My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 65KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V47"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V47 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM CRC16 (uint16_t)
  45. *
  46. * 106 E_STEPPERS (uint8_t)
  47. * 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x8) + 64
  48. * 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x8) + 64
  49. * 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x8) + 64
  50. * 155 M204 P planner.acceleration (float)
  51. * 159 M204 R planner.retract_acceleration (float)
  52. * 163 M204 T planner.travel_acceleration (float)
  53. * 167 M205 S planner.min_feedrate_mm_s (float)
  54. * 171 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 175 M205 B planner.min_segment_time_us (ulong)
  56. * 179 M205 X planner.max_jerk[X_AXIS] (float)
  57. * 183 M205 Y planner.max_jerk[Y_AXIS] (float)
  58. * 187 M205 Z planner.max_jerk[Z_AXIS] (float)
  59. * 191 M205 E planner.max_jerk[E_AXIS] (float)
  60. * 195 M206 XYZ home_offset (float x3)
  61. * 207 M218 XYZ hotend_offset (float x3 per additional hotend) +16
  62. *
  63. * Global Leveling: 4 bytes
  64. * 219 z_fade_height (float)
  65. *
  66. * MESH_BED_LEVELING: 43 bytes
  67. * 223 M420 S planner.leveling_active (bool)
  68. * 224 mbl.z_offset (float)
  69. * 228 GRID_MAX_POINTS_X (uint8_t)
  70. * 229 GRID_MAX_POINTS_Y (uint8_t)
  71. * 230 G29 S3 XYZ z_values[][] (float x9, up to float x81) +288
  72. *
  73. * HAS_BED_PROBE: 4 bytes
  74. * 266 M851 zprobe_zoffset (float)
  75. *
  76. * ABL_PLANAR: 36 bytes
  77. * 270 planner.bed_level_matrix (matrix_3x3 = float x9)
  78. *
  79. * AUTO_BED_LEVELING_BILINEAR: 46 bytes
  80. * 306 GRID_MAX_POINTS_X (uint8_t)
  81. * 307 GRID_MAX_POINTS_Y (uint8_t)
  82. * 308 bilinear_grid_spacing (int x2)
  83. * 312 G29 L F bilinear_start (int x2)
  84. * 316 z_values[][] (float x9, up to float x256) +988
  85. *
  86. * AUTO_BED_LEVELING_UBL: 2 bytes
  87. * 352 G29 A planner.leveling_active (bool)
  88. * 353 G29 S ubl.storage_slot (int8_t)
  89. *
  90. * DELTA: 44 bytes
  91. * 354 M666 H delta_height (float)
  92. * 358 M666 XYZ delta_endstop_adj (float x3)
  93. * 370 M665 R delta_radius (float)
  94. * 374 M665 L delta_diagonal_rod (float)
  95. * 378 M665 S delta_segments_per_second (float)
  96. * 382 M665 B delta_calibration_radius (float)
  97. * 386 M665 X delta_tower_angle_trim[A] (float)
  98. * 390 M665 Y delta_tower_angle_trim[B] (float)
  99. * 394 M665 Z delta_tower_angle_trim[C] (float)
  100. *
  101. * [XYZ]_DUAL_ENDSTOPS: 12 bytes
  102. * 354 M666 X x_endstop_adj (float)
  103. * 358 M666 Y y_endstop_adj (float)
  104. * 362 M666 Z z_endstop_adj (float)
  105. *
  106. * ULTIPANEL: 6 bytes
  107. * 398 M145 S0 H lcd_preheat_hotend_temp (int x2)
  108. * 402 M145 S0 B lcd_preheat_bed_temp (int x2)
  109. * 406 M145 S0 F lcd_preheat_fan_speed (int x2)
  110. *
  111. * PIDTEMP: 82 bytes
  112. * 410 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  113. * 426 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  114. * 442 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  115. * 458 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  116. * 474 M301 E4 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  117. * 490 M301 L lpq_len (int)
  118. *
  119. * PIDTEMPBED: 12 bytes
  120. * 492 M304 PID bedKp, .bedKi, .bedKd (float x3)
  121. *
  122. * DOGLCD: 2 bytes
  123. * 504 M250 C lcd_contrast (uint16_t)
  124. *
  125. * FWRETRACT: 33 bytes
  126. * 506 M209 S autoretract_enabled (bool)
  127. * 507 M207 S retract_length (float)
  128. * 511 M207 F retract_feedrate_mm_s (float)
  129. * 515 M207 Z retract_zlift (float)
  130. * 519 M208 S retract_recover_length (float)
  131. * 523 M208 F retract_recover_feedrate_mm_s (float)
  132. * 527 M207 W swap_retract_length (float)
  133. * 531 M208 W swap_retract_recover_length (float)
  134. * 535 M208 R swap_retract_recover_feedrate_mm_s (float)
  135. *
  136. * Volumetric Extrusion: 21 bytes
  137. * 539 M200 D parser.volumetric_enabled (bool)
  138. * 540 M200 T D planner.filament_size (float x5) (T0..3)
  139. *
  140. * HAVE_TMC2130 || HAVE_TMC2208: 22 bytes
  141. * 560 M906 X Stepper X current (uint16_t)
  142. * 562 M906 Y Stepper Y current (uint16_t)
  143. * 564 M906 Z Stepper Z current (uint16_t)
  144. * 566 M906 X2 Stepper X2 current (uint16_t)
  145. * 568 M906 Y2 Stepper Y2 current (uint16_t)
  146. * 570 M906 Z2 Stepper Z2 current (uint16_t)
  147. * 572 M906 E0 Stepper E0 current (uint16_t)
  148. * 574 M906 E1 Stepper E1 current (uint16_t)
  149. * 576 M906 E2 Stepper E2 current (uint16_t)
  150. * 578 M906 E3 Stepper E3 current (uint16_t)
  151. * 580 M906 E4 Stepper E4 current (uint16_t)
  152. *
  153. * SENSORLESS HOMING 4 bytes
  154. * 582 M914 X Stepper X and X2 threshold (int16_t)
  155. * 584 M914 Y Stepper Y and Y2 threshold (int16_t)
  156. *
  157. * LIN_ADVANCE: 8 bytes
  158. * 586 M900 K extruder_advance_k (float)
  159. * 590 M900 WHD advance_ed_ratio (float)
  160. *
  161. * HAS_MOTOR_CURRENT_PWM:
  162. * 594 M907 X Stepper XY current (uint32_t)
  163. * 598 M907 Z Stepper Z current (uint32_t)
  164. * 602 M907 E Stepper E current (uint32_t)
  165. *
  166. * CNC_COORDINATE_SYSTEMS 108 bytes
  167. * 606 G54-G59.3 coordinate_system (float x 27)
  168. *
  169. * SKEW_CORRECTION: 12 bytes
  170. * 714 M852 I planner.xy_skew_factor (float)
  171. * 718 M852 J planner.xz_skew_factor (float)
  172. * 722 M852 K planner.yz_skew_factor (float)
  173. *
  174. * 726 Minimum end-point
  175. * 2255 (726 + 208 + 36 + 9 + 288 + 988) Maximum end-point
  176. *
  177. * ========================================================================
  178. * meshes_begin (between max and min end-point, directly above)
  179. * -- MESHES --
  180. * meshes_end
  181. * -- MAT (Mesh Allocation Table) -- 128 bytes (placeholder size)
  182. * mat_end = E2END (0xFFF)
  183. *
  184. */
  185. #include "configuration_store.h"
  186. MarlinSettings settings;
  187. #include "Marlin.h"
  188. #include "language.h"
  189. #include "endstops.h"
  190. #include "planner.h"
  191. #include "temperature.h"
  192. #include "ultralcd.h"
  193. #include "stepper.h"
  194. #include "gcode.h"
  195. #if ENABLED(MESH_BED_LEVELING)
  196. #include "mesh_bed_leveling.h"
  197. #endif
  198. #if ENABLED(HAVE_TMC2130) || ENABLED(HAVE_TMC2208)
  199. #include "stepper_indirection.h"
  200. #endif
  201. #if ENABLED(AUTO_BED_LEVELING_UBL)
  202. #include "ubl.h"
  203. #endif
  204. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  205. extern void refresh_bed_level();
  206. #endif
  207. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  208. float new_z_fade_height;
  209. #endif
  210. /**
  211. * Post-process after Retrieve or Reset
  212. */
  213. void MarlinSettings::postprocess() {
  214. const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  215. // steps per s2 needs to be updated to agree with units per s2
  216. planner.reset_acceleration_rates();
  217. // Make sure delta kinematics are updated before refreshing the
  218. // planner position so the stepper counts will be set correctly.
