1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258 |
-
-
-
-
- #include "planner.h"
- #include "stepper.h"
- #include "temperature.h"
- #include "ultralcd.h"
- #include "language.h"
-
- #include "Marlin.h"
-
- #if ENABLED(MESH_BED_LEVELING)
- #include "mesh_bed_leveling.h"
- #endif
-
- Planner planner;
-
-
-
-
- block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
- volatile uint8_t Planner::block_buffer_head = 0;
- volatile uint8_t Planner::block_buffer_tail = 0;
-
- float Planner::max_feedrate_mm_s[NUM_AXIS],
- Planner::axis_steps_per_mm[NUM_AXIS],
- Planner::steps_to_mm[NUM_AXIS];
-
- unsigned long Planner::max_acceleration_steps_per_s2[NUM_AXIS],
- Planner::max_acceleration_mm_per_s2[NUM_AXIS];
-
- millis_t Planner::min_segment_time;
- float Planner::min_feedrate_mm_s,
- Planner::acceleration,
- Planner::retract_acceleration,
- Planner::travel_acceleration,
- Planner::max_jerk[XYZE],
- Planner::min_travel_feedrate_mm_s;
-
- #if HAS_ABL
- bool Planner::abl_enabled = false;
- #endif
-
- #if ABL_PLANAR
- matrix_3x3 Planner::bed_level_matrix;
- #endif
-
- #if ENABLED(AUTOTEMP)
- float Planner::autotemp_max = 250,
- Planner::autotemp_min = 210,
- Planner::autotemp_factor = 0.1;
- bool Planner::autotemp_enabled = false;
- #endif
-
-
-
- long Planner::position[NUM_AXIS] = { 0 };
-
- float Planner::previous_speed[NUM_AXIS],
- Planner::previous_nominal_speed;
-
- #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
- uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
- #endif
-
- #ifdef XY_FREQUENCY_LIMIT
-
- unsigned char Planner::old_direction_bits = 0;
-
- long Planner::axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} };
- #endif
-
-
-
- Planner::Planner() { init(); }
-
- void Planner::init() {
- block_buffer_head = block_buffer_tail = 0;
- memset(position, 0, sizeof(position));
- memset(previous_speed, 0, sizeof(previous_speed));
- previous_nominal_speed = 0.0;
- #if ABL_PLANAR
- bed_level_matrix.set_to_identity();
- #endif
- }
-
-
- void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor) {
- uint32_t initial_rate = ceil(block->nominal_rate * entry_factor),
- final_rate = ceil(block->nominal_rate * exit_factor);
-
-
- NOLESS(initial_rate, 120);
- NOLESS(final_rate, 120);
-
- int32_t accel = block->acceleration_steps_per_s2,
- accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
- decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)),
- plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
-
-
-
-
- if (plateau_steps < 0) {
- accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
- NOLESS(accelerate_steps, 0);
- accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);
- plateau_steps = 0;
- }
-
- #if ENABLED(ADVANCE)
- volatile int32_t initial_advance = block->advance * sq(entry_factor),
- final_advance = block->advance * sq(exit_factor);
- #endif
-
-
-
- CRITICAL_SECTION_START;
- if (!block->busy) {
- block->accelerate_until = accelerate_steps;
- block->decelerate_after = accelerate_steps + plateau_steps;
- block->initial_rate = initial_rate;
- block->final_rate = final_rate;
- #if ENABLED(ADVANCE)
- block->initial_advance = initial_advance;
- block->final_advance = final_advance;
- #endif
- }
- CRITICAL_SECTION_END;
- }
-
-
-
-
-
-
-
-
-
-
-
- void Planner::reverse_pass_kernel(block_t* current, block_t* next) {
- if (!current) return;
-
- if (next) {
-
-
-
- float max_entry_speed = current->max_entry_speed;
- if (current->entry_speed != max_entry_speed) {
-
-
-
- if (!current->nominal_length_flag && max_entry_speed > next->entry_speed) {
- current->entry_speed = min(max_entry_speed,
