My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

temperature.cpp 154KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * temperature.cpp - temperature control
  24. */
  25. // Useful when debugging thermocouples
  26. //#define IGNORE_THERMOCOUPLE_ERRORS
  27. #include "../MarlinCore.h"
  28. #include "../HAL/shared/Delay.h"
  29. #include "../lcd/marlinui.h"
  30. #include "temperature.h"
  31. #include "endstops.h"
  32. #include "planner.h"
  33. #include "printcounter.h"
  34. #if EITHER(HAS_COOLER, LASER_COOLANT_FLOW_METER)
  35. #include "../feature/cooler.h"
  36. #include "../feature/spindle_laser.h"
  37. #endif
  38. #if ENABLED(USE_CONTROLLER_FAN)
  39. #include "../feature/controllerfan.h"
  40. #endif
  41. #if ENABLED(EMERGENCY_PARSER)
  42. #include "motion.h"
  43. #endif
  44. #if ENABLED(DWIN_CREALITY_LCD)
  45. #include "../lcd/e3v2/creality/dwin.h"
  46. #elif ENABLED(DWIN_LCD_PROUI)
  47. #include "../lcd/e3v2/proui/dwin.h"
  48. #endif
  49. #if ENABLED(EXTENSIBLE_UI)
  50. #include "../lcd/extui/ui_api.h"
  51. #endif
  52. #if ENABLED(HOST_PROMPT_SUPPORT)
  53. #include "../feature/host_actions.h"
  54. #endif
  55. #if EITHER(HAS_TEMP_SENSOR, LASER_FEATURE)
  56. #include "../gcode/gcode.h"
  57. #endif
  58. #if ENABLED(NOZZLE_PARK_FEATURE)
  59. #include "../libs/nozzle.h"
  60. #endif
  61. #if LASER_SAFETY_TIMEOUT_MS > 0
  62. #include "../feature/spindle_laser.h"
  63. #endif
  64. // MAX TC related macros
  65. #define TEMP_SENSOR_IS_MAX(n, M) (ENABLED(TEMP_SENSOR_##n##_IS_MAX##M) || (ENABLED(TEMP_SENSOR_REDUNDANT_IS_MAX##M) && REDUNDANT_TEMP_MATCH(SOURCE, E##n)))
  66. #define TEMP_SENSOR_IS_ANY_MAX_TC(n) (TEMP_SENSOR_IS_MAX_TC(n) || (TEMP_SENSOR_IS_MAX_TC(REDUNDANT) && REDUNDANT_TEMP_MATCH(SOURCE, E##n)))
  67. // LIB_MAX6675 can be added to the build_flags in platformio.ini to use a user-defined library
  68. // If LIB_MAX6675 is not on the build_flags then raw SPI reads will be used.
  69. #if HAS_MAX6675 && USE_LIB_MAX6675
  70. #include <max6675.h>
  71. #define HAS_MAX6675_LIBRARY 1
  72. #endif
  73. // LIB_MAX31855 can be added to the build_flags in platformio.ini to use a user-defined library.
  74. // If LIB_MAX31855 is not on the build_flags then raw SPI reads will be used.
  75. #if HAS_MAX31855 && USE_ADAFRUIT_MAX31855
  76. #include <Adafruit_MAX31855.h>
  77. #define HAS_MAX31855_LIBRARY 1
  78. typedef Adafruit_MAX31855 MAX31855;
  79. #endif
  80. #if HAS_MAX31865
  81. #if USE_ADAFRUIT_MAX31865
  82. #include <Adafruit_MAX31865.h>
  83. typedef Adafruit_MAX31865 MAX31865;
  84. #else
  85. #include "../libs/MAX31865.h"
  86. #endif
  87. #endif
  88. #if HAS_MAX6675_LIBRARY || HAS_MAX31855_LIBRARY || HAS_MAX31865
  89. #define HAS_MAXTC_LIBRARIES 1
  90. #endif
  91. // If we have a MAX TC with SCK and MISO pins defined, it's either on a separate/dedicated Hardware
  92. // SPI bus, or some pins for Software SPI. Alternate Hardware SPI buses are not supported yet, so
  93. // your SPI options are:
  94. //
  95. // 1. Only CS pin(s) defined: Hardware SPI on the default bus (usually the SD card SPI).
  96. // 2. CS, MISO, and SCK pins defined: Software SPI on a separate bus, as defined by MISO, SCK.
  97. // 3. CS, MISO, and SCK pins w/ FORCE_HW_SPI: Hardware SPI on the default bus, ignoring MISO, SCK.
  98. //
  99. #if TEMP_SENSOR_IS_ANY_MAX_TC(0) && TEMP_SENSOR_0_HAS_SPI_PINS && DISABLED(TEMP_SENSOR_FORCE_HW_SPI)
  100. #define TEMP_SENSOR_0_USES_SW_SPI 1
  101. #endif
  102. #if TEMP_SENSOR_IS_ANY_MAX_TC(1) && TEMP_SENSOR_1_HAS_SPI_PINS && DISABLED(TEMP_SENSOR_FORCE_HW_SPI)
  103. #define TEMP_SENSOR_1_USES_SW_SPI 1
  104. #endif
  105. #if (TEMP_SENSOR_0_USES_SW_SPI || TEMP_SENSOR_1_USES_SW_SPI) && !HAS_MAXTC_LIBRARIES
  106. #include "../libs/private_spi.h"
  107. #define HAS_MAXTC_SW_SPI 1
  108. // Define pins for SPI-based sensors
  109. #if TEMP_SENSOR_0_USES_SW_SPI
  110. #define SW_SPI_SCK_PIN TEMP_0_SCK_PIN
  111. #define SW_SPI_MISO_PIN TEMP_0_MISO_PIN
  112. #if PIN_EXISTS(TEMP_0_MOSI)
  113. #define SW_SPI_MOSI_PIN TEMP_0_MOSI_PIN
  114. #endif
  115. #else
  116. #define SW_SPI_SCK_PIN TEMP_1_SCK_PIN
  117. #define SW_SPI_MISO_PIN TEMP_1_MISO_PIN
  118. #if PIN_EXISTS(TEMP_1_MOSI)
  119. #define SW_SPI_MOSI_PIN TEMP_1_MOSI_PIN
  120. #endif
  121. #endif
  122. #ifndef SW_SPI_MOSI_PIN
  123. #define SW_SPI_MOSI_PIN SD_MOSI_PIN
  124. #endif
  125. #endif
  126. #if ENABLED(MPCTEMP)
  127. #include <math.h>
  128. #include "probe.h"
  129. #endif
  130. #if EITHER(MPCTEMP, PID_EXTRUSION_SCALING)
  131. #include "stepper.h"
  132. #endif
  133. #if ENABLED(BABYSTEPPING) && DISABLED(INTEGRATED_BABYSTEPPING)
  134. #include "../feature/babystep.h"
  135. #endif
  136. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  137. #include "../feature/filwidth.h"
  138. #endif
  139. #if HAS_POWER_MONITOR
  140. #include "../feature/power_monitor.h"
  141. #endif
  142. #if ENABLED(EMERGENCY_PARSER)
  143. #include "../feature/e_parser.h"
  144. #endif
  145. #if ENABLED(PRINTER_EVENT_LEDS)
  146. #include "../feature/leds/printer_event_leds.h"
  147. #endif
  148. #if ENABLED(JOYSTICK)
  149. #include "../feature/joystick.h"
  150. #endif
  151. #if ENABLED(SINGLENOZZLE)
  152. #include "tool_change.h"
  153. #endif
  154. #if HAS_BEEPER
  155. #include "../libs/buzzer.h"
  156. #endif
  157. #if HAS_SERVOS
  158. #include "servo.h"
  159. #endif
  160. #if ANY(TEMP_SENSOR_0_IS_THERMISTOR, TEMP_SENSOR_1_IS_THERMISTOR, TEMP_SENSOR_2_IS_THERMISTOR, TEMP_SENSOR_3_IS_THERMISTOR, \
  161. TEMP_SENSOR_4_IS_THERMISTOR, TEMP_SENSOR_5_IS_THERMISTOR, TEMP_SENSOR_6_IS_THERMISTOR, TEMP_SENSOR_7_IS_THERMISTOR )
  162. #define HAS_HOTEND_THERMISTOR 1
  163. #endif
  164. #if HAS_HOTEND_THERMISTOR
  165. #define NEXT_TEMPTABLE(N) ,TEMPTABLE_##N
  166. #define NEXT_TEMPTABLE_LEN(N) ,TEMPTABLE_##N##_LEN
  167. static const temp_entry_t* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS(TEMPTABLE_0 REPEAT_S(1, HOTENDS, NEXT_TEMPTABLE));
  168. static constexpr uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(TEMPTABLE_0_LEN REPEAT_S(1, HOTENDS, NEXT_TEMPTABLE_LEN));
  169. #endif
  170. Temperature thermalManager;
  171. PGMSTR(str_t_thermal_runaway, STR_T_THERMAL_RUNAWAY);
  172. PGMSTR(str_t_temp_malfunction, STR_T_MALFUNCTION);
  173. PGMSTR(str_t_heating_failed, STR_T_HEATING_FAILED);
  174. /**
  175. * Macros to include the heater id in temp errors. The compiler's dead-code
  176. * elimination should (hopefully) optimize out the unused strings.
  177. */
  178. #if HAS_HEATED_BED
  179. #define _BED_FSTR(h) (h) == H_BED ? GET_TEXT_F(MSG_BED) :
  180. #else
  181. #define _BED_FSTR(h)
  182. #endif
  183. #if HAS_HEATED_CHAMBER
  184. #define _CHAMBER_FSTR(h) (h) == H_CHAMBER ? GET_TEXT_F(MSG_CHAMBER) :
  185. #else
  186. #define _CHAMBER_FSTR(h)
  187. #endif
  188. #if HAS_COOLER
  189. #define _COOLER_FSTR(h) (h) == H_COOLER ? GET_TEXT_F(MSG_COOLER) :
  190. #else
  191. #define _COOLER_FSTR(h)
  192. #endif
  193. #define _E_FSTR(h,N) ((HOTENDS) > N && (h) == N) ? F(STR_E##N) :
  194. #define HEATER_FSTR(h) _BED_FSTR(h) _CHAMBER_FSTR(h) _COOLER_FSTR(h) _E_FSTR(h,1) _E_FSTR(h,2) _E_FSTR(h,3) _E_FSTR(h,4) _E_FSTR(h,5) _E_FSTR(h,6) _E_FSTR(h,7) F(STR_E0)
  195. //
  196. // Initialize MAX TC objects/SPI
  197. //
  198. #if HAS_MAX_TC
  199. #if HAS_MAXTC_SW_SPI
  200. // Initialize SoftSPI for non-lib Software SPI; Libraries take care of it themselves.
  201. template<uint8_t MisoPin, uint8_t MosiPin, uint8_t SckPin>
  202. SoftSPI<MisoPin, MosiPin, SckPin> SPIclass<MisoPin, MosiPin, SckPin>::softSPI;
  203. SPIclass<SW_SPI_MISO_PIN, SW_SPI_MOSI_PIN, SW_SPI_SCK_PIN> max_tc_spi;
  204. #endif
  205. #define MAXTC_INIT(n, M) \
  206. MAX##M max##M##_##n = MAX##M( \
  207. TEMP_##n##_CS_PIN \
  208. OPTARG(_MAX31865_##n##_SW, TEMP_##n##_MOSI_PIN) \
  209. OPTARG(TEMP_SENSOR_##n##_USES_SW_SPI, TEMP_##n##_MISO_PIN, TEMP_##n##_SCK_PIN) \
  210. OPTARG(LARGE_PINMAP, HIGH) \
  211. )
  212. #if HAS_MAX6675_LIBRARY
  213. #if TEMP_SENSOR_IS_MAX(0, 6675)
  214. MAXTC_INIT(0, 6675);
  215. #endif
  216. #if TEMP_SENSOR_IS_MAX(1, 6675)
  217. MAXTC_INIT(1, 6675);
  218. #endif
  219. #endif
  220. #if HAS_MAX31855_LIBRARY
  221. #if TEMP_SENSOR_IS_MAX(0, 31855)
  222. MAXTC_INIT(0, 31855);
  223. #endif
  224. #if TEMP_SENSOR_IS_MAX(1, 31855)
  225. MAXTC_INIT(1, 31855);
  226. #endif
  227. #endif
  228. // MAX31865 always uses a library, unlike '55 & 6675
  229. #if HAS_MAX31865
  230. #define _MAX31865_0_SW TEMP_SENSOR_0_USES_SW_SPI
  231. #define _MAX31865_1_SW TEMP_SENSOR_1_USES_SW_SPI
  232. #if TEMP_SENSOR_IS_MAX(0, 31865)
  233. MAXTC_INIT(0, 31865);
  234. #endif
  235. #if TEMP_SENSOR_IS_MAX(1, 31865)
  236. MAXTC_INIT(1, 31865);
  237. #endif
  238. #undef _MAX31865_0_SW
  239. #undef _MAX31865_1_SW
  240. #endif
  241. #undef MAXTC_INIT
  242. #endif
  243. /**
  244. * public:
  245. */
  246. #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
  247. bool Temperature::adaptive_fan_slowing = true;
  248. #endif
  249. #if HAS_HOTEND
  250. hotend_info_t Temperature::temp_hotend[HOTENDS];
  251. #define _HMT(N) HEATER_##N##_MAXTEMP,
  252. const celsius_t Temperature::hotend_maxtemp[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP, HEATER_2_MAXTEMP, HEATER_3_MAXTEMP, HEATER_4_MAXTEMP, HEATER_5_MAXTEMP, HEATER_6_MAXTEMP, HEATER_7_MAXTEMP);
  253. #endif
  254. #if HAS_TEMP_REDUNDANT
  255. redundant_info_t Temperature::temp_redundant;
  256. #endif
  257. #if EITHER(AUTO_POWER_E_FANS, HAS_FANCHECK)
  258. uint8_t Temperature::autofan_speed[HOTENDS]; // = { 0 }
  259. #endif
  260. #if ENABLED(AUTO_POWER_CHAMBER_FAN)
  261. uint8_t Temperature::chamberfan_speed; // = 0
  262. #endif
  263. #if ENABLED(AUTO_POWER_COOLER_FAN)
  264. uint8_t Temperature::coolerfan_speed; // = 0
  265. #endif
  266. #if BOTH(FAN_SOFT_PWM, USE_CONTROLLER_FAN)
  267. uint8_t Temperature::soft_pwm_controller_speed;
  268. #endif
  269. // Init fans according to whether they're native PWM or Software PWM
  270. #ifdef BOARD_OPENDRAIN_MOSFETS
  271. #define _INIT_SOFT_FAN(P) OUT_WRITE_OD(P, FAN_INVERTING ? LOW : HIGH)
  272. #else
  273. #define _INIT_SOFT_FAN(P) OUT_WRITE(P, FAN_INVERTING ? LOW : HIGH)
  274. #endif
  275. #if ENABLED(FAN_SOFT_PWM)
  276. #define _INIT_FAN_PIN(P) _INIT_SOFT_FAN(P)
  277. #else
  278. #define _INIT_FAN_PIN(P) do{ if (PWM_PIN(P)) SET_PWM(P); else _INIT_SOFT_FAN(P); }while(0)
  279. #endif
  280. #if ENABLED(FAST_PWM_FAN)
  281. #define SET_FAST_PWM_FREQ(P) hal.set_pwm_frequency(pin_t(P), FAST_PWM_FAN_FREQUENCY)
  282. #else
  283. #define SET_FAST_PWM_FREQ(P) NOOP
  284. #endif
  285. #define INIT_FAN_PIN(P) do{ _INIT_FAN_PIN(P); SET_FAST_PWM_FREQ(P); }while(0)
  286. // HAS_FAN does not include CONTROLLER_FAN
  287. #if HAS_FAN
  288. uint8_t Temperature::fan_speed[FAN_COUNT]; // = { 0 }
  289. #if ENABLED(EXTRA_FAN_SPEED)
  290. Temperature::extra_fan_t Temperature::extra_fan_speed[FAN_COUNT];
  291. /**
  292. * Handle the M106 P<fan> T<speed> command:
  293. * T1 = Restore fan speed saved on the last T2
  294. * T2 = Save the fan speed, then set to the last T<3-255> value
  295. * T<3-255> = Set the "extra fan speed"
  296. */
  297. void Temperature::set_temp_fan_speed(const uint8_t fan, const uint16_t command_or_speed) {
  298. switch (command_or_speed) {
  299. case 1:
  300. set_fan_speed(fan, extra_fan_speed[fan].saved);
  301. break;
  302. case 2:
  303. extra_fan_speed[fan].saved = fan_speed[fan];
  304. set_fan_speed(fan, extra_fan_speed[fan].speed);
  305. break;
  306. default:
  307. extra_fan_speed[fan].speed = _MIN(command_or_speed, 255U);
  308. break;
  309. }
  310. }
  311. #endif
  312. #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
  313. bool Temperature::fans_paused; // = false;
  314. uint8_t Temperature::saved_fan_speed[FAN_COUNT]; // = { 0 }
  315. #endif
  316. #if ENABLED(ADAPTIVE_FAN_SLOWING)
  317. uint8_t Temperature::fan_speed_scaler[FAN_COUNT] = ARRAY_N_1(FAN_COUNT, 128);
  318. #endif
  319. /**
  320. * Set the print fan speed for a target extruder
  321. */
  322. void Temperature::set_fan_speed(uint8_t fan, uint16_t speed) {
  323. NOMORE(speed, 255U);
  324. #if ENABLED(SINGLENOZZLE_STANDBY_FAN)
  325. if (fan != active_extruder) {
  326. if (fan < EXTRUDERS) singlenozzle_fan_speed[fan] = speed;
  327. return;
  328. }
  329. #endif
  330. TERN_(SINGLENOZZLE, if (fan < EXTRUDERS) fan = 0); // Always fan 0 for SINGLENOZZLE E fan
  331. if (fan >= FAN_COUNT) return;
  332. fan_speed[fan] = speed;
  333. #if REDUNDANT_PART_COOLING_FAN
  334. if (fan == 0) fan_speed[REDUNDANT_PART_COOLING_FAN] = speed;
  335. #endif
  336. TERN_(REPORT_FAN_CHANGE, report_fan_speed(fan));
  337. }
  338. #if ENABLED(REPORT_FAN_CHANGE)
  339. /**
  340. * Report print fan speed for a target extruder
  341. */
  342. void Temperature::report_fan_speed(const uint8_t fan) {
  343. if (fan >= FAN_COUNT) return;
  344. PORT_REDIRECT(SerialMask::All);
  345. SERIAL_ECHOLNPGM("M106 P", fan, " S", fan_speed[fan]);
  346. }
  347. #endif
  348. #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
  349. void Temperature::set_fans_paused(const bool p) {
  350. if (p != fans_paused) {
  351. fans_paused = p;
  352. if (p)
  353. FANS_LOOP(i) { saved_fan_speed[i] = fan_speed[i]; fan_speed[i] = 0; }
  354. else
  355. FANS_LOOP(i) fan_speed[i] = saved_fan_speed[i];
  356. }
  357. }
  358. #endif
  359. #endif // HAS_FAN
  360. #if WATCH_HOTENDS
  361. hotend_watch_t Temperature::watch_hotend[HOTENDS]; // = { { 0 } }
  362. #endif
  363. #if HEATER_IDLE_HANDLER
  364. Temperature::heater_idle_t Temperature::heater_idle[NR_HEATER_IDLE]; // = { { 0 } }
  365. #endif
  366. #if HAS_HEATED_BED
  367. bed_info_t Temperature::temp_bed; // = { 0 }
  368. // Init min and max temp with extreme values to prevent false errors during startup
  369. raw_adc_t Temperature::mintemp_raw_BED = TEMP_SENSOR_BED_RAW_LO_TEMP,
  370. Temperature::maxtemp_raw_BED = TEMP_SENSOR_BED_RAW_HI_TEMP;
  371. TERN_(WATCH_BED, bed_watch_t Temperature::watch_bed); // = { 0 }
  372. IF_DISABLED(PIDTEMPBED, millis_t Temperature::next_bed_check_ms);
  373. #endif
  374. #if HAS_TEMP_CHAMBER
  375. chamber_info_t Temperature::temp_chamber; // = { 0 }
  376. #if HAS_HEATED_CHAMBER
  377. millis_t next_cool_check_ms_2 = 0;
  378. celsius_float_t old_temp = 9999;
  379. raw_adc_t Temperature::mintemp_raw_CHAMBER = TEMP_SENSOR_CHAMBER_RAW_LO_TEMP,
  380. Temperature::maxtemp_raw_CHAMBER = TEMP_SENSOR_CHAMBER_RAW_HI_TEMP;
  381. TERN_(WATCH_CHAMBER, chamber_watch_t Temperature::watch_chamber{0});
  382. IF_DISABLED(PIDTEMPCHAMBER, millis_t Temperature::next_chamber_check_ms);
  383. #endif
  384. #endif
  385. #if HAS_TEMP_COOLER
  386. cooler_info_t Temperature::temp_cooler; // = { 0 }
  387. #if HAS_COOLER
  388. bool flag_cooler_state;
  389. //bool flag_cooler_excess = false;
  390. celsius_float_t previous_temp = 9999;
  391. raw_adc_t Temperature::mintemp_raw_COOLER = TEMP_SENSOR_COOLER_RAW_LO_TEMP,
  392. Temperature::maxtemp_raw_COOLER = TEMP_SENSOR_COOLER_RAW_HI_TEMP;
  393. #if WATCH_COOLER
  394. cooler_watch_t Temperature::watch_cooler{0};
  395. #endif
  396. millis_t Temperature::next_cooler_check_ms, Temperature::cooler_fan_flush_ms;
  397. #endif
  398. #endif
  399. #if HAS_TEMP_PROBE
  400. probe_info_t Temperature::temp_probe; // = { 0 }
  401. #endif
  402. #if HAS_TEMP_BOARD
  403. board_info_t Temperature::temp_board; // = { 0 }
  404. #if ENABLED(THERMAL_PROTECTION_BOARD)
  405. raw_adc_t Temperature::mintemp_raw_BOARD = TEMP_SENSOR_BOARD_RAW_LO_TEMP,
  406. Temperature::maxtemp_raw_BOARD = TEMP_SENSOR_BOARD_RAW_HI_TEMP;
  407. #endif
  408. #endif
  409. #if BOTH(HAS_MARLINUI_MENU, PREVENT_COLD_EXTRUSION) && E_MANUAL > 0
  410. bool Temperature::allow_cold_extrude_override = false;
  411. #else
  412. constexpr bool Temperature::allow_cold_extrude_override;
  413. #endif
  414. #if ENABLED(PREVENT_COLD_EXTRUSION)
  415. bool Temperature::allow_cold_extrude = false;
  416. celsius_t Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
  417. #endif
  418. #if HAS_ADC_BUTTONS
  419. uint32_t Temperature::current_ADCKey_raw = HAL_ADC_RANGE;
  420. uint16_t Temperature::ADCKey_count = 0;
  421. #endif
  422. #if ENABLED(PID_EXTRUSION_SCALING)
  423. int16_t Temperature::lpq_len; // Initialized in settings.cpp
  424. #endif
  425. /**
  426. * private:
  427. */
  428. volatile bool Temperature::raw_temps_ready = false;
  429. #if ENABLED(PID_EXTRUSION_SCALING)
  430. int32_t Temperature::pes_e_position, Temperature::lpq[LPQ_MAX_LEN];
  431. lpq_ptr_t Temperature::lpq_ptr = 0;
  432. #endif
  433. #if ENABLED(MPCTEMP)
  434. int32_t Temperature::mpc_e_position; // = 0
  435. #endif
  436. #define TEMPDIR(N) ((TEMP_SENSOR_##N##_RAW_LO_TEMP) < (TEMP_SENSOR_##N##_RAW_HI_TEMP) ? 1 : -1)
  437. #define TP_CMP(S,A,B) (TEMPDIR(S) < 0 ? ((A)<(B)) : ((A)>(B)))
  438. #if HAS_HOTEND
  439. // Init mintemp and maxtemp with extreme values to prevent false errors during startup
  440. constexpr temp_range_t sensor_heater_0 { TEMP_SENSOR_0_RAW_LO_TEMP, TEMP_SENSOR_0_RAW_HI_TEMP, 0, 16383 },
  441. sensor_heater_1 { TEMP_SENSOR_1_RAW_LO_TEMP, TEMP_SENSOR_1_RAW_HI_TEMP, 0, 16383 },
  442. sensor_heater_2 { TEMP_SENSOR_2_RAW_LO_TEMP, TEMP_SENSOR_2_RAW_HI_TEMP, 0, 16383 },
  443. sensor_heater_3 { TEMP_SENSOR_3_RAW_LO_TEMP, TEMP_SENSOR_3_RAW_HI_TEMP, 0, 16383 },
  444. sensor_heater_4 { TEMP_SENSOR_4_RAW_LO_TEMP, TEMP_SENSOR_4_RAW_HI_TEMP, 0, 16383 },
  445. sensor_heater_5 { TEMP_SENSOR_5_RAW_LO_TEMP, TEMP_SENSOR_5_RAW_HI_TEMP, 0, 16383 },
  446. sensor_heater_6 { TEMP_SENSOR_6_RAW_LO_TEMP, TEMP_SENSOR_6_RAW_HI_TEMP, 0, 16383 },
  447. sensor_heater_7 { TEMP_SENSOR_7_RAW_LO_TEMP, TEMP_SENSOR_7_RAW_HI_TEMP, 0, 16383 };
  448. temp_range_t Temperature::temp_range[HOTENDS] = ARRAY_BY_HOTENDS(sensor_heater_0, sensor_heater_1, sensor_heater_2, sensor_heater_3, sensor_heater_4, sensor_heater_5, sensor_heater_6, sensor_heater_7);
  449. #endif
  450. #if MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED > 1
  451. uint8_t Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
  452. #endif
  453. #if MILLISECONDS_PREHEAT_TIME > 0
  454. millis_t Temperature::preheat_end_time[HOTENDS] = { 0 };
  455. #endif
  456. #if HAS_FAN_LOGIC
  457. constexpr millis_t Temperature::fan_update_interval_ms;
  458. millis_t Temperature::fan_update_ms = 0;
  459. #endif
  460. #if ENABLED(FAN_SOFT_PWM)
  461. uint8_t Temperature::soft_pwm_amount_fan[FAN_COUNT],
  462. Temperature::soft_pwm_count_fan[FAN_COUNT];
  463. #endif
  464. #if ENABLED(SINGLENOZZLE_STANDBY_TEMP)
  465. celsius_t Temperature::singlenozzle_temp[EXTRUDERS];
  466. #endif
  467. #if ENABLED(SINGLENOZZLE_STANDBY_FAN)
  468. uint8_t Temperature::singlenozzle_fan_speed[EXTRUDERS];
  469. #endif
  470. #if ENABLED(PROBING_HEATERS_OFF)
  471. bool Temperature::paused_for_probing;
  472. #endif
  473. /**
  474. * public:
  475. * Class and Instance Methods
  476. */
  477. #if HAS_PID_HEATING
  478. inline void say_default_() { SERIAL_ECHOPGM("#define DEFAULT_"); }
  479. /**
  480. * PID Autotuning (M303)
  481. *
  482. * Alternately heat and cool the nozzle, observing its behavior to
  483. * determine the best PID values to achieve a stable temperature.
  484. * Needs sufficient heater power to make some overshoot at target
  485. * temperature to succeed.