  219. #if ENABLED(DELTA)
  220. recalc_delta_settings();
  221. #endif
  222. #if ENABLED(PIDTEMP)
  223. thermalManager.updatePID();
  224. #endif
  225. planner.calculate_volumetric_multipliers();
  226. #if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  227. // Software endstops depend on home_offset
  228. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  229. #endif
  230. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  231. set_z_fade_height(new_z_fade_height, false); // false = no report
  232. #endif
  233. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  234. refresh_bed_level();
  235. //set_bed_leveling_enabled(leveling_is_on);
  236. #endif
  237. #if HAS_MOTOR_CURRENT_PWM
  238. stepper.refresh_motor_power();
  239. #endif
  240. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  241. // and init stepper.count[], planner.position[] with current_position
  242. planner.refresh_positioning();
  243. // Various factors can change the current position
  244. if (memcmp(oldpos, current_position, sizeof(oldpos)))
  245. report_current_position();
  246. }
  247. #if ENABLED(EEPROM_SETTINGS)
  248. #define DUMMY_PID_VALUE 3000.0f
  249. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  250. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  251. #define EEPROM_WRITE(VAR) write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  252. #define EEPROM_READ(VAR) read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  253. #define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(ERR); eeprom_read_error = true; }while(0)
  254. const char version[4] = EEPROM_VERSION;
  255. bool MarlinSettings::eeprom_error;
  256. #if ENABLED(AUTO_BED_LEVELING_UBL)
  257. int MarlinSettings::meshes_begin;
  258. #endif
  259. void MarlinSettings::write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc) {
  260. if (eeprom_error) return;
  261. while (size--) {
  262. uint8_t * const p = (uint8_t * const)pos;
  263. uint8_t v = *value;
  264. // EEPROM has only ~100,000 write cycles,
  265. // so only write bytes that have changed!
  266. if (v != eeprom_read_byte(p)) {
  267. eeprom_write_byte(p, v);
  268. if (eeprom_read_byte(p) != v) {
  269. SERIAL_ECHO_START();
  270. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  271. eeprom_error = true;
  272. return;
  273. }
  274. }
  275. crc16(crc, &v, 1);
  276. pos++;
  277. value++;
  278. };
  279. }
  280. void MarlinSettings::read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc) {
  281. if (eeprom_error) return;
  282. do {
  283. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  284. *value = c;
  285. crc16(crc, &c, 1);
  286. pos++;
  287. value++;
  288. } while (--size);
  289. }
  290. /**
  291. * M500 - Store Configuration
  292. */
  293. bool MarlinSettings::save() {
  294. float dummy = 0.0f;
  295. char ver[4] = "000";
  296. uint16_t working_crc = 0;
  297. EEPROM_START();
  298. eeprom_error = false;
  299. EEPROM_WRITE(ver); // invalidate data first
  300. EEPROM_SKIP(working_crc); // Skip the checksum slot
  301. working_crc = 0; // clear before first "real data"
  302. const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
  303. EEPROM_WRITE(esteppers);
  304. EEPROM_WRITE(planner.axis_steps_per_mm);
  305. EEPROM_WRITE(planner.max_feedrate_mm_s);
  306. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  307. EEPROM_WRITE(planner.acceleration);
  308. EEPROM_WRITE(planner.retract_acceleration);
  309. EEPROM_WRITE(planner.travel_acceleration);
  310. EEPROM_WRITE(planner.min_feedrate_mm_s);
  311. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  312. EEPROM_WRITE(planner.min_segment_time_us);
  313. EEPROM_WRITE(planner.max_jerk);
  314. #if !HAS_HOME_OFFSET
  315. const float home_offset[XYZ] = { 0 };
  316. #endif
  317. EEPROM_WRITE(home_offset);
  318. #if HOTENDS > 1
  319. // Skip hotend 0 which must be 0
  320. for (uint8_t e = 1; e < HOTENDS; e++)
  321. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  322. #endif
  323. //
  324. // Global Leveling
  325. //
  326. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  327. const float zfh = planner.z_fade_height;
  328. #else
  329. const float zfh = 10.0;
  330. #endif
  331. EEPROM_WRITE(zfh);
  332. //
  333. // Mesh Bed Leveling
  334. //
  335. #if ENABLED(MESH_BED_LEVELING)
  336. // Compile time test that sizeof(mbl.z_values) is as expected
  337. static_assert(
  338. sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]),
  339. "MBL Z array is the wrong size."
  340. );
  341. const bool leveling_is_on = mbl.has_mesh;
  342. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  343. EEPROM_WRITE(leveling_is_on);
  344. EEPROM_WRITE(mbl.z_offset);
  345. EEPROM_WRITE(mesh_num_x);
  346. EEPROM_WRITE(mesh_num_y);
  347. EEPROM_WRITE(mbl.z_values);
  348. #else // For disabled MBL write a default mesh
  349. const bool leveling_is_on = false;
  350. dummy = 0.0f;
  351. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  352. EEPROM_WRITE(leveling_is_on);
  353. EEPROM_WRITE(dummy); // z_offset
  354. EEPROM_WRITE(mesh_num_x);
  355. EEPROM_WRITE(mesh_num_y);
  356. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  357. #endif // MESH_BED_LEVELING
  358. #if !HAS_BED_PROBE
  359. const float zprobe_zoffset = 0;
  360. #endif
  361. EEPROM_WRITE(zprobe_zoffset);
  362. //
  363. // Planar Bed Leveling matrix
  364. //
  365. #if ABL_PLANAR
  366. EEPROM_WRITE(planner.bed_level_matrix);
  367. #else
  368. dummy = 0.0;
  369. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  370. #endif
  371. //
  372. // Bilinear Auto Bed Leveling
  373. //
  374. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  375. // Compile time test that sizeof(z_values) is as expected
  376. static_assert(
  377. sizeof(z_values) == GRID_MAX_POINTS * sizeof(z_values[0][0]),
  378. "Bilinear Z array is the wrong size."
  379. );
  380. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  381. EEPROM_WRITE(grid_max_x); // 1 byte
  382. EEPROM_WRITE(grid_max_y); // 1 byte
  383. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  384. EEPROM_WRITE(bilinear_start); // 2 ints
  385. EEPROM_WRITE(z_values); // 9-256 floats
  386. #else
  387. // For disabled Bilinear Grid write an empty 3x3 grid
  388. const uint8_t grid_max_x = 3, grid_max_y = 3;
  389. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  390. dummy = 0.0f;
  391. EEPROM_WRITE(grid_max_x);
  392. EEPROM_WRITE(grid_max_y);
  393. EEPROM_WRITE(bilinear_grid_spacing);
  394. EEPROM_WRITE(bilinear_start);
  395. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  396. #endif // AUTO_BED_LEVELING_BILINEAR
  397. #if ENABLED(AUTO_BED_LEVELING_UBL)
  398. EEPROM_WRITE(planner.leveling_active);
  399. EEPROM_WRITE(ubl.storage_slot);
  400. #else
  401. const bool ubl_active = false;
  402. const int8_t storage_slot = -1;
  403. EEPROM_WRITE(ubl_active);
  404. EEPROM_WRITE(storage_slot);
  405. #endif // AUTO_BED_LEVELING_UBL
  406. // 11 floats for DELTA / [XYZ]_DUAL_ENDSTOPS
  407. #if ENABLED(DELTA)
  408. EEPROM_WRITE(delta_height); // 1 float
  409. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  410. EEPROM_WRITE(delta_radius); // 1 float
  411. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  412. EEPROM_WRITE(delta_segments_per_second); // 1 float
  413. EEPROM_WRITE(delta_calibration_radius); // 1 float
  414. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  415. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  416. // Write dual endstops in X, Y, Z order. Unused = 0.0
  417. dummy = 0.0f;
  418. #if ENABLED(X_DUAL_ENDSTOPS)
  419. EEPROM_WRITE(x_endstop_adj); // 1 float
  420. #else
  421. EEPROM_WRITE(dummy);
  422. #endif
  423. #if ENABLED(Y_DUAL_ENDSTOPS)
  424. EEPROM_WRITE(y_endstop_adj); // 1 float
  425. #else
  426. EEPROM_WRITE(dummy);
  427. #endif
  428. #if ENABLED(Z_DUAL_ENDSTOPS)
  429. EEPROM_WRITE(z_endstop_adj); // 1 float
  430. #else
  431. EEPROM_WRITE(dummy);
  432. #endif
  433. for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
  434. #else
  435. dummy = 0.0f;
  436. for (uint8_t q = 11; q--;) EEPROM_WRITE(dummy);
  437. #endif
  438. #if DISABLED(ULTIPANEL)
  439. constexpr int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  440. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  441. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  442. #endif
