My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

stepper.cpp 30KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. Stepper stepper; // Singleton
  57. // public:
  58. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  59. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  60. bool Stepper::abort_on_endstop_hit = false;
  61. #endif
  62. #if ENABLED(Z_DUAL_ENDSTOPS)
  63. bool Stepper::performing_homing = false;
  64. #endif
  65. // private:
  66. unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  67. unsigned int Stepper::cleaning_buffer_counter = 0;
  68. #if ENABLED(Z_DUAL_ENDSTOPS)
  69. bool Stepper::locked_z_motor = false;
  70. bool Stepper::locked_z2_motor = false;
  71. #endif
  72. long Stepper::counter_X = 0,
  73. Stepper::counter_Y = 0,
  74. Stepper::counter_Z = 0,
  75. Stepper::counter_E = 0;
  76. volatile unsigned long Stepper::step_events_completed = 0; // The number of step events executed in the current block
  77. #if ENABLED(ADVANCE)
  78. unsigned char Stepper::old_OCR0A;
  79. long Stepper::final_advance = 0,
  80. Stepper::old_advance = 0,
  81. Stepper::e_steps[EXTRUDERS],
  82. Stepper::advance_rate,
  83. Stepper::advance;
  84. #endif
  85. long Stepper::acceleration_time, Stepper::deceleration_time;
  86. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  87. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  88. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  89. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  90. unsigned short Stepper::OCR1A_nominal;
  91. volatile long Stepper::endstops_trigsteps[3];
  92. #if ENABLED(DUAL_X_CARRIAGE)
  93. #define X_APPLY_DIR(v,ALWAYS) \
  94. if (extruder_duplication_enabled || ALWAYS) { \
  95. X_DIR_WRITE(v); \
  96. X2_DIR_WRITE(v); \
  97. } \
  98. else { \
  99. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  100. }
  101. #define X_APPLY_STEP(v,ALWAYS) \
  102. if (extruder_duplication_enabled || ALWAYS) { \
  103. X_STEP_WRITE(v); \
  104. X2_STEP_WRITE(v); \
  105. } \
  106. else { \
  107. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  108. }
  109. #else
  110. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  111. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  112. #endif
  113. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  114. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  115. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  116. #else
  117. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  118. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  119. #endif
  120. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  121. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  122. #if ENABLED(Z_DUAL_ENDSTOPS)
  123. #define Z_APPLY_STEP(v,Q) \
  124. if (performing_homing) { \
  125. if (Z_HOME_DIR > 0) {\
  126. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  127. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  128. } \
  129. else { \
  130. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  131. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  132. } \
  133. } \
  134. else { \
  135. Z_STEP_WRITE(v); \
  136. Z2_STEP_WRITE(v); \
  137. }
  138. #else
  139. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  140. #endif
  141. #else
  142. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  143. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  144. #endif
  145. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  146. // intRes = longIn1 * longIn2 >> 24
  147. // uses:
  148. // r26 to store 0
  149. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  150. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  151. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  152. // B0 A0 are bits 24-39 and are the returned value
  153. // C1 B1 A1 is longIn1
  154. // D2 C2 B2 A2 is longIn2
  155. //
  156. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  157. asm volatile ( \
  158. "clr r26 \n\t" \
  159. "mul %A1, %B2 \n\t" \
  160. "mov r27, r1 \n\t" \
  161. "mul %B1, %C2 \n\t" \
  162. "movw %A0, r0 \n\t" \
  163. "mul %C1, %C2 \n\t" \
  164. "add %B0, r0 \n\t" \
  165. "mul %C1, %B2 \n\t" \
  166. "add %A0, r0 \n\t" \
  167. "adc %B0, r1 \n\t" \
  168. "mul %A1, %C2 \n\t" \
  169. "add r27, r0 \n\t" \
