My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 473KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207 (Requires FWRETRACT)
  53. * G11 - Retract recover filament according to settings of M208 (Requires FWRETRACT)
  54. * G12 - Clean tool (Requires NOZZLE_CLEAN_FEATURE)
  55. * G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES)
  56. * G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)
  57. * G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
  58. * G20 - Set input units to inches (Requires INCH_MODE_SUPPORT)
  59. * G21 - Set input units to millimeters (Requires INCH_MODE_SUPPORT)
  60. * G26 - Mesh Validation Pattern (Requires G26_MESH_VALIDATION)
  61. * G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
  62. * G28 - Home one or more axes
  63. * G29 - Start or continue the bed leveling probe procedure (Requires bed leveling)
  64. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  65. * G31 - Dock sled (Z_PROBE_SLED only)
  66. * G32 - Undock sled (Z_PROBE_SLED only)
  67. * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
  68. * G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET)
  69. * G42 - Coordinated move to a mesh point (Requires MESH_BED_LEVELING, AUTO_BED_LEVELING_BLINEAR, or AUTO_BED_LEVELING_UBL)
  70. * G90 - Use Absolute Coordinates
  71. * G91 - Use Relative Coordinates
  72. * G92 - Set current position to coordinates given
  73. *
  74. * "M" Codes
  75. *
  76. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  77. * M1 -> M0
  78. * M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
  79. * M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
  80. * M5 - Turn laser/spindle off
  81. * M17 - Enable/Power all stepper motors
  82. * M18 - Disable all stepper motors; same as M84
  83. * M20 - List SD card. (Requires SDSUPPORT)
  84. * M21 - Init SD card. (Requires SDSUPPORT)
  85. * M22 - Release SD card. (Requires SDSUPPORT)
  86. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  87. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  88. * M25 - Pause SD print. (Requires SDSUPPORT)
  89. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  90. * M27 - Report SD print status. (Requires SDSUPPORT)
  91. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  92. * M29 - Stop SD write. (Requires SDSUPPORT)
  93. * M30 - Delete file from SD: "M30 /path/file.gco"
  94. * M31 - Report time since last M109 or SD card start to serial.
  95. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  96. * Use P to run other files as sub-programs: "M32 P !filename#"
  97. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  98. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  99. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  100. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  101. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  102. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  103. * M75 - Start the print job timer.
  104. * M76 - Pause the print job timer.
  105. * M77 - Stop the print job timer.
  106. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  107. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
  108. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
  109. * M82 - Set E codes absolute (default).
  110. * M83 - Set E codes relative while in Absolute (G90) mode.
  111. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  112. * duration after which steppers should turn off. S0 disables the timeout.
  113. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  114. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  115. * M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
  116. * M104 - Set extruder target temp.
  117. * M105 - Report current temperatures.
  118. * M106 - Set print fan speed.
  119. * M107 - Print fan off.
  120. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  121. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  122. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  123. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  124. * M110 - Set the current line number. (Used by host printing)
  125. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  126. * M112 - Emergency stop.
  127. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  128. * M114 - Report current position.
  129. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  130. * M117 - Display a message on the controller screen. (Requires an LCD)
  131. * M118 - Display a message in the host console.
  132. * M119 - Report endstops status.
  133. * M120 - Enable endstops detection.
  134. * M121 - Disable endstops detection.
  135. * M122 - Debug stepper (Requires HAVE_TMC2130)
  136. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  137. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  138. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  139. * M128 - EtoP Open. (Requires BARICUDA)
  140. * M129 - EtoP Closed. (Requires BARICUDA)
  141. * M140 - Set bed target temp. S<temp>
  142. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  143. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  144. * M150 - Set Status LED Color as R<red> U<green> B<blue> P<bright>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, NEOPIXEL_LED, or PCA9632).
  145. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  146. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  147. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  148. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  149. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  150. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  151. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  152. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  153. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  154. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  155. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  156. * M205 - Set advanced settings. Current units apply:
  157. S<print> T<travel> minimum speeds
  158. B<minimum segment time>
  159. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  160. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  161. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  162. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  163. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  164. Every normal extrude-only move will be classified as retract depending on the direction.
  165. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  166. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  167. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  168. * M221 - Set Flow Percentage: "M221 S<percent>"
  169. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  170. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  171. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  172. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  173. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  174. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  175. * M290 - Babystepping (Requires BABYSTEPPING)
  176. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  178. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  179. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  180. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  181. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  182. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  183. * M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
  184. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  185. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  186. * M400 - Finish all moves.
  187. * M401 - Lower Z probe. (Requires a probe)
  188. * M402 - Raise Z probe. (Requires a probe)
  189. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  190. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  191. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  192. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  193. * M410 - Quickstop. Abort all planned moves.
  194. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  195. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  196. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  197. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  198. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  199. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  200. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  201. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  202. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
  203. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  204. * M666 - Set delta endstop adjustment. (Requires DELTA)
  205. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  206. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  207. * M852 - Set skew factors: "M852 [I<xy>] [J<xz>] [K<yz>]". (Requires SKEW_CORRECTION_GCODE, and SKEW_CORRECTION_FOR_Z for IJ)
  208. * M860 - Report the position of position encoder modules.
  209. * M861 - Report the status of position encoder modules.
  210. * M862 - Perform an axis continuity test for position encoder modules.
  211. * M863 - Perform steps-per-mm calibration for position encoder modules.
  212. * M864 - Change position encoder module I2C address.
  213. * M865 - Check position encoder module firmware version.
  214. * M866 - Report or reset position encoder module error count.
  215. * M867 - Enable/disable or toggle error correction for position encoder modules.
  216. * M868 - Report or set position encoder module error correction threshold.
  217. * M869 - Report position encoder module error.
  218. * M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
  219. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130 or HAVE_TMC2208)
  220. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  221. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  222. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  223. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  224. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130 or HAVE_TMC2208)
  225. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130 or HAVE_TMC2208)
  226. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  227. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  228. *
  229. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  230. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  231. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  232. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  233. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  234. *
  235. * ************ Custom codes - This can change to suit future G-code regulations
  236. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  237. * M999 - Restart after being stopped by error
  238. *
  239. * "T" Codes
  240. *
  241. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  242. *
  243. */
  244. #include "Marlin.h"
  245. #include "ultralcd.h"
  246. #include "planner.h"
  247. #include "stepper.h"
  248. #include "endstops.h"
  249. #include "temperature.h"
  250. #include "cardreader.h"
  251. #include "configuration_store.h"
  252. #include "language.h"
  253. #include "pins_arduino.h"
  254. #include "math.h"
  255. #include "nozzle.h"
  256. #include "duration_t.h"
  257. #include "types.h"
  258. #include "gcode.h"
  259. #if HAS_ABL
  260. #include "vector_3.h"
  261. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  262. #include "least_squares_fit.h"
  263. #endif
  264. #elif ENABLED(MESH_BED_LEVELING)
  265. #include "mesh_bed_leveling.h"
  266. #endif
  267. #if ENABLED(BEZIER_CURVE_SUPPORT)
  268. #include "planner_bezier.h"
  269. #endif
  270. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  271. #include "buzzer.h"
  272. #endif
  273. #if ENABLED(USE_WATCHDOG)
  274. #include "watchdog.h"
  275. #endif
  276. #if ENABLED(MAX7219_DEBUG)
  277. #include "Max7219_Debug_LEDs.h"
  278. #endif
  279. #if HAS_COLOR_LEDS
  280. #include "leds.h"
  281. #endif
  282. #if HAS_SERVOS
  283. #include "servo.h"
  284. #endif
  285. #if HAS_DIGIPOTSS
  286. #include <SPI.h>
  287. #endif
  288. #if ENABLED(DAC_STEPPER_CURRENT)
  289. #include "stepper_dac.h"
  290. #endif
  291. #if ENABLED(EXPERIMENTAL_I2CBUS)
  292. #include "twibus.h"
  293. #endif
  294. #if ENABLED(I2C_POSITION_ENCODERS)
  295. #include "I2CPositionEncoder.h"
  296. #endif
  297. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  298. #include "endstop_interrupts.h"
  299. #endif
  300. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  301. void gcode_M100();
  302. void M100_dump_routine(const char * const title, const char *start, const char *end);
  303. #endif
  304. #if ENABLED(G26_MESH_VALIDATION)
  305. bool g26_debug_flag; // =false
  306. void gcode_G26();
  307. #endif
  308. #if ENABLED(SDSUPPORT)
  309. CardReader card;
  310. #endif
  311. #if ENABLED(EXPERIMENTAL_I2CBUS)
  312. TWIBus i2c;
  313. #endif
  314. #if ENABLED(G38_PROBE_TARGET)
  315. bool G38_move = false,
  316. G38_endstop_hit = false;
  317. #endif
  318. #if ENABLED(AUTO_BED_LEVELING_UBL)
  319. #include "ubl.h"
  320. extern bool defer_return_to_status;
  321. unified_bed_leveling ubl;
  322. #endif
  323. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  324. int8_t active_coordinate_system = -1; // machine space
  325. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
  326. #endif
  327. bool Running = true;
  328. uint8_t marlin_debug_flags = DEBUG_NONE;
  329. /**
  330. * Cartesian Current Position
  331. * Used to track the native machine position as moves are queued.
  332. * Used by 'buffer_line_to_current_position' to do a move after changing it.
  333. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  334. */
  335. float current_position[XYZE] = { 0.0 };
  336. /**
  337. * Cartesian Destination
  338. * The destination for a move, filled in by G-code movement commands,
  339. * and expected by functions like 'prepare_move_to_destination'.
  340. * Set with 'gcode_get_destination' or 'set_destination_from_current'.
  341. */
  342. float destination[XYZE] = { 0.0 };
  343. /**
  344. * axis_homed
  345. * Flags that each linear axis was homed.
  346. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  347. *
  348. * axis_known_position
  349. * Flags that the position is known in each linear axis. Set when homed.
  350. * Cleared whenever a stepper powers off, potentially losing its position.
  351. */
  352. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  353. /**
  354. * GCode line number handling. Hosts may opt to include line numbers when
  355. * sending commands to Marlin, and lines will be checked for sequentiality.
  356. * M110 N<int> sets the current line number.
  357. */
  358. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  359. /**
  360. * GCode Command Queue
  361. * A simple ring buffer of BUFSIZE command strings.
  362. *
  363. * Commands are copied into this buffer by the command injectors
  364. * (immediate, serial, sd card) and they are processed sequentially by
  365. * the main loop. The process_next_command function parses the next
  366. * command and hands off execution to individual handler functions.
  367. */
  368. uint8_t commands_in_queue = 0; // Count of commands in the queue
  369. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  370. cmd_queue_index_w = 0; // Ring buffer write position
  371. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  372. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  373. #else // This can be collapsed back to the way it was soon.
  374. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  375. #endif
  376. /**
  377. * Next Injected Command pointer. NULL if no commands are being injected.
  378. * Used by Marlin internally to ensure that commands initiated from within
  379. * are enqueued ahead of any pending serial or sd card commands.
  380. */
  381. static const char *injected_commands_P = NULL;
  382. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  383. TempUnit input_temp_units = TEMPUNIT_C;
  384. #endif
  385. /**
  386. * Feed rates are often configured with mm/m
  387. * but the planner and stepper like mm/s units.
  388. */
  389. static const float homing_feedrate_mm_s[] PROGMEM = {
  390. #if ENABLED(DELTA)
  391. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  392. #else
  393. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  394. #endif
  395. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  396. };
  397. FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
  398. float feedrate_mm_s = MMM_TO_MMS(1500.0);
  399. static float saved_feedrate_mm_s;
  400. int16_t feedrate_percentage = 100, saved_feedrate_percentage;
  401. // Initialized by settings.load()
  402. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  403. #if HAS_WORKSPACE_OFFSET
  404. #if HAS_POSITION_SHIFT
  405. // The distance that XYZ has been offset by G92. Reset by G28.
  406. float position_shift[XYZ] = { 0 };
  407. #endif
  408. #if HAS_HOME_OFFSET
  409. // This offset is added to the configured home position.
  410. // Set by M206, M428, or menu item. Saved to EEPROM.
  411. float home_offset[XYZ] = { 0 };
  412. #endif
  413. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  414. // The above two are combined to save on computes
  415. float workspace_offset[XYZ] = { 0 };
  416. #endif
  417. #endif
  418. // Software Endstops are based on the configured limits.
  419. float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
  420. soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
  421. #if HAS_SOFTWARE_ENDSTOPS
  422. bool soft_endstops_enabled = true;
  423. #if IS_KINEMATIC
  424. float soft_endstop_radius, soft_endstop_radius_2;
  425. #endif
  426. #endif
  427. #if FAN_COUNT > 0
  428. int16_t fanSpeeds[FAN_COUNT] = { 0 };
  429. #if ENABLED(EXTRA_FAN_SPEED)
  430. int16_t old_fanSpeeds[FAN_COUNT],
  431. new_fanSpeeds[FAN_COUNT];
  432. #endif
  433. #if ENABLED(PROBING_FANS_OFF)
  434. bool fans_paused = false;
  435. int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
  436. #endif
  437. #endif
  438. // The active extruder (tool). Set with T<extruder> command.
  439. uint8_t active_extruder = 0;
  440. // Relative Mode. Enable with G91, disable with G90.
  441. static bool relative_mode = false;
  442. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  443. volatile bool wait_for_heatup = true;
  444. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  445. #if HAS_RESUME_CONTINUE
  446. volatile bool wait_for_user = false;
  447. #endif
  448. const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
  449. // Number of characters read in the current line of serial input
  450. static int serial_count = 0;
  451. // Inactivity shutdown
  452. millis_t previous_cmd_ms = 0;
  453. static millis_t max_inactive_time = 0;
  454. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  455. // Print Job Timer
  456. #if ENABLED(PRINTCOUNTER)
  457. PrintCounter print_job_timer = PrintCounter();
  458. #else
  459. Stopwatch print_job_timer = Stopwatch();
  460. #endif
  461. // Buzzer - I2C on the LCD or a BEEPER_PIN
  462. #if ENABLED(LCD_USE_I2C_BUZZER)
  463. #define BUZZ(d,f) lcd_buzz(d, f)
  464. #elif PIN_EXISTS(BEEPER)
  465. Buzzer buzzer;
  466. #define BUZZ(d,f) buzzer.tone(d, f)
  467. #else
  468. #define BUZZ(d,f) NOOP
  469. #endif
  470. uint8_t target_extruder;
  471. #if HAS_BED_PROBE
  472. float zprobe_zoffset; // Initialized by settings.load()
  473. #endif
  474. #if HAS_ABL
  475. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  476. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  477. #elif defined(XY_PROBE_SPEED)
  478. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  479. #else
  480. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  481. #endif
  482. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  483. #if ENABLED(DELTA)
  484. #define ADJUST_DELTA(V) \
  485. if (planner.leveling_active) { \
  486. const float zadj = bilinear_z_offset(V); \
  487. delta[A_AXIS] += zadj; \
  488. delta[B_AXIS] += zadj; \
  489. delta[C_AXIS] += zadj; \
  490. }
  491. #else
  492. #define ADJUST_DELTA(V) if (planner.leveling_active) { delta[Z_AXIS] += bilinear_z_offset(V); }
  493. #endif
  494. #elif IS_KINEMATIC
  495. #define ADJUST_DELTA(V) NOOP
  496. #endif
  497. #if ENABLED(X_DUAL_ENDSTOPS)
  498. float x_endstop_adj; // Initialized by settings.load()
  499. #endif
  500. #if ENABLED(Y_DUAL_ENDSTOPS)
  501. float y_endstop_adj; // Initialized by settings.load()
  502. #endif
  503. #if ENABLED(Z_DUAL_ENDSTOPS)
  504. float z_endstop_adj; // Initialized by settings.load()
  505. #endif
  506. // Extruder offsets
  507. #if HOTENDS > 1
  508. float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
  509. #endif
  510. #if HAS_Z_SERVO_ENDSTOP
  511. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  512. #endif
  513. #if ENABLED(BARICUDA)
  514. uint8_t baricuda_valve_pressure = 0,
  515. baricuda_e_to_p_pressure = 0;
  516. #endif
  517. #if ENABLED(FWRETRACT) // Initialized by settings.load()...
  518. bool autoretract_enabled, // M209 S - Autoretract switch
  519. retracted[EXTRUDERS] = { false }; // Which extruders are currently retracted
  520. float retract_length, // M207 S - G10 Retract length
  521. retract_feedrate_mm_s, // M207 F - G10 Retract feedrate
  522. retract_zlift, // M207 Z - G10 Retract hop size
  523. retract_recover_length, // M208 S - G11 Recover length
  524. retract_recover_feedrate_mm_s, // M208 F - G11 Recover feedrate
  525. swap_retract_length, // M207 W - G10 Swap Retract length
  526. swap_retract_recover_length, // M208 W - G11 Swap Recover length
  527. swap_retract_recover_feedrate_mm_s; // M208 R - G11 Swap Recover feedrate
  528. #if EXTRUDERS > 1
  529. bool retracted_swap[EXTRUDERS] = { false }; // Which extruders are swap-retracted
  530. #else
  531. constexpr bool retracted_swap[1] = { false };
  532. #endif
  533. #endif // FWRETRACT
  534. #if HAS_POWER_SWITCH
  535. bool powersupply_on =
  536. #if ENABLED(PS_DEFAULT_OFF)
  537. false
  538. #else
  539. true
  540. #endif
  541. ;
  542. #endif
  543. #if ENABLED(DELTA)
  544. float delta[ABC];
  545. // Initialized by settings.load()
  546. float delta_height,
  547. delta_endstop_adj[ABC] = { 0 },
  548. delta_radius,
  549. delta_tower_angle_trim[ABC],
  550. delta_tower[ABC][2],
  551. delta_diagonal_rod,
  552. delta_calibration_radius,
  553. delta_diagonal_rod_2_tower[ABC],
  554. delta_segments_per_second,
  555. delta_clip_start_height = Z_MAX_POS;
  556. float delta_safe_distance_from_top();
  557. #endif
  558. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  559. int bilinear_grid_spacing[2], bilinear_start[2];
  560. float bilinear_grid_factor[2],
  561. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  562. #endif
  563. #if IS_SCARA
  564. // Float constants for SCARA calculations
  565. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  566. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  567. L2_2 = sq(float(L2));
  568. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  569. delta[ABC];
  570. #endif
  571. float cartes[XYZ] = { 0 };
  572. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  573. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  574. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  575. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  576. uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM, // Distance delay setting
  577. measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  578. int8_t filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  579. #endif
  580. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  581. static bool filament_ran_out = false;
  582. #endif
  583. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  584. AdvancedPauseMenuResponse advanced_pause_menu_response;
  585. #endif
  586. #if ENABLED(MIXING_EXTRUDER)
  587. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  588. #if MIXING_VIRTUAL_TOOLS > 1
  589. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  590. #endif
  591. #endif
  592. static bool send_ok[BUFSIZE];
  593. #if HAS_SERVOS
  594. Servo servo[NUM_SERVOS];
  595. #define MOVE_SERVO(I, P) servo[I].move(P)
  596. #if HAS_Z_SERVO_ENDSTOP
  597. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  598. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  599. #endif
  600. #endif
  601. #ifdef CHDK
  602. millis_t chdkHigh = 0;
  603. bool chdkActive = false;
  604. #endif
  605. #if ENABLED(PID_EXTRUSION_SCALING)
  606. int lpq_len = 20;
  607. #endif
  608. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  609. MarlinBusyState busy_state = NOT_BUSY;
  610. static millis_t next_busy_signal_ms = 0;
  611. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  612. #else
  613. #define host_keepalive() NOOP
  614. #endif
  615. #if ENABLED(I2C_POSITION_ENCODERS)
  616. I2CPositionEncodersMgr I2CPEM;
  617. uint8_t blockBufferIndexRef = 0;
  618. millis_t lastUpdateMillis;
  619. #endif
  620. #if ENABLED(CNC_WORKSPACE_PLANES)
  621. static WorkspacePlane workspace_plane = PLANE_XY;
  622. #endif
  623. FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  624. FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  625. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  626. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  627. static inline type array(const AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  628. typedef void __void_##CONFIG##__
  629. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  630. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  631. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  632. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  633. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  634. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  635. /**
  636. * ***************************************************************************
  637. * ******************************** FUNCTIONS ********************************
  638. * ***************************************************************************
  639. */
  640. void stop();
  641. void get_available_commands();
  642. void process_next_command();
  643. void process_parsed_command();
  644. void prepare_move_to_destination();
  645. void get_cartesian_from_steppers();
  646. void set_current_from_steppers_for_axis(const AxisEnum axis);
  647. #if ENABLED(ARC_SUPPORT)
  648. void plan_arc(const float (&cart)[XYZE], const float (&offset)[2], const bool clockwise);
  649. #endif
  650. #if ENABLED(BEZIER_CURVE_SUPPORT)
  651. void plan_cubic_move(const float (&offset)[4]);
  652. #endif
  653. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  654. void report_current_position();
  655. void report_current_position_detail();
  656. #if ENABLED(DEBUG_LEVELING_FEATURE)
  657. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  658. serialprintPGM(prefix);
  659. SERIAL_CHAR('(');
  660. SERIAL_ECHO(x);
  661. SERIAL_ECHOPAIR(", ", y);
  662. SERIAL_ECHOPAIR(", ", z);
  663. SERIAL_CHAR(')');
  664. if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
  665. }
  666. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  667. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  668. }
  669. #if HAS_ABL
  670. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  671. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  672. }
  673. #endif
  674. #define DEBUG_POS(SUFFIX,VAR) do { \
  675. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
  676. #endif
  677. /**
  678. * sync_plan_position
  679. *
  680. * Set the planner/stepper positions directly from current_position with
  681. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  682. */
  683. void sync_plan_position() {
  684. #if ENABLED(DEBUG_LEVELING_FEATURE)
  685. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  686. #endif
  687. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  688. }
  689. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  690. #if IS_KINEMATIC
  691. inline void sync_plan_position_kinematic() {
  692. #if ENABLED(DEBUG_LEVELING_FEATURE)
  693. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  694. #endif
  695. planner.set_position_mm_kinematic(current_position);
  696. }
  697. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  698. #else
  699. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  700. #endif
  701. #if ENABLED(SDSUPPORT)
  702. #include "SdFatUtil.h"
  703. int freeMemory() { return SdFatUtil::FreeRam(); }
  704. #else
  705. extern "C" {
  706. extern char __bss_end;
  707. extern char __heap_start;
  708. extern void* __brkval;
  709. int freeMemory() {
  710. int free_memory;
  711. if ((int)__brkval == 0)
  712. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  713. else
  714. free_memory = ((int)&free_memory) - ((int)__brkval);
  715. return free_memory;
  716. }
  717. }
  718. #endif // !SDSUPPORT
  719. #if ENABLED(DIGIPOT_I2C)
  720. extern void digipot_i2c_set_current(uint8_t channel, float current);
  721. extern void digipot_i2c_init();
  722. #endif
  723. /**
  724. * Inject the next "immediate" command, when possible, onto the front of the queue.
  725. * Return true if any immediate commands remain to inject.
  726. */
  727. static bool drain_injected_commands_P() {
  728. if (injected_commands_P != NULL) {
  729. size_t i = 0;
  730. char c, cmd[30];
  731. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  732. cmd[sizeof(cmd) - 1] = '\0';
  733. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  734. cmd[i] = '\0';
  735. if (enqueue_and_echo_command(cmd)) // success?
  736. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  737. }
  738. return (injected_commands_P != NULL); // return whether any more remain
  739. }
  740. /**
  741. * Record one or many commands to run from program memory.
  742. * Aborts the current queue, if any.
  743. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  744. */
  745. void enqueue_and_echo_commands_P(const char * const pgcode) {
  746. injected_commands_P = pgcode;
  747. drain_injected_commands_P(); // first command executed asap (when possible)
  748. }
  749. /**
  750. * Clear the Marlin command queue
  751. */
  752. void clear_command_queue() {
  753. cmd_queue_index_r = cmd_queue_index_w;
  754. commands_in_queue = 0;
  755. }
  756. /**
  757. * Once a new command is in the ring buffer, call this to commit it
  758. */
  759. inline void _commit_command(bool say_ok) {
  760. send_ok[cmd_queue_index_w] = say_ok;
  761. if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
  762. commands_in_queue++;
  763. }
  764. /**
  765. * Copy a command from RAM into the main command buffer.
  766. * Return true if the command was successfully added.
  767. * Return false for a full buffer, or if the 'command' is a comment.
  768. */
  769. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  770. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  771. strcpy(command_queue[cmd_queue_index_w], cmd);
  772. _commit_command(say_ok);
  773. return true;
  774. }
  775. /**
  776. * Enqueue with Serial Echo
  777. */
  778. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  779. if (_enqueuecommand(cmd, say_ok)) {
  780. SERIAL_ECHO_START();
  781. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  782. SERIAL_CHAR('"');
  783. SERIAL_EOL();
  784. return true;
  785. }
  786. return false;
  787. }
  788. void setup_killpin() {
  789. #if HAS_KILL
  790. SET_INPUT_PULLUP(KILL_PIN);
  791. #endif
  792. }
  793. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  794. void setup_filrunoutpin() {
  795. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  796. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  797. #else
  798. SET_INPUT(FIL_RUNOUT_PIN);
  799. #endif
  800. }
  801. #endif
  802. void setup_powerhold() {
  803. #if HAS_SUICIDE
  804. OUT_WRITE(SUICIDE_PIN, HIGH);
  805. #endif
  806. #if HAS_POWER_SWITCH
  807. #if ENABLED(PS_DEFAULT_OFF)
  808. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  809. #else
  810. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  811. #endif
  812. #endif
  813. }
  814. void suicide() {
  815. #if HAS_SUICIDE
  816. OUT_WRITE(SUICIDE_PIN, LOW);
  817. #endif
  818. }
  819. void servo_init() {
  820. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  821. servo[0].attach(SERVO0_PIN);
  822. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  823. #endif
  824. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  825. servo[1].attach(SERVO1_PIN);
  826. servo[1].detach();
  827. #endif
  828. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  829. servo[2].attach(SERVO2_PIN);
  830. servo[2].detach();
  831. #endif
  832. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  833. servo[3].attach(SERVO3_PIN);
  834. servo[3].detach();
  835. #endif
  836. #if HAS_Z_SERVO_ENDSTOP
  837. /**
  838. * Set position of Z Servo Endstop
  839. *
  840. * The servo might be deployed and positioned too low to stow
  841. * when starting up the machine or rebooting the board.
  842. * There's no way to know where the nozzle is positioned until
  843. * homing has been done - no homing with z-probe without init!
  844. *
  845. */
  846. STOW_Z_SERVO();
  847. #endif
  848. }
  849. /**
  850. * Stepper Reset (RigidBoard, et.al.)
  851. */
  852. #if HAS_STEPPER_RESET
  853. void disableStepperDrivers() {
  854. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  855. }
  856. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  857. #endif
  858. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  859. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  860. i2c.receive(bytes);
  861. }
  862. void i2c_on_request() { // just send dummy data for now
  863. i2c.reply("Hello World!\n");
  864. }
  865. #endif
  866. void gcode_line_error(const char* err, bool doFlush = true) {
  867. SERIAL_ERROR_START();
  868. serialprintPGM(err);
  869. SERIAL_ERRORLN(gcode_LastN);
  870. //Serial.println(gcode_N);
  871. if (doFlush) FlushSerialRequestResend();
  872. serial_count = 0;
  873. }
  874. /**
  875. * Get all commands waiting on the serial port and queue them.
  876. * Exit when the buffer is full or when no more characters are
  877. * left on the serial port.
  878. */
  879. inline void get_serial_commands() {
  880. static char serial_line_buffer[MAX_CMD_SIZE];
  881. static bool serial_comment_mode = false;
  882. // If the command buffer is empty for too long,
  883. // send "wait" to indicate Marlin is still waiting.
  884. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  885. static millis_t last_command_time = 0;
  886. const millis_t ms = millis();
  887. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  888. SERIAL_ECHOLNPGM(MSG_WAIT);
  889. last_command_time = ms;
  890. }
  891. #endif
  892. /**
  893. * Loop while serial characters are incoming and the queue is not full
  894. */
  895. int c;
  896. while (commands_in_queue < BUFSIZE && (c = MYSERIAL.read()) >= 0) {
  897. char serial_char = c;
  898. /**
  899. * If the character ends the line
  900. */
  901. if (serial_char == '\n' || serial_char == '\r') {
  902. serial_comment_mode = false; // end of line == end of comment
  903. if (!serial_count) continue; // Skip empty lines
  904. serial_line_buffer[serial_count] = 0; // Terminate string
  905. serial_count = 0; // Reset buffer
  906. char* command = serial_line_buffer;
  907. while (*command == ' ') command++; // Skip leading spaces
  908. char *npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  909. if (npos) {
  910. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  911. if (M110) {
  912. char* n2pos = strchr(command + 4, 'N');
  913. if (n2pos) npos = n2pos;
  914. }
  915. gcode_N = strtol(npos + 1, NULL, 10);
  916. if (gcode_N != gcode_LastN + 1 && !M110) {
  917. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  918. return;
  919. }
  920. char *apos = strrchr(command, '*');
  921. if (apos) {
  922. uint8_t checksum = 0, count = uint8_t(apos - command);
  923. while (count) checksum ^= command[--count];
  924. if (strtol(apos + 1, NULL, 10) != checksum) {
  925. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  926. return;
  927. }
  928. }
  929. else {
  930. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  931. return;
  932. }
  933. gcode_LastN = gcode_N;
  934. }
  935. // Movement commands alert when stopped
  936. if (IsStopped()) {
  937. char* gpos = strchr(command, 'G');
  938. if (gpos) {
  939. const int codenum = strtol(gpos + 1, NULL, 10);
  940. switch (codenum) {
  941. case 0:
  942. case 1:
  943. case 2:
  944. case 3:
  945. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  946. LCD_MESSAGEPGM(MSG_STOPPED);
  947. break;
  948. }
  949. }
  950. }
  951. #if DISABLED(EMERGENCY_PARSER)
  952. // If command was e-stop process now
  953. if (strcmp(command, "M108") == 0) {
  954. wait_for_heatup = false;
  955. #if ENABLED(ULTIPANEL)
  956. wait_for_user = false;
  957. #endif
  958. }
  959. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  960. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  961. #endif
  962. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  963. last_command_time = ms;
  964. #endif
  965. // Add the command to the queue
  966. _enqueuecommand(serial_line_buffer, true);
  967. }
  968. else if (serial_count >= MAX_CMD_SIZE - 1) {
  969. // Keep fetching, but ignore normal characters beyond the max length
  970. // The command will be injected when EOL is reached
  971. }
  972. else if (serial_char == '\\') { // Handle escapes
  973. if ((c = MYSERIAL.read()) >= 0) {
  974. // if we have one more character, copy it over
  975. serial_char = c;
  976. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  977. }
  978. // otherwise do nothing
  979. }
  980. else { // it's not a newline, carriage return or escape char
  981. if (serial_char == ';') serial_comment_mode = true;
  982. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  983. }
  984. } // queue has space, serial has data
  985. }
  986. #if ENABLED(SDSUPPORT)
  987. /**
  988. * Get commands from the SD Card until the command buffer is full
  989. * or until the end of the file is reached. The special character '#'
  990. * can also interrupt buffering.
  991. */
  992. inline void get_sdcard_commands() {
  993. static bool stop_buffering = false,
  994. sd_comment_mode = false;
  995. if (!card.sdprinting) return;
  996. /**
  997. * '#' stops reading from SD to the buffer prematurely, so procedural
  998. * macro calls are possible. If it occurs, stop_buffering is triggered
  999. * and the buffer is run dry; this character _can_ occur in serial com
  1000. * due to checksums, however, no checksums are used in SD printing.
  1001. */
  1002. if (commands_in_queue == 0) stop_buffering = false;
  1003. uint16_t sd_count = 0;
  1004. bool card_eof = card.eof();
  1005. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1006. const int16_t n = card.get();
  1007. char sd_char = (char)n;
  1008. card_eof = card.eof();
  1009. if (card_eof || n == -1
  1010. || sd_char == '\n' || sd_char == '\r'
  1011. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1012. ) {
  1013. if (card_eof) {
  1014. card.printingHasFinished();
  1015. if (card.sdprinting)
  1016. sd_count = 0; // If a sub-file was printing, continue from call point
  1017. else {
  1018. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1019. #if ENABLED(PRINTER_EVENT_LEDS)
  1020. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1021. leds.set_green();
  1022. #if HAS_RESUME_CONTINUE
  1023. enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
  1024. #else
  1025. safe_delay(1000);
  1026. #endif
  1027. leds.set_off();
  1028. #endif
  1029. card.checkautostart(true);
  1030. }
  1031. }
  1032. else if (n == -1) {
  1033. SERIAL_ERROR_START();
  1034. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1035. }
  1036. if (sd_char == '#') stop_buffering = true;
  1037. sd_comment_mode = false; // for new command
  1038. if (!sd_count) continue; // skip empty lines (and comment lines)
  1039. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1040. sd_count = 0; // clear sd line buffer
  1041. _commit_command(false);
  1042. }
  1043. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1044. /**
  1045. * Keep fetching, but ignore normal characters beyond the max length
  1046. * The command will be injected when EOL is reached
  1047. */
  1048. }
  1049. else {
  1050. if (sd_char == ';') sd_comment_mode = true;
  1051. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1052. }
  1053. }
  1054. }
  1055. #endif // SDSUPPORT
  1056. /**
  1057. * Add to the circular command queue the next command from:
  1058. * - The command-injection queue (injected_commands_P)
  1059. * - The active serial input (usually USB)
  1060. * - The SD card file being actively printed
  1061. */
  1062. void get_available_commands() {
  1063. // if any immediate commands remain, don't get other commands yet
  1064. if (drain_injected_commands_P()) return;
  1065. get_serial_commands();
  1066. #if ENABLED(SDSUPPORT)
  1067. get_sdcard_commands();
  1068. #endif
  1069. }
  1070. /**
  1071. * Set target_extruder from the T parameter or the active_extruder
  1072. *
  1073. * Returns TRUE if the target is invalid
  1074. */
  1075. bool get_target_extruder_from_command(const uint16_t code) {
  1076. if (parser.seenval('T')) {
  1077. const int8_t e = parser.value_byte();
  1078. if (e >= EXTRUDERS) {
  1079. SERIAL_ECHO_START();
  1080. SERIAL_CHAR('M');
  1081. SERIAL_ECHO(code);
  1082. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);
  1083. return true;
  1084. }
  1085. target_extruder = e;
  1086. }
  1087. else
  1088. target_extruder = active_extruder;
  1089. return false;
  1090. }
  1091. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1092. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1093. #endif
  1094. #if ENABLED(DUAL_X_CARRIAGE)
  1095. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1096. static float x_home_pos(const int extruder) {
  1097. if (extruder == 0)
  1098. return base_home_pos(X_AXIS);
  1099. else
  1100. /**
  1101. * In dual carriage mode the extruder offset provides an override of the
  1102. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1103. * This allows soft recalibration of the second extruder home position
  1104. * without firmware reflash (through the M218 command).
  1105. */
  1106. return hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1107. }
  1108. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1109. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1110. static bool active_extruder_parked = false; // used in mode 1 & 2
  1111. static float raised_parked_position[XYZE]; // used in mode 1
  1112. static millis_t delayed_move_time = 0; // used in mode 1
  1113. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1114. static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
  1115. #endif // DUAL_X_CARRIAGE
  1116. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1117. /**
  1118. * Software endstops can be used to monitor the open end of
  1119. * an axis that has a hardware endstop on the other end. Or
  1120. * they can prevent axes from moving past endstops and grinding.
  1121. *
  1122. * To keep doing their job as the coordinate system changes,
  1123. * the software endstop positions must be refreshed to remain
  1124. * at the same positions relative to the machine.
  1125. */
  1126. void update_software_endstops(const AxisEnum axis) {
  1127. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1128. workspace_offset[axis] = home_offset[axis] + position_shift[axis];
  1129. #endif
  1130. #if ENABLED(DUAL_X_CARRIAGE)
  1131. if (axis == X_AXIS) {
  1132. // In Dual X mode hotend_offset[X] is T1's home position
  1133. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1134. if (active_extruder != 0) {
  1135. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1136. soft_endstop_min[X_AXIS] = X2_MIN_POS;
  1137. soft_endstop_max[X_AXIS] = dual_max_x;
  1138. }
  1139. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1140. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1141. // but not so far to the right that T1 would move past the end
  1142. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS);
  1143. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset);
  1144. }
  1145. else {
  1146. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1147. soft_endstop_min[axis] = base_min_pos(axis);
  1148. soft_endstop_max[axis] = base_max_pos(axis);
  1149. }
  1150. }
  1151. #elif ENABLED(DELTA)
  1152. soft_endstop_min[axis] = base_min_pos(axis);
  1153. soft_endstop_max[axis] = axis == Z_AXIS ? delta_height : base_max_pos(axis);
  1154. #else
  1155. soft_endstop_min[axis] = base_min_pos(axis);
  1156. soft_endstop_max[axis] = base_max_pos(axis);
  1157. #endif
  1158. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1159. if (DEBUGGING(LEVELING)) {
  1160. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1161. #if HAS_HOME_OFFSET
  1162. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1163. #endif
  1164. #if HAS_POSITION_SHIFT
  1165. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1166. #endif
  1167. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1168. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1169. }
  1170. #endif
  1171. #if ENABLED(DELTA)
  1172. switch(axis) {
  1173. case X_AXIS:
  1174. case Y_AXIS:
  1175. // Get a minimum radius for clamping
  1176. soft_endstop_radius = MIN3(FABS(max(soft_endstop_min[X_AXIS], soft_endstop_min[Y_AXIS])), soft_endstop_max[X_AXIS], soft_endstop_max[Y_AXIS]);
  1177. soft_endstop_radius_2 = sq(soft_endstop_radius);
  1178. break;
  1179. case Z_AXIS:
  1180. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1181. default: break;
  1182. }
  1183. #endif
  1184. }
  1185. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1186. #if HAS_M206_COMMAND
  1187. /**
  1188. * Change the home offset for an axis, update the current
  1189. * position and the software endstops to retain the same
  1190. * relative distance to the new home.
  1191. *
  1192. * Since this changes the current_position, code should
  1193. * call sync_plan_position soon after this.
  1194. */
  1195. static void set_home_offset(const AxisEnum axis, const float v) {
  1196. home_offset[axis] = v;
  1197. update_software_endstops(axis);
  1198. }
  1199. #endif // HAS_M206_COMMAND
  1200. /**
  1201. * Set an axis' current position to its home position (after homing).
  1202. *
  1203. * For Core and Cartesian robots this applies one-to-one when an
  1204. * individual axis has been homed.
  1205. *
  1206. * DELTA should wait until all homing is done before setting the XYZ
  1207. * current_position to home, because homing is a single operation.
  1208. * In the case where the axis positions are already known and previously
  1209. * homed, DELTA could home to X or Y individually by moving either one
  1210. * to the center. However, homing Z always homes XY and Z.
  1211. *
  1212. * SCARA should wait until all XY homing is done before setting the XY
  1213. * current_position to home, because neither X nor Y is at home until
  1214. * both are at home. Z can however be homed individually.
  1215. *
  1216. * Callers must sync the planner position after calling this!
  1217. */
  1218. static void set_axis_is_at_home(const AxisEnum axis) {
  1219. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1220. if (DEBUGGING(LEVELING)) {
  1221. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1222. SERIAL_CHAR(')');
  1223. SERIAL_EOL();
  1224. }
  1225. #endif
  1226. axis_known_position[axis] = axis_homed[axis] = true;
  1227. #if HAS_POSITION_SHIFT
  1228. position_shift[axis] = 0;
  1229. update_software_endstops(axis);
  1230. #endif
  1231. #if ENABLED(DUAL_X_CARRIAGE)
  1232. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1233. current_position[X_AXIS] = x_home_pos(active_extruder);
  1234. return;
  1235. }
  1236. #endif
  1237. #if ENABLED(MORGAN_SCARA)
  1238. /**
  1239. * Morgan SCARA homes XY at the same time
  1240. */
  1241. if (axis == X_AXIS || axis == Y_AXIS) {
  1242. float homeposition[XYZ] = {
  1243. base_home_pos(X_AXIS),
  1244. base_home_pos(Y_AXIS),
  1245. base_home_pos(Z_AXIS)
  1246. };
  1247. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1248. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1249. /**
  1250. * Get Home position SCARA arm angles using inverse kinematics,
  1251. * and calculate homing offset using forward kinematics
  1252. */
  1253. inverse_kinematics(homeposition);
  1254. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1255. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1256. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1257. current_position[axis] = cartes[axis];
  1258. /**
  1259. * SCARA home positions are based on configuration since the actual
  1260. * limits are determined by the inverse kinematic transform.
  1261. */
  1262. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1263. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1264. }
  1265. else
  1266. #elif ENABLED(DELTA)
  1267. if (axis == Z_AXIS)
  1268. current_position[axis] = delta_height;
  1269. else
  1270. #endif
  1271. {
  1272. current_position[axis] = base_home_pos(axis);
  1273. }
  1274. /**
  1275. * Z Probe Z Homing? Account for the probe's Z offset.
  1276. */
  1277. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1278. if (axis == Z_AXIS) {
  1279. #if HOMING_Z_WITH_PROBE
  1280. current_position[Z_AXIS] -= zprobe_zoffset;
  1281. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1282. if (DEBUGGING(LEVELING)) {
  1283. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1284. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1285. }
  1286. #endif
  1287. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1288. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1289. #endif
  1290. }
  1291. #endif
  1292. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1293. if (DEBUGGING(LEVELING)) {
  1294. #if HAS_HOME_OFFSET
  1295. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1296. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1297. #endif
  1298. DEBUG_POS("", current_position);
  1299. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1300. SERIAL_CHAR(')');
  1301. SERIAL_EOL();
  1302. }
  1303. #endif
  1304. #if ENABLED(I2C_POSITION_ENCODERS)
  1305. I2CPEM.homed(axis);
  1306. #endif
  1307. }
  1308. /**
  1309. * Some planner shorthand inline functions
  1310. */
  1311. inline float get_homing_bump_feedrate(const AxisEnum axis) {
  1312. static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
  1313. uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
  1314. if (hbd < 1) {
  1315. hbd = 10;
  1316. SERIAL_ECHO_START();
  1317. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1318. }
  1319. return homing_feedrate(axis) / hbd;
  1320. }
  1321. /**
  1322. * Move the planner to the current position from wherever it last moved
  1323. * (or from wherever it has been told it is located).
  1324. */
  1325. inline void buffer_line_to_current_position() {
  1326. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1327. }
  1328. /**
  1329. * Move the planner to the position stored in the destination array, which is
  1330. * used by G0/G1/G2/G3/G5 and many other functions to set a destination.
  1331. */
  1332. inline void buffer_line_to_destination(const float fr_mm_s) {
  1333. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1334. }
  1335. inline void set_current_from_destination() { COPY(current_position, destination); }
  1336. inline void set_destination_from_current() { COPY(destination, current_position); }
  1337. #if IS_KINEMATIC
  1338. /**
  1339. * Calculate delta, start a line, and set current_position to destination
  1340. */
  1341. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1342. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1343. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1344. #endif
  1345. refresh_cmd_timeout();
  1346. #if UBL_SEGMENTED
  1347. // ubl segmented line will do z-only moves in single segment
  1348. ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
  1349. #else
  1350. if ( current_position[X_AXIS] == destination[X_AXIS]
  1351. && current_position[Y_AXIS] == destination[Y_AXIS]
  1352. && current_position[Z_AXIS] == destination[Z_AXIS]
  1353. && current_position[E_AXIS] == destination[E_AXIS]
  1354. ) return;
  1355. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1356. #endif
  1357. set_current_from_destination();
  1358. }
  1359. #endif // IS_KINEMATIC
  1360. /**
  1361. * Plan a move to (X, Y, Z) and set the current_position
  1362. * The final current_position may not be the one that was requested
  1363. */
  1364. void do_blocking_move_to(const float &rx, const float &ry, const float &rz, const float &fr_mm_s/*=0.0*/) {
  1365. const float old_feedrate_mm_s = feedrate_mm_s;
  1366. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1367. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, LOGICAL_X_POSITION(rx), LOGICAL_Y_POSITION(ry), LOGICAL_Z_POSITION(rz));
  1368. #endif
  1369. const float z_feedrate = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1370. #if ENABLED(DELTA)
  1371. if (!position_is_reachable(rx, ry)) return;
  1372. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1373. set_destination_from_current(); // sync destination at the start
  1374. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1375. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_from_current", destination);
  1376. #endif
  1377. // when in the danger zone
  1378. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1379. if (rz > delta_clip_start_height) { // staying in the danger zone
  1380. destination[X_AXIS] = rx; // move directly (uninterpolated)
  1381. destination[Y_AXIS] = ry;
  1382. destination[Z_AXIS] = rz;
  1383. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1384. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1385. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1386. #endif
  1387. return;
  1388. }
  1389. destination[Z_AXIS] = delta_clip_start_height;
  1390. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1391. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1392. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1393. #endif
  1394. }
  1395. if (rz > current_position[Z_AXIS]) { // raising?
  1396. destination[Z_AXIS] = rz;
  1397. prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination
  1398. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1399. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1400. #endif
  1401. }
  1402. destination[X_AXIS] = rx;
  1403. destination[Y_AXIS] = ry;
  1404. prepare_move_to_destination(); // set_current_from_destination
  1405. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1406. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1407. #endif
  1408. if (rz < current_position[Z_AXIS]) { // lowering?
  1409. destination[Z_AXIS] = rz;
  1410. prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination
  1411. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1412. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1413. #endif
  1414. }
  1415. #elif IS_SCARA
  1416. if (!position_is_reachable(rx, ry)) return;
  1417. set_destination_from_current();
  1418. // If Z needs to raise, do it before moving XY
  1419. if (destination[Z_AXIS] < rz) {
  1420. destination[Z_AXIS] = rz;
  1421. prepare_uninterpolated_move_to_destination(z_feedrate);
  1422. }
  1423. destination[X_AXIS] = rx;
  1424. destination[Y_AXIS] = ry;
  1425. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1426. // If Z needs to lower, do it after moving XY
  1427. if (destination[Z_AXIS] > rz) {
  1428. destination[Z_AXIS] = rz;
  1429. prepare_uninterpolated_move_to_destination(z_feedrate);
  1430. }
  1431. #else
  1432. // If Z needs to raise, do it before moving XY
  1433. if (current_position[Z_AXIS] < rz) {
  1434. feedrate_mm_s = z_feedrate;
  1435. current_position[Z_AXIS] = rz;
  1436. buffer_line_to_current_position();
  1437. }
  1438. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1439. current_position[X_AXIS] = rx;
  1440. current_position[Y_AXIS] = ry;
  1441. buffer_line_to_current_position();
  1442. // If Z needs to lower, do it after moving XY
  1443. if (current_position[Z_AXIS] > rz) {
  1444. feedrate_mm_s = z_feedrate;
  1445. current_position[Z_AXIS] = rz;
  1446. buffer_line_to_current_position();
  1447. }
  1448. #endif
  1449. stepper.synchronize();
  1450. feedrate_mm_s = old_feedrate_mm_s;
  1451. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1452. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1453. #endif
  1454. }
  1455. void do_blocking_move_to_x(const float &rx, const float &fr_mm_s/*=0.0*/) {
  1456. do_blocking_move_to(rx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1457. }
  1458. void do_blocking_move_to_z(const float &rz, const float &fr_mm_s/*=0.0*/) {
  1459. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], rz, fr_mm_s);
  1460. }
  1461. void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s/*=0.0*/) {
  1462. do_blocking_move_to(rx, ry, current_position[Z_AXIS], fr_mm_s);
  1463. }
  1464. //
  1465. // Prepare to do endstop or probe moves
  1466. // with custom feedrates.
  1467. //
  1468. // - Save current feedrates
  1469. // - Reset the rate multiplier
  1470. // - Reset the command timeout
  1471. // - Enable the endstops (for endstop moves)
  1472. //
  1473. static void setup_for_endstop_or_probe_move() {
  1474. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1475. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1476. #endif
  1477. saved_feedrate_mm_s = feedrate_mm_s;
  1478. saved_feedrate_percentage = feedrate_percentage;
  1479. feedrate_percentage = 100;
  1480. refresh_cmd_timeout();
  1481. }
  1482. static void clean_up_after_endstop_or_probe_move() {
  1483. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1484. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1485. #endif
  1486. feedrate_mm_s = saved_feedrate_mm_s;
  1487. feedrate_percentage = saved_feedrate_percentage;
  1488. refresh_cmd_timeout();
  1489. }
  1490. #if HAS_BED_PROBE
  1491. /**
  1492. * Raise Z to a minimum height to make room for a probe to move
  1493. */
  1494. inline void do_probe_raise(const float z_raise) {
  1495. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1496. if (DEBUGGING(LEVELING)) {
  1497. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1498. SERIAL_CHAR(')');
  1499. SERIAL_EOL();
  1500. }
  1501. #endif
  1502. float z_dest = z_raise;
  1503. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1504. if (z_dest > current_position[Z_AXIS])
  1505. do_blocking_move_to_z(z_dest);
  1506. }
  1507. #endif // HAS_BED_PROBE
  1508. #if HAS_AXIS_UNHOMED_ERR
  1509. bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
  1510. #if ENABLED(HOME_AFTER_DEACTIVATE)
  1511. const bool xx = x && !axis_known_position[X_AXIS],
  1512. yy = y && !axis_known_position[Y_AXIS],
  1513. zz = z && !axis_known_position[Z_AXIS];
  1514. #else
  1515. const bool xx = x && !axis_homed[X_AXIS],
  1516. yy = y && !axis_homed[Y_AXIS],
  1517. zz = z && !axis_homed[Z_AXIS];
  1518. #endif
  1519. if (xx || yy || zz) {
  1520. SERIAL_ECHO_START();
  1521. SERIAL_ECHOPGM(MSG_HOME " ");
  1522. if (xx) SERIAL_ECHOPGM(MSG_X);
  1523. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1524. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1525. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1526. #if ENABLED(ULTRA_LCD)
  1527. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1528. #endif
  1529. return true;
  1530. }
  1531. return false;
  1532. }
  1533. #endif // HAS_AXIS_UNHOMED_ERR
  1534. #if ENABLED(Z_PROBE_SLED)
  1535. #ifndef SLED_DOCKING_OFFSET
  1536. #define SLED_DOCKING_OFFSET 0
  1537. #endif
  1538. /**
  1539. * Method to dock/undock a sled designed by Charles Bell.
  1540. *
  1541. * stow[in] If false, move to MAX_X and engage the solenoid
  1542. * If true, move to MAX_X and release the solenoid
  1543. */
  1544. static void dock_sled(bool stow) {
  1545. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1546. if (DEBUGGING(LEVELING)) {
  1547. SERIAL_ECHOPAIR("dock_sled(", stow);
  1548. SERIAL_CHAR(')');
  1549. SERIAL_EOL();
  1550. }
  1551. #endif
  1552. // Dock sled a bit closer to ensure proper capturing
  1553. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1554. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1555. WRITE(SOL1_PIN, !stow); // switch solenoid
  1556. #endif
  1557. }
  1558. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1559. FORCE_INLINE void do_blocking_move_to(const float (&raw)[XYZ], const float &fr_mm_s) {
  1560. do_blocking_move_to(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], fr_mm_s);
  1561. }
  1562. void run_deploy_moves_script() {
  1563. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1564. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1565. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1566. #endif
  1567. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1568. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1569. #endif
  1570. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1571. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1572. #endif
  1573. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1574. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1575. #endif
  1576. const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
  1577. do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1578. #endif
  1579. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1580. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1581. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1582. #endif
  1583. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1584. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1585. #endif
  1586. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1587. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1588. #endif
  1589. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1590. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1591. #endif
  1592. const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
  1593. do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1594. #endif
  1595. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1596. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1597. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1598. #endif
  1599. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1600. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1601. #endif
  1602. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1603. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1604. #endif
  1605. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1606. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1607. #endif
  1608. const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
  1609. do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1610. #endif
  1611. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1612. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1613. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1614. #endif
  1615. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1616. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1617. #endif
  1618. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1619. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1620. #endif
  1621. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1622. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1623. #endif
  1624. const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
  1625. do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1626. #endif
  1627. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1628. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1629. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1630. #endif
  1631. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1632. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1633. #endif
  1634. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1635. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1636. #endif
  1637. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1638. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1639. #endif
  1640. const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
  1641. do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1642. #endif
  1643. }
  1644. void run_stow_moves_script() {
  1645. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1646. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1647. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1648. #endif
  1649. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1650. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1651. #endif
  1652. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1653. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1654. #endif
  1655. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1656. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1657. #endif
  1658. const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
  1659. do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1660. #endif
  1661. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1662. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1663. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1664. #endif
  1665. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1666. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1667. #endif
  1668. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1669. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1670. #endif
  1671. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1672. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1673. #endif
  1674. const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
  1675. do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1676. #endif
  1677. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1678. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1679. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1680. #endif
  1681. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1682. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1683. #endif
  1684. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1685. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1686. #endif
  1687. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1688. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1689. #endif
  1690. const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
  1691. do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1692. #endif
  1693. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1694. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1695. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1696. #endif
  1697. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1698. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1699. #endif
  1700. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1701. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1702. #endif
  1703. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1704. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1705. #endif
  1706. const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
  1707. do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1708. #endif
  1709. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1710. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1711. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1712. #endif
  1713. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1714. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1715. #endif
  1716. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1717. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1718. #endif
  1719. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1720. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1721. #endif
  1722. const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
  1723. do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1724. #endif
  1725. }
  1726. #endif // Z_PROBE_ALLEN_KEY
  1727. #if ENABLED(PROBING_FANS_OFF)
  1728. void fans_pause(const bool p) {
  1729. if (p != fans_paused) {
  1730. fans_paused = p;
  1731. if (p)
  1732. for (uint8_t x = 0; x < FAN_COUNT; x++) {
  1733. paused_fanSpeeds[x] = fanSpeeds[x];
  1734. fanSpeeds[x] = 0;
  1735. }
  1736. else
  1737. for (uint8_t x = 0; x < FAN_COUNT; x++)
  1738. fanSpeeds[x] = paused_fanSpeeds[x];
  1739. }
  1740. }
  1741. #endif // PROBING_FANS_OFF
  1742. #if HAS_BED_PROBE
  1743. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1744. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1745. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1746. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1747. #else
  1748. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1749. #endif
  1750. #endif
  1751. #if QUIET_PROBING
  1752. void probing_pause(const bool p) {
  1753. #if ENABLED(PROBING_HEATERS_OFF)
  1754. thermalManager.pause(p);
  1755. #endif
  1756. #if ENABLED(PROBING_FANS_OFF)
  1757. fans_pause(p);
  1758. #endif
  1759. if (p) safe_delay(
  1760. #if DELAY_BEFORE_PROBING > 25
  1761. DELAY_BEFORE_PROBING
  1762. #else
  1763. 25
  1764. #endif
  1765. );
  1766. }
  1767. #endif // QUIET_PROBING
  1768. #if ENABLED(BLTOUCH)
  1769. void bltouch_command(int angle) {
  1770. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, angle); // Give the BL-Touch the command and wait
  1771. safe_delay(BLTOUCH_DELAY);
  1772. }
  1773. bool set_bltouch_deployed(const bool deploy) {
  1774. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1775. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1776. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1777. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1778. safe_delay(1500); // Wait for internal self-test to complete.
  1779. // (Measured completion time was 0.65 seconds
  1780. // after reset, deploy, and stow sequence)
  1781. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1782. SERIAL_ERROR_START();
  1783. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1784. stop(); // punt!
  1785. return true;
  1786. }
  1787. }
  1788. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1789. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1790. if (DEBUGGING(LEVELING)) {
  1791. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1792. SERIAL_CHAR(')');
  1793. SERIAL_EOL();
  1794. }
  1795. #endif
  1796. return false;
  1797. }
  1798. #endif // BLTOUCH
  1799. // returns false for ok and true for failure
  1800. bool set_probe_deployed(bool deploy) {
  1801. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1802. if (DEBUGGING(LEVELING)) {
  1803. DEBUG_POS("set_probe_deployed", current_position);
  1804. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1805. }
  1806. #endif
  1807. if (endstops.z_probe_enabled == deploy) return false;
  1808. // Make room for probe
  1809. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1810. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  1811. #if ENABLED(Z_PROBE_SLED)
  1812. #define _AUE_ARGS true, false, false
  1813. #else
  1814. #define _AUE_ARGS
  1815. #endif
  1816. if (axis_unhomed_error(_AUE_ARGS)) {
  1817. SERIAL_ERROR_START();
  1818. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1819. stop();
  1820. return true;
  1821. }
  1822. #endif
  1823. const float oldXpos = current_position[X_AXIS],
  1824. oldYpos = current_position[Y_AXIS];
  1825. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1826. // If endstop is already false, the Z probe is deployed
  1827. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1828. // Would a goto be less ugly?
  1829. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1830. // for a triggered when stowed manual probe.
  1831. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1832. // otherwise an Allen-Key probe can't be stowed.
  1833. #endif
  1834. #if ENABLED(SOLENOID_PROBE)
  1835. #if HAS_SOLENOID_1
  1836. WRITE(SOL1_PIN, deploy);
  1837. #endif
  1838. #elif ENABLED(Z_PROBE_SLED)
  1839. dock_sled(!deploy);
  1840. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1841. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[deploy ? 0 : 1]);
  1842. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1843. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1844. #endif
  1845. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1846. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1847. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1848. if (IsRunning()) {
  1849. SERIAL_ERROR_START();
  1850. SERIAL_ERRORLNPGM("Z-Probe failed");
  1851. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1852. }
  1853. stop();
  1854. return true;
  1855. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1856. #endif
  1857. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1858. endstops.enable_z_probe(deploy);
  1859. return false;
  1860. }
  1861. /**
  1862. * @brief Used by run_z_probe to do a single Z probe move.