  443. EEPROM_WRITE(lcd_preheat_hotend_temp);
  444. EEPROM_WRITE(lcd_preheat_bed_temp);
  445. EEPROM_WRITE(lcd_preheat_fan_speed);
  446. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  447. #if ENABLED(PIDTEMP)
  448. if (e < HOTENDS) {
  449. EEPROM_WRITE(PID_PARAM(Kp, e));
  450. EEPROM_WRITE(PID_PARAM(Ki, e));
  451. EEPROM_WRITE(PID_PARAM(Kd, e));
  452. #if ENABLED(PID_EXTRUSION_SCALING)
  453. EEPROM_WRITE(PID_PARAM(Kc, e));
  454. #else
  455. dummy = 1.0f; // 1.0 = default kc
  456. EEPROM_WRITE(dummy);
  457. #endif
  458. }
  459. else
  460. #endif // !PIDTEMP
  461. {
  462. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  463. EEPROM_WRITE(dummy); // Kp
  464. dummy = 0.0f;
  465. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  466. }
  467. } // Hotends Loop
  468. #if DISABLED(PID_EXTRUSION_SCALING)
  469. int lpq_len = 20;
  470. #endif
  471. EEPROM_WRITE(lpq_len);
  472. #if DISABLED(PIDTEMPBED)
  473. dummy = DUMMY_PID_VALUE;
  474. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  475. #else
  476. EEPROM_WRITE(thermalManager.bedKp);
  477. EEPROM_WRITE(thermalManager.bedKi);
  478. EEPROM_WRITE(thermalManager.bedKd);
  479. #endif
  480. #if !HAS_LCD_CONTRAST
  481. const uint16_t lcd_contrast = 32;
  482. #endif
  483. EEPROM_WRITE(lcd_contrast);
  484. #if DISABLED(FWRETRACT)
  485. const bool autoretract_enabled = false;
  486. const float retract_length = 3,
  487. retract_feedrate_mm_s = 45,
  488. retract_zlift = 0,
  489. retract_recover_length = 0,
  490. retract_recover_feedrate_mm_s = 0,
  491. swap_retract_length = 13,
  492. swap_retract_recover_length = 0,
  493. swap_retract_recover_feedrate_mm_s = 8;
  494. #endif
  495. EEPROM_WRITE(autoretract_enabled);
  496. EEPROM_WRITE(retract_length);
  497. EEPROM_WRITE(retract_feedrate_mm_s);
  498. EEPROM_WRITE(retract_zlift);
  499. EEPROM_WRITE(retract_recover_length);
  500. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  501. EEPROM_WRITE(swap_retract_length);
  502. EEPROM_WRITE(swap_retract_recover_length);
  503. EEPROM_WRITE(swap_retract_recover_feedrate_mm_s);
  504. EEPROM_WRITE(parser.volumetric_enabled);
  505. // Save filament sizes
  506. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  507. if (q < COUNT(planner.filament_size)) dummy = planner.filament_size[q];
  508. EEPROM_WRITE(dummy);
  509. }
  510. // Save TMC2130 or TMC2208 Configuration, and placeholder values
  511. uint16_t val;
  512. #if HAS_TRINAMIC
  513. #if X_IS_TRINAMIC
  514. val = stepperX.getCurrent();
  515. #else
  516. val = 0;
  517. #endif
  518. EEPROM_WRITE(val);
  519. #if Y_IS_TRINAMIC
  520. val = stepperY.getCurrent();
  521. #else
  522. val = 0;
  523. #endif
  524. EEPROM_WRITE(val);
  525. #if Z_IS_TRINAMIC
  526. val = stepperZ.getCurrent();
  527. #else
  528. val = 0;
  529. #endif
  530. EEPROM_WRITE(val);
  531. #if X2_IS_TRINAMIC
  532. val = stepperX2.getCurrent();
  533. #else
  534. val = 0;
  535. #endif
  536. EEPROM_WRITE(val);
  537. #if Y2_IS_TRINAMIC
  538. val = stepperY2.getCurrent();
  539. #else
  540. val = 0;
  541. #endif
  542. EEPROM_WRITE(val);
  543. #if Z2_IS_TRINAMIC
  544. val = stepperZ2.getCurrent();
  545. #else
  546. val = 0;
  547. #endif
  548. EEPROM_WRITE(val);
  549. #if E0_IS_TRINAMIC
  550. val = stepperE0.getCurrent();
  551. #else
  552. val = 0;
  553. #endif
  554. EEPROM_WRITE(val);
  555. #if E1_IS_TRINAMIC
  556. val = stepperE1.getCurrent();
  557. #else
  558. val = 0;
  559. #endif
  560. EEPROM_WRITE(val);
  561. #if E2_IS_TRINAMIC
  562. val = stepperE2.getCurrent();
  563. #else
  564. val = 0;
  565. #endif
  566. EEPROM_WRITE(val);
  567. #if E3_IS_TRINAMIC
  568. val = stepperE3.getCurrent();
  569. #else
  570. val = 0;
  571. #endif
  572. EEPROM_WRITE(val);
  573. #if E4_IS_TRINAMIC
  574. val = stepperE4.getCurrent();
  575. #else
  576. val = 0;
  577. #endif
  578. EEPROM_WRITE(val);
  579. #else
  580. val = 0;
  581. for (uint8_t q = 11; q--;) EEPROM_WRITE(val);
  582. #endif
  583. //
  584. // TMC2130 Sensorless homing threshold
  585. //
  586. int16_t thrs;
  587. #if ENABLED(SENSORLESS_HOMING)
  588. #if ENABLED(X_IS_TMC2130)
  589. thrs = stepperX.sgt();
  590. #else
  591. thrs = 0;
  592. #endif
  593. EEPROM_WRITE(thrs);
  594. #if ENABLED(Y_IS_TMC2130)
  595. thrs = stepperY.sgt();
  596. #else
  597. thrs = 0;
  598. #endif
  599. EEPROM_WRITE(thrs);
  600. #else
  601. thrs = 0;
  602. for (uint8_t q = 2; q--;) EEPROM_WRITE(thrs);
  603. #endif
  604. //
  605. // Linear Advance
  606. //
  607. #if ENABLED(LIN_ADVANCE)
  608. EEPROM_WRITE(planner.extruder_advance_k);
  609. EEPROM_WRITE(planner.advance_ed_ratio);
  610. #else
  611. dummy = 0.0f;
  612. EEPROM_WRITE(dummy);
  613. EEPROM_WRITE(dummy);
  614. #endif
  615. #if HAS_MOTOR_CURRENT_PWM
  616. for (uint8_t q = 3; q--;) EEPROM_WRITE(stepper.motor_current_setting[q]);
  617. #else
  618. const uint32_t dummyui32 = 0;
  619. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummyui32);
  620. #endif
  621. //
  622. // CNC Coordinate Systems
  623. //
  624. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  625. EEPROM_WRITE(coordinate_system); // 27 floats
  626. #else
  627. dummy = 0.0f;
  628. for (uint8_t q = 27; q--;) EEPROM_WRITE(dummy);
  629. #endif
  630. //
  631. // Skew correction factors
  632. //
  633. #if ENABLED(SKEW_CORRECTION)
  634. EEPROM_WRITE(planner.xy_skew_factor);
  635. EEPROM_WRITE(planner.xz_skew_factor);
  636. EEPROM_WRITE(planner.yz_skew_factor);
  637. #else
  638. dummy = 0.0f;
  639. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  640. #endif
  641. if (!eeprom_error) {
  642. const int eeprom_size = eeprom_index;
  643. const uint16_t final_crc = working_crc;
  644. // Write the EEPROM header
  645. eeprom_index = EEPROM_OFFSET;
  646. EEPROM_WRITE(version);
  647. EEPROM_WRITE(final_crc);
  648. // Report storage size
  649. #if ENABLED(EEPROM_CHITCHAT)
  650. SERIAL_ECHO_START();
  651. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
  652. SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)final_crc);
  653. SERIAL_ECHOLNPGM(")");
  654. #endif
  655. }
  656. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  657. if (ubl.storage_slot >= 0)
  658. store_mesh(ubl.storage_slot);
  659. #endif
  660. return !eeprom_error;
  661. }
  662. /**
  663. * M501 - Retrieve Configuration
  664. */
  665. bool MarlinSettings::load() {
  666. uint16_t working_crc = 0;
  667. EEPROM_START();
  668. char stored_ver[4];
  669. EEPROM_READ(stored_ver);
  670. uint16_t stored_crc;
  671. EEPROM_READ(stored_crc);
  672. // Version has to match or defaults are used
  673. if (strncmp(version, stored_ver, 3) != 0) {
  674. if (stored_ver[0] != 'V') {
  675. stored_ver[0] = '?';
  676. stored_ver[1] = '\0';
  677. }
  678. #if ENABLED(EEPROM_CHITCHAT)
  679. SERIAL_ECHO_START();
  680. SERIAL_ECHOPGM("EEPROM version mismatch ");
  681. SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
  682. SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
  683. #endif
  684. reset();
  685. }
  686. else {
  687. float dummy = 0;
  688. bool dummyb;
  689. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  690. // Number of esteppers may change
  691. uint8_t esteppers;
  692. EEPROM_READ(esteppers);
  693. //
  694. // Planner Motion
  695. //
  696. // Get only the number of E stepper parameters previously stored
  697. // Any steppers added later are set to their defaults
  698. const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
  699. const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
  700. float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
  701. uint32_t tmp3[XYZ + esteppers];
  702. EEPROM_READ(tmp1);
  703. EEPROM_READ(tmp2);
  704. EEPROM_READ(tmp3);
  705. LOOP_XYZE_N(i) {
  706. planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
  707. planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
  708. planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
  709. }
  710. EEPROM_READ(planner.acceleration);
  711. EEPROM_READ(planner.retract_acceleration);
  712. EEPROM_READ(planner.travel_acceleration);
  713. EEPROM_READ(planner.min_feedrate_mm_s);
  714. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  715. EEPROM_READ(planner.min_segment_time_us);
  716. EEPROM_READ(planner.max_jerk);