- max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
- }
- else {
- current->entry_speed = max_entry_speed;
- }
- current->recalculate_flag = true;
-
- }
- }
- }
-
-
- void Planner::reverse_pass() {
-
- if (movesplanned() > 3) {
-
- block_t* block[3] = { NULL, NULL, NULL };
-
-
- CRITICAL_SECTION_START;
- uint8_t tail = block_buffer_tail;
- CRITICAL_SECTION_END
-
- uint8_t b = BLOCK_MOD(block_buffer_head - 3);
- while (b != tail) {
- b = prev_block_index(b);
- block[2] = block[1];
- block[1] = block[0];
- block[0] = &block_buffer[b];
- reverse_pass_kernel(block[1], block[2]);
- }
- }
- }
-
-
- void Planner::forward_pass_kernel(block_t* previous, block_t* current) {
- if (!previous) return;
-
-
-
-
-
- if (!previous->nominal_length_flag) {
- if (previous->entry_speed < current->entry_speed) {
- float entry_speed = min(current->entry_speed,
- max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
-
- if (current->entry_speed != entry_speed) {
- current->entry_speed = entry_speed;
- current->recalculate_flag = true;
- }
- }
- }
- }
-
-
- void Planner::forward_pass() {
- block_t* block[3] = { NULL, NULL, NULL };
-
- for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
- block[0] = block[1];
- block[1] = block[2];
- block[2] = &block_buffer[b];
- forward_pass_kernel(block[0], block[1]);
- }
- forward_pass_kernel(block[1], block[2]);
- }
-
-
- void Planner::recalculate_trapezoids() {
- int8_t block_index = block_buffer_tail;
- block_t* current;
- block_t* next = NULL;
-
- while (block_index != block_buffer_head) {
- current = next;
- next = &block_buffer[block_index];
- if (current) {
-
- if (current->recalculate_flag || next->recalculate_flag) {
-
- float nom = current->nominal_speed;
- calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
- current->recalculate_flag = false;
- }
- }
- block_index = next_block_index(block_index);
- }
-
- if (next) {
- float nom = next->nominal_speed;
- calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom);
- next->recalculate_flag = false;
- }
- }
-
-
- void Planner::recalculate() {
- reverse_pass();
- forward_pass();
- recalculate_trapezoids();
- }
-
-
- #if ENABLED(AUTOTEMP)
-
- void Planner::getHighESpeed() {
- static float oldt = 0;
-
- if (!autotemp_enabled) return;
- if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return;
-
- float high = 0.0;
- for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
- block_t* block = &block_buffer[b];
- if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
- float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed;
- NOLESS(high, se);
- }
- }
-
- float t = autotemp_min + high * autotemp_factor;
- t = constrain(t, autotemp_min, autotemp_max);
- if (oldt > t) {
- t *= (1 - (AUTOTEMP_OLDWEIGHT));
- t += (AUTOTEMP_OLDWEIGHT) * oldt;
- }
- oldt = t;
- thermalManager.setTargetHotend(t, 0);
- }
-
- #endif
-
-
- void Planner::check_axes_activity() {
- unsigned char axis_active[NUM_AXIS] = { 0 },
- tail_fan_speed[FAN_COUNT];
-
- #if FAN_COUNT > 0
- for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i];
- #endif
-
- #if ENABLED(BARICUDA)
- #if HAS_HEATER_1
- unsigned char tail_valve_pressure = baricuda_valve_pressure;
- #endif
- #if HAS_HEATER_2
- unsigned char tail_e_to_p_pressure = baricuda_e_to_p_pressure;
- #endif
- #endif
-
- if (blocks_queued()) {
-
- #if FAN_COUNT > 0
- for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i];
- #endif
-
- block_t* block;
-
- #if ENABLED(BARICUDA)
- block = &block_buffer[block_buffer_tail];
- #if HAS_HEATER_1
- tail_valve_pressure = block->valve_pressure;
- #endif
- #if HAS_HEATER_2