  1863. *
  1864. * @param z Z destination
  1865. * @param fr_mm_s Feedrate in mm/s
  1866. * @return true to indicate an error
  1867. */
  1868. static bool do_probe_move(const float z, const float fr_mm_m) {
  1869. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1870. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1871. #endif
  1872. // Deploy BLTouch at the start of any probe
  1873. #if ENABLED(BLTOUCH)
  1874. if (set_bltouch_deployed(true)) return true;
  1875. #endif
  1876. #if QUIET_PROBING
  1877. probing_pause(true);
  1878. #endif
  1879. // Move down until probe triggered
  1880. do_blocking_move_to_z(z, MMM_TO_MMS(fr_mm_m));
  1881. // Check to see if the probe was triggered
  1882. const bool probe_triggered = TEST(Endstops::endstop_hit_bits,
  1883. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  1884. Z_MIN
  1885. #else
  1886. Z_MIN_PROBE
  1887. #endif
  1888. );
  1889. #if QUIET_PROBING
  1890. probing_pause(false);
  1891. #endif
  1892. // Retract BLTouch immediately after a probe if it was triggered
  1893. #if ENABLED(BLTOUCH)
  1894. if (probe_triggered && set_bltouch_deployed(false)) return true;
  1895. #endif
  1896. // Clear endstop flags
  1897. endstops.hit_on_purpose();
  1898. // Get Z where the steppers were interrupted
  1899. set_current_from_steppers_for_axis(Z_AXIS);
  1900. // Tell the planner where we actually are
  1901. SYNC_PLAN_POSITION_KINEMATIC();
  1902. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1903. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1904. #endif
  1905. return !probe_triggered;
  1906. }
  1907. /**
  1908. * @details Used by probe_pt to do a single Z probe at the current position.
  1909. * Leaves current_position[Z_AXIS] at the height where the probe triggered.
  1910. *
  1911. * @return The raw Z position where the probe was triggered
  1912. */
  1913. static float run_z_probe() {
  1914. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1915. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1916. #endif
  1917. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1918. refresh_cmd_timeout();
  1919. // Double-probing does a fast probe followed by a slow probe
  1920. #if MULTIPLE_PROBING == 2
  1921. // Do a first probe at the fast speed
  1922. if (do_probe_move(-10, Z_PROBE_SPEED_FAST)) return NAN;
  1923. float first_probe_z = current_position[Z_AXIS];
  1924. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1925. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1926. #endif
  1927. // move up to make clearance for the probe
  1928. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1929. #else
  1930. // If the nozzle is above the travel height then
  1931. // move down quickly before doing the slow probe
  1932. float z = Z_CLEARANCE_DEPLOY_PROBE;
  1933. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1934. if (z < current_position[Z_AXIS]) {
  1935. // If we don't make it to the z position (i.e. the probe triggered), move up to make clearance for the probe
  1936. if (!do_probe_move(z, Z_PROBE_SPEED_FAST))
  1937. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1938. }
  1939. #endif
  1940. #if MULTIPLE_PROBING > 2
  1941. float probes_total = 0;
  1942. for (uint8_t p = MULTIPLE_PROBING + 1; --p;) {
  1943. #endif
  1944. // move down slowly to find bed
  1945. if (do_probe_move(-10, Z_PROBE_SPEED_SLOW)) return NAN;
  1946. #if MULTIPLE_PROBING > 2
  1947. probes_total += current_position[Z_AXIS];
  1948. if (p > 1) do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1949. }
  1950. #endif
  1951. #if MULTIPLE_PROBING > 2
  1952. // Return the average value of all probes
  1953. return probes_total * (1.0 / (MULTIPLE_PROBING));
  1954. #elif MULTIPLE_PROBING == 2
  1955. const float z2 = current_position[Z_AXIS];
  1956. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1957. if (DEBUGGING(LEVELING)) {
  1958. SERIAL_ECHOPAIR("2nd Probe Z:", z2);
  1959. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - z2);
  1960. }
  1961. #endif
  1962. // Return a weighted average of the fast and slow probes
  1963. return (z2 * 3.0 + first_probe_z * 2.0) * 0.2;
  1964. #else
  1965. // Return the single probe result
  1966. return current_position[Z_AXIS];
  1967. #endif
  1968. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1969. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1970. #endif
  1971. }
  1972. /**
  1973. * - Move to the given XY
  1974. * - Deploy the probe, if not already deployed
  1975. * - Probe the bed, get the Z position
  1976. * - Depending on the 'stow' flag
  1977. * - Stow the probe, or
  1978. * - Raise to the BETWEEN height
  1979. * - Return the probed Z position
  1980. */
  1981. float probe_pt(const float &rx, const float &ry, const bool stow, const uint8_t verbose_level, const bool probe_relative=true) {
  1982. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1983. if (DEBUGGING(LEVELING)) {
  1984. SERIAL_ECHOPAIR(">>> probe_pt(", LOGICAL_X_POSITION(rx));
  1985. SERIAL_ECHOPAIR(", ", LOGICAL_Y_POSITION(ry));
  1986. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1987. SERIAL_ECHOLNPGM("stow)");
  1988. DEBUG_POS("", current_position);
  1989. }
  1990. #endif
  1991. // TODO: Adapt for SCARA, where the offset rotates
  1992. float nx = rx, ny = ry;
  1993. if (probe_relative) {
  1994. if (!position_is_reachable_by_probe(rx, ry)) return NAN; // The given position is in terms of the probe
  1995. nx -= (X_PROBE_OFFSET_FROM_EXTRUDER); // Get the nozzle position
  1996. ny -= (Y_PROBE_OFFSET_FROM_EXTRUDER);
  1997. }
  1998. else if (!position_is_reachable(nx, ny)) return NAN; // The given position is in terms of the nozzle
  1999. const float nz =
  2000. #if ENABLED(DELTA)
  2001. // Move below clip height or xy move will be aborted by do_blocking_move_to
  2002. min(current_position[Z_AXIS], delta_clip_start_height)
  2003. #else
  2004. current_position[Z_AXIS]
  2005. #endif
  2006. ;
  2007. const float old_feedrate_mm_s = feedrate_mm_s;
  2008. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  2009. // Move the probe to the starting XYZ
  2010. do_blocking_move_to(nx, ny, nz);
  2011. float measured_z = NAN;
  2012. if (!DEPLOY_PROBE()) {
  2013. measured_z = run_z_probe() + zprobe_zoffset;
  2014. if (!stow)
  2015. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2016. else
  2017. if (STOW_PROBE()) measured_z = NAN;
  2018. }
  2019. if (verbose_level > 2) {
  2020. SERIAL_PROTOCOLPGM("Bed X: ");
  2021. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(rx), 3);
  2022. SERIAL_PROTOCOLPGM(" Y: ");
  2023. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ry), 3);
  2024. SERIAL_PROTOCOLPGM(" Z: ");
  2025. SERIAL_PROTOCOL_F(measured_z, 3);
  2026. SERIAL_EOL();
  2027. }
  2028. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2029. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2030. #endif
  2031. feedrate_mm_s = old_feedrate_mm_s;
  2032. if (isnan(measured_z)) {
  2033. LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);
  2034. SERIAL_ERROR_START();
  2035. SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED);
  2036. }
  2037. return measured_z;
  2038. }
  2039. #endif // HAS_BED_PROBE
  2040. #if HAS_LEVELING
  2041. bool leveling_is_valid() {
  2042. return
  2043. #if ENABLED(MESH_BED_LEVELING)
  2044. mbl.has_mesh
  2045. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2046. !!bilinear_grid_spacing[X_AXIS]
  2047. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2048. true
  2049. #else // 3POINT, LINEAR
  2050. true
  2051. #endif
  2052. ;
  2053. }
  2054. /**
  2055. * Turn bed leveling on or off, fixing the current
  2056. * position as-needed.
  2057. *
  2058. * Disable: Current position = physical position
  2059. * Enable: Current position = "unleveled" physical position
  2060. */
  2061. void set_bed_leveling_enabled(const bool enable/*=true*/) {
  2062. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2063. const bool can_change = (!enable || leveling_is_valid());
  2064. #else
  2065. constexpr bool can_change = true;
  2066. #endif
  2067. if (can_change && enable != planner.leveling_active) {
  2068. #if ENABLED(MESH_BED_LEVELING)
  2069. if (!enable)
  2070. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2071. const bool enabling = enable && leveling_is_valid();
  2072. planner.leveling_active = enabling;
  2073. if (enabling) planner.unapply_leveling(current_position);
  2074. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2075. #if PLANNER_LEVELING
  2076. if (planner.leveling_active) { // leveling from on to off
  2077. // change unleveled current_position to physical current_position without moving steppers.
  2078. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2079. planner.leveling_active = false; // disable only AFTER calling apply_leveling
  2080. }
  2081. else { // leveling from off to on
  2082. planner.leveling_active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
  2083. // change physical current_position to unleveled current_position without moving steppers.
  2084. planner.unapply_leveling(current_position);
  2085. }
  2086. #else
  2087. planner.leveling_active = enable; // just flip the bit, current_position will be wrong until next move.
  2088. #endif
  2089. #else // ABL
  2090. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2091. // Force bilinear_z_offset to re-calculate next time
  2092. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2093. (void)bilinear_z_offset(reset);
  2094. #endif
  2095. // Enable or disable leveling compensation in the planner
  2096. planner.leveling_active = enable;
  2097. if (!enable)
  2098. // When disabling just get the current position from the steppers.
  2099. // This will yield the smallest error when first converted back to steps.
  2100. set_current_from_steppers_for_axis(
  2101. #if ABL_PLANAR
  2102. ALL_AXES
  2103. #else
  2104. Z_AXIS
  2105. #endif
  2106. );
  2107. else
  2108. // When enabling, remove compensation from the current position,
  2109. // so compensation will give the right stepper counts.
  2110. planner.unapply_leveling(current_position);
  2111. SYNC_PLAN_POSITION_KINEMATIC();
  2112. #endif // ABL
  2113. }
  2114. }
  2115. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2116. void set_z_fade_height(const float zfh, const bool do_report/*=true*/) {
  2117. if (planner.z_fade_height == zfh) return; // do nothing if no change
  2118. const bool level_active = planner.leveling_active;
  2119. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2120. if (level_active) set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
  2121. #endif
  2122. planner.set_z_fade_height(zfh);
  2123. if (level_active) {
  2124. const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  2125. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2126. set_bed_leveling_enabled(true); // turn back on after changing fade height
  2127. #else
  2128. set_current_from_steppers_for_axis(
  2129. #if ABL_PLANAR
  2130. ALL_AXES
  2131. #else
  2132. Z_AXIS
  2133. #endif
  2134. );
  2135. SYNC_PLAN_POSITION_KINEMATIC();
  2136. #endif
  2137. if (do_report && memcmp(oldpos, current_position, sizeof(oldpos)))
  2138. report_current_position();
  2139. }
  2140. }
  2141. #endif // LEVELING_FADE_HEIGHT
  2142. /**
  2143. * Reset calibration results to zero.
  2144. */
  2145. void reset_bed_level() {
  2146. set_bed_leveling_enabled(false);
  2147. #if ENABLED(MESH_BED_LEVELING)
  2148. if (leveling_is_valid()) {
  2149. mbl.reset();
  2150. mbl.has_mesh = false;
  2151. }
  2152. #else
  2153. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2154. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2155. #endif
  2156. #if ABL_PLANAR
  2157. planner.bed_level_matrix.set_to_identity();
  2158. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2159. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2160. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2161. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2162. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2163. z_values[x][y] = NAN;
  2164. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2165. ubl.reset();
  2166. #endif
  2167. #endif
  2168. }
  2169. #endif // HAS_LEVELING
  2170. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2171. /**
  2172. * Enable to produce output in JSON format suitable
  2173. * for SCAD or JavaScript mesh visualizers.
  2174. *
  2175. * Visualize meshes in OpenSCAD using the included script.
  2176. *
  2177. * buildroot/shared/scripts/MarlinMesh.scad
  2178. */
  2179. //#define SCAD_MESH_OUTPUT
  2180. /**
  2181. * Print calibration results for plotting or manual frame adjustment.
  2182. */
  2183. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2184. #ifndef SCAD_MESH_OUTPUT
  2185. for (uint8_t x = 0; x < sx; x++) {
  2186. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2187. SERIAL_PROTOCOLCHAR(' ');
  2188. SERIAL_PROTOCOL((int)x);
  2189. }
  2190. SERIAL_EOL();
  2191. #endif
  2192. #ifdef SCAD_MESH_OUTPUT
  2193. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2194. #endif
  2195. for (uint8_t y = 0; y < sy; y++) {
  2196. #ifdef SCAD_MESH_OUTPUT
  2197. SERIAL_PROTOCOLPGM(" ["); // open sub-array
  2198. #else
  2199. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2200. SERIAL_PROTOCOL((int)y);
  2201. #endif
  2202. for (uint8_t x = 0; x < sx; x++) {
  2203. SERIAL_PROTOCOLCHAR(' ');
  2204. const float offset = fn(x, y);
  2205. if (!isnan(offset)) {
  2206. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2207. SERIAL_PROTOCOL_F(offset, precision);
  2208. }
  2209. else {
  2210. #ifdef SCAD_MESH_OUTPUT
  2211. for (uint8_t i = 3; i < precision + 3; i++)
  2212. SERIAL_PROTOCOLCHAR(' ');
  2213. SERIAL_PROTOCOLPGM("NAN");
  2214. #else
  2215. for (uint8_t i = 0; i < precision + 3; i++)
  2216. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2217. #endif
  2218. }
  2219. #ifdef SCAD_MESH_OUTPUT
  2220. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2221. #endif
  2222. }
  2223. #ifdef SCAD_MESH_OUTPUT
  2224. SERIAL_PROTOCOLCHAR(' ');
  2225. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2226. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2227. #endif
  2228. SERIAL_EOL();
  2229. }
  2230. #ifdef SCAD_MESH_OUTPUT
  2231. SERIAL_PROTOCOLPGM("];"); // close 2D array
  2232. #endif
  2233. SERIAL_EOL();
  2234. }
  2235. #endif
  2236. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2237. /**
  2238. * Extrapolate a single point from its neighbors
  2239. */
  2240. static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  2241. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2242. if (DEBUGGING(LEVELING)) {
  2243. SERIAL_ECHOPGM("Extrapolate [");
  2244. if (x < 10) SERIAL_CHAR(' ');
  2245. SERIAL_ECHO((int)x);
  2246. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2247. SERIAL_CHAR(' ');
  2248. if (y < 10) SERIAL_CHAR(' ');
  2249. SERIAL_ECHO((int)y);
  2250. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2251. SERIAL_CHAR(']');
  2252. }
  2253. #endif
  2254. if (!isnan(z_values[x][y])) {
  2255. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2256. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2257. #endif
  2258. return; // Don't overwrite good values.
  2259. }
  2260. SERIAL_EOL();
  2261. // Get X neighbors, Y neighbors, and XY neighbors
  2262. const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
  2263. float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
  2264. b1 = z_values[x ][y1], b2 = z_values[x ][y2],
  2265. c1 = z_values[x1][y1], c2 = z_values[x2][y2];
  2266. // Treat far unprobed points as zero, near as equal to far
  2267. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2268. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2269. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2270. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2271. // Take the average instead of the median
  2272. z_values[x][y] = (a + b + c) / 3.0;
  2273. // Median is robust (ignores outliers).
  2274. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2275. // : ((c < b) ? b : (a < c) ? a : c);
  2276. }
  2277. //Enable this if your SCARA uses 180° of total area
  2278. //#define EXTRAPOLATE_FROM_EDGE
  2279. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2280. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2281. #define HALF_IN_X
  2282. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2283. #define HALF_IN_Y
  2284. #endif
  2285. #endif
  2286. /**
  2287. * Fill in the unprobed points (corners of circular print surface)
  2288. * using linear extrapolation, away from the center.
  2289. */
  2290. static void extrapolate_unprobed_bed_level() {
  2291. #ifdef HALF_IN_X
  2292. constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2293. #else
  2294. constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2295. ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
  2296. xlen = ctrx1;
  2297. #endif
  2298. #ifdef HALF_IN_Y
  2299. constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2300. #else
  2301. constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2302. ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
  2303. ylen = ctry1;
  2304. #endif
  2305. for (uint8_t xo = 0; xo <= xlen; xo++)
  2306. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2307. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2308. #ifndef HALF_IN_X
  2309. const uint8_t x1 = ctrx1 - xo;
  2310. #endif
  2311. #ifndef HALF_IN_Y
  2312. const uint8_t y1 = ctry1 - yo;
  2313. #ifndef HALF_IN_X
  2314. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2315. #endif
  2316. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2317. #endif
  2318. #ifndef HALF_IN_X
  2319. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2320. #endif
  2321. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2322. }
  2323. }
  2324. static void print_bilinear_leveling_grid() {
  2325. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2326. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2327. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2328. );
  2329. }
  2330. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2331. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2332. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2333. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2334. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2335. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2336. int bilinear_grid_spacing_virt[2] = { 0 };
  2337. float bilinear_grid_factor_virt[2] = { 0 };
  2338. static void print_bilinear_leveling_grid_virt() {
  2339. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2340. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2341. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2342. );
  2343. }
  2344. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2345. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2346. uint8_t ep = 0, ip = 1;
  2347. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2348. if (x) {
  2349. ep = GRID_MAX_POINTS_X - 1;
  2350. ip = GRID_MAX_POINTS_X - 2;
  2351. }
  2352. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2353. return LINEAR_EXTRAPOLATION(
  2354. z_values[ep][y - 1],
  2355. z_values[ip][y - 1]
  2356. );
  2357. else
  2358. return LINEAR_EXTRAPOLATION(
  2359. bed_level_virt_coord(ep + 1, y),
  2360. bed_level_virt_coord(ip + 1, y)
  2361. );
  2362. }
  2363. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2364. if (y) {
  2365. ep = GRID_MAX_POINTS_Y - 1;
  2366. ip = GRID_MAX_POINTS_Y - 2;
  2367. }
  2368. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2369. return LINEAR_EXTRAPOLATION(
  2370. z_values[x - 1][ep],
  2371. z_values[x - 1][ip]
  2372. );
  2373. else
  2374. return LINEAR_EXTRAPOLATION(
  2375. bed_level_virt_coord(x, ep + 1),
  2376. bed_level_virt_coord(x, ip + 1)
  2377. );
  2378. }
  2379. return z_values[x - 1][y - 1];
  2380. }
  2381. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2382. return (
  2383. p[i-1] * -t * sq(1 - t)
  2384. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2385. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2386. - p[i+2] * sq(t) * (1 - t)
  2387. ) * 0.5;
  2388. }
  2389. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2390. float row[4], column[4];
  2391. for (uint8_t i = 0; i < 4; i++) {
  2392. for (uint8_t j = 0; j < 4; j++) {
  2393. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2394. }
  2395. row[i] = bed_level_virt_cmr(column, 1, ty);
  2396. }
  2397. return bed_level_virt_cmr(row, 1, tx);
  2398. }
  2399. void bed_level_virt_interpolate() {
  2400. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2401. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2402. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2403. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2404. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2405. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2406. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2407. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2408. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2409. continue;
  2410. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2411. bed_level_virt_2cmr(
  2412. x + 1,
  2413. y + 1,
  2414. (float)tx / (BILINEAR_SUBDIVISIONS),
  2415. (float)ty / (BILINEAR_SUBDIVISIONS)
  2416. );
  2417. }
  2418. }
  2419. #endif // ABL_BILINEAR_SUBDIVISION
  2420. // Refresh after other values have been updated
  2421. void refresh_bed_level() {
  2422. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2423. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2424. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2425. bed_level_virt_interpolate();
  2426. #endif
  2427. }
  2428. #endif // AUTO_BED_LEVELING_BILINEAR
  2429. /**
  2430. * Home an individual linear axis
  2431. */
  2432. static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
  2433. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2434. if (DEBUGGING(LEVELING)) {
  2435. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2436. SERIAL_ECHOPAIR(", ", distance);
  2437. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2438. SERIAL_CHAR(')');
  2439. SERIAL_EOL();
  2440. }
  2441. #endif
  2442. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2443. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2444. if (deploy_bltouch) set_bltouch_deployed(true);
  2445. #endif
  2446. #if QUIET_PROBING
  2447. if (axis == Z_AXIS) probing_pause(true);
  2448. #endif
  2449. // Tell the planner the axis is at 0
  2450. current_position[axis] = 0;
  2451. #if IS_SCARA
  2452. SYNC_PLAN_POSITION_KINEMATIC();
  2453. current_position[axis] = distance;
  2454. inverse_kinematics(current_position);
  2455. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2456. #else
  2457. sync_plan_position();
  2458. current_position[axis] = distance;
  2459. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2460. #endif
  2461. stepper.synchronize();
  2462. #if QUIET_PROBING
  2463. if (axis == Z_AXIS) probing_pause(false);
  2464. #endif
  2465. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2466. if (deploy_bltouch) set_bltouch_deployed(false);
  2467. #endif
  2468. endstops.hit_on_purpose();
  2469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2470. if (DEBUGGING(LEVELING)) {
  2471. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2472. SERIAL_CHAR(')');
  2473. SERIAL_EOL();
  2474. }
  2475. #endif
  2476. }
  2477. /**
  2478. * TMC2130 specific sensorless homing using stallGuard2.
  2479. * stallGuard2 only works when in spreadCycle mode.
  2480. * spreadCycle and stealthChop are mutually exclusive.
  2481. */
  2482. #if ENABLED(SENSORLESS_HOMING)
  2483. template<typename TMC>
  2484. void tmc_sensorless_homing(TMC &st, bool enable=true) {
  2485. #if ENABLED(STEALTHCHOP)
  2486. if (enable) {
  2487. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2488. st.stealthChop(0);
  2489. }
  2490. else {
  2491. st.coolstep_min_speed(0);
  2492. st.stealthChop(1);
  2493. }
  2494. #endif
  2495. st.diag1_stall(enable ? 1 : 0);
  2496. }
  2497. #endif
  2498. /**
  2499. * Home an individual "raw axis" to its endstop.
  2500. * This applies to XYZ on Cartesian and Core robots, and
  2501. * to the individual ABC steppers on DELTA and SCARA.
  2502. *
  2503. * At the end of the procedure the axis is marked as
  2504. * homed and the current position of that axis is updated.
  2505. * Kinematic robots should wait till all axes are homed
  2506. * before updating the current position.
  2507. */
  2508. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2509. static void homeaxis(const AxisEnum axis) {
  2510. #if IS_SCARA
  2511. // Only Z homing (with probe) is permitted
  2512. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2513. #else
  2514. #define CAN_HOME(A) \
  2515. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2516. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2517. #endif
  2518. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2519. if (DEBUGGING(LEVELING)) {
  2520. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2521. SERIAL_CHAR(')');
  2522. SERIAL_EOL();
  2523. }
  2524. #endif
  2525. const int axis_home_dir =
  2526. #if ENABLED(DUAL_X_CARRIAGE)
  2527. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2528. #endif
  2529. home_dir(axis);
  2530. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2531. #if HOMING_Z_WITH_PROBE
  2532. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2533. #endif
  2534. // Set flags for X, Y, Z motor locking
  2535. #if ENABLED(X_DUAL_ENDSTOPS)
  2536. if (axis == X_AXIS) stepper.set_homing_flag_x(true);
  2537. #endif
  2538. #if ENABLED(Y_DUAL_ENDSTOPS)
  2539. if (axis == Y_AXIS) stepper.set_homing_flag_y(true);
  2540. #endif
  2541. #if ENABLED(Z_DUAL_ENDSTOPS)
  2542. if (axis == Z_AXIS) stepper.set_homing_flag_z(true);
  2543. #endif
  2544. // Disable stealthChop if used. Enable diag1 pin on driver.
  2545. #if ENABLED(SENSORLESS_HOMING)
  2546. #if ENABLED(X_IS_TMC2130)
  2547. if (axis == X_AXIS) tmc_sensorless_homing(stepperX);
  2548. #endif
  2549. #if ENABLED(Y_IS_TMC2130)
  2550. if (axis == Y_AXIS) tmc_sensorless_homing(stepperY);
  2551. #endif
  2552. #endif
  2553. // Fast move towards endstop until triggered
  2554. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2555. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2556. #endif
  2557. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2558. // When homing Z with probe respect probe clearance
  2559. const float bump = axis_home_dir * (
  2560. #if HOMING_Z_WITH_PROBE
  2561. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2562. #endif
  2563. home_bump_mm(axis)
  2564. );
  2565. // If a second homing move is configured...
  2566. if (bump) {
  2567. // Move away from the endstop by the axis HOME_BUMP_MM
  2568. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2569. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2570. #endif
  2571. do_homing_move(axis, -bump);
  2572. // Slow move towards endstop until triggered
  2573. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2574. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2575. #endif
  2576. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2577. }
  2578. /**
  2579. * Home axes that have dual endstops... differently
  2580. */
  2581. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  2582. const bool pos_dir = axis_home_dir > 0;
  2583. #if ENABLED(X_DUAL_ENDSTOPS)
  2584. if (axis == X_AXIS) {
  2585. const bool lock_x1 = pos_dir ? (x_endstop_adj > 0) : (x_endstop_adj < 0);
  2586. const float adj = FABS(x_endstop_adj);
  2587. if (lock_x1) stepper.set_x_lock(true); else stepper.set_x2_lock(true);
  2588. do_homing_move(axis, pos_dir ? -adj : adj);
  2589. if (lock_x1) stepper.set_x_lock(false); else stepper.set_x2_lock(false);
  2590. stepper.set_homing_flag_x(false);
  2591. }
  2592. #endif
  2593. #if ENABLED(Y_DUAL_ENDSTOPS)
  2594. if (axis == Y_AXIS) {
  2595. const bool lock_y1 = pos_dir ? (y_endstop_adj > 0) : (y_endstop_adj < 0);
  2596. const float adj = FABS(y_endstop_adj);
  2597. if (lock_y1) stepper.set_y_lock(true); else stepper.set_y2_lock(true);
  2598. do_homing_move(axis, pos_dir ? -adj : adj);
  2599. if (lock_y1) stepper.set_y_lock(false); else stepper.set_y2_lock(false);
  2600. stepper.set_homing_flag_y(false);
  2601. }
  2602. #endif
  2603. #if ENABLED(Z_DUAL_ENDSTOPS)
  2604. if (axis == Z_AXIS) {
  2605. const bool lock_z1 = pos_dir ? (z_endstop_adj > 0) : (z_endstop_adj < 0);
  2606. const float adj = FABS(z_endstop_adj);
  2607. if (lock_z1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2608. do_homing_move(axis, pos_dir ? -adj : adj);
  2609. if (lock_z1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2610. stepper.set_homing_flag_z(false);
  2611. }
  2612. #endif
  2613. #endif
  2614. #if IS_SCARA
  2615. set_axis_is_at_home(axis);
  2616. SYNC_PLAN_POSITION_KINEMATIC();
  2617. #elif ENABLED(DELTA)
  2618. // Delta has already moved all three towers up in G28
  2619. // so here it re-homes each tower in turn.
  2620. // Delta homing treats the axes as normal linear axes.
  2621. // retrace by the amount specified in delta_endstop_adj + additional 0.1mm in order to have minimum steps
  2622. if (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) {
  2623. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2624. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("delta_endstop_adj:");
  2625. #endif
  2626. do_homing_move(axis, delta_endstop_adj[axis] - 0.1 * Z_HOME_DIR);
  2627. }
  2628. #else
  2629. // For cartesian/core machines,
  2630. // set the axis to its home position
  2631. set_axis_is_at_home(axis);
  2632. sync_plan_position();
  2633. destination[axis] = current_position[axis];
  2634. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2635. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2636. #endif
  2637. #endif
  2638. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2639. #if ENABLED(SENSORLESS_HOMING)
  2640. #if ENABLED(X_IS_TMC2130)
  2641. if (axis == X_AXIS) tmc_sensorless_homing(stepperX, false);
  2642. #endif
  2643. #if ENABLED(Y_IS_TMC2130)
  2644. if (axis == Y_AXIS) tmc_sensorless_homing(stepperY, false);
  2645. #endif
  2646. #endif
  2647. // Put away the Z probe
  2648. #if HOMING_Z_WITH_PROBE
  2649. if (axis == Z_AXIS && STOW_PROBE()) return;
  2650. #endif
  2651. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2652. if (DEBUGGING(LEVELING)) {
  2653. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2654. SERIAL_CHAR(')');
  2655. SERIAL_EOL();
  2656. }
  2657. #endif
  2658. } // homeaxis()
  2659. #if ENABLED(FWRETRACT)
  2660. /**
  2661. * Retract or recover according to firmware settings
  2662. *
  2663. * This function handles retract/recover moves for G10 and G11,
  2664. * plus auto-retract moves sent from G0/G1 when E-only moves are done.
  2665. *
  2666. * To simplify the logic, doubled retract/recover moves are ignored.
  2667. *
  2668. * Note: Z lift is done transparently to the planner. Aborting
  2669. * a print between G10 and G11 may corrupt the Z position.
  2670. *
  2671. * Note: Auto-retract will apply the set Z hop in addition to any Z hop
  2672. * included in the G-code. Use M207 Z0 to to prevent double hop.
  2673. */
  2674. void retract(const bool retracting
  2675. #if EXTRUDERS > 1
  2676. , bool swapping = false
  2677. #endif
  2678. ) {
  2679. static float hop_amount = 0.0; // Total amount lifted, for use in recover
  2680. // Prevent two retracts or recovers in a row
  2681. if (retracted[active_extruder] == retracting) return;
  2682. // Prevent two swap-retract or recovers in a row
  2683. #if EXTRUDERS > 1
  2684. // Allow G10 S1 only after G10
  2685. if (swapping && retracted_swap[active_extruder] == retracting) return;
  2686. // G11 priority to recover the long retract if activated
  2687. if (!retracting) swapping = retracted_swap[active_extruder];
  2688. #else
  2689. const bool swapping = false;
  2690. #endif
  2691. /* // debugging
  2692. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2693. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2694. SERIAL_ECHOLNPAIR("active extruder ", active_extruder);
  2695. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2696. SERIAL_ECHOPAIR("retracted[", i);
  2697. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2698. SERIAL_ECHOPAIR("retracted_swap[", i);
  2699. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2700. }
  2701. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2702. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2703. //*/
  2704. const bool has_zhop = retract_zlift > 0.01; // Is there a hop set?
  2705. const float old_feedrate_mm_s = feedrate_mm_s;
  2706. // The current position will be the destination for E and Z moves
  2707. set_destination_from_current();
  2708. stepper.synchronize(); // Wait for buffered moves to complete
  2709. const float renormalize = 1.0 / planner.e_factor[active_extruder];
  2710. if (retracting) {
  2711. // Retract by moving from a faux E position back to the current E position
  2712. feedrate_mm_s = retract_feedrate_mm_s;
  2713. current_position[E_AXIS] += (swapping ? swap_retract_length : retract_length) * renormalize;
  2714. sync_plan_position_e();
  2715. prepare_move_to_destination();
  2716. // Is a Z hop set, and has the hop not yet been done?
  2717. if (has_zhop && !hop_amount) {
  2718. hop_amount += retract_zlift; // Carriage is raised for retraction hop
  2719. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; // Z feedrate to max
  2720. current_position[Z_AXIS] -= retract_zlift; // Pretend current pos is lower. Next move raises Z.
  2721. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2722. prepare_move_to_destination(); // Raise up to the old current pos
  2723. feedrate_mm_s = retract_feedrate_mm_s; // Restore feedrate
  2724. }
  2725. }
  2726. else {
  2727. // If a hop was done and Z hasn't changed, undo the Z hop
  2728. if (hop_amount) {
  2729. current_position[Z_AXIS] += retract_zlift; // Pretend current pos is lower. Next move raises Z.
  2730. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2731. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; // Z feedrate to max
  2732. prepare_move_to_destination(); // Raise up to the old current pos
  2733. hop_amount = 0.0; // Clear hop
  2734. }
  2735. // A retract multiplier has been added here to get faster swap recovery
  2736. feedrate_mm_s = swapping ? swap_retract_recover_feedrate_mm_s : retract_recover_feedrate_mm_s;
  2737. const float move_e = swapping ? swap_retract_length + swap_retract_recover_length : retract_length + retract_recover_length;
  2738. current_position[E_AXIS] -= move_e * renormalize;
  2739. sync_plan_position_e();
  2740. prepare_move_to_destination(); // Recover E
  2741. }
  2742. feedrate_mm_s = old_feedrate_mm_s; // Restore original feedrate
  2743. retracted[active_extruder] = retracting; // Active extruder now retracted / recovered
  2744. // If swap retract/recover update the retracted_swap flag too
  2745. #if EXTRUDERS > 1
  2746. if (swapping) retracted_swap[active_extruder] = retracting;
  2747. #endif
  2748. /* // debugging
  2749. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2750. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2751. SERIAL_ECHOLNPAIR("active_extruder ", active_extruder);
  2752. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2753. SERIAL_ECHOPAIR("retracted[", i);
  2754. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2755. SERIAL_ECHOPAIR("retracted_swap[", i);
  2756. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2757. }
  2758. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2759. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2760. //*/
  2761. }
  2762. #endif // FWRETRACT
  2763. #if ENABLED(MIXING_EXTRUDER)
  2764. void normalize_mix() {
  2765. float mix_total = 0.0;
  2766. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2767. // Scale all values if they don't add up to ~1.0
  2768. if (!NEAR(mix_total, 1.0)) {
  2769. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2770. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2771. }
  2772. }
  2773. #if ENABLED(DIRECT_MIXING_IN_G1)
  2774. // Get mixing parameters from the GCode
  2775. // The total "must" be 1.0 (but it will be normalized)
  2776. // If no mix factors are given, the old mix is preserved
  2777. void gcode_get_mix() {
  2778. const char* mixing_codes = "ABCDHI";
  2779. byte mix_bits = 0;
  2780. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2781. if (parser.seenval(mixing_codes[i])) {
  2782. SBI(mix_bits, i);
  2783. float v = parser.value_float();
  2784. NOLESS(v, 0.0);
  2785. mixing_factor[i] = RECIPROCAL(v);
  2786. }
  2787. }
  2788. // If any mixing factors were included, clear the rest
  2789. // If none were included, preserve the last mix
  2790. if (mix_bits) {
  2791. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2792. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2793. normalize_mix();
  2794. }
  2795. }
  2796. #endif
  2797. #endif
  2798. /**
  2799. * ***************************************************************************
  2800. * ***************************** G-CODE HANDLING *****************************
  2801. * ***************************************************************************
  2802. */
  2803. /**
  2804. * Set XYZE destination and feedrate from the current GCode command
  2805. *
  2806. * - Set destination from included axis codes
  2807. * - Set to current for missing axis codes
  2808. * - Set the feedrate, if included
  2809. */
  2810. void gcode_get_destination() {
  2811. LOOP_XYZE(i) {
  2812. if (parser.seen(axis_codes[i])) {
  2813. const float v = parser.value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2814. destination[i] = i == E_AXIS ? v : LOGICAL_TO_NATIVE(v, i);
  2815. }
  2816. else
  2817. destination[i] = current_position[i];
  2818. }
  2819. if (parser.linearval('F') > 0.0)
  2820. feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
  2821. #if ENABLED(PRINTCOUNTER)
  2822. if (!DEBUGGING(DRYRUN))
  2823. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2824. #endif
  2825. // Get ABCDHI mixing factors
  2826. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2827. gcode_get_mix();
  2828. #endif
  2829. }
  2830. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2831. /**
  2832. * Output a "busy" message at regular intervals
  2833. * while the machine is not accepting commands.
  2834. */
  2835. void host_keepalive() {
  2836. const millis_t ms = millis();
  2837. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2838. if (PENDING(ms, next_busy_signal_ms)) return;
  2839. switch (busy_state) {
  2840. case IN_HANDLER:
  2841. case IN_PROCESS:
  2842. SERIAL_ECHO_START();
  2843. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2844. break;
  2845. case PAUSED_FOR_USER:
  2846. SERIAL_ECHO_START();
  2847. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2848. break;
  2849. case PAUSED_FOR_INPUT:
  2850. SERIAL_ECHO_START();
  2851. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2852. break;
  2853. default:
  2854. break;
  2855. }
  2856. }
  2857. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2858. }
  2859. #endif // HOST_KEEPALIVE_FEATURE
  2860. /**************************************************
  2861. ***************** GCode Handlers *****************
  2862. **************************************************/
  2863. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2864. #define G0_G1_CONDITION !axis_unhomed_error(parser.seen('X'), parser.seen('Y'), parser.seen('Z'))
  2865. #else
  2866. #define G0_G1_CONDITION true
  2867. #endif
  2868. /**
  2869. * G0, G1: Coordinated movement of X Y Z E axes
  2870. */
  2871. inline void gcode_G0_G1(
  2872. #if IS_SCARA
  2873. bool fast_move=false
  2874. #endif
  2875. ) {
  2876. if (IsRunning() && G0_G1_CONDITION) {
  2877. gcode_get_destination(); // For X Y Z E F
  2878. #if ENABLED(FWRETRACT)
  2879. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  2880. // When M209 Autoretract is enabled, convert E-only moves to firmware retract/recover moves
  2881. if (autoretract_enabled && parser.seen('E') && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z'))) {
  2882. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2883. // Is this a retract or recover move?
  2884. if (WITHIN(FABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && retracted[active_extruder] == (echange > 0.0)) {
  2885. current_position[E_AXIS] = destination[E_AXIS]; // Hide a G1-based retract/recover from calculations
  2886. sync_plan_position_e(); // AND from the planner
  2887. return retract(echange < 0.0); // Firmware-based retract/recover (double-retract ignored)
  2888. }
  2889. }
  2890. }
  2891. #endif // FWRETRACT
  2892. #if IS_SCARA
  2893. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2894. #else
  2895. prepare_move_to_destination();
  2896. #endif
  2897. #if ENABLED(NANODLP_Z_SYNC)
  2898. // If G0/G1 command include Z-axis, wait for move and output sync text.
  2899. if (parser.seenval('Z')) {
  2900. stepper.synchronize();
  2901. SERIAL_ECHOLNPGM(MSG_Z_MOVE_COMP);
  2902. }
  2903. #endif
  2904. }
  2905. }
  2906. /**
  2907. * G2: Clockwise Arc
  2908. * G3: Counterclockwise Arc
  2909. *
  2910. * This command has two forms: IJ-form and R-form.
  2911. *
  2912. * - I specifies an X offset. J specifies a Y offset.
  2913. * At least one of the IJ parameters is required.
  2914. * X and Y can be omitted to do a complete circle.
  2915. * The given XY is not error-checked. The arc ends
  2916. * based on the angle of the destination.
  2917. * Mixing I or J with R will throw an error.
  2918. *
  2919. * - R specifies the radius. X or Y is required.
  2920. * Omitting both X and Y will throw an error.
  2921. * X or Y must differ from the current XY.
  2922. * Mixing R with I or J will throw an error.
  2923. *
  2924. * - P specifies the number of full circles to do
  2925. * before the specified arc move.
  2926. *
  2927. * Examples:
  2928. *
  2929. * G2 I10 ; CW circle centered at X+10
  2930. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2931. */
  2932. #if ENABLED(ARC_SUPPORT)
  2933. inline void gcode_G2_G3(const bool clockwise) {
  2934. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2935. if (axis_unhomed_error()) return;
  2936. #endif
  2937. if (IsRunning()) {
  2938. #if ENABLED(SF_ARC_FIX)
  2939. const bool relative_mode_backup = relative_mode;
  2940. relative_mode = true;
  2941. #endif
  2942. gcode_get_destination();
  2943. #if ENABLED(SF_ARC_FIX)
  2944. relative_mode = relative_mode_backup;
  2945. #endif
  2946. float arc_offset[2] = { 0.0, 0.0 };
  2947. if (parser.seenval('R')) {
  2948. const float r = parser.value_linear_units(),
  2949. p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
  2950. p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
  2951. if (r && (p2 != p1 || q2 != q1)) {
  2952. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2953. dx = p2 - p1, dy = q2 - q1, // X and Y differences
  2954. d = HYPOT(dx, dy), // Linear distance between the points
  2955. h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2956. mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
  2957. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2958. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2959. arc_offset[0] = cx - p1;
  2960. arc_offset[1] = cy - q1;
  2961. }
  2962. }
  2963. else {
  2964. if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
  2965. if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
  2966. }
  2967. if (arc_offset[0] || arc_offset[1]) {
  2968. #if ENABLED(ARC_P_CIRCLES)
  2969. // P indicates number of circles to do
  2970. int8_t circles_to_do = parser.byteval('P');
  2971. if (!WITHIN(circles_to_do, 0, 100)) {
  2972. SERIAL_ERROR_START();
  2973. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2974. }
  2975. while (circles_to_do--)
  2976. plan_arc(current_position, arc_offset, clockwise);
  2977. #endif
  2978. // Send the arc to the planner
  2979. plan_arc(destination, arc_offset, clockwise);
  2980. refresh_cmd_timeout();
  2981. }
  2982. else {
  2983. // Bad arguments
  2984. SERIAL_ERROR_START();
  2985. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2986. }
  2987. }
  2988. }
  2989. #endif // ARC_SUPPORT
  2990. void dwell(millis_t time) {
  2991. refresh_cmd_timeout();
  2992. time += previous_cmd_ms;
  2993. while (PENDING(millis(), time)) idle();
  2994. }
  2995. /**
  2996. * G4: Dwell S<seconds> or P<milliseconds>
  2997. */
  2998. inline void gcode_G4() {
  2999. millis_t dwell_ms = 0;
  3000. if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
  3001. if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
  3002. stepper.synchronize();
  3003. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  3004. dwell(dwell_ms);
  3005. }
  3006. #if ENABLED(BEZIER_CURVE_SUPPORT)
  3007. /**
  3008. * Parameters interpreted according to:
  3009. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  3010. * However I, J omission is not supported at this point; all
  3011. * parameters can be omitted and default to zero.
  3012. */
  3013. /**
  3014. * G5: Cubic B-spline
  3015. */
  3016. inline void gcode_G5() {
  3017. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  3018. if (axis_unhomed_error()) return;
  3019. #endif
  3020. if (IsRunning()) {
  3021. #if ENABLED(CNC_WORKSPACE_PLANES)
  3022. if (workspace_plane != PLANE_XY) {
  3023. SERIAL_ERROR_START();
  3024. SERIAL_ERRORLNPGM(MSG_ERR_BAD_PLANE_MODE);
  3025. return;
  3026. }
  3027. #endif
  3028. gcode_get_destination();
  3029. const float offset[] = {
  3030. parser.linearval('I'),
  3031. parser.linearval('J'),
  3032. parser.linearval('P'),
  3033. parser.linearval('Q')
  3034. };
  3035. plan_cubic_move(offset);
  3036. }
  3037. }
  3038. #endif // BEZIER_CURVE_SUPPORT
  3039. #if ENABLED(FWRETRACT)
  3040. /**
  3041. * G10 - Retract filament according to settings of M207
  3042. */
  3043. inline void gcode_G10() {
  3044. #if EXTRUDERS > 1
  3045. const bool rs = parser.boolval('S');
  3046. retracted_swap[active_extruder] = rs; // Use 'S' for swap, default to false
  3047. #endif
  3048. retract(true
  3049. #if EXTRUDERS > 1
  3050. , rs
  3051. #endif
  3052. );
  3053. }
  3054. /**
  3055. * G11 - Recover filament according to settings of M208
  3056. */
  3057. inline void gcode_G11() { retract(false); }
  3058. #endif // FWRETRACT
  3059. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  3060. /**
  3061. * G12: Clean the nozzle
  3062. */
  3063. inline void gcode_G12() {
  3064. // Don't allow nozzle cleaning without homing first
  3065. if (axis_unhomed_error()) return;
  3066. const uint8_t pattern = parser.ushortval('P', 0),
  3067. strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
  3068. objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
  3069. const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
  3070. Nozzle::clean(pattern, strokes, radius, objects);
  3071. }
  3072. #endif
  3073. #if ENABLED(CNC_WORKSPACE_PLANES)
  3074. inline void report_workspace_plane() {
  3075. SERIAL_ECHO_START();
  3076. SERIAL_ECHOPGM("Workspace Plane ");
  3077. serialprintPGM(
  3078. workspace_plane == PLANE_YZ ? PSTR("YZ\n") :
  3079. workspace_plane == PLANE_ZX ? PSTR("ZX\n") :
  3080. PSTR("XY\n")
  3081. );
  3082. }
  3083. inline void set_workspace_plane(const WorkspacePlane plane) {
  3084. workspace_plane = plane;
  3085. if (DEBUGGING(INFO)) report_workspace_plane();
  3086. }
  3087. /**
  3088. * G17: Select Plane XY
  3089. * G18: Select Plane ZX
  3090. * G19: Select Plane YZ
  3091. */
  3092. inline void gcode_G17() { set_workspace_plane(PLANE_XY); }
  3093. inline void gcode_G18() { set_workspace_plane(PLANE_ZX); }
  3094. inline void gcode_G19() { set_workspace_plane(PLANE_YZ); }
  3095. #endif // CNC_WORKSPACE_PLANES
  3096. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  3097. /**
  3098. * Select a coordinate system and update the workspace offset.
  3099. * System index -1 is used to specify machine-native.
  3100. */
  3101. bool select_coordinate_system(const int8_t _new) {
  3102. if (active_coordinate_system == _new) return false;
  3103. float old_offset[XYZ] = { 0 }, new_offset[XYZ] = { 0 };
  3104. if (WITHIN(active_coordinate_system, 0, MAX_COORDINATE_SYSTEMS - 1))
  3105. COPY(old_offset, coordinate_system[active_coordinate_system]);
  3106. if (WITHIN(_new, 0, MAX_COORDINATE_SYSTEMS - 1))
  3107. COPY(new_offset, coordinate_system[_new]);
  3108. active_coordinate_system = _new;
  3109. LOOP_XYZ(i) {
  3110. const float diff = new_offset[i] - old_offset[i];
  3111. if (diff) {
  3112. position_shift[i] += diff;
  3113. update_software_endstops((AxisEnum)i);
  3114. }
  3115. }
  3116. return true;
  3117. }
  3118. /**
  3119. * In CNC G-code G53 is like a modifier
  3120. * It precedes a movement command (or other modifiers) on the same line.
  3121. * This is the first command to use parser.chain() to make this possible.
  3122. */
  3123. inline void gcode_G53() {
  3124. // If this command has more following...
  3125. if (parser.chain()) {
  3126. const int8_t _system = active_coordinate_system;
  3127. active_coordinate_system = -1;
  3128. process_parsed_command();
  3129. active_coordinate_system = _system;
  3130. }
  3131. }
  3132. /**
  3133. * G54-G59.3: Select a new workspace
  3134. *
  3135. * A workspace is an XYZ offset to the machine native space.
  3136. * All workspaces default to 0,0,0 at start, or with EEPROM
  3137. * support they may be restored from a previous session.
  3138. *
  3139. * G92 is used to set the current workspace's offset.
  3140. */
  3141. inline void gcode_G54_59(uint8_t subcode=0) {
  3142. const int8_t _space = parser.codenum - 54 + subcode;
  3143. if (select_coordinate_system(_space)) {
  3144. SERIAL_PROTOCOLLNPAIR("Select workspace ", _space);
  3145. report_current_position();
  3146. }
  3147. }
  3148. FORCE_INLINE void gcode_G54() { gcode_G54_59(); }
  3149. FORCE_INLINE void gcode_G55() { gcode_G54_59(); }
  3150. FORCE_INLINE void gcode_G56() { gcode_G54_59(); }
  3151. FORCE_INLINE void gcode_G57() { gcode_G54_59(); }
  3152. FORCE_INLINE void gcode_G58() { gcode_G54_59(); }
  3153. FORCE_INLINE void gcode_G59() { gcode_G54_59(parser.subcode); }
  3154. #endif
  3155. #if ENABLED(INCH_MODE_SUPPORT)
  3156. /**
  3157. * G20: Set input mode to inches
  3158. */
  3159. inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
  3160. /**
  3161. * G21: Set input mode to millimeters
  3162. */
  3163. inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
  3164. #endif
  3165. #if ENABLED(NOZZLE_PARK_FEATURE)
  3166. /**
  3167. * G27: Park the nozzle
  3168. */
  3169. inline void gcode_G27() {
  3170. // Don't allow nozzle parking without homing first
  3171. if (axis_unhomed_error()) return;
  3172. Nozzle::park(parser.ushortval('P'));
  3173. }
  3174. #endif // NOZZLE_PARK_FEATURE
  3175. #if ENABLED(QUICK_HOME)
  3176. static void quick_home_xy() {
  3177. // Pretend the current position is 0,0
  3178. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3179. sync_plan_position();
  3180. const int x_axis_home_dir =
  3181. #if ENABLED(DUAL_X_CARRIAGE)
  3182. x_home_dir(active_extruder)
  3183. #else
  3184. home_dir(X_AXIS)
  3185. #endif
  3186. ;
  3187. const float mlx = max_length(X_AXIS),
  3188. mly = max_length(Y_AXIS),
  3189. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  3190. fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
  3191. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  3192. endstops.hit_on_purpose(); // clear endstop hit flags
  3193. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3194. }
  3195. #endif // QUICK_HOME
  3196. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3197. void log_machine_info() {
  3198. SERIAL_ECHOPGM("Machine Type: ");
  3199. #if ENABLED(DELTA)
  3200. SERIAL_ECHOLNPGM("Delta");
  3201. #elif IS_SCARA
  3202. SERIAL_ECHOLNPGM("SCARA");
  3203. #elif IS_CORE
  3204. SERIAL_ECHOLNPGM("Core");
  3205. #else
  3206. SERIAL_ECHOLNPGM("Cartesian");
  3207. #endif
  3208. SERIAL_ECHOPGM("Probe: ");
  3209. #if ENABLED(PROBE_MANUALLY)
  3210. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  3211. #elif ENABLED(FIX_MOUNTED_PROBE)
  3212. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  3213. #elif ENABLED(BLTOUCH)
  3214. SERIAL_ECHOLNPGM("BLTOUCH");
  3215. #elif HAS_Z_SERVO_ENDSTOP
  3216. SERIAL_ECHOLNPGM("SERVO PROBE");
  3217. #elif ENABLED(Z_PROBE_SLED)
  3218. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3219. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3220. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3221. #else
  3222. SERIAL_ECHOLNPGM("NONE");
  3223. #endif
  3224. #if HAS_BED_PROBE
  3225. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3226. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3227. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3228. #if X_PROBE_OFFSET_FROM_EXTRUDER > 0
  3229. SERIAL_ECHOPGM(" (Right");
  3230. #elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
  3231. SERIAL_ECHOPGM(" (Left");
  3232. #elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
  3233. SERIAL_ECHOPGM(" (Middle");
  3234. #else
  3235. SERIAL_ECHOPGM(" (Aligned With");
  3236. #endif
  3237. #if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
  3238. SERIAL_ECHOPGM("-Back");
  3239. #elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
  3240. SERIAL_ECHOPGM("-Front");
  3241. #elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
  3242. SERIAL_ECHOPGM("-Center");
  3243. #endif
  3244. if (zprobe_zoffset < 0)
  3245. SERIAL_ECHOPGM(" & Below");
  3246. else if (zprobe_zoffset > 0)
  3247. SERIAL_ECHOPGM(" & Above");
  3248. else
  3249. SERIAL_ECHOPGM(" & Same Z as");
  3250. SERIAL_ECHOLNPGM(" Nozzle)");
  3251. #endif
  3252. #if HAS_ABL
  3253. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3254. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3255. SERIAL_ECHOPGM("LINEAR");
  3256. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3257. SERIAL_ECHOPGM("BILINEAR");
  3258. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3259. SERIAL_ECHOPGM("3POINT");
  3260. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3261. SERIAL_ECHOPGM("UBL");
  3262. #endif
  3263. if (planner.leveling_active) {
  3264. SERIAL_ECHOLNPGM(" (enabled)");
  3265. #if ABL_PLANAR
  3266. const float diff[XYZ] = {
  3267. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3268. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3269. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3270. };
  3271. SERIAL_ECHOPGM("ABL Adjustment X");
  3272. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3273. SERIAL_ECHO(diff[X_AXIS]);
  3274. SERIAL_ECHOPGM(" Y");
  3275. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3276. SERIAL_ECHO(diff[Y_AXIS]);
  3277. SERIAL_ECHOPGM(" Z");
  3278. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3279. SERIAL_ECHO(diff[Z_AXIS]);
  3280. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3281. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3282. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3283. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3284. #endif
  3285. }
  3286. else
  3287. SERIAL_ECHOLNPGM(" (disabled)");
  3288. SERIAL_EOL();
  3289. #elif ENABLED(MESH_BED_LEVELING)
  3290. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3291. if (planner.leveling_active) {
  3292. float rz = current_position[Z_AXIS];
  3293. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], rz);
  3294. SERIAL_ECHOLNPGM(" (enabled)");
  3295. SERIAL_ECHOPAIR("MBL Adjustment Z", rz);
  3296. }
  3297. else
  3298. SERIAL_ECHOPGM(" (disabled)");
  3299. SERIAL_EOL();
  3300. #endif // MESH_BED_LEVELING
  3301. }
  3302. #endif // DEBUG_LEVELING_FEATURE
  3303. #if ENABLED(DELTA)
  3304. /**
  3305. * A delta can only safely home all axes at the same time
  3306. * This is like quick_home_xy() but for 3 towers.
  3307. */
  3308. inline bool home_delta() {
  3309. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3310. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3311. #endif
  3312. // Init the current position of all carriages to 0,0,0
  3313. ZERO(current_position);
  3314. sync_plan_position();
  3315. // Move all carriages together linearly until an endstop is hit.
  3316. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (delta_height + 10);
  3317. feedrate_mm_s = homing_feedrate(X_AXIS);
  3318. buffer_line_to_current_position();
  3319. stepper.synchronize();
  3320. // If an endstop was not hit, then damage can occur if homing is continued.
  3321. // This can occur if the delta height not set correctly.
  3322. if (!(Endstops::endstop_hit_bits & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)))) {
  3323. LCD_MESSAGEPGM(MSG_ERR_HOMING_FAILED);
  3324. SERIAL_ERROR_START();
  3325. SERIAL_ERRORLNPGM(MSG_ERR_HOMING_FAILED);
  3326. return false;
  3327. }
  3328. endstops.hit_on_purpose(); // clear endstop hit flags
  3329. // At least one carriage has reached the top.
  3330. // Now re-home each carriage separately.
  3331. HOMEAXIS(A);
  3332. HOMEAXIS(B);
  3333. HOMEAXIS(C);
  3334. // Set all carriages to their home positions
  3335. // Do this here all at once for Delta, because
  3336. // XYZ isn't ABC. Applying this per-tower would
  3337. // give the impression that they are the same.
  3338. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3339. SYNC_PLAN_POSITION_KINEMATIC();
  3340. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3341. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3342. #endif
  3343. return true;
  3344. }
  3345. #endif // DELTA
  3346. #if ENABLED(Z_SAFE_HOMING)
  3347. inline void home_z_safely() {
  3348. // Disallow Z homing if X or Y are unknown
  3349. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3350. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3351. SERIAL_ECHO_START();
  3352. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3353. return;
  3354. }
  3355. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3356. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3357. #endif
  3358. SYNC_PLAN_POSITION_KINEMATIC();
  3359. /**
  3360. * Move the Z probe (or just the nozzle) to the safe homing point
  3361. */
  3362. destination[X_AXIS] = Z_SAFE_HOMING_X_POINT;
  3363. destination[Y_AXIS] = Z_SAFE_HOMING_Y_POINT;
  3364. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3365. #if HOMING_Z_WITH_PROBE
  3366. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3367. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3368. #endif
  3369. if (position_is_reachable(destination[X_AXIS], destination[Y_AXIS])) {
  3370. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3371. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3372. #endif
  3373. // This causes the carriage on Dual X to unpark
  3374. #if ENABLED(DUAL_X_CARRIAGE)
  3375. active_extruder_parked = false;
  3376. #endif
  3377. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3378. HOMEAXIS(Z);
  3379. }
  3380. else {
  3381. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3382. SERIAL_ECHO_START();
  3383. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3384. }
  3385. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3386. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3387. #endif
  3388. }
  3389. #endif // Z_SAFE_HOMING
  3390. #if ENABLED(PROBE_MANUALLY)
  3391. bool g29_in_progress = false;
  3392. #else
  3393. constexpr bool g29_in_progress = false;
  3394. #endif
  3395. /**
  3396. * G28: Home all axes according to settings
  3397. *
  3398. * Parameters
  3399. *
  3400. * None Home to all axes with no parameters.
  3401. * With QUICK_HOME enabled XY will home together, then Z.
  3402. *
  3403. * Cartesian parameters
  3404. *
  3405. * X Home to the X endstop
  3406. * Y Home to the Y endstop
  3407. * Z Home to the Z endstop
  3408. *
  3409. */
  3410. inline void gcode_G28(const bool always_home_all) {
  3411. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3412. if (DEBUGGING(LEVELING)) {
  3413. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3414. log_machine_info();
  3415. }
  3416. #endif
  3417. // Wait for planner moves to finish!