  170. "adc %A0, r1 \n\t" \
  171. "adc %B0, r26 \n\t" \
  172. "mul %B1, %B2 \n\t" \
  173. "add r27, r0 \n\t" \
  174. "adc %A0, r1 \n\t" \
  175. "adc %B0, r26 \n\t" \
  176. "mul %C1, %A2 \n\t" \
  177. "add r27, r0 \n\t" \
  178. "adc %A0, r1 \n\t" \
  179. "adc %B0, r26 \n\t" \
  180. "mul %B1, %A2 \n\t" \
  181. "add r27, r1 \n\t" \
  182. "adc %A0, r26 \n\t" \
  183. "adc %B0, r26 \n\t" \
  184. "lsr r27 \n\t" \
  185. "adc %A0, r26 \n\t" \
  186. "adc %B0, r26 \n\t" \
  187. "mul %D2, %A1 \n\t" \
  188. "add %A0, r0 \n\t" \
  189. "adc %B0, r1 \n\t" \
  190. "mul %D2, %B1 \n\t" \
  191. "add %B0, r0 \n\t" \
  192. "clr r1 \n\t" \
  193. : \
  194. "=&r" (intRes) \
  195. : \
  196. "d" (longIn1), \
  197. "d" (longIn2) \
  198. : \
  199. "r26" , "r27" \
  200. )
  201. // Some useful constants
  202. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  203. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  204. /**
  205. * __________________________
  206. * /| |\ _________________ ^
  207. * / | | \ /| |\ |
  208. * / | | \ / | | \ s
  209. * / | | | | | \ p
  210. * / | | | | | \ e
  211. * +-----+------------------------+---+--+---------------+----+ e
  212. * | BLOCK 1 | BLOCK 2 | d
  213. *
  214. * time ----->
  215. *
  216. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  217. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  218. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  219. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  220. */
  221. void Stepper::wake_up() {
  222. // TCNT1 = 0;
  223. ENABLE_STEPPER_DRIVER_INTERRUPT();
  224. }
  225. /**
  226. * Set the stepper direction of each axis
  227. *
  228. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  229. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  230. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  231. */
  232. void Stepper::set_directions() {
  233. #define SET_STEP_DIR(AXIS) \
  234. if (motor_direction(AXIS ##_AXIS)) { \
  235. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  236. count_direction[AXIS ##_AXIS] = -1; \
  237. } \
  238. else { \
  239. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  240. count_direction[AXIS ##_AXIS] = 1; \
  241. }
  242. SET_STEP_DIR(X); // A
  243. SET_STEP_DIR(Y); // B
  244. SET_STEP_DIR(Z); // C
  245. #if DISABLED(ADVANCE)
  246. if (motor_direction(E_AXIS)) {
  247. REV_E_DIR();
  248. count_direction[E_AXIS] = -1;
  249. }
  250. else {
  251. NORM_E_DIR();
  252. count_direction[E_AXIS] = 1;
  253. }
  254. #endif //!ADVANCE
  255. }
  256. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  257. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  258. ISR(TIMER1_COMPA_vect) { Stepper::isr(); }
  259. void Stepper::isr() {
  260. if (cleaning_buffer_counter) {
  261. current_block = NULL;
  262. planner.discard_current_block();
  263. #ifdef SD_FINISHED_RELEASECOMMAND
  264. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  265. #endif
  266. cleaning_buffer_counter--;
  267. OCR1A = 200;
  268. return;
  269. }
  270. // If there is no current block, attempt to pop one from the buffer
  271. if (!current_block) {
  272. // Anything in the buffer?
  273. current_block = planner.get_current_block();
  274. if (current_block) {
  275. current_block->busy = true;
  276. trapezoid_generator_reset();
  277. counter_X = -(current_block->step_event_count >> 1);
  278. counter_Y = counter_Z = counter_E = counter_X;
  279. step_events_completed = 0;
  280. #if ENABLED(Z_LATE_ENABLE)
  281. if (current_block->steps[Z_AXIS] > 0) {
  282. enable_z();
  283. OCR1A = 2000; //1ms wait
  284. return;
  285. }
  286. #endif
  287. // #if ENABLED(ADVANCE)
  288. // e_steps[current_block->active_extruder] = 0;
  289. // #endif
  290. }
  291. else {
  292. OCR1A = 2000; // 1kHz.
  293. }
  294. }
  295. if (current_block != NULL) {
  296. // Update endstops state, if enabled
  297. #if HAS_BED_PROBE
  298. if (endstops.enabled || endstops.z_probe_enabled) endstops.update();
  299. #else
  300. if (endstops.enabled) endstops.update();
  301. #endif
  302. // Take multiple steps per interrupt (For high speed moves)
  303. for (int8_t i = 0; i < step_loops; i++) {
  304. #ifndef USBCON
  305. customizedSerial.checkRx(); // Check for serial chars.
