3318. disable_e2();
  3319. delay(100);
  3320. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3321. uint8_t cnt=0;
  3322. while(!lcd_clicked()){
  3323. cnt++;
  3324. manage_heater();
  3325. manage_inactivity(true);
  3326. lcd_update();
  3327. if(cnt==0)
  3328. {
  3329. #if BEEPER > 0
  3330. SET_OUTPUT(BEEPER);
  3331. WRITE(BEEPER,HIGH);
  3332. delay(3);
  3333. WRITE(BEEPER,LOW);
  3334. delay(3);
  3335. #else
  3336. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3337. lcd_buzz(1000/6,100);
  3338. #else
  3339. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3340. #endif
  3341. #endif
  3342. }
  3343. }
  3344. //return to normal
  3345. if(code_seen('L'))
  3346. {
  3347. target[E_AXIS]+= -code_value();
  3348. }
  3349. else
  3350. {
  3351. #ifdef FILAMENTCHANGE_FINALRETRACT
  3352. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  3353. #endif
  3354. }
  3355. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3356. plan_set_e_position(current_position[E_AXIS]);
  3357. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  3358. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  3359. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  3360. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  3361. }
  3362. break;
  3363. #endif //FILAMENTCHANGEENABLE
  3364. #ifdef DUAL_X_CARRIAGE
  3365. case 605: // Set dual x-carriage movement mode:
  3366. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3367. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3368. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3369. // millimeters x-offset and an optional differential hotend temperature of
  3370. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3371. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3372. //
  3373. // Note: the X axis should be homed after changing dual x-carriage mode.
  3374. {
  3375. st_synchronize();
  3376. if (code_seen('S'))
  3377. dual_x_carriage_mode = code_value();
  3378. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3379. {
  3380. if (code_seen('X'))
  3381. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3382. if (code_seen('R'))
  3383. duplicate_extruder_temp_offset = code_value();
  3384. SERIAL_ECHO_START;
  3385. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3386. SERIAL_ECHO(" ");
  3387. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3388. SERIAL_ECHO(",");
  3389. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3390. SERIAL_ECHO(" ");
  3391. SERIAL_ECHO(duplicate_extruder_x_offset);
  3392. SERIAL_ECHO(",");
  3393. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3394. }
  3395. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3396. {
  3397. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3398. }
  3399. active_extruder_parked = false;
  3400. extruder_duplication_enabled = false;
  3401. delayed_move_time = 0;
  3402. }
  3403. break;
  3404. #endif //DUAL_X_CARRIAGE
  3405. case 907: // M907 Set digital trimpot motor current using axis codes.
  3406. {
  3407. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3408. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3409. if(code_seen('B')) digipot_current(4,code_value());
  3410. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3411. #endif
  3412. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3413. if(code_seen('X')) digipot_current(0, code_value());
  3414. #endif
  3415. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3416. if(code_seen('Z')) digipot_current(1, code_value());
  3417. #endif
  3418. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3419. if(code_seen('E')) digipot_current(2, code_value());
  3420. #endif
  3421. #ifdef DIGIPOT_I2C
  3422. // this one uses actual amps in floating point
  3423. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3424. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3425. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3426. #endif
  3427. }
  3428. break;
  3429. case 908: // M908 Control digital trimpot directly.