  3418. stepper.synchronize();
  3419. // Cancel the active G29 session
  3420. #if ENABLED(PROBE_MANUALLY)
  3421. g29_in_progress = false;
  3422. #endif
  3423. // Disable the leveling matrix before homing
  3424. #if HAS_LEVELING
  3425. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3426. const bool ubl_state_at_entry = planner.leveling_active;
  3427. #endif
  3428. set_bed_leveling_enabled(false);
  3429. #endif
  3430. #if ENABLED(CNC_WORKSPACE_PLANES)
  3431. workspace_plane = PLANE_XY;
  3432. #endif
  3433. // Always home with tool 0 active
  3434. #if HOTENDS > 1
  3435. const uint8_t old_tool_index = active_extruder;
  3436. tool_change(0, 0, true);
  3437. #endif
  3438. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3439. extruder_duplication_enabled = false;
  3440. #endif
  3441. setup_for_endstop_or_probe_move();
  3442. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3443. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3444. #endif
  3445. endstops.enable(true); // Enable endstops for next homing move
  3446. #if ENABLED(DELTA)
  3447. home_delta();
  3448. UNUSED(always_home_all);
  3449. #else // NOT DELTA
  3450. const bool homeX = always_home_all || parser.seen('X'),
  3451. homeY = always_home_all || parser.seen('Y'),
  3452. homeZ = always_home_all || parser.seen('Z'),
  3453. home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3454. set_destination_from_current();
  3455. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3456. if (home_all || homeZ) {
  3457. HOMEAXIS(Z);
  3458. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3459. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3460. #endif
  3461. }
  3462. #endif
  3463. if (home_all || homeX || homeY) {
  3464. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3465. destination[Z_AXIS] = Z_HOMING_HEIGHT;
  3466. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3467. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3468. if (DEBUGGING(LEVELING))
  3469. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3470. #endif
  3471. do_blocking_move_to_z(destination[Z_AXIS]);
  3472. }
  3473. }
  3474. #if ENABLED(QUICK_HOME)
  3475. if (home_all || (homeX && homeY)) quick_home_xy();
  3476. #endif
  3477. #if ENABLED(HOME_Y_BEFORE_X)
  3478. // Home Y
  3479. if (home_all || homeY) {
  3480. HOMEAXIS(Y);
  3481. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3482. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3483. #endif
  3484. }
  3485. #endif
  3486. // Home X
  3487. if (home_all || homeX) {
  3488. #if ENABLED(DUAL_X_CARRIAGE)
  3489. // Always home the 2nd (right) extruder first
  3490. active_extruder = 1;
  3491. HOMEAXIS(X);
  3492. // Remember this extruder's position for later tool change
  3493. inactive_extruder_x_pos = current_position[X_AXIS];
  3494. // Home the 1st (left) extruder
  3495. active_extruder = 0;
  3496. HOMEAXIS(X);
  3497. // Consider the active extruder to be parked
  3498. COPY(raised_parked_position, current_position);
  3499. delayed_move_time = 0;
  3500. active_extruder_parked = true;
  3501. #else
  3502. HOMEAXIS(X);
  3503. #endif
  3504. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3505. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3506. #endif
  3507. }
  3508. #if DISABLED(HOME_Y_BEFORE_X)
  3509. // Home Y
  3510. if (home_all || homeY) {
  3511. HOMEAXIS(Y);
  3512. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3513. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3514. #endif
  3515. }
  3516. #endif
  3517. // Home Z last if homing towards the bed
  3518. #if Z_HOME_DIR < 0
  3519. if (home_all || homeZ) {
  3520. #if ENABLED(Z_SAFE_HOMING)
  3521. home_z_safely();
  3522. #else
  3523. HOMEAXIS(Z);
  3524. #endif
  3525. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3526. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position);
  3527. #endif
  3528. } // home_all || homeZ
  3529. #endif // Z_HOME_DIR < 0
  3530. SYNC_PLAN_POSITION_KINEMATIC();
  3531. #endif // !DELTA (gcode_G28)
  3532. endstops.not_homing();
  3533. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3534. // move to a height where we can use the full xy-area
  3535. do_blocking_move_to_z(delta_clip_start_height);
  3536. #endif
  3537. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3538. set_bed_leveling_enabled(ubl_state_at_entry);
  3539. #endif
  3540. clean_up_after_endstop_or_probe_move();
  3541. // Restore the active tool after homing
  3542. #if HOTENDS > 1
  3543. #if ENABLED(PARKING_EXTRUDER)
  3544. #define NO_FETCH false // fetch the previous toolhead
  3545. #else
  3546. #define NO_FETCH true
  3547. #endif
  3548. tool_change(old_tool_index, 0, NO_FETCH);
  3549. #endif
  3550. lcd_refresh();
  3551. report_current_position();
  3552. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3553. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3554. #endif
  3555. } // G28
  3556. void home_all_axes() { gcode_G28(true); }
  3557. #if HAS_PROBING_PROCEDURE
  3558. void out_of_range_error(const char* p_edge) {
  3559. SERIAL_PROTOCOLPGM("?Probe ");
  3560. serialprintPGM(p_edge);
  3561. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3562. }
  3563. #endif
  3564. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3565. #if ENABLED(LCD_BED_LEVELING)
  3566. extern bool lcd_wait_for_move;
  3567. #else
  3568. constexpr bool lcd_wait_for_move = false;
  3569. #endif
  3570. inline void _manual_goto_xy(const float &rx, const float &ry) {
  3571. #if MANUAL_PROBE_HEIGHT > 0
  3572. const float prev_z = current_position[Z_AXIS];
  3573. do_blocking_move_to(rx, ry, MANUAL_PROBE_HEIGHT);
  3574. do_blocking_move_to_z(prev_z);
  3575. #else
  3576. do_blocking_move_to_xy(rx, ry);
  3577. #endif
  3578. current_position[X_AXIS] = rx;
  3579. current_position[Y_AXIS] = ry;
  3580. #if ENABLED(LCD_BED_LEVELING)
  3581. lcd_wait_for_move = false;
  3582. #endif
  3583. }
  3584. #endif
  3585. #if ENABLED(MESH_BED_LEVELING)
  3586. // Save 130 bytes with non-duplication of PSTR
  3587. void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3588. void mbl_mesh_report() {
  3589. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3590. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3591. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3592. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3593. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3594. );
  3595. }
  3596. /**
  3597. * G29: Mesh-based Z probe, probes a grid and produces a
  3598. * mesh to compensate for variable bed height
  3599. *
  3600. * Parameters With MESH_BED_LEVELING:
  3601. *
  3602. * S0 Produce a mesh report
  3603. * S1 Start probing mesh points
  3604. * S2 Probe the next mesh point
  3605. * S3 Xn Yn Zn.nn Manually modify a single point
  3606. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3607. * S5 Reset and disable mesh
  3608. *
  3609. * The S0 report the points as below
  3610. *
  3611. * +----> X-axis 1-n
  3612. * |
  3613. * |
  3614. * v Y-axis 1-n
  3615. *
  3616. */
  3617. inline void gcode_G29() {
  3618. static int mbl_probe_index = -1;
  3619. #if HAS_SOFTWARE_ENDSTOPS
  3620. static bool enable_soft_endstops;
  3621. #endif
  3622. const MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
  3623. if (!WITHIN(state, 0, 5)) {
  3624. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3625. return;
  3626. }
  3627. int8_t px, py;
  3628. switch (state) {
  3629. case MeshReport:
  3630. if (leveling_is_valid()) {
  3631. SERIAL_PROTOCOLLNPAIR("State: ", planner.leveling_active ? MSG_ON : MSG_OFF);
  3632. mbl_mesh_report();
  3633. }
  3634. else
  3635. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3636. break;
  3637. case MeshStart:
  3638. mbl.reset();
  3639. mbl_probe_index = 0;
  3640. enqueue_and_echo_commands_P(lcd_wait_for_move ? PSTR("G29 S2") : PSTR("G28\nG29 S2"));
  3641. break;
  3642. case MeshNext:
  3643. if (mbl_probe_index < 0) {
  3644. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3645. return;
  3646. }
  3647. // For each G29 S2...
  3648. if (mbl_probe_index == 0) {
  3649. #if HAS_SOFTWARE_ENDSTOPS
  3650. // For the initial G29 S2 save software endstop state
  3651. enable_soft_endstops = soft_endstops_enabled;
  3652. #endif
  3653. }
  3654. else {
  3655. // For G29 S2 after adjusting Z.
  3656. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3657. #if HAS_SOFTWARE_ENDSTOPS
  3658. soft_endstops_enabled = enable_soft_endstops;
  3659. #endif
  3660. }
  3661. // If there's another point to sample, move there with optional lift.
  3662. if (mbl_probe_index < GRID_MAX_POINTS) {
  3663. mbl.zigzag(mbl_probe_index, px, py);
  3664. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3665. #if HAS_SOFTWARE_ENDSTOPS
  3666. // Disable software endstops to allow manual adjustment
  3667. // If G29 is not completed, they will not be re-enabled
  3668. soft_endstops_enabled = false;
  3669. #endif
  3670. mbl_probe_index++;
  3671. }
  3672. else {
  3673. // One last "return to the bed" (as originally coded) at completion
  3674. current_position[Z_AXIS] = Z_MIN_POS + MANUAL_PROBE_HEIGHT;
  3675. buffer_line_to_current_position();
  3676. stepper.synchronize();
  3677. // After recording the last point, activate home and activate
  3678. mbl_probe_index = -1;
  3679. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3680. BUZZ(100, 659);
  3681. BUZZ(100, 698);
  3682. mbl.has_mesh = true;
  3683. home_all_axes();
  3684. set_bed_leveling_enabled(true);
  3685. #if ENABLED(MESH_G28_REST_ORIGIN)
  3686. current_position[Z_AXIS] = Z_MIN_POS;
  3687. set_destination_from_current();
  3688. buffer_line_to_destination(homing_feedrate(Z_AXIS));
  3689. stepper.synchronize();
  3690. #endif
  3691. #if ENABLED(LCD_BED_LEVELING)
  3692. lcd_wait_for_move = false;
  3693. #endif
  3694. }
  3695. break;
  3696. case MeshSet:
  3697. if (parser.seenval('X')) {
  3698. px = parser.value_int() - 1;
  3699. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3700. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3701. return;
  3702. }
  3703. }
  3704. else {
  3705. SERIAL_CHAR('X'); echo_not_entered();
  3706. return;
  3707. }
  3708. if (parser.seenval('Y')) {
  3709. py = parser.value_int() - 1;
  3710. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3711. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3712. return;
  3713. }
  3714. }
  3715. else {
  3716. SERIAL_CHAR('Y'); echo_not_entered();
  3717. return;
  3718. }
  3719. if (parser.seenval('Z'))
  3720. mbl.z_values[px][py] = parser.value_linear_units();
  3721. else {
  3722. SERIAL_CHAR('Z'); echo_not_entered();
  3723. return;
  3724. }
  3725. break;
  3726. case MeshSetZOffset:
  3727. if (parser.seenval('Z'))
  3728. mbl.z_offset = parser.value_linear_units();
  3729. else {
  3730. SERIAL_CHAR('Z'); echo_not_entered();
  3731. return;
  3732. }
  3733. break;
  3734. case MeshReset:
  3735. reset_bed_level();
  3736. break;
  3737. } // switch(state)
  3738. if (state == MeshStart || state == MeshNext) {
  3739. SERIAL_PROTOCOLPAIR("MBL G29 point ", min(mbl_probe_index, GRID_MAX_POINTS));
  3740. SERIAL_PROTOCOLLNPAIR(" of ", int(GRID_MAX_POINTS));
  3741. }
  3742. report_current_position();
  3743. }
  3744. #elif OLDSCHOOL_ABL
  3745. #if ABL_GRID
  3746. #if ENABLED(PROBE_Y_FIRST)
  3747. #define PR_OUTER_VAR xCount
  3748. #define PR_OUTER_END abl_grid_points_x
  3749. #define PR_INNER_VAR yCount
  3750. #define PR_INNER_END abl_grid_points_y
  3751. #else
  3752. #define PR_OUTER_VAR yCount
  3753. #define PR_OUTER_END abl_grid_points_y
  3754. #define PR_INNER_VAR xCount
  3755. #define PR_INNER_END abl_grid_points_x
  3756. #endif
  3757. #endif
  3758. /**
  3759. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3760. * Will fail if the printer has not been homed with G28.
  3761. *
  3762. * Enhanced G29 Auto Bed Leveling Probe Routine
  3763. *
  3764. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3765. * or alter the bed level data. Useful to check the topology
  3766. * after a first run of G29.
  3767. *
  3768. * J Jettison current bed leveling data
  3769. *
  3770. * V Set the verbose level (0-4). Example: "G29 V3"
  3771. *
  3772. * Parameters With LINEAR leveling only:
  3773. *
  3774. * P Set the size of the grid that will be probed (P x P points).
  3775. * Example: "G29 P4"
  3776. *
  3777. * X Set the X size of the grid that will be probed (X x Y points).
  3778. * Example: "G29 X7 Y5"
  3779. *
  3780. * Y Set the Y size of the grid that will be probed (X x Y points).
  3781. *
  3782. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3783. * This is useful for manual bed leveling and finding flaws in the bed (to
  3784. * assist with part placement).
  3785. * Not supported by non-linear delta printer bed leveling.
  3786. *
  3787. * Parameters With LINEAR and BILINEAR leveling only:
  3788. *
  3789. * S Set the XY travel speed between probe points (in units/min)
  3790. *
  3791. * F Set the Front limit of the probing grid
  3792. * B Set the Back limit of the probing grid
  3793. * L Set the Left limit of the probing grid
  3794. * R Set the Right limit of the probing grid
  3795. *
  3796. * Parameters with DEBUG_LEVELING_FEATURE only:
  3797. *
  3798. * C Make a totally fake grid with no actual probing.
  3799. * For use in testing when no probing is possible.
  3800. *
  3801. * Parameters with BILINEAR leveling only:
  3802. *
  3803. * Z Supply an additional Z probe offset
  3804. *
  3805. * Extra parameters with PROBE_MANUALLY:
  3806. *
  3807. * To do manual probing simply repeat G29 until the procedure is complete.
  3808. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3809. *
  3810. * Q Query leveling and G29 state
  3811. *
  3812. * A Abort current leveling procedure
  3813. *
  3814. * Extra parameters with BILINEAR only:
  3815. *
  3816. * W Write a mesh point. (If G29 is idle.)
  3817. * I X index for mesh point
  3818. * J Y index for mesh point
  3819. * X X for mesh point, overrides I
  3820. * Y Y for mesh point, overrides J
  3821. * Z Z for mesh point. Otherwise, raw current Z.
  3822. *
  3823. * Without PROBE_MANUALLY:
  3824. *
  3825. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3826. * Include "E" to engage/disengage the Z probe for each sample.
  3827. * There's no extra effect if you have a fixed Z probe.
  3828. *
  3829. */
  3830. inline void gcode_G29() {
  3831. // G29 Q is also available if debugging
  3832. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3833. const bool query = parser.seen('Q');
  3834. const uint8_t old_debug_flags = marlin_debug_flags;
  3835. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3836. if (DEBUGGING(LEVELING)) {
  3837. DEBUG_POS(">>> gcode_G29", current_position);
  3838. log_machine_info();
  3839. }
  3840. marlin_debug_flags = old_debug_flags;
  3841. #if DISABLED(PROBE_MANUALLY)
  3842. if (query) return;
  3843. #endif
  3844. #endif
  3845. #if ENABLED(PROBE_MANUALLY)
  3846. const bool seenA = parser.seen('A'), seenQ = parser.seen('Q'), no_action = seenA || seenQ;
  3847. #endif
  3848. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3849. const bool faux = parser.boolval('C');
  3850. #elif ENABLED(PROBE_MANUALLY)
  3851. const bool faux = no_action;
  3852. #else
  3853. bool constexpr faux = false;
  3854. #endif
  3855. // Don't allow auto-leveling without homing first
  3856. if (axis_unhomed_error()) return;
  3857. // Define local vars 'static' for manual probing, 'auto' otherwise
  3858. #if ENABLED(PROBE_MANUALLY)
  3859. #define ABL_VAR static
  3860. #else
  3861. #define ABL_VAR
  3862. #endif
  3863. ABL_VAR int verbose_level;
  3864. ABL_VAR float xProbe, yProbe, measured_z;
  3865. ABL_VAR bool dryrun, abl_should_enable;
  3866. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3867. ABL_VAR int abl_probe_index;
  3868. #endif
  3869. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3870. ABL_VAR bool enable_soft_endstops = true;
  3871. #endif
  3872. #if ABL_GRID
  3873. #if ENABLED(PROBE_MANUALLY)
  3874. ABL_VAR uint8_t PR_OUTER_VAR;
  3875. ABL_VAR int8_t PR_INNER_VAR;
  3876. #endif
  3877. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3878. ABL_VAR float xGridSpacing = 0, yGridSpacing = 0;
  3879. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3880. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3881. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3882. ABL_VAR bool do_topography_map;
  3883. #else // Bilinear
  3884. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3885. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3886. #endif
  3887. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3888. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3889. ABL_VAR int abl2;
  3890. #else // Bilinear
  3891. int constexpr abl2 = GRID_MAX_POINTS;
  3892. #endif
  3893. #endif
  3894. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3895. ABL_VAR float zoffset;
  3896. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3897. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3898. ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
  3899. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  3900. mean;
  3901. #endif
  3902. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3903. int constexpr abl2 = 3;
  3904. // Probe at 3 arbitrary points
  3905. ABL_VAR vector_3 points[3] = {
  3906. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3907. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3908. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3909. };
  3910. #endif // AUTO_BED_LEVELING_3POINT
  3911. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3912. struct linear_fit_data lsf_results;
  3913. incremental_LSF_reset(&lsf_results);
  3914. #endif
  3915. /**
  3916. * On the initial G29 fetch command parameters.
  3917. */
  3918. if (!g29_in_progress) {
  3919. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3920. abl_probe_index = -1;
  3921. #endif
  3922. abl_should_enable = planner.leveling_active;
  3923. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3924. if (parser.seen('W')) {
  3925. if (!leveling_is_valid()) {
  3926. SERIAL_ERROR_START();
  3927. SERIAL_ERRORLNPGM("No bilinear grid");
  3928. return;
  3929. }
  3930. const float rz = parser.seenval('Z') ? RAW_Z_POSITION(parser.value_linear_units()) : current_position[Z_AXIS];
  3931. if (!WITHIN(rz, -10, 10)) {
  3932. SERIAL_ERROR_START();
  3933. SERIAL_ERRORLNPGM("Bad Z value");
  3934. return;
  3935. }
  3936. const float rx = RAW_X_POSITION(parser.linearval('X', NAN)),
  3937. ry = RAW_Y_POSITION(parser.linearval('Y', NAN));
  3938. int8_t i = parser.byteval('I', -1),
  3939. j = parser.byteval('J', -1);
  3940. if (!isnan(rx) && !isnan(ry)) {
  3941. // Get nearest i / j from x / y
  3942. i = (rx - bilinear_start[X_AXIS] + 0.5 * xGridSpacing) / xGridSpacing;
  3943. j = (ry - bilinear_start[Y_AXIS] + 0.5 * yGridSpacing) / yGridSpacing;
  3944. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3945. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3946. }
  3947. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3948. set_bed_leveling_enabled(false);
  3949. z_values[i][j] = rz;
  3950. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3951. bed_level_virt_interpolate();
  3952. #endif
  3953. set_bed_leveling_enabled(abl_should_enable);
  3954. report_current_position();
  3955. }
  3956. return;
  3957. } // parser.seen('W')
  3958. #endif
  3959. #if HAS_LEVELING
  3960. // Jettison bed leveling data
  3961. if (parser.seen('J')) {
  3962. reset_bed_level();
  3963. return;
  3964. }
  3965. #endif
  3966. verbose_level = parser.intval('V');
  3967. if (!WITHIN(verbose_level, 0, 4)) {
  3968. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  3969. return;
  3970. }
  3971. dryrun = parser.boolval('D')
  3972. #if ENABLED(PROBE_MANUALLY)
  3973. || no_action
  3974. #endif
  3975. ;
  3976. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3977. do_topography_map = verbose_level > 2 || parser.boolval('T');
  3978. // X and Y specify points in each direction, overriding the default
  3979. // These values may be saved with the completed mesh
  3980. abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);
  3981. abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);
  3982. if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
  3983. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3984. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3985. return;
  3986. }
  3987. abl2 = abl_grid_points_x * abl_grid_points_y;
  3988. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3989. zoffset = parser.linearval('Z');
  3990. #endif
  3991. #if ABL_GRID
  3992. xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
  3993. left_probe_bed_position = parser.seenval('L') ? (int)RAW_X_POSITION(parser.value_linear_units()) : LEFT_PROBE_BED_POSITION;
  3994. right_probe_bed_position = parser.seenval('R') ? (int)RAW_X_POSITION(parser.value_linear_units()) : RIGHT_PROBE_BED_POSITION;
  3995. front_probe_bed_position = parser.seenval('F') ? (int)RAW_Y_POSITION(parser.value_linear_units()) : FRONT_PROBE_BED_POSITION;
  3996. back_probe_bed_position = parser.seenval('B') ? (int)RAW_Y_POSITION(parser.value_linear_units()) : BACK_PROBE_BED_POSITION;
  3997. const bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  3998. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3999. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  4000. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  4001. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  4002. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  4003. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  4004. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  4005. if (left_out || right_out || front_out || back_out) {
  4006. if (left_out) {
  4007. out_of_range_error(PSTR("(L)eft"));
  4008. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  4009. }
  4010. if (right_out) {
  4011. out_of_range_error(PSTR("(R)ight"));
  4012. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  4013. }
  4014. if (front_out) {
  4015. out_of_range_error(PSTR("(F)ront"));
  4016. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  4017. }
  4018. if (back_out) {
  4019. out_of_range_error(PSTR("(B)ack"));
  4020. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  4021. }
  4022. return;
  4023. }
  4024. // probe at the points of a lattice grid
  4025. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  4026. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  4027. #endif // ABL_GRID
  4028. if (verbose_level > 0) {
  4029. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  4030. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  4031. }
  4032. stepper.synchronize();
  4033. // Disable auto bed leveling during G29
  4034. planner.leveling_active = false;
  4035. if (!dryrun) {
  4036. // Re-orient the current position without leveling
  4037. // based on where the steppers are positioned.
  4038. set_current_from_steppers_for_axis(ALL_AXES);
  4039. // Sync the planner to where the steppers stopped
  4040. SYNC_PLAN_POSITION_KINEMATIC();
  4041. }
  4042. #if HAS_BED_PROBE
  4043. // Deploy the probe. Probe will raise if needed.
  4044. if (DEPLOY_PROBE()) {
  4045. planner.leveling_active = abl_should_enable;
  4046. return;
  4047. }
  4048. #endif
  4049. if (!faux) setup_for_endstop_or_probe_move();
  4050. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4051. #if ENABLED(PROBE_MANUALLY)
  4052. if (!no_action)
  4053. #endif
  4054. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  4055. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  4056. || left_probe_bed_position != bilinear_start[X_AXIS]
  4057. || front_probe_bed_position != bilinear_start[Y_AXIS]
  4058. ) {
  4059. if (dryrun) {
  4060. // Before reset bed level, re-enable to correct the position
  4061. planner.leveling_active = abl_should_enable;
  4062. }
  4063. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  4064. reset_bed_level();
  4065. // Initialize a grid with the given dimensions
  4066. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  4067. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  4068. bilinear_start[X_AXIS] = left_probe_bed_position;
  4069. bilinear_start[Y_AXIS] = front_probe_bed_position;
  4070. // Can't re-enable (on error) until the new grid is written
  4071. abl_should_enable = false;
  4072. }
  4073. #endif // AUTO_BED_LEVELING_BILINEAR
  4074. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  4075. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4076. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  4077. #endif
  4078. // Probe at 3 arbitrary points
  4079. points[0].z = points[1].z = points[2].z = 0;
  4080. #endif // AUTO_BED_LEVELING_3POINT
  4081. } // !g29_in_progress
  4082. #if ENABLED(PROBE_MANUALLY)
  4083. // For manual probing, get the next index to probe now.
  4084. // On the first probe this will be incremented to 0.
  4085. if (!no_action) {
  4086. ++abl_probe_index;
  4087. g29_in_progress = true;
  4088. }
  4089. // Abort current G29 procedure, go back to idle state
  4090. if (seenA && g29_in_progress) {
  4091. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  4092. #if HAS_SOFTWARE_ENDSTOPS
  4093. soft_endstops_enabled = enable_soft_endstops;
  4094. #endif
  4095. planner.leveling_active = abl_should_enable;
  4096. g29_in_progress = false;
  4097. #if ENABLED(LCD_BED_LEVELING)
  4098. lcd_wait_for_move = false;
  4099. #endif
  4100. }
  4101. // Query G29 status
  4102. if (verbose_level || seenQ) {
  4103. SERIAL_PROTOCOLPGM("Manual G29 ");
  4104. if (g29_in_progress) {
  4105. SERIAL_PROTOCOLPAIR("point ", min(abl_probe_index + 1, abl2));
  4106. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  4107. }
  4108. else
  4109. SERIAL_PROTOCOLLNPGM("idle");
  4110. }
  4111. if (no_action) return;
  4112. if (abl_probe_index == 0) {
  4113. // For the initial G29 save software endstop state
  4114. #if HAS_SOFTWARE_ENDSTOPS
  4115. enable_soft_endstops = soft_endstops_enabled;
  4116. #endif
  4117. }
  4118. else {
  4119. // For G29 after adjusting Z.
  4120. // Save the previous Z before going to the next point
  4121. measured_z = current_position[Z_AXIS];
  4122. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4123. mean += measured_z;
  4124. eqnBVector[abl_probe_index] = measured_z;
  4125. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4126. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4127. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4128. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4129. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4130. z_values[xCount][yCount] = measured_z + zoffset;
  4131. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4132. if (DEBUGGING(LEVELING)) {
  4133. SERIAL_PROTOCOLPAIR("Save X", xCount);
  4134. SERIAL_PROTOCOLPAIR(" Y", yCount);
  4135. SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
  4136. }
  4137. #endif
  4138. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4139. points[abl_probe_index].z = measured_z;
  4140. #endif
  4141. }
  4142. //
  4143. // If there's another point to sample, move there with optional lift.
  4144. //
  4145. #if ABL_GRID
  4146. // Skip any unreachable points
  4147. while (abl_probe_index < abl2) {
  4148. // Set xCount, yCount based on abl_probe_index, with zig-zag
  4149. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  4150. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  4151. // Probe in reverse order for every other row/column
  4152. bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
  4153. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  4154. const float xBase = xCount * xGridSpacing + left_probe_bed_position,
  4155. yBase = yCount * yGridSpacing + front_probe_bed_position;
  4156. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4157. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4158. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4159. indexIntoAB[xCount][yCount] = abl_probe_index;
  4160. #endif
  4161. // Keep looping till a reachable point is found
  4162. if (position_is_reachable(xProbe, yProbe)) break;
  4163. ++abl_probe_index;
  4164. }
  4165. // Is there a next point to move to?
  4166. if (abl_probe_index < abl2) {
  4167. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  4168. #if HAS_SOFTWARE_ENDSTOPS
  4169. // Disable software endstops to allow manual adjustment
  4170. // If G29 is not completed, they will not be re-enabled
  4171. soft_endstops_enabled = false;
  4172. #endif
  4173. return;
  4174. }
  4175. else {
  4176. // Leveling done! Fall through to G29 finishing code below
  4177. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  4178. // Re-enable software endstops, if needed
  4179. #if HAS_SOFTWARE_ENDSTOPS
  4180. soft_endstops_enabled = enable_soft_endstops;
  4181. #endif
  4182. }
  4183. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4184. // Probe at 3 arbitrary points
  4185. if (abl_probe_index < 3) {
  4186. xProbe = points[abl_probe_index].x;
  4187. yProbe = points[abl_probe_index].y;
  4188. #if HAS_SOFTWARE_ENDSTOPS
  4189. // Disable software endstops to allow manual adjustment
  4190. // If G29 is not completed, they will not be re-enabled
  4191. soft_endstops_enabled = false;
  4192. #endif
  4193. return;
  4194. }
  4195. else {
  4196. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  4197. // Re-enable software endstops, if needed
  4198. #if HAS_SOFTWARE_ENDSTOPS
  4199. soft_endstops_enabled = enable_soft_endstops;
  4200. #endif
  4201. if (!dryrun) {
  4202. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4203. if (planeNormal.z < 0) {
  4204. planeNormal.x *= -1;
  4205. planeNormal.y *= -1;
  4206. planeNormal.z *= -1;
  4207. }
  4208. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4209. // Can't re-enable (on error) until the new grid is written
  4210. abl_should_enable = false;
  4211. }
  4212. }
  4213. #endif // AUTO_BED_LEVELING_3POINT
  4214. #else // !PROBE_MANUALLY
  4215. {
  4216. const bool stow_probe_after_each = parser.boolval('E');
  4217. #if ABL_GRID
  4218. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  4219. measured_z = 0;
  4220. // Outer loop is Y with PROBE_Y_FIRST disabled
  4221. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
  4222. int8_t inStart, inStop, inInc;
  4223. if (zig) { // away from origin
  4224. inStart = 0;
  4225. inStop = PR_INNER_END;
  4226. inInc = 1;
  4227. }
  4228. else { // towards origin
  4229. inStart = PR_INNER_END - 1;
  4230. inStop = -1;
  4231. inInc = -1;
  4232. }
  4233. zig ^= true; // zag
  4234. // Inner loop is Y with PROBE_Y_FIRST enabled
  4235. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  4236. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  4237. yBase = front_probe_bed_position + yGridSpacing * yCount;
  4238. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4239. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4240. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4241. indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
  4242. #endif
  4243. #if IS_KINEMATIC
  4244. // Avoid probing outside the round or hexagonal area
  4245. if (!position_is_reachable_by_probe(xProbe, yProbe)) continue;
  4246. #endif
  4247. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4248. if (isnan(measured_z)) {
  4249. planner.leveling_active = abl_should_enable;
  4250. break;
  4251. }
  4252. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4253. mean += measured_z;
  4254. eqnBVector[abl_probe_index] = measured_z;
  4255. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4256. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4257. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4258. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4259. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4260. z_values[xCount][yCount] = measured_z + zoffset;
  4261. #endif
  4262. abl_should_enable = false;
  4263. idle();
  4264. } // inner
  4265. } // outer
  4266. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4267. // Probe at 3 arbitrary points
  4268. for (uint8_t i = 0; i < 3; ++i) {
  4269. // Retain the last probe position
  4270. xProbe = points[i].x;
  4271. yProbe = points[i].y;
  4272. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4273. if (isnan(measured_z)) {
  4274. planner.leveling_active = abl_should_enable;
  4275. break;
  4276. }
  4277. points[i].z = measured_z;
  4278. }
  4279. if (!dryrun && !isnan(measured_z)) {
  4280. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4281. if (planeNormal.z < 0) {
  4282. planeNormal.x *= -1;
  4283. planeNormal.y *= -1;
  4284. planeNormal.z *= -1;
  4285. }
  4286. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4287. // Can't re-enable (on error) until the new grid is written
  4288. abl_should_enable = false;
  4289. }
  4290. #endif // AUTO_BED_LEVELING_3POINT
  4291. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4292. if (STOW_PROBE()) {
  4293. planner.leveling_active = abl_should_enable;
  4294. measured_z = NAN;
  4295. }
  4296. }
  4297. #endif // !PROBE_MANUALLY
  4298. //
  4299. // G29 Finishing Code
  4300. //
  4301. // Unless this is a dry run, auto bed leveling will
  4302. // definitely be enabled after this point.
  4303. //
  4304. // If code above wants to continue leveling, it should
  4305. // return or loop before this point.
  4306. //
  4307. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4308. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4309. #endif
  4310. #if ENABLED(PROBE_MANUALLY)
  4311. g29_in_progress = false;
  4312. #if ENABLED(LCD_BED_LEVELING)
  4313. lcd_wait_for_move = false;
  4314. #endif
  4315. #endif
  4316. // Calculate leveling, print reports, correct the position
  4317. if (!isnan(measured_z)) {
  4318. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4319. if (!dryrun) extrapolate_unprobed_bed_level();
  4320. print_bilinear_leveling_grid();
  4321. refresh_bed_level();
  4322. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4323. print_bilinear_leveling_grid_virt();
  4324. #endif
  4325. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4326. // For LINEAR leveling calculate matrix, print reports, correct the position
  4327. /**
  4328. * solve the plane equation ax + by + d = z
  4329. * A is the matrix with rows [x y 1] for all the probed points
  4330. * B is the vector of the Z positions
  4331. * the normal vector to the plane is formed by the coefficients of the
  4332. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4333. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4334. */
  4335. float plane_equation_coefficients[3];
  4336. finish_incremental_LSF(&lsf_results);
  4337. plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
  4338. plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.
  4339. plane_equation_coefficients[2] = -lsf_results.D;
  4340. mean /= abl2;
  4341. if (verbose_level) {
  4342. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4343. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4344. SERIAL_PROTOCOLPGM(" b: ");
  4345. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4346. SERIAL_PROTOCOLPGM(" d: ");
  4347. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4348. SERIAL_EOL();
  4349. if (verbose_level > 2) {
  4350. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4351. SERIAL_PROTOCOL_F(mean, 8);
  4352. SERIAL_EOL();
  4353. }
  4354. }
  4355. // Create the matrix but don't correct the position yet
  4356. if (!dryrun)
  4357. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4358. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
  4359. );
  4360. // Show the Topography map if enabled
  4361. if (do_topography_map) {
  4362. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4363. " +--- BACK --+\n"
  4364. " | |\n"
  4365. " L | (+) | R\n"
  4366. " E | | I\n"
  4367. " F | (-) N (+) | G\n"
  4368. " T | | H\n"
  4369. " | (-) | T\n"
  4370. " | |\n"
  4371. " O-- FRONT --+\n"
  4372. " (0,0)");
  4373. float min_diff = 999;
  4374. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4375. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4376. int ind = indexIntoAB[xx][yy];
  4377. float diff = eqnBVector[ind] - mean,
  4378. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4379. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4380. z_tmp = 0;
  4381. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4382. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4383. if (diff >= 0.0)
  4384. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4385. else
  4386. SERIAL_PROTOCOLCHAR(' ');
  4387. SERIAL_PROTOCOL_F(diff, 5);
  4388. } // xx
  4389. SERIAL_EOL();
  4390. } // yy
  4391. SERIAL_EOL();
  4392. if (verbose_level > 3) {
  4393. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4394. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4395. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4396. int ind = indexIntoAB[xx][yy];
  4397. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4398. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4399. z_tmp = 0;
  4400. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4401. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4402. if (diff >= 0.0)
  4403. SERIAL_PROTOCOLPGM(" +");
  4404. // Include + for column alignment
  4405. else
  4406. SERIAL_PROTOCOLCHAR(' ');
  4407. SERIAL_PROTOCOL_F(diff, 5);
  4408. } // xx
  4409. SERIAL_EOL();
  4410. } // yy
  4411. SERIAL_EOL();
  4412. }
  4413. } //do_topography_map
  4414. #endif // AUTO_BED_LEVELING_LINEAR
  4415. #if ABL_PLANAR
  4416. // For LINEAR and 3POINT leveling correct the current position
  4417. if (verbose_level > 0)
  4418. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  4419. if (!dryrun) {
  4420. //
  4421. // Correct the current XYZ position based on the tilted plane.
  4422. //
  4423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4424. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4425. #endif
  4426. float converted[XYZ];
  4427. COPY(converted, current_position);
  4428. planner.leveling_active = true;
  4429. planner.unapply_leveling(converted); // use conversion machinery
  4430. planner.leveling_active = false;
  4431. // Use the last measured distance to the bed, if possible
  4432. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4433. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4434. ) {
  4435. const float simple_z = current_position[Z_AXIS] - measured_z;
  4436. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4437. if (DEBUGGING(LEVELING)) {
  4438. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4439. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4440. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4441. }
  4442. #endif
  4443. converted[Z_AXIS] = simple_z;
  4444. }
  4445. // The rotated XY and corrected Z are now current_position
  4446. COPY(current_position, converted);
  4447. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4448. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4449. #endif
  4450. }
  4451. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4452. if (!dryrun) {
  4453. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4454. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4455. #endif
  4456. // Unapply the offset because it is going to be immediately applied
  4457. // and cause compensation movement in Z
  4458. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4459. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4460. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4461. #endif
  4462. }
  4463. #endif // ABL_PLANAR
  4464. #ifdef Z_PROBE_END_SCRIPT
  4465. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4466. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4467. #endif
  4468. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4469. stepper.synchronize();
  4470. #endif
  4471. // Auto Bed Leveling is complete! Enable if possible.
  4472. planner.leveling_active = dryrun ? abl_should_enable : true;
  4473. } // !isnan(measured_z)
  4474. // Restore state after probing
  4475. if (!faux) clean_up_after_endstop_or_probe_move();
  4476. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4477. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4478. #endif
  4479. report_current_position();
  4480. KEEPALIVE_STATE(IN_HANDLER);
  4481. if (planner.leveling_active)
  4482. SYNC_PLAN_POSITION_KINEMATIC();
  4483. }
  4484. #endif // OLDSCHOOL_ABL
  4485. #if HAS_BED_PROBE
  4486. /**
  4487. * G30: Do a single Z probe at the current XY
  4488. *
  4489. * Parameters:
  4490. *
  4491. * X Probe X position (default current X)
  4492. * Y Probe Y position (default current Y)
  4493. * E Engage the probe for each probe
  4494. */
  4495. inline void gcode_G30() {
  4496. const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
  4497. ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
  4498. if (!position_is_reachable_by_probe(xpos, ypos)) return;
  4499. // Disable leveling so the planner won't mess with us
  4500. #if HAS_LEVELING
  4501. set_bed_leveling_enabled(false);
  4502. #endif
  4503. setup_for_endstop_or_probe_move();
  4504. const float measured_z = probe_pt(xpos, ypos, parser.boolval('E'), 1);
  4505. if (!isnan(measured_z)) {
  4506. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4507. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4508. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4509. }
  4510. clean_up_after_endstop_or_probe_move();
  4511. report_current_position();
  4512. }
  4513. #if ENABLED(Z_PROBE_SLED)
  4514. /**
  4515. * G31: Deploy the Z probe
  4516. */
  4517. inline void gcode_G31() { DEPLOY_PROBE(); }
  4518. /**
  4519. * G32: Stow the Z probe
  4520. */
  4521. inline void gcode_G32() { STOW_PROBE(); }
  4522. #endif // Z_PROBE_SLED
  4523. #endif // HAS_BED_PROBE
  4524. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4525. constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
  4526. _4P_STEP = _7P_STEP * 2, // 4-point step
  4527. NPP = _7P_STEP * 6; // number of calibration points on the radius
  4528. enum CalEnum { // the 7 main calibration points - add definitions if needed
  4529. CEN = 0,
  4530. __A = 1,
  4531. _AB = __A + _7P_STEP,
  4532. __B = _AB + _7P_STEP,
  4533. _BC = __B + _7P_STEP,
  4534. __C = _BC + _7P_STEP,
  4535. _CA = __C + _7P_STEP,
  4536. };
  4537. #define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)
  4538. #define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N)
  4539. #define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
  4540. #define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
  4541. #define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
  4542. #define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
  4543. static void print_signed_float(const char * const prefix, const float &f) {
  4544. SERIAL_PROTOCOLPGM(" ");
  4545. serialprintPGM(prefix);
  4546. SERIAL_PROTOCOLCHAR(':');
  4547. if (f >= 0) SERIAL_CHAR('+');
  4548. SERIAL_PROTOCOL_F(f, 2);
  4549. }
  4550. static void print_G33_settings(const bool end_stops, const bool tower_angles) {
  4551. SERIAL_PROTOCOLPAIR(".Height:", delta_height);
  4552. if (end_stops) {
  4553. print_signed_float(PSTR("Ex"), delta_endstop_adj[A_AXIS]);
  4554. print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]);
  4555. print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]);
  4556. }
  4557. if (end_stops && tower_angles) {
  4558. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4559. SERIAL_EOL();
  4560. SERIAL_CHAR('.');
  4561. SERIAL_PROTOCOL_SP(13);
  4562. }
  4563. if (tower_angles) {
  4564. print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
  4565. print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
  4566. print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
  4567. }
  4568. if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
  4569. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4570. }
  4571. SERIAL_EOL();
  4572. }
  4573. static void print_G33_results(const float z_at_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
  4574. SERIAL_PROTOCOLPGM(". ");
  4575. print_signed_float(PSTR("c"), z_at_pt[CEN]);
  4576. if (tower_points) {
  4577. print_signed_float(PSTR(" x"), z_at_pt[__A]);
  4578. print_signed_float(PSTR(" y"), z_at_pt[__B]);
  4579. print_signed_float(PSTR(" z"), z_at_pt[__C]);
  4580. }
  4581. if (tower_points && opposite_points) {
  4582. SERIAL_EOL();
  4583. SERIAL_CHAR('.');
  4584. SERIAL_PROTOCOL_SP(13);
  4585. }
  4586. if (opposite_points) {
  4587. print_signed_float(PSTR("yz"), z_at_pt[_BC]);
  4588. print_signed_float(PSTR("zx"), z_at_pt[_CA]);
  4589. print_signed_float(PSTR("xy"), z_at_pt[_AB]);
  4590. }
  4591. SERIAL_EOL();
  4592. }
  4593. /**
  4594. * After G33:
  4595. * - Move to the print ceiling (DELTA_HOME_TO_SAFE_ZONE only)
  4596. * - Stow the probe
  4597. * - Restore endstops state
  4598. * - Select the old tool, if needed
  4599. */
  4600. static void G33_cleanup(
  4601. #if HOTENDS > 1
  4602. const uint8_t old_tool_index
  4603. #endif
  4604. ) {
  4605. #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  4606. do_blocking_move_to_z(delta_clip_start_height);
  4607. #endif
  4608. STOW_PROBE();
  4609. clean_up_after_endstop_or_probe_move();
  4610. #if HOTENDS > 1
  4611. tool_change(old_tool_index, 0, true);
  4612. #endif
  4613. }
  4614. inline float calibration_probe(const float nx, const float ny, const bool stow) {
  4615. #if HAS_BED_PROBE
  4616. return probe_pt(nx, ny, stow, 0, false);
  4617. #else
  4618. UNUSED(stow);
  4619. return lcd_probe_pt(nx, ny);
  4620. #endif
  4621. }
  4622. static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
  4623. const bool _0p_calibration = probe_points == 0,
  4624. _1p_calibration = probe_points == 1,
  4625. _4p_calibration = probe_points == 2,
  4626. _4p_opposite_points = _4p_calibration && !towers_set,
  4627. _7p_calibration = probe_points >= 3 || probe_points == 0,
  4628. _7p_no_intermediates = probe_points == 3,
  4629. _7p_1_intermediates = probe_points == 4,
  4630. _7p_2_intermediates = probe_points == 5,
  4631. _7p_4_intermediates = probe_points == 6,
  4632. _7p_6_intermediates = probe_points == 7,
  4633. _7p_8_intermediates = probe_points == 8,
  4634. _7p_11_intermediates = probe_points == 9,
  4635. _7p_14_intermediates = probe_points == 10,
  4636. _7p_intermed_points = probe_points >= 4,
  4637. _7p_6_centre = probe_points >= 5 && probe_points <= 7,
  4638. _7p_9_centre = probe_points >= 8;
  4639. LOOP_CAL_ALL(axis) z_at_pt[axis] = 0.0;
  4640. if (!_0p_calibration) {
  4641. if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
  4642. z_at_pt[CEN] += calibration_probe(0, 0, stow_after_each);
  4643. if (isnan(z_at_pt[CEN])) return NAN;
  4644. }
  4645. if (_7p_calibration) { // probe extra center points
  4646. const float start = _7p_9_centre ? _CA + _7P_STEP / 3.0 : _7p_6_centre ? _CA : __C,
  4647. steps = _7p_9_centre ? _4P_STEP / 3.0 : _7p_6_centre ? _7P_STEP : _4P_STEP;
  4648. I_LOOP_CAL_PT(axis, start, steps) {
  4649. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4650. r = delta_calibration_radius * 0.1;
  4651. z_at_pt[CEN] += calibration_probe(cos(a) * r, sin(a) * r, stow_after_each);
  4652. if (isnan(z_at_pt[CEN])) return NAN;
  4653. }
  4654. z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
  4655. }
  4656. if (!_1p_calibration) { // probe the radius
  4657. const CalEnum start = _4p_opposite_points ? _AB : __A;
  4658. const float steps = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100
  4659. _7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 + 9c = 81
  4660. _7p_8_intermediates ? _7P_STEP / 9.0 : // 9r * 6 + 10c = 64
  4661. _7p_6_intermediates ? _7P_STEP / 7.0 : // 7r * 6 + 7c = 49
  4662. _7p_4_intermediates ? _7P_STEP / 5.0 : // 5r * 6 + 6c = 36
  4663. _7p_2_intermediates ? _7P_STEP / 3.0 : // 3r * 6 + 7c = 25
  4664. _7p_1_intermediates ? _7P_STEP / 2.0 : // 2r * 6 + 4c = 16
  4665. _7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
  4666. _4P_STEP; // .5r * 6 + 1c = 4
  4667. bool zig_zag = true;
  4668. F_LOOP_CAL_PT(axis, start, _7p_9_centre ? steps * 3 : steps) {
  4669. const int8_t offset = _7p_9_centre ? 1 : 0;
  4670. for (int8_t circle = -offset; circle <= offset; circle++) {
  4671. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4672. r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)),
  4673. interpol = fmod(axis, 1);
  4674. const float z_temp = calibration_probe(cos(a) * r, sin(a) * r, stow_after_each);
  4675. if (isnan(z_temp)) return NAN;
  4676. // split probe point to neighbouring calibration points
  4677. z_at_pt[uint8_t(round(axis - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
  4678. z_at_pt[uint8_t(round(axis - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
  4679. }
  4680. zig_zag = !zig_zag;
  4681. }
  4682. if (_7p_intermed_points)
  4683. LOOP_CAL_RAD(axis)
  4684. z_at_pt[axis] /= _7P_STEP / steps;
  4685. }
  4686. float S1 = z_at_pt[CEN],
  4687. S2 = sq(z_at_pt[CEN]);
  4688. int16_t N = 1;
  4689. if (!_1p_calibration) { // std dev from zero plane
  4690. LOOP_CAL_ACT(axis, _4p_calibration, _4p_opposite_points) {
  4691. S1 += z_at_pt[axis];
  4692. S2 += sq(z_at_pt[axis]);
  4693. N++;
  4694. }
  4695. return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4696. }
  4697. }
  4698. return 0.00001;
  4699. }
  4700. #if HAS_BED_PROBE
  4701. static bool G33_auto_tune() {
  4702. float z_at_pt[NPP + 1] = { 0.0 },
  4703. z_at_pt_base[NPP + 1] = { 0.0 },
  4704. z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8;
  4705. #define ZP(N,I) ((N) * z_at_pt[I])
  4706. #define Z06(I) ZP(6, I)
  4707. #define Z03(I) ZP(3, I)
  4708. #define Z02(I) ZP(2, I)
  4709. #define Z01(I) ZP(1, I)
  4710. #define Z32(I) ZP(3/2, I)
  4711. SERIAL_PROTOCOLPGM("AUTO TUNE baseline");
  4712. SERIAL_EOL();
  4713. if (isnan(probe_G33_points(z_at_pt_base, 3, true, false))) return false;
  4714. print_G33_results(z_at_pt_base, true, true);
  4715. LOOP_XYZ(axis) {
  4716. delta_endstop_adj[axis] -= 1.0;
  4717. recalc_delta_settings();
  4718. endstops.enable(true);
  4719. if (!home_delta()) return false;
  4720. endstops.not_homing();
  4721. SERIAL_PROTOCOLPGM("Tuning E");
  4722. SERIAL_CHAR(tolower(axis_codes[axis]));
  4723. SERIAL_EOL();
  4724. if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
  4725. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4726. print_G33_results(z_at_pt, true, true);
  4727. delta_endstop_adj[axis] += 1.0;
  4728. recalc_delta_settings();
  4729. switch (axis) {
  4730. case A_AXIS :
  4731. h_fac += 4.0 / (Z03(CEN) +Z01(__A) +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop
  4732. break;
  4733. case B_AXIS :
  4734. h_fac += 4.0 / (Z03(CEN) +Z01(__B) +Z32(_BC) +Z32(_AB)); // Offset by Y-tower end-stop
  4735. break;
  4736. case C_AXIS :
  4737. h_fac += 4.0 / (Z03(CEN) +Z01(__C) +Z32(_BC) +Z32(_CA) ); // Offset by Z-tower end-stop
  4738. break;
  4739. }
  4740. }
  4741. h_fac /= 3.0;
  4742. h_fac *= norm; // Normalize to 1.02 for Kossel mini
  4743. for (int8_t zig_zag = -1; zig_zag < 2; zig_zag += 2) {
  4744. delta_radius += 1.0 * zig_zag;
  4745. recalc_delta_settings();
  4746. endstops.enable(true);
  4747. if (!home_delta()) return false;
  4748. endstops.not_homing();
  4749. SERIAL_PROTOCOLPGM("Tuning R");
  4750. SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+");
  4751. SERIAL_EOL();
  4752. if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
  4753. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4754. print_G33_results(z_at_pt, true, true);
  4755. delta_radius -= 1.0 * zig_zag;
  4756. recalc_delta_settings();
  4757. r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius
  4758. }
  4759. r_fac /= 2.0;
  4760. r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini
  4761. LOOP_XYZ(axis) {
  4762. delta_tower_angle_trim[axis] += 1.0;
  4763. delta_endstop_adj[(axis + 1) % 3] -= 1.0 / 4.5;
  4764. delta_endstop_adj[(axis + 2) % 3] += 1.0 / 4.5;
  4765. z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  4766. delta_height -= z_temp;
  4767. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  4768. recalc_delta_settings();
  4769. endstops.enable(true);
  4770. if (!home_delta()) return false;
  4771. endstops.not_homing();
  4772. SERIAL_PROTOCOLPGM("Tuning T");
  4773. SERIAL_CHAR(tolower(axis_codes[axis]));
  4774. SERIAL_EOL();
  4775. if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
  4776. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4777. print_G33_results(z_at_pt, true, true);
  4778. delta_tower_angle_trim[axis] -= 1.0;
  4779. delta_endstop_adj[(axis+1) % 3] += 1.0/4.5;
  4780. delta_endstop_adj[(axis+2) % 3] -= 1.0/4.5;
  4781. z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  4782. delta_height -= z_temp;
  4783. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  4784. recalc_delta_settings();
  4785. switch (axis) {
  4786. case A_AXIS :
  4787. a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle
  4788. break;
  4789. case B_AXIS :
  4790. a_fac += 4.0 / (-Z06(__A) +Z06(__C) -Z06(_BC) +Z06(_AB)); // Offset by beta tower angle
  4791. break;
  4792. case C_AXIS :
  4793. a_fac += 4.0 / (Z06(__A) -Z06(__B) +Z06(_BC) -Z06(_CA) ); // Offset by gamma tower angle
  4794. break;
  4795. }
  4796. }
  4797. a_fac /= 3.0;
  4798. a_fac *= norm; // Normalize to 0.83 for Kossel mini
  4799. endstops.enable(true);
  4800. if (!home_delta()) return false;
  4801. endstops.not_homing();
  4802. print_signed_float(PSTR( "H_FACTOR: "), h_fac);
  4803. print_signed_float(PSTR(" R_FACTOR: "), r_fac);
  4804. print_signed_float(PSTR(" A_FACTOR: "), a_fac);
  4805. SERIAL_EOL();
  4806. SERIAL_PROTOCOLPGM("Copy these values to Configuration.h");
  4807. SERIAL_EOL();
  4808. return true;
  4809. }
  4810. #endif // HAS_BED_PROBE
  4811. /**
  4812. * G33 - Delta '1-4-7-point' Auto-Calibration
  4813. * Calibrate height, endstops, delta radius, and tower angles.
  4814. *
  4815. * Parameters:
  4816. *
  4817. * Pn Number of probe points:
  4818. * P0 No probe. Normalize only.
  4819. * P1 Probe center and set height only.
  4820. * P2 Probe center and towers. Set height, endstops and delta radius.
  4821. * P3 Probe all positions: center, towers and opposite towers. Set all.
  4822. * P4-P10 Probe all positions + at different itermediate locations and average them.
  4823. *
  4824. * T Don't calibrate tower angle corrections
  4825. *
  4826. * Cn.nn Calibration precision; when omitted calibrates to maximum precision
  4827. *
  4828. * Fn Force to run at least n iterations and takes the best result
  4829. *
  4830. * A Auto tune calibartion factors (set in Configuration.h)
  4831. *
  4832. * Vn Verbose level:
  4833. * V0 Dry-run mode. Report settings and probe results. No calibration.