  486. */
  487. void Temperature::PID_autotune(const celsius_t target, const heater_id_t heater_id, const int8_t ncycles, const bool set_result/*=false*/) {
  488. celsius_float_t current_temp = 0.0;
  489. int cycles = 0;
  490. bool heating = true;
  491. millis_t next_temp_ms = millis(), t1 = next_temp_ms, t2 = next_temp_ms;
  492. long t_high = 0, t_low = 0;
  493. raw_pid_t tune_pid = { 0, 0, 0 };
  494. celsius_float_t maxT = 0, minT = 10000;
  495. const bool isbed = (heater_id == H_BED),
  496. ischamber = (heater_id == H_CHAMBER);
  497. #if ENABLED(PIDTEMPCHAMBER)
  498. #define C_TERN(T,A,B) ((T) ? (A) : (B))
  499. #else
  500. #define C_TERN(T,A,B) (B)
  501. #endif
  502. #if ENABLED(PIDTEMPBED)
  503. #define B_TERN(T,A,B) ((T) ? (A) : (B))
  504. #else
  505. #define B_TERN(T,A,B) (B)
  506. #endif
  507. #define GHV(C,B,H) C_TERN(ischamber, C, B_TERN(isbed, B, H))
  508. #define SHV(V) C_TERN(ischamber, temp_chamber.soft_pwm_amount = V, B_TERN(isbed, temp_bed.soft_pwm_amount = V, temp_hotend[heater_id].soft_pwm_amount = V))
  509. #define ONHEATINGSTART() C_TERN(ischamber, printerEventLEDs.onChamberHeatingStart(), B_TERN(isbed, printerEventLEDs.onBedHeatingStart(), printerEventLEDs.onHotendHeatingStart()))
  510. #define ONHEATING(S,C,T) C_TERN(ischamber, printerEventLEDs.onChamberHeating(S,C,T), B_TERN(isbed, printerEventLEDs.onBedHeating(S,C,T), printerEventLEDs.onHotendHeating(S,C,T)))
  511. #define WATCH_PID DISABLED(NO_WATCH_PID_TUNING) && (BOTH(WATCH_CHAMBER, PIDTEMPCHAMBER) || BOTH(WATCH_BED, PIDTEMPBED) || BOTH(WATCH_HOTENDS, PIDTEMP))
  512. #if WATCH_PID
  513. #if BOTH(THERMAL_PROTECTION_CHAMBER, PIDTEMPCHAMBER)
  514. #define C_GTV(T,A,B) ((T) ? (A) : (B))
  515. #else
  516. #define C_GTV(T,A,B) (B)
  517. #endif
  518. #if BOTH(THERMAL_PROTECTION_BED, PIDTEMPBED)
  519. #define B_GTV(T,A,B) ((T) ? (A) : (B))
  520. #else
  521. #define B_GTV(T,A,B) (B)
  522. #endif
  523. #define GTV(C,B,H) C_GTV(ischamber, C, B_GTV(isbed, B, H))
  524. const uint16_t watch_temp_period = GTV(WATCH_CHAMBER_TEMP_PERIOD, WATCH_BED_TEMP_PERIOD, WATCH_TEMP_PERIOD);
  525. const uint8_t watch_temp_increase = GTV(WATCH_CHAMBER_TEMP_INCREASE, WATCH_BED_TEMP_INCREASE, WATCH_TEMP_INCREASE);
  526. const celsius_float_t watch_temp_target = celsius_float_t(target - (watch_temp_increase + GTV(TEMP_CHAMBER_HYSTERESIS, TEMP_BED_HYSTERESIS, TEMP_HYSTERESIS) + 1));
  527. millis_t temp_change_ms = next_temp_ms + SEC_TO_MS(watch_temp_period);
  528. celsius_float_t next_watch_temp = 0.0;
  529. bool heated = false;
  530. #endif
  531. TERN_(HAS_FAN_LOGIC, fan_update_ms = next_temp_ms + fan_update_interval_ms);
  532. TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_STARTED));
  533. TERN_(DWIN_LCD_PROUI, DWIN_PidTuning(isbed ? PID_BED_START : PID_EXTR_START));
  534. if (target > GHV(CHAMBER_MAX_TARGET, BED_MAX_TARGET, temp_range[heater_id].maxtemp - (HOTEND_OVERSHOOT))) {
  535. SERIAL_ECHOPGM(STR_PID_AUTOTUNE);
  536. SERIAL_ECHOLNPGM(STR_PID_TEMP_TOO_HIGH);
  537. TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TEMP_TOO_HIGH));
  538. TERN_(DWIN_LCD_PROUI, DWIN_PidTuning(PID_TEMP_TOO_HIGH));
  539. TERN_(HOST_PROMPT_SUPPORT, hostui.notify(GET_TEXT_F(MSG_PID_TEMP_TOO_HIGH)));
  540. return;
  541. }
  542. SERIAL_ECHOPGM(STR_PID_AUTOTUNE);
  543. SERIAL_ECHOLNPGM(STR_PID_AUTOTUNE_START);
  544. disable_all_heaters();
  545. TERN_(AUTO_POWER_CONTROL, powerManager.power_on());
  546. long bias = GHV(MAX_CHAMBER_POWER, MAX_BED_POWER, PID_MAX) >> 1, d = bias;
  547. SHV(bias);
  548. #if ENABLED(PRINTER_EVENT_LEDS)
  549. const celsius_float_t start_temp = GHV(degChamber(), degBed(), degHotend(heater_id));
  550. LEDColor color = ONHEATINGSTART();
  551. #endif
  552. TERN_(NO_FAN_SLOWING_IN_PID_TUNING, adaptive_fan_slowing = false);
  553. LCD_MESSAGE(MSG_HEATING);
  554. // PID Tuning loop
  555. wait_for_heatup = true;
  556. while (wait_for_heatup) { // Can be interrupted with M108
  557. const millis_t ms = millis();
  558. if (updateTemperaturesIfReady()) { // temp sample ready
  559. // Get the current temperature and constrain it
  560. current_temp = GHV(degChamber(), degBed(), degHotend(heater_id));
  561. NOLESS(maxT, current_temp);
  562. NOMORE(minT, current_temp);
  563. #if ENABLED(PRINTER_EVENT_LEDS)
  564. ONHEATING(start_temp, current_temp, target);
  565. #endif
  566. TERN_(HAS_FAN_LOGIC, manage_extruder_fans(ms));
  567. if (heating && current_temp > target && ELAPSED(ms, t2 + 5000UL)) {
  568. heating = false;
  569. SHV((bias - d) >> 1);
  570. t1 = ms;
  571. t_high = t1 - t2;
  572. maxT = target;
  573. }
  574. if (!heating && current_temp < target && ELAPSED(ms, t1 + 5000UL)) {
  575. heating = true;
  576. t2 = ms;
  577. t_low = t2 - t1;
  578. if (cycles > 0) {
  579. const long max_pow = GHV(MAX_CHAMBER_POWER, MAX_BED_POWER, PID_MAX);
  580. bias += (d * (t_high - t_low)) / (t_low + t_high);
  581. LIMIT(bias, 20, max_pow - 20);
  582. d = (bias > max_pow >> 1) ? max_pow - 1 - bias : bias;
  583. SERIAL_ECHOPGM(STR_BIAS, bias, STR_D_COLON, d, STR_T_MIN, minT, STR_T_MAX, maxT);
  584. if (cycles > 2) {
  585. const float Ku = (4.0f * d) / (float(M_PI) * (maxT - minT) * 0.5f),
  586. Tu = float(t_low + t_high) * 0.001f,
  587. pf = (ischamber || isbed) ? 0.2f : 0.6f,
  588. df = (ischamber || isbed) ? 1.0f / 3.0f : 1.0f / 8.0f;
  589. tune_pid.p = Ku * pf;
  590. tune_pid.i = tune_pid.p * 2.0f / Tu;
  591. tune_pid.d = tune_pid.p * Tu * df;
  592. SERIAL_ECHOLNPGM(STR_KU, Ku, STR_TU, Tu);
  593. if (ischamber || isbed)
  594. SERIAL_ECHOLNPGM(" No overshoot");
  595. else
  596. SERIAL_ECHOLNPGM(STR_CLASSIC_PID);
  597. SERIAL_ECHOLNPGM(STR_KP, tune_pid.p, STR_KI, tune_pid.i, STR_KD, tune_pid.d);
  598. }
  599. }
  600. SHV((bias + d) >> 1);
  601. TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " %i/%i"), GET_TEXT(MSG_PID_CYCLE), cycles, ncycles));
  602. cycles++;
  603. minT = target;
  604. }
  605. }
  606. // Did the temperature overshoot very far?
  607. #ifndef MAX_OVERSHOOT_PID_AUTOTUNE
  608. #define MAX_OVERSHOOT_PID_AUTOTUNE 30
  609. #endif
  610. if (current_temp > target + MAX_OVERSHOOT_PID_AUTOTUNE) {
  611. SERIAL_ECHOPGM(STR_PID_AUTOTUNE);
  612. SERIAL_ECHOLNPGM(STR_PID_TEMP_TOO_HIGH);
  613. TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TEMP_TOO_HIGH));
  614. TERN_(DWIN_LCD_PROUI, DWIN_PidTuning(PID_TEMP_TOO_HIGH));
  615. TERN_(HOST_PROMPT_SUPPORT, hostui.notify(GET_TEXT_F(MSG_PID_TEMP_TOO_HIGH)));
  616. break;
  617. }
  618. // Report heater states every 2 seconds
  619. if (ELAPSED(ms, next_temp_ms)) {
  620. #if HAS_TEMP_SENSOR
  621. print_heater_states(heater_id < 0 ? active_extruder : (int8_t)heater_id);
  622. SERIAL_EOL();
  623. #endif
  624. next_temp_ms = ms + 2000UL;
  625. // Make sure heating is actually working
  626. #if WATCH_PID
  627. if (BOTH(WATCH_BED, WATCH_HOTENDS) || isbed == DISABLED(WATCH_HOTENDS) || ischamber == DISABLED(WATCH_HOTENDS)) {
  628. if (!heated) { // If not yet reached target...
  629. if (current_temp > next_watch_temp) { // Over the watch temp?
  630. next_watch_temp = current_temp + watch_temp_increase; // - set the next temp to watch for
  631. temp_change_ms = ms + SEC_TO_MS(watch_temp_period); // - move the expiration timer up
  632. if (current_temp > watch_temp_target) heated = true; // - Flag if target temperature reached
  633. }
  634. else if (ELAPSED(ms, temp_change_ms)) // Watch timer expired
  635. _temp_error(heater_id, FPSTR(str_t_heating_failed), GET_TEXT_F(MSG_HEATING_FAILED_LCD));
  636. }
  637. else if (current_temp < target - (MAX_OVERSHOOT_PID_AUTOTUNE)) // Heated, then temperature fell too far?
  638. _temp_error(heater_id, FPSTR(str_t_thermal_runaway), GET_TEXT_F(MSG_THERMAL_RUNAWAY));
  639. }
  640. #endif
  641. } // every 2 seconds
  642. // Timeout after MAX_CYCLE_TIME_PID_AUTOTUNE minutes since the last undershoot/overshoot cycle
  643. #ifndef MAX_CYCLE_TIME_PID_AUTOTUNE
  644. #define MAX_CYCLE_TIME_PID_AUTOTUNE 20L
  645. #endif
  646. if ((ms - _MIN(t1, t2)) > (MAX_CYCLE_TIME_PID_AUTOTUNE * 60L * 1000L)) {
  647. TERN_(DWIN_CREALITY_LCD, DWIN_Popup_Temperature(0));
  648. TERN_(DWIN_LCD_PROUI, DWIN_PidTuning(PID_TUNING_TIMEOUT));
  649. TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TUNING_TIMEOUT));
  650. TERN_(HOST_PROMPT_SUPPORT, hostui.notify(GET_TEXT_F(MSG_PID_TIMEOUT)));
  651. SERIAL_ECHOPGM(STR_PID_AUTOTUNE);
  652. SERIAL_ECHOLNPGM(STR_PID_TIMEOUT);
  653. break;
  654. }
  655. if (cycles > ncycles && cycles > 2) {
  656. SERIAL_ECHOPGM(STR_PID_AUTOTUNE);
  657. SERIAL_ECHOLNPGM(STR_PID_AUTOTUNE_FINISHED);
  658. TERN_(HOST_PROMPT_SUPPORT, hostui.notify(GET_TEXT_F(MSG_PID_AUTOTUNE_DONE)));
  659. #if EITHER(PIDTEMPBED, PIDTEMPCHAMBER)
  660. FSTR_P const estring = GHV(F("chamber"), F("bed"), FPSTR(NUL_STR));
  661. say_default_(); SERIAL_ECHOF(estring); SERIAL_ECHOLNPGM("Kp ", tune_pid.p);
  662. say_default_(); SERIAL_ECHOF(estring); SERIAL_ECHOLNPGM("Ki ", tune_pid.i);
  663. say_default_(); SERIAL_ECHOF(estring); SERIAL_ECHOLNPGM("Kd ", tune_pid.d);
  664. #else
  665. say_default_(); SERIAL_ECHOLNPGM("Kp ", tune_pid.p);
  666. say_default_(); SERIAL_ECHOLNPGM("Ki ", tune_pid.i);
  667. say_default_(); SERIAL_ECHOLNPGM("Kd ", tune_pid.d);
  668. #endif
  669. auto _set_hotend_pid = [](const uint8_t tool, const raw_pid_t &in_pid) {
  670. #if ENABLED(PIDTEMP)
  671. #if ENABLED(PID_PARAMS_PER_HOTEND)
  672. thermalManager.temp_hotend[tool].pid.set(in_pid);
  673. #else
  674. HOTEND_LOOP() thermalManager.temp_hotend[e].pid.set(in_pid);
  675. #endif
  676. updatePID();
  677. #endif
  678. UNUSED(tool); UNUSED(in_pid);
  679. };
  680. #if ENABLED(PIDTEMPBED)
  681. auto _set_bed_pid = [](const raw_pid_t &in_pid) {
  682. temp_bed.pid.set(in_pid);
  683. };
  684. #endif
  685. #if ENABLED(PIDTEMPCHAMBER)
  686. auto _set_chamber_pid = [](const raw_pid_t &in_pid) {
  687. temp_chamber.pid.set(in_pid);
  688. };
  689. #endif
  690. // Use the result? (As with "M303 U1")
  691. if (set_result)
  692. GHV(_set_chamber_pid(tune_pid), _set_bed_pid(tune_pid), _set_hotend_pid(heater_id, tune_pid));
  693. TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onPidTuningDone(color));
  694. TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_DONE));
  695. TERN_(DWIN_LCD_PROUI, DWIN_PidTuning(PID_DONE));
  696. goto EXIT_M303;
  697. }
  698. // Run HAL idle tasks
  699. hal.idletask();
  700. // Run UI update
  701. TERN(DWIN_CREALITY_LCD, DWIN_Update(), ui.update());
  702. }
  703. wait_for_heatup = false;
  704. disable_all_heaters();
  705. TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onPidTuningDone(color));
  706. TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_DONE));
  707. TERN_(DWIN_LCD_PROUI, DWIN_PidTuning(PID_DONE));
  708. EXIT_M303:
  709. TERN_(NO_FAN_SLOWING_IN_PID_TUNING, adaptive_fan_slowing = true);
  710. return;
  711. }
  712. #endif // HAS_PID_HEATING
  713. #if ENABLED(MPCTEMP)
  714. void Temperature::MPC_autotune() {
  715. auto housekeeping = [] (millis_t& ms, celsius_float_t& current_temp, millis_t& next_report_ms) {
  716. ms = millis();
  717. if (updateTemperaturesIfReady()) { // temp sample ready
  718. current_temp = degHotend(active_extruder);
  719. TERN_(HAS_FAN_LOGIC, manage_extruder_fans(ms));
  720. }
  721. if (ELAPSED(ms, next_report_ms)) {
  722. next_report_ms += 1000UL;
  723. print_heater_states(active_extruder);
  724. SERIAL_EOL();
  725. }
  726. hal.idletask();
  727. TERN(DWIN_CREALITY_LCD, DWIN_Update(), ui.update());
  728. if (!wait_for_heatup) {
  729. SERIAL_ECHOPGM(STR_MPC_AUTOTUNE);
  730. SERIAL_ECHOLNPGM(STR_MPC_AUTOTUNE_INTERRUPTED);
  731. return false;
  732. }
  733. return true;
  734. };
  735. struct OnExit {
  736. ~OnExit() {
  737. wait_for_heatup = false;
  738. ui.reset_status();
  739. temp_hotend[active_extruder].target = 0.0f;
  740. temp_hotend[active_extruder].soft_pwm_amount = 0;
  741. #if HAS_FAN
  742. set_fan_speed(EITHER(MPC_FAN_0_ALL_HOTENDS, MPC_FAN_0_ACTIVE_HOTEND) ? 0 : active_extruder, 0);
  743. planner.sync_fan_speeds(fan_speed);
  744. #endif
  745. do_z_clearance(MPC_TUNING_END_Z);
  746. }
  747. } on_exit;
  748. SERIAL_ECHOPGM(STR_MPC_AUTOTUNE);
  749. SERIAL_ECHOLNPGM(STR_MPC_AUTOTUNE_START, active_extruder);
  750. MPCHeaterInfo &hotend = temp_hotend[active_extruder];
  751. MPC_t &constants = hotend.constants;
  752. // Move to center of bed, just above bed height and cool with max fan
  753. gcode.home_all_axes(true);
  754. disable_all_heaters();
  755. #if HAS_FAN
  756. zero_fan_speeds();
  757. set_fan_speed(EITHER(MPC_FAN_0_ALL_HOTENDS, MPC_FAN_0_ACTIVE_HOTEND) ? 0 : active_extruder, 255);
  758. planner.sync_fan_speeds(fan_speed);
  759. #endif
  760. const xyz_pos_t tuningpos = MPC_TUNING_POS;
  761. do_blocking_move_to(tuningpos);
  762. SERIAL_ECHOLNPGM(STR_MPC_COOLING_TO_AMBIENT);
  763. LCD_MESSAGE(MSG_COOLING);
  764. millis_t ms = millis(), next_report_ms = ms, next_test_ms = ms + 10000UL;
  765. celsius_float_t current_temp = degHotend(active_extruder),
  766. ambient_temp = current_temp;
  767. wait_for_heatup = true;
  768. for (;;) { // Can be interrupted with M108
  769. if (!housekeeping(ms, current_temp, next_report_ms)) return;
  770. if (ELAPSED(ms, next_test_ms)) {
  771. if (current_temp >= ambient_temp) {
  772. ambient_temp = (ambient_temp + current_temp) / 2.0f;
  773. break;
  774. }
  775. ambient_temp = current_temp;
  776. next_test_ms += 10000UL;
  777. }
  778. }
  779. #if HAS_FAN
  780. set_fan_speed(EITHER(MPC_FAN_0_ALL_HOTENDS, MPC_FAN_0_ACTIVE_HOTEND) ? 0 : active_extruder, 0);
  781. planner.sync_fan_speeds(fan_speed);
  782. #endif
  783. hotend.modeled_ambient_temp = ambient_temp;
  784. SERIAL_ECHOLNPGM(STR_MPC_HEATING_PAST_200);
  785. LCD_MESSAGE(MSG_HEATING);
  786. hotend.target = 200.0f; // So M105 looks nice
  787. hotend.soft_pwm_amount = MPC_MAX >> 1;
  788. const millis_t heat_start_time = next_test_ms = ms;
  789. celsius_float_t temp_samples[16];
  790. uint8_t sample_count = 0;
  791. uint16_t sample_distance = 1;
  792. float t1_time = 0;
  793. for (;;) { // Can be interrupted with M108
  794. if (!housekeeping(ms, current_temp, next_report_ms)) return;
  795. if (ELAPSED(ms, next_test_ms)) {
  796. // Record samples between 100C and 200C
  797. if (current_temp >= 100.0f) {
  798. // If there are too many samples, space them more widely
  799. if (sample_count == COUNT(temp_samples)) {
  800. for (uint8_t i = 0; i < COUNT(temp_samples) / 2; i++)
  801. temp_samples[i] = temp_samples[i*2];
  802. sample_count /= 2;
  803. sample_distance *= 2;
  804. }
  805. if (sample_count == 0) t1_time = float(ms - heat_start_time) / 1000.0f;
  806. temp_samples[sample_count++] = current_temp;
  807. }
  808. if (current_temp >= 200.0f) break;
  809. next_test_ms += 1000UL * sample_distance;
  810. }
  811. }
  812. hotend.soft_pwm_amount = 0;
  813. // Calculate physical constants from three equally-spaced samples
  814. sample_count = (sample_count + 1) / 2 * 2 - 1;
  815. const float t1 = temp_samples[0],
  816. t2 = temp_samples[(sample_count - 1) >> 1],
  817. t3 = temp_samples[sample_count - 1];
  818. float asymp_temp = (t2 * t2 - t1 * t3) / (2 * t2 - t1 - t3),
  819. block_responsiveness = -log((t2 - asymp_temp) / (t1 - asymp_temp)) / (sample_distance * (sample_count >> 1));
  820. constants.ambient_xfer_coeff_fan0 = constants.heater_power * (MPC_MAX) / 255 / (asymp_temp - ambient_temp);
  821. constants.fan255_adjustment = 0.0f;
  822. constants.block_heat_capacity = constants.ambient_xfer_coeff_fan0 / block_responsiveness;
  823. constants.sensor_responsiveness = block_responsiveness / (1.0f - (ambient_temp - asymp_temp) * exp(-block_responsiveness * t1_time) / (t1 - asymp_temp));
  824. hotend.modeled_block_temp = asymp_temp + (ambient_temp - asymp_temp) * exp(-block_responsiveness * (ms - heat_start_time) / 1000.0f);
  825. hotend.modeled_sensor_temp = current_temp;
  826. // Allow the system to stabilize under MPC, then get a better measure of ambient loss with and without fan
  827. SERIAL_ECHOLNPGM(STR_MPC_MEASURING_AMBIENT, hotend.modeled_block_temp);
  828. LCD_MESSAGE(MSG_MPC_MEASURING_AMBIENT);
  829. hotend.target = hotend.modeled_block_temp;
  830. next_test_ms = ms + MPC_dT * 1000;
  831. constexpr millis_t settle_time = 20000UL, test_duration = 20000UL;
  832. millis_t settle_end_ms = ms + settle_time,
  833. test_end_ms = settle_end_ms + test_duration;
  834. float total_energy_fan0 = 0.0f;
  835. #if HAS_FAN
  836. bool fan0_done = false;
  837. float total_energy_fan255 = 0.0f;
  838. #endif
  839. float last_temp = current_temp;
  840. for (;;) { // Can be interrupted with M108
  841. if (!housekeeping(ms, current_temp, next_report_ms)) return;
  842. if (ELAPSED(ms, next_test_ms)) {
  843. hotend.soft_pwm_amount = (int)get_pid_output_hotend(active_extruder) >> 1;
  844. if (ELAPSED(ms, settle_end_ms) && !ELAPSED(ms, test_end_ms) && TERN1(HAS_FAN, !fan0_done))
  845. total_energy_fan0 += constants.heater_power * hotend.soft_pwm_amount / 127 * MPC_dT + (last_temp - current_temp) * constants.block_heat_capacity;
  846. #if HAS_FAN
  847. else if (ELAPSED(ms, test_end_ms) && !fan0_done) {
  848. set_fan_speed(EITHER(MPC_FAN_0_ALL_HOTENDS, MPC_FAN_0_ACTIVE_HOTEND) ? 0 : active_extruder, 255);
  849. planner.sync_fan_speeds(fan_speed);
  850. settle_end_ms = ms + settle_time;
  851. test_end_ms = settle_end_ms + test_duration;
  852. fan0_done = true;
  853. }
  854. else if (ELAPSED(ms, settle_end_ms) && !ELAPSED(ms, test_end_ms))
  855. total_energy_fan255 += constants.heater_power * hotend.soft_pwm_amount / 127 * MPC_dT + (last_temp - current_temp) * constants.block_heat_capacity;
  856. #endif
  857. else if (ELAPSED(ms, test_end_ms)) break;
  858. last_temp = current_temp;
  859. next_test_ms += MPC_dT * 1000;
  860. }
  861. if (!WITHIN(current_temp, t3 - 15.0f, hotend.target + 15.0f)) {
  862. SERIAL_ECHOLNPGM(STR_MPC_TEMPERATURE_ERROR);
  863. break;
  864. }
  865. }
  866. const float power_fan0 = total_energy_fan0 * 1000 / test_duration;
  867. constants.ambient_xfer_coeff_fan0 = power_fan0 / (hotend.target - ambient_temp);
  868. #if HAS_FAN
  869. const float power_fan255 = total_energy_fan255 * 1000 / test_duration,
  870. ambient_xfer_coeff_fan255 = power_fan255 / (hotend.target - ambient_temp);
  871. constants.fan255_adjustment = ambient_xfer_coeff_fan255 - constants.ambient_xfer_coeff_fan0;
  872. #endif
  873. // Calculate a new and better asymptotic temperature and re-evaluate the other constants
  874. asymp_temp = ambient_temp + constants.heater_power * (MPC_MAX) / 255 / constants.ambient_xfer_coeff_fan0;
  875. block_responsiveness = -log((t2 - asymp_temp) / (t1 - asymp_temp)) / (sample_distance * (sample_count >> 1));
  876. constants.block_heat_capacity = constants.ambient_xfer_coeff_fan0 / block_responsiveness;
  877. constants.sensor_responsiveness = block_responsiveness / (1.0f - (ambient_temp - asymp_temp) * exp(-block_responsiveness * t1_time) / (t1 - asymp_temp));
  878. SERIAL_ECHOPGM(STR_MPC_AUTOTUNE);
  879. SERIAL_ECHOLNPGM(STR_MPC_AUTOTUNE_FINISHED);
  880. /* <-- add a slash to enable
  881. SERIAL_ECHOLNPGM("t1_time ", t1_time);
  882. SERIAL_ECHOLNPGM("sample_count ", sample_count);
  883. SERIAL_ECHOLNPGM("sample_distance ", sample_distance);
  884. for (uint8_t i = 0; i < sample_count; i++)
  885. SERIAL_ECHOLNPGM("sample ", i, " : ", temp_samples[i]);
  886. SERIAL_ECHOLNPGM("t1 ", t1, " t2 ", t2, " t3 ", t3);
  887. SERIAL_ECHOLNPGM("asymp_temp ", asymp_temp);
  888. SERIAL_ECHOLNPAIR_F("block_responsiveness ", block_responsiveness, 4);
  889. //*/
  890. SERIAL_ECHOLNPGM("MPC_BLOCK_HEAT_CAPACITY ", constants.block_heat_capacity);
  891. SERIAL_ECHOLNPAIR_F("MPC_SENSOR_RESPONSIVENESS ", constants.sensor_responsiveness, 4);
  892. SERIAL_ECHOLNPAIR_F("MPC_AMBIENT_XFER_COEFF ", constants.ambient_xfer_coeff_fan0, 4);
  893. TERN_(HAS_FAN, SERIAL_ECHOLNPAIR_F("MPC_AMBIENT_XFER_COEFF_FAN255 ", ambient_xfer_coeff_fan255, 4));
  894. }
  895. #endif // MPCTEMP
  896. int16_t Temperature::getHeaterPower(const heater_id_t heater_id) {
  897. switch (heater_id) {
  898. #if HAS_HEATED_BED
  899. case H_BED: return temp_bed.soft_pwm_amount;
  900. #endif
  901. #if HAS_HEATED_CHAMBER
  902. case H_CHAMBER: return temp_chamber.soft_pwm_amount;
  903. #endif
  904. #if HAS_COOLER
  905. case H_COOLER: return temp_cooler.soft_pwm_amount;
  906. #endif
  907. default:
  908. return TERN0(HAS_HOTEND, temp_hotend[heater_id].soft_pwm_amount);
  909. }
  910. }
  911. #define _EFANOVERLAP(A,B) _FANOVERLAP(E##A,B)
  912. #if HAS_AUTO_FAN
  913. #if EXTRUDER_AUTO_FAN_SPEED != 255
  914. #define INIT_E_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(P); } else SET_OUTPUT(P); }while(0)
  915. #else
  916. #define INIT_E_AUTO_FAN_PIN(P) SET_OUTPUT(P)
  917. #endif
  918. #if CHAMBER_AUTO_FAN_SPEED != 255
  919. #define INIT_CHAMBER_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(P); } else SET_OUTPUT(P); }while(0)
  920. #else
  921. #define INIT_CHAMBER_AUTO_FAN_PIN(P) SET_OUTPUT(P)
  922. #endif
  923. #ifndef CHAMBER_FAN_INDEX
  924. #define CHAMBER_FAN_INDEX HOTENDS
  925. #endif
  926. void Temperature::update_autofans() {
  927. #define _EFAN(B,A) _EFANOVERLAP(A,B) ? B :
  928. static const uint8_t fanBit[] PROGMEM = {
  929. 0
  930. #if HAS_MULTI_HOTEND
  931. #define _NEXT_FAN(N) , REPEAT2(N,_EFAN,N) N
  932. RREPEAT_S(1, HOTENDS, _NEXT_FAN)
  933. #endif
  934. #if HAS_AUTO_CHAMBER_FAN
  935. #define _CFAN(B) _FANOVERLAP(CHAMBER,B) ? B :
  936. , REPEAT(HOTENDS,_CFAN) (HOTENDS)
  937. #endif
  938. };
  939. uint8_t fanState = 0;
  940. HOTEND_LOOP() {
  941. if (temp_hotend[e].celsius >= EXTRUDER_AUTO_FAN_TEMPERATURE) {
  942. SBI(fanState, pgm_read_byte(&fanBit[e]));
  943. }
  944. }
  945. #if HAS_AUTO_CHAMBER_FAN
  946. if (temp_chamber.celsius >= CHAMBER_AUTO_FAN_TEMPERATURE)
  947. SBI(fanState, pgm_read_byte(&fanBit[CHAMBER_FAN_INDEX]));
  948. #endif
  949. #if HAS_AUTO_COOLER_FAN
  950. if (temp_cooler.celsius >= COOLER_AUTO_FAN_TEMPERATURE)
  951. SBI(fanState, pgm_read_byte(&fanBit[COOLER_FAN_INDEX]));
  952. #endif
  953. #define _UPDATE_AUTO_FAN(P,D,A) do{ \
  954. if (PWM_PIN(P##_AUTO_FAN_PIN) && A < 255) \
  955. hal.set_pwm_duty(pin_t(P##_AUTO_FAN_PIN), D ? A : 0); \
  956. else \
  957. WRITE(P##_AUTO_FAN_PIN, D); \
  958. }while(0)
  959. uint8_t fanDone = 0;
  960. LOOP_L_N(f, COUNT(fanBit)) {
  961. const uint8_t realFan = pgm_read_byte(&fanBit[f]);
  962. if (TEST(fanDone, realFan)) continue;
  963. const bool fan_on = TEST(fanState, realFan);
  964. switch (f) {
  965. #if ENABLED(AUTO_POWER_CHAMBER_FAN)
  966. case CHAMBER_FAN_INDEX:
  967. chamberfan_speed = fan_on ? CHAMBER_AUTO_FAN_SPEED : 0;
  968. break;
  969. #endif
  970. default:
  971. #if EITHER(AUTO_POWER_E_FANS, HAS_FANCHECK)
  972. autofan_speed[realFan] = fan_on ? EXTRUDER_AUTO_FAN_SPEED : 0;
  973. #endif
  974. break;
  975. }
  976. #if BOTH(HAS_FANCHECK, HAS_PWMFANCHECK)
  977. #define _AUTOFAN_SPEED() fan_check.is_measuring() ? 255 : EXTRUDER_AUTO_FAN_SPEED
  978. #else
  979. #define _AUTOFAN_SPEED() EXTRUDER_AUTO_FAN_SPEED
  980. #endif
  981. #define _AUTOFAN_CASE(N) case N: _UPDATE_AUTO_FAN(E##N, fan_on, _AUTOFAN_SPEED()); break
  982. switch (f) {
  983. #if HAS_AUTO_FAN_0
  984. _AUTOFAN_CASE(0);
  985. #endif
  986. #if HAS_AUTO_FAN_1
  987. _AUTOFAN_CASE(1);
  988. #endif
  989. #if HAS_AUTO_FAN_2
  990. _AUTOFAN_CASE(2);
  991. #endif
  992. #if HAS_AUTO_FAN_3
  993. _AUTOFAN_CASE(3);
  994. #endif
  995. #if HAS_AUTO_FAN_4
  996. _AUTOFAN_CASE(4);
  997. #endif
  998. #if HAS_AUTO_FAN_5
  999. _AUTOFAN_CASE(5);
  1000. #endif
  1001. #if HAS_AUTO_FAN_6
  1002. _AUTOFAN_CASE(6);
  1003. #endif
  1004. #if HAS_AUTO_FAN_7
  1005. _AUTOFAN_CASE(7);
  1006. #endif
  1007. #if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E
  1008. case CHAMBER_FAN_INDEX: _UPDATE_AUTO_FAN(CHAMBER, fan_on, CHAMBER_AUTO_FAN_SPEED); break;
  1009. #endif
  1010. }
  1011. SBI(fanDone, realFan);
  1012. }
  1013. }
  1014. #endif // HAS_AUTO_FAN
  1015. //
  1016. // Temperature Error Handlers
  1017. //
  1018. inline void loud_kill(FSTR_P const lcd_msg, const heater_id_t heater_id) {
  1019. marlin_state = MF_KILLED;
  1020. thermalManager.disable_all_heaters();
  1021. #if HAS_BEEPER
  1022. for (uint8_t i = 20; i--;) {
  1023. hal.watchdog_refresh();
  1024. buzzer.click(25);
  1025. delay(80);
  1026. hal.watchdog_refresh();
  1027. }
  1028. buzzer.on();
  1029. #endif
  1030. #if ENABLED(NOZZLE_PARK_FEATURE)
  1031. if (!homing_needed_error()) {
  1032. nozzle.park(0);
  1033. planner.synchronize();
  1034. }
  1035. #endif
  1036. kill(lcd_msg, HEATER_FSTR(heater_id));
  1037. }
  1038. void Temperature::_temp_error(const heater_id_t heater_id, FSTR_P const serial_msg, FSTR_P const lcd_msg) {
  1039. static uint8_t killed = 0;
  1040. if (IsRunning() && TERN1(BOGUS_TEMPERATURE_GRACE_PERIOD, killed == 2)) {
  1041. SERIAL_ERROR_START();
  1042. SERIAL_ECHOF(serial_msg);
  1043. SERIAL_ECHOPGM(STR_STOPPED_HEATER);
  1044. heater_id_t real_heater_id = heater_id;
