My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

stepper.h 10KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
  24. * Part of Grbl
  25. *
  26. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  27. *
  28. * Grbl is free software: you can redistribute it and/or modify
  29. * it under the terms of the GNU General Public License as published by
  30. * the Free Software Foundation, either version 3 of the License, or
  31. * (at your option) any later version.
  32. *
  33. * Grbl is distributed in the hope that it will be useful,
  34. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  35. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  36. * GNU General Public License for more details.
  37. *
  38. * You should have received a copy of the GNU General Public License
  39. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  40. */
  41. #ifndef STEPPER_H
  42. #define STEPPER_H
  43. #include "planner.h"
  44. #include "speed_lookuptable.h"
  45. #include "stepper_indirection.h"
  46. #include "language.h"
  47. class Stepper;
  48. extern Stepper stepper;
  49. // intRes = intIn1 * intIn2 >> 16
  50. // uses:
  51. // r26 to store 0
  52. // r27 to store the byte 1 of the 24 bit result
  53. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  54. asm volatile ( \
  55. "clr r26 \n\t" \
  56. "mul %A1, %B2 \n\t" \
  57. "movw %A0, r0 \n\t" \
  58. "mul %A1, %A2 \n\t" \
  59. "add %A0, r1 \n\t" \
  60. "adc %B0, r26 \n\t" \
  61. "lsr r0 \n\t" \
  62. "adc %A0, r26 \n\t" \
  63. "adc %B0, r26 \n\t" \
  64. "clr r1 \n\t" \
  65. : \
  66. "=&r" (intRes) \
  67. : \
  68. "d" (charIn1), \
  69. "d" (intIn2) \
  70. : \
  71. "r26" \
  72. )
  73. class Stepper {
  74. public:
  75. static block_t* current_block; // A pointer to the block currently being traced
  76. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  77. static bool abort_on_endstop_hit;
  78. #endif
  79. #if ENABLED(Z_DUAL_ENDSTOPS)
  80. static bool performing_homing;
  81. #endif
  82. #if ENABLED(ADVANCE)
  83. static long e_steps[EXTRUDERS];
  84. #endif
  85. private:
  86. static unsigned char last_direction_bits; // The next stepping-bits to be output
  87. static unsigned int cleaning_buffer_counter;
  88. #if ENABLED(Z_DUAL_ENDSTOPS)
  89. static bool locked_z_motor, locked_z2_motor;
  90. #endif
  91. // Counter variables for the Bresenham line tracer
  92. static long counter_X, counter_Y, counter_Z, counter_E;
  93. static volatile unsigned long step_events_completed; // The number of step events executed in the current block
  94. #if ENABLED(ADVANCE)
  95. static unsigned char old_OCR0A;
  96. static long advance_rate, advance, old_advance, final_advance;
  97. #endif
  98. static long acceleration_time, deceleration_time;
  99. //unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  100. static unsigned short acc_step_rate; // needed for deceleration start point
  101. static uint8_t step_loops, step_loops_nominal;
  102. static unsigned short OCR1A_nominal;
  103. static volatile long endstops_trigsteps[3];
  104. static volatile long endstops_stepsTotal, endstops_stepsDone;
  105. #if HAS_MOTOR_CURRENT_PWM
  106. #ifndef PWM_MOTOR_CURRENT
  107. #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
  108. #endif
  109. const int motor_current_setting[3] = PWM_MOTOR_CURRENT;
  110. #endif
  111. //
  112. // Positions of stepper motors, in step units
  113. //
  114. static volatile long count_position[NUM_AXIS];
  115. //
  116. // Current direction of stepper motors (+1 or -1)
  117. //
  118. static volatile signed char count_direction[NUM_AXIS];
  119. public:
  120. //
  121. // Constructor / initializer
  122. //
  123. Stepper() { };
  124. //
  125. // Initialize stepper hardware
  126. //
  127. static void init();
  128. //
  129. // Interrupt Service Routines
  130. //
  131. static void isr();
  132. #if ENABLED(ADVANCE)
  133. static void advance_isr();
  134. #endif
  135. //
  136. // Block until all buffered steps are executed
  137. //
  138. static void synchronize();
  139. //
  140. // Set the current position in steps
  141. //
  142. static void set_position(const long& x, const long& y, const long& z, const long& e);
  143. static void set_e_position(const long& e);
  144. //
  145. // Set direction bits for all steppers
  146. //
  147. static void set_directions();
  148. //
  149. // Get the position of a stepper, in steps
  150. //
  151. static long position(AxisEnum axis);
  152. //
  153. // Report the positions of the steppers, in steps
  154. //
  155. static void report_positions();
  156. //
  157. // Get the position (mm) of an axis based on stepper position(s)
  158. //
  159. static float get_axis_position_mm(AxisEnum axis);
  160. //
  161. // The stepper subsystem goes to sleep when it runs out of things to execute. Call this
  162. // to notify the subsystem that it is time to go to work.