  3430. {
  3431. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3432. uint8_t channel,current;
  3433. if(code_seen('P')) channel=code_value();
  3434. if(code_seen('S')) current=code_value();
  3435. digitalPotWrite(channel, current);
  3436. #endif
  3437. }
  3438. break;
  3439. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3440. {
  3441. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3442. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3443. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3444. if(code_seen('B')) microstep_mode(4,code_value());
  3445. microstep_readings();
  3446. #endif
  3447. }
  3448. break;
  3449. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3450. {
  3451. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3452. if(code_seen('S')) switch((int)code_value())
  3453. {
  3454. case 1:
  3455. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3456. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3457. break;
  3458. case 2:
  3459. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3460. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3461. break;
  3462. }
  3463. microstep_readings();
  3464. #endif
  3465. }
  3466. break;
  3467. case 999: // M999: Restart after being stopped
  3468. Stopped = false;
  3469. lcd_reset_alert_level();
  3470. gcode_LastN = Stopped_gcode_LastN;
  3471. FlushSerialRequestResend();
  3472. break;
  3473. }
  3474. }
  3475. else if(code_seen('T'))
  3476. {
  3477. tmp_extruder = code_value();
  3478. if(tmp_extruder >= EXTRUDERS) {
  3479. SERIAL_ECHO_START;
  3480. SERIAL_ECHO("T");
  3481. SERIAL_ECHO(tmp_extruder);
  3482. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3483. }
  3484. else {
  3485. boolean make_move = false;
  3486. if(code_seen('F')) {
  3487. make_move = true;
  3488. next_feedrate = code_value();
  3489. if(next_feedrate > 0.0) {
  3490. feedrate = next_feedrate;
  3491. }
  3492. }
  3493. #if EXTRUDERS > 1
  3494. if(tmp_extruder != active_extruder) {
  3495. // Save current position to return to after applying extruder offset
  3496. memcpy(destination, current_position, sizeof(destination));
  3497. #ifdef DUAL_X_CARRIAGE
  3498. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3499. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3500. {
  3501. // Park old head: 1) raise 2) move to park position 3) lower
  3502. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3503. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3504. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3505. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3506. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3507. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3508. st_synchronize();
  3509. }
  3510. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3511. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3512. extruder_offset[Y_AXIS][active_extruder] +
  3513. extruder_offset[Y_AXIS][tmp_extruder];
  3514. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3515. extruder_offset[Z_AXIS][active_extruder] +
  3516. extruder_offset[Z_AXIS][tmp_extruder];
  3517. active_extruder = tmp_extruder;
  3518. // This function resets the max/min values - the current position may be overwritten below.
  3519. axis_is_at_home(X_AXIS);
  3520. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3521. {
  3522. current_position[X_AXIS] = inactive_extruder_x_pos;
  3523. inactive_extruder_x_pos = destination[X_AXIS];
  3524. }
  3525. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3526. {
  3527. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3528. if (active_extruder == 0 || active_extruder_parked)
  3529. current_position[X_AXIS] = inactive_extruder_x_pos;
  3530. else
  3531. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3532. inactive_extruder_x_pos = destination[X_AXIS];
  3533. extruder_duplication_enabled = false;
  3534. }
  3535. else
  3536. {
  3537. // record raised toolhead position for use by unpark
  3538. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3539. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3540. active_extruder_parked = true;
  3541. delayed_move_time = 0;
  3542. }
  3543. #else
  3544. // Offset extruder (only by XY)
  3545. int i;
  3546. for(i = 0; i < 2; i++) {
  3547. current_position[i] = current_position[i] -
  3548. extruder_offset[i][active_extruder] +
  3549. extruder_offset[i][tmp_extruder];
  3550. }
  3551. // Set the new active extruder and position
  3552. active_extruder = tmp_extruder;
  3553. #endif //else DUAL_X_CARRIAGE
  3554. #ifdef DELTA
  3555. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3556. //sent position to plan_set_position();
  3557. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3558. #else
  3559. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3560. #endif
  3561. // Move to the old position if 'F' was in the parameters
  3562. if(make_move && Stopped == false) {
  3563. prepare_move();
  3564. }
  3565. }
  3566. #endif
  3567. SERIAL_ECHO_START;
  3568. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3569. SERIAL_PROTOCOLLN((int)active_extruder);
  3570. }
  3571. }
  3572. else
  3573. {
  3574. SERIAL_ECHO_START;
  3575. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3576. SERIAL_ECHO(cmdbuffer[bufindr]);
  3577. SERIAL_ECHOLNPGM("\"");
  3578. }
  3579. ClearToSend();
  3580. }
  3581. void FlushSerialRequestResend()
  3582. {
  3583. //char cmdbuffer[bufindr][100]="Resend:";
  3584. MYSERIAL.flush();
  3585. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3586. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3587. ClearToSend();
  3588. }
  3589. void ClearToSend()
  3590. {
  3591. previous_millis_cmd = millis();
  3592. #ifdef SDSUPPORT
  3593. if(fromsd[bufindr])
  3594. return;
  3595. #endif //SDSUPPORT
  3596. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3597. }
  3598. void get_coordinates()
  3599. {
  3600. bool seen[4]={false,false,false,false};
  3601. for(int8_t i=0; i < NUM_AXIS; i++) {
  3602. if(code_seen(axis_codes[i]))
  3603. {
  3604. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3605. seen[i]=true;
  3606. }
  3607. else destination[i] = current_position[i]; //Are these else lines really needed?