  717. //
  718. // Home Offset (M206)
  719. //
  720. #if !HAS_HOME_OFFSET
  721. float home_offset[XYZ];
  722. #endif
  723. EEPROM_READ(home_offset);
  724. //
  725. // Hotend Offsets, if any
  726. //
  727. #if HOTENDS > 1
  728. // Skip hotend 0 which must be 0
  729. for (uint8_t e = 1; e < HOTENDS; e++)
  730. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  731. #endif
  732. //
  733. // Global Leveling
  734. //
  735. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  736. EEPROM_READ(new_z_fade_height);
  737. #else
  738. EEPROM_READ(dummy);
  739. #endif
  740. //
  741. // Mesh (Manual) Bed Leveling
  742. //
  743. bool leveling_is_on;
  744. uint8_t mesh_num_x, mesh_num_y;
  745. EEPROM_READ(leveling_is_on);
  746. EEPROM_READ(dummy);
  747. EEPROM_READ(mesh_num_x);
  748. EEPROM_READ(mesh_num_y);
  749. #if ENABLED(MESH_BED_LEVELING)
  750. mbl.has_mesh = leveling_is_on;
  751. mbl.z_offset = dummy;
  752. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  753. // EEPROM data fits the current mesh
  754. EEPROM_READ(mbl.z_values);
  755. }
  756. else {
  757. // EEPROM data is stale
  758. mbl.reset();
  759. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  760. }
  761. #else
  762. // MBL is disabled - skip the stored data
  763. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  764. #endif // MESH_BED_LEVELING
  765. #if !HAS_BED_PROBE
  766. float zprobe_zoffset;
  767. #endif
  768. EEPROM_READ(zprobe_zoffset);
  769. //
  770. // Planar Bed Leveling matrix
  771. //
  772. #if ABL_PLANAR
  773. EEPROM_READ(planner.bed_level_matrix);
  774. #else
  775. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  776. #endif
  777. //
  778. // Bilinear Auto Bed Leveling
  779. //
  780. uint8_t grid_max_x, grid_max_y;
  781. EEPROM_READ(grid_max_x); // 1 byte
  782. EEPROM_READ(grid_max_y); // 1 byte
  783. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  784. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  785. set_bed_leveling_enabled(false);
  786. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  787. EEPROM_READ(bilinear_start); // 2 ints
  788. EEPROM_READ(z_values); // 9 to 256 floats
  789. }
  790. else // EEPROM data is stale
  791. #endif // AUTO_BED_LEVELING_BILINEAR
  792. {
  793. // Skip past disabled (or stale) Bilinear Grid data
  794. int bgs[2], bs[2];
  795. EEPROM_READ(bgs);
  796. EEPROM_READ(bs);
  797. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  798. }
  799. //
  800. // Unified Bed Leveling active state
  801. //
  802. #if ENABLED(AUTO_BED_LEVELING_UBL)
  803. EEPROM_READ(planner.leveling_active);
  804. EEPROM_READ(ubl.storage_slot);
  805. #else
  806. uint8_t dummyui8;
  807. EEPROM_READ(dummyb);
  808. EEPROM_READ(dummyui8);
  809. #endif // AUTO_BED_LEVELING_UBL
  810. //
  811. // DELTA Geometry or Dual Endstops offsets
  812. //
  813. #if ENABLED(DELTA)
  814. EEPROM_READ(delta_height); // 1 float
  815. EEPROM_READ(delta_endstop_adj); // 3 floats
  816. EEPROM_READ(delta_radius); // 1 float
  817. EEPROM_READ(delta_diagonal_rod); // 1 float
  818. EEPROM_READ(delta_segments_per_second); // 1 float
  819. EEPROM_READ(delta_calibration_radius); // 1 float
  820. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  821. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  822. #if ENABLED(X_DUAL_ENDSTOPS)
  823. EEPROM_READ(x_endstop_adj); // 1 float
  824. #else
  825. EEPROM_READ(dummy);
  826. #endif
  827. #if ENABLED(Y_DUAL_ENDSTOPS)
  828. EEPROM_READ(y_endstop_adj); // 1 float
  829. #else
  830. EEPROM_READ(dummy);
  831. #endif
  832. #if ENABLED(Z_DUAL_ENDSTOPS)
  833. EEPROM_READ(z_endstop_adj); // 1 float
  834. #else
  835. EEPROM_READ(dummy);
  836. #endif
  837. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  838. #else
  839. for (uint8_t q=11; q--;) EEPROM_READ(dummy);
  840. #endif
  841. //
  842. // LCD Preheat settings
  843. //
  844. #if DISABLED(ULTIPANEL)
  845. int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  846. #endif
  847. EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats
  848. EEPROM_READ(lcd_preheat_bed_temp); // 2 floats
  849. EEPROM_READ(lcd_preheat_fan_speed); // 2 floats
  850. //EEPROM_ASSERT(
  851. // WITHIN(lcd_preheat_fan_speed, 0, 255),
  852. // "lcd_preheat_fan_speed out of range"
  853. //);
  854. //
  855. // Hotend PID
  856. //
  857. #if ENABLED(PIDTEMP)
  858. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  859. EEPROM_READ(dummy); // Kp
  860. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  861. // do not need to scale PID values as the values in EEPROM are already scaled
  862. PID_PARAM(Kp, e) = dummy;
  863. EEPROM_READ(PID_PARAM(Ki, e));
  864. EEPROM_READ(PID_PARAM(Kd, e));
  865. #if ENABLED(PID_EXTRUSION_SCALING)
  866. EEPROM_READ(PID_PARAM(Kc, e));
  867. #else
  868. EEPROM_READ(dummy);
  869. #endif
  870. }
  871. else {
  872. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  873. }
  874. }
  875. #else // !PIDTEMP
  876. // 4 x 4 = 16 slots for PID parameters
  877. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  878. #endif // !PIDTEMP
  879. //
  880. // PID Extrusion Scaling
  881. //
  882. #if DISABLED(PID_EXTRUSION_SCALING)
  883. int lpq_len;
  884. #endif
  885. EEPROM_READ(lpq_len);
  886. //
  887. // Heated Bed PID
  888. //
  889. #if ENABLED(PIDTEMPBED)
  890. EEPROM_READ(dummy); // bedKp
  891. if (dummy != DUMMY_PID_VALUE) {
  892. thermalManager.bedKp = dummy;
  893. EEPROM_READ(thermalManager.bedKi);
  894. EEPROM_READ(thermalManager.bedKd);
  895. }
  896. #else
  897. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  898. #endif
  899. //
  900. // LCD Contrast
  901. //
  902. #if !HAS_LCD_CONTRAST
  903. uint16_t lcd_contrast;
  904. #endif
  905. EEPROM_READ(lcd_contrast);
  906. //
  907. // Firmware Retraction
  908. //
  909. #if ENABLED(FWRETRACT)
  910. EEPROM_READ(autoretract_enabled);
  911. EEPROM_READ(retract_length);
  912. EEPROM_READ(retract_feedrate_mm_s);
  913. EEPROM_READ(retract_zlift);
  914. EEPROM_READ(retract_recover_length);
  915. EEPROM_READ(retract_recover_feedrate_mm_s);
  916. EEPROM_READ(swap_retract_length);
  917. EEPROM_READ(swap_retract_recover_length);
  918. EEPROM_READ(swap_retract_recover_feedrate_mm_s);
  919. #else
  920. EEPROM_READ(dummyb);
  921. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  922. #endif
  923. //
  924. // Volumetric & Filament Size
  925. //
  926. EEPROM_READ(parser.volumetric_enabled);
  927. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  928. EEPROM_READ(dummy);
  929. if (q < COUNT(planner.filament_size)) planner.filament_size[q] = dummy;
  930. }
  931. //
  932. // TMC2130 Stepper Current
  933. //
  934. uint16_t val;
  935. #if HAS_TRINAMIC
  936. EEPROM_READ(val);
  937. #if X_IS_TRINAMIC
  938. stepperX.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  939. #endif
  940. EEPROM_READ(val);
  941. #if Y_IS_TRINAMIC
  942. stepperY.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  943. #endif
  944. EEPROM_READ(val);
  945. #if Z_IS_TRINAMIC
  946. stepperZ.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  947. #endif
  948. EEPROM_READ(val);
  949. #if X2_IS_TRINAMIC
  950. stepperX2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  951. #endif
  952. EEPROM_READ(val);
  953. #if Y2_IS_TRINAMIC
  954. stepperY2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  955. #endif
  956. EEPROM_READ(val);
  957. #if Z2_IS_TRINAMIC
  958. stepperZ2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  959. #endif
  960. EEPROM_READ(val);
  961. #if E0_IS_TRINAMIC
  962. stepperE0.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  963. #endif
  964. EEPROM_READ(val);
  965. #if E1_IS_TRINAMIC
  966. stepperE1.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  967. #endif
  968. EEPROM_READ(val);
  969. #if E2_IS_TRINAMIC
  970. stepperE2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  971. #endif
  972. EEPROM_READ(val);
  973. #if E3_IS_TRINAMIC
  974. stepperE3.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  975. #endif
  976. EEPROM_READ(val);
  977. #if E4_IS_TRINAMIC
  978. stepperE4.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  979. #endif
  980. #else
  981. for (uint8_t q = 11; q--;) EEPROM_READ(val);
  982. #endif
  983. /*
  984. * TMC2130 Sensorless homing threshold.