  306. #endif
  307. #if ENABLED(ADVANCE)
  308. counter_E += current_block->steps[E_AXIS];
  309. if (counter_E > 0) {
  310. counter_E -= current_block->step_event_count;
  311. e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1;
  312. }
  313. #endif //ADVANCE
  314. #define _COUNTER(AXIS) counter_## AXIS
  315. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  316. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  317. #define STEP_ADD(AXIS) \
  318. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  319. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  320. STEP_ADD(X);
  321. STEP_ADD(Y);
  322. STEP_ADD(Z);
  323. #if DISABLED(ADVANCE)
  324. STEP_ADD(E);
  325. #endif
  326. #define STEP_IF_COUNTER(AXIS) \
  327. if (_COUNTER(AXIS) > 0) { \
  328. _COUNTER(AXIS) -= current_block->step_event_count; \
  329. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  330. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  331. }
  332. STEP_IF_COUNTER(X);
  333. STEP_IF_COUNTER(Y);
  334. STEP_IF_COUNTER(Z);
  335. #if DISABLED(ADVANCE)
  336. STEP_IF_COUNTER(E);
  337. #endif
  338. step_events_completed++;
  339. if (step_events_completed >= current_block->step_event_count) break;
  340. }
  341. // Calculate new timer value
  342. unsigned short timer, step_rate;
  343. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  344. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  345. acc_step_rate += current_block->initial_rate;
  346. // upper limit
  347. NOMORE(acc_step_rate, current_block->nominal_rate);
  348. // step_rate to timer interval
  349. timer = calc_timer(acc_step_rate);
  350. OCR1A = timer;
  351. acceleration_time += timer;
  352. #if ENABLED(ADVANCE)
  353. advance += advance_rate * step_loops;
  354. //NOLESS(advance, current_block->advance);
  355. // Do E steps + advance steps
  356. e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance);
  357. old_advance = advance >> 8;
  358. #endif //ADVANCE
  359. }
  360. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  361. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  362. if (step_rate <= acc_step_rate) { // Still decelerating?
  363. step_rate = acc_step_rate - step_rate;
  364. NOLESS(step_rate, current_block->final_rate);
  365. }
  366. else
  367. step_rate = current_block->final_rate;
  368. // step_rate to timer interval
  369. timer = calc_timer(step_rate);
  370. OCR1A = timer;
  371. deceleration_time += timer;
  372. #if ENABLED(ADVANCE)
  373. advance -= advance_rate * step_loops;
  374. NOLESS(advance, final_advance);
  375. // Do E steps + advance steps
  376. uint32_t advance_whole = advance >> 8;
  377. e_steps[current_block->active_extruder] += advance_whole - old_advance;
  378. old_advance = advance_whole;
  379. #endif //ADVANCE
  380. }
  381. else {
  382. OCR1A = OCR1A_nominal;
  383. // ensure we're running at the correct step rate, even if we just came off an acceleration
  384. step_loops = step_loops_nominal;
  385. }
  386. OCR1A = (OCR1A < (TCNT1 + 16)) ? (TCNT1 + 16) : OCR1A;
  387. // If current block is finished, reset pointer
  388. if (step_events_completed >= current_block->step_event_count) {
  389. current_block = NULL;
  390. planner.discard_current_block();
  391. }
  392. }
  393. }
  394. #if ENABLED(ADVANCE)
  395. // Timer interrupt for E. e_steps is set in the main routine;
  396. // Timer 0 is shared with millies
  397. ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); }
  398. void Stepper::advance_isr() {
  399. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  400. OCR0A = old_OCR0A;
  401. #define STEP_E_ONCE(INDEX) \
  402. if (e_steps[INDEX] != 0) { \
  403. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  404. if (e_steps[INDEX] < 0) { \