  1045. #if HAS_TEMP_REDUNDANT
  1046. if (heater_id == H_REDUNDANT) {
  1047. SERIAL_ECHOPGM(STR_REDUNDANT); // print redundant and cascade to print target, too.
  1048. real_heater_id = (heater_id_t)HEATER_ID(TEMP_SENSOR_REDUNDANT_TARGET);
  1049. }
  1050. #endif
  1051. switch (real_heater_id) {
  1052. OPTCODE(HAS_TEMP_COOLER, case H_COOLER: SERIAL_ECHOPGM(STR_COOLER); break)
  1053. OPTCODE(HAS_TEMP_PROBE, case H_PROBE: SERIAL_ECHOPGM(STR_PROBE); break)
  1054. OPTCODE(HAS_TEMP_BOARD, case H_BOARD: SERIAL_ECHOPGM(STR_MOTHERBOARD); break)
  1055. OPTCODE(HAS_TEMP_CHAMBER, case H_CHAMBER: SERIAL_ECHOPGM(STR_HEATER_CHAMBER); break)
  1056. OPTCODE(HAS_TEMP_BED, case H_BED: SERIAL_ECHOPGM(STR_HEATER_BED); break)
  1057. default:
  1058. if (real_heater_id >= 0)
  1059. SERIAL_ECHOLNPGM("E", real_heater_id);
  1060. }
  1061. SERIAL_EOL();
  1062. }
  1063. disable_all_heaters(); // always disable (even for bogus temp)
  1064. hal.watchdog_refresh();
  1065. #if BOGUS_TEMPERATURE_GRACE_PERIOD
  1066. const millis_t ms = millis();
  1067. static millis_t expire_ms;
  1068. switch (killed) {
  1069. case 0:
  1070. expire_ms = ms + BOGUS_TEMPERATURE_GRACE_PERIOD;
  1071. ++killed;
  1072. break;
  1073. case 1:
  1074. if (ELAPSED(ms, expire_ms)) ++killed;
  1075. break;
  1076. case 2:
  1077. loud_kill(lcd_msg, heater_id);
  1078. ++killed;
  1079. break;
  1080. }
  1081. #elif defined(BOGUS_TEMPERATURE_GRACE_PERIOD)
  1082. UNUSED(killed);
  1083. #else
  1084. if (!killed) { killed = 1; loud_kill(lcd_msg, heater_id); }
  1085. #endif
  1086. }
  1087. void Temperature::max_temp_error(const heater_id_t heater_id) {
  1088. #if HAS_DWIN_E3V2_BASIC && (HAS_HOTEND || HAS_HEATED_BED)
  1089. DWIN_Popup_Temperature(1);
  1090. #endif
  1091. _temp_error(heater_id, F(STR_T_MAXTEMP), GET_TEXT_F(MSG_ERR_MAXTEMP));
  1092. }
  1093. void Temperature::min_temp_error(const heater_id_t heater_id) {
  1094. #if HAS_DWIN_E3V2_BASIC && (HAS_HOTEND || HAS_HEATED_BED)
  1095. DWIN_Popup_Temperature(0);
  1096. #endif
  1097. _temp_error(heater_id, F(STR_T_MINTEMP), GET_TEXT_F(MSG_ERR_MINTEMP));
  1098. }
  1099. #if HAS_PID_DEBUG
  1100. bool Temperature::pid_debug_flag; // = false
  1101. #endif
  1102. #if HAS_PID_HEATING
  1103. template<typename TT, int MIN_POW, int MAX_POW>
  1104. class PIDRunner {
  1105. public:
  1106. TT &tempinfo;
  1107. __typeof__(TT::pid) work_pid{0};
  1108. float temp_iState = 0, temp_dState = 0;
  1109. bool pid_reset = true;
  1110. PIDRunner(TT &t) : tempinfo(t) { }
  1111. float get_pid_output() {
  1112. #if ENABLED(PID_OPENLOOP)
  1113. return constrain(tempinfo.target, 0, MAX_POW);
  1114. #else // !PID_OPENLOOP
  1115. const float pid_error = tempinfo.target - tempinfo.celsius;
  1116. if (!tempinfo.target || pid_error < -(PID_FUNCTIONAL_RANGE)) {
  1117. pid_reset = true;
  1118. return 0;
  1119. }
  1120. else if (pid_error > PID_FUNCTIONAL_RANGE) {
  1121. pid_reset = true;
  1122. return MAX_POW;
  1123. }
  1124. if (pid_reset) {
  1125. pid_reset = false;
  1126. temp_iState = 0.0;
  1127. work_pid.Kd = 0.0;
  1128. }
  1129. const float max_power_over_i_gain = float(MAX_POW) / tempinfo.pid.Ki - float(MIN_POW);
  1130. temp_iState = constrain(temp_iState + pid_error, 0, max_power_over_i_gain);
  1131. work_pid.Kp = tempinfo.pid.Kp * pid_error;
  1132. work_pid.Ki = tempinfo.pid.Ki * temp_iState;
  1133. work_pid.Kd = work_pid.Kd + PID_K2 * (tempinfo.pid.Kd * (temp_dState - tempinfo.celsius) - work_pid.Kd);
  1134. temp_dState = tempinfo.celsius;
  1135. return constrain(work_pid.Kp + work_pid.Ki + work_pid.Kd + float(MIN_POW), 0, MAX_POW);
  1136. #endif // !PID_OPENLOOP
  1137. }
  1138. FORCE_INLINE void debug(const_celsius_float_t c, const_float_t pid_out, FSTR_P const name=nullptr, const int8_t index=-1) {
  1139. if (TERN0(HAS_PID_DEBUG, thermalManager.pid_debug_flag)) {
  1140. SERIAL_ECHO_START();
  1141. if (name) SERIAL_ECHOF(name);
  1142. if (index >= 0) SERIAL_ECHO(index);
  1143. SERIAL_ECHOLNPGM(
  1144. STR_PID_DEBUG_INPUT, c,
  1145. STR_PID_DEBUG_OUTPUT, pid_out
  1146. #if DISABLED(PID_OPENLOOP)
  1147. , " pTerm ", work_pid.Kp, " iTerm ", work_pid.Ki, " dTerm ", work_pid.Kd
  1148. #endif
  1149. );
  1150. }
  1151. }
  1152. };
  1153. #endif // HAS_PID_HEATING
  1154. #if HAS_HOTEND
  1155. float Temperature::get_pid_output_hotend(const uint8_t E_NAME) {
  1156. const uint8_t ee = HOTEND_INDEX;
  1157. #if ENABLED(PIDTEMP)
  1158. typedef PIDRunner<hotend_info_t, 0, PID_MAX> PIDRunnerHotend;
  1159. static PIDRunnerHotend hotend_pid[HOTENDS] = {
  1160. #define _HOTENDPID(E) temp_hotend[E],
  1161. REPEAT(HOTENDS, _HOTENDPID)
  1162. };
  1163. const float pid_output = hotend_pid[ee].get_pid_output();
  1164. #if ENABLED(PID_DEBUG)
  1165. if (ee == active_extruder)
  1166. hotend_pid[ee].debug(temp_hotend[ee].celsius, pid_output, F("E"), ee);
  1167. #endif
  1168. #elif ENABLED(MPCTEMP)
  1169. MPCHeaterInfo &hotend = temp_hotend[ee];
  1170. MPC_t &constants = hotend.constants;
  1171. // At startup, initialize modeled temperatures
  1172. if (isnan(hotend.modeled_block_temp)) {
  1173. hotend.modeled_ambient_temp = _MIN(30.0f, hotend.celsius); // Cap initial value at reasonable max room temperature of 30C
  1174. hotend.modeled_block_temp = hotend.modeled_sensor_temp = hotend.celsius;
  1175. }
  1176. #if HOTENDS == 1
  1177. constexpr bool this_hotend = true;
  1178. #else
  1179. const bool this_hotend = (ee == active_extruder);
  1180. #endif
  1181. float ambient_xfer_coeff = constants.ambient_xfer_coeff_fan0;
  1182. #if ENABLED(MPC_INCLUDE_FAN)
  1183. const uint8_t fan_index = EITHER(MPC_FAN_0_ACTIVE_HOTEND, MPC_FAN_0_ALL_HOTENDS) ? 0 : ee;
  1184. const float fan_fraction = TERN_(MPC_FAN_0_ACTIVE_HOTEND, !this_hotend ? 0.0f : ) fan_speed[fan_index] * RECIPROCAL(255);
  1185. ambient_xfer_coeff += fan_fraction * constants.fan255_adjustment;
  1186. #endif
  1187. if (this_hotend) {
  1188. const int32_t e_position = stepper.position(E_AXIS);
  1189. const float e_speed = (e_position - mpc_e_position) * planner.mm_per_step[E_AXIS] / MPC_dT;
  1190. // The position can appear to make big jumps when, e.g. homing
  1191. if (fabs(e_speed) > planner.settings.max_feedrate_mm_s[E_AXIS])
  1192. mpc_e_position = e_position;
  1193. else if (e_speed > 0.0f) { // Ignore retract/recover moves
  1194. ambient_xfer_coeff += e_speed * constants.filament_heat_capacity_permm;
  1195. mpc_e_position = e_position;
  1196. }
  1197. }
  1198. // Update the modeled temperatures
  1199. float blocktempdelta = hotend.soft_pwm_amount * constants.heater_power * (MPC_dT / 127) / constants.block_heat_capacity;
  1200. blocktempdelta += (hotend.modeled_ambient_temp - hotend.modeled_block_temp) * ambient_xfer_coeff * MPC_dT / constants.block_heat_capacity;
  1201. hotend.modeled_block_temp += blocktempdelta;
  1202. const float sensortempdelta = (hotend.modeled_block_temp - hotend.modeled_sensor_temp) * (constants.sensor_responsiveness * MPC_dT);
  1203. hotend.modeled_sensor_temp += sensortempdelta;
  1204. // Any delta between hotend.modeled_sensor_temp and hotend.celsius is either model
  1205. // error diverging slowly or (fast) noise. Slowly correct towards this temperature and noise will average out.
  1206. const float delta_to_apply = (hotend.celsius - hotend.modeled_sensor_temp) * (MPC_SMOOTHING_FACTOR);
  1207. hotend.modeled_block_temp += delta_to_apply;
  1208. hotend.modeled_sensor_temp += delta_to_apply;
  1209. // Only correct ambient when close to steady state (output power is not clipped or asymptotic temperature is reached)
  1210. if (WITHIN(hotend.soft_pwm_amount, 1, 126) || fabs(blocktempdelta + delta_to_apply) < (MPC_STEADYSTATE * MPC_dT))
  1211. hotend.modeled_ambient_temp += delta_to_apply > 0.f ? _MAX(delta_to_apply, MPC_MIN_AMBIENT_CHANGE * MPC_dT) : _MIN(delta_to_apply, -MPC_MIN_AMBIENT_CHANGE * MPC_dT);
  1212. float power = 0.0;
  1213. if (hotend.target != 0 && TERN1(HEATER_IDLE_HANDLER, !heater_idle[ee].timed_out)) {
  1214. // Plan power level to get to target temperature in 2 seconds
  1215. power = (hotend.target - hotend.modeled_block_temp) * constants.block_heat_capacity / 2.0f;
  1216. power -= (hotend.modeled_ambient_temp - hotend.modeled_block_temp) * ambient_xfer_coeff;
  1217. }
  1218. float pid_output = power * 254.0f / constants.heater_power + 1.0f; // Ensure correct quantization into a range of 0 to 127
  1219. pid_output = constrain(pid_output, 0, MPC_MAX);
  1220. /* <-- add a slash to enable
  1221. static uint32_t nexttime = millis() + 1000;
  1222. if (ELAPSED(millis(), nexttime)) {
  1223. nexttime += 1000;
  1224. SERIAL_ECHOLNPGM("block temp ", hotend.modeled_block_temp,
  1225. ", celsius ", hotend.celsius,
  1226. ", blocktempdelta ", blocktempdelta,
  1227. ", delta_to_apply ", delta_to_apply,
  1228. ", ambient ", hotend.modeled_ambient_temp,
  1229. ", power ", power,
  1230. ", pid_output ", pid_output,
  1231. ", pwm ", (int)pid_output >> 1);
  1232. }
  1233. //*/
  1234. #else // No PID or MPC enabled
  1235. const bool is_idling = TERN0(HEATER_IDLE_HANDLER, heater_idle[ee].timed_out);
  1236. const float pid_output = (!is_idling && temp_hotend[ee].is_below_target()) ? BANG_MAX : 0;
  1237. #endif
  1238. return pid_output;
  1239. }
  1240. #endif // HAS_HOTEND
  1241. #if ENABLED(PIDTEMPBED)
  1242. float Temperature::get_pid_output_bed() {
  1243. static PIDRunner<bed_info_t, MIN_BED_POWER, MAX_BED_POWER> bed_pid(temp_bed);
  1244. const float pid_output = bed_pid.get_pid_output();
  1245. TERN_(PID_BED_DEBUG, bed_pid.debug(temp_bed.celsius, pid_output, F("(Bed)")));
  1246. return pid_output;
  1247. }
  1248. #endif // PIDTEMPBED
  1249. #if ENABLED(PIDTEMPCHAMBER)
  1250. float Temperature::get_pid_output_chamber() {
  1251. static PIDRunner<chamber_info_t, MIN_CHAMBER_POWER, MAX_CHAMBER_POWER> chamber_pid(temp_chamber);
  1252. const float pid_output = chamber_pid.get_pid_output();
  1253. TERN_(PID_CHAMBER_DEBUG, chamber_pid.debug(temp_chamber.celsius, pid_output, F("(Chamber)")));
  1254. return pid_output;
  1255. }
  1256. #endif // PIDTEMPCHAMBER
  1257. #if HAS_HOTEND
  1258. void Temperature::manage_hotends(const millis_t &ms) {
  1259. HOTEND_LOOP() {
  1260. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  1261. if (degHotend(e) > temp_range[e].maxtemp) max_temp_error((heater_id_t)e);
  1262. #endif
  1263. TERN_(HEATER_IDLE_HANDLER, heater_idle[e].update(ms));
  1264. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  1265. // Check for thermal runaway
  1266. tr_state_machine[e].run(temp_hotend[e].celsius, temp_hotend[e].target, (heater_id_t)e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
  1267. #endif
  1268. temp_hotend[e].soft_pwm_amount = (temp_hotend[e].celsius > temp_range[e].mintemp || is_preheating(e)) && temp_hotend[e].celsius < temp_range[e].maxtemp ? (int)get_pid_output_hotend(e) >> 1 : 0;
  1269. #if WATCH_HOTENDS
  1270. // Make sure temperature is increasing
  1271. if (watch_hotend[e].elapsed(ms)) { // Enabled and time to check?
  1272. if (watch_hotend[e].check(degHotend(e))) // Increased enough?
  1273. start_watching_hotend(e); // If temp reached, turn off elapsed check
  1274. else {
  1275. TERN_(HAS_DWIN_E3V2_BASIC, DWIN_Popup_Temperature(0));
  1276. _temp_error((heater_id_t)e, FPSTR(str_t_heating_failed), GET_TEXT_F(MSG_HEATING_FAILED_LCD));
  1277. }
  1278. }
  1279. #endif
  1280. } // HOTEND_LOOP
  1281. }
  1282. #endif // HAS_HOTEND
  1283. #if HAS_HEATED_BED
  1284. void Temperature::manage_heated_bed(const millis_t &ms) {
  1285. #if ENABLED(THERMAL_PROTECTION_BED)
  1286. if (degBed() > BED_MAXTEMP) max_temp_error(H_BED);
  1287. #endif
  1288. #if WATCH_BED
  1289. // Make sure temperature is increasing
  1290. if (watch_bed.elapsed(ms)) { // Time to check the bed?
  1291. if (watch_bed.check(degBed())) // Increased enough?
  1292. start_watching_bed(); // If temp reached, turn off elapsed check
  1293. else {
  1294. TERN_(HAS_DWIN_E3V2_BASIC, DWIN_Popup_Temperature(0));
  1295. _temp_error(H_BED, FPSTR(str_t_heating_failed), GET_TEXT_F(MSG_HEATING_FAILED_LCD));
  1296. }
  1297. }
  1298. #endif // WATCH_BED
  1299. #if BOTH(PROBING_HEATERS_OFF, BED_LIMIT_SWITCHING)
  1300. #define PAUSE_CHANGE_REQD 1
  1301. #endif
  1302. #if PAUSE_CHANGE_REQD
  1303. static bool last_pause_state;
  1304. #endif
  1305. do {
  1306. #if DISABLED(PIDTEMPBED)
  1307. if (PENDING(ms, next_bed_check_ms)
  1308. && TERN1(PAUSE_CHANGE_REQD, paused_for_probing == last_pause_state)
  1309. ) break;
  1310. next_bed_check_ms = ms + BED_CHECK_INTERVAL;
  1311. TERN_(PAUSE_CHANGE_REQD, last_pause_state = paused_for_probing);
  1312. #endif
  1313. TERN_(HEATER_IDLE_HANDLER, heater_idle[IDLE_INDEX_BED].update(ms));
  1314. #if ENABLED(THERMAL_PROTECTION_BED)
  1315. tr_state_machine[RUNAWAY_IND_BED].run(temp_bed.celsius, temp_bed.target, H_BED, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
  1316. #endif
  1317. #if HEATER_IDLE_HANDLER
  1318. if (heater_idle[IDLE_INDEX_BED].timed_out) {
  1319. temp_bed.soft_pwm_amount = 0;
  1320. if (DISABLED(PIDTEMPBED)) WRITE_HEATER_BED(LOW);
  1321. }
  1322. else
  1323. #endif
  1324. {
  1325. #if ENABLED(PIDTEMPBED)
  1326. temp_bed.soft_pwm_amount = WITHIN(temp_bed.celsius, BED_MINTEMP, BED_MAXTEMP) ? (int)get_pid_output_bed() >> 1 : 0;
  1327. #else
  1328. // Check if temperature is within the correct band
  1329. if (WITHIN(temp_bed.celsius, BED_MINTEMP, BED_MAXTEMP)) {
  1330. #if ENABLED(BED_LIMIT_SWITCHING)
  1331. if (temp_bed.celsius >= temp_bed.target + BED_HYSTERESIS)
  1332. temp_bed.soft_pwm_amount = 0;
  1333. else if (temp_bed.is_below_target(-(BED_HYSTERESIS) + 1))
  1334. temp_bed.soft_pwm_amount = MAX_BED_POWER >> 1;
  1335. #else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
  1336. temp_bed.soft_pwm_amount = temp_bed.is_below_target() ? MAX_BED_POWER >> 1 : 0;
  1337. #endif
  1338. }
  1339. else {
  1340. temp_bed.soft_pwm_amount = 0;
  1341. WRITE_HEATER_BED(LOW);
  1342. }
  1343. #endif
  1344. }
  1345. } while (false);
  1346. }
  1347. #endif // HAS_HEATED_BED
  1348. #if HAS_HEATED_CHAMBER
  1349. void Temperature::manage_heated_chamber(const millis_t &ms) {
  1350. #ifndef CHAMBER_CHECK_INTERVAL
  1351. #define CHAMBER_CHECK_INTERVAL 1000UL
  1352. #endif
  1353. #if ENABLED(THERMAL_PROTECTION_CHAMBER)
  1354. if (degChamber() > CHAMBER_MAXTEMP) max_temp_error(H_CHAMBER);
  1355. #endif
  1356. #if WATCH_CHAMBER
  1357. // Make sure temperature is increasing
  1358. if (watch_chamber.elapsed(ms)) { // Time to check the chamber?
  1359. if (watch_chamber.check(degChamber())) // Increased enough? Error below.
  1360. start_watching_chamber(); // If temp reached, turn off elapsed check.
  1361. else
  1362. _temp_error(H_CHAMBER, FPSTR(str_t_heating_failed), GET_TEXT_F(MSG_HEATING_FAILED_LCD));
  1363. }
  1364. #endif
  1365. #if EITHER(CHAMBER_FAN, CHAMBER_VENT) || DISABLED(PIDTEMPCHAMBER)
  1366. static bool flag_chamber_excess_heat; // = false;
  1367. #endif
  1368. #if EITHER(CHAMBER_FAN, CHAMBER_VENT)
  1369. static bool flag_chamber_off; // = false
  1370. if (temp_chamber.target > CHAMBER_MINTEMP) {
  1371. flag_chamber_off = false;
  1372. #if ENABLED(CHAMBER_FAN)
  1373. int16_t fan_chamber_pwm;
  1374. #if CHAMBER_FAN_MODE == 0
  1375. fan_chamber_pwm = CHAMBER_FAN_BASE;
  1376. #elif CHAMBER_FAN_MODE == 1
  1377. fan_chamber_pwm = (temp_chamber.celsius > temp_chamber.target) ? (CHAMBER_FAN_BASE) + (CHAMBER_FAN_FACTOR) * (temp_chamber.celsius - temp_chamber.target) : 0;
  1378. #elif CHAMBER_FAN_MODE == 2
  1379. fan_chamber_pwm = (CHAMBER_FAN_BASE) + (CHAMBER_FAN_FACTOR) * ABS(temp_chamber.celsius - temp_chamber.target);
  1380. if (temp_chamber.soft_pwm_amount)
  1381. fan_chamber_pwm += (CHAMBER_FAN_FACTOR) * 2;
  1382. #elif CHAMBER_FAN_MODE == 3
  1383. fan_chamber_pwm = CHAMBER_FAN_BASE + _MAX((CHAMBER_FAN_FACTOR) * (temp_chamber.celsius - temp_chamber.target), 0);
  1384. #endif
  1385. NOMORE(fan_chamber_pwm, 255);
  1386. set_fan_speed(CHAMBER_FAN_INDEX, fan_chamber_pwm);
  1387. #endif
  1388. #if ENABLED(CHAMBER_VENT)
  1389. #ifndef MIN_COOLING_SLOPE_TIME_CHAMBER_VENT
  1390. #define MIN_COOLING_SLOPE_TIME_CHAMBER_VENT 20
  1391. #endif
  1392. #ifndef MIN_COOLING_SLOPE_DEG_CHAMBER_VENT
  1393. #define MIN_COOLING_SLOPE_DEG_CHAMBER_VENT 1.5
  1394. #endif
  1395. if (!flag_chamber_excess_heat && temp_chamber.celsius - temp_chamber.target >= HIGH_EXCESS_HEAT_LIMIT) {
  1396. // Open vent after MIN_COOLING_SLOPE_TIME_CHAMBER_VENT seconds if the
  1397. // temperature didn't drop at least MIN_COOLING_SLOPE_DEG_CHAMBER_VENT
  1398. if (next_cool_check_ms_2 == 0 || ELAPSED(ms, next_cool_check_ms_2)) {
  1399. if (temp_chamber.celsius - old_temp > MIN_COOLING_SLOPE_DEG_CHAMBER_VENT)
  1400. flag_chamber_excess_heat = true; // the bed is heating the chamber too much
  1401. next_cool_check_ms_2 = ms + SEC_TO_MS(MIN_COOLING_SLOPE_TIME_CHAMBER_VENT);
  1402. old_temp = temp_chamber.celsius;
  1403. }
  1404. }
  1405. else {
  1406. next_cool_check_ms_2 = 0;
  1407. old_temp = 9999;
  1408. }
  1409. if (flag_chamber_excess_heat && (temp_chamber.target - temp_chamber.celsius >= LOW_EXCESS_HEAT_LIMIT))
  1410. flag_chamber_excess_heat = false;
  1411. #endif
  1412. }
  1413. else if (!flag_chamber_off) {
  1414. #if ENABLED(CHAMBER_FAN)
  1415. flag_chamber_off = true;
  1416. set_fan_speed(CHAMBER_FAN_INDEX, 0);
  1417. #endif
  1418. #if ENABLED(CHAMBER_VENT)
  1419. flag_chamber_excess_heat = false;
  1420. servo[CHAMBER_VENT_SERVO_NR].move(90);
  1421. #endif
  1422. }
  1423. #endif
  1424. #if ENABLED(PIDTEMPCHAMBER)
  1425. // PIDTEMPCHAMBER doesn't support a CHAMBER_VENT yet.