  4834. * V1 Report start and end settings only
  4835. * V2 Report settings at each iteration
  4836. * V3 Report settings and probe results
  4837. *
  4838. * E Engage the probe for each point
  4839. */
  4840. inline void gcode_G33() {
  4841. const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
  4842. if (!WITHIN(probe_points, 0, 10)) {
  4843. SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-10).");
  4844. return;
  4845. }
  4846. const int8_t verbose_level = parser.byteval('V', 1);
  4847. if (!WITHIN(verbose_level, 0, 3)) {
  4848. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-3).");
  4849. return;
  4850. }
  4851. const float calibration_precision = parser.floatval('C', 0.0);
  4852. if (calibration_precision < 0) {
  4853. SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0).");
  4854. return;
  4855. }
  4856. const int8_t force_iterations = parser.intval('F', 0);
  4857. if (!WITHIN(force_iterations, 0, 30)) {
  4858. SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
  4859. return;
  4860. }
  4861. const bool towers_set = !parser.boolval('T'),
  4862. auto_tune = parser.boolval('A'),
  4863. stow_after_each = parser.boolval('E'),
  4864. _0p_calibration = probe_points == 0,
  4865. _1p_calibration = probe_points == 1,
  4866. _4p_calibration = probe_points == 2,
  4867. _7p_9_centre = probe_points >= 8,
  4868. _tower_results = (_4p_calibration && towers_set)
  4869. || probe_points >= 3 || probe_points == 0,
  4870. _opposite_results = (_4p_calibration && !towers_set)
  4871. || probe_points >= 3 || probe_points == 0,
  4872. _endstop_results = probe_points != 1,
  4873. _angle_results = (probe_points >= 3 || probe_points == 0) && towers_set;
  4874. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4875. int8_t iterations = 0;
  4876. float test_precision,
  4877. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4878. zero_std_dev_min = zero_std_dev,
  4879. e_old[ABC] = {
  4880. delta_endstop_adj[A_AXIS],
  4881. delta_endstop_adj[B_AXIS],
  4882. delta_endstop_adj[C_AXIS]
  4883. },
  4884. dr_old = delta_radius,
  4885. zh_old = delta_height,
  4886. ta_old[ABC] = {
  4887. delta_tower_angle_trim[A_AXIS],
  4888. delta_tower_angle_trim[B_AXIS],
  4889. delta_tower_angle_trim[C_AXIS]
  4890. };
  4891. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4892. if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
  4893. LOOP_CAL_RAD(axis) {
  4894. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4895. r = delta_calibration_radius * (1 + (_7p_9_centre ? 0.1 : 0.0));
  4896. if (!position_is_reachable(cos(a) * r, sin(a) * r)) {
  4897. SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
  4898. return;
  4899. }
  4900. }
  4901. }
  4902. stepper.synchronize();
  4903. #if HAS_LEVELING
  4904. reset_bed_level(); // After calibration bed-level data is no longer valid
  4905. #endif
  4906. #if HOTENDS > 1
  4907. const uint8_t old_tool_index = active_extruder;
  4908. tool_change(0, 0, true);
  4909. #define G33_CLEANUP() G33_cleanup(old_tool_index)
  4910. #else
  4911. #define G33_CLEANUP() G33_cleanup()
  4912. #endif
  4913. setup_for_endstop_or_probe_move();
  4914. endstops.enable(true);
  4915. if (!_0p_calibration) {
  4916. if (!home_delta())
  4917. return;
  4918. endstops.not_homing();
  4919. }
  4920. if (auto_tune) {
  4921. #if HAS_BED_PROBE
  4922. G33_auto_tune();
  4923. #else
  4924. SERIAL_PROTOCOLLNPGM("A probe is needed for auto-tune");
  4925. #endif
  4926. G33_CLEANUP();
  4927. return;
  4928. }
  4929. // Report settings
  4930. const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
  4931. serialprintPGM(checkingac);
  4932. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4933. SERIAL_EOL();
  4934. lcd_setstatusPGM(checkingac);
  4935. print_G33_settings(_endstop_results, _angle_results);
  4936. do {
  4937. float z_at_pt[NPP + 1] = { 0.0 };
  4938. test_precision = zero_std_dev;
  4939. iterations++;
  4940. // Probe the points
  4941. zero_std_dev = probe_G33_points(z_at_pt, probe_points, towers_set, stow_after_each);
  4942. if (isnan(zero_std_dev)) {
  4943. SERIAL_PROTOCOLPGM("Correct delta_radius with M665 R or end-stops with M666 X Y Z");
  4944. SERIAL_EOL();
  4945. return G33_CLEANUP();
  4946. }
  4947. // Solve matrices
  4948. if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
  4949. if (zero_std_dev < zero_std_dev_min) {
  4950. COPY(e_old, delta_endstop_adj);
  4951. dr_old = delta_radius;
  4952. zh_old = delta_height;
  4953. COPY(ta_old, delta_tower_angle_trim);
  4954. }
  4955. float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
  4956. const float r_diff = delta_radius - delta_calibration_radius,
  4957. h_factor = 1 / 6.0 *
  4958. #ifdef H_FACTOR
  4959. (H_FACTOR), // Set in Configuration.h
  4960. #else
  4961. (1.00 + r_diff * 0.001), // 1.02 for r_diff = 20mm
  4962. #endif
  4963. r_factor = 1 / 6.0 *
  4964. #ifdef R_FACTOR
  4965. -(R_FACTOR), // Set in Configuration.h
  4966. #else
  4967. -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), // 2.25 for r_diff = 20mm
  4968. #endif
  4969. a_factor = 1 / 6.0 *
  4970. #ifdef A_FACTOR
  4971. (A_FACTOR); // Set in Configuration.h
  4972. #else
  4973. (66.66 / delta_calibration_radius); // 0.83 for cal_rd = 80mm
  4974. #endif
  4975. #define ZP(N,I) ((N) * z_at_pt[I])
  4976. #define Z6(I) ZP(6, I)
  4977. #define Z4(I) ZP(4, I)
  4978. #define Z2(I) ZP(2, I)
  4979. #define Z1(I) ZP(1, I)
  4980. #if !HAS_BED_PROBE
  4981. test_precision = 0.00; // forced end
  4982. #endif
  4983. switch (probe_points) {
  4984. case 0:
  4985. test_precision = 0.00; // forced end
  4986. break;
  4987. case 1:
  4988. test_precision = 0.00; // forced end
  4989. LOOP_XYZ(axis) e_delta[axis] = Z1(CEN);
  4990. break;
  4991. case 2:
  4992. if (towers_set) {
  4993. e_delta[A_AXIS] = (Z6(CEN) +Z4(__A) -Z2(__B) -Z2(__C)) * h_factor;
  4994. e_delta[B_AXIS] = (Z6(CEN) -Z2(__A) +Z4(__B) -Z2(__C)) * h_factor;
  4995. e_delta[C_AXIS] = (Z6(CEN) -Z2(__A) -Z2(__B) +Z4(__C)) * h_factor;
  4996. r_delta = (Z6(CEN) -Z2(__A) -Z2(__B) -Z2(__C)) * r_factor;
  4997. }
  4998. else {
  4999. e_delta[A_AXIS] = (Z6(CEN) -Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor;
  5000. e_delta[B_AXIS] = (Z6(CEN) +Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor;
  5001. e_delta[C_AXIS] = (Z6(CEN) +Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor;
  5002. r_delta = (Z6(CEN) -Z2(_BC) -Z2(_CA) -Z2(_AB)) * r_factor;
  5003. }
  5004. break;
  5005. default:
  5006. e_delta[A_AXIS] = (Z6(CEN) +Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor;
  5007. e_delta[B_AXIS] = (Z6(CEN) -Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor;
  5008. e_delta[C_AXIS] = (Z6(CEN) -Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor;
  5009. r_delta = (Z6(CEN) -Z1(__A) -Z1(__B) -Z1(__C) -Z1(_BC) -Z1(_CA) -Z1(_AB)) * r_factor;
  5010. if (towers_set) {
  5011. t_delta[A_AXIS] = ( -Z4(__B) +Z4(__C) -Z4(_CA) +Z4(_AB)) * a_factor;
  5012. t_delta[B_AXIS] = ( Z4(__A) -Z4(__C) +Z4(_BC) -Z4(_AB)) * a_factor;
  5013. t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) -Z4(_BC) +Z4(_CA) ) * a_factor;
  5014. e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
  5015. e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
  5016. e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;
  5017. }
  5018. break;
  5019. }
  5020. LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis];
  5021. delta_radius += r_delta;
  5022. LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
  5023. }
  5024. else if (zero_std_dev >= test_precision) { // step one back
  5025. COPY(delta_endstop_adj, e_old);
  5026. delta_radius = dr_old;
  5027. delta_height = zh_old;
  5028. COPY(delta_tower_angle_trim, ta_old);
  5029. }
  5030. if (verbose_level != 0) { // !dry run
  5031. // normalise angles to least squares
  5032. if (_angle_results) {
  5033. float a_sum = 0.0;
  5034. LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
  5035. LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
  5036. }
  5037. // adjust delta_height and endstops by the max amount
  5038. const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  5039. delta_height -= z_temp;
  5040. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  5041. }
  5042. recalc_delta_settings();
  5043. NOMORE(zero_std_dev_min, zero_std_dev);
  5044. // print report
  5045. if (verbose_level > 2)
  5046. print_G33_results(z_at_pt, _tower_results, _opposite_results);
  5047. if (verbose_level != 0) { // !dry run
  5048. if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
  5049. SERIAL_PROTOCOLPGM("Calibration OK");
  5050. SERIAL_PROTOCOL_SP(32);
  5051. #if HAS_BED_PROBE
  5052. if (zero_std_dev >= test_precision && !_1p_calibration)
  5053. SERIAL_PROTOCOLPGM("rolling back.");
  5054. else
  5055. #endif
  5056. {
  5057. SERIAL_PROTOCOLPGM("std dev:");
  5058. SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
  5059. }
  5060. SERIAL_EOL();
  5061. char mess[21];
  5062. strcpy_P(mess, PSTR("Calibration sd:"));
  5063. if (zero_std_dev_min < 1)
  5064. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
  5065. else
  5066. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
  5067. lcd_setstatus(mess);
  5068. print_G33_settings(_endstop_results, _angle_results);
  5069. serialprintPGM(save_message);
  5070. SERIAL_EOL();
  5071. }
  5072. else { // !end iterations
  5073. char mess[15];
  5074. if (iterations < 31)
  5075. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  5076. else
  5077. strcpy_P(mess, PSTR("No convergence"));
  5078. SERIAL_PROTOCOL(mess);
  5079. SERIAL_PROTOCOL_SP(32);
  5080. SERIAL_PROTOCOLPGM("std dev:");
  5081. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  5082. SERIAL_EOL();
  5083. lcd_setstatus(mess);
  5084. if (verbose_level > 1)
  5085. print_G33_settings(_endstop_results, _angle_results);
  5086. }
  5087. }
  5088. else { // dry run
  5089. const char *enddryrun = PSTR("End DRY-RUN");
  5090. serialprintPGM(enddryrun);
  5091. SERIAL_PROTOCOL_SP(35);
  5092. SERIAL_PROTOCOLPGM("std dev:");
  5093. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  5094. SERIAL_EOL();
  5095. char mess[21];
  5096. strcpy_P(mess, enddryrun);
  5097. strcpy_P(&mess[11], PSTR(" sd:"));
  5098. if (zero_std_dev < 1)
  5099. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
  5100. else
  5101. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
  5102. lcd_setstatus(mess);
  5103. }
  5104. endstops.enable(true);
  5105. if (!home_delta())
  5106. return;
  5107. endstops.not_homing();
  5108. }
  5109. while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
  5110. G33_CLEANUP();
  5111. }
  5112. #endif // DELTA_AUTO_CALIBRATION
  5113. #if ENABLED(G38_PROBE_TARGET)
  5114. static bool G38_run_probe() {
  5115. bool G38_pass_fail = false;
  5116. #if MULTIPLE_PROBING > 1
  5117. // Get direction of move and retract
  5118. float retract_mm[XYZ];
  5119. LOOP_XYZ(i) {
  5120. float dist = destination[i] - current_position[i];
  5121. retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  5122. }
  5123. #endif
  5124. stepper.synchronize(); // wait until the machine is idle
  5125. // Move until destination reached or target hit
  5126. endstops.enable(true);
  5127. G38_move = true;
  5128. G38_endstop_hit = false;
  5129. prepare_move_to_destination();
  5130. stepper.synchronize();
  5131. G38_move = false;
  5132. endstops.hit_on_purpose();
  5133. set_current_from_steppers_for_axis(ALL_AXES);
  5134. SYNC_PLAN_POSITION_KINEMATIC();
  5135. if (G38_endstop_hit) {
  5136. G38_pass_fail = true;
  5137. #if MULTIPLE_PROBING > 1
  5138. // Move away by the retract distance
  5139. set_destination_from_current();
  5140. LOOP_XYZ(i) destination[i] += retract_mm[i];
  5141. endstops.enable(false);
  5142. prepare_move_to_destination();
  5143. stepper.synchronize();
  5144. feedrate_mm_s /= 4;
  5145. // Bump the target more slowly
  5146. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  5147. endstops.enable(true);
  5148. G38_move = true;
  5149. prepare_move_to_destination();
  5150. stepper.synchronize();
  5151. G38_move = false;
  5152. set_current_from_steppers_for_axis(ALL_AXES);
  5153. SYNC_PLAN_POSITION_KINEMATIC();
  5154. #endif
  5155. }
  5156. endstops.hit_on_purpose();
  5157. endstops.not_homing();
  5158. return G38_pass_fail;
  5159. }
  5160. /**
  5161. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  5162. * G38.3 - probe toward workpiece, stop on contact
  5163. *
  5164. * Like G28 except uses Z min probe for all axes
  5165. */
  5166. inline void gcode_G38(bool is_38_2) {
  5167. // Get X Y Z E F
  5168. gcode_get_destination();
  5169. setup_for_endstop_or_probe_move();
  5170. // If any axis has enough movement, do the move
  5171. LOOP_XYZ(i)
  5172. if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  5173. if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate((AxisEnum)i);
  5174. // If G38.2 fails throw an error
  5175. if (!G38_run_probe() && is_38_2) {
  5176. SERIAL_ERROR_START();
  5177. SERIAL_ERRORLNPGM("Failed to reach target");
  5178. }
  5179. break;
  5180. }
  5181. clean_up_after_endstop_or_probe_move();
  5182. }
  5183. #endif // G38_PROBE_TARGET
  5184. #if HAS_MESH
  5185. /**
  5186. * G42: Move X & Y axes to mesh coordinates (I & J)
  5187. */
  5188. inline void gcode_G42() {
  5189. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  5190. if (axis_unhomed_error()) return;
  5191. #endif
  5192. if (IsRunning()) {
  5193. const bool hasI = parser.seenval('I');
  5194. const int8_t ix = hasI ? parser.value_int() : 0;
  5195. const bool hasJ = parser.seenval('J');
  5196. const int8_t iy = hasJ ? parser.value_int() : 0;
  5197. if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
  5198. SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
  5199. return;
  5200. }
  5201. set_destination_from_current();
  5202. if (hasI) destination[X_AXIS] = _GET_MESH_X(ix);
  5203. if (hasJ) destination[Y_AXIS] = _GET_MESH_Y(iy);
  5204. if (parser.boolval('P')) {
  5205. if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  5206. if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  5207. }
  5208. const float fval = parser.linearval('F');
  5209. if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);
  5210. // SCARA kinematic has "safe" XY raw moves
  5211. #if IS_SCARA
  5212. prepare_uninterpolated_move_to_destination();
  5213. #else
  5214. prepare_move_to_destination();
  5215. #endif
  5216. }
  5217. }
  5218. #endif // HAS_MESH
  5219. /**
  5220. * G92: Set current position to given X Y Z E
  5221. */
  5222. inline void gcode_G92() {
  5223. stepper.synchronize();
  5224. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  5225. switch (parser.subcode) {
  5226. case 1:
  5227. // Zero the G92 values and restore current position
  5228. #if !IS_SCARA
  5229. LOOP_XYZ(i) {
  5230. const float v = position_shift[i];
  5231. if (v) {
  5232. position_shift[i] = 0;
  5233. update_software_endstops((AxisEnum)i);
  5234. }
  5235. }
  5236. #endif // Not SCARA
  5237. return;
  5238. }
  5239. #endif
  5240. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  5241. #define IS_G92_0 (parser.subcode == 0)
  5242. #else
  5243. #define IS_G92_0 true
  5244. #endif
  5245. bool didE = false;
  5246. #if IS_SCARA || !HAS_POSITION_SHIFT
  5247. bool didXYZ = false;
  5248. #else
  5249. constexpr bool didXYZ = false;
  5250. #endif
  5251. if (IS_G92_0) LOOP_XYZE(i) {
  5252. if (parser.seenval(axis_codes[i])) {
  5253. const float l = parser.value_axis_units((AxisEnum)i),
  5254. v = i == E_AXIS ? l : LOGICAL_TO_NATIVE(l, i),
  5255. d = v - current_position[i];
  5256. if (!NEAR_ZERO(d)) {
  5257. #if IS_SCARA || !HAS_POSITION_SHIFT
  5258. if (i == E_AXIS) didE = true; else didXYZ = true;
  5259. current_position[i] = v; // Without workspaces revert to Marlin 1.0 behavior
  5260. #elif HAS_POSITION_SHIFT
  5261. if (i == E_AXIS) {
  5262. didE = true;
  5263. current_position[E_AXIS] = v; // When using coordinate spaces, only E is set directly
  5264. }
  5265. else {
  5266. position_shift[i] += d; // Other axes simply offset the coordinate space
  5267. update_software_endstops((AxisEnum)i);
  5268. }
  5269. #endif
  5270. }
  5271. }
  5272. }
  5273. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  5274. // Apply workspace offset to the active coordinate system
  5275. if (WITHIN(active_coordinate_system, 0, MAX_COORDINATE_SYSTEMS - 1))
  5276. COPY(coordinate_system[active_coordinate_system], position_shift);
  5277. #endif
  5278. if (didXYZ)
  5279. SYNC_PLAN_POSITION_KINEMATIC();
  5280. else if (didE)
  5281. sync_plan_position_e();
  5282. report_current_position();
  5283. }
  5284. #if HAS_RESUME_CONTINUE
  5285. /**
  5286. * M0: Unconditional stop - Wait for user button press on LCD
  5287. * M1: Conditional stop - Wait for user button press on LCD
  5288. */
  5289. inline void gcode_M0_M1() {
  5290. const char * const args = parser.string_arg;
  5291. millis_t ms = 0;
  5292. bool hasP = false, hasS = false;
  5293. if (parser.seenval('P')) {
  5294. ms = parser.value_millis(); // milliseconds to wait
  5295. hasP = ms > 0;
  5296. }
  5297. if (parser.seenval('S')) {
  5298. ms = parser.value_millis_from_seconds(); // seconds to wait
  5299. hasS = ms > 0;
  5300. }
  5301. #if ENABLED(ULTIPANEL)
  5302. if (!hasP && !hasS && args && *args)
  5303. lcd_setstatus(args, true);
  5304. else {
  5305. LCD_MESSAGEPGM(MSG_USERWAIT);
  5306. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  5307. dontExpireStatus();
  5308. #endif
  5309. }
  5310. #else
  5311. if (!hasP && !hasS && args && *args) {
  5312. SERIAL_ECHO_START();
  5313. SERIAL_ECHOLN(args);
  5314. }
  5315. #endif
  5316. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5317. wait_for_user = true;
  5318. stepper.synchronize();
  5319. refresh_cmd_timeout();
  5320. if (ms > 0) {
  5321. ms += previous_cmd_ms; // wait until this time for a click
  5322. while (PENDING(millis(), ms) && wait_for_user) idle();
  5323. }
  5324. else {
  5325. #if ENABLED(ULTIPANEL)
  5326. if (lcd_detected()) {
  5327. while (wait_for_user) idle();
  5328. print_job_timer.isPaused() ? LCD_MESSAGEPGM(WELCOME_MSG) : LCD_MESSAGEPGM(MSG_RESUMING);
  5329. }
  5330. #else
  5331. while (wait_for_user) idle();
  5332. #endif
  5333. }
  5334. wait_for_user = false;
  5335. KEEPALIVE_STATE(IN_HANDLER);
  5336. }
  5337. #endif // HAS_RESUME_CONTINUE
  5338. #if ENABLED(SPINDLE_LASER_ENABLE)
  5339. /**
  5340. * M3: Spindle Clockwise
  5341. * M4: Spindle Counter-clockwise
  5342. *
  5343. * S0 turns off spindle.
  5344. *
  5345. * If no speed PWM output is defined then M3/M4 just turns it on.
  5346. *
  5347. * At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
  5348. * Hardware PWM is required. ISRs are too slow.
  5349. *
  5350. * NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
  5351. * No other settings give a PWM signal that goes from 0 to 5 volts.
  5352. *
  5353. * The system automatically sets WGM to Mode 1, so no special
  5354. * initialization is needed.
  5355. *
  5356. * WGM bits for timer 2 are automatically set by the system to
  5357. * Mode 1. This produces an acceptable 0 to 5 volt signal.
  5358. * No special initialization is needed.
  5359. *
  5360. * NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
  5361. * factors for timers 2, 3, 4, and 5 are acceptable.
  5362. *
  5363. * SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
  5364. * the spindle/laser during power-up or when connecting to the host
  5365. * (usually goes through a reset which sets all I/O pins to tri-state)
  5366. *
  5367. * PWM duty cycle goes from 0 (off) to 255 (always on).
  5368. */
  5369. // Wait for spindle to come up to speed
  5370. inline void delay_for_power_up() { dwell(SPINDLE_LASER_POWERUP_DELAY); }
  5371. // Wait for spindle to stop turning
  5372. inline void delay_for_power_down() { dwell(SPINDLE_LASER_POWERDOWN_DELAY); }
  5373. /**
  5374. * ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
  5375. *
  5376. * it accepts inputs of 0-255
  5377. */
  5378. inline void ocr_val_mode() {
  5379. uint8_t spindle_laser_power = parser.value_byte();
  5380. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5381. if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
  5382. analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
  5383. }
  5384. inline void gcode_M3_M4(bool is_M3) {
  5385. stepper.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
  5386. #if SPINDLE_DIR_CHANGE
  5387. const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
  5388. if (SPINDLE_STOP_ON_DIR_CHANGE \
  5389. && READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
  5390. && READ(SPINDLE_DIR_PIN) != rotation_dir
  5391. ) {
  5392. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
  5393. delay_for_power_down();
  5394. }
  5395. WRITE(SPINDLE_DIR_PIN, rotation_dir);
  5396. #endif
  5397. /**
  5398. * Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
  5399. * Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
  5400. * Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
  5401. */
  5402. #if ENABLED(SPINDLE_LASER_PWM)
  5403. if (parser.seen('O')) ocr_val_mode();
  5404. else {
  5405. const float spindle_laser_power = parser.floatval('S');
  5406. if (spindle_laser_power == 0) {
  5407. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
  5408. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // only write low byte
  5409. delay_for_power_down();
  5410. }
  5411. else {
  5412. int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
  5413. NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
  5414. if (spindle_laser_power <= SPEED_POWER_MIN)
  5415. ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // minimum setting
  5416. if (spindle_laser_power >= SPEED_POWER_MAX)
  5417. ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // limit to max RPM
  5418. if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
  5419. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5420. analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
  5421. delay_for_power_up();
  5422. }
  5423. }
  5424. #else
  5425. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
  5426. delay_for_power_up();
  5427. #endif
  5428. }
  5429. /**
  5430. * M5 turn off spindle
  5431. */
  5432. inline void gcode_M5() {
  5433. stepper.synchronize();
  5434. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
  5435. delay_for_power_down();
  5436. }
  5437. #endif // SPINDLE_LASER_ENABLE
  5438. /**
  5439. * M17: Enable power on all stepper motors
  5440. */
  5441. inline void gcode_M17() {
  5442. LCD_MESSAGEPGM(MSG_NO_MOVE);
  5443. enable_all_steppers();
  5444. }
  5445. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  5446. static float resume_position[XYZE];
  5447. static bool move_away_flag = false;
  5448. #if ENABLED(SDSUPPORT)
  5449. static bool sd_print_paused = false;
  5450. #endif
  5451. static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
  5452. static millis_t next_buzz = 0;
  5453. static int8_t runout_beep = 0;
  5454. if (init) next_buzz = runout_beep = 0;
  5455. const millis_t ms = millis();
  5456. if (ELAPSED(ms, next_buzz)) {
  5457. if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
  5458. next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400);
  5459. BUZZ(300, 2000);
  5460. runout_beep++;
  5461. }
  5462. }
  5463. }
  5464. static void ensure_safe_temperature() {
  5465. bool heaters_heating = true;
  5466. wait_for_heatup = true; // M108 will clear this
  5467. while (wait_for_heatup && heaters_heating) {
  5468. idle();
  5469. heaters_heating = false;
  5470. HOTEND_LOOP() {
  5471. if (thermalManager.degTargetHotend(e) && abs(thermalManager.degHotend(e) - thermalManager.degTargetHotend(e)) > TEMP_HYSTERESIS) {
  5472. heaters_heating = true;
  5473. #if ENABLED(ULTIPANEL)
  5474. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  5475. #endif
  5476. break;
  5477. }
  5478. }
  5479. }
  5480. }
  5481. #if IS_KINEMATIC
  5482. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  5483. #else
  5484. #define RUNPLAN(RATE_MM_S) buffer_line_to_destination(RATE_MM_S)
  5485. #endif
  5486. void do_pause_e_move(const float &length, const float fr) {
  5487. current_position[E_AXIS] += length / planner.e_factor[active_extruder];
  5488. set_destination_from_current();
  5489. RUNPLAN(fr);
  5490. stepper.synchronize();
  5491. }
  5492. static bool pause_print(const float &retract, const float &z_lift, const float &x_pos, const float &y_pos,
  5493. const float &unload_length = 0 , const int8_t max_beep_count = 0, const bool show_lcd = false
  5494. ) {
  5495. if (move_away_flag) return false; // already paused
  5496. if (!DEBUGGING(DRYRUN) && (unload_length != 0 || retract != 0)) {
  5497. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5498. if (!thermalManager.allow_cold_extrude &&
  5499. thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) {
  5500. SERIAL_ERROR_START();
  5501. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5502. return false;
  5503. }
  5504. #endif
  5505. ensure_safe_temperature(); // wait for extruder to heat up before unloading
  5506. }
  5507. // Indicate that the printer is paused
  5508. move_away_flag = true;
  5509. // Pause the print job and timer
  5510. #if ENABLED(SDSUPPORT)
  5511. if (card.sdprinting) {
  5512. card.pauseSDPrint();
  5513. sd_print_paused = true;
  5514. }
  5515. #endif
  5516. print_job_timer.pause();
  5517. // Show initial message and wait for synchronize steppers
  5518. if (show_lcd) {
  5519. #if ENABLED(ULTIPANEL)
  5520. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT);
  5521. #endif
  5522. }
  5523. // Save current position
  5524. stepper.synchronize();
  5525. COPY(resume_position, current_position);
  5526. // Initial retract before move to filament change position
  5527. if (retract) do_pause_e_move(retract, PAUSE_PARK_RETRACT_FEEDRATE);
  5528. // Lift Z axis
  5529. if (z_lift > 0)
  5530. do_blocking_move_to_z(current_position[Z_AXIS] + z_lift, PAUSE_PARK_Z_FEEDRATE);
  5531. // Move XY axes to filament exchange position
  5532. do_blocking_move_to_xy(x_pos, y_pos, PAUSE_PARK_XY_FEEDRATE);
  5533. if (unload_length != 0) {
  5534. if (show_lcd) {
  5535. #if ENABLED(ULTIPANEL)
  5536. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD);
  5537. idle();
  5538. #endif
  5539. }
  5540. // Unload filament
  5541. do_pause_e_move(unload_length, FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5542. }
  5543. if (show_lcd) {
  5544. #if ENABLED(ULTIPANEL)
  5545. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5546. #endif
  5547. }
  5548. #if HAS_BUZZER
  5549. filament_change_beep(max_beep_count, true);
  5550. #endif
  5551. idle();
  5552. // Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
  5553. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
  5554. disable_e_steppers();
  5555. safe_delay(100);
  5556. #endif
  5557. // Start the heater idle timers
  5558. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5559. HOTEND_LOOP()
  5560. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5561. return true;
  5562. }
  5563. static void wait_for_filament_reload(const int8_t max_beep_count = 0) {
  5564. bool nozzle_timed_out = false;
  5565. // Wait for filament insert by user and press button
  5566. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5567. wait_for_user = true; // LCD click or M108 will clear this
  5568. while (wait_for_user) {
  5569. #if HAS_BUZZER
  5570. filament_change_beep(max_beep_count);
  5571. #endif
  5572. // If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
  5573. // re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
  5574. if (!nozzle_timed_out)
  5575. HOTEND_LOOP()
  5576. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5577. if (nozzle_timed_out) {
  5578. #if ENABLED(ULTIPANEL)
  5579. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  5580. #endif
  5581. // Wait for LCD click or M108
  5582. while (wait_for_user) idle(true);
  5583. // Re-enable the heaters if they timed out
  5584. HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
  5585. // Wait for the heaters to reach the target temperatures
  5586. ensure_safe_temperature();
  5587. #if ENABLED(ULTIPANEL)
  5588. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5589. #endif
  5590. // Start the heater idle timers
  5591. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5592. HOTEND_LOOP()
  5593. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5594. wait_for_user = true; /* Wait for user to load filament */
  5595. nozzle_timed_out = false;
  5596. #if HAS_BUZZER
  5597. filament_change_beep(max_beep_count, true);
  5598. #endif
  5599. }
  5600. idle(true);
  5601. }
  5602. KEEPALIVE_STATE(IN_HANDLER);
  5603. }
  5604. static void resume_print(const float &load_length = 0, const float &initial_extrude_length = 0, const int8_t max_beep_count = 0) {
  5605. bool nozzle_timed_out = false;
  5606. if (!move_away_flag) return;
  5607. // Re-enable the heaters if they timed out
  5608. HOTEND_LOOP() {
  5609. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5610. thermalManager.reset_heater_idle_timer(e);
  5611. }
  5612. if (nozzle_timed_out) ensure_safe_temperature();
  5613. #if HAS_BUZZER
  5614. filament_change_beep(max_beep_count, true);
  5615. #endif
  5616. set_destination_from_current();
  5617. if (load_length != 0) {
  5618. #if ENABLED(ULTIPANEL)
  5619. // Show "insert filament"
  5620. if (nozzle_timed_out)
  5621. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5622. #endif
  5623. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5624. wait_for_user = true; // LCD click or M108 will clear this
  5625. while (wait_for_user && nozzle_timed_out) {
  5626. #if HAS_BUZZER
  5627. filament_change_beep(max_beep_count);
  5628. #endif
  5629. idle(true);
  5630. }
  5631. KEEPALIVE_STATE(IN_HANDLER);
  5632. #if ENABLED(ULTIPANEL)
  5633. // Show "load" message
  5634. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD);
  5635. #endif
  5636. // Load filament
  5637. do_pause_e_move(load_length, FILAMENT_CHANGE_LOAD_FEEDRATE);
  5638. }
  5639. #if ENABLED(ULTIPANEL) && ADVANCED_PAUSE_EXTRUDE_LENGTH > 0
  5640. float extrude_length = initial_extrude_length;
  5641. do {
  5642. if (extrude_length > 0) {
  5643. // "Wait for filament extrude"
  5644. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_EXTRUDE);
  5645. // Extrude filament to get into hotend
  5646. do_pause_e_move(extrude_length, ADVANCED_PAUSE_EXTRUDE_FEEDRATE);
  5647. }
  5648. // Show "Extrude More" / "Resume" menu and wait for reply
  5649. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5650. wait_for_user = false;
  5651. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION);
  5652. while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
  5653. KEEPALIVE_STATE(IN_HANDLER);
  5654. extrude_length = ADVANCED_PAUSE_EXTRUDE_LENGTH;
  5655. // Keep looping if "Extrude More" was selected
  5656. } while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE);
  5657. #endif
  5658. #if ENABLED(ULTIPANEL)
  5659. // "Wait for print to resume"
  5660. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
  5661. #endif
  5662. // Set extruder to saved position
  5663. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  5664. planner.set_e_position_mm(current_position[E_AXIS]);
  5665. // Move XY to starting position, then Z
  5666. do_blocking_move_to_xy(resume_position[X_AXIS], resume_position[Y_AXIS], PAUSE_PARK_XY_FEEDRATE);
  5667. do_blocking_move_to_z(resume_position[Z_AXIS], PAUSE_PARK_Z_FEEDRATE);
  5668. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5669. filament_ran_out = false;
  5670. #endif
  5671. #if ENABLED(ULTIPANEL)
  5672. // Show status screen
  5673. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
  5674. #endif
  5675. #if ENABLED(SDSUPPORT)
  5676. if (sd_print_paused) {
  5677. card.startFileprint();
  5678. sd_print_paused = false;
  5679. }
  5680. #endif
  5681. move_away_flag = false;
  5682. }
  5683. #endif // ADVANCED_PAUSE_FEATURE
  5684. #if ENABLED(SDSUPPORT)
  5685. /**
  5686. * M20: List SD card to serial output
  5687. */
  5688. inline void gcode_M20() {
  5689. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  5690. card.ls();
  5691. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  5692. }
  5693. /**
  5694. * M21: Init SD Card
  5695. */
  5696. inline void gcode_M21() { card.initsd(); }
  5697. /**
  5698. * M22: Release SD Card
  5699. */
  5700. inline void gcode_M22() { card.release(); }
  5701. /**
  5702. * M23: Open a file
  5703. */
  5704. inline void gcode_M23() {
  5705. // Simplify3D includes the size, so zero out all spaces (#7227)
  5706. for (char *fn = parser.string_arg; *fn; ++fn) if (*fn == ' ') *fn = '\0';
  5707. card.openFile(parser.string_arg, true);
  5708. }
  5709. /**
  5710. * M24: Start or Resume SD Print
  5711. */
  5712. inline void gcode_M24() {
  5713. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5714. resume_print();
  5715. #endif
  5716. card.startFileprint();
  5717. print_job_timer.start();
  5718. }
  5719. /**
  5720. * M25: Pause SD Print
  5721. */
  5722. inline void gcode_M25() {
  5723. card.pauseSDPrint();
  5724. print_job_timer.pause();
  5725. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5726. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  5727. #endif
  5728. }
  5729. /**
  5730. * M26: Set SD Card file index
  5731. */
  5732. inline void gcode_M26() {
  5733. if (card.cardOK && parser.seenval('S'))
  5734. card.setIndex(parser.value_long());
  5735. }
  5736. /**
  5737. * M27: Get SD Card status
  5738. */
  5739. inline void gcode_M27() { card.getStatus(); }
  5740. /**
  5741. * M28: Start SD Write
  5742. */
  5743. inline void gcode_M28() { card.openFile(parser.string_arg, false); }
  5744. /**
  5745. * M29: Stop SD Write
  5746. * Processed in write to file routine above
  5747. */
  5748. inline void gcode_M29() {
  5749. // card.saving = false;
  5750. }
  5751. /**
  5752. * M30 <filename>: Delete SD Card file
  5753. */
  5754. inline void gcode_M30() {
  5755. if (card.cardOK) {
  5756. card.closefile();
  5757. card.removeFile(parser.string_arg);
  5758. }
  5759. }
  5760. #endif // SDSUPPORT
  5761. /**
  5762. * M31: Get the time since the start of SD Print (or last M109)
  5763. */
  5764. inline void gcode_M31() {
  5765. char buffer[21];
  5766. duration_t elapsed = print_job_timer.duration();
  5767. elapsed.toString(buffer);
  5768. lcd_setstatus(buffer);
  5769. SERIAL_ECHO_START();
  5770. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  5771. }
  5772. #if ENABLED(SDSUPPORT)
  5773. /**
  5774. * M32: Select file and start SD Print
  5775. *
  5776. * Examples:
  5777. *
  5778. * M32 !PATH/TO/FILE.GCO# ; Start FILE.GCO
  5779. * M32 P !PATH/TO/FILE.GCO# ; Start FILE.GCO as a procedure
  5780. * M32 S60 !PATH/TO/FILE.GCO# ; Start FILE.GCO at byte 60
  5781. *
  5782. */
  5783. inline void gcode_M32() {
  5784. if (card.sdprinting) stepper.synchronize();
  5785. if (card.cardOK) {
  5786. const bool call_procedure = parser.boolval('P');
  5787. card.openFile(parser.string_arg, true, call_procedure);
  5788. if (parser.seenval('S')) card.setIndex(parser.value_long());
  5789. card.startFileprint();
  5790. // Procedure calls count as normal print time.
  5791. if (!call_procedure) print_job_timer.start();
  5792. }
  5793. }
  5794. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5795. /**
  5796. * M33: Get the long full path of a file or folder
  5797. *
  5798. * Parameters:
  5799. * <dospath> Case-insensitive DOS-style path to a file or folder
  5800. *
  5801. * Example:
  5802. * M33 miscel~1/armchair/armcha~1.gco
  5803. *
  5804. * Output:
  5805. * /Miscellaneous/Armchair/Armchair.gcode
  5806. */
  5807. inline void gcode_M33() {
  5808. card.printLongPath(parser.string_arg);
  5809. }
  5810. #endif
  5811. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  5812. /**
  5813. * M34: Set SD Card Sorting Options
  5814. */
  5815. inline void gcode_M34() {
  5816. if (parser.seen('S')) card.setSortOn(parser.value_bool());
  5817. if (parser.seenval('F')) {
  5818. const int v = parser.value_long();
  5819. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  5820. }
  5821. //if (parser.seen('R')) card.setSortReverse(parser.value_bool());
  5822. }
  5823. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  5824. /**
  5825. * M928: Start SD Write
  5826. */
  5827. inline void gcode_M928() {
  5828. card.openLogFile(parser.string_arg);
  5829. }
  5830. #endif // SDSUPPORT
  5831. /**
  5832. * Sensitive pin test for M42, M226
  5833. */
  5834. static bool pin_is_protected(const int8_t pin) {
  5835. static const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
  5836. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  5837. if (pin == (int8_t)pgm_read_byte(&sensitive_pins[i])) return true;
  5838. return false;
  5839. }
  5840. /**
  5841. * M42: Change pin status via GCode
  5842. *
  5843. * P<pin> Pin number (LED if omitted)
  5844. * S<byte> Pin status from 0 - 255
  5845. */
  5846. inline void gcode_M42() {
  5847. if (!parser.seenval('S')) return;
  5848. const byte pin_status = parser.value_byte();
  5849. const int pin_number = parser.intval('P', LED_PIN);
  5850. if (pin_number < 0) return;
  5851. if (pin_is_protected(pin_number)) {
  5852. SERIAL_ERROR_START();
  5853. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  5854. return;
  5855. }
  5856. pinMode(pin_number, OUTPUT);
  5857. digitalWrite(pin_number, pin_status);
  5858. analogWrite(pin_number, pin_status);
  5859. #if FAN_COUNT > 0
  5860. switch (pin_number) {
  5861. #if HAS_FAN0
  5862. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  5863. #endif
  5864. #if HAS_FAN1
  5865. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  5866. #endif
  5867. #if HAS_FAN2
  5868. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  5869. #endif
  5870. }
  5871. #endif
  5872. }
  5873. #if ENABLED(PINS_DEBUGGING)
  5874. #include "pinsDebug.h"
  5875. inline void toggle_pins() {
  5876. const bool I_flag = parser.boolval('I');
  5877. const int repeat = parser.intval('R', 1),
  5878. start = parser.intval('S'),
  5879. end = parser.intval('L', NUM_DIGITAL_PINS - 1),
  5880. wait = parser.intval('W', 500);
  5881. for (uint8_t pin = start; pin <= end; pin++) {
  5882. //report_pin_state_extended(pin, I_flag, false);
  5883. if (!I_flag && pin_is_protected(pin)) {
  5884. report_pin_state_extended(pin, I_flag, true, "Untouched ");
  5885. SERIAL_EOL();
  5886. }
  5887. else {
  5888. report_pin_state_extended(pin, I_flag, true, "Pulsing ");
  5889. #if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
  5890. if (pin == TEENSY_E2) {
  5891. SET_OUTPUT(TEENSY_E2);
  5892. for (int16_t j = 0; j < repeat; j++) {
  5893. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5894. WRITE(TEENSY_E2, HIGH); safe_delay(wait);
  5895. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5896. }
  5897. }
  5898. else if (pin == TEENSY_E3) {
  5899. SET_OUTPUT(TEENSY_E3);
  5900. for (int16_t j = 0; j < repeat; j++) {
  5901. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5902. WRITE(TEENSY_E3, HIGH); safe_delay(wait);
  5903. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5904. }
  5905. }
  5906. else
  5907. #endif
  5908. {
  5909. pinMode(pin, OUTPUT);
  5910. for (int16_t j = 0; j < repeat; j++) {
  5911. digitalWrite(pin, 0); safe_delay(wait);
  5912. digitalWrite(pin, 1); safe_delay(wait);
  5913. digitalWrite(pin, 0); safe_delay(wait);
  5914. }
  5915. }
  5916. }
  5917. SERIAL_EOL();
  5918. }
  5919. SERIAL_ECHOLNPGM("Done.");
  5920. } // toggle_pins
  5921. inline void servo_probe_test() {
  5922. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  5923. SERIAL_ERROR_START();
  5924. SERIAL_ERRORLNPGM("SERVO not setup");
  5925. #elif !HAS_Z_SERVO_ENDSTOP
  5926. SERIAL_ERROR_START();
  5927. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  5928. #else // HAS_Z_SERVO_ENDSTOP
  5929. const uint8_t probe_index = parser.byteval('P', Z_ENDSTOP_SERVO_NR);
  5930. SERIAL_PROTOCOLLNPGM("Servo probe test");
  5931. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  5932. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  5933. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  5934. bool probe_inverting;
  5935. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  5936. #define PROBE_TEST_PIN Z_MIN_PIN
  5937. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  5938. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  5939. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  5940. #if Z_MIN_ENDSTOP_INVERTING
  5941. SERIAL_PROTOCOLLNPGM("true");
  5942. #else
  5943. SERIAL_PROTOCOLLNPGM("false");
  5944. #endif
  5945. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  5946. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  5947. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  5948. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  5949. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  5950. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  5951. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  5952. SERIAL_PROTOCOLLNPGM("true");
  5953. #else
  5954. SERIAL_PROTOCOLLNPGM("false");
  5955. #endif
  5956. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  5957. #endif
  5958. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  5959. SET_INPUT_PULLUP(PROBE_TEST_PIN);
  5960. bool deploy_state, stow_state;
  5961. for (uint8_t i = 0; i < 4; i++) {
  5962. MOVE_SERVO(probe_index, z_servo_angle[0]); //deploy
  5963. safe_delay(500);
  5964. deploy_state = READ(PROBE_TEST_PIN);
  5965. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  5966. safe_delay(500);
  5967. stow_state = READ(PROBE_TEST_PIN);
  5968. }
  5969. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  5970. refresh_cmd_timeout();
  5971. if (deploy_state != stow_state) {
  5972. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  5973. if (deploy_state) {
  5974. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  5975. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  5976. }
  5977. else {
  5978. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  5979. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  5980. }
  5981. #if ENABLED(BLTOUCH)
  5982. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  5983. #endif
  5984. }
  5985. else { // measure active signal length
  5986. MOVE_SERVO(probe_index, z_servo_angle[0]); // deploy
  5987. safe_delay(500);
  5988. SERIAL_PROTOCOLLNPGM("please trigger probe");
  5989. uint16_t probe_counter = 0;
  5990. // Allow 30 seconds max for operator to trigger probe
  5991. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  5992. safe_delay(2);
  5993. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  5994. refresh_cmd_timeout();
  5995. if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered
  5996. for (probe_counter = 1; probe_counter < 50 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter)
  5997. safe_delay(2);
  5998. if (probe_counter == 50)
  5999. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  6000. else if (probe_counter >= 2)
  6001. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  6002. else
  6003. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  6004. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  6005. } // pulse detected
  6006. } // for loop waiting for trigger
  6007. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  6008. } // measure active signal length
  6009. #endif
  6010. } // servo_probe_test
  6011. /**
  6012. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  6013. *
  6014. * M43 - report name and state of pin(s)
  6015. * P<pin> Pin to read or watch. If omitted, reads all pins.
  6016. * I Flag to ignore Marlin's pin protection.
  6017. *
  6018. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  6019. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  6020. * I Flag to ignore Marlin's pin protection.
  6021. *
  6022. * M43 E<bool> - Enable / disable background endstop monitoring
  6023. * - Machine continues to operate
  6024. * - Reports changes to endstops
  6025. * - Toggles LED_PIN when an endstop changes
  6026. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  6027. *
  6028. * M43 T - Toggle pin(s) and report which pin is being toggled
  6029. * S<pin> - Start Pin number. If not given, will default to 0
  6030. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  6031. * I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
  6032. * R - Repeat pulses on each pin this number of times before continueing to next pin
  6033. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  6034. *
  6035. * M43 S - Servo probe test
  6036. * P<index> - Probe index (optional - defaults to 0
  6037. */
  6038. inline void gcode_M43() {
  6039. if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test
  6040. toggle_pins();
  6041. return;
  6042. }
  6043. // Enable or disable endstop monitoring
  6044. if (parser.seen('E')) {
  6045. endstop_monitor_flag = parser.value_bool();
  6046. SERIAL_PROTOCOLPGM("endstop monitor ");
  6047. serialprintPGM(endstop_monitor_flag ? PSTR("en") : PSTR("dis"));
  6048. SERIAL_PROTOCOLLNPGM("abled");
  6049. return;
  6050. }
  6051. if (parser.seen('S')) {
  6052. servo_probe_test();
  6053. return;
  6054. }
  6055. // Get the range of pins to test or watch
  6056. const uint8_t first_pin = parser.byteval('P'),
  6057. last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  6058. if (first_pin > last_pin) return;
  6059. const bool ignore_protection = parser.boolval('I');
  6060. // Watch until click, M108, or reset
  6061. if (parser.boolval('W')) {
  6062. SERIAL_PROTOCOLLNPGM("Watching pins");
  6063. byte pin_state[last_pin - first_pin + 1];
  6064. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  6065. if (pin_is_protected(pin) && !ignore_protection) continue;
  6066. pinMode(pin, INPUT_PULLUP);
  6067. delay(1);
  6068. /*
  6069. if (IS_ANALOG(pin))
  6070. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  6071. else
  6072. //*/
  6073. pin_state[pin - first_pin] = digitalRead(pin);
  6074. }
  6075. #if HAS_RESUME_CONTINUE
  6076. wait_for_user = true;
  6077. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6078. #endif
  6079. for (;;) {
  6080. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  6081. if (pin_is_protected(pin) && !ignore_protection) continue;
  6082. const byte val =
  6083. /*
  6084. IS_ANALOG(pin)
  6085. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  6086. :
  6087. //*/
  6088. digitalRead(pin);
  6089. if (val != pin_state[pin - first_pin]) {
  6090. report_pin_state_extended(pin, ignore_protection, false);
  6091. pin_state[pin - first_pin] = val;
  6092. }
  6093. }
  6094. #if HAS_RESUME_CONTINUE
  6095. if (!wait_for_user) {
  6096. KEEPALIVE_STATE(IN_HANDLER);
  6097. break;
  6098. }
  6099. #endif
  6100. safe_delay(200);
  6101. }
  6102. return;
  6103. }
  6104. // Report current state of selected pin(s)
  6105. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  6106. report_pin_state_extended(pin, ignore_protection, true);
  6107. }
  6108. #endif // PINS_DEBUGGING
  6109. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6110. /**
  6111. * M48: Z probe repeatability measurement function.
  6112. *
  6113. * Usage:
  6114. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  6115. * P = Number of sampled points (4-50, default 10)
  6116. * X = Sample X position
  6117. * Y = Sample Y position
  6118. * V = Verbose level (0-4, default=1)
  6119. * E = Engage Z probe for each reading
  6120. * L = Number of legs of movement before probe
  6121. * S = Schizoid (Or Star if you prefer)
  6122. *
  6123. * This function requires the machine to be homed before invocation.
  6124. */
  6125. inline void gcode_M48() {
  6126. if (axis_unhomed_error()) return;
  6127. const int8_t verbose_level = parser.byteval('V', 1);
  6128. if (!WITHIN(verbose_level, 0, 4)) {
  6129. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  6130. return;
  6131. }
  6132. if (verbose_level > 0)
  6133. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  6134. const int8_t n_samples = parser.byteval('P', 10);
  6135. if (!WITHIN(n_samples, 4, 50)) {
  6136. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  6137. return;
  6138. }
  6139. const bool stow_probe_after_each = parser.boolval('E');
  6140. float X_current = current_position[X_AXIS],
  6141. Y_current = current_position[Y_AXIS];
  6142. const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
  6143. Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6144. #if DISABLED(DELTA)
  6145. if (!WITHIN(X_probe_location, MIN_PROBE_X, MAX_PROBE_X)) {
  6146. out_of_range_error(PSTR("X"));
  6147. return;
  6148. }
  6149. if (!WITHIN(Y_probe_location, MIN_PROBE_Y, MAX_PROBE_Y)) {
  6150. out_of_range_error(PSTR("Y"));
  6151. return;
  6152. }
  6153. #else
  6154. if (!position_is_reachable_by_probe(X_probe_location, Y_probe_location)) {
  6155. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  6156. return;
  6157. }
  6158. #endif
  6159. bool seen_L = parser.seen('L');
  6160. uint8_t n_legs = seen_L ? parser.value_byte() : 0;
  6161. if (n_legs > 15) {
  6162. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  6163. return;
  6164. }
  6165. if (n_legs == 1) n_legs = 2;
  6166. const bool schizoid_flag = parser.boolval('S');
  6167. if (schizoid_flag && !seen_L) n_legs = 7;
  6168. /**
  6169. * Now get everything to the specified probe point So we can safely do a
  6170. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  6171. * we don't want to use that as a starting point for each probe.
  6172. */
  6173. if (verbose_level > 2)
  6174. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  6175. // Disable bed level correction in M48 because we want the raw data when we probe
  6176. #if HAS_LEVELING
  6177. const bool was_enabled = planner.leveling_active;
  6178. set_bed_leveling_enabled(false);
  6179. #endif
  6180. setup_for_endstop_or_probe_move();
  6181. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  6182. // Move to the first point, deploy, and probe
  6183. const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  6184. bool probing_good = !isnan(t);
  6185. if (probing_good) {
  6186. randomSeed(millis());
  6187. for (uint8_t n = 0; n < n_samples; n++) {
  6188. if (n_legs) {
  6189. const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  6190. float angle = random(0.0, 360.0);
  6191. const float radius = random(
  6192. #if ENABLED(DELTA)
  6193. 0.1250000000 * (DELTA_PROBEABLE_RADIUS),
  6194. 0.3333333333 * (DELTA_PROBEABLE_RADIUS)
  6195. #else
  6196. 5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
  6197. #endif
  6198. );
  6199. if (verbose_level > 3) {
  6200. SERIAL_ECHOPAIR("Starting radius: ", radius);
  6201. SERIAL_ECHOPAIR(" angle: ", angle);
  6202. SERIAL_ECHOPGM(" Direction: ");
  6203. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  6204. SERIAL_ECHOLNPGM("Clockwise");
  6205. }
  6206. for (uint8_t l = 0; l < n_legs - 1; l++) {
  6207. double delta_angle;
  6208. if (schizoid_flag)
  6209. // The points of a 5 point star are 72 degrees apart. We need to
  6210. // skip a point and go to the next one on the star.
  6211. delta_angle = dir * 2.0 * 72.0;
  6212. else
  6213. // If we do this line, we are just trying to move further
  6214. // around the circle.
  6215. delta_angle = dir * (float) random(25, 45);
  6216. angle += delta_angle;
  6217. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  6218. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  6219. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  6220. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  6221. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  6222. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  6223. #if DISABLED(DELTA)
  6224. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  6225. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  6226. #else
  6227. // If we have gone out too far, we can do a simple fix and scale the numbers
  6228. // back in closer to the origin.
  6229. while (!position_is_reachable_by_probe(X_current, Y_current)) {
  6230. X_current *= 0.8;
  6231. Y_current *= 0.8;
  6232. if (verbose_level > 3) {
  6233. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  6234. SERIAL_ECHOLNPAIR(", ", Y_current);
  6235. }
  6236. }
  6237. #endif
  6238. if (verbose_level > 3) {
  6239. SERIAL_PROTOCOLPGM("Going to:");
  6240. SERIAL_ECHOPAIR(" X", X_current);
  6241. SERIAL_ECHOPAIR(" Y", Y_current);
  6242. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  6243. }
  6244. do_blocking_move_to_xy(X_current, Y_current);
  6245. } // n_legs loop
  6246. } // n_legs
  6247. // Probe a single point
  6248. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  6249. // Break the loop if the probe fails
  6250. probing_good = !isnan(sample_set[n]);
  6251. if (!probing_good) break;
  6252. /**
  6253. * Get the current mean for the data points we have so far
  6254. */
  6255. double sum = 0.0;
  6256. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  6257. mean = sum / (n + 1);
  6258. NOMORE(min, sample_set[n]);
  6259. NOLESS(max, sample_set[n]);
  6260. /**
  6261. * Now, use that mean to calculate the standard deviation for the
  6262. * data points we have so far
  6263. */
  6264. sum = 0.0;
  6265. for (uint8_t j = 0; j <= n; j++)
  6266. sum += sq(sample_set[j] - mean);
  6267. sigma = SQRT(sum / (n + 1));
  6268. if (verbose_level > 0) {
  6269. if (verbose_level > 1) {
  6270. SERIAL_PROTOCOL(n + 1);
  6271. SERIAL_PROTOCOLPGM(" of ");
  6272. SERIAL_PROTOCOL((int)n_samples);
  6273. SERIAL_PROTOCOLPGM(": z: ");
  6274. SERIAL_PROTOCOL_F(sample_set[n], 3);
  6275. if (verbose_level > 2) {
  6276. SERIAL_PROTOCOLPGM(" mean: ");
  6277. SERIAL_PROTOCOL_F(mean, 4);
  6278. SERIAL_PROTOCOLPGM(" sigma: ");
  6279. SERIAL_PROTOCOL_F(sigma, 6);
  6280. SERIAL_PROTOCOLPGM(" min: ");
  6281. SERIAL_PROTOCOL_F(min, 3);
  6282. SERIAL_PROTOCOLPGM(" max: ");
  6283. SERIAL_PROTOCOL_F(max, 3);
  6284. SERIAL_PROTOCOLPGM(" range: ");
  6285. SERIAL_PROTOCOL_F(max-min, 3);
  6286. }
  6287. SERIAL_EOL();
  6288. }
  6289. }
  6290. } // n_samples loop
  6291. }
  6292. STOW_PROBE();
  6293. if (probing_good) {
  6294. SERIAL_PROTOCOLLNPGM("Finished!");
  6295. if (verbose_level > 0) {
  6296. SERIAL_PROTOCOLPGM("Mean: ");
  6297. SERIAL_PROTOCOL_F(mean, 6);
  6298. SERIAL_PROTOCOLPGM(" Min: ");
  6299. SERIAL_PROTOCOL_F(min, 3);
  6300. SERIAL_PROTOCOLPGM(" Max: ");
  6301. SERIAL_PROTOCOL_F(max, 3);
  6302. SERIAL_PROTOCOLPGM(" Range: ");
  6303. SERIAL_PROTOCOL_F(max-min, 3);
  6304. SERIAL_EOL();
  6305. }
  6306. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  6307. SERIAL_PROTOCOL_F(sigma, 6);
  6308. SERIAL_EOL();
  6309. SERIAL_EOL();
  6310. }
  6311. clean_up_after_endstop_or_probe_move();
  6312. // Re-enable bed level correction if it had been on
  6313. #if HAS_LEVELING
  6314. set_bed_leveling_enabled(was_enabled);
  6315. #endif
  6316. report_current_position();
  6317. }
  6318. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6319. #if ENABLED(G26_MESH_VALIDATION)
  6320. inline void gcode_M49() {
  6321. g26_debug_flag ^= true;
  6322. SERIAL_PROTOCOLPGM("G26 Debug ");
  6323. serialprintPGM(g26_debug_flag ? PSTR("on.\n") : PSTR("off.\n"));
  6324. }
  6325. #endif // G26_MESH_VALIDATION
  6326. #if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
  6327. /**
  6328. * M73: Set percentage complete (for display on LCD)
  6329. *
  6330. * Example:
  6331. * M73 P25 ; Set progress to 25%
  6332. *
  6333. * Notes:
  6334. * This has no effect during an SD print job
  6335. */
  6336. inline void gcode_M73() {
  6337. if (!IS_SD_PRINTING && parser.seen('P')) {
  6338. progress_bar_percent = parser.value_byte();
  6339. NOMORE(progress_bar_percent, 100);
  6340. }
  6341. }
  6342. #endif // ULTRA_LCD && LCD_SET_PROGRESS_MANUALLY
  6343. /**
  6344. * M75: Start print timer
  6345. */
  6346. inline void gcode_M75() { print_job_timer.start(); }
  6347. /**
  6348. * M76: Pause print timer
  6349. */
  6350. inline void gcode_M76() { print_job_timer.pause(); }
  6351. /**
  6352. * M77: Stop print timer
  6353. */
  6354. inline void gcode_M77() { print_job_timer.stop(); }
  6355. #if ENABLED(PRINTCOUNTER)
  6356. /**
  6357. * M78: Show print statistics
  6358. */
  6359. inline void gcode_M78() {
  6360. // "M78 S78" will reset the statistics
  6361. if (parser.intval('S') == 78)
  6362. print_job_timer.initStats();
  6363. else
  6364. print_job_timer.showStats();
  6365. }
  6366. #endif
  6367. /**
  6368. * M104: Set hot end temperature
  6369. */
  6370. inline void gcode_M104() {
  6371. if (get_target_extruder_from_command(104)) return;
  6372. if (DEBUGGING(DRYRUN)) return;
  6373. #if ENABLED(SINGLENOZZLE)
  6374. if (target_extruder != active_extruder) return;
  6375. #endif
  6376. if (parser.seenval('S')) {
  6377. const int16_t temp = parser.value_celsius();
  6378. thermalManager.setTargetHotend(temp, target_extruder);
  6379. #if ENABLED(DUAL_X_CARRIAGE)
  6380. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6381. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6382. #endif
  6383. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6384. /**
  6385. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  6386. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  6387. * standby mode, for instance in a dual extruder setup, without affecting
  6388. * the running print timer.
  6389. */
  6390. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6391. print_job_timer.stop();
  6392. LCD_MESSAGEPGM(WELCOME_MSG);
  6393. }
  6394. #endif
  6395. if (parser.value_celsius() > thermalManager.degHotend(target_extruder))
  6396. lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6397. }
  6398. #if ENABLED(AUTOTEMP)
  6399. planner.autotemp_M104_M109();
  6400. #endif
  6401. }
  6402. /**
  6403. * M105: Read hot end and bed temperature
  6404. */
  6405. inline void gcode_M105() {
  6406. if (get_target_extruder_from_command(105)) return;
  6407. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6408. SERIAL_PROTOCOLPGM(MSG_OK);
  6409. thermalManager.print_heaterstates();
  6410. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  6411. SERIAL_ERROR_START();
  6412. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  6413. #endif
  6414. SERIAL_EOL();
  6415. }
  6416. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  6417. /**
  6418. * M155: Set temperature auto-report interval. M155 S<seconds>
  6419. */
  6420. inline void gcode_M155() {
  6421. if (parser.seenval('S'))
  6422. thermalManager.set_auto_report_interval(parser.value_byte());
  6423. }
  6424. #endif // AUTO_REPORT_TEMPERATURES
  6425. #if FAN_COUNT > 0
  6426. /**
  6427. * M106: Set Fan Speed
  6428. *
  6429. * S<int> Speed between 0-255
  6430. * P<index> Fan index, if more than one fan
  6431. *
  6432. * With EXTRA_FAN_SPEED enabled:
  6433. *
  6434. * T<int> Restore/Use/Set Temporary Speed:
  6435. * 1 = Restore previous speed after T2
  6436. * 2 = Use temporary speed set with T3-255
  6437. * 3-255 = Set the speed for use with T2
  6438. */
  6439. inline void gcode_M106() {
  6440. const uint8_t p = parser.byteval('P');
  6441. if (p < FAN_COUNT) {
  6442. #if ENABLED(EXTRA_FAN_SPEED)
  6443. const int16_t t = parser.intval('T');
  6444. if (t > 0) {
  6445. switch (t) {
  6446. case 1:
  6447. fanSpeeds[p] = old_fanSpeeds[p];
  6448. break;
  6449. case 2:
  6450. old_fanSpeeds[p] = fanSpeeds[p];
  6451. fanSpeeds[p] = new_fanSpeeds[p];
  6452. break;
  6453. default:
  6454. new_fanSpeeds[p] = min(t, 255);
  6455. break;
  6456. }
  6457. return;
  6458. }
  6459. #endif // EXTRA_FAN_SPEED
  6460. const uint16_t s = parser.ushortval('S', 255);
  6461. fanSpeeds[p] = min(s, 255);
  6462. }
  6463. }
  6464. /**
  6465. * M107: Fan Off
  6466. */
  6467. inline void gcode_M107() {
  6468. const uint16_t p = parser.ushortval('P');
  6469. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  6470. }
  6471. #endif // FAN_COUNT > 0
  6472. #if DISABLED(EMERGENCY_PARSER)
  6473. /**
  6474. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  6475. */
  6476. inline void gcode_M108() { wait_for_heatup = false; }
  6477. /**
  6478. * M112: Emergency Stop
  6479. */
  6480. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  6481. /**
  6482. * M410: Quickstop - Abort all planned moves
  6483. *
  6484. * This will stop the carriages mid-move, so most likely they
  6485. * will be out of sync with the stepper position after this.
  6486. */
  6487. inline void gcode_M410() { quickstop_stepper(); }
  6488. #endif
  6489. /**
  6490. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  6491. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  6492. */
  6493. #ifndef MIN_COOLING_SLOPE_DEG
  6494. #define MIN_COOLING_SLOPE_DEG 1.50
  6495. #endif
  6496. #ifndef MIN_COOLING_SLOPE_TIME
  6497. #define MIN_COOLING_SLOPE_TIME 60
  6498. #endif
  6499. inline void gcode_M109() {
  6500. if (get_target_extruder_from_command(109)) return;
  6501. if (DEBUGGING(DRYRUN)) return;
  6502. #if ENABLED(SINGLENOZZLE)
  6503. if (target_extruder != active_extruder) return;
  6504. #endif
  6505. const bool no_wait_for_cooling = parser.seenval('S');
  6506. if (no_wait_for_cooling || parser.seenval('R')) {
  6507. const int16_t temp = parser.value_celsius();
  6508. thermalManager.setTargetHotend(temp, target_extruder);
  6509. #if ENABLED(DUAL_X_CARRIAGE)
  6510. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6511. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6512. #endif
  6513. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6514. /**
  6515. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  6516. * standby mode, (e.g., in a dual extruder setup) without affecting
  6517. * the running print timer.