- tail_e_to_p_pressure = block->e_to_p_pressure;
- #endif
- #endif
-
- for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
- block = &block_buffer[b];
- LOOP_XYZE(i) if (block->steps[i]) axis_active[i]++;
- }
- }
- #if ENABLED(DISABLE_X)
- if (!axis_active[X_AXIS]) disable_x();
- #endif
- #if ENABLED(DISABLE_Y)
- if (!axis_active[Y_AXIS]) disable_y();
- #endif
- #if ENABLED(DISABLE_Z)
- if (!axis_active[Z_AXIS]) disable_z();
- #endif
- #if ENABLED(DISABLE_E)
- if (!axis_active[E_AXIS]) {
- disable_e0();
- disable_e1();
- disable_e2();
- disable_e3();
- }
- #endif
-
- #if FAN_COUNT > 0
-
- #if defined(FAN_MIN_PWM)
- #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
- #else
- #define CALC_FAN_SPEED(f) tail_fan_speed[f]
- #endif
-
- #ifdef FAN_KICKSTART_TIME
-
- static millis_t fan_kick_end[FAN_COUNT] = { 0 };
-
- #define KICKSTART_FAN(f) \
- if (tail_fan_speed[f]) { \
- millis_t ms = millis(); \
- if (fan_kick_end[f] == 0) { \
- fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
- tail_fan_speed[f] = 255; \
- } else { \
- if (PENDING(ms, fan_kick_end[f])) { \
- tail_fan_speed[f] = 255; \
- } \
- } \
- } else { \
- fan_kick_end[f] = 0; \
- }
-
- #if HAS_FAN0
- KICKSTART_FAN(0);
- #endif
- #if HAS_FAN1
- KICKSTART_FAN(1);
- #endif
- #if HAS_FAN2
- KICKSTART_FAN(2);
- #endif
-
- #endif
-
- #if ENABLED(FAN_SOFT_PWM)
- #if HAS_FAN0
- thermalManager.fanSpeedSoftPwm[0] = CALC_FAN_SPEED(0);
- #endif
- #if HAS_FAN1
- thermalManager.fanSpeedSoftPwm[1] = CALC_FAN_SPEED(1);
- #endif
- #if HAS_FAN2
- thermalManager.fanSpeedSoftPwm[2] = CALC_FAN_SPEED(2);
- #endif
- #else
- #if HAS_FAN0
- analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
- #endif
- #if HAS_FAN1
- analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
- #endif
- #if HAS_FAN2
- analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
- #endif
- #endif
-
- #endif
-
- #if ENABLED(AUTOTEMP)
- getHighESpeed();
- #endif
-
- #if ENABLED(BARICUDA)
- #if HAS_HEATER_1
- analogWrite(HEATER_1_PIN, tail_valve_pressure);
- #endif
- #if HAS_HEATER_2
- analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
- #endif
- #endif
- }
-
- #if PLANNER_LEVELING
-
- void Planner::apply_leveling(float &lx, float &ly, float &lz) {
-
- #if HAS_ABL
- if (!abl_enabled) return;
- #endif
-
- #if ENABLED(MESH_BED_LEVELING)
-
- if (mbl.active())
- lz += mbl.get_z(RAW_X_POSITION(lx), RAW_Y_POSITION(ly));
-
- #elif ABL_PLANAR
-
- float dx = RAW_X_POSITION(lx) - (X_TILT_FULCRUM),
- dy = RAW_Y_POSITION(ly) - (Y_TILT_FULCRUM),
- dz = RAW_Z_POSITION(lz);
-
- apply_rotation_xyz(bed_level_matrix, dx, dy, dz);
-
- lx = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM);
- ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
- lz = LOGICAL_Z_POSITION(dz);
-
- #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
-
- float tmp[XYZ] = { lx, ly, 0 };
-
- #if ENABLED(DELTA)
-
- float offset = bilinear_z_offset(tmp);
- lx += offset;
- ly += offset;
- lz += offset;
-
- #else
-
- lz += bilinear_z_offset(tmp);
-
- #endif
-
- #endif
- }
-
- void Planner::unapply_leveling(float logical[XYZ]) {
-
- #if HAS_ABL
- if (!abl_enabled) return;
- #endif
-
- #if ENABLED(MESH_BED_LEVELING)
-
- if (mbl.active())
- logical[Z_AXIS] -= mbl.get_z(RAW_X_POSITION(logical[X_AXIS]), RAW_Y_POSITION(logical[Y_AXIS]));
-
- #elif ABL_PLANAR
-
- matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
-
- float dx = RAW_X_POSITION(logical[X_AXIS]) - (X_TILT_FULCRUM),
- dy = RAW_Y_POSITION(logical[Y_AXIS]) - (Y_TILT_FULCRUM),
- dz = RAW_Z_POSITION(logical[Z_AXIS]);
-
- apply_rotation_xyz(inverse, dx, dy, dz);
-