  3608. }
  3609. if(code_seen('F')) {
  3610. next_feedrate = code_value();
  3611. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3612. }
  3613. }
  3614. void get_arc_coordinates()
  3615. {
  3616. #ifdef SF_ARC_FIX
  3617. bool relative_mode_backup = relative_mode;
  3618. relative_mode = true;
  3619. #endif
  3620. get_coordinates();
  3621. #ifdef SF_ARC_FIX
  3622. relative_mode=relative_mode_backup;
  3623. #endif
  3624. if(code_seen('I')) {
  3625. offset[0] = code_value();
  3626. }
  3627. else {
  3628. offset[0] = 0.0;
  3629. }
  3630. if(code_seen('J')) {
  3631. offset[1] = code_value();
  3632. }
  3633. else {
  3634. offset[1] = 0.0;
  3635. }
  3636. }
  3637. void clamp_to_software_endstops(float target[3])
  3638. {
  3639. if (min_software_endstops) {
  3640. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3641. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3642. float negative_z_offset = 0;
  3643. #ifdef ENABLE_AUTO_BED_LEVELING
  3644. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  3645. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  3646. #endif
  3647. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  3648. }
  3649. if (max_software_endstops) {
  3650. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3651. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3652. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3653. }
  3654. }
  3655. #ifdef DELTA
  3656. void recalc_delta_settings(float radius, float diagonal_rod)
  3657. {
  3658. delta_tower1_x= -SIN_60*radius; // front left tower
  3659. delta_tower1_y= -COS_60*radius;
  3660. delta_tower2_x= SIN_60*radius; // front right tower
  3661. delta_tower2_y= -COS_60*radius;
  3662. delta_tower3_x= 0.0; // back middle tower
  3663. delta_tower3_y= radius;
  3664. delta_diagonal_rod_2= sq(diagonal_rod);
  3665. }
  3666. void calculate_delta(float cartesian[3])
  3667. {
  3668. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3669. - sq(delta_tower1_x-cartesian[X_AXIS])
  3670. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3671. ) + cartesian[Z_AXIS];
  3672. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3673. - sq(delta_tower2_x-cartesian[X_AXIS])
  3674. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3675. ) + cartesian[Z_AXIS];
  3676. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3677. - sq(delta_tower3_x-cartesian[X_AXIS])
  3678. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3679. ) + cartesian[Z_AXIS];
  3680. /*
  3681. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3682. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3683. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3684. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3685. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3686. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3687. */
  3688. }
  3689. #endif
  3690. void prepare_move()
  3691. {
  3692. clamp_to_software_endstops(destination);
  3693. previous_millis_cmd = millis();
  3694. #ifdef SCARA //for now same as delta-code
  3695. float difference[NUM_AXIS];
  3696. for (int8_t i=0; i < NUM_AXIS; i++) {
  3697. difference[i] = destination[i] - current_position[i];
  3698. }
  3699. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3700. sq(difference[Y_AXIS]) +
  3701. sq(difference[Z_AXIS]));
  3702. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3703. if (cartesian_mm < 0.000001) { return; }
  3704. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3705. int steps = max(1, int(scara_segments_per_second * seconds));
  3706. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3707. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3708. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3709. for (int s = 1; s <= steps; s++) {
  3710. float fraction = float(s) / float(steps);
  3711. for(int8_t i=0; i < NUM_AXIS; i++) {
  3712. destination[i] = current_position[i] + difference[i] * fraction;
  3713. }
  3714. calculate_delta(destination);