  1426. temp_chamber.soft_pwm_amount = WITHIN(temp_chamber.celsius, CHAMBER_MINTEMP, CHAMBER_MAXTEMP) ? (int)get_pid_output_chamber() >> 1 : 0;
  1427. #else
  1428. if (ELAPSED(ms, next_chamber_check_ms)) {
  1429. next_chamber_check_ms = ms + CHAMBER_CHECK_INTERVAL;
  1430. if (WITHIN(temp_chamber.celsius, CHAMBER_MINTEMP, CHAMBER_MAXTEMP)) {
  1431. if (flag_chamber_excess_heat) {
  1432. temp_chamber.soft_pwm_amount = 0;
  1433. #if ENABLED(CHAMBER_VENT)
  1434. if (!flag_chamber_off) servo[CHAMBER_VENT_SERVO_NR].move(temp_chamber.is_below_target() ? 0 : 90);
  1435. #endif
  1436. }
  1437. else {
  1438. #if ENABLED(CHAMBER_LIMIT_SWITCHING)
  1439. if (temp_chamber.celsius >= temp_chamber.target + TEMP_CHAMBER_HYSTERESIS)
  1440. temp_chamber.soft_pwm_amount = 0;
  1441. else if (temp_chamber.is_below_target(-(TEMP_CHAMBER_HYSTERESIS) + 1))
  1442. temp_chamber.soft_pwm_amount = (MAX_CHAMBER_POWER) >> 1;
  1443. #else
  1444. temp_chamber.soft_pwm_amount = temp_chamber.is_below_target() ? (MAX_CHAMBER_POWER) >> 1 : 0;
  1445. #endif
  1446. #if ENABLED(CHAMBER_VENT)
  1447. if (!flag_chamber_off) servo[CHAMBER_VENT_SERVO_NR].move(0);
  1448. #endif
  1449. }
  1450. }
  1451. else {
  1452. temp_chamber.soft_pwm_amount = 0;
  1453. WRITE_HEATER_CHAMBER(LOW);
  1454. }
  1455. }
  1456. #if ENABLED(THERMAL_PROTECTION_CHAMBER)
  1457. tr_state_machine[RUNAWAY_IND_CHAMBER].run(temp_chamber.celsius, temp_chamber.target, H_CHAMBER, THERMAL_PROTECTION_CHAMBER_PERIOD, THERMAL_PROTECTION_CHAMBER_HYSTERESIS);
  1458. #endif
  1459. #endif
  1460. }
  1461. #endif // HAS_HEATED_CHAMBER
  1462. #if HAS_COOLER
  1463. void Temperature::manage_cooler(const millis_t &ms) {
  1464. #ifndef COOLER_CHECK_INTERVAL
  1465. #define COOLER_CHECK_INTERVAL 2000UL
  1466. #endif
  1467. #if ENABLED(THERMAL_PROTECTION_COOLER)
  1468. if (degCooler() > COOLER_MAXTEMP) max_temp_error(H_COOLER);
  1469. #endif
  1470. #if WATCH_COOLER
  1471. // Make sure temperature is decreasing
  1472. if (watch_cooler.elapsed(ms)) { // Time to check the cooler?
  1473. if (degCooler() > watch_cooler.target) // Failed to decrease enough?
  1474. _temp_error(H_COOLER, GET_TEXT_F(MSG_COOLING_FAILED), GET_TEXT_F(MSG_COOLING_FAILED));
  1475. else
  1476. start_watching_cooler(); // Start again if the target is still far off
  1477. }
  1478. #endif
  1479. static bool flag_cooler_state; // = false
  1480. if (cooler.enabled) {
  1481. flag_cooler_state = true; // used to allow M106 fan control when cooler is disabled
  1482. if (temp_cooler.target == 0) temp_cooler.target = COOLER_MIN_TARGET;
  1483. if (ELAPSED(ms, next_cooler_check_ms)) {
  1484. next_cooler_check_ms = ms + COOLER_CHECK_INTERVAL;
  1485. if (temp_cooler.celsius > temp_cooler.target) {
  1486. temp_cooler.soft_pwm_amount = temp_cooler.celsius > temp_cooler.target ? MAX_COOLER_POWER : 0;
  1487. flag_cooler_state = temp_cooler.soft_pwm_amount > 0 ? true : false; // used to allow M106 fan control when cooler is disabled
  1488. #if ENABLED(COOLER_FAN)
  1489. int16_t fan_cooler_pwm = (COOLER_FAN_BASE) + (COOLER_FAN_FACTOR) * ABS(temp_cooler.celsius - temp_cooler.target);
  1490. NOMORE(fan_cooler_pwm, 255);
  1491. set_fan_speed(COOLER_FAN_INDEX, fan_cooler_pwm); // Set cooler fan pwm
  1492. cooler_fan_flush_ms = ms + 5000;
  1493. #endif
  1494. }
  1495. else {
  1496. temp_cooler.soft_pwm_amount = 0;
  1497. #if ENABLED(COOLER_FAN)
  1498. set_fan_speed(COOLER_FAN_INDEX, temp_cooler.celsius > temp_cooler.target - 2 ? COOLER_FAN_BASE : 0);
  1499. #endif
  1500. WRITE_HEATER_COOLER(LOW);
  1501. }
  1502. }
  1503. }
  1504. else {
  1505. temp_cooler.soft_pwm_amount = 0;
  1506. if (flag_cooler_state) {
  1507. flag_cooler_state = false;
  1508. thermalManager.set_fan_speed(COOLER_FAN_INDEX, 0);
  1509. }
  1510. WRITE_HEATER_COOLER(LOW);
  1511. }
  1512. #if ENABLED(THERMAL_PROTECTION_COOLER)
  1513. tr_state_machine[RUNAWAY_IND_COOLER].run(temp_cooler.celsius, temp_cooler.target, H_COOLER, THERMAL_PROTECTION_COOLER_PERIOD, THERMAL_PROTECTION_COOLER_HYSTERESIS);
  1514. #endif
  1515. }
  1516. #endif // HAS_COOLER
  1517. /**
  1518. * Manage heating activities for extruder hot-ends and a heated bed
  1519. * - Acquire updated temperature readings
  1520. * - Also resets the watchdog timer
  1521. * - Invoke thermal runaway protection
  1522. * - Manage extruder auto-fan
  1523. * - Apply filament width to the extrusion rate (may move)
  1524. * - Update the heated bed PID output value
  1525. */
  1526. void Temperature::task() {
  1527. if (marlin_state == MF_INITIALIZING) return hal.watchdog_refresh(); // If Marlin isn't started, at least reset the watchdog!
  1528. static bool no_reentry = false; // Prevent recursion
  1529. if (no_reentry) return;
  1530. REMEMBER(mh, no_reentry, true);
  1531. #if ENABLED(EMERGENCY_PARSER)
  1532. if (emergency_parser.killed_by_M112) kill(FPSTR(M112_KILL_STR), nullptr, true);
  1533. if (emergency_parser.quickstop_by_M410) {
  1534. emergency_parser.quickstop_by_M410 = false; // quickstop_stepper may call idle so clear this now!
  1535. quickstop_stepper();
  1536. }
  1537. #endif
  1538. if (!updateTemperaturesIfReady()) return; // Will also reset the watchdog if temperatures are ready
  1539. #if DISABLED(IGNORE_THERMOCOUPLE_ERRORS)
  1540. #if TEMP_SENSOR_IS_MAX_TC(0)
  1541. if (degHotend(0) > _MIN(HEATER_0_MAXTEMP, TEMP_SENSOR_0_MAX_TC_TMAX - 1.0)) max_temp_error(H_E0);
  1542. if (degHotend(0) < _MAX(HEATER_0_MINTEMP, TEMP_SENSOR_0_MAX_TC_TMIN + .01)) min_temp_error(H_E0);
  1543. #endif
  1544. #if TEMP_SENSOR_IS_MAX_TC(1)
  1545. if (degHotend(1) > _MIN(HEATER_1_MAXTEMP, TEMP_SENSOR_1_MAX_TC_TMAX - 1.0)) max_temp_error(H_E1);
  1546. if (degHotend(1) < _MAX(HEATER_1_MINTEMP, TEMP_SENSOR_1_MAX_TC_TMIN + .01)) min_temp_error(H_E1);
  1547. #endif
  1548. #if TEMP_SENSOR_IS_MAX_TC(REDUNDANT)
  1549. if (degRedundant() > TEMP_SENSOR_REDUNDANT_MAX_TC_TMAX - 1.0) max_temp_error(H_REDUNDANT);
  1550. if (degRedundant() < TEMP_SENSOR_REDUNDANT_MAX_TC_TMIN + .01) min_temp_error(H_REDUNDANT);
  1551. #endif
  1552. #else
  1553. #warning "Safety Alert! Disable IGNORE_THERMOCOUPLE_ERRORS for the final build!"
  1554. #endif
  1555. const millis_t ms = millis();
  1556. // Handle Hotend Temp Errors, Heating Watch, etc.
  1557. TERN_(HAS_HOTEND, manage_hotends(ms));
  1558. #if HAS_TEMP_REDUNDANT
  1559. // Make sure measured temperatures are close together
  1560. if (ABS(degRedundantTarget() - degRedundant()) > TEMP_SENSOR_REDUNDANT_MAX_DIFF)
  1561. _temp_error((heater_id_t)HEATER_ID(TEMP_SENSOR_REDUNDANT_TARGET), F(STR_REDUNDANCY), GET_TEXT_F(MSG_ERR_REDUNDANT_TEMP));
  1562. #endif
  1563. // Manage extruder auto fans and/or read fan tachometers
  1564. TERN_(HAS_FAN_LOGIC, manage_extruder_fans(ms));
  1565. /**
  1566. * Dynamically set the volumetric multiplier based
  1567. * on the delayed Filament Width measurement.
  1568. */
  1569. TERN_(FILAMENT_WIDTH_SENSOR, filwidth.update_volumetric());
  1570. // Handle Bed Temp Errors, Heating Watch, etc.
  1571. TERN_(HAS_HEATED_BED, manage_heated_bed(ms));
  1572. // Handle Heated Chamber Temp Errors, Heating Watch, etc.
  1573. TERN_(HAS_HEATED_CHAMBER, manage_heated_chamber(ms));
  1574. // Handle Cooler Temp Errors, Cooling Watch, etc.
  1575. TERN_(HAS_COOLER, manage_cooler(ms));
  1576. #if ENABLED(LASER_COOLANT_FLOW_METER)
  1577. cooler.flowmeter_task(ms);
  1578. #if ENABLED(FLOWMETER_SAFETY)
  1579. if (cooler.check_flow_too_low()) {
  1580. TERN_(HAS_DISPLAY, if (cutter.enabled()) ui.flow_fault());
  1581. cutter.disable();
  1582. cutter.cutter_mode = CUTTER_MODE_ERROR; // Immediately kill stepper inline power output
  1583. }
  1584. #endif
  1585. #endif
  1586. UNUSED(ms);
  1587. }
  1588. #define TEMP_AD595(RAW) ((RAW) * 5.0 * 100.0 / float(HAL_ADC_RANGE) / (OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET)
  1589. #define TEMP_AD8495(RAW) ((RAW) * 6.6 * 100.0 / float(HAL_ADC_RANGE) / (OVERSAMPLENR) * (TEMP_SENSOR_AD8495_GAIN) + TEMP_SENSOR_AD8495_OFFSET)
  1590. /**
  1591. * Bisect search for the range of the 'raw' value, then interpolate
  1592. * proportionally between the under and over values.
  1593. */
  1594. #define SCAN_THERMISTOR_TABLE(TBL,LEN) do{ \
  1595. uint8_t l = 0, r = LEN, m; \
  1596. for (;;) { \
  1597. m = (l + r) >> 1; \
  1598. if (!m) return celsius_t(pgm_read_word(&TBL[0].celsius)); \
  1599. if (m == l || m == r) return celsius_t(pgm_read_word(&TBL[LEN-1].celsius)); \
  1600. raw_adc_t v00 = pgm_read_word(&TBL[m-1].value), \
  1601. v10 = pgm_read_word(&TBL[m-0].value); \
  1602. if (raw < v00) r = m; \
  1603. else if (raw > v10) l = m; \
  1604. else { \
  1605. const celsius_t v01 = celsius_t(pgm_read_word(&TBL[m-1].celsius)), \
  1606. v11 = celsius_t(pgm_read_word(&TBL[m-0].celsius)); \
  1607. return v01 + (raw - v00) * float(v11 - v01) / float(v10 - v00); \
  1608. } \
  1609. } \
  1610. }while(0)
  1611. #if HAS_USER_THERMISTORS
  1612. user_thermistor_t Temperature::user_thermistor[USER_THERMISTORS]; // Initialized by settings.load()
  1613. void Temperature::reset_user_thermistors() {
  1614. user_thermistor_t default_user_thermistor[USER_THERMISTORS] = {
  1615. #if TEMP_SENSOR_0_IS_CUSTOM
  1616. { true, HOTEND0_SH_C_COEFF, 0, HOTEND0_PULLUP_RESISTOR_OHMS, HOTEND0_RESISTANCE_25C_OHMS, 0, 0, HOTEND0_BETA, 0 },
  1617. #endif
  1618. #if TEMP_SENSOR_1_IS_CUSTOM
  1619. { true, HOTEND1_SH_C_COEFF, 0, HOTEND1_PULLUP_RESISTOR_OHMS, HOTEND1_RESISTANCE_25C_OHMS, 0, 0, HOTEND1_BETA, 0 },
  1620. #endif
  1621. #if TEMP_SENSOR_2_IS_CUSTOM
  1622. { true, HOTEND2_SH_C_COEFF, 0, HOTEND2_PULLUP_RESISTOR_OHMS, HOTEND2_RESISTANCE_25C_OHMS, 0, 0, HOTEND2_BETA, 0 },
  1623. #endif
  1624. #if TEMP_SENSOR_3_IS_CUSTOM
  1625. { true, HOTEND3_SH_C_COEFF, 0, HOTEND3_PULLUP_RESISTOR_OHMS, HOTEND3_RESISTANCE_25C_OHMS, 0, 0, HOTEND3_BETA, 0 },
  1626. #endif
  1627. #if TEMP_SENSOR_4_IS_CUSTOM
  1628. { true, HOTEND4_SH_C_COEFF, 0, HOTEND4_PULLUP_RESISTOR_OHMS, HOTEND4_RESISTANCE_25C_OHMS, 0, 0, HOTEND4_BETA, 0 },
  1629. #endif
  1630. #if TEMP_SENSOR_5_IS_CUSTOM
  1631. { true, HOTEND5_SH_C_COEFF, 0, HOTEND5_PULLUP_RESISTOR_OHMS, HOTEND5_RESISTANCE_25C_OHMS, 0, 0, HOTEND5_BETA, 0 },
  1632. #endif
  1633. #if TEMP_SENSOR_6_IS_CUSTOM
  1634. { true, HOTEND6_SH_C_COEFF, 0, HOTEND6_PULLUP_RESISTOR_OHMS, HOTEND6_RESISTANCE_25C_OHMS, 0, 0, HOTEND6_BETA, 0 },
  1635. #endif
  1636. #if TEMP_SENSOR_7_IS_CUSTOM
  1637. { true, HOTEND7_SH_C_COEFF, 0, HOTEND7_PULLUP_RESISTOR_OHMS, HOTEND7_RESISTANCE_25C_OHMS, 0, 0, HOTEND7_BETA, 0 },
  1638. #endif
  1639. #if TEMP_SENSOR_BED_IS_CUSTOM
  1640. { true, BED_SH_C_COEFF, 0, BED_PULLUP_RESISTOR_OHMS, BED_RESISTANCE_25C_OHMS, 0, 0, BED_BETA, 0 },
  1641. #endif
  1642. #if TEMP_SENSOR_CHAMBER_IS_CUSTOM
  1643. { true, CHAMBER_SH_C_COEFF, 0, CHAMBER_PULLUP_RESISTOR_OHMS, CHAMBER_RESISTANCE_25C_OHMS, 0, 0, CHAMBER_BETA, 0 },
  1644. #endif
  1645. #if TEMP_SENSOR_COOLER_IS_CUSTOM
  1646. { true, COOLER_SH_C_COEFF, 0, COOLER_PULLUP_RESISTOR_OHMS, COOLER_RESISTANCE_25C_OHMS, 0, 0, COOLER_BETA, 0 },
  1647. #endif
  1648. #if TEMP_SENSOR_PROBE_IS_CUSTOM
  1649. { true, PROBE_SH_C_COEFF, 0, PROBE_PULLUP_RESISTOR_OHMS, PROBE_RESISTANCE_25C_OHMS, 0, 0, PROBE_BETA, 0 },
  1650. #endif
  1651. #if TEMP_SENSOR_BOARD_IS_CUSTOM
  1652. { true, BOARD_SH_C_COEFF, 0, BOARD_PULLUP_RESISTOR_OHMS, BOARD_RESISTANCE_25C_OHMS, 0, 0, BOARD_BETA, 0 },
  1653. #endif
  1654. #if TEMP_SENSOR_REDUNDANT_IS_CUSTOM
  1655. { true, REDUNDANT_SH_C_COEFF, 0, REDUNDANT_PULLUP_RESISTOR_OHMS, REDUNDANT_RESISTANCE_25C_OHMS, 0, 0, REDUNDANT_BETA, 0 },
  1656. #endif
  1657. };
  1658. COPY(user_thermistor, default_user_thermistor);
  1659. }
  1660. void Temperature::M305_report(const uint8_t t_index, const bool forReplay/*=true*/) {
  1661. gcode.report_heading_etc(forReplay, F(STR_USER_THERMISTORS));
  1662. SERIAL_ECHOPGM(" M305 P", AS_DIGIT(t_index));
  1663. const user_thermistor_t &t = user_thermistor[t_index];
  1664. SERIAL_ECHOPAIR_F(" R", t.series_res, 1);
  1665. SERIAL_ECHOPAIR_F_P(SP_T_STR, t.res_25, 1);
  1666. SERIAL_ECHOPAIR_F_P(SP_B_STR, t.beta, 1);
  1667. SERIAL_ECHOPAIR_F_P(SP_C_STR, t.sh_c_coeff, 9);
  1668. SERIAL_ECHOPGM(" ; ");
  1669. SERIAL_ECHOF(
  1670. TERN_(TEMP_SENSOR_0_IS_CUSTOM, t_index == CTI_HOTEND_0 ? F("HOTEND 0") :)
  1671. TERN_(TEMP_SENSOR_1_IS_CUSTOM, t_index == CTI_HOTEND_1 ? F("HOTEND 1") :)
  1672. TERN_(TEMP_SENSOR_2_IS_CUSTOM, t_index == CTI_HOTEND_2 ? F("HOTEND 2") :)
  1673. TERN_(TEMP_SENSOR_3_IS_CUSTOM, t_index == CTI_HOTEND_3 ? F("HOTEND 3") :)
  1674. TERN_(TEMP_SENSOR_4_IS_CUSTOM, t_index == CTI_HOTEND_4 ? F("HOTEND 4") :)
  1675. TERN_(TEMP_SENSOR_5_IS_CUSTOM, t_index == CTI_HOTEND_5 ? F("HOTEND 5") :)
  1676. TERN_(TEMP_SENSOR_6_IS_CUSTOM, t_index == CTI_HOTEND_6 ? F("HOTEND 6") :)
  1677. TERN_(TEMP_SENSOR_7_IS_CUSTOM, t_index == CTI_HOTEND_7 ? F("HOTEND 7") :)
  1678. TERN_(TEMP_SENSOR_BED_IS_CUSTOM, t_index == CTI_BED ? F("BED") :)
  1679. TERN_(TEMP_SENSOR_CHAMBER_IS_CUSTOM, t_index == CTI_CHAMBER ? F("CHAMBER") :)
  1680. TERN_(TEMP_SENSOR_COOLER_IS_CUSTOM, t_index == CTI_COOLER ? F("COOLER") :)
  1681. TERN_(TEMP_SENSOR_PROBE_IS_CUSTOM, t_index == CTI_PROBE ? F("PROBE") :)
  1682. TERN_(TEMP_SENSOR_BOARD_IS_CUSTOM, t_index == CTI_BOARD ? F("BOARD") :)
  1683. TERN_(TEMP_SENSOR_REDUNDANT_IS_CUSTOM, t_index == CTI_REDUNDANT ? F("REDUNDANT") :)
  1684. nullptr
  1685. );
  1686. SERIAL_EOL();
  1687. }
  1688. celsius_float_t Temperature::user_thermistor_to_deg_c(const uint8_t t_index, const raw_adc_t raw) {
  1689. if (!WITHIN(t_index, 0, COUNT(user_thermistor) - 1)) return 25;
  1690. user_thermistor_t &t = user_thermistor[t_index];
  1691. if (t.pre_calc) { // pre-calculate some variables
  1692. t.pre_calc = false;
  1693. t.res_25_recip = 1.0f / t.res_25;
  1694. t.res_25_log = logf(t.res_25);
  1695. t.beta_recip = 1.0f / t.beta;
  1696. t.sh_alpha = RECIPROCAL(THERMISTOR_RESISTANCE_NOMINAL_C - (THERMISTOR_ABS_ZERO_C))
  1697. - (t.beta_recip * t.res_25_log) - (t.sh_c_coeff * cu(t.res_25_log));
  1698. }
  1699. // Maximum ADC value .. take into account the over sampling
  1700. constexpr raw_adc_t adc_max = MAX_RAW_THERMISTOR_VALUE;
  1701. const raw_adc_t adc_raw = constrain(raw, 1, adc_max - 1); // constrain to prevent divide-by-zero
  1702. const float adc_inverse = (adc_max - adc_raw) - 0.5f,
  1703. resistance = t.series_res * (adc_raw + 0.5f) / adc_inverse,
  1704. log_resistance = logf(resistance);
  1705. float value = t.sh_alpha;
  1706. value += log_resistance * t.beta_recip;
  1707. if (t.sh_c_coeff != 0)
  1708. value += t.sh_c_coeff * cu(log_resistance);
  1709. value = 1.0f / value;
  1710. // Return degrees C (up to 999, as the LCD only displays 3 digits)
  1711. return _MIN(value + THERMISTOR_ABS_ZERO_C, 999);
  1712. }
  1713. #endif
  1714. #if HAS_HOTEND
  1715. // Derived from RepRap FiveD extruder::getTemperature()
  1716. // For hot end temperature measurement.
  1717. celsius_float_t Temperature::analog_to_celsius_hotend(const raw_adc_t raw, const uint8_t e) {
  1718. if (e >= HOTENDS) {
  1719. SERIAL_ERROR_START();
  1720. SERIAL_ECHO(e);
  1721. SERIAL_ECHOLNPGM(STR_INVALID_EXTRUDER_NUM);
  1722. kill();
  1723. return 0;
  1724. }
  1725. switch (e) {
  1726. case 0:
  1727. #if TEMP_SENSOR_0_IS_CUSTOM
  1728. return user_thermistor_to_deg_c(CTI_HOTEND_0, raw);
  1729. #elif TEMP_SENSOR_IS_MAX_TC(0)
  1730. #if TEMP_SENSOR_0_IS_MAX31865
  1731. return TERN(LIB_INTERNAL_MAX31865,
  1732. max31865_0.temperature(raw),
  1733. max31865_0.temperature(MAX31865_SENSOR_OHMS_0, MAX31865_CALIBRATION_OHMS_0)
  1734. );
  1735. #else
  1736. return (int16_t)raw * 0.25;
  1737. #endif
  1738. #elif TEMP_SENSOR_0_IS_AD595
  1739. return TEMP_AD595(raw);
  1740. #elif TEMP_SENSOR_0_IS_AD8495
  1741. return TEMP_AD8495(raw);
  1742. #else
  1743. break;
  1744. #endif
  1745. case 1:
  1746. #if TEMP_SENSOR_1_IS_CUSTOM
  1747. return user_thermistor_to_deg_c(CTI_HOTEND_1, raw);
  1748. #elif TEMP_SENSOR_IS_MAX_TC(1)
  1749. #if TEMP_SENSOR_0_IS_MAX31865
  1750. return TERN(LIB_INTERNAL_MAX31865,
  1751. max31865_1.temperature(raw),
  1752. max31865_1.temperature(MAX31865_SENSOR_OHMS_1, MAX31865_CALIBRATION_OHMS_1)
  1753. );
  1754. #else
  1755. return (int16_t)raw * 0.25;
  1756. #endif
  1757. #elif TEMP_SENSOR_1_IS_AD595
  1758. return TEMP_AD595(raw);
  1759. #elif TEMP_SENSOR_1_IS_AD8495
  1760. return TEMP_AD8495(raw);
  1761. #else
  1762. break;
  1763. #endif
  1764. case 2:
  1765. #if TEMP_SENSOR_2_IS_CUSTOM
  1766. return user_thermistor_to_deg_c(CTI_HOTEND_2, raw);
  1767. #elif TEMP_SENSOR_2_IS_AD595
  1768. return TEMP_AD595(raw);
  1769. #elif TEMP_SENSOR_2_IS_AD8495
  1770. return TEMP_AD8495(raw);
  1771. #else
  1772. break;
  1773. #endif
  1774. case 3:
  1775. #if TEMP_SENSOR_3_IS_CUSTOM
  1776. return user_thermistor_to_deg_c(CTI_HOTEND_3, raw);
  1777. #elif TEMP_SENSOR_3_IS_AD595
  1778. return TEMP_AD595(raw);
  1779. #elif TEMP_SENSOR_3_IS_AD8495
  1780. return TEMP_AD8495(raw);
  1781. #else
  1782. break;
  1783. #endif
  1784. case 4:
  1785. #if TEMP_SENSOR_4_IS_CUSTOM
  1786. return user_thermistor_to_deg_c(CTI_HOTEND_4, raw);
  1787. #elif TEMP_SENSOR_4_IS_AD595
  1788. return TEMP_AD595(raw);
  1789. #elif TEMP_SENSOR_4_IS_AD8495
  1790. return TEMP_AD8495(raw);
  1791. #else
  1792. break;
  1793. #endif
  1794. case 5:
  1795. #if TEMP_SENSOR_5_IS_CUSTOM
  1796. return user_thermistor_to_deg_c(CTI_HOTEND_5, raw);
  1797. #elif TEMP_SENSOR_5_IS_AD595
  1798. return TEMP_AD595(raw);
  1799. #elif TEMP_SENSOR_5_IS_AD8495
  1800. return TEMP_AD8495(raw);
  1801. #else
  1802. break;
  1803. #endif
  1804. case 6:
  1805. #if TEMP_SENSOR_6_IS_CUSTOM
  1806. return user_thermistor_to_deg_c(CTI_HOTEND_6, raw);
  1807. #elif TEMP_SENSOR_6_IS_AD595
  1808. return TEMP_AD595(raw);
  1809. #elif TEMP_SENSOR_6_IS_AD8495
  1810. return TEMP_AD8495(raw);
  1811. #else
  1812. break;
  1813. #endif
  1814. case 7:
  1815. #if TEMP_SENSOR_7_IS_CUSTOM
  1816. return user_thermistor_to_deg_c(CTI_HOTEND_7, raw);
  1817. #elif TEMP_SENSOR_7_IS_AD595
  1818. return TEMP_AD595(raw);
  1819. #elif TEMP_SENSOR_7_IS_AD8495
  1820. return TEMP_AD8495(raw);
  1821. #else
  1822. break;
  1823. #endif
  1824. default: break;
  1825. }
  1826. #if HAS_HOTEND_THERMISTOR
  1827. // Thermistor with conversion table?