- logical[X_AXIS] = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM);
- logical[Y_AXIS] = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
- logical[Z_AXIS] = LOGICAL_Z_POSITION(dz);
-
- #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
-
- logical[Z_AXIS] -= bilinear_z_offset(logical);
-
- #endif
- }
-
- #endif
-
-
- void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, const uint8_t extruder) {
-
- int next_buffer_head = next_block_index(block_buffer_head);
-
-
-
- while (block_buffer_tail == next_buffer_head) idle();
-
- #if PLANNER_LEVELING
- apply_leveling(lx, ly, lz);
- #endif
-
-
-
-
- long target[NUM_AXIS] = {
- lround(lx * axis_steps_per_mm[X_AXIS]),
- lround(ly * axis_steps_per_mm[Y_AXIS]),
- lround(lz * axis_steps_per_mm[Z_AXIS]),
- lround(e * axis_steps_per_mm[E_AXIS])
- };
-
- long dx = target[X_AXIS] - position[X_AXIS],
- dy = target[Y_AXIS] - position[Y_AXIS],
- dz = target[Z_AXIS] - position[Z_AXIS];
-
-
-
-
-
- if (DEBUGGING(DRYRUN)) position[E_AXIS] = target[E_AXIS];
-
- long de = target[E_AXIS] - position[E_AXIS];
-
- #if ENABLED(PREVENT_COLD_EXTRUSION)
- if (de) {
- if (thermalManager.tooColdToExtrude(extruder)) {
- position[E_AXIS] = target[E_AXIS];
- de = 0;
- SERIAL_ECHO_START;
- SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
- }
- #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
- if (labs(de) > axis_steps_per_mm[E_AXIS] * (EXTRUDE_MAXLENGTH)) {
- position[E_AXIS] = target[E_AXIS];
- de = 0;
- SERIAL_ECHO_START;
- SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
- }
- #endif
- }
- #endif
-
-
- block_t* block = &block_buffer[block_buffer_head];
-
-
- block->busy = false;
-
-
- #if ENABLED(COREXY)
-
-
- block->steps[A_AXIS] = labs(dx + dy);
- block->steps[B_AXIS] = labs(dx - dy);
- block->steps[Z_AXIS] = labs(dz);
- #elif ENABLED(COREXZ)
-
- block->steps[A_AXIS] = labs(dx + dz);
- block->steps[Y_AXIS] = labs(dy);
- block->steps[C_AXIS] = labs(dx - dz);
- #elif ENABLED(COREYZ)
-
- block->steps[X_AXIS] = labs(dx);
- block->steps[B_AXIS] = labs(dy + dz);
- block->steps[C_AXIS] = labs(dy - dz);
- #else
-
- block->steps[X_AXIS] = labs(dx);
- block->steps[Y_AXIS] = labs(dy);
- block->steps[Z_AXIS] = labs(dz);
- #endif
-
- block->steps[E_AXIS] = labs(de) * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01 + 0.5;
- block->step_event_count = MAX4(block->steps[X_AXIS], block->steps[Y_AXIS], block->steps[Z_AXIS], block->steps[E_AXIS]);
-
-
- if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return;
-
-
- #if ENABLED(MIXING_EXTRUDER)
- for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
- block->mix_event_count[i] = UNEAR_ZERO(mixing_factor[i]) ? 0 : block->step_event_count / mixing_factor[i];
- #endif
-
- #if FAN_COUNT > 0
- for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
- #endif
-
- #if ENABLED(BARICUDA)
- block->valve_pressure = baricuda_valve_pressure;
- block->e_to_p_pressure = baricuda_e_to_p_pressure;
- #endif
-
-
- uint8_t db = 0;
- #if ENABLED(COREXY)
- if (dx < 0) SBI(db, X_HEAD);
- if (dy < 0) SBI(db, Y_HEAD);
- if (dz < 0) SBI(db, Z_AXIS);
- if (dx + dy < 0) SBI(db, A_AXIS);
- if (dx - dy < 0) SBI(db, B_AXIS);
- #elif ENABLED(COREXZ)
- if (dx < 0) SBI(db, X_HEAD);
- if (dy < 0) SBI(db, Y_AXIS);
- if (dz < 0) SBI(db, Z_HEAD);
- if (dx + dz < 0) SBI(db, A_AXIS);
- if (dx - dz < 0) SBI(db, C_AXIS);
- #elif ENABLED(COREYZ)
- if (dx < 0) SBI(db, X_AXIS);
- if (dy < 0) SBI(db, Y_HEAD);
- if (dz < 0) SBI(db, Z_HEAD);
- if (dy + dz < 0) SBI(db, B_AXIS);
- if (dy - dz < 0) SBI(db, C_AXIS);
- #else
- if (dx < 0) SBI(db, X_AXIS);
- if (dy < 0) SBI(db, Y_AXIS);