  405. E## INDEX ##_DIR_WRITE(INVERT_E## INDEX ##_DIR); \
  406. e_steps[INDEX]++; \
  407. } \
  408. else if (e_steps[INDEX] > 0) { \
  409. E## INDEX ##_DIR_WRITE(!INVERT_E## INDEX ##_DIR); \
  410. e_steps[INDEX]--; \
  411. } \
  412. E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \
  413. }
  414. // Step all E steppers that have steps, up to 4 steps per interrupt
  415. for (unsigned char i = 0; i < 4; i++) {
  416. STEP_E_ONCE(0);
  417. #if EXTRUDERS > 1
  418. STEP_E_ONCE(1);
  419. #if EXTRUDERS > 2
  420. STEP_E_ONCE(2);
  421. #if EXTRUDERS > 3
  422. STEP_E_ONCE(3);
  423. #endif
  424. #endif
  425. #endif
  426. }
  427. }
  428. #endif // ADVANCE
  429. void Stepper::init() {
  430. digipot_init(); //Initialize Digipot Motor Current
  431. microstep_init(); //Initialize Microstepping Pins
  432. // initialise TMC Steppers
  433. #if ENABLED(HAVE_TMCDRIVER)
  434. tmc_init();
  435. #endif
  436. // initialise L6470 Steppers
  437. #if ENABLED(HAVE_L6470DRIVER)
  438. L6470_init();
  439. #endif
  440. // Initialize Dir Pins
  441. #if HAS_X_DIR
  442. X_DIR_INIT;
  443. #endif
  444. #if HAS_X2_DIR
  445. X2_DIR_INIT;
  446. #endif
  447. #if HAS_Y_DIR
  448. Y_DIR_INIT;
  449. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  450. Y2_DIR_INIT;
  451. #endif
  452. #endif
  453. #if HAS_Z_DIR
  454. Z_DIR_INIT;
  455. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  456. Z2_DIR_INIT;
  457. #endif
  458. #endif
  459. #if HAS_E0_DIR
  460. E0_DIR_INIT;
  461. #endif
  462. #if HAS_E1_DIR
  463. E1_DIR_INIT;
  464. #endif
  465. #if HAS_E2_DIR
  466. E2_DIR_INIT;
  467. #endif
  468. #if HAS_E3_DIR
  469. E3_DIR_INIT;
  470. #endif
  471. //Initialize Enable Pins - steppers default to disabled.
  472. #if HAS_X_ENABLE
  473. X_ENABLE_INIT;
  474. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  475. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  476. X2_ENABLE_INIT;
  477. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  478. #endif
  479. #endif
  480. #if HAS_Y_ENABLE
  481. Y_ENABLE_INIT;
  482. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  483. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  484. Y2_ENABLE_INIT;
  485. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  486. #endif
  487. #endif
  488. #if HAS_Z_ENABLE
  489. Z_ENABLE_INIT;
  490. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  491. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  492. Z2_ENABLE_INIT;
  493. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  494. #endif
  495. #endif
  496. #if HAS_E0_ENABLE
  497. E0_ENABLE_INIT;
  498. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  499. #endif
  500. #if HAS_E1_ENABLE
  501. E1_ENABLE_INIT;
  502. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  503. #endif
  504. #if HAS_E2_ENABLE
  505. E2_ENABLE_INIT;
  506. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  507. #endif
  508. #if HAS_E3_ENABLE
  509. E3_ENABLE_INIT;
  510. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  511. #endif
  512. //
  513. // Init endstops and pullups here
  514. //
  515. endstops.init();
  516. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  517. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  518. #define _DISABLE(axis) disable_## axis()
  519. #define AXIS_INIT(axis, AXIS, PIN) \
  520. _STEP_INIT(AXIS); \
  521. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  522. _DISABLE(axis)
  523. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  524. // Initialize Step Pins
  525. #if HAS_X_STEP
  526. AXIS_INIT(x, X, X);
  527. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_STEP
  528. AXIS_INIT(x, X2, X);
  529. #endif
  530. #endif
  531. #if HAS_Y_STEP
  532. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  533. Y2_STEP_INIT;