  6518. */
  6519. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6520. print_job_timer.stop();
  6521. LCD_MESSAGEPGM(WELCOME_MSG);
  6522. }
  6523. else
  6524. print_job_timer.start();
  6525. #endif
  6526. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6527. }
  6528. else return;
  6529. #if ENABLED(AUTOTEMP)
  6530. planner.autotemp_M104_M109();
  6531. #endif
  6532. #if TEMP_RESIDENCY_TIME > 0
  6533. millis_t residency_start_ms = 0;
  6534. // Loop until the temperature has stabilized
  6535. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  6536. #else
  6537. // Loop until the temperature is very close target
  6538. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  6539. #endif
  6540. float target_temp = -1.0, old_temp = 9999.0;
  6541. bool wants_to_cool = false;
  6542. wait_for_heatup = true;
  6543. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6544. #if DISABLED(BUSY_WHILE_HEATING)
  6545. KEEPALIVE_STATE(NOT_BUSY);
  6546. #endif
  6547. #if ENABLED(PRINTER_EVENT_LEDS)
  6548. const float start_temp = thermalManager.degHotend(target_extruder);
  6549. uint8_t old_blue = 0;
  6550. #endif
  6551. do {
  6552. // Target temperature might be changed during the loop
  6553. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  6554. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  6555. target_temp = thermalManager.degTargetHotend(target_extruder);
  6556. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6557. if (no_wait_for_cooling && wants_to_cool) break;
  6558. }
  6559. now = millis();
  6560. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  6561. next_temp_ms = now + 1000UL;
  6562. thermalManager.print_heaterstates();
  6563. #if TEMP_RESIDENCY_TIME > 0
  6564. SERIAL_PROTOCOLPGM(" W:");
  6565. if (residency_start_ms)
  6566. SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6567. else
  6568. SERIAL_PROTOCOLCHAR('?');
  6569. #endif
  6570. SERIAL_EOL();
  6571. }
  6572. idle();
  6573. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6574. const float temp = thermalManager.degHotend(target_extruder);
  6575. #if ENABLED(PRINTER_EVENT_LEDS)
  6576. // Gradually change LED strip from violet to red as nozzle heats up
  6577. if (!wants_to_cool) {
  6578. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  6579. if (blue != old_blue) {
  6580. old_blue = blue;
  6581. leds.set_color(
  6582. MakeLEDColor(255, 0, blue, 0, pixels.getBrightness())
  6583. #if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
  6584. , true
  6585. #endif
  6586. );
  6587. }
  6588. }
  6589. #endif
  6590. #if TEMP_RESIDENCY_TIME > 0
  6591. const float temp_diff = FABS(target_temp - temp);
  6592. if (!residency_start_ms) {
  6593. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  6594. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  6595. }
  6596. else if (temp_diff > TEMP_HYSTERESIS) {
  6597. // Restart the timer whenever the temperature falls outside the hysteresis.
  6598. residency_start_ms = now;
  6599. }
  6600. #endif
  6601. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  6602. if (wants_to_cool) {
  6603. // break after MIN_COOLING_SLOPE_TIME seconds
  6604. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  6605. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6606. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  6607. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  6608. old_temp = temp;
  6609. }
  6610. }
  6611. } while (wait_for_heatup && TEMP_CONDITIONS);
  6612. if (wait_for_heatup) {
  6613. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  6614. #if ENABLED(PRINTER_EVENT_LEDS)
  6615. leds.set_white();
  6616. #endif
  6617. }
  6618. #if DISABLED(BUSY_WHILE_HEATING)
  6619. KEEPALIVE_STATE(IN_HANDLER);
  6620. #endif
  6621. }
  6622. #if HAS_TEMP_BED
  6623. #ifndef MIN_COOLING_SLOPE_DEG_BED
  6624. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  6625. #endif
  6626. #ifndef MIN_COOLING_SLOPE_TIME_BED
  6627. #define MIN_COOLING_SLOPE_TIME_BED 60
  6628. #endif
  6629. /**
  6630. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  6631. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  6632. */
  6633. inline void gcode_M190() {
  6634. if (DEBUGGING(DRYRUN)) return;
  6635. LCD_MESSAGEPGM(MSG_BED_HEATING);
  6636. const bool no_wait_for_cooling = parser.seenval('S');
  6637. if (no_wait_for_cooling || parser.seenval('R')) {
  6638. thermalManager.setTargetBed(parser.value_celsius());
  6639. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6640. if (parser.value_celsius() > BED_MINTEMP)
  6641. print_job_timer.start();
  6642. #endif
  6643. }
  6644. else return;
  6645. #if TEMP_BED_RESIDENCY_TIME > 0
  6646. millis_t residency_start_ms = 0;
  6647. // Loop until the temperature has stabilized
  6648. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  6649. #else
  6650. // Loop until the temperature is very close target
  6651. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  6652. #endif
  6653. float target_temp = -1.0, old_temp = 9999.0;
  6654. bool wants_to_cool = false;
  6655. wait_for_heatup = true;
  6656. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6657. #if DISABLED(BUSY_WHILE_HEATING)
  6658. KEEPALIVE_STATE(NOT_BUSY);
  6659. #endif
  6660. target_extruder = active_extruder; // for print_heaterstates
  6661. #if ENABLED(PRINTER_EVENT_LEDS)
  6662. const float start_temp = thermalManager.degBed();
  6663. uint8_t old_red = 255;
  6664. #endif
  6665. do {
  6666. // Target temperature might be changed during the loop
  6667. if (target_temp != thermalManager.degTargetBed()) {
  6668. wants_to_cool = thermalManager.isCoolingBed();
  6669. target_temp = thermalManager.degTargetBed();
  6670. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6671. if (no_wait_for_cooling && wants_to_cool) break;
  6672. }
  6673. now = millis();
  6674. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  6675. next_temp_ms = now + 1000UL;
  6676. thermalManager.print_heaterstates();
  6677. #if TEMP_BED_RESIDENCY_TIME > 0
  6678. SERIAL_PROTOCOLPGM(" W:");
  6679. if (residency_start_ms)
  6680. SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6681. else
  6682. SERIAL_PROTOCOLCHAR('?');
  6683. #endif
  6684. SERIAL_EOL();
  6685. }
  6686. idle();
  6687. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6688. const float temp = thermalManager.degBed();
  6689. #if ENABLED(PRINTER_EVENT_LEDS)
  6690. // Gradually change LED strip from blue to violet as bed heats up
  6691. if (!wants_to_cool) {
  6692. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  6693. if (red != old_red) {
  6694. old_red = red;
  6695. leds.set_color(
  6696. MakeLEDColor(red, 0, 255, 0, pixels.getBrightness())
  6697. #if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
  6698. , true
  6699. #endif
  6700. );
  6701. }
  6702. }
  6703. #endif
  6704. #if TEMP_BED_RESIDENCY_TIME > 0
  6705. const float temp_diff = FABS(target_temp - temp);
  6706. if (!residency_start_ms) {
  6707. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  6708. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  6709. }
  6710. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  6711. // Restart the timer whenever the temperature falls outside the hysteresis.
  6712. residency_start_ms = now;
  6713. }
  6714. #endif // TEMP_BED_RESIDENCY_TIME > 0
  6715. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  6716. if (wants_to_cool) {
  6717. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  6718. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  6719. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6720. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  6721. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  6722. old_temp = temp;
  6723. }
  6724. }
  6725. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  6726. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  6727. #if DISABLED(BUSY_WHILE_HEATING)
  6728. KEEPALIVE_STATE(IN_HANDLER);
  6729. #endif
  6730. }
  6731. #endif // HAS_TEMP_BED
  6732. /**
  6733. * M110: Set Current Line Number
  6734. */
  6735. inline void gcode_M110() {
  6736. if (parser.seenval('N')) gcode_LastN = parser.value_long();
  6737. }
  6738. /**
  6739. * M111: Set the debug level
  6740. */
  6741. inline void gcode_M111() {
  6742. if (parser.seen('S')) marlin_debug_flags = parser.byteval('S');
  6743. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO,
  6744. str_debug_2[] PROGMEM = MSG_DEBUG_INFO,
  6745. str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS,
  6746. str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN,
  6747. str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION
  6748. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6749. , str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING
  6750. #endif
  6751. ;
  6752. const static char* const debug_strings[] PROGMEM = {
  6753. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
  6754. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6755. , str_debug_32
  6756. #endif
  6757. };
  6758. SERIAL_ECHO_START();
  6759. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  6760. if (marlin_debug_flags) {
  6761. uint8_t comma = 0;
  6762. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  6763. if (TEST(marlin_debug_flags, i)) {
  6764. if (comma++) SERIAL_CHAR(',');
  6765. serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
  6766. }
  6767. }
  6768. }
  6769. else {
  6770. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  6771. }
  6772. SERIAL_EOL();
  6773. }
  6774. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6775. /**
  6776. * M113: Get or set Host Keepalive interval (0 to disable)
  6777. *
  6778. * S<seconds> Optional. Set the keepalive interval.
  6779. */
  6780. inline void gcode_M113() {
  6781. if (parser.seenval('S')) {
  6782. host_keepalive_interval = parser.value_byte();
  6783. NOMORE(host_keepalive_interval, 60);
  6784. }
  6785. else {
  6786. SERIAL_ECHO_START();
  6787. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  6788. }
  6789. }
  6790. #endif
  6791. #if ENABLED(BARICUDA)
  6792. #if HAS_HEATER_1
  6793. /**
  6794. * M126: Heater 1 valve open
  6795. */
  6796. inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
  6797. /**
  6798. * M127: Heater 1 valve close
  6799. */
  6800. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  6801. #endif
  6802. #if HAS_HEATER_2
  6803. /**
  6804. * M128: Heater 2 valve open
  6805. */
  6806. inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
  6807. /**
  6808. * M129: Heater 2 valve close
  6809. */
  6810. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  6811. #endif
  6812. #endif // BARICUDA
  6813. /**
  6814. * M140: Set bed temperature
  6815. */
  6816. inline void gcode_M140() {
  6817. if (DEBUGGING(DRYRUN)) return;
  6818. if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());
  6819. }
  6820. #if ENABLED(ULTIPANEL)
  6821. /**
  6822. * M145: Set the heatup state for a material in the LCD menu
  6823. *
  6824. * S<material> (0=PLA, 1=ABS)
  6825. * H<hotend temp>
  6826. * B<bed temp>
  6827. * F<fan speed>
  6828. */
  6829. inline void gcode_M145() {
  6830. const uint8_t material = (uint8_t)parser.intval('S');
  6831. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  6832. SERIAL_ERROR_START();
  6833. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  6834. }
  6835. else {
  6836. int v;
  6837. if (parser.seenval('H')) {
  6838. v = parser.value_int();
  6839. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  6840. }
  6841. if (parser.seenval('F')) {
  6842. v = parser.value_int();
  6843. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  6844. }
  6845. #if TEMP_SENSOR_BED != 0
  6846. if (parser.seenval('B')) {
  6847. v = parser.value_int();
  6848. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  6849. }
  6850. #endif
  6851. }
  6852. }
  6853. #endif // ULTIPANEL
  6854. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6855. /**
  6856. * M149: Set temperature units
  6857. */
  6858. inline void gcode_M149() {
  6859. if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);
  6860. else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);
  6861. else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);
  6862. }
  6863. #endif
  6864. #if HAS_POWER_SWITCH
  6865. /**
  6866. * M80 : Turn on the Power Supply
  6867. * M80 S : Report the current state and exit
  6868. */
  6869. inline void gcode_M80() {
  6870. // S: Report the current power supply state and exit
  6871. if (parser.seen('S')) {
  6872. serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
  6873. return;
  6874. }
  6875. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
  6876. /**
  6877. * If you have a switch on suicide pin, this is useful
  6878. * if you want to start another print with suicide feature after
  6879. * a print without suicide...
  6880. */
  6881. #if HAS_SUICIDE
  6882. OUT_WRITE(SUICIDE_PIN, HIGH);
  6883. #endif
  6884. #if ENABLED(HAVE_TMC2130)
  6885. delay(100);
  6886. tmc2130_init(); // Settings only stick when the driver has power
  6887. #endif
  6888. powersupply_on = true;
  6889. #if ENABLED(ULTIPANEL)
  6890. LCD_MESSAGEPGM(WELCOME_MSG);
  6891. #endif
  6892. #if ENABLED(HAVE_TMC2208)
  6893. delay(100);
  6894. tmc2208_init();
  6895. #endif
  6896. }
  6897. #endif // HAS_POWER_SWITCH
  6898. /**
  6899. * M81: Turn off Power, including Power Supply, if there is one.
  6900. *
  6901. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  6902. */
  6903. inline void gcode_M81() {
  6904. thermalManager.disable_all_heaters();
  6905. stepper.finish_and_disable();
  6906. #if FAN_COUNT > 0
  6907. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  6908. #if ENABLED(PROBING_FANS_OFF)
  6909. fans_paused = false;
  6910. ZERO(paused_fanSpeeds);
  6911. #endif
  6912. #endif
  6913. safe_delay(1000); // Wait 1 second before switching off
  6914. #if HAS_SUICIDE
  6915. stepper.synchronize();
  6916. suicide();
  6917. #elif HAS_POWER_SWITCH
  6918. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  6919. powersupply_on = false;
  6920. #endif
  6921. #if ENABLED(ULTIPANEL)
  6922. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  6923. #endif
  6924. }
  6925. /**
  6926. * M82: Set E codes absolute (default)
  6927. */
  6928. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  6929. /**
  6930. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  6931. */
  6932. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  6933. /**
  6934. * M18, M84: Disable stepper motors
  6935. */
  6936. inline void gcode_M18_M84() {
  6937. if (parser.seenval('S')) {
  6938. stepper_inactive_time = parser.value_millis_from_seconds();
  6939. }
  6940. else {
  6941. bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E')));
  6942. if (all_axis) {
  6943. stepper.finish_and_disable();
  6944. }
  6945. else {
  6946. stepper.synchronize();
  6947. if (parser.seen('X')) disable_X();
  6948. if (parser.seen('Y')) disable_Y();
  6949. if (parser.seen('Z')) disable_Z();
  6950. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only enable on boards that have separate ENABLE_PINS
  6951. if (parser.seen('E')) disable_e_steppers();
  6952. #endif
  6953. }
  6954. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  6955. ubl.lcd_map_control = defer_return_to_status = false;
  6956. #endif
  6957. }
  6958. }
  6959. /**
  6960. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  6961. */
  6962. inline void gcode_M85() {
  6963. if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
  6964. }
  6965. /**
  6966. * Multi-stepper support for M92, M201, M203
  6967. */
  6968. #if ENABLED(DISTINCT_E_FACTORS)
  6969. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  6970. #define TARGET_EXTRUDER target_extruder
  6971. #else
  6972. #define GET_TARGET_EXTRUDER(CMD) NOOP
  6973. #define TARGET_EXTRUDER 0
  6974. #endif
  6975. /**
  6976. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  6977. * (Follows the same syntax as G92)
  6978. *
  6979. * With multiple extruders use T to specify which one.
  6980. */
  6981. inline void gcode_M92() {
  6982. GET_TARGET_EXTRUDER(92);
  6983. LOOP_XYZE(i) {
  6984. if (parser.seen(axis_codes[i])) {
  6985. if (i == E_AXIS) {
  6986. const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
  6987. if (value < 20.0) {
  6988. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  6989. planner.max_jerk[E_AXIS] *= factor;
  6990. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  6991. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  6992. }
  6993. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  6994. }
  6995. else {
  6996. planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
  6997. }
  6998. }
  6999. }
  7000. planner.refresh_positioning();
  7001. }
  7002. /**
  7003. * Output the current position to serial
  7004. */
  7005. void report_current_position() {
  7006. SERIAL_PROTOCOLPGM("X:");
  7007. SERIAL_PROTOCOL(LOGICAL_X_POSITION(current_position[X_AXIS]));
  7008. SERIAL_PROTOCOLPGM(" Y:");
  7009. SERIAL_PROTOCOL(LOGICAL_Y_POSITION(current_position[Y_AXIS]));
  7010. SERIAL_PROTOCOLPGM(" Z:");
  7011. SERIAL_PROTOCOL(LOGICAL_Z_POSITION(current_position[Z_AXIS]));
  7012. SERIAL_PROTOCOLPGM(" E:");
  7013. SERIAL_PROTOCOL(current_position[E_AXIS]);
  7014. stepper.report_positions();
  7015. #if IS_SCARA
  7016. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  7017. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  7018. SERIAL_EOL();
  7019. #endif
  7020. }
  7021. #ifdef M114_DETAIL
  7022. void report_xyze(const float pos[], const uint8_t n = 4, const uint8_t precision = 3) {
  7023. char str[12];
  7024. for (uint8_t i = 0; i < n; i++) {
  7025. SERIAL_CHAR(' ');
  7026. SERIAL_CHAR(axis_codes[i]);
  7027. SERIAL_CHAR(':');
  7028. SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
  7029. }
  7030. SERIAL_EOL();
  7031. }
  7032. inline void report_xyz(const float pos[]) { report_xyze(pos, 3); }
  7033. void report_current_position_detail() {
  7034. stepper.synchronize();
  7035. SERIAL_PROTOCOLPGM("\nLogical:");
  7036. const float logical[XYZ] = {
  7037. LOGICAL_X_POSITION(current_position[X_AXIS]),
  7038. LOGICAL_Y_POSITION(current_position[Y_AXIS]),
  7039. LOGICAL_Z_POSITION(current_position[Z_AXIS])
  7040. };
  7041. report_xyze(logical);
  7042. SERIAL_PROTOCOLPGM("Raw: ");
  7043. report_xyz(current_position);
  7044. float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  7045. #if PLANNER_LEVELING
  7046. SERIAL_PROTOCOLPGM("Leveled:");
  7047. planner.apply_leveling(leveled);
  7048. report_xyz(leveled);
  7049. SERIAL_PROTOCOLPGM("UnLevel:");
  7050. float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
  7051. planner.unapply_leveling(unleveled);
  7052. report_xyz(unleveled);
  7053. #endif
  7054. #if IS_KINEMATIC
  7055. #if IS_SCARA
  7056. SERIAL_PROTOCOLPGM("ScaraK: ");
  7057. #else
  7058. SERIAL_PROTOCOLPGM("DeltaK: ");
  7059. #endif
  7060. inverse_kinematics(leveled); // writes delta[]
  7061. report_xyz(delta);
  7062. #endif
  7063. SERIAL_PROTOCOLPGM("Stepper:");
  7064. LOOP_XYZE(i) {
  7065. SERIAL_CHAR(' ');
  7066. SERIAL_CHAR(axis_codes[i]);
  7067. SERIAL_CHAR(':');
  7068. SERIAL_PROTOCOL(stepper.position((AxisEnum)i));
  7069. }
  7070. SERIAL_EOL();
  7071. #if IS_SCARA
  7072. const float deg[XYZ] = {
  7073. stepper.get_axis_position_degrees(A_AXIS),
  7074. stepper.get_axis_position_degrees(B_AXIS)
  7075. };
  7076. SERIAL_PROTOCOLPGM("Degrees:");
  7077. report_xyze(deg, 2);
  7078. #endif
  7079. SERIAL_PROTOCOLPGM("FromStp:");
  7080. get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)
  7081. const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
  7082. report_xyze(from_steppers);
  7083. const float diff[XYZE] = {
  7084. from_steppers[X_AXIS] - leveled[X_AXIS],
  7085. from_steppers[Y_AXIS] - leveled[Y_AXIS],
  7086. from_steppers[Z_AXIS] - leveled[Z_AXIS],
  7087. from_steppers[E_AXIS] - current_position[E_AXIS]
  7088. };
  7089. SERIAL_PROTOCOLPGM("Differ: ");
  7090. report_xyze(diff);
  7091. }
  7092. #endif // M114_DETAIL
  7093. /**
  7094. * M114: Report current position to host
  7095. */
  7096. inline void gcode_M114() {
  7097. #ifdef M114_DETAIL
  7098. if (parser.seen('D')) {
  7099. report_current_position_detail();
  7100. return;
  7101. }
  7102. #endif
  7103. stepper.synchronize();
  7104. report_current_position();
  7105. }
  7106. /**
  7107. * M115: Capabilities string
  7108. */
  7109. inline void gcode_M115() {
  7110. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  7111. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  7112. // SERIAL_XON_XOFF
  7113. #if ENABLED(SERIAL_XON_XOFF)
  7114. SERIAL_PROTOCOLLNPGM("Cap:SERIAL_XON_XOFF:1");
  7115. #else
  7116. SERIAL_PROTOCOLLNPGM("Cap:SERIAL_XON_XOFF:0");
  7117. #endif
  7118. // EEPROM (M500, M501)
  7119. #if ENABLED(EEPROM_SETTINGS)
  7120. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  7121. #else
  7122. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  7123. #endif
  7124. // AUTOREPORT_TEMP (M155)
  7125. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  7126. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  7127. #else
  7128. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  7129. #endif
  7130. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  7131. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  7132. // Print Job timer M75, M76, M77
  7133. SERIAL_PROTOCOLLNPGM("Cap:PRINT_JOB:1");
  7134. // AUTOLEVEL (G29)
  7135. #if HAS_ABL
  7136. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  7137. #else
  7138. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  7139. #endif
  7140. // Z_PROBE (G30)
  7141. #if HAS_BED_PROBE
  7142. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  7143. #else
  7144. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  7145. #endif
  7146. // MESH_REPORT (M420 V)
  7147. #if HAS_LEVELING
  7148. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  7149. #else
  7150. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  7151. #endif
  7152. // BUILD_PERCENT (M73)
  7153. #if ENABLED(LCD_SET_PROGRESS_MANUALLY)
  7154. SERIAL_PROTOCOLLNPGM("Cap:BUILD_PERCENT:1");
  7155. #else
  7156. SERIAL_PROTOCOLLNPGM("Cap:BUILD_PERCENT:0");
  7157. #endif
  7158. // SOFTWARE_POWER (M80, M81)
  7159. #if HAS_POWER_SWITCH
  7160. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  7161. #else
  7162. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  7163. #endif
  7164. // CASE LIGHTS (M355)
  7165. #if HAS_CASE_LIGHT
  7166. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  7167. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  7168. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1");
  7169. }
  7170. else
  7171. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  7172. #else
  7173. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  7174. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  7175. #endif
  7176. // EMERGENCY_PARSER (M108, M112, M410)
  7177. #if ENABLED(EMERGENCY_PARSER)
  7178. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  7179. #else
  7180. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  7181. #endif
  7182. #endif // EXTENDED_CAPABILITIES_REPORT
  7183. }
  7184. /**
  7185. * M117: Set LCD Status Message
  7186. */
  7187. inline void gcode_M117() { lcd_setstatus(parser.string_arg); }
  7188. /**
  7189. * M118: Display a message in the host console.
  7190. *
  7191. * A1 Append '// ' for an action command, as in OctoPrint
  7192. * E1 Have the host 'echo:' the text
  7193. */
  7194. inline void gcode_M118() {
  7195. if (parser.boolval('E')) SERIAL_ECHO_START();
  7196. if (parser.boolval('A')) SERIAL_ECHOPGM("// ");
  7197. SERIAL_ECHOLN(parser.string_arg);
  7198. }
  7199. /**
  7200. * M119: Output endstop states to serial output
  7201. */
  7202. inline void gcode_M119() { endstops.M119(); }
  7203. /**
  7204. * M120: Enable endstops and set non-homing endstop state to "enabled"
  7205. */
  7206. inline void gcode_M120() { endstops.enable_globally(true); }
  7207. /**
  7208. * M121: Disable endstops and set non-homing endstop state to "disabled"
  7209. */
  7210. inline void gcode_M121() { endstops.enable_globally(false); }
  7211. #if ENABLED(PARK_HEAD_ON_PAUSE)
  7212. /**
  7213. * M125: Store current position and move to filament change position.
  7214. * Called on pause (by M25) to prevent material leaking onto the
  7215. * object. On resume (M24) the head will be moved back and the
  7216. * print will resume.
  7217. *
  7218. * If Marlin is compiled without SD Card support, M125 can be
  7219. * used directly to pause the print and move to park position,
  7220. * resuming with a button click or M108.
  7221. *
  7222. * L = override retract length
  7223. * X = override X
  7224. * Y = override Y
  7225. * Z = override Z raise
  7226. */
  7227. inline void gcode_M125() {
  7228. // Initial retract before move to filament change position
  7229. const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  7230. #ifdef PAUSE_PARK_RETRACT_LENGTH
  7231. - (PAUSE_PARK_RETRACT_LENGTH)
  7232. #endif
  7233. ;
  7234. // Lift Z axis
  7235. const float z_lift = parser.linearval('Z')
  7236. #ifdef PAUSE_PARK_Z_ADD
  7237. + PAUSE_PARK_Z_ADD
  7238. #endif
  7239. ;
  7240. // Move XY axes to filament change position or given position
  7241. const float x_pos = parser.linearval('X')
  7242. #ifdef PAUSE_PARK_X_POS
  7243. + PAUSE_PARK_X_POS
  7244. #endif
  7245. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7246. + (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0)
  7247. #endif
  7248. ;
  7249. const float y_pos = parser.linearval('Y')
  7250. #ifdef PAUSE_PARK_Y_POS
  7251. + PAUSE_PARK_Y_POS
  7252. #endif
  7253. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7254. + (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0)
  7255. #endif
  7256. ;
  7257. #if DISABLED(SDSUPPORT)
  7258. const bool job_running = print_job_timer.isRunning();
  7259. #endif
  7260. if (pause_print(retract, z_lift, x_pos, y_pos)) {
  7261. #if DISABLED(SDSUPPORT)
  7262. // Wait for lcd click or M108
  7263. wait_for_filament_reload();
  7264. // Return to print position and continue
  7265. resume_print();
  7266. if (job_running) print_job_timer.start();
  7267. #endif
  7268. }
  7269. }
  7270. #endif // PARK_HEAD_ON_PAUSE
  7271. #if HAS_COLOR_LEDS
  7272. /**
  7273. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  7274. * and Brightness - Use P (for NEOPIXEL only)
  7275. *
  7276. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  7277. * If brightness is left out, no value changed
  7278. *
  7279. * Examples:
  7280. *
  7281. * M150 R255 ; Turn LED red
  7282. * M150 R255 U127 ; Turn LED orange (PWM only)
  7283. * M150 ; Turn LED off
  7284. * M150 R U B ; Turn LED white
  7285. * M150 W ; Turn LED white using a white LED
  7286. * M150 P127 ; Set LED 50% brightness
  7287. * M150 P ; Set LED full brightness
  7288. */
  7289. inline void gcode_M150() {
  7290. leds.set_color(MakeLEDColor(
  7291. parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7292. parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7293. parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7294. parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7295. parser.seen('P') ? (parser.has_value() ? parser.value_byte() : 255) : pixels.getBrightness()
  7296. ));
  7297. }
  7298. #endif // HAS_COLOR_LEDS
  7299. /**
  7300. * M200: Set filament diameter and set E axis units to cubic units
  7301. *
  7302. * T<extruder> - Optional extruder number. Current extruder if omitted.
  7303. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  7304. */
  7305. inline void gcode_M200() {
  7306. if (get_target_extruder_from_command(200)) return;
  7307. if (parser.seen('D')) {
  7308. // setting any extruder filament size disables volumetric on the assumption that
  7309. // slicers either generate in extruder values as cubic mm or as as filament feeds
  7310. // for all extruders
  7311. if ( (parser.volumetric_enabled = (parser.value_linear_units() != 0.0)) )
  7312. planner.set_filament_size(target_extruder, parser.value_linear_units());
  7313. }
  7314. planner.calculate_volumetric_multipliers();
  7315. }
  7316. /**
  7317. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  7318. *
  7319. * With multiple extruders use T to specify which one.
  7320. */
  7321. inline void gcode_M201() {
  7322. GET_TARGET_EXTRUDER(201);
  7323. LOOP_XYZE(i) {
  7324. if (parser.seen(axis_codes[i])) {
  7325. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7326. planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
  7327. }
  7328. }
  7329. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  7330. planner.reset_acceleration_rates();
  7331. }
  7332. #if 0 // Not used for Sprinter/grbl gen6
  7333. inline void gcode_M202() {
  7334. LOOP_XYZE(i) {
  7335. if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  7336. }
  7337. }
  7338. #endif
  7339. /**
  7340. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  7341. *
  7342. * With multiple extruders use T to specify which one.
  7343. */
  7344. inline void gcode_M203() {
  7345. GET_TARGET_EXTRUDER(203);
  7346. LOOP_XYZE(i)
  7347. if (parser.seen(axis_codes[i])) {
  7348. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7349. planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
  7350. }
  7351. }
  7352. /**
  7353. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  7354. *
  7355. * P = Printing moves
  7356. * R = Retract only (no X, Y, Z) moves
  7357. * T = Travel (non printing) moves
  7358. *
  7359. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  7360. */
  7361. inline void gcode_M204() {
  7362. if (parser.seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  7363. planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
  7364. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  7365. }
  7366. if (parser.seen('P')) {
  7367. planner.acceleration = parser.value_linear_units();
  7368. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  7369. }
  7370. if (parser.seen('R')) {
  7371. planner.retract_acceleration = parser.value_linear_units();
  7372. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  7373. }
  7374. if (parser.seen('T')) {
  7375. planner.travel_acceleration = parser.value_linear_units();
  7376. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  7377. }
  7378. }
  7379. /**
  7380. * M205: Set Advanced Settings
  7381. *
  7382. * S = Min Feed Rate (units/s)
  7383. * T = Min Travel Feed Rate (units/s)
  7384. * B = Min Segment Time (µs)
  7385. * X = Max X Jerk (units/sec^2)
  7386. * Y = Max Y Jerk (units/sec^2)
  7387. * Z = Max Z Jerk (units/sec^2)
  7388. * E = Max E Jerk (units/sec^2)
  7389. */
  7390. inline void gcode_M205() {
  7391. if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
  7392. if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
  7393. if (parser.seen('B')) planner.min_segment_time_us = parser.value_ulong();
  7394. if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
  7395. if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
  7396. if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units();
  7397. if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
  7398. }
  7399. #if HAS_M206_COMMAND
  7400. /**
  7401. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  7402. *
  7403. * *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
  7404. * *** M206 for SCARA will remain enabled in 1.1.x for compatibility.
  7405. * *** In the next 1.2 release, it will simply be disabled by default.
  7406. */
  7407. inline void gcode_M206() {
  7408. LOOP_XYZ(i)
  7409. if (parser.seen(axis_codes[i]))
  7410. set_home_offset((AxisEnum)i, parser.value_linear_units());
  7411. #if ENABLED(MORGAN_SCARA)
  7412. if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_float()); // Theta
  7413. if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_float()); // Psi
  7414. #endif
  7415. report_current_position();
  7416. }
  7417. #endif // HAS_M206_COMMAND
  7418. #if ENABLED(DELTA)
  7419. /**
  7420. * M665: Set delta configurations
  7421. *
  7422. * H = delta height
  7423. * L = diagonal rod
  7424. * R = delta radius
  7425. * S = segments per second
  7426. * B = delta calibration radius
  7427. * X = Alpha (Tower 1) angle trim
  7428. * Y = Beta (Tower 2) angle trim
  7429. * Z = Rotate A and B by this angle
  7430. */
  7431. inline void gcode_M665() {
  7432. if (parser.seen('H')) delta_height = parser.value_linear_units();
  7433. if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
  7434. if (parser.seen('R')) delta_radius = parser.value_linear_units();
  7435. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7436. if (parser.seen('B')) delta_calibration_radius = parser.value_float();
  7437. if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
  7438. if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
  7439. if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();
  7440. recalc_delta_settings();
  7441. }
  7442. /**
  7443. * M666: Set delta endstop adjustment
  7444. */
  7445. inline void gcode_M666() {
  7446. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7447. if (DEBUGGING(LEVELING)) {
  7448. SERIAL_ECHOLNPGM(">>> gcode_M666");
  7449. }
  7450. #endif
  7451. LOOP_XYZ(i) {
  7452. if (parser.seen(axis_codes[i])) {
  7453. if (parser.value_linear_units() * Z_HOME_DIR <= 0)
  7454. delta_endstop_adj[i] = parser.value_linear_units();
  7455. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7456. if (DEBUGGING(LEVELING)) {
  7457. SERIAL_ECHOPAIR("delta_endstop_adj[", axis_codes[i]);
  7458. SERIAL_ECHOLNPAIR("] = ", delta_endstop_adj[i]);
  7459. }
  7460. #endif
  7461. }
  7462. }
  7463. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7464. if (DEBUGGING(LEVELING)) {
  7465. SERIAL_ECHOLNPGM("<<< gcode_M666");
  7466. }
  7467. #endif
  7468. }
  7469. #elif IS_SCARA
  7470. /**
  7471. * M665: Set SCARA settings
  7472. *
  7473. * Parameters:
  7474. *
  7475. * S[segments-per-second] - Segments-per-second
  7476. * P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
  7477. * T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
  7478. *
  7479. * A, P, and X are all aliases for the shoulder angle
  7480. * B, T, and Y are all aliases for the elbow angle
  7481. */
  7482. inline void gcode_M665() {
  7483. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7484. const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
  7485. const uint8_t sumAPX = hasA + hasP + hasX;
  7486. if (sumAPX == 1)
  7487. home_offset[A_AXIS] = parser.value_float();
  7488. else if (sumAPX > 1) {
  7489. SERIAL_ERROR_START();
  7490. SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
  7491. return;
  7492. }
  7493. const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
  7494. const uint8_t sumBTY = hasB + hasT + hasY;
  7495. if (sumBTY == 1)
  7496. home_offset[B_AXIS] = parser.value_float();
  7497. else if (sumBTY > 1) {
  7498. SERIAL_ERROR_START();
  7499. SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
  7500. return;
  7501. }
  7502. }
  7503. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  7504. /**
  7505. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  7506. */
  7507. inline void gcode_M666() {
  7508. SERIAL_ECHOPGM("Dual Endstop Adjustment (mm): ");
  7509. #if ENABLED(X_DUAL_ENDSTOPS)
  7510. if (parser.seen('X')) x_endstop_adj = parser.value_linear_units();
  7511. SERIAL_ECHOPAIR(" X", x_endstop_adj);
  7512. #endif
  7513. #if ENABLED(Y_DUAL_ENDSTOPS)
  7514. if (parser.seen('Y')) y_endstop_adj = parser.value_linear_units();
  7515. SERIAL_ECHOPAIR(" Y", y_endstop_adj);
  7516. #endif
  7517. #if ENABLED(Z_DUAL_ENDSTOPS)
  7518. if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units();
  7519. SERIAL_ECHOPAIR(" Z", z_endstop_adj);
  7520. #endif
  7521. SERIAL_EOL();
  7522. }
  7523. #endif // !DELTA && Z_DUAL_ENDSTOPS
  7524. #if ENABLED(FWRETRACT)
  7525. /**
  7526. * M207: Set firmware retraction values
  7527. *
  7528. * S[+units] retract_length
  7529. * W[+units] swap_retract_length (multi-extruder)
  7530. * F[units/min] retract_feedrate_mm_s
  7531. * Z[units] retract_zlift
  7532. */
  7533. inline void gcode_M207() {
  7534. if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS);
  7535. if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7536. if (parser.seen('Z')) retract_zlift = parser.value_linear_units();
  7537. if (parser.seen('W')) swap_retract_length = parser.value_axis_units(E_AXIS);
  7538. }
  7539. /**
  7540. * M208: Set firmware un-retraction values
  7541. *
  7542. * S[+units] retract_recover_length (in addition to M207 S*)
  7543. * W[+units] swap_retract_recover_length (multi-extruder)
  7544. * F[units/min] retract_recover_feedrate_mm_s
  7545. * R[units/min] swap_retract_recover_feedrate_mm_s
  7546. */
  7547. inline void gcode_M208() {
  7548. if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS);
  7549. if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7550. if (parser.seen('R')) swap_retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7551. if (parser.seen('W')) swap_retract_recover_length = parser.value_axis_units(E_AXIS);
  7552. }
  7553. /**
  7554. * M209: Enable automatic retract (M209 S1)
  7555. * For slicers that don't support G10/11, reversed extrude-only
  7556. * moves will be classified as retraction.
  7557. */
  7558. inline void gcode_M209() {
  7559. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  7560. if (parser.seen('S')) {
  7561. autoretract_enabled = parser.value_bool();
  7562. for (uint8_t i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  7563. }
  7564. }
  7565. }
  7566. #endif // FWRETRACT
  7567. /**
  7568. * M211: Enable, Disable, and/or Report software endstops
  7569. *
  7570. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  7571. */
  7572. inline void gcode_M211() {
  7573. SERIAL_ECHO_START();
  7574. #if HAS_SOFTWARE_ENDSTOPS
  7575. if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
  7576. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7577. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  7578. #else
  7579. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7580. SERIAL_ECHOPGM(MSG_OFF);
  7581. #endif
  7582. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  7583. SERIAL_ECHOPAIR( MSG_X, LOGICAL_X_POSITION(soft_endstop_min[X_AXIS]));
  7584. SERIAL_ECHOPAIR(" " MSG_Y, LOGICAL_Y_POSITION(soft_endstop_min[Y_AXIS]));
  7585. SERIAL_ECHOPAIR(" " MSG_Z, LOGICAL_Z_POSITION(soft_endstop_min[Z_AXIS]));
  7586. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  7587. SERIAL_ECHOPAIR( MSG_X, LOGICAL_X_POSITION(soft_endstop_max[X_AXIS]));
  7588. SERIAL_ECHOPAIR(" " MSG_Y, LOGICAL_Y_POSITION(soft_endstop_max[Y_AXIS]));
  7589. SERIAL_ECHOLNPAIR(" " MSG_Z, LOGICAL_Z_POSITION(soft_endstop_max[Z_AXIS]));
  7590. }
  7591. #if HOTENDS > 1
  7592. /**
  7593. * M218 - set hotend offset (in linear units)
  7594. *
  7595. * T<tool>
  7596. * X<xoffset>
  7597. * Y<yoffset>
  7598. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
  7599. */
  7600. inline void gcode_M218() {
  7601. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  7602. if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
  7603. if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
  7604. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7605. if (parser.seenval('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
  7606. #endif
  7607. SERIAL_ECHO_START();
  7608. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7609. HOTEND_LOOP() {
  7610. SERIAL_CHAR(' ');
  7611. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  7612. SERIAL_CHAR(',');
  7613. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  7614. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7615. SERIAL_CHAR(',');
  7616. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  7617. #endif
  7618. }
  7619. SERIAL_EOL();
  7620. }
  7621. #endif // HOTENDS > 1
  7622. /**
  7623. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  7624. */
  7625. inline void gcode_M220() {
  7626. if (parser.seenval('S')) feedrate_percentage = parser.value_int();
  7627. }
  7628. /**
  7629. * M221: Set extrusion percentage (M221 T0 S95)
  7630. */
  7631. inline void gcode_M221() {
  7632. if (get_target_extruder_from_command(221)) return;
  7633. if (parser.seenval('S')) {
  7634. planner.flow_percentage[target_extruder] = parser.value_int();
  7635. planner.refresh_e_factor(target_extruder);
  7636. }
  7637. }
  7638. /**
  7639. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  7640. */
  7641. inline void gcode_M226() {
  7642. if (parser.seen('P')) {
  7643. const int pin_number = parser.value_int(),
  7644. pin_state = parser.intval('S', -1); // required pin state - default is inverted
  7645. if (WITHIN(pin_state, -1, 1) && pin_number > -1 && !pin_is_protected(pin_number)) {
  7646. int target = LOW;
  7647. stepper.synchronize();
  7648. pinMode(pin_number, INPUT);
  7649. switch (pin_state) {
  7650. case 1:
  7651. target = HIGH;
  7652. break;
  7653. case 0:
  7654. target = LOW;
  7655. break;
  7656. case -1:
  7657. target = !digitalRead(pin_number);
  7658. break;
  7659. }
  7660. while (digitalRead(pin_number) != target) idle();
  7661. } // pin_state -1 0 1 && pin_number > -1
  7662. } // parser.seen('P')
  7663. }
  7664. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7665. /**
  7666. * M260: Send data to a I2C slave device
  7667. *
  7668. * This is a PoC, the formating and arguments for the GCODE will
  7669. * change to be more compatible, the current proposal is:
  7670. *
  7671. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  7672. *
  7673. * M260 B<byte-1 value in base 10>
  7674. * M260 B<byte-2 value in base 10>
  7675. * M260 B<byte-3 value in base 10>
  7676. *
  7677. * M260 S1 ; Send the buffered data and reset the buffer
  7678. * M260 R1 ; Reset the buffer without sending data
  7679. *
  7680. */
  7681. inline void gcode_M260() {
  7682. // Set the target address
  7683. if (parser.seen('A')) i2c.address(parser.value_byte());
  7684. // Add a new byte to the buffer
  7685. if (parser.seen('B')) i2c.addbyte(parser.value_byte());
  7686. // Flush the buffer to the bus
  7687. if (parser.seen('S')) i2c.send();
  7688. // Reset and rewind the buffer
  7689. else if (parser.seen('R')) i2c.reset();
  7690. }
  7691. /**
  7692. * M261: Request X bytes from I2C slave device
  7693. *
  7694. * Usage: M261 A<slave device address base 10> B<number of bytes>
  7695. */
  7696. inline void gcode_M261() {
  7697. if (parser.seen('A')) i2c.address(parser.value_byte());
  7698. uint8_t bytes = parser.byteval('B', 1);
  7699. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  7700. i2c.relay(bytes);
  7701. }
  7702. else {
  7703. SERIAL_ERROR_START();
  7704. SERIAL_ERRORLN("Bad i2c request");
  7705. }
  7706. }
  7707. #endif // EXPERIMENTAL_I2CBUS
  7708. #if HAS_SERVOS
  7709. /**
  7710. * M280: Get or set servo position. P<index> [S<angle>]
  7711. */
  7712. inline void gcode_M280() {
  7713. if (!parser.seen('P')) return;
  7714. const int servo_index = parser.value_int();
  7715. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  7716. if (parser.seen('S'))
  7717. MOVE_SERVO(servo_index, parser.value_int());
  7718. else {
  7719. SERIAL_ECHO_START();
  7720. SERIAL_ECHOPAIR(" Servo ", servo_index);
  7721. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  7722. }
  7723. }
  7724. else {
  7725. SERIAL_ERROR_START();
  7726. SERIAL_ECHOPAIR("Servo ", servo_index);
  7727. SERIAL_ECHOLNPGM(" out of range");
  7728. }
  7729. }
  7730. #endif // HAS_SERVOS
  7731. #if ENABLED(BABYSTEPPING)
  7732. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7733. FORCE_INLINE void mod_zprobe_zoffset(const float &offs) {
  7734. zprobe_zoffset += offs;
  7735. SERIAL_ECHO_START();
  7736. SERIAL_ECHOLNPAIR(MSG_PROBE_Z_OFFSET ": ", zprobe_zoffset);
  7737. }
  7738. #endif
  7739. /**
  7740. * M290: Babystepping
  7741. */
  7742. inline void gcode_M290() {
  7743. #if ENABLED(BABYSTEP_XY)
  7744. for (uint8_t a = X_AXIS; a <= Z_AXIS; a++)
  7745. if (parser.seenval(axis_codes[a]) || (a == Z_AXIS && parser.seenval('S'))) {
  7746. const float offs = constrain(parser.value_axis_units((AxisEnum)a), -2, 2);
  7747. thermalManager.babystep_axis((AxisEnum)a, offs * planner.axis_steps_per_mm[a]);
  7748. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7749. if (a == Z_AXIS && (!parser.seen('P') || parser.value_bool())) mod_zprobe_zoffset(offs);
  7750. #endif
  7751. }
  7752. #else
  7753. if (parser.seenval('Z') || parser.seenval('S')) {
  7754. const float offs = constrain(parser.value_axis_units(Z_AXIS), -2, 2);
  7755. thermalManager.babystep_axis(Z_AXIS, offs * planner.axis_steps_per_mm[Z_AXIS]);
  7756. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7757. if (!parser.seen('P') || parser.value_bool()) mod_zprobe_zoffset(offs);
  7758. #endif
  7759. }
  7760. #endif
  7761. }
  7762. #endif // BABYSTEPPING
  7763. #if HAS_BUZZER
  7764. /**
  7765. * M300: Play beep sound S<frequency Hz> P<duration ms>
  7766. */
  7767. inline void gcode_M300() {
  7768. uint16_t const frequency = parser.ushortval('S', 260);
  7769. uint16_t duration = parser.ushortval('P', 1000);
  7770. // Limits the tone duration to 0-5 seconds.
  7771. NOMORE(duration, 5000);
  7772. BUZZ(duration, frequency);
  7773. }
  7774. #endif // HAS_BUZZER
  7775. #if ENABLED(PIDTEMP)
  7776. /**
  7777. * M301: Set PID parameters P I D (and optionally C, L)
  7778. *
  7779. * P[float] Kp term
  7780. * I[float] Ki term (unscaled)
  7781. * D[float] Kd term (unscaled)
  7782. *
  7783. * With PID_EXTRUSION_SCALING:
  7784. *
  7785. * C[float] Kc term
  7786. * L[float] LPQ length
  7787. */
  7788. inline void gcode_M301() {
  7789. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  7790. // default behaviour (omitting E parameter) is to update for extruder 0 only
  7791. const uint8_t e = parser.byteval('E'); // extruder being updated
  7792. if (e < HOTENDS) { // catch bad input value
  7793. if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
  7794. if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
  7795. if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
  7796. #if ENABLED(PID_EXTRUSION_SCALING)
  7797. if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
  7798. if (parser.seen('L')) lpq_len = parser.value_float();
  7799. NOMORE(lpq_len, LPQ_MAX_LEN);
  7800. #endif
  7801. thermalManager.updatePID();
  7802. SERIAL_ECHO_START();
  7803. #if ENABLED(PID_PARAMS_PER_HOTEND)
  7804. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  7805. #endif // PID_PARAMS_PER_HOTEND
  7806. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  7807. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  7808. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  7809. #if ENABLED(PID_EXTRUSION_SCALING)
  7810. //Kc does not have scaling applied above, or in resetting defaults
  7811. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  7812. #endif
  7813. SERIAL_EOL();
  7814. }
  7815. else {
  7816. SERIAL_ERROR_START();
  7817. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  7818. }
  7819. }
  7820. #endif // PIDTEMP
  7821. #if ENABLED(PIDTEMPBED)
  7822. inline void gcode_M304() {
  7823. if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
  7824. if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
  7825. if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
  7826. SERIAL_ECHO_START();
  7827. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  7828. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  7829. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  7830. }
  7831. #endif // PIDTEMPBED
  7832. #if defined(CHDK) || HAS_PHOTOGRAPH
  7833. /**
  7834. * M240: Trigger a camera by emulating a Canon RC-1
  7835. * See http://www.doc-diy.net/photo/rc-1_hacked/
  7836. */
  7837. inline void gcode_M240() {
  7838. #ifdef CHDK
  7839. OUT_WRITE(CHDK, HIGH);
  7840. chdkHigh = millis();
  7841. chdkActive = true;
  7842. #elif HAS_PHOTOGRAPH
  7843. const uint8_t NUM_PULSES = 16;
  7844. const float PULSE_LENGTH = 0.01524;
  7845. for (int i = 0; i < NUM_PULSES; i++) {
  7846. WRITE(PHOTOGRAPH_PIN, HIGH);
  7847. _delay_ms(PULSE_LENGTH);
  7848. WRITE(PHOTOGRAPH_PIN, LOW);
  7849. _delay_ms(PULSE_LENGTH);
  7850. }
  7851. delay(7.33);
  7852. for (int i = 0; i < NUM_PULSES; i++) {
  7853. WRITE(PHOTOGRAPH_PIN, HIGH);
  7854. _delay_ms(PULSE_LENGTH);
  7855. WRITE(PHOTOGRAPH_PIN, LOW);
  7856. _delay_ms(PULSE_LENGTH);
  7857. }
  7858. #endif // !CHDK && HAS_PHOTOGRAPH
  7859. }
  7860. #endif // CHDK || PHOTOGRAPH_PIN
  7861. #if HAS_LCD_CONTRAST
  7862. /**
  7863. * M250: Read and optionally set the LCD contrast
  7864. */
  7865. inline void gcode_M250() {
  7866. if (parser.seen('C')) set_lcd_contrast(parser.value_int());
  7867. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  7868. SERIAL_PROTOCOL(lcd_contrast);
  7869. SERIAL_EOL();
  7870. }
  7871. #endif // HAS_LCD_CONTRAST
  7872. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7873. /**
  7874. * M302: Allow cold extrudes, or set the minimum extrude temperature
  7875. *
  7876. * S<temperature> sets the minimum extrude temperature
  7877. * P<bool> enables (1) or disables (0) cold extrusion
  7878. *
  7879. * Examples:
  7880. *
  7881. * M302 ; report current cold extrusion state
  7882. * M302 P0 ; enable cold extrusion checking
  7883. * M302 P1 ; disables cold extrusion checking
  7884. * M302 S0 ; always allow extrusion (disables checking)
  7885. * M302 S170 ; only allow extrusion above 170
  7886. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  7887. */
  7888. inline void gcode_M302() {
  7889. const bool seen_S = parser.seen('S');
  7890. if (seen_S) {
  7891. thermalManager.extrude_min_temp = parser.value_celsius();
  7892. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  7893. }
  7894. if (parser.seen('P'))
  7895. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
  7896. else if (!seen_S) {
  7897. // Report current state
  7898. SERIAL_ECHO_START();
  7899. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  7900. SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
  7901. SERIAL_ECHOLNPGM("C)");
  7902. }
  7903. }
  7904. #endif // PREVENT_COLD_EXTRUSION
  7905. /**
  7906. * M303: PID relay autotune
  7907. *
  7908. * S<temperature> sets the target temperature. (default 150C)
  7909. * E<extruder> (-1 for the bed) (default 0)
  7910. * C<cycles>
  7911. * U<bool> with a non-zero value will apply the result to current settings
  7912. */
  7913. inline void gcode_M303() {
  7914. #if HAS_PID_HEATING
  7915. const int e = parser.intval('E'), c = parser.intval('C', 5);
  7916. const bool u = parser.boolval('U');
  7917. int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);
  7918. if (WITHIN(e, 0, HOTENDS - 1))
  7919. target_extruder = e;
  7920. #if DISABLED(BUSY_WHILE_HEATING)
  7921. KEEPALIVE_STATE(NOT_BUSY);
  7922. #endif
  7923. thermalManager.PID_autotune(temp, e, c, u);
  7924. #if DISABLED(BUSY_WHILE_HEATING)
  7925. KEEPALIVE_STATE(IN_HANDLER);
  7926. #endif
  7927. #else
  7928. SERIAL_ERROR_START();
  7929. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  7930. #endif
  7931. }
  7932. #if ENABLED(MORGAN_SCARA)
  7933. bool SCARA_move_to_cal(const uint8_t delta_a, const uint8_t delta_b) {
  7934. if (IsRunning()) {
  7935. forward_kinematics_SCARA(delta_a, delta_b);
  7936. destination[X_AXIS] = cartes[X_AXIS];
  7937. destination[Y_AXIS] = cartes[Y_AXIS];
  7938. destination[Z_AXIS] = current_position[Z_AXIS];
  7939. prepare_move_to_destination();
  7940. return true;
  7941. }
  7942. return false;
  7943. }
  7944. /**
  7945. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  7946. */
  7947. inline bool gcode_M360() {
  7948. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  7949. return SCARA_move_to_cal(0, 120);
  7950. }
  7951. /**
  7952. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  7953. */
  7954. inline bool gcode_M361() {
  7955. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  7956. return SCARA_move_to_cal(90, 130);
  7957. }
  7958. /**
  7959. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  7960. */
  7961. inline bool gcode_M362() {
  7962. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  7963. return SCARA_move_to_cal(60, 180);
  7964. }
  7965. /**
  7966. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  7967. */
  7968. inline bool gcode_M363() {
  7969. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  7970. return SCARA_move_to_cal(50, 90);
  7971. }
  7972. /**
  7973. * M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
  7974. */
  7975. inline bool gcode_M364() {
  7976. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  7977. return SCARA_move_to_cal(45, 135);
  7978. }
  7979. #endif // SCARA
  7980. #if ENABLED(EXT_SOLENOID)
  7981. void enable_solenoid(const uint8_t num) {
  7982. switch (num) {
  7983. case 0:
  7984. OUT_WRITE(SOL0_PIN, HIGH);
  7985. break;
  7986. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  7987. case 1:
  7988. OUT_WRITE(SOL1_PIN, HIGH);
  7989. break;
  7990. #endif
  7991. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  7992. case 2:
  7993. OUT_WRITE(SOL2_PIN, HIGH);
  7994. break;
  7995. #endif
  7996. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  7997. case 3:
  7998. OUT_WRITE(SOL3_PIN, HIGH);
  7999. break;
  8000. #endif
  8001. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  8002. case 4:
  8003. OUT_WRITE(SOL4_PIN, HIGH);
  8004. break;
  8005. #endif
  8006. default:
  8007. SERIAL_ECHO_START();
  8008. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  8009. break;
  8010. }
  8011. }
  8012. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  8013. void disable_all_solenoids() {
  8014. OUT_WRITE(SOL0_PIN, LOW);
  8015. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  8016. OUT_WRITE(SOL1_PIN, LOW);
  8017. #endif
  8018. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  8019. OUT_WRITE(SOL2_PIN, LOW);
  8020. #endif
  8021. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  8022. OUT_WRITE(SOL3_PIN, LOW);
  8023. #endif
  8024. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  8025. OUT_WRITE(SOL4_PIN, LOW);
  8026. #endif
  8027. }
  8028. /**
  8029. * M380: Enable solenoid on the active extruder
  8030. */
  8031. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  8032. /**
  8033. * M381: Disable all solenoids
  8034. */
  8035. inline void gcode_M381() { disable_all_solenoids(); }
  8036. #endif // EXT_SOLENOID
  8037. /**
  8038. * M400: Finish all moves
  8039. */
  8040. inline void gcode_M400() { stepper.synchronize(); }
  8041. #if HAS_BED_PROBE
  8042. /**
  8043. * M401: Engage Z Servo endstop if available
  8044. */
  8045. inline void gcode_M401() { DEPLOY_PROBE(); }
  8046. /**
  8047. * M402: Retract Z Servo endstop if enabled
  8048. */
  8049. inline void gcode_M402() { STOW_PROBE(); }
  8050. #endif // HAS_BED_PROBE
  8051. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8052. /**
  8053. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  8054. */
  8055. inline void gcode_M404() {
  8056. if (parser.seen('W')) {
  8057. filament_width_nominal = parser.value_linear_units();
  8058. planner.volumetric_area_nominal = CIRCLE_AREA(filament_width_nominal * 0.5);
  8059. }
  8060. else {
  8061. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  8062. SERIAL_PROTOCOLLN(filament_width_nominal);
  8063. }
  8064. }
  8065. /**
  8066. * M405: Turn on filament sensor for control
  8067. */
  8068. inline void gcode_M405() {
  8069. // This is technically a linear measurement, but since it's quantized to centimeters and is a different
  8070. // unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
  8071. if (parser.seen('D')) {
  8072. meas_delay_cm = parser.value_byte();
  8073. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  8074. }
  8075. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  8076. const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio();
  8077. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  8078. measurement_delay[i] = temp_ratio;
  8079. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  8080. }
  8081. filament_sensor = true;
  8082. }
  8083. /**
  8084. * M406: Turn off filament sensor for control
  8085. */
  8086. inline void gcode_M406() {
  8087. filament_sensor = false;
  8088. planner.calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
  8089. }
  8090. /**
  8091. * M407: Get measured filament diameter on serial output
  8092. */
  8093. inline void gcode_M407() {
  8094. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  8095. SERIAL_PROTOCOLLN(filament_width_meas);
  8096. }
  8097. #endif // FILAMENT_WIDTH_SENSOR
  8098. void quickstop_stepper() {
  8099. stepper.quick_stop();
  8100. stepper.synchronize();
  8101. set_current_from_steppers_for_axis(ALL_AXES);
  8102. SYNC_PLAN_POSITION_KINEMATIC();
  8103. }
  8104. #if HAS_LEVELING
  8105. /**
  8106. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  8107. *
  8108. * S[bool] Turns leveling on or off
  8109. * Z[height] Sets the Z fade height (0 or none to disable)
  8110. * V[bool] Verbose - Print the leveling grid
  8111. *
  8112. * With AUTO_BED_LEVELING_UBL only:
  8113. *
  8114. * L[index] Load UBL mesh from index (0 is default)
  8115. */
  8116. inline void gcode_M420() {
  8117. const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  8118. #if ENABLED(AUTO_BED_LEVELING_UBL)
  8119. // L to load a mesh from the EEPROM
  8120. if (parser.seen('L')) {
  8121. #if ENABLED(EEPROM_SETTINGS)
  8122. const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.storage_slot;
  8123. const int16_t a = settings.calc_num_meshes();
  8124. if (!a) {
  8125. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  8126. return;
  8127. }
  8128. if (!WITHIN(storage_slot, 0, a - 1)) {
  8129. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  8130. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  8131. return;
  8132. }
  8133. settings.load_mesh(storage_slot);
  8134. ubl.storage_slot = storage_slot;
  8135. #else
  8136. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  8137. return;
  8138. #endif
  8139. }
  8140. // L to load a mesh from the EEPROM
  8141. if (parser.seen('L') || parser.seen('V')) {
  8142. ubl.display_map(0); // Currently only supports one map type
  8143. SERIAL_ECHOLNPAIR("ubl.mesh_is_valid = ", ubl.mesh_is_valid());
  8144. SERIAL_ECHOLNPAIR("ubl.storage_slot = ", ubl.storage_slot);
  8145. }
  8146. #endif // AUTO_BED_LEVELING_UBL
  8147. // V to print the matrix or mesh
  8148. if (parser.seen('V')) {
  8149. #if ABL_PLANAR
  8150. planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
  8151. #else
  8152. if (leveling_is_valid()) {
  8153. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8154. print_bilinear_leveling_grid();
  8155. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8156. print_bilinear_leveling_grid_virt();
  8157. #endif
  8158. #elif ENABLED(MESH_BED_LEVELING)
  8159. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  8160. mbl_mesh_report();
  8161. #endif
  8162. }
  8163. #endif
  8164. }
  8165. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  8166. if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units(), false);
  8167. #endif
  8168. bool to_enable = false;
  8169. if (parser.seen('S')) {
  8170. to_enable = parser.value_bool();
  8171. set_bed_leveling_enabled(to_enable);
  8172. }
  8173. const bool new_status = planner.leveling_active;
  8174. if (to_enable && !new_status) {
  8175. SERIAL_ERROR_START();
  8176. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  8177. }
  8178. SERIAL_ECHO_START();
  8179. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  8180. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  8181. SERIAL_ECHO_START();
  8182. SERIAL_ECHOPGM("Fade Height ");
  8183. if (planner.z_fade_height > 0.0)
  8184. SERIAL_ECHOLN(planner.z_fade_height);
  8185. else
  8186. SERIAL_ECHOLNPGM(MSG_OFF);
  8187. #endif
  8188. // Report change in position
  8189. if (memcmp(oldpos, current_position, sizeof(oldpos)))
  8190. report_current_position();
  8191. }
  8192. #endif
  8193. #if ENABLED(MESH_BED_LEVELING)
  8194. /**
  8195. * M421: Set a single Mesh Bed Leveling Z coordinate
  8196. *
  8197. * Usage:
  8198. * M421 X<linear> Y<linear> Z<linear>
  8199. * M421 X<linear> Y<linear> Q<offset>
  8200. * M421 I<xindex> J<yindex> Z<linear>
  8201. * M421 I<xindex> J<yindex> Q<offset>
  8202. */
  8203. inline void gcode_M421() {
  8204. const bool hasX = parser.seen('X'), hasI = parser.seen('I');
  8205. const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(parser.value_linear_units()) : -1;
  8206. const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
  8207. const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(parser.value_linear_units()) : -1;
  8208. const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
  8209. if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
  8210. SERIAL_ERROR_START();
  8211. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8212. }
  8213. else if (ix < 0 || iy < 0) {
  8214. SERIAL_ERROR_START();
  8215. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8216. }
  8217. else
  8218. mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
  8219. }
  8220. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8221. /**
  8222. * M421: Set a single Mesh Bed Leveling Z coordinate
  8223. *
  8224. * Usage:
  8225. * M421 I<xindex> J<yindex> Z<linear>
  8226. * M421 I<xindex> J<yindex> Q<offset>
  8227. */
  8228. inline void gcode_M421() {
  8229. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  8230. const bool hasI = ix >= 0,
  8231. hasJ = iy >= 0,
  8232. hasZ = parser.seen('Z'),
  8233. hasQ = !hasZ && parser.seen('Q');
  8234. if (!hasI || !hasJ || !(hasZ || hasQ)) {
  8235. SERIAL_ERROR_START();
  8236. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8237. }
  8238. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  8239. SERIAL_ERROR_START();
  8240. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8241. }
  8242. else {
  8243. z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
  8244. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8245. bed_level_virt_interpolate();
  8246. #endif
  8247. }
  8248. }
  8249. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  8250. /**
  8251. * M421: Set a single Mesh Bed Leveling Z coordinate
  8252. *
  8253. * Usage:
  8254. * M421 I<xindex> J<yindex> Z<linear>
  8255. * M421 I<xindex> J<yindex> Q<offset>
  8256. * M421 C Z<linear>
  8257. * M421 C Q<offset>
  8258. */
  8259. inline void gcode_M421() {
  8260. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  8261. const bool hasI = ix >= 0,
  8262. hasJ = iy >= 0,
  8263. hasC = parser.seen('C'),
  8264. hasZ = parser.seen('Z'),
  8265. hasQ = !hasZ && parser.seen('Q');
  8266. if (hasC) {
  8267. const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL);
  8268. ix = location.x_index;
  8269. iy = location.y_index;
  8270. }
  8271. if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
  8272. SERIAL_ERROR_START();
  8273. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8274. }
  8275. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  8276. SERIAL_ERROR_START();
  8277. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8278. }
  8279. else
  8280. ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
  8281. }
  8282. #endif // AUTO_BED_LEVELING_UBL
  8283. #if HAS_M206_COMMAND
  8284. /**
  8285. * M428: Set home_offset based on the distance between the
  8286. * current_position and the nearest "reference point."