  3715. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  3716. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  3717. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  3718. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3719. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3720. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3721. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3722. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3723. active_extruder);
  3724. }
  3725. #endif // SCARA
  3726. #ifdef DELTA
  3727. float difference[NUM_AXIS];
  3728. for (int8_t i=0; i < NUM_AXIS; i++) {
  3729. difference[i] = destination[i] - current_position[i];
  3730. }
  3731. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3732. sq(difference[Y_AXIS]) +
  3733. sq(difference[Z_AXIS]));
  3734. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3735. if (cartesian_mm < 0.000001) { return; }
  3736. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3737. int steps = max(1, int(delta_segments_per_second * seconds));
  3738. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3739. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3740. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3741. for (int s = 1; s <= steps; s++) {
  3742. float fraction = float(s) / float(steps);
  3743. for(int8_t i=0; i < NUM_AXIS; i++) {
  3744. destination[i] = current_position[i] + difference[i] * fraction;
  3745. }
  3746. calculate_delta(destination);
  3747. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3748. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3749. active_extruder);
  3750. }
  3751. #endif // DELTA
  3752. #ifdef DUAL_X_CARRIAGE
  3753. if (active_extruder_parked)
  3754. {
  3755. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3756. {
  3757. // move duplicate extruder into correct duplication position.
  3758. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3759. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3760. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3761. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3762. st_synchronize();
  3763. extruder_duplication_enabled = true;
  3764. active_extruder_parked = false;
  3765. }
  3766. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3767. {
  3768. if (current_position[E_AXIS] == destination[E_AXIS])
  3769. {
  3770. // this is a travel move - skit it but keep track of current position (so that it can later
  3771. // be used as start of first non-travel move)
  3772. if (delayed_move_time != 0xFFFFFFFFUL)
  3773. {
  3774. memcpy(current_position, destination, sizeof(current_position));
  3775. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3776. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3777. delayed_move_time = millis();
  3778. return;
  3779. }
  3780. }
  3781. delayed_move_time = 0;
  3782. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3783. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3784. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3785. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3786. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3787. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3788. active_extruder_parked = false;
  3789. }
  3790. }
  3791. #endif //DUAL_X_CARRIAGE
  3792. #if ! (defined DELTA || defined SCARA)
  3793. // Do not use feedmultiply for E or Z only moves
  3794. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3795. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3796. }
  3797. else {
  3798. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3799. }
  3800. #endif // !(DELTA || SCARA)
  3801. for(int8_t i=0; i < NUM_AXIS; i++) {
  3802. current_position[i] = destination[i];
  3803. }
  3804. }
  3805. void prepare_arc_move(char isclockwise) {
  3806. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3807. // Trace the arc
  3808. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3809. // As far as the parser is concerned, the position is now == target. In reality the
  3810. // motion control system might still be processing the action and the real tool position
  3811. // in any intermediate location.