  534. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  535. #endif
  536. AXIS_INIT(y, Y, Y);
  537. #endif
  538. #if HAS_Z_STEP
  539. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  540. Z2_STEP_INIT;
  541. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  542. #endif
  543. AXIS_INIT(z, Z, Z);
  544. #endif
  545. #if HAS_E0_STEP
  546. E_AXIS_INIT(0);
  547. #endif
  548. #if HAS_E1_STEP
  549. E_AXIS_INIT(1);
  550. #endif
  551. #if HAS_E2_STEP
  552. E_AXIS_INIT(2);
  553. #endif
  554. #if HAS_E3_STEP
  555. E_AXIS_INIT(3);
  556. #endif
  557. // waveform generation = 0100 = CTC
  558. CBI(TCCR1B, WGM13);
  559. SBI(TCCR1B, WGM12);
  560. CBI(TCCR1A, WGM11);
  561. CBI(TCCR1A, WGM10);
  562. // output mode = 00 (disconnected)
  563. TCCR1A &= ~(3 << COM1A0);
  564. TCCR1A &= ~(3 << COM1B0);
  565. // Set the timer pre-scaler
  566. // Generally we use a divider of 8, resulting in a 2MHz timer
  567. // frequency on a 16MHz MCU. If you are going to change this, be
  568. // sure to regenerate speed_lookuptable.h with
  569. // create_speed_lookuptable.py
  570. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  571. OCR1A = 0x4000;
  572. TCNT1 = 0;
  573. ENABLE_STEPPER_DRIVER_INTERRUPT();
  574. #if ENABLED(ADVANCE)
  575. #if defined(TCCR0A) && defined(WGM01)
  576. CBI(TCCR0A, WGM01);
  577. CBI(TCCR0A, WGM00);
  578. #endif
  579. for (uint8_t i = 0; i < EXTRUDERS; i++) e_steps[i] = 0;
  580. SBI(TIMSK0, OCIE0A);
  581. #endif //ADVANCE
  582. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  583. sei();
  584. set_directions(); // Init directions to last_direction_bits = 0
  585. }
  586. /**
  587. * Block until all buffered steps are executed
  588. */
  589. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  590. /**
  591. * Set the stepper positions directly in steps
  592. *
  593. * The input is based on the typical per-axis XYZ steps.
  594. * For CORE machines XYZ needs to be translated to ABC.
  595. *
  596. * This allows get_axis_position_mm to correctly
  597. * derive the current XYZ position later on.
  598. */
  599. void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) {
  600. CRITICAL_SECTION_START;
  601. #if ENABLED(COREXY)
  602. // corexy positioning
  603. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  604. count_position[A_AXIS] = x + y;
  605. count_position[B_AXIS] = x - y;
  606. count_position[Z_AXIS] = z;
  607. #elif ENABLED(COREXZ)
  608. // corexz planning
  609. count_position[A_AXIS] = x + z;
  610. count_position[Y_AXIS] = y;
  611. count_position[C_AXIS] = x - z;
  612. #elif ENABLED(COREYZ)
  613. // coreyz planning
  614. count_position[X_AXIS] = x;
  615. count_position[B_AXIS] = y + z;
  616. count_position[C_AXIS] = y - z;
  617. #else
  618. // default non-h-bot planning
  619. count_position[X_AXIS] = x;
  620. count_position[Y_AXIS] = y;
  621. count_position[Z_AXIS] = z;
  622. #endif
  623. count_position[E_AXIS] = e;
  624. CRITICAL_SECTION_END;
  625. }
  626. void Stepper::set_e_position(const long& e) {
  627. CRITICAL_SECTION_START;
  628. count_position[E_AXIS] = e;
  629. CRITICAL_SECTION_END;
  630. }
  631. /**
  632. * Get a stepper's position in steps.
  633. */
  634. long Stepper::position(AxisEnum axis) {
  635. CRITICAL_SECTION_START;
  636. long count_pos = count_position[axis];
  637. CRITICAL_SECTION_END;
  638. return count_pos;
  639. }
  640. /**
  641. * Get an axis position according to stepper position(s)
  642. * For CORE machines apply translation from ABC to XYZ.
  643. */
  644. float Stepper::get_axis_position_mm(AxisEnum axis) {
  645. float axis_steps;
  646. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  647. // Requesting one of the "core" axes?