  8287. * If an axis is past center its endstop position
  8288. * is the reference-point. Otherwise it uses 0. This allows
  8289. * the Z offset to be set near the bed when using a max endstop.
  8290. *
  8291. * M428 can't be used more than 2cm away from 0 or an endstop.
  8292. *
  8293. * Use M206 to set these values directly.
  8294. */
  8295. inline void gcode_M428() {
  8296. if (axis_unhomed_error()) return;
  8297. float diff[XYZ];
  8298. LOOP_XYZ(i) {
  8299. diff[i] = base_home_pos((AxisEnum)i) - current_position[i];
  8300. if (!WITHIN(diff[i], -20, 20) && home_dir((AxisEnum)i) > 0)
  8301. diff[i] = -current_position[i];
  8302. if (!WITHIN(diff[i], -20, 20)) {
  8303. SERIAL_ERROR_START();
  8304. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  8305. LCD_ALERTMESSAGEPGM("Err: Too far!");
  8306. BUZZ(200, 40);
  8307. return;
  8308. }
  8309. }
  8310. LOOP_XYZ(i) set_home_offset((AxisEnum)i, diff[i]);
  8311. report_current_position();
  8312. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  8313. BUZZ(100, 659);
  8314. BUZZ(100, 698);
  8315. }
  8316. #endif // HAS_M206_COMMAND
  8317. /**
  8318. * M500: Store settings in EEPROM
  8319. */
  8320. inline void gcode_M500() {
  8321. (void)settings.save();
  8322. }
  8323. /**
  8324. * M501: Read settings from EEPROM
  8325. */
  8326. inline void gcode_M501() {
  8327. (void)settings.load();
  8328. }
  8329. /**
  8330. * M502: Revert to default settings
  8331. */
  8332. inline void gcode_M502() {
  8333. (void)settings.reset();
  8334. }
  8335. #if DISABLED(DISABLE_M503)
  8336. /**
  8337. * M503: print settings currently in memory
  8338. */
  8339. inline void gcode_M503() {
  8340. (void)settings.report(parser.seen('S') && !parser.value_bool());
  8341. }
  8342. #endif
  8343. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8344. /**
  8345. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  8346. */
  8347. inline void gcode_M540() {
  8348. if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool();
  8349. }
  8350. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  8351. #if HAS_BED_PROBE
  8352. inline void gcode_M851() {
  8353. SERIAL_ECHO_START();
  8354. SERIAL_ECHOPGM(MSG_PROBE_Z_OFFSET);
  8355. if (parser.seen('Z')) {
  8356. const float value = parser.value_linear_units();
  8357. if (!WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  8358. SERIAL_ECHOLNPGM(" " MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  8359. return;
  8360. }
  8361. zprobe_zoffset = value;
  8362. }
  8363. SERIAL_ECHOLNPAIR(": ", zprobe_zoffset);
  8364. }
  8365. #endif // HAS_BED_PROBE
  8366. #if ENABLED(SKEW_CORRECTION_GCODE)
  8367. /**
  8368. * M852: Get or set the machine skew factors. Reports current values with no arguments.
  8369. *
  8370. * S[xy_factor] - Alias for 'I'
  8371. * I[xy_factor] - New XY skew factor
  8372. * J[xz_factor] - New XZ skew factor
  8373. * K[yz_factor] - New YZ skew factor
  8374. */
  8375. inline void gcode_M852() {
  8376. uint8_t ijk = 0, badval = 0, setval = 0;
  8377. if (parser.seen('I') || parser.seen('S')) {
  8378. ++ijk;
  8379. const float value = parser.value_linear_units();
  8380. if (WITHIN(value, SKEW_FACTOR_MIN, SKEW_FACTOR_MAX)) {
  8381. if (planner.xy_skew_factor != value) {
  8382. planner.xy_skew_factor = value;
  8383. ++setval;
  8384. }
  8385. }
  8386. else
  8387. ++badval;
  8388. }
  8389. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  8390. if (parser.seen('J')) {
  8391. ++ijk;
  8392. const float value = parser.value_linear_units();
  8393. if (WITHIN(value, SKEW_FACTOR_MIN, SKEW_FACTOR_MAX)) {
  8394. if (planner.xz_skew_factor != value) {
  8395. planner.xz_skew_factor = value;
  8396. ++setval;
  8397. }
  8398. }
  8399. else
  8400. ++badval;
  8401. }
  8402. if (parser.seen('K')) {
  8403. ++ijk;
  8404. const float value = parser.value_linear_units();
  8405. if (WITHIN(value, SKEW_FACTOR_MIN, SKEW_FACTOR_MAX)) {
  8406. if (planner.yz_skew_factor != value) {
  8407. planner.yz_skew_factor = value;
  8408. ++setval;
  8409. }
  8410. }
  8411. else
  8412. ++badval;
  8413. }
  8414. #endif
  8415. if (badval)
  8416. SERIAL_ECHOLNPGM(MSG_SKEW_MIN " " STRINGIFY(SKEW_FACTOR_MIN) " " MSG_SKEW_MAX " " STRINGIFY(SKEW_FACTOR_MAX));
  8417. // When skew is changed the current position changes
  8418. if (setval) {
  8419. set_current_from_steppers_for_axis(ALL_AXES);
  8420. SYNC_PLAN_POSITION_KINEMATIC();
  8421. report_current_position();
  8422. }
  8423. if (!ijk) {
  8424. SERIAL_ECHO_START();
  8425. SERIAL_ECHOPAIR(MSG_SKEW_FACTOR " XY: ", planner.xy_skew_factor);
  8426. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  8427. SERIAL_ECHOPAIR(" XZ: ", planner.xz_skew_factor);
  8428. SERIAL_ECHOLNPAIR(" YZ: ", planner.yz_skew_factor);
  8429. #else
  8430. SERIAL_EOL();
  8431. #endif
  8432. }
  8433. }
  8434. #endif // SKEW_CORRECTION_GCODE
  8435. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  8436. /**
  8437. * M600: Pause for filament change
  8438. *
  8439. * E[distance] - Retract the filament this far (negative value)
  8440. * Z[distance] - Move the Z axis by this distance
  8441. * X[position] - Move to this X position, with Y
  8442. * Y[position] - Move to this Y position, with X
  8443. * U[distance] - Retract distance for removal (negative value) (manual reload)
  8444. * L[distance] - Extrude distance for insertion (positive value) (manual reload)
  8445. * B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
  8446. *
  8447. * Default values are used for omitted arguments.
  8448. *
  8449. */
  8450. inline void gcode_M600() {
  8451. #if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
  8452. // Don't allow filament change without homing first
  8453. if (axis_unhomed_error()) home_all_axes();
  8454. #endif
  8455. // Initial retract before move to filament change position
  8456. const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
  8457. #ifdef PAUSE_PARK_RETRACT_LENGTH
  8458. - (PAUSE_PARK_RETRACT_LENGTH)
  8459. #endif
  8460. ;
  8461. // Lift Z axis
  8462. const float z_lift = parser.linearval('Z', 0
  8463. #ifdef PAUSE_PARK_Z_ADD
  8464. + PAUSE_PARK_Z_ADD
  8465. #endif
  8466. );
  8467. // Move XY axes to filament exchange position
  8468. const float x_pos = parser.linearval('X', 0
  8469. #ifdef PAUSE_PARK_X_POS
  8470. + PAUSE_PARK_X_POS
  8471. #endif
  8472. );
  8473. const float y_pos = parser.linearval('Y', 0
  8474. #ifdef PAUSE_PARK_Y_POS
  8475. + PAUSE_PARK_Y_POS
  8476. #endif
  8477. );
  8478. // Unload filament
  8479. const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0
  8480. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  8481. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  8482. #endif
  8483. ;
  8484. // Load filament
  8485. const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  8486. #ifdef FILAMENT_CHANGE_LOAD_LENGTH
  8487. + FILAMENT_CHANGE_LOAD_LENGTH
  8488. #endif
  8489. ;
  8490. const int beep_count = parser.intval('B',
  8491. #ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8492. FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8493. #else
  8494. -1
  8495. #endif
  8496. );
  8497. const bool job_running = print_job_timer.isRunning();
  8498. if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) {
  8499. wait_for_filament_reload(beep_count);
  8500. resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count);
  8501. }
  8502. // Resume the print job timer if it was running
  8503. if (job_running) print_job_timer.start();
  8504. }
  8505. #endif // ADVANCED_PAUSE_FEATURE
  8506. #if ENABLED(MK2_MULTIPLEXER)
  8507. inline void select_multiplexed_stepper(const uint8_t e) {
  8508. stepper.synchronize();
  8509. disable_e_steppers();
  8510. WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  8511. WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  8512. WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);
  8513. safe_delay(100);
  8514. }
  8515. /**
  8516. * M702: Unload all extruders
  8517. */
  8518. inline void gcode_M702() {
  8519. for (uint8_t s = 0; s < E_STEPPERS; s++) {
  8520. select_multiplexed_stepper(e);
  8521. // TODO: standard unload filament function
  8522. // MK2 firmware behavior:
  8523. // - Make sure temperature is high enough
  8524. // - Raise Z to at least 15 to make room
  8525. // - Extrude 1cm of filament in 1 second
  8526. // - Under 230C quickly purge ~12mm, over 230C purge ~10mm
  8527. // - Change E max feedrate to 80, eject the filament from the tube. Sync.
  8528. // - Restore E max feedrate to 50
  8529. }
  8530. // Go back to the last active extruder
  8531. select_multiplexed_stepper(active_extruder);
  8532. disable_e_steppers();
  8533. }
  8534. #endif // MK2_MULTIPLEXER
  8535. #if ENABLED(DUAL_X_CARRIAGE)
  8536. /**
  8537. * M605: Set dual x-carriage movement mode
  8538. *
  8539. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  8540. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  8541. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  8542. * units x-offset and an optional differential hotend temperature of
  8543. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  8544. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  8545. *
  8546. * Note: the X axis should be homed after changing dual x-carriage mode.
  8547. */
  8548. inline void gcode_M605() {
  8549. stepper.synchronize();
  8550. if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
  8551. switch (dual_x_carriage_mode) {
  8552. case DXC_FULL_CONTROL_MODE:
  8553. case DXC_AUTO_PARK_MODE:
  8554. break;
  8555. case DXC_DUPLICATION_MODE:
  8556. if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
  8557. if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
  8558. SERIAL_ECHO_START();
  8559. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  8560. SERIAL_CHAR(' ');
  8561. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  8562. SERIAL_CHAR(',');
  8563. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  8564. SERIAL_CHAR(' ');
  8565. SERIAL_ECHO(duplicate_extruder_x_offset);
  8566. SERIAL_CHAR(',');
  8567. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  8568. break;
  8569. default:
  8570. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  8571. break;
  8572. }
  8573. active_extruder_parked = false;
  8574. extruder_duplication_enabled = false;
  8575. delayed_move_time = 0;
  8576. }
  8577. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  8578. inline void gcode_M605() {
  8579. stepper.synchronize();
  8580. extruder_duplication_enabled = parser.intval('S') == (int)DXC_DUPLICATION_MODE;
  8581. SERIAL_ECHO_START();
  8582. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  8583. }
  8584. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  8585. #if ENABLED(LIN_ADVANCE)
  8586. /**
  8587. * M900: Set and/or Get advance K factor and WH/D ratio
  8588. *
  8589. * K<factor> Set advance K factor
  8590. * R<ratio> Set ratio directly (overrides WH/D)
  8591. * W<width> H<height> D<diam> Set ratio from WH/D
  8592. */
  8593. inline void gcode_M900() {
  8594. stepper.synchronize();
  8595. const float newK = parser.floatval('K', -1);
  8596. if (newK >= 0) planner.extruder_advance_k = newK;
  8597. float newR = parser.floatval('R', -1);
  8598. if (newR < 0) {
  8599. const float newD = parser.floatval('D', -1),
  8600. newW = parser.floatval('W', -1),
  8601. newH = parser.floatval('H', -1);
  8602. if (newD >= 0 && newW >= 0 && newH >= 0)
  8603. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  8604. }
  8605. if (newR >= 0) planner.advance_ed_ratio = newR;
  8606. SERIAL_ECHO_START();
  8607. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  8608. SERIAL_ECHOPGM(" E/D=");
  8609. const float ratio = planner.advance_ed_ratio;
  8610. if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
  8611. SERIAL_EOL();
  8612. }
  8613. #endif // LIN_ADVANCE
  8614. #if HAS_TRINAMIC
  8615. static bool report_tmc_status = false;
  8616. const char extended_axis_codes[11][3] = { "X", "X2", "Y", "Y2", "Z", "Z2", "E0", "E1", "E2", "E3", "E4" };
  8617. enum TMC_AxisEnum {
  8618. TMC_X,
  8619. TMC_X2,
  8620. TMC_Y,
  8621. TMC_Y2,
  8622. TMC_Z,
  8623. TMC_Z2,
  8624. TMC_E0,
  8625. TMC_E1,
  8626. TMC_E2,
  8627. TMC_E3,
  8628. TMC_E4
  8629. };
  8630. #if ENABLED(TMC_DEBUG)
  8631. enum TMC_debug_enum {
  8632. TMC_CODES,
  8633. TMC_ENABLED,
  8634. TMC_CURRENT,
  8635. TMC_RMS_CURRENT,
  8636. TMC_MAX_CURRENT,
  8637. TMC_IRUN,
  8638. TMC_IHOLD,
  8639. TMC_CS_ACTUAL,
  8640. TMC_PWM_SCALE,
  8641. TMC_VSENSE,
  8642. TMC_STEALTHCHOP,
  8643. TMC_MICROSTEPS,
  8644. TMC_TSTEP,
  8645. TMC_TPWMTHRS,
  8646. TMC_TPWMTHRS_MMS,
  8647. TMC_OTPW,
  8648. TMC_OTPW_TRIGGERED,
  8649. TMC_TOFF,
  8650. TMC_TBL,
  8651. TMC_HEND,
  8652. TMC_HSTRT,
  8653. TMC_SGT
  8654. };
  8655. enum TMC_drv_status_enum {
  8656. TMC_DRV_CODES,
  8657. TMC_STST,
  8658. TMC_OLB,
  8659. TMC_OLA,
  8660. TMC_S2GB,
  8661. TMC_S2GA,
  8662. TMC_DRV_OTPW,
  8663. TMC_OT,
  8664. TMC_STALLGUARD,
  8665. TMC_DRV_CS_ACTUAL,
  8666. TMC_FSACTIVE,
  8667. TMC_SG_RESULT,
  8668. TMC_DRV_STATUS_HEX,
  8669. TMC_T157,
  8670. TMC_T150,
  8671. TMC_T143,
  8672. TMC_T120,
  8673. TMC_STEALTH,
  8674. TMC_S2VSB,
  8675. TMC_S2VSA
  8676. };
  8677. static void drv_status_print_hex(const char name[], const uint32_t drv_status) {
  8678. SERIAL_ECHO(name);
  8679. SERIAL_ECHOPGM(" = 0x");
  8680. for(int B=24; B>=8; B-=8){
  8681. MYSERIAL.print((drv_status>>(B+4))&0xF, HEX);
  8682. MYSERIAL.print((drv_status>>B)&0xF, HEX);
  8683. MYSERIAL.print(':');
  8684. }
  8685. MYSERIAL.print((drv_status>>4)&0xF, HEX);
  8686. MYSERIAL.print((drv_status)&0xF, HEX);
  8687. SERIAL_EOL();
  8688. }
  8689. #if ENABLED(HAVE_TMC2130)
  8690. static void tmc_status(TMC2130Stepper &st, const TMC_debug_enum i) {
  8691. switch(i) {
  8692. case TMC_PWM_SCALE: MYSERIAL.print(st.PWM_SCALE(), DEC); break;
  8693. case TMC_TSTEP: SERIAL_ECHO(st.TSTEP()); break;
  8694. case TMC_SGT: MYSERIAL.print(st.sgt(), DEC); break;
  8695. case TMC_STEALTHCHOP: serialprintPGM(st.stealthChop() ? PSTR("true") : PSTR("false")); break;
  8696. default: break;
  8697. }
  8698. }
  8699. static void tmc_parse_drv_status(TMC2130Stepper &st, const TMC_drv_status_enum i) {
  8700. switch(i) {
  8701. case TMC_STALLGUARD: if (st.stallguard()) SERIAL_ECHOPGM("X"); break;
  8702. case TMC_SG_RESULT: MYSERIAL.print(st.sg_result(), DEC); break;
  8703. case TMC_FSACTIVE: if (st.fsactive()) SERIAL_ECHOPGM("X"); break;
  8704. default: break;
  8705. }
  8706. }
  8707. #endif
  8708. #if ENABLED(HAVE_TMC2208)
  8709. static void tmc_status(TMC2208Stepper &st, const TMC_debug_enum i) {
  8710. switch(i) {
  8711. case TMC_TSTEP:
  8712. {
  8713. uint32_t data = 0;
  8714. st.TSTEP(&data);
  8715. MYSERIAL.print(data);
  8716. break;
  8717. }
  8718. case TMC_PWM_SCALE: MYSERIAL.print(st.pwm_scale_sum(), DEC); break;
  8719. case TMC_STEALTHCHOP: serialprintPGM(st.stealth() ? PSTR("true") : PSTR("false")); break;
  8720. case TMC_S2VSA: if (st.s2vsa()) SERIAL_ECHOPGM("X"); break;
  8721. case TMC_S2VSB: if (st.s2vsb()) SERIAL_ECHOPGM("X"); break;
  8722. default: break;
  8723. }
  8724. }
  8725. static void tmc_parse_drv_status(TMC2208Stepper &st, const TMC_drv_status_enum i) {
  8726. switch(i) {
  8727. case TMC_T157: if (st.t157()) SERIAL_ECHOPGM("X"); break;
  8728. case TMC_T150: if (st.t150()) SERIAL_ECHOPGM("X"); break;
  8729. case TMC_T143: if (st.t143()) SERIAL_ECHOPGM("X"); break;
  8730. case TMC_T120: if (st.t120()) SERIAL_ECHOPGM("X"); break;
  8731. default: break;
  8732. }
  8733. }
  8734. #endif
  8735. template <typename TMC>
  8736. static void tmc_status(TMC &st, TMC_AxisEnum axis, const TMC_debug_enum i, const float spmm) {
  8737. SERIAL_ECHO('\t');
  8738. switch(i) {
  8739. case TMC_CODES: SERIAL_ECHO(extended_axis_codes[axis]); break;
  8740. case TMC_ENABLED: serialprintPGM(st.isEnabled() ? PSTR("true") : PSTR("false")); break;
  8741. case TMC_CURRENT: SERIAL_ECHO(st.getCurrent()); break;
  8742. case TMC_RMS_CURRENT: MYSERIAL.print(st.rms_current()); break;
  8743. case TMC_MAX_CURRENT: MYSERIAL.print((float)st.rms_current()*1.41, 0); break;
  8744. case TMC_IRUN:
  8745. MYSERIAL.print(st.irun(), DEC);
  8746. SERIAL_ECHOPGM("/31");
  8747. break;
  8748. case TMC_IHOLD:
  8749. MYSERIAL.print(st.ihold(), DEC);
  8750. SERIAL_ECHOPGM("/31");
  8751. break;
  8752. case TMC_CS_ACTUAL:
  8753. MYSERIAL.print(st.cs_actual(), DEC);
  8754. SERIAL_ECHOPGM("/31");
  8755. break;
  8756. case TMC_VSENSE: serialprintPGM(st.vsense() ? PSTR("1=.18") : PSTR("0=.325")); break;
  8757. case TMC_MICROSTEPS: SERIAL_ECHO(st.microsteps()); break;
  8758. case TMC_TPWMTHRS:
  8759. {
  8760. uint32_t tpwmthrs_val = st.TPWMTHRS();
  8761. SERIAL_ECHO(tpwmthrs_val);
  8762. }
  8763. break;
  8764. case TMC_TPWMTHRS_MMS:
  8765. {
  8766. uint32_t tpwmthrs_val = st.TPWMTHRS();
  8767. tpwmthrs_val ? SERIAL_ECHO(12650000UL * st.microsteps() / (256 * tpwmthrs_val * spmm)) : SERIAL_ECHO('-');
  8768. }
  8769. break;
  8770. case TMC_OTPW: serialprintPGM(st.otpw() ? PSTR("true") : PSTR("false")); break;
  8771. case TMC_OTPW_TRIGGERED: serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false")); break;
  8772. case TMC_TOFF: MYSERIAL.print(st.toff(), DEC); break;
  8773. case TMC_TBL: MYSERIAL.print(st.blank_time(), DEC); break;
  8774. case TMC_HEND: MYSERIAL.print(st.hysterisis_end(), DEC); break;
  8775. case TMC_HSTRT: MYSERIAL.print(st.hysterisis_start(), DEC); break;
  8776. default: tmc_status(st, i); break;
  8777. }
  8778. }
  8779. template <typename TMC>
  8780. static void tmc_parse_drv_status(TMC &st, TMC_AxisEnum axis, const TMC_drv_status_enum i) {
  8781. SERIAL_ECHOPGM("\t");
  8782. switch(i) {
  8783. case TMC_DRV_CODES: SERIAL_ECHO(extended_axis_codes[axis]); break;
  8784. case TMC_STST: if (st.stst()) SERIAL_ECHOPGM("X"); break;
  8785. case TMC_OLB: if (st.olb()) SERIAL_ECHOPGM("X"); break;
  8786. case TMC_OLA: if (st.ola()) SERIAL_ECHOPGM("X"); break;
  8787. case TMC_S2GB: if (st.s2gb()) SERIAL_ECHOPGM("X"); break;
  8788. case TMC_S2GA: if (st.s2ga()) SERIAL_ECHOPGM("X"); break;
  8789. case TMC_DRV_OTPW: if (st.otpw()) SERIAL_ECHOPGM("X"); break;
  8790. case TMC_OT: if (st.ot()) SERIAL_ECHOPGM("X"); break;
  8791. case TMC_DRV_CS_ACTUAL: MYSERIAL.print(st.cs_actual(), DEC); break;
  8792. case TMC_DRV_STATUS_HEX:drv_status_print_hex(extended_axis_codes[axis], st.DRV_STATUS()); break;
  8793. default: tmc_parse_drv_status(st, i); break;
  8794. }
  8795. }
  8796. static void tmc_debug_loop(const TMC_debug_enum i) {
  8797. #if X_IS_TRINAMIC
  8798. tmc_status(stepperX, TMC_X, i, planner.axis_steps_per_mm[X_AXIS]);
  8799. #endif
  8800. #if X2_IS_TRINAMIC
  8801. tmc_status(stepperX2, TMC_X2, i, planner.axis_steps_per_mm[X_AXIS]);
  8802. #endif
  8803. #if Y_IS_TRINAMIC
  8804. tmc_status(stepperY, TMC_Y, i, planner.axis_steps_per_mm[Y_AXIS]);
  8805. #endif
  8806. #if Y2_IS_TRINAMIC
  8807. tmc_status(stepperY2, TMC_Y2, i, planner.axis_steps_per_mm[Y_AXIS]);
  8808. #endif
  8809. #if Z_IS_TRINAMIC
  8810. tmc_status(stepperZ, TMC_Z, i, planner.axis_steps_per_mm[Z_AXIS]);
  8811. #endif
  8812. #if Z2_IS_TRINAMIC
  8813. tmc_status(stepperZ2, TMC_Z2, i, planner.axis_steps_per_mm[Z_AXIS]);
  8814. #endif
  8815. #if E0_IS_TRINAMIC
  8816. tmc_status(stepperE0, TMC_E0, i, planner.axis_steps_per_mm[E_AXIS]);
  8817. #endif
  8818. #if E1_IS_TRINAMIC
  8819. tmc_status(stepperE1, TMC_E1, i, planner.axis_steps_per_mm[E_AXIS+1]);
  8820. #endif
  8821. #if E2_IS_TRINAMIC
  8822. tmc_status(stepperE2, TMC_E2, i, planner.axis_steps_per_mm[E_AXIS+2]);
  8823. #endif
  8824. #if E3_IS_TRINAMIC
  8825. tmc_status(stepperE3, TMC_E3, i, planner.axis_steps_per_mm[E_AXIS+3]);
  8826. #endif
  8827. #if E4_IS_TRINAMIC
  8828. tmc_status(stepperE4, TMC_E4, i, planner.axis_steps_per_mm[E_AXIS+4]);
  8829. #endif
  8830. SERIAL_EOL();
  8831. }
  8832. static void drv_status_loop(const TMC_drv_status_enum i) {
  8833. #if X_IS_TRINAMIC
  8834. tmc_parse_drv_status(stepperX, TMC_X, i);
  8835. #endif
  8836. #if X2_IS_TRINAMIC
  8837. tmc_parse_drv_status(stepperX2, TMC_X2, i);
  8838. #endif
  8839. #if Y_IS_TRINAMIC
  8840. tmc_parse_drv_status(stepperY, TMC_Y, i);
  8841. #endif
  8842. #if Y2_IS_TRINAMIC
  8843. tmc_parse_drv_status(stepperY2, TMC_Y2, i);
  8844. #endif
  8845. #if Z_IS_TRINAMIC
  8846. tmc_parse_drv_status(stepperZ, TMC_Z, i);
  8847. #endif
  8848. #if Z2_IS_TRINAMIC
  8849. tmc_parse_drv_status(stepperZ2, TMC_Z2, i);
  8850. #endif
  8851. #if E0_IS_TRINAMIC
  8852. tmc_parse_drv_status(stepperE0, TMC_E0, i);
  8853. #endif
  8854. #if E1_IS_TRINAMIC
  8855. tmc_parse_drv_status(stepperE1, TMC_E1, i);
  8856. #endif
  8857. #if E2_IS_TRINAMIC
  8858. tmc_parse_drv_status(stepperE2, TMC_E2, i);
  8859. #endif
  8860. #if E3_IS_TRINAMIC
  8861. tmc_parse_drv_status(stepperE3, TMC_E3, i);
  8862. #endif
  8863. #if E4_IS_TRINAMIC
  8864. tmc_parse_drv_status(stepperE4, TMC_E4, i);
  8865. #endif
  8866. SERIAL_EOL();
  8867. }
  8868. inline void gcode_M122() {
  8869. if (parser.seen('S')) {
  8870. if (parser.value_bool()) {
  8871. SERIAL_ECHOLNPGM("axis:pwm_scale |status_response|");
  8872. report_tmc_status = true;
  8873. } else
  8874. report_tmc_status = false;
  8875. } else {
  8876. SERIAL_ECHOPGM("\t"); tmc_debug_loop(TMC_CODES);
  8877. SERIAL_ECHOPGM("Enabled\t"); tmc_debug_loop(TMC_ENABLED);
  8878. SERIAL_ECHOPGM("Set current"); tmc_debug_loop(TMC_CURRENT);
  8879. SERIAL_ECHOPGM("RMS current"); tmc_debug_loop(TMC_RMS_CURRENT);
  8880. SERIAL_ECHOPGM("MAX current"); tmc_debug_loop(TMC_MAX_CURRENT);
  8881. SERIAL_ECHOPGM("Run current"); tmc_debug_loop(TMC_IRUN);
  8882. SERIAL_ECHOPGM("Hold current"); tmc_debug_loop(TMC_IHOLD);
  8883. SERIAL_ECHOPGM("CS actual\t"); tmc_debug_loop(TMC_CS_ACTUAL);
  8884. SERIAL_ECHOPGM("PWM scale"); tmc_debug_loop(TMC_PWM_SCALE);
  8885. SERIAL_ECHOPGM("vsense\t"); tmc_debug_loop(TMC_VSENSE);
  8886. SERIAL_ECHOPGM("stealthChop"); tmc_debug_loop(TMC_STEALTHCHOP);
  8887. SERIAL_ECHOPGM("msteps\t"); tmc_debug_loop(TMC_MICROSTEPS);
  8888. SERIAL_ECHOPGM("tstep\t"); tmc_debug_loop(TMC_TSTEP);
  8889. SERIAL_ECHOPGM("pwm\nthreshold\t"); tmc_debug_loop(TMC_TPWMTHRS);
  8890. SERIAL_ECHOPGM("[mm/s]\t"); tmc_debug_loop(TMC_TPWMTHRS_MMS);
  8891. SERIAL_ECHOPGM("OT prewarn"); tmc_debug_loop(TMC_OTPW);
  8892. SERIAL_ECHOPGM("OT prewarn has\nbeen triggered"); tmc_debug_loop(TMC_OTPW_TRIGGERED);
  8893. SERIAL_ECHOPGM("off time\t"); tmc_debug_loop(TMC_TOFF);
  8894. SERIAL_ECHOPGM("blank time"); tmc_debug_loop(TMC_TBL);
  8895. SERIAL_ECHOPGM("hysterisis\n-end\t"); tmc_debug_loop(TMC_HEND);
  8896. SERIAL_ECHOPGM("-start\t"); tmc_debug_loop(TMC_HSTRT);
  8897. SERIAL_ECHOPGM("Stallguard thrs"); tmc_debug_loop(TMC_SGT);
  8898. SERIAL_ECHOPGM("DRVSTATUS"); drv_status_loop(TMC_DRV_CODES);
  8899. #if ENABLED(HAVE_TMC2130)
  8900. SERIAL_ECHOPGM("stallguard\t"); drv_status_loop(TMC_STALLGUARD);
  8901. SERIAL_ECHOPGM("sg_result\t"); drv_status_loop(TMC_SG_RESULT);
  8902. SERIAL_ECHOPGM("fsactive\t"); drv_status_loop(TMC_FSACTIVE);
  8903. #endif
  8904. SERIAL_ECHOPGM("stst\t"); drv_status_loop(TMC_STST);
  8905. SERIAL_ECHOPGM("olb\t"); drv_status_loop(TMC_OLB);
  8906. SERIAL_ECHOPGM("ola\t"); drv_status_loop(TMC_OLA);
  8907. SERIAL_ECHOPGM("s2gb\t"); drv_status_loop(TMC_S2GB);
  8908. SERIAL_ECHOPGM("s2ga\t"); drv_status_loop(TMC_S2GA);
  8909. SERIAL_ECHOPGM("otpw\t"); drv_status_loop(TMC_DRV_OTPW);
  8910. SERIAL_ECHOPGM("ot\t"); drv_status_loop(TMC_OT);
  8911. #if ENABLED(HAVE_TMC2208)
  8912. SERIAL_ECHOPGM("157C\t"); drv_status_loop(TMC_T157);
  8913. SERIAL_ECHOPGM("150C\t"); drv_status_loop(TMC_T150);
  8914. SERIAL_ECHOPGM("143C\t"); drv_status_loop(TMC_T143);
  8915. SERIAL_ECHOPGM("120C\t"); drv_status_loop(TMC_T120);
  8916. SERIAL_ECHOPGM("s2vsa\t"); drv_status_loop(TMC_S2VSA);
  8917. SERIAL_ECHOPGM("s2vsb\t"); drv_status_loop(TMC_S2VSB);
  8918. #endif
  8919. SERIAL_ECHOLNPGM("Driver registers:");drv_status_loop(TMC_DRV_STATUS_HEX);
  8920. }
  8921. }
  8922. #endif
  8923. template<typename TMC>
  8924. static void tmc_get_current(TMC &st, const char name[]) {
  8925. SERIAL_ECHO(name);
  8926. SERIAL_ECHOPGM(" axis driver current: ");
  8927. SERIAL_ECHOLN(st.getCurrent());
  8928. }
  8929. template<typename TMC>
  8930. static void tmc_set_current(TMC &st, const char name[], const int mA) {
  8931. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  8932. tmc_get_current(st, name);
  8933. }
  8934. template<typename TMC>
  8935. static void tmc_report_otpw(TMC &st, const char name[]) {
  8936. SERIAL_ECHO(name);
  8937. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  8938. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  8939. SERIAL_EOL();
  8940. }
  8941. template<typename TMC>
  8942. static void tmc_clear_otpw(TMC &st, const char name[]) {
  8943. st.clear_otpw();
  8944. SERIAL_ECHO(name);
  8945. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  8946. }
  8947. template<typename TMC>
  8948. static void tmc_get_pwmthrs(TMC &st, const char name[], const uint16_t spmm) {
  8949. SERIAL_ECHO(name);
  8950. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  8951. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.TPWMTHRS() * spmm));
  8952. }
  8953. template<typename TMC>
  8954. static void tmc_set_pwmthrs(TMC &st, const char name[], const int32_t thrs, const uint32_t spmm) {
  8955. st.TPWMTHRS(12650000UL * st.microsteps() / (256 * thrs * spmm));
  8956. tmc_get_pwmthrs(st, name, spmm);
  8957. }
  8958. template<typename TMC>
  8959. static void tmc_get_sgt(TMC &st, const char name[]) {
  8960. SERIAL_ECHO(name);
  8961. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  8962. MYSERIAL.println(st.sgt(), DEC);
  8963. }
  8964. template<typename TMC>
  8965. static void tmc_set_sgt(TMC &st, const char name[], const int8_t sgt_val) {
  8966. st.sgt(sgt_val);
  8967. tmc_get_sgt(st, name);
  8968. }
  8969. /**
  8970. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8971. * Report driver currents when no axis specified
  8972. */
  8973. inline void gcode_M906() {
  8974. uint16_t values[XYZE];
  8975. LOOP_XYZE(i)
  8976. values[i] = parser.intval(axis_codes[i]);
  8977. #if X_IS_TRINAMIC
  8978. if (values[X_AXIS]) tmc_set_current(stepperX, extended_axis_codes[TMC_X], values[X_AXIS]);
  8979. else tmc_get_current(stepperX, extended_axis_codes[TMC_X]);
  8980. #endif
  8981. #if X2_IS_TRINAMIC
  8982. if (values[X_AXIS]) tmc_set_current(stepperX2, extended_axis_codes[TMC_X2], values[X_AXIS]);
  8983. else tmc_get_current(stepperX2, extended_axis_codes[TMC_X2]);
  8984. #endif
  8985. #if Y_IS_TRINAMIC
  8986. if (values[Y_AXIS]) tmc_set_current(stepperY, extended_axis_codes[TMC_Y], values[Y_AXIS]);
  8987. else tmc_get_current(stepperY, extended_axis_codes[TMC_Y]);
  8988. #endif
  8989. #if Y2_IS_TRINAMIC
  8990. if (values[Y_AXIS]) tmc_set_current(stepperY2, extended_axis_codes[TMC_Y2], values[Y_AXIS]);
  8991. else tmc_get_current(stepperY2, extended_axis_codes[TMC_Y2]);
  8992. #endif
  8993. #if Z_IS_TRINAMIC
  8994. if (values[Z_AXIS]) tmc_set_current(stepperZ, extended_axis_codes[TMC_Z], values[Z_AXIS]);
  8995. else tmc_get_current(stepperZ, extended_axis_codes[TMC_Z]);
  8996. #endif
  8997. #if Z2_IS_TRINAMIC
  8998. if (values[Z_AXIS]) tmc_set_current(stepperZ2, extended_axis_codes[TMC_Z2], values[Z_AXIS]);
  8999. else tmc_get_current(stepperZ2, extended_axis_codes[TMC_Z2]);
  9000. #endif
  9001. #if E0_IS_TRINAMIC
  9002. if (values[E_AXIS]) tmc_set_current(stepperE0, extended_axis_codes[TMC_E0], values[E_AXIS]);
  9003. else tmc_get_current(stepperE0, extended_axis_codes[TMC_E0]);
  9004. #endif
  9005. #if E1_IS_TRINAMIC
  9006. if (values[E_AXIS]) tmc_set_current(stepperE1, extended_axis_codes[TMC_E1], values[E_AXIS]);
  9007. else tmc_get_current(stepperE1, extended_axis_codes[TMC_E1]);
  9008. #endif
  9009. #if E2_IS_TRINAMIC
  9010. if (values[E_AXIS]) tmc_set_current(stepperE2, extended_axis_codes[TMC_E2], values[E_AXIS]);
  9011. else tmc_get_current(stepperE2, extended_axis_codes[TMC_E2]);
  9012. #endif
  9013. #if E3_IS_TRINAMIC
  9014. if (values[E_AXIS]) tmc_set_current(stepperE3, extended_axis_codes[TMC_E3], values[E_AXIS]);
  9015. else tmc_get_current(stepperE3, extended_axis_codes[TMC_E3]);
  9016. #endif
  9017. #if E4_IS_TRINAMIC
  9018. if (values[E_AXIS]) tmc_set_current(stepperE4, extended_axis_codes[TMC_E4], values[E_AXIS]);
  9019. else tmc_get_current(stepperE4, extended_axis_codes[TMC_E4]);
  9020. #endif
  9021. }
  9022. /**
  9023. * M911: Report TMC stepper driver overtemperature pre-warn flag
  9024. * The flag is held by the library and persist until manually cleared by M912
  9025. */
  9026. inline void gcode_M911() {
  9027. #if ENABLED(X_IS_TMC2130) || (ENABLED(X_IS_TMC2208) && PIN_EXISTS(X_SERIAL_RX)) || ENABLED(IS_TRAMS)
  9028. tmc_report_otpw(stepperX, extended_axis_codes[TMC_X]);
  9029. #endif
  9030. #if ENABLED(Y_IS_TMC2130) || (ENABLED(Y_IS_TMC2208) && PIN_EXISTS(Y_SERIAL_RX)) || ENABLED(IS_TRAMS)
  9031. tmc_report_otpw(stepperY, extended_axis_codes[TMC_Y]);
  9032. #endif
  9033. #if ENABLED(Z_IS_TMC2130) || (ENABLED(Z_IS_TMC2208) && PIN_EXISTS(Z_SERIAL_RX)) || ENABLED(IS_TRAMS)
  9034. tmc_report_otpw(stepperZ, extended_axis_codes[TMC_Z]);
  9035. #endif
  9036. #if ENABLED(E0_IS_TMC2130) || (ENABLED(E0_IS_TMC2208) && PIN_EXISTS(E0_SERIAL_RX)) || ENABLED(IS_TRAMS)
  9037. tmc_report_otpw(stepperE0, extended_axis_codes[TMC_E0]);
  9038. #endif
  9039. }
  9040. /**
  9041. * M912: Clear TMC stepper driver overtemperature pre-warn flag held by the library
  9042. */
  9043. inline void gcode_M912() {
  9044. const bool clearX = parser.seen(axis_codes[X_AXIS]), clearY = parser.seen(axis_codes[Y_AXIS]), clearZ = parser.seen(axis_codes[Z_AXIS]), clearE = parser.seen(axis_codes[E_AXIS]),
  9045. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  9046. #if ENABLED(X_IS_TMC2130) || ENABLED(IS_TRAMS) || (ENABLED(X_IS_TMC2208) && PIN_EXISTS(X_SERIAL_RX))
  9047. if (clearX || clearAll) tmc_clear_otpw(stepperX, extended_axis_codes[TMC_X]);
  9048. #endif
  9049. #if ENABLED(X2_IS_TMC2130) || (ENABLED(X2_IS_TMC2208) && PIN_EXISTS(X_SERIAL_RX))
  9050. if (clearX || clearAll) tmc_clear_otpw(stepperX, extended_axis_codes[TMC_X]);
  9051. #endif
  9052. #if ENABLED(Y_IS_TMC2130) || (ENABLED(Y_IS_TMC2208) && PIN_EXISTS(Y_SERIAL_RX))
  9053. if (clearY || clearAll) tmc_clear_otpw(stepperY, extended_axis_codes[TMC_Y]);
  9054. #endif
  9055. #if ENABLED(Z_IS_TMC2130) || (ENABLED(Z_IS_TMC2208) && PIN_EXISTS(Z_SERIAL_RX))
  9056. if (clearZ || clearAll) tmc_clear_otpw(stepperZ, extended_axis_codes[TMC_Z]);
  9057. #endif
  9058. #if ENABLED(E0_IS_TMC2130) || (ENABLED(E0_IS_TMC2208) && PIN_EXISTS(E0_SERIAL_RX))
  9059. if (clearE || clearAll) tmc_clear_otpw(stepperE0, extended_axis_codes[TMC_E0]);
  9060. #endif
  9061. }
  9062. /**
  9063. * M913: Set HYBRID_THRESHOLD speed.
  9064. */
  9065. #if ENABLED(HYBRID_THRESHOLD)
  9066. inline void gcode_M913() {
  9067. uint16_t values[XYZE];
  9068. LOOP_XYZE(i)
  9069. values[i] = parser.intval(axis_codes[i]);
  9070. #if X_IS_TRINAMIC
  9071. if (values[X_AXIS]) tmc_set_pwmthrs(stepperX, extended_axis_codes[TMC_X], values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  9072. else tmc_get_pwmthrs(stepperX, extended_axis_codes[TMC_X], planner.axis_steps_per_mm[X_AXIS]);
  9073. #endif
  9074. #if X2_IS_TRINAMIC
  9075. if (values[X_AXIS]) tmc_set_pwmthrs(stepperX2, extended_axis_codes[TMC_X2], values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  9076. else tmc_get_pwmthrs(stepperX, extended_axis_codes[TMC_X2], planner.axis_steps_per_mm[X_AXIS]);
  9077. #endif
  9078. #if Y_IS_TRINAMIC
  9079. if (values[Y_AXIS]) tmc_set_pwmthrs(stepperY, extended_axis_codes[TMC_Y], values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  9080. else tmc_get_pwmthrs(stepperY, extended_axis_codes[TMC_Y], planner.axis_steps_per_mm[Y_AXIS]);
  9081. #endif
  9082. #if Y2_IS_TRINAMIC
  9083. if (values[Y_AXIS]) tmc_set_pwmthrs(stepperY2, extended_axis_codes[TMC_Y2], values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  9084. else tmc_get_pwmthrs(stepperY, extended_axis_codes[TMC_Y2], planner.axis_steps_per_mm[Y_AXIS]);
  9085. #endif
  9086. #if Z_IS_TRINAMIC
  9087. if (values[Z_AXIS]) tmc_set_pwmthrs(stepperZ, extended_axis_codes[TMC_Z], values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  9088. else tmc_get_pwmthrs(stepperZ, extended_axis_codes[TMC_Z], planner.axis_steps_per_mm[Z_AXIS]);
  9089. #endif
  9090. #if Z2_IS_TRINAMIC
  9091. if (values[Z_AXIS]) tmc_set_pwmthrs(stepperZ2, extended_axis_codes[TMC_Z2], values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  9092. else tmc_get_pwmthrs(stepperZ, extended_axis_codes[TMC_Z2], planner.axis_steps_per_mm[Z_AXIS]);
  9093. #endif
  9094. #if E0_IS_TRINAMIC
  9095. if (values[E_AXIS]) tmc_set_pwmthrs(stepperE0, extended_axis_codes[TMC_E0], values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  9096. else tmc_get_pwmthrs(stepperE0, extended_axis_codes[TMC_E0], planner.axis_steps_per_mm[E_AXIS]);
  9097. #endif
  9098. #if E1_IS_TRINAMIC
  9099. if (values[E_AXIS]) tmc_set_pwmthrs(stepperE1, extended_axis_codes[TMC_E1], values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  9100. else tmc_get_pwmthrs(stepperE1, extended_axis_codes[TMC_E1], planner.axis_steps_per_mm[E_AXIS]);
  9101. #endif
  9102. #if E2_IS_TRINAMIC
  9103. if (values[E_AXIS]) tmc_set_pwmthrs(stepperE2, extended_axis_codes[TMC_E2], values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  9104. else tmc_get_pwmthrs(stepperE2, extended_axis_codes[TMC_E2], planner.axis_steps_per_mm[E_AXIS]);
  9105. #endif
  9106. #if E3_IS_TRINAMIC
  9107. if (values[E_AXIS]) tmc_set_pwmthrs(stepperE3, extended_axis_codes[TMC_E3], values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  9108. else tmc_get_pwmthrs(stepperE3, extended_axis_codes[TMC_E3], planner.axis_steps_per_mm[E_AXIS]);
  9109. #endif
  9110. #if E4_IS_TRINAMIC
  9111. if (values[E_AXIS]) tmc_set_pwmthrs(stepperE4, extended_axis_codes[TMC_E4], values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  9112. else tmc_get_pwmthrs(stepperE4, extended_axis_codes[TMC_E4], planner.axis_steps_per_mm[E_AXIS]);
  9113. #endif
  9114. }
  9115. #endif // HYBRID_THRESHOLD
  9116. /**
  9117. * M914: Set SENSORLESS_HOMING sensitivity.
  9118. */
  9119. #if ENABLED(SENSORLESS_HOMING)
  9120. inline void gcode_M914() {
  9121. #if ENABLED(X_IS_TMC2130) || ENABLED(IS_TRAMS)
  9122. if (parser.seen(axis_codes[X_AXIS])) tmc_set_sgt(stepperX, extended_axis_codes[TMC_X], parser.value_int());
  9123. else tmc_get_sgt(stepperX, extended_axis_codes[TMC_X]);
  9124. #endif
  9125. #if ENABLED(X2_IS_TMC2130)
  9126. if (parser.seen(axis_codes[X_AXIS])) tmc_set_sgt(stepperX2, extended_axis_codes[TMC_X2], parser.value_int());
  9127. else tmc_get_sgt(stepperX2, extended_axis_codes[TMC_X2]);
  9128. #endif
  9129. #if ENABLED(Y_IS_TMC2130) || ENABLED(IS_TRAMS)
  9130. if (parser.seen(axis_codes[Y_AXIS])) tmc_set_sgt(stepperY, extended_axis_codes[TMC_Y], parser.value_int());
  9131. else tmc_get_sgt(stepperY, extended_axis_codes[TMC_Y]);
  9132. #endif
  9133. #if ENABLED(Y2_IS_TMC2130)
  9134. if (parser.seen(axis_codes[Y_AXIS])) tmc_set_sgt(stepperY2, extended_axis_codes[TMC_Y2], parser.value_int());
  9135. else tmc_get_sgt(stepperY2, extended_axis_codes[TMC_Y2]);
  9136. #endif
  9137. }
  9138. #endif // SENSORLESS_HOMING
  9139. /**
  9140. * TMC Z axis calibration routine
  9141. */
  9142. #if ENABLED(TMC_Z_CALIBRATION) && (Z_IS_TRINAMIC || Z2_IS_TRINAMIC)
  9143. inline void gcode_M915() {
  9144. uint16_t _rms = parser.seenval('S') ? parser.value_int() : CALIBRATION_CURRENT;
  9145. uint16_t _z = parser.seenval('Z') ? parser.value_int() : CALIBRATION_EXTRA_HEIGHT;
  9146. if (!axis_known_position[Z_AXIS]) {
  9147. SERIAL_ECHOLNPGM("\nPlease home Z axis first");
  9148. return;
  9149. }
  9150. uint16_t Z_current_1 = stepperZ.getCurrent();
  9151. uint16_t Z2_current_1 = stepperZ.getCurrent();
  9152. stepperZ.setCurrent(_rms, R_SENSE, HOLD_MULTIPLIER);
  9153. stepperZ2.setCurrent(_rms, R_SENSE, HOLD_MULTIPLIER);
  9154. SERIAL_ECHOPAIR("\nCalibration current: Z", _rms);
  9155. soft_endstops_enabled = false;
  9156. do_blocking_move_to_z(Z_MAX_POS+_z);
  9157. stepperZ.setCurrent(Z_current_1, R_SENSE, HOLD_MULTIPLIER);
  9158. stepperZ2.setCurrent(Z2_current_1, R_SENSE, HOLD_MULTIPLIER);
  9159. do_blocking_move_to_z(Z_MAX_POS);
  9160. soft_endstops_enabled = true;
  9161. SERIAL_ECHOLNPGM("\nHoming Z because we lost steps");
  9162. home_z_safely();
  9163. }
  9164. #endif
  9165. #endif // HAS_TRINAMIC
  9166. /**
  9167. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  9168. */
  9169. inline void gcode_M907() {
  9170. #if HAS_DIGIPOTSS
  9171. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
  9172. if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
  9173. if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
  9174. #elif HAS_MOTOR_CURRENT_PWM
  9175. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  9176. if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
  9177. #endif
  9178. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  9179. if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
  9180. #endif
  9181. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  9182. if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
  9183. #endif
  9184. #endif
  9185. #if ENABLED(DIGIPOT_I2C)
  9186. // this one uses actual amps in floating point
  9187. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
  9188. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  9189. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
  9190. #endif
  9191. #if ENABLED(DAC_STEPPER_CURRENT)
  9192. if (parser.seen('S')) {
  9193. const float dac_percent = parser.value_float();
  9194. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  9195. }
  9196. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
  9197. #endif
  9198. }
  9199. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  9200. /**
  9201. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  9202. */
  9203. inline void gcode_M908() {
  9204. #if HAS_DIGIPOTSS
  9205. stepper.digitalPotWrite(
  9206. parser.intval('P'),
  9207. parser.intval('S')
  9208. );
  9209. #endif
  9210. #ifdef DAC_STEPPER_CURRENT
  9211. dac_current_raw(
  9212. parser.byteval('P', -1),
  9213. parser.ushortval('S', 0)
  9214. );
  9215. #endif
  9216. }
  9217. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  9218. inline void gcode_M909() { dac_print_values(); }
  9219. inline void gcode_M910() { dac_commit_eeprom(); }
  9220. #endif
  9221. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  9222. #if HAS_MICROSTEPS
  9223. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  9224. inline void gcode_M350() {
  9225. if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
  9226. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
  9227. if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
  9228. stepper.microstep_readings();
  9229. }
  9230. /**
  9231. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  9232. * S# determines MS1 or MS2, X# sets the pin high/low.
  9233. */
  9234. inline void gcode_M351() {
  9235. if (parser.seenval('S')) switch (parser.value_byte()) {
  9236. case 1:
  9237. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
  9238. if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
  9239. break;
  9240. case 2:
  9241. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
  9242. if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());
  9243. break;
  9244. }
  9245. stepper.microstep_readings();
  9246. }
  9247. #endif // HAS_MICROSTEPS
  9248. #if HAS_CASE_LIGHT
  9249. #ifndef INVERT_CASE_LIGHT
  9250. #define INVERT_CASE_LIGHT false
  9251. #endif
  9252. uint8_t case_light_brightness; // LCD routine wants INT
  9253. bool case_light_on;
  9254. void update_case_light() {
  9255. pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode
  9256. if (case_light_on) {
  9257. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN))
  9258. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness);
  9259. else
  9260. WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH);
  9261. }
  9262. else {
  9263. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN))
  9264. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 : 0);
  9265. else
  9266. WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
  9267. }
  9268. }
  9269. #endif // HAS_CASE_LIGHT
  9270. /**
  9271. * M355: Turn case light on/off and set brightness
  9272. *
  9273. * P<byte> Set case light brightness (PWM pin required - ignored otherwise)
  9274. *
  9275. * S<bool> Set case light on/off
  9276. *
  9277. * When S turns on the light on a PWM pin then the current brightness level is used/restored
  9278. *
  9279. * M355 P200 S0 turns off the light & sets the brightness level
  9280. * M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
  9281. */
  9282. inline void gcode_M355() {
  9283. #if HAS_CASE_LIGHT
  9284. uint8_t args = 0;
  9285. if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();
  9286. if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();
  9287. if (args) update_case_light();
  9288. // always report case light status
  9289. SERIAL_ECHO_START();
  9290. if (!case_light_on) {
  9291. SERIAL_ECHOLN("Case light: off");
  9292. }
  9293. else {
  9294. if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on");
  9295. else SERIAL_ECHOLNPAIR("Case light: ", (int)case_light_brightness);
  9296. }
  9297. #else
  9298. SERIAL_ERROR_START();
  9299. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  9300. #endif // HAS_CASE_LIGHT
  9301. }
  9302. #if ENABLED(MIXING_EXTRUDER)
  9303. /**
  9304. * M163: Set a single mix factor for a mixing extruder
  9305. * This is called "weight" by some systems.
  9306. *
  9307. * S[index] The channel index to set
  9308. * P[float] The mix value
  9309. *
  9310. */
  9311. inline void gcode_M163() {
  9312. const int mix_index = parser.intval('S');
  9313. if (mix_index < MIXING_STEPPERS) {
  9314. float mix_value = parser.floatval('P');
  9315. NOLESS(mix_value, 0.0);
  9316. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  9317. }
  9318. }
  9319. #if MIXING_VIRTUAL_TOOLS > 1
  9320. /**
  9321. * M164: Store the current mix factors as a virtual tool.
  9322. *
  9323. * S[index] The virtual tool to store
  9324. *
  9325. */
  9326. inline void gcode_M164() {
  9327. const int tool_index = parser.intval('S');
  9328. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  9329. normalize_mix();
  9330. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9331. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  9332. }
  9333. }
  9334. #endif
  9335. #if ENABLED(DIRECT_MIXING_IN_G1)
  9336. /**
  9337. * M165: Set multiple mix factors for a mixing extruder.
  9338. * Factors that are left out will be set to 0.
  9339. * All factors together must add up to 1.0.
  9340. *
  9341. * A[factor] Mix factor for extruder stepper 1
  9342. * B[factor] Mix factor for extruder stepper 2
  9343. * C[factor] Mix factor for extruder stepper 3
  9344. * D[factor] Mix factor for extruder stepper 4
  9345. * H[factor] Mix factor for extruder stepper 5
  9346. * I[factor] Mix factor for extruder stepper 6
  9347. *
  9348. */
  9349. inline void gcode_M165() { gcode_get_mix(); }
  9350. #endif
  9351. #endif // MIXING_EXTRUDER
  9352. /**
  9353. * M999: Restart after being stopped
  9354. *
  9355. * Default behaviour is to flush the serial buffer and request
  9356. * a resend to the host starting on the last N line received.
  9357. *
  9358. * Sending "M999 S1" will resume printing without flushing the
  9359. * existing command buffer.