  985. * X and X2 use the same value
  986. * Y and Y2 use the same value
  987. */
  988. int16_t thrs;
  989. #if ENABLED(SENSORLESS_HOMING)
  990. EEPROM_READ(thrs);
  991. #if ENABLED(X_IS_TMC2130)
  992. stepperX.sgt(thrs);
  993. #endif
  994. #if ENABLED(X2_IS_TMC2130)
  995. stepperX2.sgt(thrs);
  996. #endif
  997. EEPROM_READ(thrs);
  998. #if ENABLED(Y_IS_TMC2130)
  999. stepperY.sgt(thrs);
  1000. #endif
  1001. #if ENABLED(Y2_IS_TMC2130)
  1002. stepperY2.sgt(thrs);
  1003. #endif
  1004. #else
  1005. for (uint8_t q = 0; q < 2; q++) EEPROM_READ(thrs);
  1006. #endif
  1007. //
  1008. // Linear Advance
  1009. //
  1010. #if ENABLED(LIN_ADVANCE)
  1011. EEPROM_READ(planner.extruder_advance_k);
  1012. EEPROM_READ(planner.advance_ed_ratio);
  1013. #else
  1014. EEPROM_READ(dummy);
  1015. EEPROM_READ(dummy);
  1016. #endif
  1017. //
  1018. // Motor Current PWM
  1019. //
  1020. #if HAS_MOTOR_CURRENT_PWM
  1021. for (uint8_t q = 3; q--;) EEPROM_READ(stepper.motor_current_setting[q]);
  1022. #else
  1023. uint32_t dummyui32;
  1024. for (uint8_t q = 3; q--;) EEPROM_READ(dummyui32);
  1025. #endif
  1026. //
  1027. // CNC Coordinate System
  1028. //
  1029. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1030. (void)select_coordinate_system(-1); // Go back to machine space
  1031. EEPROM_READ(coordinate_system); // 27 floats
  1032. #else
  1033. for (uint8_t q = 27; q--;) EEPROM_READ(dummy);
  1034. #endif
  1035. //
  1036. // Skew correction factors
  1037. //
  1038. #if ENABLED(SKEW_CORRECTION_GCODE)
  1039. EEPROM_READ(planner.xy_skew_factor);
  1040. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1041. EEPROM_READ(planner.xz_skew_factor);
  1042. EEPROM_READ(planner.yz_skew_factor);
  1043. #else
  1044. EEPROM_READ(dummy);
  1045. EEPROM_READ(dummy);
  1046. #endif
  1047. #else
  1048. for (uint8_t q = 3; q--;) EEPROM_READ(dummy);
  1049. #endif
  1050. if (working_crc == stored_crc) {
  1051. postprocess();
  1052. #if ENABLED(EEPROM_CHITCHAT)
  1053. SERIAL_ECHO_START();
  1054. SERIAL_ECHO(version);
  1055. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  1056. SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)working_crc);
  1057. SERIAL_ECHOLNPGM(")");
  1058. #endif
  1059. }
  1060. else {
  1061. #if ENABLED(EEPROM_CHITCHAT)
  1062. SERIAL_ERROR_START();
  1063. SERIAL_ERRORPGM("EEPROM CRC mismatch - (stored) ");
  1064. SERIAL_ERROR(stored_crc);
  1065. SERIAL_ERRORPGM(" != ");
  1066. SERIAL_ERROR(working_crc);
  1067. SERIAL_ERRORLNPGM(" (calculated)!");
  1068. #endif
  1069. reset();
  1070. }
  1071. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1072. meshes_begin = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
  1073. // can float up or down a little bit without
  1074. // disrupting the mesh data
  1075. ubl.report_state();
  1076. if (!ubl.sanity_check()) {
  1077. SERIAL_EOL();
  1078. #if ENABLED(EEPROM_CHITCHAT)
  1079. ubl.echo_name();
  1080. SERIAL_ECHOLNPGM(" initialized.\n");
  1081. #endif
  1082. }
  1083. else {
  1084. #if ENABLED(EEPROM_CHITCHAT)
  1085. SERIAL_PROTOCOLPGM("?Can't enable ");
  1086. ubl.echo_name();
  1087. SERIAL_PROTOCOLLNPGM(".");
  1088. #endif
  1089. ubl.reset();
  1090. }
  1091. if (ubl.storage_slot >= 0) {
  1092. load_mesh(ubl.storage_slot);
  1093. #if ENABLED(EEPROM_CHITCHAT)
  1094. SERIAL_ECHOPAIR("Mesh ", ubl.storage_slot);
  1095. SERIAL_ECHOLNPGM(" loaded from storage.");
  1096. #endif
  1097. }
  1098. else {
  1099. ubl.reset();
  1100. #if ENABLED(EEPROM_CHITCHAT)
  1101. SERIAL_ECHOLNPGM("UBL System reset()");
  1102. #endif
  1103. }
  1104. #endif
  1105. }
  1106. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1107. report();
  1108. #endif
  1109. return !eeprom_error;
  1110. }
  1111. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1112. #if ENABLED(EEPROM_CHITCHAT)
  1113. void ubl_invalid_slot(const int s) {
  1114. SERIAL_PROTOCOLLNPGM("?Invalid slot.");
  1115. SERIAL_PROTOCOL(s);
  1116. SERIAL_PROTOCOLLNPGM(" mesh slots available.");
  1117. }
  1118. #endif
  1119. int MarlinSettings::calc_num_meshes() {
  1120. //obviously this will get more sophisticated once we've added an actual MAT
  1121. if (meshes_begin <= 0) return 0;
  1122. return (meshes_end - meshes_begin) / sizeof(ubl.z_values);
  1123. }
  1124. void MarlinSettings::store_mesh(int8_t slot) {
  1125. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1126. const int a = calc_num_meshes();
  1127. if (!WITHIN(slot, 0, a - 1)) {
  1128. #if ENABLED(EEPROM_CHITCHAT)
  1129. ubl_invalid_slot(a);
  1130. SERIAL_PROTOCOLPAIR("E2END=", E2END);
  1131. SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
  1132. SERIAL_PROTOCOLLNPAIR(" slot=", slot);
  1133. SERIAL_EOL();
  1134. #endif
  1135. return;
  1136. }
  1137. uint16_t crc = 0;
  1138. int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1139. write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1140. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1141. #if ENABLED(EEPROM_CHITCHAT)
  1142. SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
  1143. #endif
  1144. #else
  1145. // Other mesh types
  1146. #endif
  1147. }
  1148. void MarlinSettings::load_mesh(int8_t slot, void *into /* = 0 */) {
  1149. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1150. const int16_t a = settings.calc_num_meshes();
  1151. if (!WITHIN(slot, 0, a - 1)) {
  1152. #if ENABLED(EEPROM_CHITCHAT)
  1153. ubl_invalid_slot(a);
  1154. #endif
  1155. return;
  1156. }
  1157. uint16_t crc = 0;
  1158. int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1159. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1160. read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1161. // Compare crc with crc from MAT, or read from end
  1162. #if ENABLED(EEPROM_CHITCHAT)
  1163. SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
  1164. #endif
  1165. #else
  1166. // Other mesh types
  1167. #endif
  1168. }
  1169. //void MarlinSettings::delete_mesh() { return; }
  1170. //void MarlinSettings::defrag_meshes() { return; }
  1171. #endif // AUTO_BED_LEVELING_UBL
  1172. #else // !EEPROM_SETTINGS
  1173. bool MarlinSettings::save() {
  1174. SERIAL_ERROR_START();
  1175. SERIAL_ERRORLNPGM("EEPROM disabled");
  1176. return false;
  1177. }
  1178. #endif // !EEPROM_SETTINGS
  1179. /**
  1180. * M502 - Reset Configuration
  1181. */
  1182. void MarlinSettings::reset() {
  1183. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1184. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1185. LOOP_XYZE_N(i) {
  1186. planner.axis_steps_per_mm[i] = pgm_read_float(&tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1]);
  1187. planner.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1]);
  1188. planner.max_acceleration_mm_per_s2[i] = pgm_read_dword_near(&tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1]);
  1189. }
  1190. planner.acceleration = DEFAULT_ACCELERATION;
  1191. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1192. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1193. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1194. planner.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  1195. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1196. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1197. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1198. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1199. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1200. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1201. new_z_fade_height = 10.0;
  1202. #endif
  1203. #if HAS_HOME_OFFSET
  1204. ZERO(home_offset);
  1205. #endif
  1206. #if HOTENDS > 1
  1207. constexpr float tmp4[XYZ][HOTENDS] = {
  1208. HOTEND_OFFSET_X,
  1209. HOTEND_OFFSET_Y
  1210. #ifdef HOTEND_OFFSET_Z
  1211. , HOTEND_OFFSET_Z
  1212. #else
  1213. , { 0 }
  1214. #endif
  1215. };
  1216. static_assert(
  1217. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  1218. "Offsets for the first hotend must be 0.0."