  648. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  649. CRITICAL_SECTION_START;
  650. long pos1 = count_position[CORE_AXIS_1],
  651. pos2 = count_position[CORE_AXIS_2];
  652. CRITICAL_SECTION_END;
  653. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  654. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  655. axis_steps = (pos1 + ((axis == CORE_AXIS_1) ? pos2 : -pos2)) / 2.0f;
  656. }
  657. else
  658. axis_steps = position(axis);
  659. #else
  660. axis_steps = position(axis);
  661. #endif
  662. return axis_steps / planner.axis_steps_per_mm[axis];
  663. }
  664. void Stepper::finish_and_disable() {
  665. synchronize();
  666. disable_all_steppers();
  667. }
  668. void Stepper::quick_stop() {
  669. cleaning_buffer_counter = 5000;
  670. DISABLE_STEPPER_DRIVER_INTERRUPT();
  671. while (planner.blocks_queued()) planner.discard_current_block();
  672. current_block = NULL;
  673. ENABLE_STEPPER_DRIVER_INTERRUPT();
  674. }
  675. void Stepper::endstop_triggered(AxisEnum axis) {
  676. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  677. float axis_pos = count_position[axis];
  678. if (axis == CORE_AXIS_1)
  679. axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2;
  680. else if (axis == CORE_AXIS_2)
  681. axis_pos = (count_position[CORE_AXIS_1] - axis_pos) / 2;
  682. endstops_trigsteps[axis] = axis_pos;
  683. #else // !COREXY && !COREXZ && !COREYZ
  684. endstops_trigsteps[axis] = count_position[axis];
  685. #endif // !COREXY && !COREXZ && !COREYZ
  686. kill_current_block();
  687. }
  688. void Stepper::report_positions() {
  689. CRITICAL_SECTION_START;
  690. long xpos = count_position[X_AXIS],
  691. ypos = count_position[Y_AXIS],
  692. zpos = count_position[Z_AXIS];
  693. CRITICAL_SECTION_END;
  694. #if ENABLED(COREXY) || ENABLED(COREXZ)
  695. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  696. #else
  697. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  698. #endif
  699. SERIAL_PROTOCOL(xpos);
  700. #if ENABLED(COREXY) || ENABLED(COREYZ)
  701. SERIAL_PROTOCOLPGM(" B:");
  702. #else
  703. SERIAL_PROTOCOLPGM(" Y:");
  704. #endif
  705. SERIAL_PROTOCOL(ypos);
  706. #if ENABLED(COREXZ) || ENABLED(COREYZ)
  707. SERIAL_PROTOCOLPGM(" C:");
  708. #else
  709. SERIAL_PROTOCOLPGM(" Z:");
  710. #endif
  711. SERIAL_PROTOCOL(zpos);
  712. SERIAL_EOL;
  713. }
  714. #if ENABLED(BABYSTEPPING)
  715. // MUST ONLY BE CALLED BY AN ISR,
  716. // No other ISR should ever interrupt this!
  717. void Stepper::babystep(const uint8_t axis, const bool direction) {
  718. #define _ENABLE(axis) enable_## axis()
  719. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  720. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  721. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  722. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  723. _ENABLE(axis); \
  724. uint8_t old_pin = _READ_DIR(AXIS); \
  725. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  726. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  727. delayMicroseconds(2); \
  728. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  729. _APPLY_DIR(AXIS, old_pin); \
  730. }
  731. switch (axis) {
  732. case X_AXIS:
  733. BABYSTEP_AXIS(x, X, false);
  734. break;
  735. case Y_AXIS:
  736. BABYSTEP_AXIS(y, Y, false);
  737. break;
  738. case Z_AXIS: {
  739. #if DISABLED(DELTA)
  740. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  741. #else // DELTA
  742. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  743. enable_x();
  744. enable_y();
  745. enable_z();
  746. uint8_t old_x_dir_pin = X_DIR_READ,
  747. old_y_dir_pin = Y_DIR_READ,
  748. old_z_dir_pin = Z_DIR_READ;
  749. //setup new step
  750. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  751. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  752. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  753. //perform step
  754. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  755. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  756. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  757. delayMicroseconds(2);
  758. X_STEP_WRITE(INVERT_X_STEP_PIN);
  759. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  760. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  761. //get old pin state back.