  9360. *
  9361. */
  9362. inline void gcode_M999() {
  9363. Running = true;
  9364. lcd_reset_alert_level();
  9365. if (parser.boolval('S')) return;
  9366. // gcode_LastN = Stopped_gcode_LastN;
  9367. FlushSerialRequestResend();
  9368. }
  9369. #if ENABLED(SWITCHING_EXTRUDER)
  9370. #if EXTRUDERS > 3
  9371. #define REQ_ANGLES 4
  9372. #define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
  9373. #else
  9374. #define REQ_ANGLES 2
  9375. #define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
  9376. #endif
  9377. inline void move_extruder_servo(const uint8_t e) {
  9378. constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  9379. static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
  9380. stepper.synchronize();
  9381. #if EXTRUDERS & 1
  9382. if (e < EXTRUDERS - 1)
  9383. #endif
  9384. {
  9385. MOVE_SERVO(_SERVO_NR, angles[e]);
  9386. safe_delay(500);
  9387. }
  9388. }
  9389. #endif // SWITCHING_EXTRUDER
  9390. #if ENABLED(SWITCHING_NOZZLE)
  9391. inline void move_nozzle_servo(const uint8_t e) {
  9392. const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  9393. stepper.synchronize();
  9394. MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
  9395. safe_delay(500);
  9396. }
  9397. #endif
  9398. inline void invalid_extruder_error(const uint8_t e) {
  9399. SERIAL_ECHO_START();
  9400. SERIAL_CHAR('T');
  9401. SERIAL_ECHO_F(e, DEC);
  9402. SERIAL_CHAR(' ');
  9403. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  9404. }
  9405. #if ENABLED(PARKING_EXTRUDER)
  9406. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9407. #define PE_MAGNET_ON_STATE !PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  9408. #else
  9409. #define PE_MAGNET_ON_STATE PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  9410. #endif
  9411. void pe_set_magnet(const uint8_t extruder_num, const uint8_t state) {
  9412. switch (extruder_num) {
  9413. case 1: OUT_WRITE(SOL1_PIN, state); break;
  9414. default: OUT_WRITE(SOL0_PIN, state); break;
  9415. }
  9416. #if PARKING_EXTRUDER_SOLENOIDS_DELAY > 0
  9417. dwell(PARKING_EXTRUDER_SOLENOIDS_DELAY);
  9418. #endif
  9419. }
  9420. inline void pe_activate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, PE_MAGNET_ON_STATE); }
  9421. inline void pe_deactivate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, !PE_MAGNET_ON_STATE); }
  9422. #endif // PARKING_EXTRUDER
  9423. #if HAS_FANMUX
  9424. void fanmux_switch(const uint8_t e) {
  9425. WRITE(FANMUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  9426. #if PIN_EXISTS(FANMUX1)
  9427. WRITE(FANMUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  9428. #if PIN_EXISTS(FANMUX2)
  9429. WRITE(FANMUX2, TEST(e, 2) ? HIGH : LOW);
  9430. #endif
  9431. #endif
  9432. }
  9433. FORCE_INLINE void fanmux_init(void) {
  9434. SET_OUTPUT(FANMUX0_PIN);
  9435. #if PIN_EXISTS(FANMUX1)
  9436. SET_OUTPUT(FANMUX1_PIN);
  9437. #if PIN_EXISTS(FANMUX2)
  9438. SET_OUTPUT(FANMUX2_PIN);
  9439. #endif
  9440. #endif
  9441. fanmux_switch(0);
  9442. }
  9443. #endif // HAS_FANMUX
  9444. /**
  9445. * Perform a tool-change, which may result in moving the
  9446. * previous tool out of the way and the new tool into place.
  9447. */
  9448. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  9449. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  9450. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  9451. return invalid_extruder_error(tmp_extruder);
  9452. // T0-Tnnn: Switch virtual tool by changing the mix
  9453. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  9454. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  9455. #else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  9456. if (tmp_extruder >= EXTRUDERS)
  9457. return invalid_extruder_error(tmp_extruder);
  9458. #if HOTENDS > 1
  9459. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  9460. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  9461. if (tmp_extruder != active_extruder) {
  9462. if (!no_move && axis_unhomed_error()) {
  9463. no_move = true;
  9464. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9465. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("No move on toolchange");
  9466. #endif
  9467. }
  9468. // Save current position to destination, for use later
  9469. set_destination_from_current();
  9470. #if ENABLED(DUAL_X_CARRIAGE)
  9471. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9472. if (DEBUGGING(LEVELING)) {
  9473. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  9474. switch (dual_x_carriage_mode) {
  9475. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  9476. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  9477. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  9478. }
  9479. }
  9480. #endif
  9481. const float xhome = x_home_pos(active_extruder);
  9482. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  9483. && IsRunning()
  9484. && (delayed_move_time || current_position[X_AXIS] != xhome)
  9485. ) {
  9486. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  9487. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9488. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  9489. #endif
  9490. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9491. if (DEBUGGING(LEVELING)) {
  9492. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  9493. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  9494. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  9495. }
  9496. #endif
  9497. // Park old head: 1) raise 2) move to park position 3) lower
  9498. for (uint8_t i = 0; i < 3; i++)
  9499. planner.buffer_line(
  9500. i == 0 ? current_position[X_AXIS] : xhome,
  9501. current_position[Y_AXIS],
  9502. i == 2 ? current_position[Z_AXIS] : raised_z,
  9503. current_position[E_AXIS],
  9504. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  9505. active_extruder
  9506. );
  9507. stepper.synchronize();
  9508. }
  9509. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  9510. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  9511. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  9512. // Activate the new extruder ahead of calling set_axis_is_at_home!
  9513. active_extruder = tmp_extruder;
  9514. // This function resets the max/min values - the current position may be overwritten below.
  9515. set_axis_is_at_home(X_AXIS);
  9516. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9517. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  9518. #endif
  9519. // Only when auto-parking are carriages safe to move
  9520. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  9521. switch (dual_x_carriage_mode) {
  9522. case DXC_FULL_CONTROL_MODE:
  9523. // New current position is the position of the activated extruder
  9524. current_position[X_AXIS] = inactive_extruder_x_pos;
  9525. // Save the inactive extruder's position (from the old current_position)
  9526. inactive_extruder_x_pos = destination[X_AXIS];
  9527. break;
  9528. case DXC_AUTO_PARK_MODE:
  9529. // record raised toolhead position for use by unpark
  9530. COPY(raised_parked_position, current_position);
  9531. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  9532. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9533. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  9534. #endif
  9535. active_extruder_parked = true;
  9536. delayed_move_time = 0;
  9537. break;
  9538. case DXC_DUPLICATION_MODE:
  9539. // If the new extruder is the left one, set it "parked"
  9540. // This triggers the second extruder to move into the duplication position
  9541. active_extruder_parked = (active_extruder == 0);
  9542. if (active_extruder_parked)
  9543. current_position[X_AXIS] = inactive_extruder_x_pos;
  9544. else
  9545. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  9546. inactive_extruder_x_pos = destination[X_AXIS];
  9547. extruder_duplication_enabled = false;
  9548. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9549. if (DEBUGGING(LEVELING)) {
  9550. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  9551. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  9552. }
  9553. #endif
  9554. break;
  9555. }
  9556. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9557. if (DEBUGGING(LEVELING)) {
  9558. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  9559. DEBUG_POS("New extruder (parked)", current_position);
  9560. }
  9561. #endif
  9562. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  9563. #else // !DUAL_X_CARRIAGE
  9564. #if ENABLED(PARKING_EXTRUDER) // Dual Parking extruder
  9565. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  9566. float z_raise = PARKING_EXTRUDER_SECURITY_RAISE;
  9567. if (!no_move) {
  9568. const float parkingposx[] = PARKING_EXTRUDER_PARKING_X,
  9569. midpos = (parkingposx[0] + parkingposx[1]) * 0.5 + hotend_offset[X_AXIS][active_extruder],
  9570. grabpos = parkingposx[tmp_extruder] + hotend_offset[X_AXIS][active_extruder]
  9571. + (tmp_extruder == 0 ? -(PARKING_EXTRUDER_GRAB_DISTANCE) : PARKING_EXTRUDER_GRAB_DISTANCE);
  9572. /**
  9573. * Steps:
  9574. * 1. Raise Z-Axis to give enough clearance
  9575. * 2. Move to park position of old extruder
  9576. * 3. Disengage magnetic field, wait for delay
  9577. * 4. Move near new extruder
  9578. * 5. Engage magnetic field for new extruder
  9579. * 6. Move to parking incl. offset of new extruder
  9580. * 7. Lower Z-Axis
  9581. */
  9582. // STEP 1
  9583. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9584. SERIAL_ECHOLNPGM("Starting Autopark");
  9585. if (DEBUGGING(LEVELING)) DEBUG_POS("current position:", current_position);
  9586. #endif
  9587. current_position[Z_AXIS] += z_raise;
  9588. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9589. SERIAL_ECHOLNPGM("(1) Raise Z-Axis ");
  9590. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving to Raised Z-Position", current_position);
  9591. #endif
  9592. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  9593. stepper.synchronize();
  9594. // STEP 2
  9595. current_position[X_AXIS] = parkingposx[active_extruder] + hotend_offset[X_AXIS][active_extruder];
  9596. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9597. SERIAL_ECHOLNPAIR("(2) Park extruder ", active_extruder);
  9598. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving ParkPos", current_position);
  9599. #endif
  9600. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9601. stepper.synchronize();
  9602. // STEP 3
  9603. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9604. SERIAL_ECHOLNPGM("(3) Disengage magnet ");
  9605. #endif
  9606. pe_deactivate_magnet(active_extruder);
  9607. // STEP 4
  9608. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9609. SERIAL_ECHOLNPGM("(4) Move to position near new extruder");
  9610. #endif
  9611. current_position[X_AXIS] += (active_extruder == 0 ? 10 : -10); // move 10mm away from parked extruder
  9612. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9613. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving away from parked extruder", current_position);
  9614. #endif
  9615. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9616. stepper.synchronize();
  9617. // STEP 5
  9618. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9619. SERIAL_ECHOLNPGM("(5) Engage magnetic field");
  9620. #endif
  9621. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9622. pe_activate_magnet(active_extruder); //just save power for inverted magnets
  9623. #endif
  9624. pe_activate_magnet(tmp_extruder);
  9625. // STEP 6
  9626. current_position[X_AXIS] = grabpos + (tmp_extruder == 0 ? (+10) : (-10));
  9627. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9628. current_position[X_AXIS] = grabpos;
  9629. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9630. SERIAL_ECHOLNPAIR("(6) Unpark extruder ", tmp_extruder);
  9631. if (DEBUGGING(LEVELING)) DEBUG_POS("Move UnparkPos", current_position);
  9632. #endif
  9633. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS]/2, active_extruder);
  9634. stepper.synchronize();
  9635. // Step 7
  9636. current_position[X_AXIS] = midpos - hotend_offset[X_AXIS][tmp_extruder];
  9637. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9638. SERIAL_ECHOLNPGM("(7) Move midway between hotends");
  9639. if (DEBUGGING(LEVELING)) DEBUG_POS("Move midway to new extruder", current_position);
  9640. #endif
  9641. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9642. stepper.synchronize();
  9643. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9644. SERIAL_ECHOLNPGM("Autopark done.");
  9645. #endif
  9646. }
  9647. else { // nomove == true
  9648. // Only engage magnetic field for new extruder
  9649. pe_activate_magnet(tmp_extruder);
  9650. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9651. pe_activate_magnet(active_extruder); // Just save power for inverted magnets
  9652. #endif
  9653. }
  9654. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][tmp_extruder] - hotend_offset[Z_AXIS][active_extruder]; // Apply Zoffset
  9655. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9656. if (DEBUGGING(LEVELING)) DEBUG_POS("Applying Z-offset", current_position);
  9657. #endif
  9658. #endif // dualParking extruder
  9659. #if ENABLED(SWITCHING_NOZZLE)
  9660. #define DONT_SWITCH (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR)
  9661. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  9662. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  9663. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  9664. // Always raise by some amount (destination copied from current_position earlier)
  9665. current_position[Z_AXIS] += z_raise;
  9666. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  9667. move_nozzle_servo(tmp_extruder);
  9668. #endif
  9669. /**
  9670. * Set current_position to the position of the new nozzle.
  9671. * Offsets are based on linear distance, so we need to get
  9672. * the resulting position in coordinate space.
  9673. *
  9674. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  9675. * - With mesh leveling, update Z for the new position
  9676. * - Otherwise, just use the raw linear distance
  9677. *
  9678. * Software endstops are altered here too. Consider a case where:
  9679. * E0 at X=0 ... E1 at X=10
  9680. * When we switch to E1 now X=10, but E1 can't move left.
  9681. * To express this we apply the change in XY to the software endstops.
  9682. * E1 can move farther right than E0, so the right limit is extended.
  9683. *
  9684. * Note that we don't adjust the Z software endstops. Why not?
  9685. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  9686. * because the bed is 1mm lower at the new position. As long as
  9687. * the first nozzle is out of the way, the carriage should be
  9688. * allowed to move 1mm lower. This technically "breaks" the
  9689. * Z software endstop. But this is technically correct (and
  9690. * there is no viable alternative).
  9691. */
  9692. #if ABL_PLANAR
  9693. // Offset extruder, make sure to apply the bed level rotation matrix
  9694. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  9695. hotend_offset[Y_AXIS][tmp_extruder],
  9696. 0),
  9697. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  9698. hotend_offset[Y_AXIS][active_extruder],
  9699. 0),
  9700. offset_vec = tmp_offset_vec - act_offset_vec;
  9701. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9702. if (DEBUGGING(LEVELING)) {
  9703. tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
  9704. act_offset_vec.debug(PSTR("act_offset_vec"));
  9705. offset_vec.debug(PSTR("offset_vec (BEFORE)"));
  9706. }
  9707. #endif
  9708. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  9709. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9710. if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
  9711. #endif
  9712. // Adjustments to the current position
  9713. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  9714. current_position[Z_AXIS] += offset_vec.z;
  9715. #else // !ABL_PLANAR
  9716. const float xydiff[2] = {
  9717. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  9718. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  9719. };
  9720. #if ENABLED(MESH_BED_LEVELING)
  9721. if (planner.leveling_active) {
  9722. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9723. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  9724. #endif
  9725. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  9726. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  9727. z1 = current_position[Z_AXIS], z2 = z1;
  9728. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  9729. planner.apply_leveling(x2, y2, z2);
  9730. current_position[Z_AXIS] += z2 - z1;
  9731. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9732. if (DEBUGGING(LEVELING))
  9733. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  9734. #endif
  9735. }
  9736. #endif // MESH_BED_LEVELING
  9737. #endif // !HAS_ABL
  9738. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9739. if (DEBUGGING(LEVELING)) {
  9740. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  9741. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  9742. SERIAL_ECHOLNPGM(" }");
  9743. }
  9744. #endif
  9745. // The newly-selected extruder XY is actually at...
  9746. current_position[X_AXIS] += xydiff[X_AXIS];
  9747. current_position[Y_AXIS] += xydiff[Y_AXIS];
  9748. // Set the new active extruder
  9749. active_extruder = tmp_extruder;
  9750. #endif // !DUAL_X_CARRIAGE
  9751. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9752. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  9753. #endif
  9754. // Tell the planner the new "current position"
  9755. SYNC_PLAN_POSITION_KINEMATIC();
  9756. // Move to the "old position" (move the extruder into place)
  9757. #if ENABLED(SWITCHING_NOZZLE)
  9758. destination[Z_AXIS] += z_diff; // Include the Z restore with the "move back"
  9759. #endif
  9760. if (!no_move && IsRunning()) {
  9761. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9762. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  9763. #endif
  9764. // Move back to the original (or tweaked) position
  9765. do_blocking_move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS]);
  9766. }
  9767. #if ENABLED(SWITCHING_NOZZLE)
  9768. else {
  9769. // Move back down. (Including when the new tool is higher.)
  9770. do_blocking_move_to_z(destination[Z_AXIS], planner.max_feedrate_mm_s[Z_AXIS]);
  9771. }
  9772. #endif
  9773. } // (tmp_extruder != active_extruder)
  9774. stepper.synchronize();
  9775. #if ENABLED(EXT_SOLENOID) && !ENABLED(PARKING_EXTRUDER)
  9776. disable_all_solenoids();
  9777. enable_solenoid_on_active_extruder();
  9778. #endif // EXT_SOLENOID
  9779. feedrate_mm_s = old_feedrate_mm_s;
  9780. #else // HOTENDS <= 1
  9781. UNUSED(fr_mm_s);
  9782. UNUSED(no_move);
  9783. #if ENABLED(MK2_MULTIPLEXER)
  9784. if (tmp_extruder >= E_STEPPERS)
  9785. return invalid_extruder_error(tmp_extruder);
  9786. select_multiplexed_stepper(tmp_extruder);
  9787. #endif
  9788. // Set the new active extruder
  9789. active_extruder = tmp_extruder;
  9790. #endif // HOTENDS <= 1
  9791. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  9792. stepper.synchronize();
  9793. move_extruder_servo(active_extruder);
  9794. #endif
  9795. #if HAS_FANMUX
  9796. fanmux_switch(active_extruder);
  9797. #endif
  9798. SERIAL_ECHO_START();
  9799. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  9800. #endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  9801. }
  9802. /**
  9803. * T0-T3: Switch tool, usually switching extruders
  9804. *
  9805. * F[units/min] Set the movement feedrate
  9806. * S1 Don't move the tool in XY after change
  9807. */
  9808. inline void gcode_T(const uint8_t tmp_extruder) {
  9809. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9810. if (DEBUGGING(LEVELING)) {
  9811. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  9812. SERIAL_CHAR(')');
  9813. SERIAL_EOL();
  9814. DEBUG_POS("BEFORE", current_position);
  9815. }
  9816. #endif
  9817. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  9818. tool_change(tmp_extruder);
  9819. #elif HOTENDS > 1
  9820. tool_change(
  9821. tmp_extruder,
  9822. MMM_TO_MMS(parser.linearval('F')),
  9823. (tmp_extruder == active_extruder) || parser.boolval('S')
  9824. );
  9825. #endif
  9826. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9827. if (DEBUGGING(LEVELING)) {
  9828. DEBUG_POS("AFTER", current_position);
  9829. SERIAL_ECHOLNPGM("<<< gcode_T");
  9830. }
  9831. #endif
  9832. }
  9833. /**
  9834. * Process the parsed command and dispatch it to its handler
  9835. */
  9836. void process_parsed_command() {
  9837. KEEPALIVE_STATE(IN_HANDLER);
  9838. // Handle a known G, M, or T
  9839. switch (parser.command_letter) {
  9840. case 'G': switch (parser.codenum) {
  9841. // G0, G1
  9842. case 0:
  9843. case 1:
  9844. #if IS_SCARA
  9845. gcode_G0_G1(parser.codenum == 0);
  9846. #else
  9847. gcode_G0_G1();
  9848. #endif
  9849. break;
  9850. // G2, G3
  9851. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  9852. case 2: // G2: CW ARC
  9853. case 3: // G3: CCW ARC
  9854. gcode_G2_G3(parser.codenum == 2);
  9855. break;
  9856. #endif
  9857. // G4 Dwell
  9858. case 4:
  9859. gcode_G4();
  9860. break;
  9861. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9862. case 5: // G5: Cubic B_spline
  9863. gcode_G5();
  9864. break;
  9865. #endif // BEZIER_CURVE_SUPPORT
  9866. #if ENABLED(FWRETRACT)
  9867. case 10: // G10: retract
  9868. gcode_G10();
  9869. break;
  9870. case 11: // G11: retract_recover
  9871. gcode_G11();
  9872. break;
  9873. #endif // FWRETRACT
  9874. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  9875. case 12:
  9876. gcode_G12(); // G12: Nozzle Clean
  9877. break;
  9878. #endif // NOZZLE_CLEAN_FEATURE
  9879. #if ENABLED(CNC_WORKSPACE_PLANES)
  9880. case 17: // G17: Select Plane XY
  9881. gcode_G17();
  9882. break;
  9883. case 18: // G18: Select Plane ZX
  9884. gcode_G18();
  9885. break;
  9886. case 19: // G19: Select Plane YZ
  9887. gcode_G19();
  9888. break;
  9889. #endif // CNC_WORKSPACE_PLANES
  9890. #if ENABLED(INCH_MODE_SUPPORT)
  9891. case 20: // G20: Inch Mode
  9892. gcode_G20();
  9893. break;
  9894. case 21: // G21: MM Mode
  9895. gcode_G21();
  9896. break;
  9897. #endif // INCH_MODE_SUPPORT
  9898. #if ENABLED(G26_MESH_VALIDATION)
  9899. case 26: // G26: Mesh Validation Pattern generation
  9900. gcode_G26();
  9901. break;
  9902. #endif // G26_MESH_VALIDATION
  9903. #if ENABLED(NOZZLE_PARK_FEATURE)
  9904. case 27: // G27: Nozzle Park
  9905. gcode_G27();
  9906. break;
  9907. #endif // NOZZLE_PARK_FEATURE
  9908. case 28: // G28: Home all axes, one at a time
  9909. gcode_G28(false);
  9910. break;
  9911. #if HAS_LEVELING
  9912. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  9913. // or provides access to the UBL System if enabled.
  9914. gcode_G29();
  9915. break;
  9916. #endif // HAS_LEVELING
  9917. #if HAS_BED_PROBE
  9918. case 30: // G30 Single Z probe
  9919. gcode_G30();
  9920. break;
  9921. #if ENABLED(Z_PROBE_SLED)
  9922. case 31: // G31: dock the sled
  9923. gcode_G31();
  9924. break;
  9925. case 32: // G32: undock the sled
  9926. gcode_G32();
  9927. break;
  9928. #endif // Z_PROBE_SLED
  9929. #endif // HAS_BED_PROBE
  9930. #if ENABLED(DELTA_AUTO_CALIBRATION)
  9931. case 33: // G33: Delta Auto-Calibration
  9932. gcode_G33();
  9933. break;
  9934. #endif // DELTA_AUTO_CALIBRATION
  9935. #if ENABLED(G38_PROBE_TARGET)
  9936. case 38: // G38.2 & G38.3
  9937. if (parser.subcode == 2 || parser.subcode == 3)
  9938. gcode_G38(parser.subcode == 2);
  9939. break;
  9940. #endif
  9941. case 90: // G90
  9942. relative_mode = false;
  9943. break;
  9944. case 91: // G91
  9945. relative_mode = true;
  9946. break;
  9947. case 92: // G92
  9948. gcode_G92();
  9949. break;
  9950. #if HAS_MESH
  9951. case 42:
  9952. gcode_G42();
  9953. break;
  9954. #endif
  9955. #if ENABLED(DEBUG_GCODE_PARSER)
  9956. case 800:
  9957. parser.debug(); // GCode Parser Test for G
  9958. break;
  9959. #endif
  9960. }
  9961. break;
  9962. case 'M': switch (parser.codenum) {
  9963. #if HAS_RESUME_CONTINUE
  9964. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  9965. case 1: // M1: Conditional stop - Wait for user button press on LCD
  9966. gcode_M0_M1();
  9967. break;
  9968. #endif // ULTIPANEL
  9969. #if ENABLED(SPINDLE_LASER_ENABLE)
  9970. case 3:
  9971. gcode_M3_M4(true); // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
  9972. break; // synchronizes with movement commands
  9973. case 4:
  9974. gcode_M3_M4(false); // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
  9975. break; // synchronizes with movement commands
  9976. case 5:
  9977. gcode_M5(); // M5 - turn spindle/laser off
  9978. break; // synchronizes with movement commands
  9979. #endif
  9980. case 17: // M17: Enable all stepper motors
  9981. gcode_M17();
  9982. break;
  9983. #if ENABLED(SDSUPPORT)
  9984. case 20: // M20: list SD card
  9985. gcode_M20(); break;
  9986. case 21: // M21: init SD card
  9987. gcode_M21(); break;
  9988. case 22: // M22: release SD card
  9989. gcode_M22(); break;
  9990. case 23: // M23: Select file
  9991. gcode_M23(); break;
  9992. case 24: // M24: Start SD print
  9993. gcode_M24(); break;
  9994. case 25: // M25: Pause SD print
  9995. gcode_M25(); break;
  9996. case 26: // M26: Set SD index
  9997. gcode_M26(); break;
  9998. case 27: // M27: Get SD status
  9999. gcode_M27(); break;
  10000. case 28: // M28: Start SD write
  10001. gcode_M28(); break;
  10002. case 29: // M29: Stop SD write
  10003. gcode_M29(); break;
  10004. case 30: // M30 <filename> Delete File
  10005. gcode_M30(); break;
  10006. case 32: // M32: Select file and start SD print
  10007. gcode_M32(); break;
  10008. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  10009. case 33: // M33: Get the long full path to a file or folder
  10010. gcode_M33(); break;
  10011. #endif
  10012. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  10013. case 34: // M34: Set SD card sorting options
  10014. gcode_M34(); break;
  10015. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  10016. case 928: // M928: Start SD write
  10017. gcode_M928(); break;
  10018. #endif // SDSUPPORT
  10019. case 31: // M31: Report time since the start of SD print or last M109
  10020. gcode_M31(); break;
  10021. case 42: // M42: Change pin state
  10022. gcode_M42(); break;
  10023. #if ENABLED(PINS_DEBUGGING)
  10024. case 43: // M43: Read pin state
  10025. gcode_M43(); break;
  10026. #endif
  10027. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  10028. case 48: // M48: Z probe repeatability test
  10029. gcode_M48();
  10030. break;
  10031. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  10032. #if ENABLED(G26_MESH_VALIDATION)
  10033. case 49: // M49: Turn on or off G26 debug flag for verbose output
  10034. gcode_M49();
  10035. break;
  10036. #endif // G26_MESH_VALIDATION
  10037. #if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
  10038. case 73: // M73: Set print progress percentage
  10039. gcode_M73(); break;
  10040. #endif
  10041. case 75: // M75: Start print timer
  10042. gcode_M75(); break;
  10043. case 76: // M76: Pause print timer
  10044. gcode_M76(); break;
  10045. case 77: // M77: Stop print timer
  10046. gcode_M77(); break;
  10047. #if ENABLED(PRINTCOUNTER)
  10048. case 78: // M78: Show print statistics
  10049. gcode_M78(); break;
  10050. #endif
  10051. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  10052. case 100: // M100: Free Memory Report
  10053. gcode_M100();
  10054. break;
  10055. #endif
  10056. case 104: // M104: Set hot end temperature
  10057. gcode_M104();
  10058. break;
  10059. case 110: // M110: Set Current Line Number
  10060. gcode_M110();
  10061. break;
  10062. case 111: // M111: Set debug level
  10063. gcode_M111();
  10064. break;
  10065. #if DISABLED(EMERGENCY_PARSER)
  10066. case 108: // M108: Cancel Waiting
  10067. gcode_M108();
  10068. break;
  10069. case 112: // M112: Emergency Stop
  10070. gcode_M112();
  10071. break;
  10072. case 410: // M410 quickstop - Abort all the planned moves.
  10073. gcode_M410();
  10074. break;
  10075. #endif
  10076. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  10077. case 113: // M113: Set Host Keepalive interval
  10078. gcode_M113();
  10079. break;
  10080. #endif
  10081. case 140: // M140: Set bed temperature
  10082. gcode_M140();
  10083. break;
  10084. case 105: // M105: Report current temperature
  10085. gcode_M105();
  10086. KEEPALIVE_STATE(NOT_BUSY);
  10087. return; // "ok" already printed
  10088. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  10089. case 155: // M155: Set temperature auto-report interval
  10090. gcode_M155();
  10091. break;
  10092. #endif
  10093. case 109: // M109: Wait for hotend temperature to reach target
  10094. gcode_M109();
  10095. break;
  10096. #if HAS_TEMP_BED
  10097. case 190: // M190: Wait for bed temperature to reach target
  10098. gcode_M190();
  10099. break;
  10100. #endif // HAS_TEMP_BED
  10101. #if FAN_COUNT > 0
  10102. case 106: // M106: Fan On
  10103. gcode_M106();
  10104. break;
  10105. case 107: // M107: Fan Off
  10106. gcode_M107();
  10107. break;
  10108. #endif // FAN_COUNT > 0
  10109. #if ENABLED(PARK_HEAD_ON_PAUSE)
  10110. case 125: // M125: Store current position and move to filament change position
  10111. gcode_M125(); break;
  10112. #endif
  10113. #if ENABLED(BARICUDA)
  10114. // PWM for HEATER_1_PIN
  10115. #if HAS_HEATER_1
  10116. case 126: // M126: valve open
  10117. gcode_M126();
  10118. break;
  10119. case 127: // M127: valve closed
  10120. gcode_M127();
  10121. break;
  10122. #endif // HAS_HEATER_1
  10123. // PWM for HEATER_2_PIN
  10124. #if HAS_HEATER_2
  10125. case 128: // M128: valve open
  10126. gcode_M128();
  10127. break;
  10128. case 129: // M129: valve closed
  10129. gcode_M129();
  10130. break;
  10131. #endif // HAS_HEATER_2
  10132. #endif // BARICUDA
  10133. #if HAS_POWER_SWITCH
  10134. case 80: // M80: Turn on Power Supply
  10135. gcode_M80();
  10136. break;
  10137. #endif // HAS_POWER_SWITCH
  10138. case 81: // M81: Turn off Power, including Power Supply, if possible
  10139. gcode_M81();
  10140. break;
  10141. case 82: // M82: Set E axis normal mode (same as other axes)
  10142. gcode_M82();
  10143. break;
  10144. case 83: // M83: Set E axis relative mode
  10145. gcode_M83();
  10146. break;
  10147. case 18: // M18 => M84
  10148. case 84: // M84: Disable all steppers or set timeout
  10149. gcode_M18_M84();
  10150. break;
  10151. case 85: // M85: Set inactivity stepper shutdown timeout
  10152. gcode_M85();
  10153. break;
  10154. case 92: // M92: Set the steps-per-unit for one or more axes
  10155. gcode_M92();
  10156. break;
  10157. case 114: // M114: Report current position
  10158. gcode_M114();
  10159. break;
  10160. case 115: // M115: Report capabilities
  10161. gcode_M115();
  10162. break;
  10163. case 117: // M117: Set LCD message text, if possible
  10164. gcode_M117();
  10165. break;
  10166. case 118: // M118: Display a message in the host console
  10167. gcode_M118();
  10168. break;
  10169. case 119: // M119: Report endstop states
  10170. gcode_M119();
  10171. break;
  10172. case 120: // M120: Enable endstops
  10173. gcode_M120();
  10174. break;
  10175. case 121: // M121: Disable endstops
  10176. gcode_M121();
  10177. break;
  10178. #if ENABLED(ULTIPANEL)
  10179. case 145: // M145: Set material heatup parameters
  10180. gcode_M145();
  10181. break;
  10182. #endif
  10183. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  10184. case 149: // M149: Set temperature units
  10185. gcode_M149();
  10186. break;
  10187. #endif
  10188. #if HAS_COLOR_LEDS
  10189. case 150: // M150: Set Status LED Color
  10190. gcode_M150();
  10191. break;
  10192. #endif // HAS_COLOR_LEDS
  10193. #if ENABLED(MIXING_EXTRUDER)
  10194. case 163: // M163: Set a component weight for mixing extruder
  10195. gcode_M163();
  10196. break;
  10197. #if MIXING_VIRTUAL_TOOLS > 1
  10198. case 164: // M164: Save current mix as a virtual extruder
  10199. gcode_M164();
  10200. break;
  10201. #endif
  10202. #if ENABLED(DIRECT_MIXING_IN_G1)
  10203. case 165: // M165: Set multiple mix weights
  10204. gcode_M165();
  10205. break;
  10206. #endif
  10207. #endif
  10208. case 200: // M200: Set filament diameter, E to cubic units
  10209. gcode_M200();
  10210. break;
  10211. case 201: // M201: Set max acceleration for print moves (units/s^2)
  10212. gcode_M201();
  10213. break;
  10214. #if 0 // Not used for Sprinter/grbl gen6
  10215. case 202: // M202
  10216. gcode_M202();
  10217. break;
  10218. #endif
  10219. case 203: // M203: Set max feedrate (units/sec)
  10220. gcode_M203();
  10221. break;
  10222. case 204: // M204: Set acceleration
  10223. gcode_M204();
  10224. break;
  10225. case 205: // M205: Set advanced settings
  10226. gcode_M205();
  10227. break;
  10228. #if HAS_M206_COMMAND
  10229. case 206: // M206: Set home offsets
  10230. gcode_M206();
  10231. break;
  10232. #endif
  10233. #if ENABLED(DELTA)
  10234. case 665: // M665: Set delta configurations
  10235. gcode_M665();
  10236. break;
  10237. #endif
  10238. #if ENABLED(DELTA) || ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  10239. case 666: // M666: Set delta or dual endstop adjustment
  10240. gcode_M666();
  10241. break;
  10242. #endif
  10243. #if ENABLED(FWRETRACT)
  10244. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  10245. gcode_M207();
  10246. break;
  10247. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  10248. gcode_M208();
  10249. break;
  10250. case 209: // M209: Turn Automatic Retract Detection on/off
  10251. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) gcode_M209();
  10252. break;
  10253. #endif // FWRETRACT
  10254. case 211: // M211: Enable, Disable, and/or Report software endstops
  10255. gcode_M211();
  10256. break;
  10257. #if HOTENDS > 1
  10258. case 218: // M218: Set a tool offset
  10259. gcode_M218();
  10260. break;
  10261. #endif // HOTENDS > 1
  10262. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  10263. gcode_M220();
  10264. break;
  10265. case 221: // M221: Set Flow Percentage
  10266. gcode_M221();
  10267. break;
  10268. case 226: // M226: Wait until a pin reaches a state
  10269. gcode_M226();
  10270. break;
  10271. #if HAS_SERVOS
  10272. case 280: // M280: Set servo position absolute
  10273. gcode_M280();
  10274. break;
  10275. #endif // HAS_SERVOS
  10276. #if ENABLED(BABYSTEPPING)
  10277. case 290: // M290: Babystepping
  10278. gcode_M290();
  10279. break;
  10280. #endif // BABYSTEPPING
  10281. #if HAS_BUZZER
  10282. case 300: // M300: Play beep tone
  10283. gcode_M300();
  10284. break;
  10285. #endif // HAS_BUZZER
  10286. #if ENABLED(PIDTEMP)
  10287. case 301: // M301: Set hotend PID parameters
  10288. gcode_M301();
  10289. break;
  10290. #endif // PIDTEMP
  10291. #if ENABLED(PIDTEMPBED)
  10292. case 304: // M304: Set bed PID parameters
  10293. gcode_M304();
  10294. break;
  10295. #endif // PIDTEMPBED
  10296. #if defined(CHDK) || HAS_PHOTOGRAPH
  10297. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  10298. gcode_M240();
  10299. break;
  10300. #endif // CHDK || PHOTOGRAPH_PIN
  10301. #if HAS_LCD_CONTRAST
  10302. case 250: // M250: Set LCD contrast
  10303. gcode_M250();
  10304. break;
  10305. #endif // HAS_LCD_CONTRAST
  10306. #if ENABLED(EXPERIMENTAL_I2CBUS)
  10307. case 260: // M260: Send data to an i2c slave
  10308. gcode_M260();
  10309. break;
  10310. case 261: // M261: Request data from an i2c slave
  10311. gcode_M261();
  10312. break;
  10313. #endif // EXPERIMENTAL_I2CBUS
  10314. #if ENABLED(PREVENT_COLD_EXTRUSION)
  10315. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  10316. gcode_M302();
  10317. break;
  10318. #endif // PREVENT_COLD_EXTRUSION
  10319. case 303: // M303: PID autotune
  10320. gcode_M303();
  10321. break;
  10322. #if ENABLED(MORGAN_SCARA)
  10323. case 360: // M360: SCARA Theta pos1
  10324. if (gcode_M360()) return;
  10325. break;
  10326. case 361: // M361: SCARA Theta pos2
  10327. if (gcode_M361()) return;
  10328. break;
  10329. case 362: // M362: SCARA Psi pos1
  10330. if (gcode_M362()) return;
  10331. break;
  10332. case 363: // M363: SCARA Psi pos2
  10333. if (gcode_M363()) return;
  10334. break;
  10335. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  10336. if (gcode_M364()) return;
  10337. break;
  10338. #endif // SCARA
  10339. case 400: // M400: Finish all moves
  10340. gcode_M400();
  10341. break;
  10342. #if HAS_BED_PROBE
  10343. case 401: // M401: Deploy probe
  10344. gcode_M401();
  10345. break;
  10346. case 402: // M402: Stow probe
  10347. gcode_M402();
  10348. break;
  10349. #endif // HAS_BED_PROBE
  10350. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  10351. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  10352. gcode_M404();
  10353. break;
  10354. case 405: // M405: Turn on filament sensor for control
  10355. gcode_M405();
  10356. break;
  10357. case 406: // M406: Turn off filament sensor for control
  10358. gcode_M406();
  10359. break;
  10360. case 407: // M407: Display measured filament diameter
  10361. gcode_M407();
  10362. break;
  10363. #endif // FILAMENT_WIDTH_SENSOR
  10364. #if HAS_LEVELING
  10365. case 420: // M420: Enable/Disable Bed Leveling
  10366. gcode_M420();
  10367. break;
  10368. #endif
  10369. #if HAS_MESH
  10370. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  10371. gcode_M421();
  10372. break;
  10373. #endif
  10374. #if HAS_M206_COMMAND
  10375. case 428: // M428: Apply current_position to home_offset
  10376. gcode_M428();
  10377. break;
  10378. #endif
  10379. case 500: // M500: Store settings in EEPROM
  10380. gcode_M500();
  10381. break;
  10382. case 501: // M501: Read settings from EEPROM
  10383. gcode_M501();
  10384. break;
  10385. case 502: // M502: Revert to default settings
  10386. gcode_M502();
  10387. break;
  10388. #if DISABLED(DISABLE_M503)
  10389. case 503: // M503: print settings currently in memory
  10390. gcode_M503();
  10391. break;
  10392. #endif
  10393. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  10394. case 540: // M540: Set abort on endstop hit for SD printing
  10395. gcode_M540();
  10396. break;
  10397. #endif
  10398. #if HAS_BED_PROBE
  10399. case 851: // M851: Set Z Probe Z Offset
  10400. gcode_M851();
  10401. break;
  10402. #endif // HAS_BED_PROBE
  10403. #if ENABLED(SKEW_CORRECTION_GCODE)
  10404. case 852: // M852: Set Skew factors
  10405. gcode_M852();
  10406. break;
  10407. #endif
  10408. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  10409. case 600: // M600: Pause for filament change
  10410. gcode_M600();
  10411. break;
  10412. #endif // ADVANCED_PAUSE_FEATURE
  10413. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  10414. case 605: // M605: Set Dual X Carriage movement mode
  10415. gcode_M605();
  10416. break;
  10417. #endif // DUAL_X_CARRIAGE
  10418. #if ENABLED(MK2_MULTIPLEXER)
  10419. case 702: // M702: Unload all extruders
  10420. gcode_M702();
  10421. break;
  10422. #endif
  10423. #if ENABLED(LIN_ADVANCE)
  10424. case 900: // M900: Set advance K factor.
  10425. gcode_M900();
  10426. break;
  10427. #endif
  10428. case 907: // M907: Set digital trimpot motor current using axis codes.
  10429. gcode_M907();
  10430. break;
  10431. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  10432. case 908: // M908: Control digital trimpot directly.
  10433. gcode_M908();
  10434. break;
  10435. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  10436. case 909: // M909: Print digipot/DAC current value
  10437. gcode_M909();
  10438. break;
  10439. case 910: // M910: Commit digipot/DAC value to external EEPROM
  10440. gcode_M910();
  10441. break;
  10442. #endif
  10443. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  10444. #if ENABLED(HAVE_TMC2130) || ENABLED(HAVE_TMC2208)
  10445. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  10446. gcode_M906();
  10447. break;
  10448. case 911: // M911: Report TMC prewarn triggered flags
  10449. gcode_M911();
  10450. break;
  10451. case 912: // M911: Clear TMC prewarn triggered flags
  10452. gcode_M912();
  10453. break;
  10454. #if ENABLED(TMC_DEBUG)
  10455. case 122: // Debug TMC steppers
  10456. gcode_M122();
  10457. break;
  10458. #endif
  10459. #if ENABLED(HYBRID_THRESHOLD)
  10460. case 913: // M913: Set HYBRID_THRESHOLD speed.
  10461. gcode_M913();
  10462. break;
  10463. #endif
  10464. #if ENABLED(SENSORLESS_HOMING)
  10465. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  10466. gcode_M914();
  10467. break;
  10468. #endif
  10469. #if ENABLED(TMC_Z_CALIBRATION) && (Z_IS_TRINAMIC || Z2_IS_TRINAMIC)
  10470. case 915: // M915: TMC Z axis calibration routine
  10471. gcode_M915();
  10472. break;
  10473. #endif
  10474. #endif
  10475. #if HAS_MICROSTEPS
  10476. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  10477. gcode_M350();
  10478. break;
  10479. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  10480. gcode_M351();
  10481. break;
  10482. #endif // HAS_MICROSTEPS
  10483. case 355: // M355 set case light brightness
  10484. gcode_M355();
  10485. break;
  10486. #if ENABLED(DEBUG_GCODE_PARSER)
  10487. case 800:
  10488. parser.debug(); // GCode Parser Test for M
  10489. break;
  10490. #endif
  10491. #if ENABLED(I2C_POSITION_ENCODERS)
  10492. case 860: // M860 Report encoder module position
  10493. gcode_M860();
  10494. break;
  10495. case 861: // M861 Report encoder module status
  10496. gcode_M861();
  10497. break;
  10498. case 862: // M862 Perform axis test
  10499. gcode_M862();
  10500. break;
  10501. case 863: // M863 Calibrate steps/mm
  10502. gcode_M863();
  10503. break;
  10504. case 864: // M864 Change module address
  10505. gcode_M864();
  10506. break;
  10507. case 865: // M865 Check module firmware version
  10508. gcode_M865();
  10509. break;
  10510. case 866: // M866 Report axis error count
  10511. gcode_M866();
  10512. break;
  10513. case 867: // M867 Toggle error correction
  10514. gcode_M867();
  10515. break;
  10516. case 868: // M868 Set error correction threshold
  10517. gcode_M868();
  10518. break;
  10519. case 869: // M869 Report axis error
  10520. gcode_M869();
  10521. break;
  10522. #endif // I2C_POSITION_ENCODERS
  10523. case 999: // M999: Restart after being Stopped
  10524. gcode_M999();
  10525. break;
  10526. }
  10527. break;
  10528. case 'T':
  10529. gcode_T(parser.codenum);
  10530. break;
  10531. default: parser.unknown_command_error();
  10532. }
  10533. KEEPALIVE_STATE(NOT_BUSY);
  10534. ok_to_send();
  10535. }
  10536. void process_next_command() {
  10537. char * const current_command = command_queue[cmd_queue_index_r];
  10538. if (DEBUGGING(ECHO)) {
  10539. SERIAL_ECHO_START();
  10540. SERIAL_ECHOLN(current_command);
  10541. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  10542. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  10543. M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
  10544. #endif
  10545. }
  10546. // Parse the next command in the queue
  10547. parser.parse(current_command);
  10548. process_parsed_command();
  10549. }
  10550. /**
  10551. * Send a "Resend: nnn" message to the host to
  10552. * indicate that a command needs to be re-sent.
  10553. */
  10554. void FlushSerialRequestResend() {
  10555. //char command_queue[cmd_queue_index_r][100]="Resend:";
  10556. MYSERIAL.flush();
  10557. SERIAL_PROTOCOLPGM(MSG_RESEND);
  10558. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  10559. ok_to_send();
  10560. }
  10561. /**
  10562. * Send an "ok" message to the host, indicating
  10563. * that a command was successfully processed.
  10564. *
  10565. * If ADVANCED_OK is enabled also include:
  10566. * N<int> Line number of the command, if any
  10567. * P<int> Planner space remaining
  10568. * B<int> Block queue space remaining
  10569. */
  10570. void ok_to_send() {
  10571. refresh_cmd_timeout();
  10572. if (!send_ok[cmd_queue_index_r]) return;
  10573. SERIAL_PROTOCOLPGM(MSG_OK);
  10574. #if ENABLED(ADVANCED_OK)
  10575. char* p = command_queue[cmd_queue_index_r];
  10576. if (*p == 'N') {
  10577. SERIAL_PROTOCOL(' ');
  10578. SERIAL_ECHO(*p++);
  10579. while (NUMERIC_SIGNED(*p))
  10580. SERIAL_ECHO(*p++);
  10581. }
  10582. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  10583. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  10584. #endif
  10585. SERIAL_EOL();
  10586. }
  10587. #if HAS_SOFTWARE_ENDSTOPS
  10588. /**
  10589. * Constrain the given coordinates to the software endstops.
  10590. *
  10591. * For DELTA/SCARA the XY constraint is based on the smallest
  10592. * radius within the set software endstops.
  10593. */
  10594. void clamp_to_software_endstops(float target[XYZ]) {
  10595. if (!soft_endstops_enabled) return;
  10596. #if IS_KINEMATIC
  10597. const float dist_2 = HYPOT2(target[X_AXIS], target[Y_AXIS]);
  10598. if (dist_2 > soft_endstop_radius_2) {
  10599. const float ratio = soft_endstop_radius / SQRT(dist_2); // 200 / 300 = 0.66
  10600. target[X_AXIS] *= ratio;
  10601. target[Y_AXIS] *= ratio;
  10602. }
  10603. #else
  10604. #if ENABLED(MIN_SOFTWARE_ENDSTOP_X)
  10605. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  10606. #endif
  10607. #if ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
  10608. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  10609. #endif
  10610. #if ENABLED(MAX_SOFTWARE_ENDSTOP_X)
  10611. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  10612. #endif
  10613. #if ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
  10614. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  10615. #endif
  10616. #endif
  10617. #if ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
  10618. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  10619. #endif
  10620. #if ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
  10621. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  10622. #endif
  10623. }
  10624. #endif
  10625. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10626. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  10627. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  10628. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  10629. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  10630. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  10631. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  10632. #else
  10633. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  10634. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  10635. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  10636. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  10637. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  10638. #endif
  10639. // Get the Z adjustment for non-linear bed leveling
  10640. float bilinear_z_offset(const float raw[XYZ]) {
  10641. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  10642. last_x = -999.999, last_y = -999.999;
  10643. // Whole units for the grid line indices. Constrained within bounds.
  10644. static int8_t gridx, gridy, nextx, nexty,
  10645. last_gridx = -99, last_gridy = -99;
  10646. // XY relative to the probed area
  10647. const float rx = raw[X_AXIS] - bilinear_start[X_AXIS],
  10648. ry = raw[Y_AXIS] - bilinear_start[Y_AXIS];
  10649. #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
  10650. // Keep using the last grid box
  10651. #define FAR_EDGE_OR_BOX 2
  10652. #else
  10653. // Just use the grid far edge
  10654. #define FAR_EDGE_OR_BOX 1
  10655. #endif
  10656. if (last_x != rx) {
  10657. last_x = rx;
  10658. ratio_x = rx * ABL_BG_FACTOR(X_AXIS);
  10659. const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
  10660. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  10661. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  10662. // Beyond the grid maintain height at grid edges
  10663. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  10664. #endif
  10665. gridx = gx;
  10666. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  10667. }
  10668. if (last_y != ry || last_gridx != gridx) {
  10669. if (last_y != ry) {
  10670. last_y = ry;
  10671. ratio_y = ry * ABL_BG_FACTOR(Y_AXIS);
  10672. const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
  10673. ratio_y -= gy;
  10674. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  10675. // Beyond the grid maintain height at grid edges
  10676. NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
  10677. #endif
  10678. gridy = gy;
  10679. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  10680. }
  10681. if (last_gridx != gridx || last_gridy != gridy) {
  10682. last_gridx = gridx;
  10683. last_gridy = gridy;
  10684. // Z at the box corners
  10685. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  10686. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  10687. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  10688. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  10689. }
  10690. // Bilinear interpolate. Needed since ry or gridx has changed.
  10691. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  10692. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  10693. D = R - L;
  10694. }
  10695. const float offset = L + ratio_x * D; // the offset almost always changes
  10696. /*
  10697. static float last_offset = 0;
  10698. if (FABS(last_offset - offset) > 0.2) {
  10699. SERIAL_ECHOPGM("Sudden Shift at ");
  10700. SERIAL_ECHOPAIR("x=", rx);
  10701. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  10702. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  10703. SERIAL_ECHOPAIR(" y=", ry);
  10704. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  10705. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  10706. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  10707. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  10708. SERIAL_ECHOPAIR(" z1=", z1);
  10709. SERIAL_ECHOPAIR(" z2=", z2);
  10710. SERIAL_ECHOPAIR(" z3=", z3);
  10711. SERIAL_ECHOLNPAIR(" z4=", z4);
  10712. SERIAL_ECHOPAIR(" L=", L);
  10713. SERIAL_ECHOPAIR(" R=", R);
  10714. SERIAL_ECHOLNPAIR(" offset=", offset);
  10715. }
  10716. last_offset = offset;
  10717. //*/
  10718. return offset;
  10719. }
  10720. #endif // AUTO_BED_LEVELING_BILINEAR
  10721. #if ENABLED(DELTA)
  10722. /**
  10723. * Recalculate factors used for delta kinematics whenever
  10724. * settings have been changed (e.g., by M665).
  10725. */
  10726. void recalc_delta_settings() {
  10727. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  10728. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  10729. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]); // front left tower
  10730. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]);
  10731. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]); // front right tower
  10732. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]);
  10733. delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]); // back middle tower
  10734. delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]);
  10735. delta_diagonal_rod_2_tower[A_AXIS] = sq(delta_diagonal_rod + drt[A_AXIS]);
  10736. delta_diagonal_rod_2_tower[B_AXIS] = sq(delta_diagonal_rod + drt[B_AXIS]);
  10737. delta_diagonal_rod_2_tower[C_AXIS] = sq(delta_diagonal_rod + drt[C_AXIS]);
  10738. update_software_endstops(Z_AXIS);
  10739. axis_homed[X_AXIS] = axis_homed[Y_AXIS] = axis_homed[Z_AXIS] = false;
  10740. }
  10741. #if ENABLED(DELTA_FAST_SQRT)
  10742. /**
  10743. * Fast inverse sqrt from Quake III Arena
  10744. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  10745. */
  10746. float Q_rsqrt(const float number) {
  10747. long i;
  10748. float x2, y;
  10749. const float threehalfs = 1.5f;
  10750. x2 = number * 0.5f;
  10751. y = number;
  10752. i = * ( long * ) &y; // evil floating point bit level hacking
  10753. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  10754. y = * ( float * ) &i;
  10755. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  10756. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  10757. return y;
  10758. }
  10759. #endif
  10760. /**
  10761. * Delta Inverse Kinematics
  10762. *
  10763. * Calculate the tower positions for a given machine
  10764. * position, storing the result in the delta[] array.
  10765. *
  10766. * This is an expensive calculation, requiring 3 square
  10767. * roots per segmented linear move, and strains the limits
  10768. * of a Mega2560 with a Graphical Display.
  10769. *
  10770. * Suggested optimizations include:
  10771. *
  10772. * - Disable the home_offset (M206) and/or position_shift (G92)
  10773. * features to remove up to 12 float additions.
  10774. *
  10775. * - Use a fast-inverse-sqrt function and add the reciprocal.
  10776. * (see above)
  10777. */
  10778. #define DELTA_DEBUG() do { \
  10779. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  10780. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  10781. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  10782. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  10783. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  10784. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  10785. }while(0)
  10786. void inverse_kinematics(const float raw[XYZ]) {
  10787. DELTA_RAW_IK();
  10788. // DELTA_DEBUG();
  10789. }
  10790. /**
  10791. * Calculate the highest Z position where the
  10792. * effector has the full range of XY motion.
  10793. */
  10794. float delta_safe_distance_from_top() {
  10795. float cartesian[XYZ] = { 0, 0, 0 };
  10796. inverse_kinematics(cartesian);
  10797. float distance = delta[A_AXIS];
  10798. cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS;
  10799. inverse_kinematics(cartesian);
  10800. return FABS(distance - delta[A_AXIS]);
  10801. }
  10802. /**
  10803. * Delta Forward Kinematics
  10804. *
  10805. * See the Wikipedia article "Trilateration"
  10806. * https://en.wikipedia.org/wiki/Trilateration
  10807. *
  10808. * Establish a new coordinate system in the plane of the
  10809. * three carriage points. This system has its origin at
  10810. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  10811. * plane with a Z component of zero.
  10812. * We will define unit vectors in this coordinate system
  10813. * in our original coordinate system. Then when we calculate
  10814. * the Xnew, Ynew and Znew values, we can translate back into
  10815. * the original system by moving along those unit vectors
  10816. * by the corresponding values.
  10817. *
  10818. * Variable names matched to Marlin, c-version, and avoid the
  10819. * use of any vector library.
  10820. *
  10821. * by Andreas Hardtung 2016-06-07
  10822. * based on a Java function from "Delta Robot Kinematics V3"
  10823. * by Steve Graves
  10824. *
  10825. * The result is stored in the cartes[] array.
  10826. */
  10827. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  10828. // Create a vector in old coordinates along x axis of new coordinate
  10829. const float p12[] = {
  10830. delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS],
  10831. delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS],
  10832. z2 - z1
  10833. },
  10834. // Get the Magnitude of vector.
  10835. d = SQRT(sq(p12[0]) + sq(p12[1]) + sq(p12[2])),
  10836. // Create unit vector by dividing by magnitude.
  10837. ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d },
  10838. // Get the vector from the origin of the new system to the third point.
  10839. p13[3] = {
  10840. delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS],
  10841. delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS],
  10842. z3 - z1
  10843. },
  10844. // Use the dot product to find the component of this vector on the X axis.
  10845. i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2],
  10846. // Create a vector along the x axis that represents the x component of p13.
  10847. iex[] = { ex[0] * i, ex[1] * i, ex[2] * i };
  10848. // Subtract the X component from the original vector leaving only Y. We use the
  10849. // variable that will be the unit vector after we scale it.
  10850. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  10851. // The magnitude of Y component
  10852. const float j = SQRT(sq(ey[0]) + sq(ey[1]) + sq(ey[2]));
  10853. // Convert to a unit vector
  10854. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  10855. // The cross product of the unit x and y is the unit z
  10856. // float[] ez = vectorCrossProd(ex, ey);
  10857. const float ez[3] = {
  10858. ex[1] * ey[2] - ex[2] * ey[1],
  10859. ex[2] * ey[0] - ex[0] * ey[2],
  10860. ex[0] * ey[1] - ex[1] * ey[0]
  10861. },
  10862. // We now have the d, i and j values defined in Wikipedia.
  10863. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  10864. Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  10865. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  10866. Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  10867. // Start from the origin of the old coordinates and add vectors in the
  10868. // old coords that represent the Xnew, Ynew and Znew to find the point
  10869. // in the old system.
  10870. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  10871. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  10872. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  10873. }
  10874. void forward_kinematics_DELTA(float point[ABC]) {
  10875. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  10876. }
  10877. #endif // DELTA
  10878. /**
  10879. * Get the stepper positions in the cartes[] array.
  10880. * Forward kinematics are applied for DELTA and SCARA.
  10881. *
  10882. * The result is in the current coordinate space with
  10883. * leveling applied. The coordinates need to be run through
  10884. * unapply_leveling to obtain machine coordinates suitable
  10885. * for current_position, etc.
  10886. */
  10887. void get_cartesian_from_steppers() {
  10888. #if ENABLED(DELTA)
  10889. forward_kinematics_DELTA(
  10890. stepper.get_axis_position_mm(A_AXIS),
  10891. stepper.get_axis_position_mm(B_AXIS),
  10892. stepper.get_axis_position_mm(C_AXIS)
  10893. );
  10894. #else
  10895. #if IS_SCARA
  10896. forward_kinematics_SCARA(
  10897. stepper.get_axis_position_degrees(A_AXIS),
  10898. stepper.get_axis_position_degrees(B_AXIS)
  10899. );
  10900. #else
  10901. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  10902. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  10903. #endif
  10904. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  10905. #endif
  10906. }
  10907. /**
  10908. * Set the current_position for an axis based on
  10909. * the stepper positions, removing any leveling that
  10910. * may have been applied.
  10911. *
  10912. * To prevent small shifts in axis position always call
  10913. * SYNC_PLAN_POSITION_KINEMATIC after updating axes with this.
  10914. *
  10915. * To keep hosts in sync, always call report_current_position
  10916. * after updating the current_position.
  10917. */
  10918. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  10919. get_cartesian_from_steppers();
  10920. #if PLANNER_LEVELING
  10921. planner.unapply_leveling(cartes);
  10922. #endif
  10923. if (axis == ALL_AXES)
  10924. COPY(current_position, cartes);
  10925. else
  10926. current_position[axis] = cartes[axis];
  10927. }
  10928. #if IS_CARTESIAN
  10929. #if ENABLED(SEGMENT_LEVELED_MOVES)
  10930. /**
  10931. * Prepare a segmented move on a CARTESIAN setup.
  10932. *
  10933. * This calls planner.buffer_line several times, adding
  10934. * small incremental moves. This allows the planner to
  10935. * apply more detailed bed leveling to the full move.
  10936. */
  10937. inline void segmented_line_to_destination(const float &fr_mm_s, const float segment_size=LEVELED_SEGMENT_LENGTH) {
  10938. const float xdiff = destination[X_AXIS] - current_position[X_AXIS],
  10939. ydiff = destination[Y_AXIS] - current_position[Y_AXIS];
  10940. // If the move is only in Z/E don't split up the move
  10941. if (!xdiff && !ydiff) {
  10942. planner.buffer_line_kinematic(destination, fr_mm_s, active_extruder);
  10943. return;
  10944. }
  10945. // Remaining cartesian distances
  10946. const float zdiff = destination[Z_AXIS] - current_position[Z_AXIS],
  10947. ediff = destination[E_AXIS] - current_position[E_AXIS];
  10948. // Get the linear distance in XYZ
  10949. // If the move is very short, check the E move distance
  10950. // No E move either? Game over.
  10951. float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff));
  10952. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(ediff);
  10953. if (UNEAR_ZERO(cartesian_mm)) return;
  10954. // The length divided by the segment size
  10955. // At least one segment is required
  10956. uint16_t segments = cartesian_mm / segment_size;
  10957. NOLESS(segments, 1);
  10958. // The approximate length of each segment
  10959. const float inv_segments = 1.0 / float(segments),
  10960. segment_distance[XYZE] = {
  10961. xdiff * inv_segments,
  10962. ydiff * inv_segments,
  10963. zdiff * inv_segments,
  10964. ediff * inv_segments
  10965. };
  10966. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  10967. // SERIAL_ECHOLNPAIR(" segments=", segments);
  10968. // Get the raw current position as starting point
  10969. float raw[XYZE];
  10970. COPY(raw, current_position);
  10971. // Calculate and execute the segments
  10972. while (--segments) {
  10973. static millis_t next_idle_ms = millis() + 200UL;
  10974. thermalManager.manage_heater(); // This returns immediately if not really needed.