  1828. const temp_entry_t(*tt)[] = (temp_entry_t(*)[])(heater_ttbl_map[e]);
  1829. SCAN_THERMISTOR_TABLE((*tt), heater_ttbllen_map[e]);
  1830. #endif
  1831. return 0;
  1832. }
  1833. #endif // HAS_HOTEND
  1834. #if HAS_HEATED_BED
  1835. // For bed temperature measurement.
  1836. celsius_float_t Temperature::analog_to_celsius_bed(const raw_adc_t raw) {
  1837. #if TEMP_SENSOR_BED_IS_CUSTOM
  1838. return user_thermistor_to_deg_c(CTI_BED, raw);
  1839. #elif TEMP_SENSOR_BED_IS_THERMISTOR
  1840. SCAN_THERMISTOR_TABLE(TEMPTABLE_BED, TEMPTABLE_BED_LEN);
  1841. #elif TEMP_SENSOR_BED_IS_AD595
  1842. return TEMP_AD595(raw);
  1843. #elif TEMP_SENSOR_BED_IS_AD8495
  1844. return TEMP_AD8495(raw);
  1845. #else
  1846. UNUSED(raw);
  1847. return 0;
  1848. #endif
  1849. }
  1850. #endif // HAS_HEATED_BED
  1851. #if HAS_TEMP_CHAMBER
  1852. // For chamber temperature measurement.
  1853. celsius_float_t Temperature::analog_to_celsius_chamber(const raw_adc_t raw) {
  1854. #if TEMP_SENSOR_CHAMBER_IS_CUSTOM
  1855. return user_thermistor_to_deg_c(CTI_CHAMBER, raw);
  1856. #elif TEMP_SENSOR_CHAMBER_IS_THERMISTOR
  1857. SCAN_THERMISTOR_TABLE(TEMPTABLE_CHAMBER, TEMPTABLE_CHAMBER_LEN);
  1858. #elif TEMP_SENSOR_CHAMBER_IS_AD595
  1859. return TEMP_AD595(raw);
  1860. #elif TEMP_SENSOR_CHAMBER_IS_AD8495
  1861. return TEMP_AD8495(raw);
  1862. #else
  1863. UNUSED(raw);
  1864. return 0;
  1865. #endif
  1866. }
  1867. #endif // HAS_TEMP_CHAMBER
  1868. #if HAS_TEMP_COOLER
  1869. // For cooler temperature measurement.
  1870. celsius_float_t Temperature::analog_to_celsius_cooler(const raw_adc_t raw) {
  1871. #if TEMP_SENSOR_COOLER_IS_CUSTOM
  1872. return user_thermistor_to_deg_c(CTI_COOLER, raw);
  1873. #elif TEMP_SENSOR_COOLER_IS_THERMISTOR
  1874. SCAN_THERMISTOR_TABLE(TEMPTABLE_COOLER, TEMPTABLE_COOLER_LEN);
  1875. #elif TEMP_SENSOR_COOLER_IS_AD595
  1876. return TEMP_AD595(raw);
  1877. #elif TEMP_SENSOR_COOLER_IS_AD8495
  1878. return TEMP_AD8495(raw);
  1879. #else
  1880. UNUSED(raw);
  1881. return 0;
  1882. #endif
  1883. }
  1884. #endif // HAS_TEMP_COOLER
  1885. #if HAS_TEMP_PROBE
  1886. // For probe temperature measurement.
  1887. celsius_float_t Temperature::analog_to_celsius_probe(const raw_adc_t raw) {
  1888. #if TEMP_SENSOR_PROBE_IS_CUSTOM
  1889. return user_thermistor_to_deg_c(CTI_PROBE, raw);
  1890. #elif TEMP_SENSOR_PROBE_IS_THERMISTOR
  1891. SCAN_THERMISTOR_TABLE(TEMPTABLE_PROBE, TEMPTABLE_PROBE_LEN);
  1892. #elif TEMP_SENSOR_PROBE_IS_AD595
  1893. return TEMP_AD595(raw);
  1894. #elif TEMP_SENSOR_PROBE_IS_AD8495
  1895. return TEMP_AD8495(raw);
  1896. #else
  1897. UNUSED(raw);
  1898. return 0;
  1899. #endif
  1900. }
  1901. #endif // HAS_TEMP_PROBE
  1902. #if HAS_TEMP_BOARD
  1903. // For motherboard temperature measurement.
  1904. celsius_float_t Temperature::analog_to_celsius_board(const raw_adc_t raw) {
  1905. #if TEMP_SENSOR_BOARD_IS_CUSTOM
  1906. return user_thermistor_to_deg_c(CTI_BOARD, raw);
  1907. #elif TEMP_SENSOR_BOARD_IS_THERMISTOR
  1908. SCAN_THERMISTOR_TABLE(TEMPTABLE_BOARD, TEMPTABLE_BOARD_LEN);
  1909. #elif TEMP_SENSOR_BOARD_IS_AD595
  1910. return TEMP_AD595(raw);
  1911. #elif TEMP_SENSOR_BOARD_IS_AD8495
  1912. return TEMP_AD8495(raw);
  1913. #else
  1914. UNUSED(raw);
  1915. return 0;
  1916. #endif
  1917. }
  1918. #endif // HAS_TEMP_BOARD
  1919. #if HAS_TEMP_REDUNDANT
  1920. // For redundant temperature measurement.
  1921. celsius_float_t Temperature::analog_to_celsius_redundant(const raw_adc_t raw) {
  1922. #if TEMP_SENSOR_REDUNDANT_IS_CUSTOM
  1923. return user_thermistor_to_deg_c(CTI_REDUNDANT, raw);
  1924. #elif TEMP_SENSOR_IS_MAX_TC(REDUNDANT) && REDUNDANT_TEMP_MATCH(SOURCE, E0)
  1925. return TERN(TEMP_SENSOR_REDUNDANT_IS_MAX31865, max31865_0.temperature(raw), (int16_t)raw * 0.25);
  1926. #elif TEMP_SENSOR_IS_MAX_TC(REDUNDANT) && REDUNDANT_TEMP_MATCH(SOURCE, E1)
  1927. return TERN(TEMP_SENSOR_REDUNDANT_IS_MAX31865, max31865_1.temperature(raw), (int16_t)raw * 0.25);
  1928. #elif TEMP_SENSOR_REDUNDANT_IS_THERMISTOR
  1929. SCAN_THERMISTOR_TABLE(TEMPTABLE_REDUNDANT, TEMPTABLE_REDUNDANT_LEN);
  1930. #elif TEMP_SENSOR_REDUNDANT_IS_AD595
  1931. return TEMP_AD595(raw);
  1932. #elif TEMP_SENSOR_REDUNDANT_IS_AD8495
  1933. return TEMP_AD8495(raw);
  1934. #else
  1935. UNUSED(raw);
  1936. return 0;
  1937. #endif
  1938. }
  1939. #endif // HAS_TEMP_REDUNDANT
  1940. /**
  1941. * Convert the raw sensor readings into actual Celsius temperatures and
  1942. * validate raw temperatures. Bad readings generate min/maxtemp errors.
  1943. *
  1944. * The raw values are generated entirely in interrupt context, and this
  1945. * method is called from normal context once 'raw_temps_ready' has been
  1946. * set by update_raw_temperatures().
  1947. *
  1948. * The watchdog is dependent on this method. If 'raw_temps_ready' stops
  1949. * being set by the interrupt so that this method is not called for over
  1950. * 4 seconds then something has gone afoul and the machine will be reset.
  1951. */
  1952. void Temperature::updateTemperaturesFromRawValues() {
  1953. hal.watchdog_refresh(); // Reset because raw_temps_ready was set by the interrupt
  1954. #if TEMP_SENSOR_IS_MAX_TC(0)
  1955. temp_hotend[0].setraw(READ_MAX_TC(0));
  1956. #endif
  1957. #if TEMP_SENSOR_IS_MAX_TC(1)
  1958. temp_hotend[1].setraw(READ_MAX_TC(1));
  1959. #endif
  1960. #if TEMP_SENSOR_IS_MAX_TC(REDUNDANT)
  1961. temp_redundant.setraw(READ_MAX_TC(HEATER_ID(TEMP_SENSOR_REDUNDANT_SOURCE)));
  1962. #endif
  1963. #if HAS_HOTEND
  1964. HOTEND_LOOP() temp_hotend[e].celsius = analog_to_celsius_hotend(temp_hotend[e].getraw(), e);
  1965. #endif
  1966. TERN_(HAS_HEATED_BED, temp_bed.celsius = analog_to_celsius_bed(temp_bed.getraw()));
  1967. TERN_(HAS_TEMP_CHAMBER, temp_chamber.celsius = analog_to_celsius_chamber(temp_chamber.getraw()));
  1968. TERN_(HAS_TEMP_COOLER, temp_cooler.celsius = analog_to_celsius_cooler(temp_cooler.getraw()));
  1969. TERN_(HAS_TEMP_PROBE, temp_probe.celsius = analog_to_celsius_probe(temp_probe.getraw()));
  1970. TERN_(HAS_TEMP_BOARD, temp_board.celsius = analog_to_celsius_board(temp_board.getraw()));
  1971. TERN_(HAS_TEMP_REDUNDANT, temp_redundant.celsius = analog_to_celsius_redundant(temp_redundant.getraw()));
  1972. TERN_(FILAMENT_WIDTH_SENSOR, filwidth.update_measured_mm());
  1973. TERN_(HAS_POWER_MONITOR, power_monitor.capture_values());
  1974. #if HAS_HOTEND
  1975. static constexpr int8_t temp_dir[] = {
  1976. #if TEMP_SENSOR_IS_ANY_MAX_TC(0)
  1977. 0
  1978. #else
  1979. TEMPDIR(0)
  1980. #endif
  1981. #if HAS_MULTI_HOTEND
  1982. #if TEMP_SENSOR_IS_ANY_MAX_TC(1)
  1983. , 0
  1984. #else
  1985. , TEMPDIR(1)
  1986. #endif
  1987. #if HOTENDS > 2
  1988. #define _TEMPDIR(N) , TEMPDIR(N)
  1989. REPEAT_S(2, HOTENDS, _TEMPDIR)
  1990. #endif
  1991. #endif
  1992. };
  1993. LOOP_L_N(e, COUNT(temp_dir)) {
  1994. const raw_adc_t r = temp_hotend[e].getraw();
  1995. const bool neg = temp_dir[e] < 0, pos = temp_dir[e] > 0;
  1996. if ((neg && r < temp_range[e].raw_max) || (pos && r > temp_range[e].raw_max))
  1997. max_temp_error((heater_id_t)e);
  1998. const bool heater_on = temp_hotend[e].target > 0;
  1999. if (heater_on && ((neg && r > temp_range[e].raw_min) || (pos && r < temp_range[e].raw_min))) {
  2000. #if MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED > 1
  2001. if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
  2002. #endif
  2003. min_temp_error((heater_id_t)e);
  2004. }
  2005. #if MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED > 1
  2006. else
  2007. consecutive_low_temperature_error[e] = 0;
  2008. #endif
  2009. }
  2010. #endif // HAS_HOTEND
  2011. #define TP_CMP(S,A,B) (TEMPDIR(S) < 0 ? ((A)<(B)) : ((A)>(B)))
  2012. #if ENABLED(THERMAL_PROTECTION_BED)
  2013. if (TP_CMP(BED, temp_bed.getraw(), maxtemp_raw_BED)) max_temp_error(H_BED);
  2014. if (temp_bed.target > 0 && TP_CMP(BED, mintemp_raw_BED, temp_bed.getraw())) min_temp_error(H_BED);
  2015. #endif
  2016. #if BOTH(HAS_HEATED_CHAMBER, THERMAL_PROTECTION_CHAMBER)
  2017. if (TP_CMP(CHAMBER, temp_chamber.getraw(), maxtemp_raw_CHAMBER)) max_temp_error(H_CHAMBER);
  2018. if (temp_chamber.target > 0 && TP_CMP(CHAMBER, mintemp_raw_CHAMBER, temp_chamber.getraw())) min_temp_error(H_CHAMBER);
  2019. #endif
  2020. #if BOTH(HAS_COOLER, THERMAL_PROTECTION_COOLER)
  2021. if (cutter.unitPower > 0 && TP_CMP(COOLER, temp_cooler.getraw(), maxtemp_raw_COOLER)) max_temp_error(H_COOLER);
  2022. if (TP_CMP(COOLER, mintemp_raw_COOLER, temp_cooler.getraw())) min_temp_error(H_COOLER);
  2023. #endif
  2024. #if BOTH(HAS_TEMP_BOARD, THERMAL_PROTECTION_BOARD)
  2025. if (TP_CMP(BOARD, temp_board.getraw(), maxtemp_raw_BOARD)) max_temp_error(H_BOARD);
  2026. if (TP_CMP(BOARD, mintemp_raw_BOARD, temp_board.getraw())) min_temp_error(H_BOARD);
  2027. #endif
  2028. #undef TP_CMP
  2029. } // Temperature::updateTemperaturesFromRawValues
  2030. /**
  2031. * Initialize the temperature manager
  2032. *
  2033. * The manager is implemented by periodic calls to task()
  2034. *
  2035. * - Init (and disable) SPI thermocouples like MAX6675 and MAX31865
  2036. * - Disable RUMBA JTAG to accommodate a thermocouple extension
  2037. * - Read-enable thermistors with a read-enable pin
  2038. * - Init HEATER and COOLER pins for OUTPUT in OFF state
  2039. * - Init the FAN pins as PWM or OUTPUT
  2040. * - Init the SPI interface for SPI thermocouples
  2041. * - Init ADC according to the HAL
  2042. * - Set thermistor pins to analog inputs according to the HAL
  2043. * - Start the Temperature ISR timer
  2044. * - Init the AUTO FAN pins as PWM or OUTPUT
  2045. * - Wait 250ms for temperatures to settle
  2046. * - Init temp_range[], used for catching min/maxtemp
  2047. */
  2048. void Temperature::init() {
  2049. TERN_(PROBING_HEATERS_OFF, paused_for_probing = false);
  2050. #if BOTH(PIDTEMP, PID_EXTRUSION_SCALING)
  2051. pes_e_position = 0;
  2052. #endif
  2053. // Init (and disable) SPI thermocouples
  2054. #if TEMP_SENSOR_IS_ANY_MAX_TC(0) && PIN_EXISTS(TEMP_0_CS)
  2055. OUT_WRITE(TEMP_0_CS_PIN, HIGH);
  2056. #endif
  2057. #if TEMP_SENSOR_IS_ANY_MAX_TC(1) && PIN_EXISTS(TEMP_1_CS)
  2058. OUT_WRITE(TEMP_1_CS_PIN, HIGH);
  2059. #endif
  2060. // Setup objects for library-based polling of MAX TCs
  2061. #if HAS_MAXTC_LIBRARIES
  2062. #define _MAX31865_WIRES(n) MAX31865_##n##WIRE
  2063. #define MAX31865_WIRES(n) _MAX31865_WIRES(n)
  2064. #if TEMP_SENSOR_IS_MAX(0, 6675) && HAS_MAX6675_LIBRARY
  2065. max6675_0.begin();
  2066. #elif TEMP_SENSOR_IS_MAX(0, 31855) && HAS_MAX31855_LIBRARY
  2067. max31855_0.begin();
  2068. #elif TEMP_SENSOR_IS_MAX(0, 31865)
  2069. max31865_0.begin(
  2070. MAX31865_WIRES(MAX31865_SENSOR_WIRES_0) // MAX31865_2WIRE, MAX31865_3WIRE, MAX31865_4WIRE
  2071. OPTARG(LIB_INTERNAL_MAX31865, MAX31865_SENSOR_OHMS_0, MAX31865_CALIBRATION_OHMS_0, MAX31865_WIRE_OHMS_0)
  2072. );
  2073. #endif
  2074. #if TEMP_SENSOR_IS_MAX(1, 6675) && HAS_MAX6675_LIBRARY
  2075. max6675_1.begin();
  2076. #elif TEMP_SENSOR_IS_MAX(1, 31855) && HAS_MAX31855_LIBRARY
  2077. max31855_1.begin();
  2078. #elif TEMP_SENSOR_IS_MAX(1, 31865)
  2079. max31865_1.begin(
  2080. MAX31865_WIRES(MAX31865_SENSOR_WIRES_1) // MAX31865_2WIRE, MAX31865_3WIRE, MAX31865_4WIRE
  2081. OPTARG(LIB_INTERNAL_MAX31865, MAX31865_SENSOR_OHMS_1, MAX31865_CALIBRATION_OHMS_1, MAX31865_WIRE_OHMS_1)
  2082. );
  2083. #endif
  2084. #undef MAX31865_WIRES
  2085. #undef _MAX31865_WIRES
  2086. #endif
  2087. #if MB(RUMBA)
  2088. // Disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  2089. #define _AD(N) (TEMP_SENSOR_##N##_IS_AD595 || TEMP_SENSOR_##N##_IS_AD8495)
  2090. #if _AD(0) || _AD(1) || _AD(2) || _AD(BED) || _AD(CHAMBER) || _AD(REDUNDANT)
  2091. MCUCR = _BV(JTD);
  2092. MCUCR = _BV(JTD);
  2093. #endif
  2094. #endif
  2095. // Thermistor activation by MCU pin
  2096. #if PIN_EXISTS(TEMP_0_TR_ENABLE)
  2097. OUT_WRITE(TEMP_0_TR_ENABLE_PIN, (
  2098. #if TEMP_SENSOR_IS_ANY_MAX_TC(0)
  2099. HIGH
  2100. #else
  2101. LOW
  2102. #endif
  2103. ));
  2104. #endif
  2105. #if PIN_EXISTS(TEMP_1_TR_ENABLE)
  2106. OUT_WRITE(TEMP_1_TR_ENABLE_PIN, (
  2107. #if TEMP_SENSOR_IS_ANY_MAX_TC(1)
  2108. HIGH
  2109. #else
  2110. LOW
  2111. #endif
  2112. ));
  2113. #endif
  2114. #if ENABLED(MPCTEMP)
  2115. HOTEND_LOOP() temp_hotend[e].modeled_block_temp = NAN;
  2116. #endif
  2117. #if HAS_HEATER_0
  2118. #ifdef BOARD_OPENDRAIN_MOSFETS
  2119. OUT_WRITE_OD(HEATER_0_PIN, HEATER_0_INVERTING);
  2120. #else
  2121. OUT_WRITE(HEATER_0_PIN, HEATER_0_INVERTING);
  2122. #endif
  2123. #endif
  2124. #if HAS_HEATER_1
  2125. OUT_WRITE(HEATER_1_PIN, HEATER_1_INVERTING);
  2126. #endif
  2127. #if HAS_HEATER_2
  2128. OUT_WRITE(HEATER_2_PIN, HEATER_2_INVERTING);
  2129. #endif
  2130. #if HAS_HEATER_3
  2131. OUT_WRITE(HEATER_3_PIN, HEATER_3_INVERTING);
  2132. #endif
  2133. #if HAS_HEATER_4
  2134. OUT_WRITE(HEATER_4_PIN, HEATER_4_INVERTING);
  2135. #endif
  2136. #if HAS_HEATER_5
  2137. OUT_WRITE(HEATER_5_PIN, HEATER_5_INVERTING);
  2138. #endif
  2139. #if HAS_HEATER_6
  2140. OUT_WRITE(HEATER_6_PIN, HEATER_6_INVERTING);
  2141. #endif
  2142. #if HAS_HEATER_7
  2143. OUT_WRITE(HEATER_7_PIN, HEATER_7_INVERTING);
  2144. #endif
  2145. #if HAS_HEATED_BED
  2146. #ifdef BOARD_OPENDRAIN_MOSFETS
  2147. OUT_WRITE_OD(HEATER_BED_PIN, HEATER_BED_INVERTING);
  2148. #else
  2149. OUT_WRITE(HEATER_BED_PIN, HEATER_BED_INVERTING);
  2150. #endif
  2151. #endif
  2152. #if HAS_HEATED_CHAMBER
  2153. OUT_WRITE(HEATER_CHAMBER_PIN, HEATER_CHAMBER_INVERTING);
  2154. #endif
  2155. #if HAS_COOLER
  2156. OUT_WRITE(COOLER_PIN, COOLER_INVERTING);
  2157. #endif
  2158. #if HAS_FAN0
  2159. INIT_FAN_PIN(FAN_PIN);
  2160. #endif
  2161. #if HAS_FAN1
  2162. INIT_FAN_PIN(FAN1_PIN);
  2163. #endif
  2164. #if HAS_FAN2
  2165. INIT_FAN_PIN(FAN2_PIN);
  2166. #endif
  2167. #if HAS_FAN3
  2168. INIT_FAN_PIN(FAN3_PIN);
  2169. #endif
  2170. #if HAS_FAN4
  2171. INIT_FAN_PIN(FAN4_PIN);
  2172. #endif
  2173. #if HAS_FAN5
  2174. INIT_FAN_PIN(FAN5_PIN);
  2175. #endif
  2176. #if HAS_FAN6
  2177. INIT_FAN_PIN(FAN6_PIN);
  2178. #endif
  2179. #if HAS_FAN7
  2180. INIT_FAN_PIN(FAN7_PIN);
  2181. #endif
  2182. #if ENABLED(USE_CONTROLLER_FAN)
  2183. INIT_FAN_PIN(CONTROLLER_FAN_PIN);
  2184. #endif
  2185. TERN_(HAS_MAXTC_SW_SPI, max_tc_spi.init());
  2186. hal.adc_init();
  2187. TERN_(HAS_TEMP_ADC_0, hal.adc_enable(TEMP_0_PIN));
  2188. TERN_(HAS_TEMP_ADC_1, hal.adc_enable(TEMP_1_PIN));
  2189. TERN_(HAS_TEMP_ADC_2, hal.adc_enable(TEMP_2_PIN));
  2190. TERN_(HAS_TEMP_ADC_3, hal.adc_enable(TEMP_3_PIN));
  2191. TERN_(HAS_TEMP_ADC_4, hal.adc_enable(TEMP_4_PIN));
  2192. TERN_(HAS_TEMP_ADC_5, hal.adc_enable(TEMP_5_PIN));
  2193. TERN_(HAS_TEMP_ADC_6, hal.adc_enable(TEMP_6_PIN));
  2194. TERN_(HAS_TEMP_ADC_7, hal.adc_enable(TEMP_7_PIN));
  2195. TERN_(HAS_JOY_ADC_X, hal.adc_enable(JOY_X_PIN));
  2196. TERN_(HAS_JOY_ADC_Y, hal.adc_enable(JOY_Y_PIN));
  2197. TERN_(HAS_JOY_ADC_Z, hal.adc_enable(JOY_Z_PIN));
  2198. TERN_(HAS_TEMP_ADC_BED, hal.adc_enable(TEMP_BED_PIN));
  2199. TERN_(HAS_TEMP_ADC_CHAMBER, hal.adc_enable(TEMP_CHAMBER_PIN));
  2200. TERN_(HAS_TEMP_ADC_PROBE, hal.adc_enable(TEMP_PROBE_PIN));
  2201. TERN_(HAS_TEMP_ADC_COOLER, hal.adc_enable(TEMP_COOLER_PIN));
  2202. TERN_(HAS_TEMP_ADC_BOARD, hal.adc_enable(TEMP_BOARD_PIN));
  2203. TERN_(HAS_TEMP_ADC_REDUNDANT, hal.adc_enable(TEMP_REDUNDANT_PIN));
  2204. TERN_(FILAMENT_WIDTH_SENSOR, hal.adc_enable(FILWIDTH_PIN));
  2205. TERN_(HAS_ADC_BUTTONS, hal.adc_enable(ADC_KEYPAD_PIN));
  2206. TERN_(POWER_MONITOR_CURRENT, hal.adc_enable(POWER_MONITOR_CURRENT_PIN));
  2207. TERN_(POWER_MONITOR_VOLTAGE, hal.adc_enable(POWER_MONITOR_VOLTAGE_PIN));
  2208. #if HAS_JOY_ADC_EN
  2209. SET_INPUT_PULLUP(JOY_EN_PIN);
  2210. #endif
  2211. HAL_timer_start(MF_TIMER_TEMP, TEMP_TIMER_FREQUENCY);
  2212. ENABLE_TEMPERATURE_INTERRUPT();
  2213. #if HAS_AUTO_FAN_0
  2214. INIT_E_AUTO_FAN_PIN(E0_AUTO_FAN_PIN);
  2215. #endif
  2216. #if HAS_AUTO_FAN_1 && !_EFANOVERLAP(1,0)
  2217. INIT_E_AUTO_FAN_PIN(E1_AUTO_FAN_PIN);
  2218. #endif
  2219. #if HAS_AUTO_FAN_2 && !(_EFANOVERLAP(2,0) || _EFANOVERLAP(2,1))
  2220. INIT_E_AUTO_FAN_PIN(E2_AUTO_FAN_PIN);
  2221. #endif
  2222. #if HAS_AUTO_FAN_3 && !(_EFANOVERLAP(3,0) || _EFANOVERLAP(3,1) || _EFANOVERLAP(3,2))
  2223. INIT_E_AUTO_FAN_PIN(E3_AUTO_FAN_PIN);
  2224. #endif
  2225. #if HAS_AUTO_FAN_4 && !(_EFANOVERLAP(4,0) || _EFANOVERLAP(4,1) || _EFANOVERLAP(4,2) || _EFANOVERLAP(4,3))
  2226. INIT_E_AUTO_FAN_PIN(E4_AUTO_FAN_PIN);
  2227. #endif
  2228. #if HAS_AUTO_FAN_5 && !(_EFANOVERLAP(5,0) || _EFANOVERLAP(5,1) || _EFANOVERLAP(5,2) || _EFANOVERLAP(5,3) || _EFANOVERLAP(5,4))
  2229. INIT_E_AUTO_FAN_PIN(E5_AUTO_FAN_PIN);
  2230. #endif
  2231. #if HAS_AUTO_FAN_6 && !(_EFANOVERLAP(6,0) || _EFANOVERLAP(6,1) || _EFANOVERLAP(6,2) || _EFANOVERLAP(6,3) || _EFANOVERLAP(6,4) || _EFANOVERLAP(6,5))
  2232. INIT_E_AUTO_FAN_PIN(E6_AUTO_FAN_PIN);
  2233. #endif
  2234. #if HAS_AUTO_FAN_7 && !(_EFANOVERLAP(7,0) || _EFANOVERLAP(7,1) || _EFANOVERLAP(7,2) || _EFANOVERLAP(7,3) || _EFANOVERLAP(7,4) || _EFANOVERLAP(7,5) || _EFANOVERLAP(7,6))
  2235. INIT_E_AUTO_FAN_PIN(E7_AUTO_FAN_PIN);
  2236. #endif
  2237. #if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E
  2238. INIT_CHAMBER_AUTO_FAN_PIN(CHAMBER_AUTO_FAN_PIN);
  2239. #endif
  2240. #if HAS_HOTEND
  2241. #define _TEMP_MIN_E(NR) do{ \
  2242. const celsius_t tmin_tmp = TERN(TEMP_SENSOR_##NR##_IS_CUSTOM, 0, int16_t(pgm_read_word(&TEMPTABLE_##NR [TEMP_SENSOR_##NR##_MINTEMP_IND].celsius))), \
  2243. tmin = _MAX(HEATER_##NR##_MINTEMP, tmin_tmp); \
  2244. temp_range[NR].mintemp = tmin; \
  2245. while (analog_to_celsius_hotend(temp_range[NR].raw_min, NR) < tmin) \
  2246. temp_range[NR].raw_min += TEMPDIR(NR) * (OVERSAMPLENR); \
  2247. }while(0)
  2248. #define _TEMP_MAX_E(NR) do{ \
  2249. const celsius_t tmax_tmp = TERN(TEMP_SENSOR_##NR##_IS_CUSTOM, 2000, int16_t(pgm_read_word(&TEMPTABLE_##NR [TEMP_SENSOR_##NR##_MAXTEMP_IND].celsius)) - 1), \
  2250. tmax = _MIN(HEATER_##NR##_MAXTEMP, tmax_tmp); \
  2251. temp_range[NR].maxtemp = tmax; \
  2252. while (analog_to_celsius_hotend(temp_range[NR].raw_max, NR) > tmax) \
  2253. temp_range[NR].raw_max -= TEMPDIR(NR) * (OVERSAMPLENR); \
  2254. }while(0)