  1219. );
  1220. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  1221. #endif
  1222. // Applies to all MBL and ABL
  1223. #if HAS_LEVELING
  1224. reset_bed_level();
  1225. #endif
  1226. #if HAS_BED_PROBE
  1227. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1228. #endif
  1229. #if ENABLED(DELTA)
  1230. const float adj[ABC] = DELTA_ENDSTOP_ADJ,
  1231. dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  1232. delta_height = DELTA_HEIGHT;
  1233. COPY(delta_endstop_adj, adj);
  1234. delta_radius = DELTA_RADIUS;
  1235. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  1236. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  1237. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  1238. COPY(delta_tower_angle_trim, dta);
  1239. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  1240. #if ENABLED(X_DUAL_ENDSTOPS)
  1241. x_endstop_adj = (
  1242. #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
  1243. X_DUAL_ENDSTOPS_ADJUSTMENT
  1244. #else
  1245. 0
  1246. #endif
  1247. );
  1248. #endif
  1249. #if ENABLED(Y_DUAL_ENDSTOPS)
  1250. y_endstop_adj = (
  1251. #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
  1252. Y_DUAL_ENDSTOPS_ADJUSTMENT
  1253. #else
  1254. 0
  1255. #endif
  1256. );
  1257. #endif
  1258. #if ENABLED(Z_DUAL_ENDSTOPS)
  1259. z_endstop_adj = (
  1260. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  1261. Z_DUAL_ENDSTOPS_ADJUSTMENT
  1262. #else
  1263. 0
  1264. #endif
  1265. );
  1266. #endif
  1267. #endif
  1268. #if ENABLED(ULTIPANEL)
  1269. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  1270. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  1271. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  1272. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  1273. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  1274. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  1275. #endif
  1276. #if HAS_LCD_CONTRAST
  1277. lcd_contrast = DEFAULT_LCD_CONTRAST;
  1278. #endif
  1279. #if ENABLED(PIDTEMP)
  1280. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  1281. HOTEND_LOOP()
  1282. #endif
  1283. {
  1284. PID_PARAM(Kp, e) = DEFAULT_Kp;
  1285. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  1286. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  1287. #if ENABLED(PID_EXTRUSION_SCALING)
  1288. PID_PARAM(Kc, e) = DEFAULT_Kc;
  1289. #endif
  1290. }
  1291. #if ENABLED(PID_EXTRUSION_SCALING)
  1292. lpq_len = 20; // default last-position-queue size
  1293. #endif
  1294. #endif // PIDTEMP
  1295. #if ENABLED(PIDTEMPBED)
  1296. thermalManager.bedKp = DEFAULT_bedKp;
  1297. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  1298. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  1299. #endif
  1300. #if ENABLED(FWRETRACT)
  1301. autoretract_enabled = false;
  1302. retract_length = RETRACT_LENGTH;
  1303. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  1304. retract_zlift = RETRACT_ZLIFT;
  1305. retract_recover_length = RETRACT_RECOVER_LENGTH;
  1306. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  1307. swap_retract_length = RETRACT_LENGTH_SWAP;
  1308. swap_retract_recover_length = RETRACT_RECOVER_LENGTH_SWAP;
  1309. swap_retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE_SWAP;
  1310. #endif // FWRETRACT
  1311. parser.volumetric_enabled =
  1312. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1313. true
  1314. #else
  1315. false
  1316. #endif
  1317. ;
  1318. for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
  1319. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1320. endstops.enable_globally(
  1321. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1322. true
  1323. #else
  1324. false
  1325. #endif
  1326. );
  1327. #if X_IS_TRINAMIC
  1328. stepperX.setCurrent(X_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1329. #endif
  1330. #if Y_IS_TRINAMIC
  1331. stepperY.setCurrent(Y_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1332. #endif
  1333. #if Z_IS_TRINAMIC
  1334. stepperZ.setCurrent(Z_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1335. #endif
  1336. #if X2_IS_TRINAMIC
  1337. stepperX2.setCurrent(X2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1338. #endif
  1339. #if Y2_IS_TRINAMIC
  1340. stepperY2.setCurrent(Y2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1341. #endif
  1342. #if Z2_IS_TRINAMIC
  1343. stepperZ2.setCurrent(Z2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1344. #endif
  1345. #if E0_IS_TRINAMIC
  1346. stepperE0.setCurrent(E0_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1347. #endif
  1348. #if E1_IS_TRINAMIC
  1349. stepperE1.setCurrent(E1_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1350. #endif
  1351. #if E2_IS_TRINAMIC
  1352. stepperE2.setCurrent(E2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1353. #endif
  1354. #if E3_IS_TRINAMIC
  1355. stepperE3.setCurrent(E3_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1356. #endif
  1357. #if E4_IS_TRINAMIC
  1358. stepperE4.setCurrent(E4_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1359. #endif
  1360. #if ENABLED(SENSORLESS_HOMING)
  1361. #if ENABLED(X_IS_TMC2130)
  1362. stepperX.sgt(X_HOMING_SENSITIVITY);
  1363. #endif
  1364. #if ENABLED(X2_IS_TMC2130)
  1365. stepperX2.sgt(X_HOMING_SENSITIVITY);
  1366. #endif
  1367. #if ENABLED(Y_IS_TMC2130)
  1368. stepperY.sgt(Y_HOMING_SENSITIVITY);
  1369. #endif
  1370. #if ENABLED(Y2_IS_TMC2130)
  1371. stepperY2.sgt(Y_HOMING_SENSITIVITY);
  1372. #endif
  1373. #endif
  1374. #if ENABLED(LIN_ADVANCE)
  1375. planner.extruder_advance_k = LIN_ADVANCE_K;
  1376. planner.advance_ed_ratio = LIN_ADVANCE_E_D_RATIO;
  1377. #endif
  1378. #if HAS_MOTOR_CURRENT_PWM
  1379. uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  1380. for (uint8_t q = 3; q--;)
  1381. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  1382. #endif
  1383. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1384. ubl.reset();
  1385. #endif
  1386. #if ENABLED(SKEW_CORRECTION_GCODE)
  1387. planner.xy_skew_factor = XY_SKEW_FACTOR;
  1388. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1389. planner.xz_skew_factor = XZ_SKEW_FACTOR;
  1390. planner.yz_skew_factor = YZ_SKEW_FACTOR;
  1391. #endif
  1392. #endif
  1393. postprocess();
  1394. #if ENABLED(EEPROM_CHITCHAT)
  1395. SERIAL_ECHO_START();
  1396. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  1397. #endif
  1398. }
  1399. #if DISABLED(DISABLE_M503)
  1400. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  1401. /**
  1402. * M503 - Report current settings in RAM
  1403. *
  1404. * Unless specifically disabled, M503 is available even without EEPROM
  1405. */
  1406. void MarlinSettings::report(const bool forReplay) {
  1407. /**
  1408. * Announce current units, in case inches are being displayed
  1409. */
  1410. CONFIG_ECHO_START;
  1411. #if ENABLED(INCH_MODE_SUPPORT)
  1412. #define LINEAR_UNIT(N) (float(N) / parser.linear_unit_factor)
  1413. #define VOLUMETRIC_UNIT(N) (float(N) / (parser.volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor))
  1414. SERIAL_ECHOPGM(" G2");
  1415. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  1416. SERIAL_ECHOPGM(" ; Units in ");
  1417. serialprintPGM(parser.linear_unit_factor == 1.0 ? PSTR("mm\n") : PSTR("inches\n"));
  1418. #else
  1419. #define LINEAR_UNIT(N) (N)
  1420. #define VOLUMETRIC_UNIT(N) (N)
  1421. SERIAL_ECHOLNPGM(" G21 ; Units in mm");
  1422. #endif
  1423. #if ENABLED(ULTIPANEL)
  1424. // Temperature units - for Ultipanel temperature options
  1425. CONFIG_ECHO_START;
  1426. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1427. #define TEMP_UNIT(N) parser.to_temp_units(N)
  1428. SERIAL_ECHOPGM(" M149 ");
  1429. SERIAL_CHAR(parser.temp_units_code());
  1430. SERIAL_ECHOPGM(" ; Units in ");
  1431. serialprintPGM(parser.temp_units_name());
  1432. #else
  1433. #define TEMP_UNIT(N) (N)
  1434. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  1435. #endif
  1436. #endif
  1437. SERIAL_EOL();
  1438. /**
  1439. * Volumetric extrusion M200
  1440. */
  1441. if (!forReplay) {
  1442. CONFIG_ECHO_START;
  1443. SERIAL_ECHOPGM("Filament settings:");
  1444. if (parser.volumetric_enabled)
  1445. SERIAL_EOL();
  1446. else