- if (dz < 0) SBI(db, Z_AXIS);
- #endif
- if (de < 0) SBI(db, E_AXIS);
- block->direction_bits = db;
-
- block->active_extruder = extruder;
-
-
- #if ENABLED(COREXY)
- if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
- enable_x();
- enable_y();
- }
- #if DISABLED(Z_LATE_ENABLE)
- if (block->steps[Z_AXIS]) enable_z();
- #endif
- #elif ENABLED(COREXZ)
- if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
- enable_x();
- enable_z();
- }
- if (block->steps[Y_AXIS]) enable_y();
- #else
- if (block->steps[X_AXIS]) enable_x();
- if (block->steps[Y_AXIS]) enable_y();
- #if DISABLED(Z_LATE_ENABLE)
- if (block->steps[Z_AXIS]) enable_z();
- #endif
- #endif
-
-
- if (block->steps[E_AXIS]) {
-
- #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
-
- for (int i = 0; i < EXTRUDERS; i++)
- if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
-
- switch(extruder) {
- case 0:
- enable_e0();
- #if ENABLED(DUAL_X_CARRIAGE)
- if (extruder_duplication_enabled) {
- enable_e1();
- g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
- }
- #endif
- g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
- #if EXTRUDERS > 1
- if (g_uc_extruder_last_move[1] == 0) disable_e1();
- #if EXTRUDERS > 2
- if (g_uc_extruder_last_move[2] == 0) disable_e2();
- #if EXTRUDERS > 3
- if (g_uc_extruder_last_move[3] == 0) disable_e3();
- #endif
- #endif
- #endif
- break;
- #if EXTRUDERS > 1
- case 1:
- enable_e1();
- g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
- if (g_uc_extruder_last_move[0] == 0) disable_e0();
- #if EXTRUDERS > 2
- if (g_uc_extruder_last_move[2] == 0) disable_e2();
- #if EXTRUDERS > 3
- if (g_uc_extruder_last_move[3] == 0) disable_e3();
- #endif
- #endif
- break;
- #if EXTRUDERS > 2
- case 2:
- enable_e2();
- g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
- if (g_uc_extruder_last_move[0] == 0) disable_e0();
- if (g_uc_extruder_last_move[1] == 0) disable_e1();
- #if EXTRUDERS > 3
- if (g_uc_extruder_last_move[3] == 0) disable_e3();
- #endif
- break;
- #if EXTRUDERS > 3
- case 3:
- enable_e3();
- g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
- if (g_uc_extruder_last_move[0] == 0) disable_e0();
- if (g_uc_extruder_last_move[1] == 0) disable_e1();
- if (g_uc_extruder_last_move[2] == 0) disable_e2();
- break;
- #endif
- #endif
- #endif
- }
- #else
- enable_e0();
- enable_e1();
- enable_e2();
- enable_e3();
- #endif
- }
-
- if (block->steps[E_AXIS])
- NOLESS(fr_mm_s, min_feedrate_mm_s);
- else
- NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
-
-
-
- #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
- float delta_mm[7];
- #if ENABLED(COREXY)
- delta_mm[X_HEAD] = dx * steps_to_mm[A_AXIS];
- delta_mm[Y_HEAD] = dy * steps_to_mm[B_AXIS];
- delta_mm[Z_AXIS] = dz * steps_to_mm[Z_AXIS];
- delta_mm[A_AXIS] = (dx + dy) * steps_to_mm[A_AXIS];
- delta_mm[B_AXIS] = (dx - dy) * steps_to_mm[B_AXIS];
- #elif ENABLED(COREXZ)
- delta_mm[X_HEAD] = dx * steps_to_mm[A_AXIS];
- delta_mm[Y_AXIS] = dy * steps_to_mm[Y_AXIS];
- delta_mm[Z_HEAD] = dz * steps_to_mm[C_AXIS];
- delta_mm[A_AXIS] = (dx + dz) * steps_to_mm[A_AXIS];
- delta_mm[C_AXIS] = (dx - dz) * steps_to_mm[C_AXIS];
- #elif ENABLED(COREYZ)
- delta_mm[X_AXIS] = dx * steps_to_mm[X_AXIS];
- delta_mm[Y_HEAD] = dy * steps_to_mm[B_AXIS];
- delta_mm[Z_HEAD] = dz * steps_to_mm[C_AXIS];
- delta_mm[B_AXIS] = (dy + dz) * steps_to_mm[B_AXIS];
- delta_mm[C_AXIS] = (dy - dz) * steps_to_mm[C_AXIS];
- #endif
- #else
- float delta_mm[4];
- delta_mm[X_AXIS] = dx * steps_to_mm[X_AXIS];
- delta_mm[Y_AXIS] = dy * steps_to_mm[Y_AXIS];
- delta_mm[Z_AXIS] = dz * steps_to_mm[Z_AXIS];