  3812. for(int8_t i=0; i < NUM_AXIS; i++) {
  3813. current_position[i] = destination[i];
  3814. }
  3815. previous_millis_cmd = millis();
  3816. }
  3817. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3818. #if defined(FAN_PIN)
  3819. #if CONTROLLERFAN_PIN == FAN_PIN
  3820. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3821. #endif
  3822. #endif
  3823. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3824. unsigned long lastMotorCheck = 0;
  3825. void controllerFan()
  3826. {
  3827. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3828. {
  3829. lastMotorCheck = millis();
  3830. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3831. #if EXTRUDERS > 2
  3832. || !READ(E2_ENABLE_PIN)
  3833. #endif
  3834. #if EXTRUDER > 1
  3835. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3836. || !READ(X2_ENABLE_PIN)
  3837. #endif
  3838. || !READ(E1_ENABLE_PIN)
  3839. #endif
  3840. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3841. {
  3842. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3843. }
  3844. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3845. {
  3846. digitalWrite(CONTROLLERFAN_PIN, 0);
  3847. analogWrite(CONTROLLERFAN_PIN, 0);
  3848. }
  3849. else
  3850. {
  3851. // allows digital or PWM fan output to be used (see M42 handling)
  3852. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3853. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3854. }
  3855. }
  3856. }
  3857. #endif
  3858. #ifdef SCARA
  3859. void calculate_SCARA_forward_Transform(float f_scara[3])
  3860. {
  3861. // Perform forward kinematics, and place results in delta[3]
  3862. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3863. float x_sin, x_cos, y_sin, y_cos;
  3864. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3865. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3866. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3867. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3868. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3869. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3870. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  3871. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  3872. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  3873. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  3874. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  3875. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  3876. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  3877. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3878. }
  3879. void calculate_delta(float cartesian[3]){
  3880. //reverse kinematics.
  3881. // Perform reversed kinematics, and place results in delta[3]
  3882. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3883. float SCARA_pos[2];
  3884. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  3885. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  3886. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  3887. #if (Linkage_1 == Linkage_2)
  3888. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  3889. #else
  3890. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  3891. #endif
  3892. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  3893. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  3894. SCARA_K2 = Linkage_2 * SCARA_S2;
  3895. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  3896. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  3897. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  3898. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  3899. delta[Z_AXIS] = cartesian[Z_AXIS];
  3900. /*
  3901. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3902. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3903. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3904. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  3905. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  3906. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3907. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3908. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3909. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  3910. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  3911. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  3912. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  3913. SERIAL_ECHOLN(" ");*/
  3914. }
  3915. #endif
  3916. #ifdef TEMP_STAT_LEDS
  3917. static bool blue_led = false;
  3918. static bool red_led = false;
  3919. static uint32_t stat_update = 0;