  10975. if (ELAPSED(millis(), next_idle_ms)) {
  10976. next_idle_ms = millis() + 200UL;
  10977. idle();
  10978. }
  10979. LOOP_XYZE(i) raw[i] += segment_distance[i];
  10980. planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder);
  10981. }
  10982. // Since segment_distance is only approximate,
  10983. // the final move must be to the exact destination.
  10984. planner.buffer_line_kinematic(destination, fr_mm_s, active_extruder);
  10985. }
  10986. #elif ENABLED(MESH_BED_LEVELING)
  10987. /**
  10988. * Prepare a mesh-leveled linear move in a Cartesian setup,
  10989. * splitting the move where it crosses mesh borders.
  10990. */
  10991. void mesh_line_to_destination(const float fr_mm_s, uint8_t x_splits=0xFF, uint8_t y_splits=0xFF) {
  10992. // Get current and destination cells for this line
  10993. int cx1 = mbl.cell_index_x(current_position[X_AXIS]),
  10994. cy1 = mbl.cell_index_y(current_position[Y_AXIS]),
  10995. cx2 = mbl.cell_index_x(destination[X_AXIS]),
  10996. cy2 = mbl.cell_index_y(destination[Y_AXIS]);
  10997. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  10998. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  10999. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  11000. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  11001. // Start and end in the same cell? No split needed.
  11002. if (cx1 == cx2 && cy1 == cy2) {
  11003. buffer_line_to_destination(fr_mm_s);
  11004. set_current_from_destination();
  11005. return;
  11006. }
  11007. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  11008. float normalized_dist, end[XYZE];
  11009. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  11010. // Crosses on the X and not already split on this X?
  11011. // The x_splits flags are insurance against rounding errors.
  11012. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  11013. // Split on the X grid line
  11014. CBI(x_splits, gcx);
  11015. COPY(end, destination);
  11016. destination[X_AXIS] = mbl.index_to_xpos[gcx];
  11017. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  11018. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  11019. }
  11020. // Crosses on the Y and not already split on this Y?
  11021. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  11022. // Split on the Y grid line
  11023. CBI(y_splits, gcy);
  11024. COPY(end, destination);
  11025. destination[Y_AXIS] = mbl.index_to_ypos[gcy];
  11026. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  11027. destination[X_AXIS] = MBL_SEGMENT_END(X);
  11028. }
  11029. else {
  11030. // Must already have been split on these border(s)
  11031. // This should be a rare case.
  11032. buffer_line_to_destination(fr_mm_s);
  11033. set_current_from_destination();
  11034. return;
  11035. }
  11036. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  11037. destination[E_AXIS] = MBL_SEGMENT_END(E);
  11038. // Do the split and look for more borders
  11039. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  11040. // Restore destination from stack
  11041. COPY(destination, end);
  11042. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  11043. }
  11044. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  11045. #define CELL_INDEX(A,V) ((V - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  11046. /**
  11047. * Prepare a bilinear-leveled linear move on Cartesian,
  11048. * splitting the move where it crosses grid borders.
  11049. */
  11050. void bilinear_line_to_destination(const float fr_mm_s, uint16_t x_splits=0xFFFF, uint16_t y_splits=0xFFFF) {
  11051. // Get current and destination cells for this line
  11052. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  11053. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  11054. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  11055. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  11056. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  11057. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  11058. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  11059. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  11060. // Start and end in the same cell? No split needed.
  11061. if (cx1 == cx2 && cy1 == cy2) {
  11062. buffer_line_to_destination(fr_mm_s);
  11063. set_current_from_destination();
  11064. return;
  11065. }
  11066. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  11067. float normalized_dist, end[XYZE];
  11068. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  11069. // Crosses on the X and not already split on this X?
  11070. // The x_splits flags are insurance against rounding errors.
  11071. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  11072. // Split on the X grid line
  11073. CBI(x_splits, gcx);
  11074. COPY(end, destination);
  11075. destination[X_AXIS] = bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx;
  11076. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  11077. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  11078. }
  11079. // Crosses on the Y and not already split on this Y?
  11080. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  11081. // Split on the Y grid line
  11082. CBI(y_splits, gcy);
  11083. COPY(end, destination);
  11084. destination[Y_AXIS] = bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy;
  11085. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  11086. destination[X_AXIS] = LINE_SEGMENT_END(X);
  11087. }
  11088. else {
  11089. // Must already have been split on these border(s)
  11090. // This should be a rare case.
  11091. buffer_line_to_destination(fr_mm_s);
  11092. set_current_from_destination();
  11093. return;
  11094. }
  11095. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  11096. destination[E_AXIS] = LINE_SEGMENT_END(E);
  11097. // Do the split and look for more borders
  11098. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  11099. // Restore destination from stack
  11100. COPY(destination, end);
  11101. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  11102. }
  11103. #endif // AUTO_BED_LEVELING_BILINEAR
  11104. #endif // IS_CARTESIAN
  11105. #if !UBL_SEGMENTED
  11106. #if IS_KINEMATIC
  11107. /**
  11108. * Prepare a linear move in a DELTA or SCARA setup.
  11109. *
  11110. * This calls planner.buffer_line several times, adding
  11111. * small incremental moves for DELTA or SCARA.
  11112. *
  11113. * For Unified Bed Leveling (Delta or Segmented Cartesian)
  11114. * the ubl.prepare_segmented_line_to method replaces this.
  11115. */
  11116. inline bool prepare_kinematic_move_to(const float (&rtarget)[XYZE]) {
  11117. // Get the top feedrate of the move in the XY plane
  11118. const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  11119. const float xdiff = rtarget[X_AXIS] - current_position[X_AXIS],
  11120. ydiff = rtarget[Y_AXIS] - current_position[Y_AXIS];
  11121. // If the move is only in Z/E don't split up the move
  11122. if (!xdiff && !ydiff) {
  11123. planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder);
  11124. return false;
  11125. }
  11126. // Fail if attempting move outside printable radius
  11127. if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) return true;
  11128. // Remaining cartesian distances
  11129. const float zdiff = rtarget[Z_AXIS] - current_position[Z_AXIS],
  11130. ediff = rtarget[E_AXIS] - current_position[E_AXIS];
  11131. // Get the linear distance in XYZ
  11132. // If the move is very short, check the E move distance
  11133. // No E move either? Game over.
  11134. float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff));
  11135. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(ediff);
  11136. if (UNEAR_ZERO(cartesian_mm)) return true;
  11137. // Minimum number of seconds to move the given distance
  11138. const float seconds = cartesian_mm / _feedrate_mm_s;
  11139. // The number of segments-per-second times the duration
  11140. // gives the number of segments
  11141. uint16_t segments = delta_segments_per_second * seconds;
  11142. // For SCARA minimum segment size is 0.25mm
  11143. #if IS_SCARA
  11144. NOMORE(segments, cartesian_mm * 4);
  11145. #endif
  11146. // At least one segment is required
  11147. NOLESS(segments, 1);
  11148. // The approximate length of each segment
  11149. const float inv_segments = 1.0 / float(segments),
  11150. segment_distance[XYZE] = {
  11151. xdiff * inv_segments,
  11152. ydiff * inv_segments,
  11153. zdiff * inv_segments,
  11154. ediff * inv_segments
  11155. };
  11156. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  11157. // SERIAL_ECHOPAIR(" seconds=", seconds);
  11158. // SERIAL_ECHOLNPAIR(" segments=", segments);
  11159. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  11160. // SCARA needs to scale the feed rate from mm/s to degrees/s
  11161. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  11162. inverse_secs = inv_segment_length * _feedrate_mm_s;
  11163. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  11164. oldB = stepper.get_axis_position_degrees(B_AXIS);
  11165. #endif
  11166. // Get the current position as starting point
  11167. float raw[XYZE];
  11168. COPY(raw, current_position);
  11169. // Calculate and execute the segments
  11170. while (--segments) {
  11171. static millis_t next_idle_ms = millis() + 200UL;
  11172. thermalManager.manage_heater(); // This returns immediately if not really needed.
  11173. if (ELAPSED(millis(), next_idle_ms)) {
  11174. next_idle_ms = millis() + 200UL;
  11175. idle();
  11176. }
  11177. LOOP_XYZE(i) raw[i] += segment_distance[i];
  11178. #if ENABLED(DELTA)
  11179. DELTA_RAW_IK(); // Delta can inline its kinematics
  11180. #else
  11181. inverse_kinematics(raw);
  11182. #endif
  11183. ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled
  11184. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  11185. // For SCARA scale the feed rate from mm/s to degrees/s
  11186. // Use ratio between the length of the move and the larger angle change
  11187. const float adiff = abs(delta[A_AXIS] - oldA),
  11188. bdiff = abs(delta[B_AXIS] - oldB);
  11189. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], max(adiff, bdiff) * inverse_secs, active_extruder);
  11190. oldA = delta[A_AXIS];
  11191. oldB = delta[B_AXIS];
  11192. #else
  11193. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder);
  11194. #endif
  11195. }
  11196. // Since segment_distance is only approximate,
  11197. // the final move must be to the exact destination.
  11198. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  11199. // For SCARA scale the feed rate from mm/s to degrees/s
  11200. // With segments > 1 length is 1 segment, otherwise total length
  11201. inverse_kinematics(rtarget);
  11202. ADJUST_DELTA(rtarget);
  11203. const float adiff = abs(delta[A_AXIS] - oldA),
  11204. bdiff = abs(delta[B_AXIS] - oldB);
  11205. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], max(adiff, bdiff) * inverse_secs, active_extruder);
  11206. #else
  11207. planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder);
  11208. #endif
  11209. return false;
  11210. }
  11211. #else // !IS_KINEMATIC
  11212. /**
  11213. * Prepare a linear move in a Cartesian setup.
  11214. *
  11215. * When a mesh-based leveling system is active, moves are segmented
  11216. * according to the configuration of the leveling system.
  11217. *
  11218. * Returns true if current_position[] was set to destination[]
  11219. */
  11220. inline bool prepare_move_to_destination_cartesian() {
  11221. #if HAS_MESH
  11222. if (planner.leveling_active && planner.leveling_active_at_z(destination[Z_AXIS])) {
  11223. #if ENABLED(AUTO_BED_LEVELING_UBL)
  11224. ubl.line_to_destination_cartesian(MMS_SCALED(feedrate_mm_s), active_extruder); // UBL's motion routine needs to know about
  11225. return true; // all moves, including Z-only moves.
  11226. #elif ENABLED(SEGMENT_LEVELED_MOVES)
  11227. segmented_line_to_destination(MMS_SCALED(feedrate_mm_s));
  11228. return false;
  11229. #else
  11230. /**
  11231. * For MBL and ABL-BILINEAR only segment moves when X or Y are involved.
  11232. * Otherwise fall through to do a direct single move.
  11233. */
  11234. if (current_position[X_AXIS] != destination[X_AXIS] || current_position[Y_AXIS] != destination[Y_AXIS]) {
  11235. #if ENABLED(MESH_BED_LEVELING)
  11236. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  11237. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  11238. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  11239. #endif
  11240. return true;
  11241. }
  11242. #endif
  11243. }
  11244. #endif // HAS_MESH
  11245. buffer_line_to_destination(MMS_SCALED(feedrate_mm_s));
  11246. return false;
  11247. }
  11248. #endif // !IS_KINEMATIC
  11249. #endif // !UBL_SEGMENTED
  11250. #if ENABLED(DUAL_X_CARRIAGE)
  11251. /**
  11252. * Unpark the carriage, if needed
  11253. */
  11254. inline bool dual_x_carriage_unpark() {
  11255. if (active_extruder_parked)
  11256. switch (dual_x_carriage_mode) {
  11257. case DXC_FULL_CONTROL_MODE: break;
  11258. case DXC_AUTO_PARK_MODE:
  11259. if (current_position[E_AXIS] == destination[E_AXIS]) {
  11260. // This is a travel move (with no extrusion)
  11261. // Skip it, but keep track of the current position
  11262. // (so it can be used as the start of the next non-travel move)
  11263. if (delayed_move_time != 0xFFFFFFFFUL) {
  11264. set_current_from_destination();
  11265. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  11266. delayed_move_time = millis();
  11267. return true;
  11268. }
  11269. }
  11270. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  11271. for (uint8_t i = 0; i < 3; i++)
  11272. planner.buffer_line(
  11273. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  11274. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  11275. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  11276. current_position[E_AXIS],
  11277. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  11278. active_extruder
  11279. );
  11280. delayed_move_time = 0;
  11281. active_extruder_parked = false;
  11282. #if ENABLED(DEBUG_LEVELING_FEATURE)
  11283. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  11284. #endif
  11285. break;
  11286. case DXC_DUPLICATION_MODE:
  11287. if (active_extruder == 0) {
  11288. #if ENABLED(DEBUG_LEVELING_FEATURE)
  11289. if (DEBUGGING(LEVELING)) {
  11290. SERIAL_ECHOPAIR("Set planner X", inactive_extruder_x_pos);
  11291. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  11292. }
  11293. #endif
  11294. // move duplicate extruder into correct duplication position.
  11295. planner.set_position_mm(
  11296. inactive_extruder_x_pos,
  11297. current_position[Y_AXIS],
  11298. current_position[Z_AXIS],
  11299. current_position[E_AXIS]
  11300. );
  11301. planner.buffer_line(
  11302. current_position[X_AXIS] + duplicate_extruder_x_offset,
  11303. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  11304. planner.max_feedrate_mm_s[X_AXIS], 1
  11305. );
  11306. SYNC_PLAN_POSITION_KINEMATIC();
  11307. stepper.synchronize();
  11308. extruder_duplication_enabled = true;
  11309. active_extruder_parked = false;
  11310. #if ENABLED(DEBUG_LEVELING_FEATURE)
  11311. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  11312. #endif
  11313. }
  11314. else {
  11315. #if ENABLED(DEBUG_LEVELING_FEATURE)
  11316. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  11317. #endif
  11318. }
  11319. break;
  11320. }
  11321. return false;
  11322. }
  11323. #endif // DUAL_X_CARRIAGE
  11324. /**
  11325. * Prepare a single move and get ready for the next one
  11326. *
  11327. * This may result in several calls to planner.buffer_line to
  11328. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  11329. *
  11330. * Make sure current_position[E] and destination[E] are good
  11331. * before calling or cold/lengthy extrusion may get missed.
  11332. */
  11333. void prepare_move_to_destination() {
  11334. clamp_to_software_endstops(destination);
  11335. refresh_cmd_timeout();
  11336. #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
  11337. if (!DEBUGGING(DRYRUN)) {
  11338. if (destination[E_AXIS] != current_position[E_AXIS]) {
  11339. #if ENABLED(PREVENT_COLD_EXTRUSION)
  11340. if (thermalManager.tooColdToExtrude(active_extruder)) {
  11341. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  11342. SERIAL_ECHO_START();
  11343. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  11344. }
  11345. #endif // PREVENT_COLD_EXTRUSION
  11346. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  11347. if (FABS(destination[E_AXIS] - current_position[E_AXIS]) * planner.e_factor[active_extruder] > (EXTRUDE_MAXLENGTH)) {
  11348. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  11349. SERIAL_ECHO_START();
  11350. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  11351. }
  11352. #endif // PREVENT_LENGTHY_EXTRUDE
  11353. }
  11354. }
  11355. #endif
  11356. #if ENABLED(DUAL_X_CARRIAGE)
  11357. if (dual_x_carriage_unpark()) return;
  11358. #endif
  11359. if (
  11360. #if UBL_SEGMENTED
  11361. ubl.prepare_segmented_line_to(destination, MMS_SCALED(feedrate_mm_s))
  11362. #elif IS_KINEMATIC
  11363. prepare_kinematic_move_to(destination)
  11364. #else
  11365. prepare_move_to_destination_cartesian()
  11366. #endif
  11367. ) return;
  11368. set_current_from_destination();
  11369. }
  11370. #if ENABLED(ARC_SUPPORT)
  11371. #if N_ARC_CORRECTION < 1
  11372. #undef N_ARC_CORRECTION
  11373. #define N_ARC_CORRECTION 1
  11374. #endif
  11375. /**
  11376. * Plan an arc in 2 dimensions
  11377. *
  11378. * The arc is approximated by generating many small linear segments.
  11379. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  11380. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  11381. * larger segments will tend to be more efficient. Your slicer should have
  11382. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  11383. */
  11384. void plan_arc(
  11385. const float (&cart)[XYZE], // Destination position
  11386. const float (&offset)[2], // Center of rotation relative to current_position
  11387. const bool clockwise // Clockwise?
  11388. ) {
  11389. #if ENABLED(CNC_WORKSPACE_PLANES)
  11390. AxisEnum p_axis, q_axis, l_axis;
  11391. switch (workspace_plane) {
  11392. default:
  11393. case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
  11394. case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
  11395. case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
  11396. }
  11397. #else
  11398. constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
  11399. #endif
  11400. // Radius vector from center to current location
  11401. float r_P = -offset[0], r_Q = -offset[1];
  11402. const float radius = HYPOT(r_P, r_Q),
  11403. center_P = current_position[p_axis] - r_P,
  11404. center_Q = current_position[q_axis] - r_Q,
  11405. rt_X = cart[p_axis] - center_P,
  11406. rt_Y = cart[q_axis] - center_Q,
  11407. linear_travel = cart[l_axis] - current_position[l_axis],
  11408. extruder_travel = cart[E_AXIS] - current_position[E_AXIS];
  11409. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  11410. float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
  11411. if (angular_travel < 0) angular_travel += RADIANS(360);
  11412. if (clockwise) angular_travel -= RADIANS(360);
  11413. // Make a circle if the angular rotation is 0 and the target is current position
  11414. if (angular_travel == 0 && current_position[p_axis] == cart[p_axis] && current_position[q_axis] == cart[q_axis])
  11415. angular_travel = RADIANS(360);
  11416. const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
  11417. if (mm_of_travel < 0.001) return;
  11418. uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
  11419. NOLESS(segments, 1);
  11420. /**
  11421. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  11422. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  11423. * r_T = [cos(phi) -sin(phi);
  11424. * sin(phi) cos(phi)] * r ;
  11425. *
  11426. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  11427. * defined from the circle center to the initial position. Each line segment is formed by successive
  11428. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  11429. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  11430. * all double numbers are single precision on the Arduino. (True double precision will not have
  11431. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  11432. * tool precision in some cases. Therefore, arc path correction is implemented.
  11433. *
  11434. * Small angle approximation may be used to reduce computation overhead further. This approximation
  11435. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  11436. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  11437. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  11438. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  11439. * issue for CNC machines with the single precision Arduino calculations.
  11440. *
  11441. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  11442. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  11443. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  11444. * This is important when there are successive arc motions.
  11445. */
  11446. // Vector rotation matrix values
  11447. float arc_target[XYZE];
  11448. const float theta_per_segment = angular_travel / segments,
  11449. linear_per_segment = linear_travel / segments,
  11450. extruder_per_segment = extruder_travel / segments,
  11451. sin_T = theta_per_segment,
  11452. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  11453. // Initialize the linear axis
  11454. arc_target[l_axis] = current_position[l_axis];
  11455. // Initialize the extruder axis
  11456. arc_target[E_AXIS] = current_position[E_AXIS];
  11457. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  11458. millis_t next_idle_ms = millis() + 200UL;
  11459. #if N_ARC_CORRECTION > 1
  11460. int8_t arc_recalc_count = N_ARC_CORRECTION;
  11461. #endif
  11462. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  11463. thermalManager.manage_heater();
  11464. if (ELAPSED(millis(), next_idle_ms)) {
  11465. next_idle_ms = millis() + 200UL;
  11466. idle();
  11467. }
  11468. #if N_ARC_CORRECTION > 1
  11469. if (--arc_recalc_count) {
  11470. // Apply vector rotation matrix to previous r_P / 1
  11471. const float r_new_Y = r_P * sin_T + r_Q * cos_T;
  11472. r_P = r_P * cos_T - r_Q * sin_T;
  11473. r_Q = r_new_Y;
  11474. }
  11475. else
  11476. #endif
  11477. {
  11478. #if N_ARC_CORRECTION > 1
  11479. arc_recalc_count = N_ARC_CORRECTION;
  11480. #endif
  11481. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  11482. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  11483. // To reduce stuttering, the sin and cos could be computed at different times.
  11484. // For now, compute both at the same time.
  11485. const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
  11486. r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
  11487. r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
  11488. }
  11489. // Update arc_target location
  11490. arc_target[p_axis] = center_P + r_P;
  11491. arc_target[q_axis] = center_Q + r_Q;
  11492. arc_target[l_axis] += linear_per_segment;
  11493. arc_target[E_AXIS] += extruder_per_segment;
  11494. clamp_to_software_endstops(arc_target);
  11495. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  11496. }
  11497. // Ensure last segment arrives at target location.
  11498. planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder);
  11499. // As far as the parser is concerned, the position is now == target. In reality the
  11500. // motion control system might still be processing the action and the real tool position
  11501. // in any intermediate location.
  11502. set_current_from_destination();
  11503. } // plan_arc
  11504. #endif // ARC_SUPPORT
  11505. #if ENABLED(BEZIER_CURVE_SUPPORT)
  11506. void plan_cubic_move(const float (&offset)[4]) {
  11507. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  11508. // As far as the parser is concerned, the position is now == destination. In reality the
  11509. // motion control system might still be processing the action and the real tool position
  11510. // in any intermediate location.
  11511. set_current_from_destination();
  11512. }
  11513. #endif // BEZIER_CURVE_SUPPORT
  11514. #if ENABLED(USE_CONTROLLER_FAN)
  11515. void controllerFan() {
  11516. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  11517. nextMotorCheck = 0; // Last time the state was checked
  11518. const millis_t ms = millis();
  11519. if (ELAPSED(ms, nextMotorCheck)) {
  11520. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  11521. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
  11522. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  11523. #if E_STEPPERS > 1
  11524. || E1_ENABLE_READ == E_ENABLE_ON
  11525. #if HAS_X2_ENABLE
  11526. || X2_ENABLE_READ == X_ENABLE_ON
  11527. #endif
  11528. #if E_STEPPERS > 2
  11529. || E2_ENABLE_READ == E_ENABLE_ON
  11530. #if E_STEPPERS > 3
  11531. || E3_ENABLE_READ == E_ENABLE_ON
  11532. #if E_STEPPERS > 4
  11533. || E4_ENABLE_READ == E_ENABLE_ON
  11534. #endif // E_STEPPERS > 4
  11535. #endif // E_STEPPERS > 3
  11536. #endif // E_STEPPERS > 2
  11537. #endif // E_STEPPERS > 1
  11538. ) {
  11539. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  11540. }
  11541. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  11542. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  11543. // allows digital or PWM fan output to be used (see M42 handling)
  11544. WRITE(CONTROLLER_FAN_PIN, speed);
  11545. analogWrite(CONTROLLER_FAN_PIN, speed);
  11546. }
  11547. }
  11548. #endif // USE_CONTROLLER_FAN
  11549. #if ENABLED(MORGAN_SCARA)
  11550. /**
  11551. * Morgan SCARA Forward Kinematics. Results in cartes[].
  11552. * Maths and first version by QHARLEY.
  11553. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  11554. */
  11555. void forward_kinematics_SCARA(const float &a, const float &b) {
  11556. float a_sin = sin(RADIANS(a)) * L1,
  11557. a_cos = cos(RADIANS(a)) * L1,
  11558. b_sin = sin(RADIANS(b)) * L2,
  11559. b_cos = cos(RADIANS(b)) * L2;
  11560. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  11561. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  11562. /*
  11563. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  11564. SERIAL_ECHOPAIR(" b=", b);
  11565. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  11566. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  11567. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  11568. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  11569. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  11570. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  11571. //*/
  11572. }
  11573. /**
  11574. * Morgan SCARA Inverse Kinematics. Results in delta[].
  11575. *
  11576. * See http://forums.reprap.org/read.php?185,283327
  11577. *
  11578. * Maths and first version by QHARLEY.
  11579. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  11580. */
  11581. void inverse_kinematics(const float raw[XYZ]) {
  11582. static float C2, S2, SK1, SK2, THETA, PSI;
  11583. float sx = raw[X_AXIS] - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  11584. sy = raw[Y_AXIS] - SCARA_OFFSET_Y; // With scaling factor.
  11585. if (L1 == L2)
  11586. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  11587. else
  11588. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  11589. S2 = SQRT(1 - sq(C2));
  11590. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  11591. SK1 = L1 + L2 * C2;
  11592. // Rotated Arm2 gives the distance from Arm1 to Arm2
  11593. SK2 = L2 * S2;
  11594. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  11595. THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
  11596. // Angle of Arm2
  11597. PSI = ATAN2(S2, C2);
  11598. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  11599. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  11600. delta[C_AXIS] = raw[Z_AXIS];
  11601. /*
  11602. DEBUG_POS("SCARA IK", raw);
  11603. DEBUG_POS("SCARA IK", delta);
  11604. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  11605. SERIAL_ECHOPAIR(",", sy);
  11606. SERIAL_ECHOPAIR(" C2=", C2);
  11607. SERIAL_ECHOPAIR(" S2=", S2);
  11608. SERIAL_ECHOPAIR(" Theta=", THETA);
  11609. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  11610. //*/
  11611. }
  11612. #endif // MORGAN_SCARA
  11613. #if ENABLED(TEMP_STAT_LEDS)
  11614. static bool red_led = false;
  11615. static millis_t next_status_led_update_ms = 0;
  11616. void handle_status_leds(void) {
  11617. if (ELAPSED(millis(), next_status_led_update_ms)) {
  11618. next_status_led_update_ms += 500; // Update every 0.5s
  11619. float max_temp = 0.0;
  11620. #if HAS_TEMP_BED
  11621. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  11622. #endif
  11623. HOTEND_LOOP()
  11624. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  11625. const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  11626. if (new_led != red_led) {
  11627. red_led = new_led;
  11628. #if PIN_EXISTS(STAT_LED_RED)
  11629. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  11630. #if PIN_EXISTS(STAT_LED_BLUE)
  11631. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  11632. #endif
  11633. #else
  11634. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  11635. #endif
  11636. }
  11637. }
  11638. }
  11639. #endif
  11640. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11641. void handle_filament_runout() {
  11642. if (!filament_ran_out) {
  11643. filament_ran_out = true;
  11644. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  11645. stepper.synchronize();
  11646. }
  11647. }
  11648. #endif // FILAMENT_RUNOUT_SENSOR
  11649. #if ENABLED(FAST_PWM_FAN)
  11650. void setPwmFrequency(uint8_t pin, int val) {
  11651. val &= 0x07;
  11652. switch (digitalPinToTimer(pin)) {
  11653. #ifdef TCCR0A
  11654. #if !AVR_AT90USB1286_FAMILY
  11655. case TIMER0A:
  11656. #endif
  11657. case TIMER0B: //_SET_CS(0, val);
  11658. break;
  11659. #endif
  11660. #ifdef TCCR1A
  11661. case TIMER1A: case TIMER1B: //_SET_CS(1, val);
  11662. break;
  11663. #endif
  11664. #if defined(TCCR2) || defined(TCCR2A)
  11665. #ifdef TCCR2
  11666. case TIMER2:
  11667. #endif
  11668. #ifdef TCCR2A
  11669. case TIMER2A: case TIMER2B:
  11670. #endif
  11671. _SET_CS(2, val); break;
  11672. #endif
  11673. #ifdef TCCR3A
  11674. case TIMER3A: case TIMER3B: case TIMER3C: _SET_CS(3, val); break;
  11675. #endif
  11676. #ifdef TCCR4A
  11677. case TIMER4A: case TIMER4B: case TIMER4C: _SET_CS(4, val); break;
  11678. #endif
  11679. #ifdef TCCR5A
  11680. case TIMER5A: case TIMER5B: case TIMER5C: _SET_CS(5, val); break;
  11681. #endif
  11682. }
  11683. }
  11684. #endif // FAST_PWM_FAN
  11685. void enable_all_steppers() {
  11686. enable_X();
  11687. enable_Y();
  11688. enable_Z();
  11689. enable_E0();
  11690. enable_E1();
  11691. enable_E2();
  11692. enable_E3();
  11693. enable_E4();
  11694. }
  11695. void disable_e_steppers() {
  11696. disable_E0();
  11697. disable_E1();
  11698. disable_E2();
  11699. disable_E3();
  11700. disable_E4();
  11701. }
  11702. void disable_all_steppers() {
  11703. disable_X();
  11704. disable_Y();
  11705. disable_Z();
  11706. disable_e_steppers();
  11707. }
  11708. #if ENABLED(MONITOR_DRIVER_STATUS)
  11709. /*
  11710. * Check for over temperature or short to ground error flags.
  11711. * Report and log warning of overtemperature condition.
  11712. * Reduce driver current in a persistent otpw condition.
  11713. * Keep track of otpw counter so we don't reduce current on a single instance,
  11714. * and so we don't repeatedly report warning before the condition is cleared.
  11715. */
  11716. struct TMC_driver_data {
  11717. uint32_t drv_status;
  11718. bool is_otpw;
  11719. bool is_ot;
  11720. bool is_error;
  11721. };
  11722. #if ENABLED(HAVE_TMC2130)
  11723. static uint32_t get_pwm_scale(TMC2130Stepper &st) { return st.PWM_SCALE(); }
  11724. static uint8_t get_status_response(TMC2130Stepper &st) { return st.status_response&0xF; }
  11725. static TMC_driver_data get_driver_data(TMC2130Stepper &st) {
  11726. constexpr uint32_t OTPW_bm = 0x4000000UL;
  11727. constexpr uint8_t OTPW_bp = 26;
  11728. constexpr uint32_t OT_bm = 0x2000000UL;
  11729. constexpr uint8_t OT_bp = 25;
  11730. constexpr uint8_t DRIVER_ERROR_bm = 0x2UL;
  11731. constexpr uint8_t DRIVER_ERROR_bp = 1;
  11732. TMC_driver_data data;
  11733. data.drv_status = st.DRV_STATUS();
  11734. data.is_otpw = (data.drv_status & OTPW_bm)>>OTPW_bp;
  11735. data.is_ot = (data.drv_status & OT_bm)>>OT_bp;
  11736. data.is_error = (st.status_response & DRIVER_ERROR_bm)>>DRIVER_ERROR_bp;
  11737. return data;
  11738. }
  11739. #endif
  11740. #if ENABLED(HAVE_TMC2208)
  11741. static uint32_t get_pwm_scale(TMC2208Stepper &st) { return st.pwm_scale_sum(); }
  11742. static uint8_t get_status_response(TMC2208Stepper &st) {
  11743. uint32_t drv_status = st.DRV_STATUS();
  11744. uint8_t gstat = st.GSTAT();
  11745. uint8_t response = 0;
  11746. response |= (drv_status >> (31-3)) & 0b1000;
  11747. response |= gstat & 0b11;
  11748. return response;
  11749. }
  11750. static TMC_driver_data get_driver_data(TMC2208Stepper &st) {
  11751. constexpr uint32_t OTPW_bm = 0b1ul;
  11752. constexpr uint8_t OTPW_bp = 0;
  11753. constexpr uint32_t OT_bm = 0b10ul;
  11754. constexpr uint8_t OT_bp = 1;
  11755. TMC_driver_data data;
  11756. data.drv_status = st.DRV_STATUS();
  11757. data.is_otpw = (data.drv_status & OTPW_bm)>>OTPW_bp;
  11758. data.is_ot = (data.drv_status & OT_bm)>>OT_bp;
  11759. data.is_error = st.drv_err();
  11760. return data;
  11761. }
  11762. #endif
  11763. template<typename TMC>
  11764. uint8_t monitor_tmc_driver(TMC &st, const char axisID, uint8_t otpw_cnt) {
  11765. TMC_driver_data data = get_driver_data(st);
  11766. #if ENABLED(STOP_ON_ERROR)
  11767. if (data.is_error) {
  11768. SERIAL_EOL();
  11769. SERIAL_ECHO(axisID);
  11770. SERIAL_ECHO(" driver error detected:");
  11771. if (data.is_ot) SERIAL_ECHO("\novertemperature");
  11772. if (st.s2ga()) SERIAL_ECHO("\nshort to ground (coil A)");
  11773. if (st.s2gb()) SERIAL_ECHO("\nshort to ground (coil B)");
  11774. SERIAL_EOL();
  11775. #if ENABLED(TMC_DEBUG)
  11776. gcode_M122();
  11777. #endif
  11778. kill(PSTR("Driver error"));
  11779. }
  11780. #endif
  11781. // Report if a warning was triggered
  11782. if (data.is_otpw && otpw_cnt==0) {
  11783. char timestamp[10];
  11784. duration_t elapsed = print_job_timer.duration();
  11785. const bool has_days = (elapsed.value > 60*60*24L);
  11786. (void)elapsed.toDigital(timestamp, has_days);
  11787. SERIAL_EOL();
  11788. SERIAL_ECHO(timestamp);
  11789. SERIAL_ECHOPGM(": ");
  11790. SERIAL_ECHO(axisID);
  11791. SERIAL_ECHOPGM(" driver overtemperature warning! (");
  11792. SERIAL_ECHO(st.getCurrent());
  11793. SERIAL_ECHOLN("mA)");
  11794. }
  11795. #if CURRENT_STEP_DOWN > 0
  11796. // Decrease current if is_otpw is true and driver is enabled and there's been more then 4 warnings
  11797. if (data.is_otpw && !st.isEnabled() && otpw_cnt > 4) {
  11798. st.setCurrent(st.getCurrent() - CURRENT_STEP_DOWN, R_SENSE, HOLD_MULTIPLIER);
  11799. #if ENABLED(REPORT_CURRENT_CHANGE)
  11800. SERIAL_ECHO(axisID);
  11801. SERIAL_ECHOLNPAIR(" current decreased to ", st.getCurrent());
  11802. #endif
  11803. }
  11804. #endif
  11805. if (data.is_otpw) {
  11806. otpw_cnt++;
  11807. st.flag_otpw = true;
  11808. }
  11809. else if (otpw_cnt>0) otpw_cnt--;
  11810. if (report_tmc_status) {
  11811. const uint32_t pwm_scale = get_pwm_scale(st);
  11812. SERIAL_ECHO(axisID);
  11813. SERIAL_ECHOPAIR(":", pwm_scale);
  11814. SERIAL_ECHO(" |0b"); MYSERIAL.print(get_status_response(st), BIN);
  11815. SERIAL_ECHO("| ");
  11816. if (data.is_error) SERIAL_ECHO('E');
  11817. else if (data.is_ot) SERIAL_ECHO('O');
  11818. else if (data.is_otpw) SERIAL_ECHO('W');
  11819. else if (otpw_cnt>0) MYSERIAL.print(otpw_cnt, DEC);
  11820. else if (st.flag_otpw) SERIAL_ECHO('F');
  11821. SERIAL_ECHO("\t");
  11822. }
  11823. return otpw_cnt;
  11824. }
  11825. void monitor_tmc_driver() {
  11826. static millis_t next_cOT = 0;
  11827. if (ELAPSED(millis(), next_cOT)) {
  11828. next_cOT = millis() + 500;
  11829. #if ENABLED(X_IS_TMC2130)|| (ENABLED(X_IS_TMC2208) && defined(X_HARDWARE_SERIAL)) || ENABLED(IS_TRAMS)
  11830. static uint8_t x_otpw_cnt = 0;
  11831. x_otpw_cnt = monitor_tmc_driver(stepperX, axis_codes[X_AXIS], x_otpw_cnt);
  11832. #endif
  11833. #if ENABLED(Y_IS_TMC2130)|| (ENABLED(Y_IS_TMC2208) && defined(Y_HARDWARE_SERIAL)) || ENABLED(IS_TRAMS)
  11834. static uint8_t y_otpw_cnt = 0;
  11835. y_otpw_cnt = monitor_tmc_driver(stepperY, axis_codes[Y_AXIS], y_otpw_cnt);
  11836. #endif
  11837. #if ENABLED(Z_IS_TMC2130)|| (ENABLED(Z_IS_TMC2208) && defined(Z_HARDWARE_SERIAL)) || ENABLED(IS_TRAMS)
  11838. static uint8_t z_otpw_cnt = 0;
  11839. z_otpw_cnt = monitor_tmc_driver(stepperZ, axis_codes[Z_AXIS], z_otpw_cnt);
  11840. #endif
  11841. #if ENABLED(X2_IS_TMC2130) || (ENABLED(X2_IS_TMC2208) && defined(X2_HARDWARE_SERIAL))
  11842. static uint8_t x2_otpw_cnt = 0;
  11843. x2_otpw_cnt = monitor_tmc_driver(stepperX2, axis_codes[X_AXIS], x2_otpw_cnt);
  11844. #endif
  11845. #if ENABLED(Y2_IS_TMC2130) || (ENABLED(Y2_IS_TMC2208) && defined(Y2_HARDWARE_SERIAL))
  11846. static uint8_t y2_otpw_cnt = 0;
  11847. y2_otpw_cnt = monitor_tmc_driver(stepperY2, axis_codes[Y_AXIS], y2_otpw_cnt);
  11848. #endif
  11849. #if ENABLED(Z2_IS_TMC2130) || (ENABLED(Z2_IS_TMC2208) && defined(Z2_HARDWARE_SERIAL))
  11850. static uint8_t z2_otpw_cnt = 0;
  11851. z2_otpw_cnt = monitor_tmc_driver(stepperZ2, axis_codes[Z_AXIS], z2_otpw_cnt);
  11852. #endif
  11853. #if ENABLED(E0_IS_TMC2130)|| (ENABLED(E0_IS_TMC2208) && defined(E0_HARDWARE_SERIAL)) || ENABLED(IS_TRAMS)
  11854. static uint8_t e0_otpw_cnt = 0;
  11855. e0_otpw_cnt = monitor_tmc_driver(stepperE0, axis_codes[E_AXIS], e0_otpw_cnt);
  11856. #endif
  11857. #if ENABLED(E1_IS_TMC2130) || (ENABLED(E1_IS_TMC2208) && defined(E1_HARDWARE_SERIAL))
  11858. static uint8_t e1_otpw_cnt = 0;
  11859. e1_otpw_cnt = monitor_tmc_driver(stepperE1, axis_codes[E_AXIS], e1_otpw_cnt);
  11860. #endif
  11861. #if ENABLED(E2_IS_TMC2130) || (ENABLED(E2_IS_TMC2208) && defined(E2_HARDWARE_SERIAL))
  11862. static uint8_t e2_otpw_cnt = 0;
  11863. e2_otpw_cnt = monitor_tmc_driver(stepperE2, axis_codes[E_AXIS], e2_otpw_cnt);
  11864. #endif
  11865. #if ENABLED(E3_IS_TMC2130) || (ENABLED(E3_IS_TMC2208) && defined(E3_HARDWARE_SERIAL))
  11866. static uint8_t e3_otpw_cnt = 0;
  11867. e3_otpw_cnt = monitor_tmc_driver(stepperE3, axis_codes[E_AXIS], e3_otpw_cnt);
  11868. #endif
  11869. #if ENABLED(E4_IS_TMC2130) || (ENABLED(E4_IS_TMC2208) && defined(E4_HARDWARE_SERIAL))
  11870. static uint8_t e4_otpw_cnt = 0;
  11871. e4_otpw_cnt = monitor_tmc_driver(stepperE4, axis_codes[E_AXIS], e4_otpw_cnt);
  11872. #endif
  11873. if (report_tmc_status) SERIAL_EOL();
  11874. }
  11875. }
  11876. #endif // MONITOR_DRIVER_STATUS
  11877. /**
  11878. * Manage several activities:
  11879. * - Check for Filament Runout
  11880. * - Keep the command buffer full
  11881. * - Check for maximum inactive time between commands
  11882. * - Check for maximum inactive time between stepper commands
  11883. * - Check if pin CHDK needs to go LOW
  11884. * - Check for KILL button held down
  11885. * - Check for HOME button held down
  11886. * - Check if cooling fan needs to be switched on
  11887. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  11888. */
  11889. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  11890. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11891. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  11892. handle_filament_runout();
  11893. #endif
  11894. if (commands_in_queue < BUFSIZE) get_available_commands();
  11895. const millis_t ms = millis();
  11896. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  11897. SERIAL_ERROR_START();
  11898. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
  11899. kill(PSTR(MSG_KILLED));
  11900. }
  11901. // Prevent steppers timing-out in the middle of M600
  11902. #if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
  11903. #define MOVE_AWAY_TEST !move_away_flag
  11904. #else
  11905. #define MOVE_AWAY_TEST true
  11906. #endif
  11907. if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  11908. && !ignore_stepper_queue && !planner.blocks_queued()) {
  11909. #if ENABLED(DISABLE_INACTIVE_X)
  11910. disable_X();
  11911. #endif
  11912. #if ENABLED(DISABLE_INACTIVE_Y)
  11913. disable_Y();
  11914. #endif
  11915. #if ENABLED(DISABLE_INACTIVE_Z)
  11916. disable_Z();
  11917. #endif
  11918. #if ENABLED(DISABLE_INACTIVE_E)
  11919. disable_e_steppers();
  11920. #endif
  11921. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  11922. ubl.lcd_map_control = defer_return_to_status = false;
  11923. #endif
  11924. }
  11925. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  11926. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  11927. chdkActive = false;
  11928. WRITE(CHDK, LOW);
  11929. }
  11930. #endif
  11931. #if HAS_KILL
  11932. // Check if the kill button was pressed and wait just in case it was an accidental
  11933. // key kill key press
  11934. // -------------------------------------------------------------------------------
  11935. static int killCount = 0; // make the inactivity button a bit less responsive
  11936. const int KILL_DELAY = 750;
  11937. if (!READ(KILL_PIN))
  11938. killCount++;
  11939. else if (killCount > 0)
  11940. killCount--;
  11941. // Exceeded threshold and we can confirm that it was not accidental
  11942. // KILL the machine
  11943. // ----------------------------------------------------------------
  11944. if (killCount >= KILL_DELAY) {
  11945. SERIAL_ERROR_START();
  11946. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  11947. kill(PSTR(MSG_KILLED));
  11948. }
  11949. #endif
  11950. #if HAS_HOME
  11951. // Check to see if we have to home, use poor man's debouncer
  11952. // ---------------------------------------------------------
  11953. static int homeDebounceCount = 0; // poor man's debouncing count
  11954. const int HOME_DEBOUNCE_DELAY = 2500;
  11955. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  11956. if (!homeDebounceCount) {
  11957. enqueue_and_echo_commands_P(PSTR("G28"));
  11958. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  11959. }
  11960. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  11961. homeDebounceCount++;
  11962. else
  11963. homeDebounceCount = 0;
  11964. }
  11965. #endif
  11966. #if ENABLED(USE_CONTROLLER_FAN)
  11967. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  11968. #endif
  11969. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  11970. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  11971. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  11972. #if ENABLED(SWITCHING_EXTRUDER)
  11973. const bool oldstatus = E0_ENABLE_READ;
  11974. enable_E0();
  11975. #else // !SWITCHING_EXTRUDER
  11976. bool oldstatus;
  11977. switch (active_extruder) {
  11978. default: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  11979. #if E_STEPPERS > 1
  11980. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  11981. #if E_STEPPERS > 2
  11982. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  11983. #if E_STEPPERS > 3
  11984. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  11985. #if E_STEPPERS > 4
  11986. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  11987. #endif // E_STEPPERS > 4
  11988. #endif // E_STEPPERS > 3
  11989. #endif // E_STEPPERS > 2
  11990. #endif // E_STEPPERS > 1
  11991. }
  11992. #endif // !SWITCHING_EXTRUDER
  11993. previous_cmd_ms = ms; // refresh_cmd_timeout()
  11994. const float olde = current_position[E_AXIS];
  11995. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  11996. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  11997. current_position[E_AXIS] = olde;
  11998. planner.set_e_position_mm(olde);
  11999. stepper.synchronize();
  12000. #if ENABLED(SWITCHING_EXTRUDER)
  12001. E0_ENABLE_WRITE(oldstatus);
  12002. #else
  12003. switch (active_extruder) {
  12004. case 0: E0_ENABLE_WRITE(oldstatus); break;
  12005. #if E_STEPPERS > 1
  12006. case 1: E1_ENABLE_WRITE(oldstatus); break;
  12007. #if E_STEPPERS > 2
  12008. case 2: E2_ENABLE_WRITE(oldstatus); break;
  12009. #if E_STEPPERS > 3
  12010. case 3: E3_ENABLE_WRITE(oldstatus); break;
  12011. #if E_STEPPERS > 4
  12012. case 4: E4_ENABLE_WRITE(oldstatus); break;
  12013. #endif // E_STEPPERS > 4
  12014. #endif // E_STEPPERS > 3
  12015. #endif // E_STEPPERS > 2
  12016. #endif // E_STEPPERS > 1
  12017. }
  12018. #endif // !SWITCHING_EXTRUDER
  12019. }
  12020. #endif // EXTRUDER_RUNOUT_PREVENT
  12021. #if ENABLED(DUAL_X_CARRIAGE)
  12022. // handle delayed move timeout
  12023. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  12024. // travel moves have been received so enact them
  12025. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  12026. set_destination_from_current();
  12027. prepare_move_to_destination();
  12028. }
  12029. #endif
  12030. #if ENABLED(TEMP_STAT_LEDS)
  12031. handle_status_leds();
  12032. #endif
  12033. #if ENABLED(MONITOR_DRIVER_STATUS)
  12034. monitor_tmc_driver();
  12035. #endif
  12036. planner.check_axes_activity();
  12037. }
  12038. /**
  12039. * Standard idle routine keeps the machine alive
  12040. */
  12041. void idle(
  12042. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  12043. bool no_stepper_sleep/*=false*/
  12044. #endif
  12045. ) {
  12046. #if ENABLED(MAX7219_DEBUG)
  12047. Max7219_idle_tasks();
  12048. #endif // MAX7219_DEBUG
  12049. lcd_update();
  12050. host_keepalive();
  12051. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  12052. thermalManager.auto_report_temperatures();
  12053. #endif
  12054. manage_inactivity(
  12055. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  12056. no_stepper_sleep
  12057. #endif
  12058. );
  12059. thermalManager.manage_heater();
  12060. #if ENABLED(PRINTCOUNTER)
  12061. print_job_timer.tick();
  12062. #endif
  12063. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  12064. buzzer.tick();
  12065. #endif
  12066. #if ENABLED(I2C_POSITION_ENCODERS)
  12067. if (planner.blocks_queued() &&
  12068. ( (blockBufferIndexRef != planner.block_buffer_head) ||
  12069. ((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
  12070. blockBufferIndexRef = planner.block_buffer_head;
  12071. I2CPEM.update();
  12072. lastUpdateMillis = millis();
  12073. }
  12074. #endif
  12075. }
  12076. /**
  12077. * Kill all activity and lock the machine.
  12078. * After this the machine will need to be reset.
  12079. */
  12080. void kill(const char* lcd_msg) {
  12081. SERIAL_ERROR_START();
  12082. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  12083. thermalManager.disable_all_heaters();
  12084. disable_all_steppers();
  12085. #if ENABLED(ULTRA_LCD)
  12086. kill_screen(lcd_msg);
  12087. #else
  12088. UNUSED(lcd_msg);
  12089. #endif
  12090. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  12091. cli(); // Stop interrupts
  12092. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  12093. thermalManager.disable_all_heaters(); //turn off heaters again
  12094. #ifdef ACTION_ON_KILL
  12095. SERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL);
  12096. #endif
  12097. #if HAS_POWER_SWITCH
  12098. SET_INPUT(PS_ON_PIN);
  12099. #endif
  12100. suicide();
  12101. while (1) {
  12102. #if ENABLED(USE_WATCHDOG)
  12103. watchdog_reset();
  12104. #endif
  12105. } // Wait for reset
  12106. }
  12107. /**
  12108. * Turn off heaters and stop the print in progress
  12109. * After a stop the machine may be resumed with M999
  12110. */
  12111. void stop() {
  12112. thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
  12113. #if ENABLED(PROBING_FANS_OFF)
  12114. if (fans_paused) fans_pause(false); // put things back the way they were
  12115. #endif
  12116. if (IsRunning()) {
  12117. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  12118. SERIAL_ERROR_START();
  12119. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  12120. LCD_MESSAGEPGM(MSG_STOPPED);
  12121. safe_delay(350); // allow enough time for messages to get out before stopping
  12122. Running = false;
  12123. }
  12124. }
  12125. /**
  12126. * Marlin entry-point: Set up before the program loop
  12127. * - Set up the kill pin, filament runout, power hold
  12128. * - Start the serial port
  12129. * - Print startup messages and diagnostics
  12130. * - Get EEPROM or default settings
  12131. * - Initialize managers for:
  12132. * • temperature
  12133. * • planner
  12134. * • watchdog
  12135. * • stepper
  12136. * • photo pin
  12137. * • servos
  12138. * • LCD controller
  12139. * • Digipot I2C
  12140. * • Z probe sled
  12141. * • status LEDs
  12142. */
  12143. void setup() {
  12144. #if ENABLED(MAX7219_DEBUG)
  12145. Max7219_init();
  12146. #endif
  12147. #if ENABLED(DISABLE_JTAG)
  12148. // Disable JTAG on AT90USB chips to free up pins for IO
  12149. MCUCR = 0x80;
  12150. MCUCR = 0x80;
  12151. #endif
  12152. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  12153. setup_filrunoutpin();
  12154. #endif
  12155. setup_killpin();
  12156. setup_powerhold();
  12157. #if HAS_STEPPER_RESET
  12158. disableStepperDrivers();
  12159. #endif
  12160. MYSERIAL.begin(BAUDRATE);
  12161. SERIAL_PROTOCOLLNPGM("start");
  12162. SERIAL_ECHO_START();
  12163. #if ENABLED(HAVE_TMC2208)
  12164. tmc2208_serial_begin();
  12165. #endif
  12166. // Check startup - does nothing if bootloader sets MCUSR to 0
  12167. byte mcu = MCUSR;
  12168. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  12169. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  12170. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  12171. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  12172. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  12173. MCUSR = 0;
  12174. SERIAL_ECHOPGM(MSG_MARLIN);
  12175. SERIAL_CHAR(' ');
  12176. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  12177. SERIAL_EOL();
  12178. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  12179. SERIAL_ECHO_START();
  12180. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  12181. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  12182. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  12183. SERIAL_ECHO_START();
  12184. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  12185. #endif
  12186. SERIAL_ECHO_START();
  12187. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  12188. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  12189. // Send "ok" after commands by default
  12190. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  12191. // Load data from EEPROM if available (or use defaults)
  12192. // This also updates variables in the planner, elsewhere
  12193. (void)settings.load();
  12194. #if HAS_M206_COMMAND
  12195. // Initialize current position based on home_offset
  12196. COPY(current_position, home_offset);
  12197. #else
  12198. ZERO(current_position);
  12199. #endif
  12200. // Vital to init stepper/planner equivalent for current_position
  12201. SYNC_PLAN_POSITION_KINEMATIC();
  12202. thermalManager.init(); // Initialize temperature loop
  12203. #if ENABLED(USE_WATCHDOG)
  12204. watchdog_init();
  12205. #endif
  12206. stepper.init(); // Initialize stepper, this enables interrupts!
  12207. servo_init();
  12208. #if HAS_PHOTOGRAPH
  12209. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  12210. #endif
  12211. #if HAS_CASE_LIGHT
  12212. case_light_on = CASE_LIGHT_DEFAULT_ON;
  12213. case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
  12214. update_case_light();
  12215. #endif
  12216. #if ENABLED(SPINDLE_LASER_ENABLE)
  12217. OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
  12218. #if SPINDLE_DIR_CHANGE
  12219. OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
  12220. #endif
  12221. #if ENABLED(SPINDLE_LASER_PWM)
  12222. SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
  12223. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
  12224. #endif
  12225. #endif
  12226. #if HAS_BED_PROBE
  12227. endstops.enable_z_probe(false);
  12228. #endif
  12229. #if ENABLED(USE_CONTROLLER_FAN)
  12230. SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
  12231. #endif
  12232. #if HAS_STEPPER_RESET
  12233. enableStepperDrivers();
  12234. #endif
  12235. #if ENABLED(DIGIPOT_I2C)
  12236. digipot_i2c_init();
  12237. #endif
  12238. #if ENABLED(DAC_STEPPER_CURRENT)
  12239. dac_init();
  12240. #endif
  12241. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  12242. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  12243. #endif
  12244. #if HAS_HOME
  12245. SET_INPUT_PULLUP(HOME_PIN);
  12246. #endif
  12247. #if PIN_EXISTS(STAT_LED_RED)
  12248. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  12249. #endif
  12250. #if PIN_EXISTS(STAT_LED_BLUE)
  12251. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  12252. #endif
  12253. #if HAS_COLOR_LEDS
  12254. leds.setup();
  12255. #endif
  12256. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  12257. SET_OUTPUT(RGB_LED_R_PIN);
  12258. SET_OUTPUT(RGB_LED_G_PIN);
  12259. SET_OUTPUT(RGB_LED_B_PIN);
  12260. #if ENABLED(RGBW_LED)
  12261. SET_OUTPUT(RGB_LED_W_PIN);
  12262. #endif
  12263. #endif
  12264. #if ENABLED(MK2_MULTIPLEXER)
  12265. SET_OUTPUT(E_MUX0_PIN);
  12266. SET_OUTPUT(E_MUX1_PIN);
  12267. SET_OUTPUT(E_MUX2_PIN);
  12268. #endif
  12269. #if HAS_FANMUX
  12270. fanmux_init();
  12271. #endif
  12272. lcd_init();
  12273. #if ENABLED(SHOW_BOOTSCREEN)
  12274. lcd_bootscreen();
  12275. #endif
  12276. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  12277. // Virtual Tools 0, 1, 2, 3 = Filament 1, 2, 3, 4, etc.
  12278. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS && t < MIXING_STEPPERS; t++)
  12279. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  12280. mixing_virtual_tool_mix[t][i] = (t == i) ? 1.0 : 0.0;
  12281. // Remaining virtual tools are 100% filament 1
  12282. #if MIXING_STEPPERS < MIXING_VIRTUAL_TOOLS
  12283. for (uint8_t t = MIXING_STEPPERS; t < MIXING_VIRTUAL_TOOLS; t++)
  12284. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  12285. mixing_virtual_tool_mix[t][i] = (i == 0) ? 1.0 : 0.0;
  12286. #endif
  12287. // Initialize mixing to tool 0 color
  12288. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  12289. mixing_factor[i] = mixing_virtual_tool_mix[0][i];
  12290. #endif
  12291. #if ENABLED(BLTOUCH)
  12292. // Make sure any BLTouch error condition is cleared
  12293. bltouch_command(BLTOUCH_RESET);
  12294. set_bltouch_deployed(true);
  12295. set_bltouch_deployed(false);
  12296. #endif
  12297. #if ENABLED(I2C_POSITION_ENCODERS)
  12298. I2CPEM.init();
  12299. #endif
  12300. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  12301. i2c.onReceive(i2c_on_receive);
  12302. i2c.onRequest(i2c_on_request);
  12303. #endif
  12304. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  12305. setup_endstop_interrupts();
  12306. #endif
  12307. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  12308. move_extruder_servo(0); // Initialize extruder servo
  12309. #endif
  12310. #if ENABLED(SWITCHING_NOZZLE)
  12311. move_nozzle_servo(0); // Initialize nozzle servo
  12312. #endif
  12313. #if ENABLED(PARKING_EXTRUDER)
  12314. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  12315. pe_activate_magnet(0);
  12316. pe_activate_magnet(1);
  12317. #else
  12318. pe_deactivate_magnet(0);
  12319. pe_deactivate_magnet(1);
  12320. #endif
  12321. #endif
  12322. #if ENABLED(MKS_12864OLED)
  12323. SET_OUTPUT(LCD_PINS_DC);
  12324. OUT_WRITE(LCD_PINS_RS, LOW);
  12325. delay(1000);
  12326. WRITE(LCD_PINS_RS, HIGH);
  12327. #endif
  12328. }
  12329. /**
  12330. * The main Marlin program loop
  12331. *
  12332. * - Save or log commands to SD
  12333. * - Process available commands (if not saving)
  12334. * - Call heater manager
  12335. * - Call inactivity manager
  12336. * - Call endstop manager
  12337. * - Call LCD update
  12338. */
  12339. void loop() {
  12340. if (commands_in_queue < BUFSIZE) get_available_commands();
  12341. #if ENABLED(SDSUPPORT)
  12342. card.checkautostart(false);
  12343. #endif
  12344. if (commands_in_queue) {
  12345. #if ENABLED(SDSUPPORT)
  12346. if (card.saving) {
  12347. char* command = command_queue[cmd_queue_index_r];
  12348. if (strstr_P(command, PSTR("M29"))) {
  12349. // M29 closes the file
  12350. card.closefile();
  12351. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  12352. #if ENABLED(SERIAL_STATS_DROPPED_RX)
  12353. SERIAL_ECHOLNPAIR("Dropped bytes: ", customizedSerial.dropped());
  12354. #endif
  12355. #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
  12356. SERIAL_ECHOLNPAIR("Max RX Queue Size: ", customizedSerial.rxMaxEnqueued());
  12357. #endif
  12358. ok_to_send();
  12359. }
  12360. else {
  12361. // Write the string from the read buffer to SD
  12362. card.write_command(command);
  12363. if (card.logging)
  12364. process_next_command(); // The card is saving because it's logging
  12365. else
  12366. ok_to_send();
  12367. }
  12368. }
  12369. else
  12370. process_next_command();
  12371. #else
  12372. process_next_command();
  12373. #endif // SDSUPPORT
  12374. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  12375. if (commands_in_queue) {
  12376. --commands_in_queue;
  12377. if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
  12378. }
  12379. }
  12380. endstops.report_state();
  12381. idle();
  12382. }