- #endif
- delta_mm[E_AXIS] = 0.01 * (de * steps_to_mm[E_AXIS]) * volumetric_multiplier[extruder] * flow_percentage[extruder];
-
- if (block->steps[X_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Y_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Z_AXIS] < MIN_STEPS_PER_SEGMENT) {
- block->millimeters = fabs(delta_mm[E_AXIS]);
- }
- else {
- block->millimeters = sqrt(
- #if ENABLED(COREXY)
- sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
- #elif ENABLED(COREXZ)
- sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
- #elif ENABLED(COREYZ)
- sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
- #else
- sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
- #endif
- );
- }
- float inverse_millimeters = 1.0 / block->millimeters;
-
-
- float inverse_mm_s = fr_mm_s * inverse_millimeters;
-
- int moves_queued = movesplanned();
-
-
- #if ENABLED(OLD_SLOWDOWN) || ENABLED(SLOWDOWN)
- bool mq = moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2;
- #if ENABLED(OLD_SLOWDOWN)
- if (mq) fr_mm_s *= 2.0 * moves_queued / (BLOCK_BUFFER_SIZE);
- #endif
- #if ENABLED(SLOWDOWN)
-
- unsigned long segment_time = lround(1000000.0/inverse_mm_s);
- if (mq) {
- if (segment_time < min_segment_time) {
-
- inverse_mm_s = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued));
- #ifdef XY_FREQUENCY_LIMIT
- segment_time = lround(1000000.0 / inverse_mm_s);
- #endif
- }
- }
- #endif
- #endif
-
- block->nominal_speed = block->millimeters * inverse_mm_s;
- block->nominal_rate = ceil(block->step_event_count * inverse_mm_s);
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- static float filwidth_e_count = 0, filwidth_delay_dist = 0;
-
-
- if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) {
-
- const int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
-
-
- filwidth_e_count += delta_mm[E_AXIS];
- filwidth_delay_dist += delta_mm[E_AXIS];
-
-
- if (filwidth_e_count > 0.0001) {
-
-
- while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
-
-
- filwidth_delay_index[0] = (int)(filwidth_delay_dist * 0.1 + 0.0001);
-
-
- if (filwidth_delay_index[0] != filwidth_delay_index[1]) {
- filwidth_e_count = 0;
- int8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100;
- do {
- filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM;
- measurement_delay[filwidth_delay_index[1]] = meas_sample;
- } while (filwidth_delay_index[0] != filwidth_delay_index[1]);
- }
- }
- }
- #endif
-
-
- float current_speed[NUM_AXIS], speed_factor = 1.0;
- LOOP_XYZE(i) {
- float cs = fabs(current_speed[i] = delta_mm[i] * inverse_mm_s);
- if (cs > max_feedrate_mm_s[i]) NOMORE(speed_factor, max_feedrate_mm_s[i] / cs);
- }
-
-
- #ifdef XY_FREQUENCY_LIMIT
-
-
- unsigned char direction_change = block->direction_bits ^ old_direction_bits;
- old_direction_bits = block->direction_bits;
- segment_time = lround((float)segment_time / speed_factor);
-
- long xs0 = axis_segment_time[X_AXIS][0],
- xs1 = axis_segment_time[X_AXIS][1],
- xs2 = axis_segment_time[X_AXIS][2],
- ys0 = axis_segment_time[Y_AXIS][0],
- ys1 = axis_segment_time[Y_AXIS][1],
- ys2 = axis_segment_time[Y_AXIS][2];
-
- if (TEST(direction_change, X_AXIS)) {
- xs2 = axis_segment_time[X_AXIS][2] = xs1;
- xs1 = axis_segment_time[X_AXIS][1] = xs0;
- xs0 = 0;
- }
- xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
-
- if (TEST(direction_change, Y_AXIS)) {
- ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
- ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
- ys0 = 0;
- }
- ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
-
- long max_x_segment_time = MAX3(xs0, xs1, xs2),