  3920. void handle_status_leds(void) {
  3921. float max_temp = 0.0;
  3922. if(millis() > stat_update) {
  3923. stat_update += 500; // Update every 0.5s
  3924. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3925. max_temp = max(max_temp, degHotend(cur_extruder));
  3926. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3927. }
  3928. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3929. max_temp = max(max_temp, degTargetBed());
  3930. max_temp = max(max_temp, degBed());
  3931. #endif
  3932. if((max_temp > 55.0) && (red_led == false)) {
  3933. digitalWrite(STAT_LED_RED, 1);
  3934. digitalWrite(STAT_LED_BLUE, 0);
  3935. red_led = true;
  3936. blue_led = false;
  3937. }
  3938. if((max_temp < 54.0) && (blue_led == false)) {
  3939. digitalWrite(STAT_LED_RED, 0);
  3940. digitalWrite(STAT_LED_BLUE, 1);
  3941. red_led = false;
  3942. blue_led = true;
  3943. }
  3944. }
  3945. }
  3946. #endif
  3947. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  3948. {
  3949. #if defined(KILL_PIN) && KILL_PIN > -1
  3950. static int killCount = 0; // make the inactivity button a bit less responsive
  3951. const int KILL_DELAY = 10000;
  3952. #endif
  3953. #if defined(HOME_PIN) && HOME_PIN > -1
  3954. static int homeDebounceCount = 0; // poor man's debouncing count
  3955. const int HOME_DEBOUNCE_DELAY = 10000;
  3956. #endif
  3957. if(buflen < (BUFSIZE-1))
  3958. get_command();
  3959. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3960. if(max_inactive_time)
  3961. kill();
  3962. if(stepper_inactive_time) {
  3963. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3964. {
  3965. if(blocks_queued() == false && ignore_stepper_queue == false) {
  3966. disable_x();
  3967. disable_y();
  3968. disable_z();
  3969. disable_e0();
  3970. disable_e1();
  3971. disable_e2();
  3972. }
  3973. }
  3974. }
  3975. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3976. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  3977. {
  3978. chdkActive = false;
  3979. WRITE(CHDK, LOW);
  3980. }
  3981. #endif
  3982. #if defined(KILL_PIN) && KILL_PIN > -1
  3983. // Check if the kill button was pressed and wait just in case it was an accidental
  3984. // key kill key press
  3985. // -------------------------------------------------------------------------------
  3986. if( 0 == READ(KILL_PIN) )
  3987. {
  3988. killCount++;
  3989. }
  3990. else if (killCount > 0)
  3991. {
  3992. killCount--;
  3993. }
  3994. // Exceeded threshold and we can confirm that it was not accidental
  3995. // KILL the machine
  3996. // ----------------------------------------------------------------
  3997. if ( killCount >= KILL_DELAY)
  3998. {
  3999. kill();
  4000. }
  4001. #endif
  4002. #if defined(HOME_PIN) && HOME_PIN > -1
  4003. // Check to see if we have to home, use poor man's debouncer
  4004. // ---------------------------------------------------------
  4005. if ( 0 == READ(HOME_PIN) )
  4006. {
  4007. if (homeDebounceCount == 0)
  4008. {
  4009. enquecommand_P((PSTR("G28")));
  4010. homeDebounceCount++;
  4011. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4012. }
  4013. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4014. {
  4015. homeDebounceCount++;
  4016. }
  4017. else
  4018. {
  4019. homeDebounceCount = 0;
  4020. }
  4021. }
  4022. #endif
  4023. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4024. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4025. #endif
  4026. #ifdef EXTRUDER_RUNOUT_PREVENT
  4027. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4028. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4029. {
  4030. bool oldstatus=READ(E0_ENABLE_PIN);
  4031. enable_e0();
  4032. float oldepos=current_position[E_AXIS];
  4033. float oldedes=destination[E_AXIS];
  4034. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4035. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4036. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4037. current_position[E_AXIS]=oldepos;
  4038. destination[E_AXIS]=oldedes;
  4039. plan_set_e_position(oldepos);
  4040. previous_millis_cmd=millis();
  4041. st_synchronize();
  4042. WRITE(E0_ENABLE_PIN,oldstatus);
  4043. }
  4044. #endif
  4045. #if defined(DUAL_X_CARRIAGE)
  4046. // handle delayed move timeout
  4047. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4048. {
  4049. // travel moves have been received so enact them
  4050. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4051. memcpy(destination,current_position,sizeof(destination));