  163. //
  164. static void wake_up();
  165. //
  166. // Wait for moves to finish and disable all steppers
  167. //
  168. static void finish_and_disable();
  169. //
  170. // Quickly stop all steppers and clear the blocks queue
  171. //
  172. static void quick_stop();
  173. //
  174. // The direction of a single motor
  175. //
  176. static FORCE_INLINE bool motor_direction(AxisEnum axis) { return TEST(last_direction_bits, axis); }
  177. #if HAS_DIGIPOTSS
  178. static void digitalPotWrite(int address, int value);
  179. #endif
  180. static void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2);
  181. static void digipot_current(uint8_t driver, int current);
  182. static void microstep_mode(uint8_t driver, uint8_t stepping);
  183. static void microstep_readings();
  184. #if ENABLED(Z_DUAL_ENDSTOPS)
  185. static FORCE_INLINE void set_homing_flag(bool state) { performing_homing = state; }
  186. static FORCE_INLINE void set_z_lock(bool state) { locked_z_motor = state; }
  187. static FORCE_INLINE void set_z2_lock(bool state) { locked_z2_motor = state; }
  188. #endif
  189. #if ENABLED(BABYSTEPPING)
  190. static void babystep(const uint8_t axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
  191. #endif
  192. static inline void kill_current_block() {
  193. step_events_completed = current_block->step_event_count;
  194. }
  195. //
  196. // Handle a triggered endstop
  197. //
  198. static void endstop_triggered(AxisEnum axis);
  199. //
  200. // Triggered position of an axis in mm (not core-savvy)
  201. //
  202. static FORCE_INLINE float triggered_position_mm(AxisEnum axis) {
  203. return endstops_trigsteps[axis] / planner.axis_steps_per_mm[axis];
  204. }
  205. private:
  206. static FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  207. unsigned short timer;
  208. NOMORE(step_rate, MAX_STEP_FREQUENCY);
  209. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  210. step_rate >>= 2;
  211. step_loops = 4;
  212. }
  213. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  214. step_rate >>= 1;
  215. step_loops = 2;
  216. }
  217. else {
  218. step_loops = 1;
  219. }
  220. NOLESS(step_rate, F_CPU / 500000);
  221. step_rate -= F_CPU / 500000; // Correct for minimal speed
  222. if (step_rate >= (8 * 256)) { // higher step rate
  223. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
  224. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  225. unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
  226. MultiU16X8toH16(timer, tmp_step_rate, gain);
  227. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  228. }
  229. else { // lower step rates
  230. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  231. table_address += ((step_rate) >> 1) & 0xfffc;
  232. timer = (unsigned short)pgm_read_word_near(table_address);
  233. timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
  234. }
  235. if (timer < 100) { // (20kHz - this should never happen)
  236. timer = 100;
  237. MYSERIAL.print(MSG_STEPPER_TOO_HIGH);
  238. MYSERIAL.println(step_rate);
  239. }
  240. return timer;
  241. }
  242. // Initializes the trapezoid generator from the current block. Called whenever a new
  243. // block begins.
  244. static FORCE_INLINE void trapezoid_generator_reset() {
  245. static int8_t last_extruder = -1;
  246. if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) {
  247. last_direction_bits = current_block->direction_bits;
  248. last_extruder = current_block->active_extruder;
  249. set_directions();
  250. }
  251. #if ENABLED(ADVANCE)
  252. advance = current_block->initial_advance;
  253. final_advance = current_block->final_advance;
  254. // Do E steps + advance steps
  255. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  256. old_advance = advance >>8;
  257. #endif
  258. deceleration_time = 0;
  259. // step_rate to timer interval
  260. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  261. // make a note of the number of step loops required at nominal speed
  262. step_loops_nominal = step_loops;
  263. acc_step_rate = current_block->initial_rate;
  264. acceleration_time = calc_timer(acc_step_rate);
  265. OCR1A = acceleration_time;
  266. // SERIAL_ECHO_START;
  267. // SERIAL_ECHOPGM("advance :");
  268. // SERIAL_ECHO(current_block->advance/256.0);
  269. // SERIAL_ECHOPGM("advance rate :");
  270. // SERIAL_ECHO(current_block->advance_rate/256.0);
  271. // SERIAL_ECHOPGM("initial advance :");
  272. // SERIAL_ECHO(current_block->initial_advance/256.0);
  273. // SERIAL_ECHOPGM("final advance :");
  274. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  275. }
  276. static void digipot_init();
  277. static void microstep_init();
  278. };
  279. #endif // STEPPER_H