  1447. SERIAL_ECHOLNPGM(" Disabled");
  1448. }
  1449. CONFIG_ECHO_START;
  1450. SERIAL_ECHOPAIR(" M200 D", LINEAR_UNIT(planner.filament_size[0]));
  1451. SERIAL_EOL();
  1452. #if EXTRUDERS > 1
  1453. CONFIG_ECHO_START;
  1454. SERIAL_ECHOPAIR(" M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
  1455. SERIAL_EOL();
  1456. #if EXTRUDERS > 2
  1457. CONFIG_ECHO_START;
  1458. SERIAL_ECHOPAIR(" M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
  1459. SERIAL_EOL();
  1460. #if EXTRUDERS > 3
  1461. CONFIG_ECHO_START;
  1462. SERIAL_ECHOPAIR(" M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
  1463. SERIAL_EOL();
  1464. #if EXTRUDERS > 4
  1465. CONFIG_ECHO_START;
  1466. SERIAL_ECHOPAIR(" M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
  1467. SERIAL_EOL();
  1468. #endif // EXTRUDERS > 4
  1469. #endif // EXTRUDERS > 3
  1470. #endif // EXTRUDERS > 2
  1471. #endif // EXTRUDERS > 1
  1472. if (!parser.volumetric_enabled) {
  1473. CONFIG_ECHO_START;
  1474. SERIAL_ECHOLNPGM(" M200 D0");
  1475. }
  1476. if (!forReplay) {
  1477. CONFIG_ECHO_START;
  1478. SERIAL_ECHOLNPGM("Steps per unit:");
  1479. }
  1480. CONFIG_ECHO_START;
  1481. SERIAL_ECHOPAIR(" M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS]));
  1482. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS]));
  1483. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS]));
  1484. #if DISABLED(DISTINCT_E_FACTORS)
  1485. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS]));
  1486. #endif
  1487. SERIAL_EOL();
  1488. #if ENABLED(DISTINCT_E_FACTORS)
  1489. CONFIG_ECHO_START;
  1490. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1491. SERIAL_ECHOPAIR(" M92 T", (int)i);
  1492. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i]));
  1493. }
  1494. #endif
  1495. if (!forReplay) {
  1496. CONFIG_ECHO_START;
  1497. SERIAL_ECHOLNPGM("Maximum feedrates (units/s):");
  1498. }
  1499. CONFIG_ECHO_START;
  1500. SERIAL_ECHOPAIR(" M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS]));
  1501. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS]));
  1502. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS]));
  1503. #if DISABLED(DISTINCT_E_FACTORS)
  1504. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS]));
  1505. #endif
  1506. SERIAL_EOL();
  1507. #if ENABLED(DISTINCT_E_FACTORS)
  1508. CONFIG_ECHO_START;
  1509. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1510. SERIAL_ECHOPAIR(" M203 T", (int)i);
  1511. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i]));
  1512. }
  1513. #endif
  1514. if (!forReplay) {
  1515. CONFIG_ECHO_START;
  1516. SERIAL_ECHOLNPGM("Maximum Acceleration (units/s2):");
  1517. }
  1518. CONFIG_ECHO_START;
  1519. SERIAL_ECHOPAIR(" M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS]));
  1520. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS]));
  1521. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS]));
  1522. #if DISABLED(DISTINCT_E_FACTORS)
  1523. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS]));
  1524. #endif
  1525. SERIAL_EOL();
  1526. #if ENABLED(DISTINCT_E_FACTORS)
  1527. CONFIG_ECHO_START;
  1528. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1529. SERIAL_ECHOPAIR(" M201 T", (int)i);
  1530. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i]));
  1531. }
  1532. #endif
  1533. if (!forReplay) {
  1534. CONFIG_ECHO_START;
  1535. SERIAL_ECHOLNPGM("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  1536. }
  1537. CONFIG_ECHO_START;
  1538. SERIAL_ECHOPAIR(" M204 P", LINEAR_UNIT(planner.acceleration));
  1539. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(planner.retract_acceleration));
  1540. SERIAL_ECHOLNPAIR(" T", LINEAR_UNIT(planner.travel_acceleration));
  1541. if (!forReplay) {
  1542. CONFIG_ECHO_START;
  1543. SERIAL_ECHOLNPGM("Advanced: S<min_feedrate> T<min_travel_feedrate> B<min_segment_time_us> X<max_xy_jerk> Z<max_z_jerk> E<max_e_jerk>");
  1544. }
  1545. CONFIG_ECHO_START;
  1546. SERIAL_ECHOPAIR(" M205 S", LINEAR_UNIT(planner.min_feedrate_mm_s));
  1547. SERIAL_ECHOPAIR(" T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s));
  1548. SERIAL_ECHOPAIR(" B", planner.min_segment_time_us);
  1549. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
  1550. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
  1551. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
  1552. SERIAL_ECHOLNPAIR(" E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
  1553. #if HAS_M206_COMMAND
  1554. if (!forReplay) {
  1555. CONFIG_ECHO_START;
  1556. SERIAL_ECHOLNPGM("Home offset:");
  1557. }
  1558. CONFIG_ECHO_START;
  1559. SERIAL_ECHOPAIR(" M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
  1560. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(home_offset[Y_AXIS]));
  1561. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(home_offset[Z_AXIS]));
  1562. #endif
  1563. #if HOTENDS > 1
  1564. if (!forReplay) {
  1565. CONFIG_ECHO_START;
  1566. SERIAL_ECHOLNPGM("Hotend offsets:");
  1567. }
  1568. CONFIG_ECHO_START;
  1569. for (uint8_t e = 1; e < HOTENDS; e++) {
  1570. SERIAL_ECHOPAIR(" M218 T", (int)e);
  1571. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
  1572. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
  1573. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) ||ENABLED(PARKING_EXTRUDER)
  1574. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]));
  1575. #endif
  1576. SERIAL_EOL();
  1577. }
  1578. #endif
  1579. /**
  1580. * Bed Leveling
  1581. */
  1582. #if HAS_LEVELING
  1583. #if ENABLED(MESH_BED_LEVELING)
  1584. if (!forReplay) {
  1585. CONFIG_ECHO_START;
  1586. SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
  1587. }
  1588. CONFIG_ECHO_START;
  1589. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1590. if (!forReplay) {
  1591. CONFIG_ECHO_START;
  1592. ubl.echo_name();
  1593. SERIAL_ECHOLNPGM(":");
  1594. }
  1595. CONFIG_ECHO_START;
  1596. #elif HAS_ABL
  1597. if (!forReplay) {
  1598. CONFIG_ECHO_START;
  1599. SERIAL_ECHOLNPGM("Auto Bed Leveling:");
  1600. }
  1601. CONFIG_ECHO_START;
  1602. #endif
  1603. CONFIG_ECHO_START;
  1604. SERIAL_ECHOPAIR(" M420 S", planner.leveling_active ? 1 : 0);
  1605. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1606. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
  1607. #endif
  1608. SERIAL_EOL();
  1609. #if ENABLED(MESH_BED_LEVELING)
  1610. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  1611. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  1612. CONFIG_ECHO_START;
  1613. SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1);
  1614. SERIAL_ECHOPAIR(" Y", (int)py + 1);
  1615. SERIAL_ECHOPGM(" Z");
  1616. SERIAL_PROTOCOL_F(LINEAR_UNIT(mbl.z_values[px][py]), 5);
  1617. SERIAL_EOL();
  1618. }
  1619. }
  1620. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1621. if (!forReplay) {
  1622. SERIAL_EOL();
  1623. ubl.report_state();
  1624. SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.storage_slot);
  1625. SERIAL_ECHOPAIR("EEPROM can hold ", calc_num_meshes());
  1626. SERIAL_ECHOLNPGM(" meshes.\n");
  1627. }
  1628. #endif
  1629. #endif // HAS_LEVELING
  1630. #if ENABLED(DELTA)
  1631. if (!forReplay) {
  1632. CONFIG_ECHO_START;
  1633. SERIAL_ECHOLNPGM("Endstop adjustment:");
  1634. }
  1635. CONFIG_ECHO_START;
  1636. SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
  1637. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
  1638. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
  1639. if (!forReplay) {
  1640. CONFIG_ECHO_START;
  1641. SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  1642. }
  1643. CONFIG_ECHO_START;
  1644. SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod));
  1645. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius));
  1646. SERIAL_ECHOPAIR(" H", LINEAR_UNIT(delta_height));
  1647. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  1648. SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius));
  1649. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
  1650. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
  1651. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
  1652. SERIAL_EOL();
  1653. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  1654. if (!forReplay) {