  4052. prepare_move();
  4053. }
  4054. #endif
  4055. #ifdef TEMP_STAT_LEDS
  4056. handle_status_leds();
  4057. #endif
  4058. check_axes_activity();
  4059. }
  4060. void kill()
  4061. {
  4062. cli(); // Stop interrupts
  4063. disable_heater();
  4064. disable_x();
  4065. disable_y();
  4066. disable_z();
  4067. disable_e0();
  4068. disable_e1();
  4069. disable_e2();
  4070. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4071. pinMode(PS_ON_PIN,INPUT);
  4072. #endif
  4073. SERIAL_ERROR_START;
  4074. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4075. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4076. // FMC small patch to update the LCD before ending
  4077. sei(); // enable interrupts
  4078. for ( int i=5; i--; lcd_update())
  4079. {
  4080. delay(200);
  4081. }
  4082. cli(); // disable interrupts
  4083. suicide();
  4084. while(1) { /* Intentionally left empty */ } // Wait for reset
  4085. }
  4086. void Stop()
  4087. {
  4088. disable_heater();
  4089. if(Stopped == false) {
  4090. Stopped = true;
  4091. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4092. SERIAL_ERROR_START;
  4093. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4094. LCD_MESSAGEPGM(MSG_STOPPED);
  4095. }
  4096. }
  4097. bool IsStopped() { return Stopped; };
  4098. #ifdef FAST_PWM_FAN
  4099. void setPwmFrequency(uint8_t pin, int val)
  4100. {
  4101. val &= 0x07;
  4102. switch(digitalPinToTimer(pin))
  4103. {
  4104. #if defined(TCCR0A)
  4105. case TIMER0A:
  4106. case TIMER0B:
  4107. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4108. // TCCR0B |= val;
  4109. break;
  4110. #endif
  4111. #if defined(TCCR1A)
  4112. case TIMER1A:
  4113. case TIMER1B:
  4114. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4115. // TCCR1B |= val;
  4116. break;
  4117. #endif
  4118. #if defined(TCCR2)
  4119. case TIMER2:
  4120. case TIMER2:
  4121. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4122. TCCR2 |= val;
  4123. break;
  4124. #endif
  4125. #if defined(TCCR2A)
  4126. case TIMER2A:
  4127. case TIMER2B:
  4128. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4129. TCCR2B |= val;
  4130. break;
  4131. #endif
  4132. #if defined(TCCR3A)
  4133. case TIMER3A:
  4134. case TIMER3B:
  4135. case TIMER3C:
  4136. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4137. TCCR3B |= val;
  4138. break;
  4139. #endif
  4140. #if defined(TCCR4A)
  4141. case TIMER4A:
  4142. case TIMER4B:
  4143. case TIMER4C:
  4144. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4145. TCCR4B |= val;
  4146. break;
  4147. #endif
  4148. #if defined(TCCR5A)
  4149. case TIMER5A:
  4150. case TIMER5B:
  4151. case TIMER5C:
  4152. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4153. TCCR5B |= val;
  4154. break;
  4155. #endif
  4156. }
  4157. }
  4158. #endif //FAST_PWM_FAN
  4159. bool setTargetedHotend(int code){
  4160. tmp_extruder = active_extruder;
  4161. if(code_seen('T')) {
  4162. tmp_extruder = code_value();
  4163. if(tmp_extruder >= EXTRUDERS) {
  4164. SERIAL_ECHO_START;
  4165. switch(code){
  4166. case 104:
  4167. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4168. break;
  4169. case 105:
  4170. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4171. break;
  4172. case 109:
  4173. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4174. break;
  4175. case 218:
  4176. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4177. break;
  4178. case 221:
  4179. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4180. break;
  4181. }
  4182. SERIAL_ECHOLN(tmp_extruder);
  4183. return true;
  4184. }
  4185. }
  4186. return false;
  4187. }
  4188. float calculate_volumetric_multiplier(float diameter) {
  4189. float area = .0;
  4190. float radius = .0;
  4191. radius = diameter * .5;
  4192. if (! volumetric_enabled || radius == 0) {
  4193. area = 1;
  4194. }
  4195. else {
  4196. area = M_PI * pow(radius, 2);
  4197. }
  4198. return 1.0 / area;
  4199. }
  4200. void calculate_volumetric_multipliers() {
  4201. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4202. #if EXTRUDERS > 1
  4203. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4204. #if EXTRUDERS > 2
  4205. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4206. #if EXTRUDERS > 3
  4207. volumetric_multiplier[3] = calculate_volumetric_multiplier(filament_size[3]);
  4208. #endif //EXTRUDERS > 3
  4209. #endif //EXTRUDERS > 2
  4210. #endif //EXTRUDERS > 1
  4211. }