  2255. #define _MINMAX_TEST(N,M) (HOTENDS > N && TEMP_SENSOR_##N > 0 && TEMP_SENSOR_##N != 998 && TEMP_SENSOR_##N != 999 && defined(HEATER_##N##_##M##TEMP))
  2256. #if _MINMAX_TEST(0, MIN)
  2257. _TEMP_MIN_E(0);
  2258. #endif
  2259. #if _MINMAX_TEST(0, MAX)
  2260. _TEMP_MAX_E(0);
  2261. #endif
  2262. #if _MINMAX_TEST(1, MIN)
  2263. _TEMP_MIN_E(1);
  2264. #endif
  2265. #if _MINMAX_TEST(1, MAX)
  2266. _TEMP_MAX_E(1);
  2267. #endif
  2268. #if _MINMAX_TEST(2, MIN)
  2269. _TEMP_MIN_E(2);
  2270. #endif
  2271. #if _MINMAX_TEST(2, MAX)
  2272. _TEMP_MAX_E(2);
  2273. #endif
  2274. #if _MINMAX_TEST(3, MIN)
  2275. _TEMP_MIN_E(3);
  2276. #endif
  2277. #if _MINMAX_TEST(3, MAX)
  2278. _TEMP_MAX_E(3);
  2279. #endif
  2280. #if _MINMAX_TEST(4, MIN)
  2281. _TEMP_MIN_E(4);
  2282. #endif
  2283. #if _MINMAX_TEST(4, MAX)
  2284. _TEMP_MAX_E(4);
  2285. #endif
  2286. #if _MINMAX_TEST(5, MIN)
  2287. _TEMP_MIN_E(5);
  2288. #endif
  2289. #if _MINMAX_TEST(5, MAX)
  2290. _TEMP_MAX_E(5);
  2291. #endif
  2292. #if _MINMAX_TEST(6, MIN)
  2293. _TEMP_MIN_E(6);
  2294. #endif
  2295. #if _MINMAX_TEST(6, MAX)
  2296. _TEMP_MAX_E(6);
  2297. #endif
  2298. #if _MINMAX_TEST(7, MIN)
  2299. _TEMP_MIN_E(7);
  2300. #endif
  2301. #if _MINMAX_TEST(7, MAX)
  2302. _TEMP_MAX_E(7);
  2303. #endif
  2304. #endif // HAS_HOTEND
  2305. // TODO: combine these into the macros above
  2306. #if HAS_HEATED_BED
  2307. while (analog_to_celsius_bed(mintemp_raw_BED) < BED_MINTEMP) mintemp_raw_BED += TEMPDIR(BED) * (OVERSAMPLENR);
  2308. while (analog_to_celsius_bed(maxtemp_raw_BED) > BED_MAXTEMP) maxtemp_raw_BED -= TEMPDIR(BED) * (OVERSAMPLENR);
  2309. #endif
  2310. #if HAS_HEATED_CHAMBER
  2311. while (analog_to_celsius_chamber(mintemp_raw_CHAMBER) < CHAMBER_MINTEMP) mintemp_raw_CHAMBER += TEMPDIR(CHAMBER) * (OVERSAMPLENR);
  2312. while (analog_to_celsius_chamber(maxtemp_raw_CHAMBER) > CHAMBER_MAXTEMP) maxtemp_raw_CHAMBER -= TEMPDIR(CHAMBER) * (OVERSAMPLENR);
  2313. #endif
  2314. #if HAS_COOLER
  2315. while (analog_to_celsius_cooler(mintemp_raw_COOLER) > COOLER_MINTEMP) mintemp_raw_COOLER += TEMPDIR(COOLER) * (OVERSAMPLENR);
  2316. while (analog_to_celsius_cooler(maxtemp_raw_COOLER) < COOLER_MAXTEMP) maxtemp_raw_COOLER -= TEMPDIR(COOLER) * (OVERSAMPLENR);
  2317. #endif
  2318. #if BOTH(HAS_TEMP_BOARD, THERMAL_PROTECTION_BOARD)
  2319. while (analog_to_celsius_board(mintemp_raw_BOARD) < BOARD_MINTEMP) mintemp_raw_BOARD += TEMPDIR(BOARD) * (OVERSAMPLENR);
  2320. while (analog_to_celsius_board(maxtemp_raw_BOARD) > BOARD_MAXTEMP) maxtemp_raw_BOARD -= TEMPDIR(BOARD) * (OVERSAMPLENR);
  2321. #endif
  2322. #if HAS_TEMP_REDUNDANT
  2323. temp_redundant.target = &(
  2324. #if REDUNDANT_TEMP_MATCH(TARGET, COOLER) && HAS_TEMP_COOLER
  2325. temp_cooler
  2326. #elif REDUNDANT_TEMP_MATCH(TARGET, PROBE) && HAS_TEMP_PROBE
  2327. temp_probe
  2328. #elif REDUNDANT_TEMP_MATCH(TARGET, BOARD) && HAS_TEMP_BOARD
  2329. temp_board
  2330. #elif REDUNDANT_TEMP_MATCH(TARGET, CHAMBER) && HAS_TEMP_CHAMBER
  2331. temp_chamber
  2332. #elif REDUNDANT_TEMP_MATCH(TARGET, BED) && HAS_TEMP_BED
  2333. temp_bed
  2334. #else
  2335. temp_hotend[HEATER_ID(TEMP_SENSOR_REDUNDANT_TARGET)]
  2336. #endif
  2337. );
  2338. #endif
  2339. }
  2340. #if HAS_THERMAL_PROTECTION
  2341. #pragma GCC diagnostic push
  2342. #pragma GCC diagnostic ignored "-Wimplicit-fallthrough"
  2343. Temperature::tr_state_machine_t Temperature::tr_state_machine[NR_HEATER_RUNAWAY]; // = { { TRInactive, 0 } };
  2344. /**
  2345. * @brief Thermal Runaway state machine for a single heater
  2346. * @param current current measured temperature
  2347. * @param target current target temperature
  2348. * @param heater_id extruder index
  2349. * @param period_seconds missed temperature allowed time
  2350. * @param hysteresis_degc allowed distance from target
  2351. *
  2352. * TODO: Embed the last 3 parameters during init, if not less optimal
  2353. */
  2354. void Temperature::tr_state_machine_t::run(const_celsius_float_t current, const_celsius_float_t target, const heater_id_t heater_id, const uint16_t period_seconds, const celsius_t hysteresis_degc) {
  2355. #if HEATER_IDLE_HANDLER
  2356. // Convert the given heater_id_t to an idle array index
  2357. const IdleIndex idle_index = idle_index_for_id(heater_id);
  2358. #endif
  2359. /**
  2360. SERIAL_ECHO_START();
  2361. SERIAL_ECHOPGM("Thermal Runaway Running. Heater ID: ");
  2362. switch (heater_id) {
  2363. case H_BED: SERIAL_ECHOPGM("bed"); break;
  2364. case H_CHAMBER: SERIAL_ECHOPGM("chamber"); break;
  2365. default: SERIAL_ECHO(heater_id);
  2366. }
  2367. SERIAL_ECHOLNPGM(
  2368. " ; sizeof(running_temp):", sizeof(running_temp),
  2369. " ; State:", state, " ; Timer:", timer, " ; Temperature:", current, " ; Target Temp:", target
  2370. #if HEATER_IDLE_HANDLER
  2371. , " ; Idle Timeout:", heater_idle[idle_index].timed_out
  2372. #endif
  2373. );
  2374. */
  2375. #if ENABLED(THERMAL_PROTECTION_VARIANCE_MONITOR)
  2376. if (state == TRMalfunction) { // temperature invariance may continue, regardless of heater state
  2377. variance += ABS(current - last_temp); // no need for detection window now, a single change in variance is enough
  2378. last_temp = current;
  2379. if (!NEAR_ZERO(variance)) {
  2380. variance_timer = millis() + SEC_TO_MS(period_seconds);
  2381. variance = 0.0;
  2382. state = TRStable; // resume from where we detected the problem
  2383. }
  2384. }
  2385. #endif
  2386. if (TERN1(THERMAL_PROTECTION_VARIANCE_MONITOR, state != TRMalfunction)) {
  2387. // If the heater idle timeout expires, restart
  2388. if (TERN0(HEATER_IDLE_HANDLER, heater_idle[idle_index].timed_out)) {
  2389. state = TRInactive;
  2390. running_temp = 0;
  2391. TERN_(THERMAL_PROTECTION_VARIANCE_MONITOR, variance_timer = 0);
  2392. }
  2393. else if (running_temp != target) { // If the target temperature changes, restart
  2394. running_temp = target;
  2395. state = target > 0 ? TRFirstHeating : TRInactive;
  2396. TERN_(THERMAL_PROTECTION_VARIANCE_MONITOR, variance_timer = 0);
  2397. }
  2398. }
  2399. switch (state) {
  2400. // Inactive state waits for a target temperature to be set
  2401. case TRInactive: break;
  2402. // When first heating, wait for the temperature to be reached then go to Stable state
  2403. case TRFirstHeating:
  2404. if (current < running_temp) break;
  2405. state = TRStable;
  2406. // While the temperature is stable watch for a bad temperature
  2407. case TRStable: {
  2408. #if ENABLED(ADAPTIVE_FAN_SLOWING)
  2409. if (adaptive_fan_slowing && heater_id >= 0) {
  2410. const int fan_index = _MIN(heater_id, FAN_COUNT - 1);
  2411. if (fan_speed[fan_index] == 0 || current >= running_temp - (hysteresis_degc * 0.25f))
  2412. fan_speed_scaler[fan_index] = 128;
  2413. else if (current >= running_temp - (hysteresis_degc * 0.3335f))
  2414. fan_speed_scaler[fan_index] = 96;
  2415. else if (current >= running_temp - (hysteresis_degc * 0.5f))
  2416. fan_speed_scaler[fan_index] = 64;
  2417. else if (current >= running_temp - (hysteresis_degc * 0.8f))
  2418. fan_speed_scaler[fan_index] = 32;
  2419. else
  2420. fan_speed_scaler[fan_index] = 0;
  2421. }
  2422. #endif
  2423. const millis_t now = millis();
  2424. #if ENABLED(THERMAL_PROTECTION_VARIANCE_MONITOR)
  2425. if (PENDING(now, variance_timer)) {
  2426. variance += ABS(current - last_temp);
  2427. last_temp = current;
  2428. }
  2429. else {
  2430. if (NEAR_ZERO(variance) && variance_timer) { // valid variance monitoring window
  2431. state = TRMalfunction;
  2432. break;
  2433. }
  2434. variance_timer = now + SEC_TO_MS(period_seconds);
  2435. variance = 0.0;
  2436. last_temp = current;
  2437. }
  2438. #endif
  2439. if (current >= running_temp - hysteresis_degc) {
  2440. timer = now + SEC_TO_MS(period_seconds);
  2441. break;
  2442. }
  2443. else if (PENDING(now, timer)) break;
  2444. state = TRRunaway;
  2445. } // fall through
  2446. case TRRunaway:
  2447. TERN_(HAS_DWIN_E3V2_BASIC, DWIN_Popup_Temperature(0));
  2448. _temp_error(heater_id, FPSTR(str_t_thermal_runaway), GET_TEXT_F(MSG_THERMAL_RUNAWAY));
  2449. #if ENABLED(THERMAL_PROTECTION_VARIANCE_MONITOR)
  2450. case TRMalfunction:
  2451. TERN_(HAS_DWIN_E3V2_BASIC, DWIN_Popup_Temperature(0));
  2452. _temp_error(heater_id, FPSTR(str_t_temp_malfunction), GET_TEXT_F(MSG_TEMP_MALFUNCTION));
  2453. #endif
  2454. }
  2455. }
  2456. #pragma GCC diagnostic pop
  2457. #endif // HAS_THERMAL_PROTECTION
  2458. void Temperature::disable_all_heaters() {
  2459. // Disable autotemp, unpause and reset everything
  2460. TERN_(AUTOTEMP, planner.autotemp_enabled = false);
  2461. TERN_(PROBING_HEATERS_OFF, pause_heaters(false));
  2462. #if HAS_HOTEND
  2463. HOTEND_LOOP() {
  2464. setTargetHotend(0, e);
  2465. temp_hotend[e].soft_pwm_amount = 0;
  2466. }
  2467. #endif
  2468. #if HAS_TEMP_HOTEND
  2469. #define DISABLE_HEATER(N) WRITE_HEATER_##N(LOW);
  2470. REPEAT(HOTENDS, DISABLE_HEATER);
  2471. #endif
  2472. #if HAS_HEATED_BED
  2473. setTargetBed(0);
  2474. temp_bed.soft_pwm_amount = 0;
  2475. WRITE_HEATER_BED(LOW);
  2476. #endif
  2477. #if HAS_HEATED_CHAMBER
  2478. setTargetChamber(0);
  2479. temp_chamber.soft_pwm_amount = 0;
  2480. WRITE_HEATER_CHAMBER(LOW);
  2481. #endif
  2482. #if HAS_COOLER
  2483. setTargetCooler(0);
  2484. temp_cooler.soft_pwm_amount = 0;
  2485. WRITE_HEATER_COOLER(LOW);
  2486. #endif
  2487. }
  2488. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  2489. bool Temperature::auto_job_over_threshold() {
  2490. #if HAS_HOTEND
  2491. HOTEND_LOOP() if (degTargetHotend(e) > (EXTRUDE_MINTEMP) / 2) return true;
  2492. #endif
  2493. return TERN0(HAS_HEATED_BED, degTargetBed() > BED_MINTEMP)
  2494. || TERN0(HAS_HEATED_CHAMBER, degTargetChamber() > CHAMBER_MINTEMP);
  2495. }
  2496. void Temperature::auto_job_check_timer(const bool can_start, const bool can_stop) {
  2497. if (auto_job_over_threshold()) {
  2498. if (can_start) startOrResumeJob();
  2499. }
  2500. else if (can_stop) {
  2501. print_job_timer.stop();
  2502. ui.reset_status();
  2503. }
  2504. }
  2505. #endif // PRINTJOB_TIMER_AUTOSTART
  2506. #if ENABLED(PROBING_HEATERS_OFF)
  2507. void Temperature::pause_heaters(const bool p) {
  2508. if (p != paused_for_probing) {
  2509. paused_for_probing = p;
  2510. if (p) {
  2511. HOTEND_LOOP() heater_idle[e].expire(); // Timeout immediately
  2512. TERN_(HAS_HEATED_BED, heater_idle[IDLE_INDEX_BED].expire()); // Timeout immediately
  2513. }
  2514. else {
  2515. HOTEND_LOOP() reset_hotend_idle_timer(e);
  2516. TERN_(HAS_HEATED_BED, reset_bed_idle_timer());
  2517. }
  2518. }
  2519. }
  2520. #endif // PROBING_HEATERS_OFF
  2521. #if EITHER(SINGLENOZZLE_STANDBY_TEMP, SINGLENOZZLE_STANDBY_FAN)
  2522. void Temperature::singlenozzle_change(const uint8_t old_tool, const uint8_t new_tool) {
  2523. #if ENABLED(SINGLENOZZLE_STANDBY_FAN)
  2524. singlenozzle_fan_speed[old_tool] = fan_speed[0];
  2525. fan_speed[0] = singlenozzle_fan_speed[new_tool];
  2526. #endif
  2527. #if ENABLED(SINGLENOZZLE_STANDBY_TEMP)
  2528. singlenozzle_temp[old_tool] = temp_hotend[0].target;
  2529. if (singlenozzle_temp[new_tool] && singlenozzle_temp[new_tool] != singlenozzle_temp[old_tool]) {
  2530. setTargetHotend(singlenozzle_temp[new_tool], 0);
  2531. TERN_(AUTOTEMP, planner.autotemp_update());
  2532. set_heating_message(0);
  2533. (void)wait_for_hotend(0, false); // Wait for heating or cooling
  2534. }
  2535. #endif
  2536. }
  2537. #endif // SINGLENOZZLE_STANDBY_TEMP || SINGLENOZZLE_STANDBY_FAN
  2538. #if HAS_MAX_TC
  2539. #ifndef THERMOCOUPLE_MAX_ERRORS
  2540. #define THERMOCOUPLE_MAX_ERRORS 15
  2541. #endif
  2542. /**
  2543. * @brief Read MAX Thermocouple temperature.
  2544. *
  2545. * Reads the thermocouple board via HW or SW SPI, using a library (LIB_USR_x) or raw SPI reads.
  2546. * Doesn't strictly return a temperature; returns an "ADC Value" (i.e. raw register content).
  2547. *
  2548. * @param hindex the hotend we're referencing (if MULTI_MAX_TC)
  2549. * @return integer representing the board's buffer, to be converted later if needed
  2550. */
  2551. raw_adc_t Temperature::read_max_tc(TERN_(HAS_MULTI_MAX_TC, const uint8_t hindex/*=0*/)) {
  2552. #define MAXTC_HEAT_INTERVAL 250UL
  2553. #if HAS_MAX31855
  2554. #define MAX_TC_ERROR_MASK 7 // D2-0: SCV, SCG, OC
  2555. #define MAX_TC_DISCARD_BITS 18 // Data D31-18; sign bit D31
  2556. #define MAX_TC_SPEED_BITS 3 // ~1MHz
  2557. #elif HAS_MAX31865
  2558. #define MAX_TC_ERROR_MASK 1 // D0 Bit on fault only
  2559. #define MAX_TC_DISCARD_BITS 1 // Data is in D15-D1
  2560. #define MAX_TC_SPEED_BITS 3 // ~1MHz
  2561. #else // MAX6675
  2562. #define MAX_TC_ERROR_MASK 3 // D2 only; 1 = open circuit
  2563. #define MAX_TC_DISCARD_BITS 3 // Data D15-D1
  2564. #define MAX_TC_SPEED_BITS 2 // ~2MHz
  2565. #endif
  2566. #if HAS_MULTI_MAX_TC
  2567. // Needed to return the correct temp when this is called between readings
  2568. static raw_adc_t max_tc_temp_previous[MAX_TC_COUNT] = { 0 };
  2569. #define THERMO_TEMP(I) max_tc_temp_previous[I]
  2570. #define THERMO_SEL(A,B) (hindex ? (B) : (A))
  2571. #define MAXTC_CS_WRITE(V) do{ switch (hindex) { case 1: WRITE(TEMP_1_CS_PIN, V); break; default: WRITE(TEMP_0_CS_PIN, V); } }while(0)
  2572. #else
  2573. // When we have only 1 max tc, THERMO_SEL will pick the appropriate sensor
  2574. // variable, and MAXTC_*() macros will be hardcoded to the correct CS pin.
  2575. constexpr uint8_t hindex = 0;
  2576. #define THERMO_TEMP(I) max_tc_temp
  2577. #if TEMP_SENSOR_IS_ANY_MAX_TC(0)
  2578. #define THERMO_SEL(A,B) A
  2579. #define MAXTC_CS_WRITE(V) WRITE(TEMP_0_CS_PIN, V)
  2580. #else
  2581. #define THERMO_SEL(A,B) B
  2582. #define MAXTC_CS_WRITE(V) WRITE(TEMP_1_CS_PIN, V)
  2583. #endif
  2584. #endif
  2585. static TERN(HAS_MAX31855, uint32_t, uint16_t) max_tc_temp = THERMO_SEL(
  2586. TEMP_SENSOR_0_MAX_TC_TMAX,
  2587. TEMP_SENSOR_1_MAX_TC_TMAX
  2588. );
  2589. static uint8_t max_tc_errors[MAX_TC_COUNT] = { 0 };
  2590. static millis_t next_max_tc_ms[MAX_TC_COUNT] = { 0 };
  2591. // Return last-read value between readings
  2592. const millis_t ms = millis();
  2593. if (PENDING(ms, next_max_tc_ms[hindex]))
  2594. return THERMO_TEMP(hindex);
  2595. next_max_tc_ms[hindex] = ms + MAXTC_HEAT_INTERVAL;
  2596. #if !HAS_MAXTC_LIBRARIES
  2597. max_tc_temp = 0;
  2598. #if !HAS_MAXTC_SW_SPI
  2599. // Initialize SPI using the default Hardware SPI bus.
  2600. // FIXME: spiBegin, spiRec and spiInit doesn't work when soft spi is used.
  2601. spiBegin();
  2602. spiInit(MAX_TC_SPEED_BITS);
  2603. #endif
  2604. MAXTC_CS_WRITE(LOW); // Enable MAXTC
  2605. DELAY_NS(100); // Ensure 100ns delay
  2606. // Read a big-endian temperature value without using a library
  2607. for (uint8_t i = sizeof(max_tc_temp); i--;) {
  2608. max_tc_temp |= TERN(HAS_MAXTC_SW_SPI, max_tc_spi.receive(), spiRec());
  2609. if (i > 0) max_tc_temp <<= 8; // shift left if not the last byte
  2610. }
  2611. MAXTC_CS_WRITE(HIGH); // Disable MAXTC
  2612. #else
  2613. #if HAS_MAX6675_LIBRARY
  2614. MAX6675 &max6675ref = THERMO_SEL(max6675_0, max6675_1);
  2615. max_tc_temp = max6675ref.readRaw16();
  2616. #endif
  2617. #if HAS_MAX31855_LIBRARY
  2618. MAX31855 &max855ref = THERMO_SEL(max31855_0, max31855_1);
  2619. max_tc_temp = max855ref.readRaw32();
  2620. #endif
  2621. #if HAS_MAX31865
  2622. MAX31865 &max865ref = THERMO_SEL(max31865_0, max31865_1);
  2623. max_tc_temp = TERN(LIB_INTERNAL_MAX31865, max865ref.readRaw(), max865ref.readRTD_with_Fault());
  2624. #endif
  2625. #endif
  2626. // Handle an error. If there have been more than THERMOCOUPLE_MAX_ERRORS, send an error over serial.
  2627. // Either way, return the TMAX for the thermocouple to trigger a max_temp_error()
  2628. if (max_tc_temp & MAX_TC_ERROR_MASK) {
  2629. max_tc_errors[hindex]++;
  2630. if (max_tc_errors[hindex] > THERMOCOUPLE_MAX_ERRORS) {
  2631. SERIAL_ERROR_START();
  2632. SERIAL_ECHOPGM("Temp measurement error! ");
  2633. #if HAS_MAX31855
  2634. SERIAL_ECHOPGM("MAX31855 Fault: (", max_tc_temp & 0x7, ") >> ");
  2635. if (max_tc_temp & 0x1)
  2636. SERIAL_ECHOLNPGM("Open Circuit");
  2637. else if (max_tc_temp & 0x2)
  2638. SERIAL_ECHOLNPGM("Short to GND");
  2639. else if (max_tc_temp & 0x4)
  2640. SERIAL_ECHOLNPGM("Short to VCC");
  2641. #elif HAS_MAX31865
  2642. const uint8_t fault_31865 = max865ref.readFault();
  2643. max865ref.clearFault();
  2644. if (fault_31865) {
  2645. SERIAL_EOL();
  2646. SERIAL_ECHOLNPGM("\nMAX31865 Fault: (", fault_31865, ") >>");
  2647. if (fault_31865 & MAX31865_FAULT_HIGHTHRESH)
  2648. SERIAL_ECHOLNPGM("RTD High Threshold");
  2649. if (fault_31865 & MAX31865_FAULT_LOWTHRESH)
  2650. SERIAL_ECHOLNPGM("RTD Low Threshold");
  2651. if (fault_31865 & MAX31865_FAULT_REFINLOW)
  2652. SERIAL_ECHOLNPGM("REFIN- > 0.85 x V bias");
  2653. if (fault_31865 & MAX31865_FAULT_REFINHIGH)
  2654. SERIAL_ECHOLNPGM("REFIN- < 0.85 x V bias (FORCE- open)");
  2655. if (fault_31865 & MAX31865_FAULT_RTDINLOW)
  2656. SERIAL_ECHOLNPGM("REFIN- < 0.85 x V bias (FORCE- open)");
  2657. if (fault_31865 & MAX31865_FAULT_OVUV)
  2658. SERIAL_ECHOLNPGM("Under/Over voltage");
  2659. }
  2660. #else // MAX6675
  2661. SERIAL_ECHOLNPGM("MAX6675 Fault: Open Circuit");
  2662. #endif
  2663. // Set thermocouple above max temperature (TMAX)
  2664. max_tc_temp = THERMO_SEL(TEMP_SENSOR_0_MAX_TC_TMAX, TEMP_SENSOR_1_MAX_TC_TMAX) << (MAX_TC_DISCARD_BITS + 1);
  2665. }
  2666. }
  2667. else {
  2668. max_tc_errors[hindex] = 0; // No error bit, reset error count
  2669. }
  2670. max_tc_temp >>= MAX_TC_DISCARD_BITS;
  2671. #if HAS_MAX31855
  2672. // Support negative temperature for MAX38155
  2673. if (max_tc_temp & 0x00002000) max_tc_temp |= 0xFFFFC000;
  2674. #endif
  2675. THERMO_TEMP(hindex) = max_tc_temp;
  2676. return max_tc_temp;
  2677. }
  2678. #endif // HAS_MAX_TC
  2679. /**
  2680. * Update raw temperatures
  2681. *
  2682. * Called by ISR => readings_ready when new temperatures have been set by updateTemperaturesFromRawValues.
  2683. * Applies all the accumulators to the current raw temperatures.
  2684. */
  2685. void Temperature::update_raw_temperatures() {
  2686. // TODO: can this be collapsed into a HOTEND_LOOP()?