- max_y_segment_time = MAX3(ys0, ys1, ys2),
- min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
- if (min_xy_segment_time < MAX_FREQ_TIME) {
- float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME);
- NOMORE(speed_factor, low_sf);
- }
- #endif
-
-
- if (speed_factor < 1.0) {
- LOOP_XYZE(i) current_speed[i] *= speed_factor;
- block->nominal_speed *= speed_factor;
- block->nominal_rate *= speed_factor;
- }
-
-
- float steps_per_mm = block->step_event_count / block->millimeters;
- if (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) {
- block->acceleration_steps_per_s2 = ceil(retract_acceleration * steps_per_mm);
- }
- else {
-
- block->acceleration_steps_per_s2 = ceil((block->steps[E_AXIS] ? acceleration : travel_acceleration) * steps_per_mm);
- if (max_acceleration_steps_per_s2[X_AXIS] < (block->acceleration_steps_per_s2 * block->steps[X_AXIS]) / block->step_event_count)
- block->acceleration_steps_per_s2 = (max_acceleration_steps_per_s2[X_AXIS] * block->step_event_count) / block->steps[X_AXIS];
- if (max_acceleration_steps_per_s2[Y_AXIS] < (block->acceleration_steps_per_s2 * block->steps[Y_AXIS]) / block->step_event_count)
- block->acceleration_steps_per_s2 = (max_acceleration_steps_per_s2[Y_AXIS] * block->step_event_count) / block->steps[Y_AXIS];
- if (max_acceleration_steps_per_s2[Z_AXIS] < (block->acceleration_steps_per_s2 * block->steps[Z_AXIS]) / block->step_event_count)
- block->acceleration_steps_per_s2 = (max_acceleration_steps_per_s2[Z_AXIS] * block->step_event_count) / block->steps[Z_AXIS];
- if (max_acceleration_steps_per_s2[E_AXIS] < (block->acceleration_steps_per_s2 * block->steps[E_AXIS]) / block->step_event_count)
- block->acceleration_steps_per_s2 = (max_acceleration_steps_per_s2[E_AXIS] * block->step_event_count) / block->steps[E_AXIS];
- }
- block->acceleration = block->acceleration_steps_per_s2 / steps_per_mm;
- block->acceleration_rate = (long)(block->acceleration_steps_per_s2 * 16777216.0 / ((F_CPU) * 0.125));
-
- #if 0
-
- float junction_deviation = 0.1;
-
-
- double unit_vec[XYZ];
-
- unit_vec[X_AXIS] = delta_mm[X_AXIS] * inverse_millimeters;
- unit_vec[Y_AXIS] = delta_mm[Y_AXIS] * inverse_millimeters;
- unit_vec[Z_AXIS] = delta_mm[Z_AXIS] * inverse_millimeters;
-
-
-
-
-
-
-
-
-
-
- double vmax_junction = MINIMUM_PLANNER_SPEED;
-
-
- if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
-
-
- double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
- - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
- - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
-
- if (cos_theta < 0.95) {
- vmax_junction = min(previous_nominal_speed, block->nominal_speed);
-
- if (cos_theta > -0.95) {
-
- double sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta));
- NOMORE(vmax_junction, sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
- }
- }
- }
- #endif
-
-
- float vmax_junction = max_jerk[X_AXIS] * 0.5, vmax_junction_factor = 1.0;
- if (max_jerk[Y_AXIS] * 0.5 < fabs(current_speed[Y_AXIS])) NOMORE(vmax_junction, max_jerk[Y_AXIS] * 0.5);
- if (max_jerk[Z_AXIS] * 0.5 < fabs(current_speed[Z_AXIS])) NOMORE(vmax_junction, max_jerk[Z_AXIS] * 0.5);
- if (max_jerk[E_AXIS] * 0.5 < fabs(current_speed[E_AXIS])) NOMORE(vmax_junction, max_jerk[E_AXIS] * 0.5);
- NOMORE(vmax_junction, block->nominal_speed);
- float safe_speed = vmax_junction;
-
- if (moves_queued > 1 && previous_nominal_speed > 0.0001) {
-
- vmax_junction = block->nominal_speed;
-
-
- float dsx = fabs(current_speed[X_AXIS] - previous_speed[X_AXIS]),
- dsy = fabs(current_speed[Y_AXIS] - previous_speed[Y_AXIS]),