  762. X_DIR_WRITE(old_x_dir_pin);
  763. Y_DIR_WRITE(old_y_dir_pin);
  764. Z_DIR_WRITE(old_z_dir_pin);
  765. #endif
  766. } break;
  767. default: break;
  768. }
  769. }
  770. #endif //BABYSTEPPING
  771. /**
  772. * Software-controlled Stepper Motor Current
  773. */
  774. #if HAS_DIGIPOTSS
  775. // From Arduino DigitalPotControl example
  776. void Stepper::digitalPotWrite(int address, int value) {
  777. digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  778. SPI.transfer(address); // send in the address and value via SPI:
  779. SPI.transfer(value);
  780. digitalWrite(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  781. //delay(10);
  782. }
  783. #endif //HAS_DIGIPOTSS
  784. void Stepper::digipot_init() {
  785. #if HAS_DIGIPOTSS
  786. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  787. SPI.begin();
  788. pinMode(DIGIPOTSS_PIN, OUTPUT);
  789. for (int i = 0; i < COUNT(digipot_motor_current); i++) {
  790. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  791. digipot_current(i, digipot_motor_current[i]);
  792. }
  793. #endif
  794. #if HAS_MOTOR_CURRENT_PWM
  795. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  796. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  797. digipot_current(0, motor_current_setting[0]);
  798. #endif
  799. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  800. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  801. digipot_current(1, motor_current_setting[1]);
  802. #endif
  803. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  804. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  805. digipot_current(2, motor_current_setting[2]);
  806. #endif
  807. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  808. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  809. #endif
  810. }
  811. void Stepper::digipot_current(uint8_t driver, int current) {
  812. #if HAS_DIGIPOTSS
  813. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  814. digitalPotWrite(digipot_ch[driver], current);
  815. #elif HAS_MOTOR_CURRENT_PWM
  816. #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  817. switch (driver) {
  818. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  819. case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
  820. #endif
  821. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  822. case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
  823. #endif
  824. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  825. case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
  826. #endif
  827. }
  828. #else
  829. UNUSED(driver);
  830. UNUSED(current);
  831. #endif
  832. }
  833. void Stepper::microstep_init() {
  834. #if HAS_MICROSTEPS_E1
  835. pinMode(E1_MS1_PIN, OUTPUT);
  836. pinMode(E1_MS2_PIN, OUTPUT);
  837. #endif
  838. #if HAS_MICROSTEPS
  839. pinMode(X_MS1_PIN, OUTPUT);
  840. pinMode(X_MS2_PIN, OUTPUT);
  841. pinMode(Y_MS1_PIN, OUTPUT);
  842. pinMode(Y_MS2_PIN, OUTPUT);
  843. pinMode(Z_MS1_PIN, OUTPUT);
  844. pinMode(Z_MS2_PIN, OUTPUT);
  845. pinMode(E0_MS1_PIN, OUTPUT);
  846. pinMode(E0_MS2_PIN, OUTPUT);
  847. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  848. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  849. microstep_mode(i, microstep_modes[i]);
  850. #endif
  851. }
  852. /**
  853. * Software-controlled Microstepping
  854. */
  855. void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  856. if (ms1 >= 0) switch (driver) {
  857. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  858. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  859. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  860. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  861. #if HAS_MICROSTEPS_E1
  862. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  863. #endif
  864. }
  865. if (ms2 >= 0) switch (driver) {
  866. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  867. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  868. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  869. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  870. #if PIN_EXISTS(E1_MS2)
  871. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  872. #endif
  873. }
  874. }
  875. void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  876. switch (stepping_mode) {
  877. case 1: microstep_ms(driver, MICROSTEP1); break;
  878. case 2: microstep_ms(driver, MICROSTEP2); break;
  879. case 4: microstep_ms(driver, MICROSTEP4); break;
  880. case 8: microstep_ms(driver, MICROSTEP8); break;
  881. case 16: microstep_ms(driver, MICROSTEP16); break;
  882. }
  883. }
  884. void Stepper::microstep_readings() {
  885. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  886. SERIAL_PROTOCOLPGM("X: ");
  887. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  888. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  889. SERIAL_PROTOCOLPGM("Y: ");
  890. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  891. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  892. SERIAL_PROTOCOLPGM("Z: ");
  893. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  894. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  895. SERIAL_PROTOCOLPGM("E0: ");
  896. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  897. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  898. #if HAS_MICROSTEPS_E1
  899. SERIAL_PROTOCOLPGM("E1: ");
  900. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  901. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  902. #endif
  903. }