  2687. #if HAS_TEMP_ADC_0 && !TEMP_SENSOR_IS_MAX_TC(0)
  2688. temp_hotend[0].update();
  2689. #endif
  2690. #if HAS_TEMP_ADC_1 && !TEMP_SENSOR_IS_MAX_TC(1)
  2691. temp_hotend[1].update();
  2692. #endif
  2693. #if HAS_TEMP_ADC_REDUNDANT && !TEMP_SENSOR_IS_MAX_TC(REDUNDANT)
  2694. temp_redundant.update();
  2695. #endif
  2696. TERN_(HAS_TEMP_ADC_2, temp_hotend[2].update());
  2697. TERN_(HAS_TEMP_ADC_3, temp_hotend[3].update());
  2698. TERN_(HAS_TEMP_ADC_4, temp_hotend[4].update());
  2699. TERN_(HAS_TEMP_ADC_5, temp_hotend[5].update());
  2700. TERN_(HAS_TEMP_ADC_6, temp_hotend[6].update());
  2701. TERN_(HAS_TEMP_ADC_7, temp_hotend[7].update());
  2702. TERN_(HAS_TEMP_ADC_BED, temp_bed.update());
  2703. TERN_(HAS_TEMP_ADC_CHAMBER, temp_chamber.update());
  2704. TERN_(HAS_TEMP_ADC_PROBE, temp_probe.update());
  2705. TERN_(HAS_TEMP_ADC_COOLER, temp_cooler.update());
  2706. TERN_(HAS_TEMP_ADC_BOARD, temp_board.update());
  2707. TERN_(HAS_JOY_ADC_X, joystick.x.update());
  2708. TERN_(HAS_JOY_ADC_Y, joystick.y.update());
  2709. TERN_(HAS_JOY_ADC_Z, joystick.z.update());
  2710. }
  2711. /**
  2712. * Called by the Temperature ISR when all the ADCs have been processed.
  2713. * Reset all the ADC accumulators for another round of updates.
  2714. */
  2715. void Temperature::readings_ready() {
  2716. // Update raw values only if they're not already set.
  2717. if (!raw_temps_ready) {
  2718. update_raw_temperatures();
  2719. raw_temps_ready = true;
  2720. }
  2721. // Filament Sensor - can be read any time since IIR filtering is used
  2722. TERN_(FILAMENT_WIDTH_SENSOR, filwidth.reading_ready());
  2723. #if HAS_HOTEND
  2724. HOTEND_LOOP() temp_hotend[e].reset();
  2725. #endif
  2726. TERN_(HAS_HEATED_BED, temp_bed.reset());
  2727. TERN_(HAS_TEMP_CHAMBER, temp_chamber.reset());
  2728. TERN_(HAS_TEMP_PROBE, temp_probe.reset());
  2729. TERN_(HAS_TEMP_COOLER, temp_cooler.reset());
  2730. TERN_(HAS_TEMP_BOARD, temp_board.reset());
  2731. TERN_(HAS_TEMP_REDUNDANT, temp_redundant.reset());
  2732. TERN_(HAS_JOY_ADC_X, joystick.x.reset());
  2733. TERN_(HAS_JOY_ADC_Y, joystick.y.reset());
  2734. TERN_(HAS_JOY_ADC_Z, joystick.z.reset());
  2735. }
  2736. /**
  2737. * Timer 0 is shared with millies so don't change the prescaler.
  2738. *
  2739. * On AVR this ISR uses the compare method so it runs at the base
  2740. * frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
  2741. * in OCR0B above (128 or halfway between OVFs).
  2742. *
  2743. * - Manage PWM to all the heaters and fan
  2744. * - Prepare or Measure one of the raw ADC sensor values
  2745. * - Check new temperature values for MIN/MAX errors (kill on error)
  2746. * - Step the babysteps value for each axis towards 0
  2747. * - For PINS_DEBUGGING, monitor and report endstop pins
  2748. * - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
  2749. * - Call planner.isr to count down its "ignore" time
  2750. */
  2751. HAL_TEMP_TIMER_ISR() {
  2752. HAL_timer_isr_prologue(MF_TIMER_TEMP);
  2753. Temperature::isr();
  2754. HAL_timer_isr_epilogue(MF_TIMER_TEMP);
  2755. }
  2756. #if ENABLED(SLOW_PWM_HEATERS) && !defined(MIN_STATE_TIME)
  2757. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  2758. #endif
  2759. class SoftPWM {
  2760. public:
  2761. uint8_t count;
  2762. inline bool add(const uint8_t mask, const uint8_t amount) {
  2763. count = (count & mask) + amount; return (count > mask);
  2764. }
  2765. #if ENABLED(SLOW_PWM_HEATERS)
  2766. bool state_heater;
  2767. uint8_t state_timer_heater;
  2768. inline void dec() { if (state_timer_heater > 0) state_timer_heater--; }
  2769. inline bool ready(const bool v) {
  2770. const bool rdy = !state_timer_heater;
  2771. if (rdy && state_heater != v) {
  2772. state_heater = v;
  2773. state_timer_heater = MIN_STATE_TIME;
  2774. }
  2775. return rdy;
  2776. }
  2777. #endif
  2778. };
  2779. /**
  2780. * Handle various ~1kHz tasks associated with temperature
  2781. * - Check laser safety timeout
  2782. * - Heater PWM (~1kHz with scaler)
  2783. * - LCD Button polling (~500Hz)
  2784. * - Start / Read one ADC sensor
  2785. * - Advance Babysteps
  2786. * - Endstop polling
  2787. * - Planner clean buffer
  2788. */
  2789. void Temperature::isr() {
  2790. // Shut down the laser if steppers are inactive for > LASER_SAFETY_TIMEOUT_MS ms
  2791. #if LASER_SAFETY_TIMEOUT_MS > 0
  2792. if (cutter.last_power_applied && ELAPSED(millis(), gcode.previous_move_ms + (LASER_SAFETY_TIMEOUT_MS))) {
  2793. cutter.power = 0; // Prevent planner idle from re-enabling power
  2794. cutter.apply_power(0);
  2795. }
  2796. #endif
  2797. static int8_t temp_count = -1;
  2798. static ADCSensorState adc_sensor_state = StartupDelay;
  2799. static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
  2800. // Avoid multiple loads of pwm_count
  2801. uint8_t pwm_count_tmp = pwm_count;
  2802. #if HAS_ADC_BUTTONS
  2803. static raw_adc_t raw_ADCKey_value = 0;
  2804. static bool ADCKey_pressed = false;
  2805. #endif
  2806. #if HAS_HOTEND
  2807. static SoftPWM soft_pwm_hotend[HOTENDS];
  2808. #endif
  2809. #if HAS_HEATED_BED
  2810. static SoftPWM soft_pwm_bed;
  2811. #endif
  2812. #if HAS_HEATED_CHAMBER
  2813. static SoftPWM soft_pwm_chamber;
  2814. #endif
  2815. #if HAS_COOLER
  2816. static SoftPWM soft_pwm_cooler;
  2817. #endif
  2818. #if BOTH(FAN_SOFT_PWM, USE_CONTROLLER_FAN)
  2819. static SoftPWM soft_pwm_controller;
  2820. #endif
  2821. #define WRITE_FAN(n, v) WRITE(FAN##n##_PIN, (v) ^ FAN_INVERTING)
  2822. #if DISABLED(SLOW_PWM_HEATERS)
  2823. #if ANY(HAS_HOTEND, HAS_HEATED_BED, HAS_HEATED_CHAMBER, HAS_COOLER, FAN_SOFT_PWM)
  2824. constexpr uint8_t pwm_mask = TERN0(SOFT_PWM_DITHER, _BV(SOFT_PWM_SCALE) - 1);
  2825. #define _PWM_MOD(N,S,T) do{ \
  2826. const bool on = S.add(pwm_mask, T.soft_pwm_amount); \
  2827. WRITE_HEATER_##N(on); \
  2828. }while(0)
  2829. #endif
  2830. /**
  2831. * Standard heater PWM modulation
  2832. */
  2833. if (pwm_count_tmp >= 127) {
  2834. pwm_count_tmp -= 127;
  2835. #if HAS_HOTEND
  2836. #define _PWM_MOD_E(N) _PWM_MOD(N,soft_pwm_hotend[N],temp_hotend[N]);
  2837. REPEAT(HOTENDS, _PWM_MOD_E);
  2838. #endif
  2839. #if HAS_HEATED_BED
  2840. _PWM_MOD(BED, soft_pwm_bed, temp_bed);
  2841. #endif
  2842. #if HAS_HEATED_CHAMBER
  2843. _PWM_MOD(CHAMBER, soft_pwm_chamber, temp_chamber);
  2844. #endif
  2845. #if HAS_COOLER
  2846. _PWM_MOD(COOLER, soft_pwm_cooler, temp_cooler);
  2847. #endif
  2848. #if ENABLED(FAN_SOFT_PWM)
  2849. #if ENABLED(USE_CONTROLLER_FAN)
  2850. WRITE(CONTROLLER_FAN_PIN, soft_pwm_controller.add(pwm_mask, soft_pwm_controller_speed));
  2851. #endif
  2852. #define _FAN_PWM(N) do{ \
  2853. uint8_t &spcf = soft_pwm_count_fan[N]; \
  2854. spcf = (spcf & pwm_mask) + (soft_pwm_amount_fan[N] >> 1); \
  2855. WRITE_FAN(N, spcf > pwm_mask ? HIGH : LOW); \
  2856. }while(0)
  2857. #if HAS_FAN0
  2858. _FAN_PWM(0);
  2859. #endif
  2860. #if HAS_FAN1
  2861. _FAN_PWM(1);
  2862. #endif
  2863. #if HAS_FAN2
  2864. _FAN_PWM(2);
  2865. #endif
  2866. #if HAS_FAN3
  2867. _FAN_PWM(3);
  2868. #endif
  2869. #if HAS_FAN4
  2870. _FAN_PWM(4);
  2871. #endif
  2872. #if HAS_FAN5
  2873. _FAN_PWM(5);
  2874. #endif
  2875. #if HAS_FAN6
  2876. _FAN_PWM(6);
  2877. #endif
  2878. #if HAS_FAN7
  2879. _FAN_PWM(7);
  2880. #endif
  2881. #endif
  2882. }
  2883. else {
  2884. #define _PWM_LOW(N,S) do{ if (S.count <= pwm_count_tmp) WRITE_HEATER_##N(LOW); }while(0)
  2885. #if HAS_HOTEND
  2886. #define _PWM_LOW_E(N) _PWM_LOW(N, soft_pwm_hotend[N]);
  2887. REPEAT(HOTENDS, _PWM_LOW_E);
  2888. #endif
  2889. #if HAS_HEATED_BED
  2890. _PWM_LOW(BED, soft_pwm_bed);
  2891. #endif
  2892. #if HAS_HEATED_CHAMBER
  2893. _PWM_LOW(CHAMBER, soft_pwm_chamber);
  2894. #endif
  2895. #if HAS_COOLER
  2896. _PWM_LOW(COOLER, soft_pwm_cooler);
  2897. #endif
  2898. #if ENABLED(FAN_SOFT_PWM)
  2899. #if HAS_FAN0
  2900. if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(0, LOW);
  2901. #endif
  2902. #if HAS_FAN1
  2903. if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN(1, LOW);
  2904. #endif
  2905. #if HAS_FAN2
  2906. if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN(2, LOW);
  2907. #endif
  2908. #if HAS_FAN3
  2909. if (soft_pwm_count_fan[3] <= pwm_count_tmp) WRITE_FAN(3, LOW);
  2910. #endif
  2911. #if HAS_FAN4
  2912. if (soft_pwm_count_fan[4] <= pwm_count_tmp) WRITE_FAN(4, LOW);
  2913. #endif
  2914. #if HAS_FAN5
  2915. if (soft_pwm_count_fan[5] <= pwm_count_tmp) WRITE_FAN(5, LOW);
  2916. #endif
  2917. #if HAS_FAN6
  2918. if (soft_pwm_count_fan[6] <= pwm_count_tmp) WRITE_FAN(6, LOW);
  2919. #endif
  2920. #if HAS_FAN7
  2921. if (soft_pwm_count_fan[7] <= pwm_count_tmp) WRITE_FAN(7, LOW);
  2922. #endif
  2923. #if ENABLED(USE_CONTROLLER_FAN)
  2924. if (soft_pwm_controller.count <= pwm_count_tmp) WRITE(CONTROLLER_FAN_PIN, LOW);
  2925. #endif
  2926. #endif
  2927. }
  2928. // SOFT_PWM_SCALE to frequency:
  2929. //
  2930. // 0: 16000000/64/256/128 = 7.6294 Hz
  2931. // 1: / 64 = 15.2588 Hz
  2932. // 2: / 32 = 30.5176 Hz
  2933. // 3: / 16 = 61.0352 Hz
  2934. // 4: / 8 = 122.0703 Hz
  2935. // 5: / 4 = 244.1406 Hz
  2936. pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
  2937. #else // SLOW_PWM_HEATERS
  2938. /**
  2939. * SLOW PWM HEATERS
  2940. *
  2941. * For relay-driven heaters
  2942. */
  2943. #define _SLOW_SET(NR,PWM,V) do{ if (PWM.ready(V)) WRITE_HEATER_##NR(V); }while(0)
  2944. #define _SLOW_PWM(NR,PWM,SRC) do{ PWM.count = SRC.soft_pwm_amount; _SLOW_SET(NR,PWM,(PWM.count > 0)); }while(0)
  2945. #define _PWM_OFF(NR,PWM) do{ if (PWM.count < slow_pwm_count) _SLOW_SET(NR,PWM,0); }while(0)
  2946. static uint8_t slow_pwm_count = 0;
  2947. if (slow_pwm_count == 0) {
  2948. #if HAS_HOTEND
  2949. #define _SLOW_PWM_E(N) _SLOW_PWM(N, soft_pwm_hotend[N], temp_hotend[N]);
  2950. REPEAT(HOTENDS, _SLOW_PWM_E);
  2951. #endif
  2952. #if HAS_HEATED_BED
  2953. _SLOW_PWM(BED, soft_pwm_bed, temp_bed);
  2954. #endif
  2955. #if HAS_HEATED_CHAMBER
  2956. _SLOW_PWM(CHAMBER, soft_pwm_chamber, temp_chamber);
  2957. #endif
  2958. #if HAS_COOLER
  2959. _SLOW_PWM(COOLER, soft_pwm_cooler, temp_cooler);
  2960. #endif
  2961. } // slow_pwm_count == 0
  2962. #if HAS_HOTEND
  2963. #define _PWM_OFF_E(N) _PWM_OFF(N, soft_pwm_hotend[N]);
  2964. REPEAT(HOTENDS, _PWM_OFF_E);
  2965. #endif
  2966. #if HAS_HEATED_BED
  2967. _PWM_OFF(BED, soft_pwm_bed);
  2968. #endif
  2969. #if HAS_HEATED_CHAMBER
  2970. _PWM_OFF(CHAMBER, soft_pwm_chamber);
  2971. #endif
  2972. #if HAS_COOLER
  2973. _PWM_OFF(COOLER, soft_pwm_cooler, temp_cooler);
  2974. #endif
  2975. #if ENABLED(FAN_SOFT_PWM)
  2976. if (pwm_count_tmp >= 127) {
  2977. pwm_count_tmp = 0;
  2978. #define _PWM_FAN(N) do{ \
  2979. soft_pwm_count_fan[N] = soft_pwm_amount_fan[N] >> 1; \
  2980. WRITE_FAN(N, soft_pwm_count_fan[N] > 0 ? HIGH : LOW); \
  2981. }while(0)
  2982. #if HAS_FAN0
  2983. _PWM_FAN(0);
  2984. #endif
  2985. #if HAS_FAN1
  2986. _PWM_FAN(1);
  2987. #endif
  2988. #if HAS_FAN2
  2989. _PWM_FAN(2);
  2990. #endif
  2991. #if HAS_FAN3
  2992. _FAN_PWM(3);
  2993. #endif
  2994. #if HAS_FAN4
  2995. _FAN_PWM(4);
  2996. #endif
  2997. #if HAS_FAN5
  2998. _FAN_PWM(5);
  2999. #endif
  3000. #if HAS_FAN6
  3001. _FAN_PWM(6);
  3002. #endif
  3003. #if HAS_FAN7
  3004. _FAN_PWM(7);
  3005. #endif
  3006. }
  3007. #if HAS_FAN0
  3008. if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(0, LOW);
  3009. #endif
  3010. #if HAS_FAN1
  3011. if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN(1, LOW);
  3012. #endif
  3013. #if HAS_FAN2
  3014. if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN(2, LOW);
  3015. #endif
  3016. #if HAS_FAN3
  3017. if (soft_pwm_count_fan[3] <= pwm_count_tmp) WRITE_FAN(3, LOW);
  3018. #endif
  3019. #if HAS_FAN4
  3020. if (soft_pwm_count_fan[4] <= pwm_count_tmp) WRITE_FAN(4, LOW);
  3021. #endif
  3022. #if HAS_FAN5
  3023. if (soft_pwm_count_fan[5] <= pwm_count_tmp) WRITE_FAN(5, LOW);
  3024. #endif
  3025. #if HAS_FAN6
  3026. if (soft_pwm_count_fan[6] <= pwm_count_tmp) WRITE_FAN(6, LOW);
  3027. #endif
  3028. #if HAS_FAN7
  3029. if (soft_pwm_count_fan[7] <= pwm_count_tmp) WRITE_FAN(7, LOW);
  3030. #endif
  3031. #endif // FAN_SOFT_PWM
  3032. // SOFT_PWM_SCALE to frequency:
  3033. //
  3034. // 0: 16000000/64/256/128 = 7.6294 Hz
  3035. // 1: / 64 = 15.2588 Hz
  3036. // 2: / 32 = 30.5176 Hz
  3037. // 3: / 16 = 61.0352 Hz
  3038. // 4: / 8 = 122.0703 Hz
  3039. // 5: / 4 = 244.1406 Hz
  3040. pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
  3041. // Increment slow_pwm_count only every 64th pwm_count,
  3042. // i.e., yielding a PWM frequency of 16/128 Hz (8s).
  3043. if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) {
  3044. slow_pwm_count++;
  3045. slow_pwm_count &= 0x7F;
  3046. #if HAS_HOTEND
  3047. HOTEND_LOOP() soft_pwm_hotend[e].dec();
  3048. #endif
  3049. TERN_(HAS_HEATED_BED, soft_pwm_bed.dec());
  3050. TERN_(HAS_HEATED_CHAMBER, soft_pwm_chamber.dec());
  3051. TERN_(HAS_COOLER, soft_pwm_cooler.dec());
  3052. }
  3053. #endif // SLOW_PWM_HEATERS
  3054. //
  3055. // Update lcd buttons 488 times per second
  3056. //
  3057. static bool do_buttons;
  3058. if ((do_buttons ^= true)) ui.update_buttons();
  3059. /**
  3060. * One sensor is sampled on every other call of the ISR.
  3061. * Each sensor is read 16 (OVERSAMPLENR) times, taking the average.
  3062. *
  3063. * On each Prepare pass, ADC is started for a sensor pin.
  3064. * On the next pass, the ADC value is read and accumulated.
  3065. *
  3066. * This gives each ADC 0.9765ms to charge up.
  3067. */
  3068. #define ACCUMULATE_ADC(obj) do{ \
  3069. if (!hal.adc_ready()) next_sensor_state = adc_sensor_state; \
  3070. else obj.sample(hal.adc_value()); \
  3071. }while(0)
  3072. ADCSensorState next_sensor_state = adc_sensor_state < SensorsReady ? (ADCSensorState)(int(adc_sensor_state) + 1) : StartSampling;
  3073. switch (adc_sensor_state) {
  3074. #pragma GCC diagnostic push
  3075. #pragma GCC diagnostic ignored "-Wimplicit-fallthrough"
  3076. case SensorsReady: {
  3077. // All sensors have been read. Stay in this state for a few
  3078. // ISRs to save on calls to temp update/checking code below.
  3079. constexpr int8_t extra_loops = MIN_ADC_ISR_LOOPS - (int8_t)SensorsReady;
  3080. static uint8_t delay_count = 0;
  3081. if (extra_loops > 0) {
  3082. if (delay_count == 0) delay_count = extra_loops; // Init this delay
  3083. if (--delay_count) // While delaying...
  3084. next_sensor_state = SensorsReady; // retain this state (else, next state will be 0)
  3085. break;
  3086. }
  3087. else {
  3088. adc_sensor_state = StartSampling; // Fall-through to start sampling
  3089. next_sensor_state = (ADCSensorState)(int(StartSampling) + 1);
  3090. }
  3091. }
  3092. #pragma GCC diagnostic pop
  3093. case StartSampling: // Start of sampling loops. Do updates/checks.