- dsz = fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]),
- dse = fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]);
- if (dsx > max_jerk[X_AXIS]) NOMORE(vmax_junction_factor, max_jerk[X_AXIS] / dsx);
- if (dsy > max_jerk[Y_AXIS]) NOMORE(vmax_junction_factor, max_jerk[Y_AXIS] / dsy);
- if (dsz > max_jerk[Z_AXIS]) NOMORE(vmax_junction_factor, max_jerk[Z_AXIS] / dsz);
- if (dse > max_jerk[E_AXIS]) NOMORE(vmax_junction_factor, max_jerk[E_AXIS] / dse);
-
- vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor);
- }
- block->max_entry_speed = vmax_junction;
-
-
- float v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
- block->entry_speed = min(vmax_junction, v_allowable);
-
-
-
-
-
-
-
-
-
- block->nominal_length_flag = (block->nominal_speed <= v_allowable);
- block->recalculate_flag = true;
-
-
- memcpy(previous_speed, current_speed, sizeof(previous_speed));
- previous_nominal_speed = block->nominal_speed;
-
- #if ENABLED(LIN_ADVANCE)
-
-
-
-
-
-
- if (!block->steps[E_AXIS] || (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) || stepper.get_advance_k() == 0 || (uint32_t) block->steps[E_AXIS] == block->step_event_count) {
- block->use_advance_lead = false;
- }
- else {
- block->use_advance_lead = true;
- block->e_speed_multiplier8 = (block->steps[E_AXIS] << 8) / block->step_event_count;
- }
-
- #elif ENABLED(ADVANCE)
-
-
- if (!block->steps[E_AXIS] || (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS])) {
- block->advance_rate = 0;
- block->advance = 0;
- }
- else {
- long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2);
- float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * HYPOT(current_speed[E_AXIS], EXTRUSION_AREA) * 256;
- block->advance = advance;
- block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
- }
-
-
-
- #endif
-
- calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
-
-
- block_buffer_head = next_buffer_head;
-
-
- memcpy(position, target, sizeof(position));
-
- recalculate();
-
- stepper.wake_up();
-
- }
-
-
- void Planner::set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
-
- #if PLANNER_LEVELING
- apply_leveling(lx, ly, lz);
- #endif
-
- long nx = position[X_AXIS] = lround(lx * axis_steps_per_mm[X_AXIS]),
- ny = position[Y_AXIS] = lround(ly * axis_steps_per_mm[Y_AXIS]),
- nz = position[Z_AXIS] = lround(lz * axis_steps_per_mm[Z_AXIS]),
- ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
- stepper.set_position(nx, ny, nz, ne);
- previous_nominal_speed = 0.0;
-
- memset(previous_speed, 0, sizeof(previous_speed));
- }
-
-
- void Planner::sync_from_steppers() {
- LOOP_XYZE(i) position[i] = stepper.position((AxisEnum)i);
- }
-
-
- void Planner::set_position_mm(const AxisEnum axis, const float& v) {
- position[axis] = lround(v * axis_steps_per_mm[axis]);
- stepper.set_position(axis, v);
- previous_speed[axis] = 0.0;
- }
-
-
- void Planner::reset_acceleration_rates() {
- LOOP_XYZE(i)
- max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
- }
-
-
- void Planner::refresh_positioning() {
- LOOP_XYZE(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i];
- #if IS_KINEMATIC
- inverse_kinematics(current_position);
- set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
- #else
- set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- #endif
- reset_acceleration_rates();
- }
-
- #if ENABLED(AUTOTEMP)
-
- void Planner::autotemp_M109() {
- autotemp_enabled = code_seen('F');
- if (autotemp_enabled) autotemp_factor = code_value_temp_diff();
- if (code_seen('S')) autotemp_min = code_value_temp_abs();
- if (code_seen('B')) autotemp_max = code_value_temp_abs();
- }
-
- #endif
|