  1655. CONFIG_ECHO_START;
  1656. SERIAL_ECHOLNPGM("Endstop adjustment:");
  1657. }
  1658. CONFIG_ECHO_START;
  1659. SERIAL_ECHOPGM(" M666");
  1660. #if ENABLED(X_DUAL_ENDSTOPS)
  1661. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(x_endstop_adj));
  1662. #endif
  1663. #if ENABLED(Y_DUAL_ENDSTOPS)
  1664. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(y_endstop_adj));
  1665. #endif
  1666. #if ENABLED(Z_DUAL_ENDSTOPS)
  1667. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(z_endstop_adj));
  1668. #endif
  1669. SERIAL_EOL();
  1670. #endif // DELTA
  1671. #if ENABLED(ULTIPANEL)
  1672. if (!forReplay) {
  1673. CONFIG_ECHO_START;
  1674. SERIAL_ECHOLNPGM("Material heatup parameters:");
  1675. }
  1676. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  1677. CONFIG_ECHO_START;
  1678. SERIAL_ECHOPAIR(" M145 S", (int)i);
  1679. SERIAL_ECHOPAIR(" H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
  1680. SERIAL_ECHOPAIR(" B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
  1681. SERIAL_ECHOLNPAIR(" F", lcd_preheat_fan_speed[i]);
  1682. }
  1683. #endif // ULTIPANEL
  1684. #if HAS_PID_HEATING
  1685. if (!forReplay) {
  1686. CONFIG_ECHO_START;
  1687. SERIAL_ECHOLNPGM("PID settings:");
  1688. }
  1689. #if ENABLED(PIDTEMP)
  1690. #if HOTENDS > 1
  1691. if (forReplay) {
  1692. HOTEND_LOOP() {
  1693. CONFIG_ECHO_START;
  1694. SERIAL_ECHOPAIR(" M301 E", e);
  1695. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  1696. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  1697. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  1698. #if ENABLED(PID_EXTRUSION_SCALING)
  1699. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  1700. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  1701. #endif
  1702. SERIAL_EOL();
  1703. }
  1704. }
  1705. else
  1706. #endif // HOTENDS > 1
  1707. // !forReplay || HOTENDS == 1
  1708. {
  1709. CONFIG_ECHO_START;
  1710. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  1711. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  1712. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  1713. #if ENABLED(PID_EXTRUSION_SCALING)
  1714. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  1715. SERIAL_ECHOPAIR(" L", lpq_len);
  1716. #endif
  1717. SERIAL_EOL();
  1718. }
  1719. #endif // PIDTEMP
  1720. #if ENABLED(PIDTEMPBED)
  1721. CONFIG_ECHO_START;
  1722. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  1723. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  1724. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  1725. SERIAL_EOL();
  1726. #endif
  1727. #endif // PIDTEMP || PIDTEMPBED
  1728. #if HAS_LCD_CONTRAST
  1729. if (!forReplay) {
  1730. CONFIG_ECHO_START;
  1731. SERIAL_ECHOLNPGM("LCD Contrast:");
  1732. }
  1733. CONFIG_ECHO_START;
  1734. SERIAL_ECHOLNPAIR(" M250 C", lcd_contrast);
  1735. #endif
  1736. #if ENABLED(FWRETRACT)
  1737. if (!forReplay) {
  1738. CONFIG_ECHO_START;
  1739. SERIAL_ECHOLNPGM("Retract: S<length> F<units/m> Z<lift>");
  1740. }
  1741. CONFIG_ECHO_START;
  1742. SERIAL_ECHOPAIR(" M207 S", LINEAR_UNIT(retract_length));
  1743. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(swap_retract_length));
  1744. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_feedrate_mm_s)));
  1745. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(retract_zlift));
  1746. if (!forReplay) {
  1747. CONFIG_ECHO_START;
  1748. SERIAL_ECHOLNPGM("Recover: S<length> F<units/m>");
  1749. }
  1750. CONFIG_ECHO_START;
  1751. SERIAL_ECHOPAIR(" M208 S", LINEAR_UNIT(retract_recover_length));
  1752. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(swap_retract_recover_length));
  1753. SERIAL_ECHOLNPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_recover_feedrate_mm_s)));
  1754. if (!forReplay) {
  1755. CONFIG_ECHO_START;
  1756. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  1757. }
  1758. CONFIG_ECHO_START;
  1759. SERIAL_ECHOLNPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  1760. #endif // FWRETRACT
  1761. /**
  1762. * Probe Offset
  1763. */
  1764. #if HAS_BED_PROBE
  1765. if (!forReplay) {
  1766. CONFIG_ECHO_START;
  1767. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  1768. }
  1769. CONFIG_ECHO_START;
  1770. SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset));
  1771. #endif
  1772. /**
  1773. * Bed Skew Correction
  1774. */
  1775. #if ENABLED(SKEW_CORRECTION_GCODE)
  1776. if (!forReplay) {
  1777. CONFIG_ECHO_START;
  1778. SERIAL_ECHOLNPGM("Skew Factor: ");
  1779. }
  1780. CONFIG_ECHO_START;
  1781. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1782. SERIAL_ECHOPAIR(" M852 I", LINEAR_UNIT(planner.xy_skew_factor));
  1783. SERIAL_ECHOPAIR(" J", LINEAR_UNIT(planner.xz_skew_factor));
  1784. SERIAL_ECHOLNPAIR(" K", LINEAR_UNIT(planner.yz_skew_factor));
  1785. #else
  1786. SERIAL_ECHOLNPAIR(" M852 S", LINEAR_UNIT(planner.xy_skew_factor));
  1787. #endif
  1788. #endif
  1789. /**
  1790. * TMC2130 stepper driver current
  1791. */
  1792. #if ENABLED(HAVE_TMC2130)
  1793. if (!forReplay) {
  1794. CONFIG_ECHO_START;
  1795. SERIAL_ECHOLNPGM("Stepper driver current:");
  1796. }
  1797. CONFIG_ECHO_START;
  1798. SERIAL_ECHO(" M906");
  1799. #if ENABLED(X_IS_TMC2130) || ENABLED(X_IS_TMC2208)
  1800. SERIAL_ECHOPAIR(" X ", stepperX.getCurrent());
  1801. #endif
  1802. #if ENABLED(Y_IS_TMC2130) || ENABLED(Y_IS_TMC2208)
  1803. SERIAL_ECHOPAIR(" Y ", stepperY.getCurrent());
  1804. #endif
  1805. #if ENABLED(Z_IS_TMC2130) || ENABLED(Z_IS_TMC2208)
  1806. SERIAL_ECHOPAIR(" Z ", stepperZ.getCurrent());
  1807. #endif
  1808. #if ENABLED(X2_IS_TMC2130) || ENABLED(X2_IS_TMC2208)
  1809. SERIAL_ECHOPAIR(" X2 ", stepperX2.getCurrent());
  1810. #endif
  1811. #if ENABLED(Y2_IS_TMC2130) || ENABLED(Y2_IS_TMC2208)
  1812. SERIAL_ECHOPAIR(" Y2 ", stepperY2.getCurrent());
  1813. #endif
  1814. #if ENABLED(Z2_IS_TMC2130) || ENABLED(Z2_IS_TMC2208)
  1815. SERIAL_ECHOPAIR(" Z2 ", stepperZ2.getCurrent());
  1816. #endif
  1817. #if ENABLED(E0_IS_TMC2130) || ENABLED(E0_IS_TMC2208)
  1818. SERIAL_ECHOPAIR(" E0 ", stepperE0.getCurrent());
  1819. #endif
  1820. #if ENABLED(E1_IS_TMC2130) || ENABLED(E1_IS_TMC2208)
  1821. SERIAL_ECHOPAIR(" E1 ", stepperE1.getCurrent());
  1822. #endif
  1823. #if ENABLED(E2_IS_TMC2130) || ENABLED(E2_IS_TMC2208)
  1824. SERIAL_ECHOPAIR(" E2 ", stepperE2.getCurrent());
  1825. #endif
  1826. #if ENABLED(E3_IS_TMC2130) || ENABLED(E3_IS_TMC2208)
  1827. SERIAL_ECHOPAIR(" E3 ", stepperE3.getCurrent());
  1828. #endif
  1829. #if ENABLED(E4_IS_TMC2130) || ENABLED(E4_IS_TMC2208)
  1830. SERIAL_ECHOPAIR(" E4 ", stepperE4.getCurrent());
  1831. #endif
  1832. SERIAL_EOL();
  1833. #endif
  1834. /**
  1835. * TMC2130 Sensorless homing thresholds
  1836. */
  1837. #if ENABLED(HAVE_TMC2130) && ENABLED(SENSORLESS_HOMING)
  1838. if (!forReplay) {
  1839. CONFIG_ECHO_START;
  1840. SERIAL_ECHOLNPGM("Sensorless homing threshold:");
  1841. }
  1842. CONFIG_ECHO_START;
  1843. SERIAL_ECHO(" M914");
  1844. #if ENABLED(X_IS_TMC2130)
  1845. SERIAL_ECHOPAIR(" X", stepperX.sgt());
  1846. #endif
  1847. #if ENABLED(X2_IS_TMC2130)
  1848. SERIAL_ECHOPAIR(" X2 ", stepperX2.sgt());
  1849. #endif
  1850. #if ENABLED(Y_IS_TMC2130)
  1851. SERIAL_ECHOPAIR(" Y", stepperY.sgt());
  1852. #endif
  1853. #if ENABLED(X2_IS_TMC2130)
  1854. SERIAL_ECHOPAIR(" Y2 ", stepperY2.sgt());
  1855. #endif
  1856. SERIAL_EOL();
  1857. #endif
  1858. /**
  1859. * Linear Advance
  1860. */
  1861. #if ENABLED(LIN_ADVANCE)
  1862. if (!forReplay) {
  1863. CONFIG_ECHO_START;
  1864. SERIAL_ECHOLNPGM("Linear Advance:");
  1865. }
  1866. CONFIG_ECHO_START;
  1867. SERIAL_ECHOPAIR(" M900 K", planner.extruder_advance_k);
  1868. SERIAL_ECHOLNPAIR(" R", planner.advance_ed_ratio);
  1869. #endif
  1870. #if HAS_MOTOR_CURRENT_PWM
  1871. CONFIG_ECHO_START;
  1872. if (!forReplay) {
  1873. SERIAL_ECHOLNPGM("Stepper motor currents:");
  1874. CONFIG_ECHO_START;
  1875. }
  1876. SERIAL_ECHOPAIR(" M907 X", stepper.motor_current_setting[0]);
  1877. SERIAL_ECHOPAIR(" Z", stepper.motor_current_setting[1]);
  1878. SERIAL_ECHOPAIR(" E", stepper.motor_current_setting[2]);
  1879. SERIAL_EOL();
  1880. #endif
  1881. }
  1882. #endif // !DISABLE_M503