  3094. if (++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
  3095. temp_count = 0;
  3096. readings_ready();
  3097. }
  3098. break;
  3099. #if HAS_TEMP_ADC_0
  3100. case PrepareTemp_0: hal.adc_start(TEMP_0_PIN); break;
  3101. case MeasureTemp_0: ACCUMULATE_ADC(temp_hotend[0]); break;
  3102. #endif
  3103. #if HAS_TEMP_ADC_BED
  3104. case PrepareTemp_BED: hal.adc_start(TEMP_BED_PIN); break;
  3105. case MeasureTemp_BED: ACCUMULATE_ADC(temp_bed); break;
  3106. #endif
  3107. #if HAS_TEMP_ADC_CHAMBER
  3108. case PrepareTemp_CHAMBER: hal.adc_start(TEMP_CHAMBER_PIN); break;
  3109. case MeasureTemp_CHAMBER: ACCUMULATE_ADC(temp_chamber); break;
  3110. #endif
  3111. #if HAS_TEMP_ADC_COOLER
  3112. case PrepareTemp_COOLER: hal.adc_start(TEMP_COOLER_PIN); break;
  3113. case MeasureTemp_COOLER: ACCUMULATE_ADC(temp_cooler); break;
  3114. #endif
  3115. #if HAS_TEMP_ADC_PROBE
  3116. case PrepareTemp_PROBE: hal.adc_start(TEMP_PROBE_PIN); break;
  3117. case MeasureTemp_PROBE: ACCUMULATE_ADC(temp_probe); break;
  3118. #endif
  3119. #if HAS_TEMP_ADC_BOARD
  3120. case PrepareTemp_BOARD: hal.adc_start(TEMP_BOARD_PIN); break;
  3121. case MeasureTemp_BOARD: ACCUMULATE_ADC(temp_board); break;
  3122. #endif
  3123. #if HAS_TEMP_ADC_REDUNDANT
  3124. case PrepareTemp_REDUNDANT: hal.adc_start(TEMP_REDUNDANT_PIN); break;
  3125. case MeasureTemp_REDUNDANT: ACCUMULATE_ADC(temp_redundant); break;
  3126. #endif
  3127. #if HAS_TEMP_ADC_1
  3128. case PrepareTemp_1: hal.adc_start(TEMP_1_PIN); break;
  3129. case MeasureTemp_1: ACCUMULATE_ADC(temp_hotend[1]); break;
  3130. #endif
  3131. #if HAS_TEMP_ADC_2
  3132. case PrepareTemp_2: hal.adc_start(TEMP_2_PIN); break;
  3133. case MeasureTemp_2: ACCUMULATE_ADC(temp_hotend[2]); break;
  3134. #endif
  3135. #if HAS_TEMP_ADC_3
  3136. case PrepareTemp_3: hal.adc_start(TEMP_3_PIN); break;
  3137. case MeasureTemp_3: ACCUMULATE_ADC(temp_hotend[3]); break;
  3138. #endif
  3139. #if HAS_TEMP_ADC_4
  3140. case PrepareTemp_4: hal.adc_start(TEMP_4_PIN); break;
  3141. case MeasureTemp_4: ACCUMULATE_ADC(temp_hotend[4]); break;
  3142. #endif
  3143. #if HAS_TEMP_ADC_5
  3144. case PrepareTemp_5: hal.adc_start(TEMP_5_PIN); break;
  3145. case MeasureTemp_5: ACCUMULATE_ADC(temp_hotend[5]); break;
  3146. #endif
  3147. #if HAS_TEMP_ADC_6
  3148. case PrepareTemp_6: hal.adc_start(TEMP_6_PIN); break;
  3149. case MeasureTemp_6: ACCUMULATE_ADC(temp_hotend[6]); break;
  3150. #endif
  3151. #if HAS_TEMP_ADC_7
  3152. case PrepareTemp_7: hal.adc_start(TEMP_7_PIN); break;
  3153. case MeasureTemp_7: ACCUMULATE_ADC(temp_hotend[7]); break;
  3154. #endif
  3155. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  3156. case Prepare_FILWIDTH: hal.adc_start(FILWIDTH_PIN); break;
  3157. case Measure_FILWIDTH:
  3158. if (!hal.adc_ready()) next_sensor_state = adc_sensor_state; // Redo this state
  3159. else filwidth.accumulate(hal.adc_value());
  3160. break;
  3161. #endif
  3162. #if ENABLED(POWER_MONITOR_CURRENT)
  3163. case Prepare_POWER_MONITOR_CURRENT:
  3164. hal.adc_start(POWER_MONITOR_CURRENT_PIN);
  3165. break;
  3166. case Measure_POWER_MONITOR_CURRENT:
  3167. if (!hal.adc_ready()) next_sensor_state = adc_sensor_state; // Redo this state
  3168. else power_monitor.add_current_sample(hal.adc_value());
  3169. break;
  3170. #endif
  3171. #if ENABLED(POWER_MONITOR_VOLTAGE)
  3172. case Prepare_POWER_MONITOR_VOLTAGE:
  3173. hal.adc_start(POWER_MONITOR_VOLTAGE_PIN);
  3174. break;
  3175. case Measure_POWER_MONITOR_VOLTAGE:
  3176. if (!hal.adc_ready()) next_sensor_state = adc_sensor_state; // Redo this state
  3177. else power_monitor.add_voltage_sample(hal.adc_value());
  3178. break;
  3179. #endif
  3180. #if HAS_JOY_ADC_X
  3181. case PrepareJoy_X: hal.adc_start(JOY_X_PIN); break;
  3182. case MeasureJoy_X: ACCUMULATE_ADC(joystick.x); break;
  3183. #endif
  3184. #if HAS_JOY_ADC_Y
  3185. case PrepareJoy_Y: hal.adc_start(JOY_Y_PIN); break;
  3186. case MeasureJoy_Y: ACCUMULATE_ADC(joystick.y); break;
  3187. #endif
  3188. #if HAS_JOY_ADC_Z
  3189. case PrepareJoy_Z: hal.adc_start(JOY_Z_PIN); break;
  3190. case MeasureJoy_Z: ACCUMULATE_ADC(joystick.z); break;
  3191. #endif
  3192. #if HAS_ADC_BUTTONS
  3193. #ifndef ADC_BUTTON_DEBOUNCE_DELAY
  3194. #define ADC_BUTTON_DEBOUNCE_DELAY 16
  3195. #endif
  3196. case Prepare_ADC_KEY: hal.adc_start(ADC_KEYPAD_PIN); break;
  3197. case Measure_ADC_KEY:
  3198. if (!hal.adc_ready())
  3199. next_sensor_state = adc_sensor_state; // redo this state
  3200. else if (ADCKey_count < ADC_BUTTON_DEBOUNCE_DELAY) {
  3201. raw_ADCKey_value = hal.adc_value();
  3202. if (raw_ADCKey_value <= 900UL * HAL_ADC_RANGE / 1024UL) {
  3203. NOMORE(current_ADCKey_raw, raw_ADCKey_value);
  3204. ADCKey_count++;
  3205. }
  3206. else { //ADC Key release
  3207. if (ADCKey_count > 0) ADCKey_count++; else ADCKey_pressed = false;
  3208. if (ADCKey_pressed) {
  3209. ADCKey_count = 0;
  3210. current_ADCKey_raw = HAL_ADC_RANGE;
  3211. }
  3212. }
  3213. }
  3214. if (ADCKey_count == ADC_BUTTON_DEBOUNCE_DELAY) ADCKey_pressed = true;
  3215. break;
  3216. #endif // HAS_ADC_BUTTONS
  3217. case StartupDelay: break;
  3218. } // switch(adc_sensor_state)
  3219. // Go to the next state
  3220. adc_sensor_state = next_sensor_state;
  3221. //
  3222. // Additional ~1kHz Tasks
  3223. //
  3224. #if ENABLED(BABYSTEPPING) && DISABLED(INTEGRATED_BABYSTEPPING)
  3225. babystep.task();
  3226. #endif
  3227. // Check fan tachometers
  3228. TERN_(HAS_FANCHECK, fan_check.update_tachometers());
  3229. // Poll endstops state, if required
  3230. endstops.poll();
  3231. // Periodically call the planner timer service routine
  3232. planner.isr();
  3233. }
  3234. #if HAS_TEMP_SENSOR
  3235. /**
  3236. * Print a single heater state in the form:
  3237. * Bed: " B:nnn.nn /nnn.nn"
  3238. * Chamber: " C:nnn.nn /nnn.nn"
  3239. * Probe: " P:nnn.nn /nnn.nn"
  3240. * Cooler: " L:nnn.nn /nnn.nn"
  3241. * Redundant: " R:nnn.nn /nnn.nn"
  3242. * Extruder: " T0:nnn.nn /nnn.nn"
  3243. * With ADC: " T0:nnn.nn /nnn.nn (nnn.nn)"
  3244. */
  3245. static void print_heater_state(const heater_id_t e, const_celsius_float_t c, const_celsius_float_t t
  3246. OPTARG(SHOW_TEMP_ADC_VALUES, const float r)
  3247. ) {
  3248. char k;
  3249. switch (e) {
  3250. default:
  3251. #if HAS_TEMP_HOTEND
  3252. k = 'T'; break;
  3253. #endif
  3254. #if HAS_TEMP_BED
  3255. case H_BED: k = 'B'; break;
  3256. #endif
  3257. #if HAS_TEMP_CHAMBER
  3258. case H_CHAMBER: k = 'C'; break;
  3259. #endif
  3260. #if HAS_TEMP_PROBE
  3261. case H_PROBE: k = 'P'; break;
  3262. #endif
  3263. #if HAS_TEMP_COOLER
  3264. case H_COOLER: k = 'L'; break;
  3265. #endif
  3266. #if HAS_TEMP_BOARD
  3267. case H_BOARD: k = 'M'; break;
  3268. #endif
  3269. #if HAS_TEMP_REDUNDANT
  3270. case H_REDUNDANT: k = 'R'; break;
  3271. #endif
  3272. }
  3273. SERIAL_CHAR(' ', k);
  3274. #if HAS_MULTI_HOTEND
  3275. if (e >= 0) SERIAL_CHAR('0' + e);
  3276. #endif
  3277. #ifdef SERIAL_FLOAT_PRECISION
  3278. #define SFP _MIN(SERIAL_FLOAT_PRECISION, 2)
  3279. #else
  3280. #define SFP 2
  3281. #endif
  3282. SERIAL_CHAR(':');
  3283. SERIAL_PRINT(c, SFP);
  3284. SERIAL_ECHOPGM(" /");
  3285. SERIAL_PRINT(t, SFP);
  3286. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3287. // Temperature MAX SPI boards do not have an OVERSAMPLENR defined
  3288. SERIAL_ECHOPGM(" (", TERN(HAS_MAXTC_LIBRARIES, k == 'T', false) ? r : r * RECIPROCAL(OVERSAMPLENR));
  3289. SERIAL_CHAR(')');
  3290. #endif
  3291. delay(2);
  3292. }
  3293. void Temperature::print_heater_states(const int8_t target_extruder
  3294. OPTARG(HAS_TEMP_REDUNDANT, const bool include_r/*=false*/)
  3295. ) {
  3296. #if HAS_TEMP_HOTEND
  3297. print_heater_state(H_NONE, degHotend(target_extruder), degTargetHotend(target_extruder) OPTARG(SHOW_TEMP_ADC_VALUES, rawHotendTemp(target_extruder)));
  3298. #endif
  3299. #if HAS_HEATED_BED
  3300. print_heater_state(H_BED, degBed(), degTargetBed() OPTARG(SHOW_TEMP_ADC_VALUES, rawBedTemp()));
  3301. #endif
  3302. #if HAS_TEMP_CHAMBER
  3303. print_heater_state(H_CHAMBER, degChamber(), TERN0(HAS_HEATED_CHAMBER, degTargetChamber()) OPTARG(SHOW_TEMP_ADC_VALUES, rawChamberTemp()));
  3304. #endif
  3305. #if HAS_TEMP_COOLER
  3306. print_heater_state(H_COOLER, degCooler(), TERN0(HAS_COOLER, degTargetCooler()) OPTARG(SHOW_TEMP_ADC_VALUES, rawCoolerTemp()));
  3307. #endif
  3308. #if HAS_TEMP_PROBE
  3309. print_heater_state(H_PROBE, degProbe(), 0 OPTARG(SHOW_TEMP_ADC_VALUES, rawProbeTemp()));
  3310. #endif
  3311. #if HAS_TEMP_BOARD
  3312. print_heater_state(H_BOARD, degBoard(), 0 OPTARG(SHOW_TEMP_ADC_VALUES, rawBoardTemp()));
  3313. #endif
  3314. #if HAS_TEMP_REDUNDANT
  3315. if (include_r) print_heater_state(H_REDUNDANT, degRedundant(), degRedundantTarget() OPTARG(SHOW_TEMP_ADC_VALUES, rawRedundantTemp()));
  3316. #endif
  3317. #if HAS_MULTI_HOTEND
  3318. HOTEND_LOOP() print_heater_state((heater_id_t)e, degHotend(e), degTargetHotend(e) OPTARG(SHOW_TEMP_ADC_VALUES, rawHotendTemp(e)));
  3319. #endif
  3320. SERIAL_ECHOPGM(" @:", getHeaterPower((heater_id_t)target_extruder));
  3321. #if HAS_HEATED_BED
  3322. SERIAL_ECHOPGM(" B@:", getHeaterPower(H_BED));
  3323. #endif
  3324. #if HAS_HEATED_CHAMBER
  3325. SERIAL_ECHOPGM(" C@:", getHeaterPower(H_CHAMBER));
  3326. #endif
  3327. #if HAS_COOLER
  3328. SERIAL_ECHOPGM(" C@:", getHeaterPower(H_COOLER));
  3329. #endif
  3330. #if HAS_MULTI_HOTEND
  3331. HOTEND_LOOP() {
  3332. SERIAL_ECHOPGM(" @", e);
  3333. SERIAL_CHAR(':');
  3334. SERIAL_ECHO(getHeaterPower((heater_id_t)e));
  3335. }
  3336. #endif
  3337. }
  3338. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  3339. AutoReporter<Temperature::AutoReportTemp> Temperature::auto_reporter;
  3340. void Temperature::AutoReportTemp::report() {
  3341. print_heater_states(active_extruder OPTARG(HAS_TEMP_REDUNDANT, ENABLED(AUTO_REPORT_REDUNDANT)));
  3342. SERIAL_EOL();
  3343. }
  3344. #endif
  3345. #if HAS_HOTEND && HAS_STATUS_MESSAGE
  3346. void Temperature::set_heating_message(const uint8_t e, const bool isM104/*=false*/) {
  3347. const bool heating = isHeatingHotend(e);
  3348. ui.status_printf(0,
  3349. #if HAS_MULTI_HOTEND
  3350. F("E%c " S_FMT), '1' + e
  3351. #else
  3352. F("E1 " S_FMT)
  3353. #endif
  3354. , heating ? GET_TEXT(MSG_HEATING) : GET_TEXT(MSG_COOLING)
  3355. );
  3356. if (isM104) {
  3357. static uint8_t wait_e; wait_e = e;
  3358. ui.set_status_reset_fn([]{
  3359. const celsius_t c = degTargetHotend(wait_e);
  3360. return c < 30 || degHotendNear(wait_e, c);
  3361. });
  3362. }
  3363. }
  3364. #endif
  3365. #if HAS_TEMP_HOTEND
  3366. #ifndef MIN_COOLING_SLOPE_DEG
  3367. #define MIN_COOLING_SLOPE_DEG 1.50
  3368. #endif
  3369. #ifndef MIN_COOLING_SLOPE_TIME
  3370. #define MIN_COOLING_SLOPE_TIME 60
  3371. #endif
  3372. bool Temperature::wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling/*=true*/
  3373. OPTARG(G26_CLICK_CAN_CANCEL, const bool click_to_cancel/*=false*/)
  3374. ) {
  3375. #if ENABLED(AUTOTEMP)
  3376. REMEMBER(1, planner.autotemp_enabled, false);
  3377. #endif
  3378. #if TEMP_RESIDENCY_TIME > 0
  3379. millis_t residency_start_ms = 0;
  3380. bool first_loop = true;
  3381. // Loop until the temperature has stabilized
  3382. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_RESIDENCY_TIME)))
  3383. #else
  3384. // Loop until the temperature is very close target
  3385. #define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder))
  3386. #endif
  3387. #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
  3388. KEEPALIVE_STATE(NOT_BUSY);
  3389. #endif
  3390. #if ENABLED(PRINTER_EVENT_LEDS)
  3391. const celsius_float_t start_temp = degHotend(target_extruder);
  3392. printerEventLEDs.onHotendHeatingStart();
  3393. #endif
  3394. bool wants_to_cool = false;
  3395. celsius_float_t target_temp = -1.0, old_temp = 9999.0;
  3396. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3397. wait_for_heatup = true;
  3398. do {
  3399. // Target temperature might be changed during the loop
  3400. if (target_temp != degTargetHotend(target_extruder)) {
  3401. wants_to_cool = isCoolingHotend(target_extruder);
  3402. target_temp = degTargetHotend(target_extruder);
  3403. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3404. if (no_wait_for_cooling && wants_to_cool) break;
  3405. }
  3406. now = millis();
  3407. if (ELAPSED(now, next_temp_ms)) { // Print temp & remaining time every 1s while waiting
  3408. next_temp_ms = now + 1000UL;
  3409. print_heater_states(target_extruder);
  3410. #if TEMP_RESIDENCY_TIME > 0
  3411. SERIAL_ECHOPGM(" W:");
  3412. if (residency_start_ms)
  3413. SERIAL_ECHO(long((SEC_TO_MS(TEMP_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL));
  3414. else
  3415. SERIAL_CHAR('?');
  3416. #endif
  3417. SERIAL_EOL();
  3418. }
  3419. idle();
  3420. gcode.reset_stepper_timeout(); // Keep steppers powered
  3421. const celsius_float_t temp = degHotend(target_extruder);
  3422. #if ENABLED(PRINTER_EVENT_LEDS)
  3423. // Gradually change LED strip from violet to red as nozzle heats up
  3424. if (!wants_to_cool) printerEventLEDs.onHotendHeating(start_temp, temp, target_temp);
  3425. #endif
  3426. #if TEMP_RESIDENCY_TIME > 0
  3427. const celsius_float_t temp_diff = ABS(target_temp - temp);
  3428. if (!residency_start_ms) {
  3429. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3430. if (temp_diff < TEMP_WINDOW)
  3431. residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_RESIDENCY_TIME) / 3 : 0);
  3432. }
  3433. else if (temp_diff > TEMP_HYSTERESIS) {
  3434. // Restart the timer whenever the temperature falls outside the hysteresis.
  3435. residency_start_ms = now;
  3436. }
  3437. first_loop = false;
  3438. #endif
  3439. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3440. if (wants_to_cool) {
  3441. // Break after MIN_COOLING_SLOPE_TIME seconds
  3442. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3443. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3444. if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG)) break;
  3445. next_cool_check_ms = now + SEC_TO_MS(MIN_COOLING_SLOPE_TIME);
  3446. old_temp = temp;
  3447. }
  3448. }
  3449. #if G26_CLICK_CAN_CANCEL
  3450. if (click_to_cancel && ui.use_click()) {
  3451. wait_for_heatup = false;
  3452. TERN_(HAS_MARLINUI_MENU, ui.quick_feedback());
  3453. }
  3454. #endif
  3455. } while (wait_for_heatup && TEMP_CONDITIONS);
  3456. if (wait_for_heatup) {
  3457. wait_for_heatup = false;
  3458. #if HAS_DWIN_E3V2_BASIC
  3459. HMI_flag.heat_flag = 0;
  3460. duration_t elapsed = print_job_timer.duration(); // Print timer
  3461. dwin_heat_time = elapsed.value;
  3462. #else
  3463. ui.reset_status();
  3464. #endif
  3465. TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onHeatingDone());
  3466. return true;
  3467. }
  3468. return false;
  3469. }
  3470. #if ENABLED(WAIT_FOR_HOTEND)
  3471. void Temperature::wait_for_hotend_heating(const uint8_t target_extruder) {
  3472. if (isHeatingHotend(target_extruder)) {
  3473. SERIAL_ECHOLNPGM("Wait for hotend heating...");
  3474. LCD_MESSAGE(MSG_HEATING);
  3475. wait_for_hotend(target_extruder);
  3476. ui.reset_status();
  3477. }
  3478. }
  3479. #endif
  3480. #endif // HAS_TEMP_HOTEND
  3481. #if HAS_HEATED_BED
  3482. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3483. #define MIN_COOLING_SLOPE_DEG_BED 1.00
  3484. #endif
  3485. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3486. #define MIN_COOLING_SLOPE_TIME_BED 60
  3487. #endif
  3488. bool Temperature::wait_for_bed(const bool no_wait_for_cooling/*=true*/
  3489. OPTARG(G26_CLICK_CAN_CANCEL, const bool click_to_cancel/*=false*/)
  3490. ) {
  3491. #if TEMP_BED_RESIDENCY_TIME > 0
  3492. millis_t residency_start_ms = 0;
  3493. bool first_loop = true;
  3494. // Loop until the temperature has stabilized
  3495. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_BED_RESIDENCY_TIME)))
  3496. #else
  3497. // Loop until the temperature is very close target
  3498. #define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed())
  3499. #endif
  3500. #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
  3501. KEEPALIVE_STATE(NOT_BUSY);
  3502. #endif
  3503. #if ENABLED(PRINTER_EVENT_LEDS)
  3504. const celsius_float_t start_temp = degBed();
  3505. printerEventLEDs.onBedHeatingStart();
  3506. #endif
  3507. bool wants_to_cool = false;
  3508. celsius_float_t target_temp = -1, old_temp = 9999;
  3509. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3510. wait_for_heatup = true;
  3511. do {
  3512. // Target temperature might be changed during the loop
  3513. if (target_temp != degTargetBed()) {
  3514. wants_to_cool = isCoolingBed();
  3515. target_temp = degTargetBed();
  3516. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3517. if (no_wait_for_cooling && wants_to_cool) break;
  3518. }
  3519. now = millis();
  3520. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3521. next_temp_ms = now + 1000UL;
  3522. print_heater_states(active_extruder);
  3523. #if TEMP_BED_RESIDENCY_TIME > 0
  3524. SERIAL_ECHOPGM(" W:");
  3525. if (residency_start_ms)
  3526. SERIAL_ECHO(long((SEC_TO_MS(TEMP_BED_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL));
  3527. else
  3528. SERIAL_CHAR('?');
  3529. #endif
  3530. SERIAL_EOL();
  3531. }
  3532. idle();
  3533. gcode.reset_stepper_timeout(); // Keep steppers powered
  3534. const celsius_float_t temp = degBed();
  3535. #if ENABLED(PRINTER_EVENT_LEDS)
  3536. // Gradually change LED strip from blue to violet as bed heats up
  3537. if (!wants_to_cool) printerEventLEDs.onBedHeating(start_temp, temp, target_temp);
  3538. #endif
  3539. #if TEMP_BED_RESIDENCY_TIME > 0
  3540. const celsius_float_t temp_diff = ABS(target_temp - temp);
  3541. if (!residency_start_ms) {
  3542. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3543. if (temp_diff < TEMP_BED_WINDOW)
  3544. residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_BED_RESIDENCY_TIME) / 3 : 0);
  3545. }
  3546. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3547. // Restart the timer whenever the temperature falls outside the hysteresis.
  3548. residency_start_ms = now;
  3549. }
  3550. #endif // TEMP_BED_RESIDENCY_TIME > 0
  3551. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3552. if (wants_to_cool) {
  3553. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  3554. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  3555. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3556. if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_BED)) break;
  3557. next_cool_check_ms = now + SEC_TO_MS(MIN_COOLING_SLOPE_TIME_BED);
  3558. old_temp = temp;
  3559. }
  3560. }
  3561. #if G26_CLICK_CAN_CANCEL
  3562. if (click_to_cancel && ui.use_click()) {
  3563. wait_for_heatup = false;
  3564. TERN_(HAS_MARLINUI_MENU, ui.quick_feedback());
  3565. }
  3566. #endif
  3567. #if TEMP_BED_RESIDENCY_TIME > 0
  3568. first_loop = false;
  3569. #endif
  3570. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  3571. if (wait_for_heatup) {
  3572. wait_for_heatup = false;
  3573. ui.reset_status();
  3574. return true;
  3575. }
  3576. return false;
  3577. }
  3578. void Temperature::wait_for_bed_heating() {
  3579. if (isHeatingBed()) {
  3580. SERIAL_ECHOLNPGM("Wait for bed heating...");
  3581. LCD_MESSAGE(MSG_BED_HEATING);
  3582. wait_for_bed();
  3583. ui.reset_status();
  3584. }
  3585. }
  3586. #endif // HAS_HEATED_BED
  3587. #if HAS_TEMP_PROBE
  3588. #ifndef MIN_DELTA_SLOPE_DEG_PROBE
  3589. #define MIN_DELTA_SLOPE_DEG_PROBE 1.0
  3590. #endif
  3591. #ifndef MIN_DELTA_SLOPE_TIME_PROBE
  3592. #define MIN_DELTA_SLOPE_TIME_PROBE 600
  3593. #endif
  3594. bool Temperature::wait_for_probe(const celsius_t target_temp, bool no_wait_for_cooling/*=true*/) {
  3595. const bool wants_to_cool = isProbeAboveTemp(target_temp),
  3596. will_wait = !(wants_to_cool && no_wait_for_cooling);
  3597. if (will_wait)
  3598. SERIAL_ECHOLNPGM("Waiting for probe to ", wants_to_cool ? F("cool down") : F("heat up"), " to ", target_temp, " degrees.");
  3599. #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
  3600. KEEPALIVE_STATE(NOT_BUSY);
  3601. #endif
  3602. float old_temp = 9999;
  3603. millis_t next_temp_ms = 0, next_delta_check_ms = 0;
  3604. wait_for_heatup = true;
  3605. while (will_wait && wait_for_heatup) {
  3606. // Print Temp Reading every 10 seconds while heating up.
  3607. millis_t now = millis();
  3608. if (!next_temp_ms || ELAPSED(now, next_temp_ms)) {
  3609. next_temp_ms = now + 10000UL;
  3610. print_heater_states(active_extruder);
  3611. SERIAL_EOL();
  3612. }
  3613. idle();
  3614. gcode.reset_stepper_timeout(); // Keep steppers powered
  3615. // Break after MIN_DELTA_SLOPE_TIME_PROBE seconds if the temperature
  3616. // did not drop at least MIN_DELTA_SLOPE_DEG_PROBE. This avoids waiting
  3617. // forever as the probe is not actively heated.
  3618. if (!next_delta_check_ms || ELAPSED(now, next_delta_check_ms)) {
  3619. const float temp = degProbe(),
  3620. delta_temp = old_temp > temp ? old_temp - temp : temp - old_temp;
  3621. if (delta_temp < float(MIN_DELTA_SLOPE_DEG_PROBE)) {
  3622. SERIAL_ECHOLNPGM("Timed out waiting for probe temperature.");
  3623. break;
  3624. }
  3625. next_delta_check_ms = now + SEC_TO_MS(MIN_DELTA_SLOPE_TIME_PROBE);
  3626. old_temp = temp;
  3627. }
  3628. // Loop until the temperature is very close target
  3629. if (!(wants_to_cool ? isProbeAboveTemp(target_temp) : isProbeBelowTemp(target_temp))) {
  3630. SERIAL_ECHOLN(wants_to_cool ? PSTR("Cooldown") : PSTR("Heatup"));
  3631. SERIAL_ECHOLNPGM(" complete, target probe temperature reached.");
  3632. break;
  3633. }
  3634. }
  3635. if (wait_for_heatup) {
  3636. wait_for_heatup = false;
  3637. ui.reset_status();
  3638. return true;
  3639. }
  3640. else if (will_wait)
  3641. SERIAL_ECHOLNPGM("Canceled wait for probe temperature.");
  3642. return false;
  3643. }
  3644. #endif // HAS_TEMP_PROBE
  3645. #if HAS_HEATED_CHAMBER
  3646. #ifndef MIN_COOLING_SLOPE_DEG_CHAMBER
  3647. #define MIN_COOLING_SLOPE_DEG_CHAMBER 1.50
  3648. #endif
  3649. #ifndef MIN_COOLING_SLOPE_TIME_CHAMBER
  3650. #define MIN_COOLING_SLOPE_TIME_CHAMBER 120
  3651. #endif
  3652. bool Temperature::wait_for_chamber(const bool no_wait_for_cooling/*=true*/) {
  3653. #if TEMP_CHAMBER_RESIDENCY_TIME > 0
  3654. millis_t residency_start_ms = 0;
  3655. bool first_loop = true;
  3656. // Loop until the temperature has stabilized
  3657. #define TEMP_CHAMBER_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_CHAMBER_RESIDENCY_TIME)))
  3658. #else
  3659. // Loop until the temperature is very close target
  3660. #define TEMP_CHAMBER_CONDITIONS (wants_to_cool ? isCoolingChamber() : isHeatingChamber())
  3661. #endif
  3662. #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
  3663. KEEPALIVE_STATE(NOT_BUSY);
  3664. #endif
  3665. bool wants_to_cool = false;
  3666. float target_temp = -1, old_temp = 9999;
  3667. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3668. wait_for_heatup = true;
  3669. do {
  3670. // Target temperature might be changed during the loop
  3671. if (target_temp != degTargetChamber()) {
  3672. wants_to_cool = isCoolingChamber();
  3673. target_temp = degTargetChamber();
  3674. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3675. if (no_wait_for_cooling && wants_to_cool) break;
  3676. }
  3677. now = millis();
  3678. if (ELAPSED(now, next_temp_ms)) { // Print Temp Reading every 1 second while heating up.
  3679. next_temp_ms = now + 1000UL;
  3680. print_heater_states(active_extruder);
  3681. #if TEMP_CHAMBER_RESIDENCY_TIME > 0
  3682. SERIAL_ECHOPGM(" W:");
  3683. if (residency_start_ms)
  3684. SERIAL_ECHO(long((SEC_TO_MS(TEMP_CHAMBER_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL));
  3685. else
  3686. SERIAL_CHAR('?');
  3687. #endif
  3688. SERIAL_EOL();
  3689. }
  3690. idle();
  3691. gcode.reset_stepper_timeout(); // Keep steppers powered
  3692. const float temp = degChamber();
  3693. #if TEMP_CHAMBER_RESIDENCY_TIME > 0
  3694. const float temp_diff = ABS(target_temp - temp);
  3695. if (!residency_start_ms) {
  3696. // Start the TEMP_CHAMBER_RESIDENCY_TIME timer when we reach target temp for the first time.
  3697. if (temp_diff < TEMP_CHAMBER_WINDOW)
  3698. residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_CHAMBER_RESIDENCY_TIME) / 3 : 0);
  3699. }
  3700. else if (temp_diff > TEMP_CHAMBER_HYSTERESIS) {
  3701. // Restart the timer whenever the temperature falls outside the hysteresis.
  3702. residency_start_ms = now;
  3703. }
  3704. first_loop = false;
  3705. #endif // TEMP_CHAMBER_RESIDENCY_TIME > 0
  3706. // Prevent a wait-forever situation if R is misused i.e. M191 R0
  3707. if (wants_to_cool) {
  3708. // Break after MIN_COOLING_SLOPE_TIME_CHAMBER seconds
  3709. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_CHAMBER
  3710. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3711. if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_CHAMBER)) break;
  3712. next_cool_check_ms = now + SEC_TO_MS(MIN_COOLING_SLOPE_TIME_CHAMBER);
  3713. old_temp = temp;
  3714. }
  3715. }
  3716. } while (wait_for_heatup && TEMP_CHAMBER_CONDITIONS);
  3717. if (wait_for_heatup) {
  3718. wait_for_heatup = false;
  3719. ui.reset_status();
  3720. return true;
  3721. }
  3722. return false;
  3723. }
  3724. #endif // HAS_HEATED_CHAMBER
  3725. #if HAS_COOLER
  3726. #ifndef MIN_COOLING_SLOPE_DEG_COOLER
  3727. #define MIN_COOLING_SLOPE_DEG_COOLER 1.50
  3728. #endif
  3729. #ifndef MIN_COOLING_SLOPE_TIME_COOLER
  3730. #define MIN_COOLING_SLOPE_TIME_COOLER 120
  3731. #endif
  3732. bool Temperature::wait_for_cooler(const bool no_wait_for_cooling/*=true*/) {
  3733. #if TEMP_COOLER_RESIDENCY_TIME > 0
  3734. millis_t residency_start_ms = 0;
  3735. bool first_loop = true;
  3736. // Loop until the temperature has stabilized
  3737. #define TEMP_COOLER_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_COOLER_RESIDENCY_TIME)))
  3738. #else
  3739. // Loop until the temperature is very close target
  3740. #define TEMP_COOLER_CONDITIONS (wants_to_cool ? isLaserHeating() : isLaserCooling())
  3741. #endif
  3742. #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
  3743. KEEPALIVE_STATE(NOT_BUSY);
  3744. #endif
  3745. bool wants_to_cool = false;
  3746. float target_temp = -1, previous_temp = 9999;
  3747. millis_t now, next_temp_ms = 0, next_cooling_check_ms = 0;
  3748. wait_for_heatup = true;
  3749. do {
  3750. // Target temperature might be changed during the loop
  3751. if (target_temp != degTargetCooler()) {
  3752. wants_to_cool = isLaserHeating();
  3753. target_temp = degTargetCooler();
  3754. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3755. if (no_wait_for_cooling && wants_to_cool) break;
  3756. }
  3757. now = millis();
  3758. if (ELAPSED(now, next_temp_ms)) { // Print Temp Reading every 1 second while heating up.
  3759. next_temp_ms = now + 1000UL;
  3760. print_heater_states(active_extruder);
  3761. #if TEMP_COOLER_RESIDENCY_TIME > 0
  3762. SERIAL_ECHOPGM(" W:");
  3763. if (residency_start_ms)
  3764. SERIAL_ECHO(long((SEC_TO_MS(TEMP_COOLER_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL));
  3765. else
  3766. SERIAL_CHAR('?');
  3767. #endif
  3768. SERIAL_EOL();
  3769. }
  3770. idle();
  3771. gcode.reset_stepper_timeout(); // Keep steppers powered
  3772. const celsius_float_t current_temp = degCooler();
  3773. #if TEMP_COOLER_RESIDENCY_TIME > 0
  3774. const celsius_float_t temp_diff = ABS(target_temp - temp);
  3775. if (!residency_start_ms) {
  3776. // Start the TEMP_COOLER_RESIDENCY_TIME timer when we reach target temp for the first time.
  3777. if (temp_diff < TEMP_COOLER_WINDOW)
  3778. residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_COOLER_RESIDENCY_TIME) / 3 : 0);
  3779. }
  3780. else if (temp_diff > TEMP_COOLER_HYSTERESIS) {
  3781. // Restart the timer whenever the temperature falls outside the hysteresis.
  3782. residency_start_ms = now;
  3783. }
  3784. first_loop = false;
  3785. #endif // TEMP_COOLER_RESIDENCY_TIME > 0
  3786. if (wants_to_cool) {
  3787. // Break after MIN_COOLING_SLOPE_TIME_CHAMBER seconds
  3788. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_CHAMBER
  3789. if (!next_cooling_check_ms || ELAPSED(now, next_cooling_check_ms)) {
  3790. if (previous_temp - current_temp < float(MIN_COOLING_SLOPE_DEG_COOLER)) break;
  3791. next_cooling_check_ms = now + SEC_TO_MS(MIN_COOLING_SLOPE_TIME_COOLER);
  3792. previous_temp = current_temp;
  3793. }
  3794. }
  3795. } while (wait_for_heatup && TEMP_COOLER_CONDITIONS);
  3796. // Prevent a wait-forever situation if R is misused i.e. M191 R0
  3797. if (wait_for_heatup) {
  3798. wait_for_heatup = false;
  3799. ui.reset_status();
  3800. return true;
  3801. }
  3802. return false;
  3803. }
  3804. #endif // HAS_COOLER
  3805. #endif // HAS_TEMP_SENSOR