My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ubl.h 16KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #ifndef UNIFIED_BED_LEVELING_H
  23. #define UNIFIED_BED_LEVELING_H
  24. #include "MarlinConfig.h"
  25. #if ENABLED(AUTO_BED_LEVELING_UBL)
  26. //#define UBL_DEVEL_DEBUGGING
  27. #include "Marlin.h"
  28. #include "planner.h"
  29. #include "math.h"
  30. #include "vector_3.h"
  31. #include "configuration_store.h"
  32. #define UBL_VERSION "1.01"
  33. #define UBL_OK false
  34. #define UBL_ERR true
  35. #define USE_NOZZLE_AS_REFERENCE 0
  36. #define USE_PROBE_AS_REFERENCE 1
  37. // ubl_motion.cpp
  38. #if ENABLED(UBL_DEVEL_DEBUGGING)
  39. void debug_current_and_destination(const char * const title);
  40. #else
  41. FORCE_INLINE void debug_current_and_destination(const char * const title) { UNUSED(title); }
  42. #endif
  43. // ubl_G29.cpp
  44. enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
  45. // External references
  46. char *ftostr43sign(const float&, char);
  47. void home_all_axes();
  48. extern uint8_t ubl_cnt;
  49. ///////////////////////////////////////////////////////////////////////////////////////////////////////
  50. #if ENABLED(ULTRA_LCD)
  51. extern char lcd_status_message[];
  52. void lcd_quick_feedback();
  53. #endif
  54. #define MESH_X_DIST (float(MESH_MAX_X - (MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1))
  55. #define MESH_Y_DIST (float(MESH_MAX_Y - (MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1))
  56. class unified_bed_leveling {
  57. private:
  58. static int g29_verbose_level,
  59. g29_phase_value,
  60. g29_repetition_cnt,
  61. g29_storage_slot,
  62. g29_map_type;
  63. static bool g29_c_flag, g29_x_flag, g29_y_flag;
  64. static float g29_x_pos, g29_y_pos,
  65. g29_card_thickness,
  66. g29_constant;
  67. #if HAS_BED_PROBE
  68. static int g29_grid_size;
  69. #endif
  70. #if ENABLED(NEWPANEL)
  71. static void move_z_with_encoder(const float &multiplier);
  72. static float measure_point_with_encoder();
  73. static float measure_business_card_thickness(const float&);
  74. static void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
  75. static void fine_tune_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map);
  76. #endif
  77. static bool g29_parameter_parsing();
  78. static void find_mean_mesh_height();
  79. static void shift_mesh_height();
  80. static void probe_entire_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest);
  81. static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
  82. static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
  83. static void g29_what_command();
  84. static void g29_eeprom_dump();
  85. static void g29_compare_current_mesh_to_stored_mesh();
  86. static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
  87. static void smart_fill_mesh();
  88. public:
  89. static void echo_name();
  90. static void report_state();
  91. static void save_ubl_active_state_and_disable();
  92. static void restore_ubl_active_state_and_leave();
  93. static void display_map(const int);
  94. static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, uint16_t[16]);
  95. static mesh_index_pair find_furthest_invalid_mesh_point();
  96. static void reset();
  97. static void invalidate();
  98. static void set_all_mesh_points_to_value(const float);
  99. static bool sanity_check();
  100. static void G29() _O0; // O0 for no optimization
  101. static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
  102. static int8_t storage_slot;
  103. static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  104. // 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
  105. // until determinism prevails
  106. constexpr static float _mesh_index_to_xpos[16] PROGMEM = {
  107. MESH_MIN_X + 0 * (MESH_X_DIST), MESH_MIN_X + 1 * (MESH_X_DIST),
  108. MESH_MIN_X + 2 * (MESH_X_DIST), MESH_MIN_X + 3 * (MESH_X_DIST),
  109. MESH_MIN_X + 4 * (MESH_X_DIST), MESH_MIN_X + 5 * (MESH_X_DIST),
  110. MESH_MIN_X + 6 * (MESH_X_DIST), MESH_MIN_X + 7 * (MESH_X_DIST),
  111. MESH_MIN_X + 8 * (MESH_X_DIST), MESH_MIN_X + 9 * (MESH_X_DIST),
  112. MESH_MIN_X + 10 * (MESH_X_DIST), MESH_MIN_X + 11 * (MESH_X_DIST),
  113. MESH_MIN_X + 12 * (MESH_X_DIST), MESH_MIN_X + 13 * (MESH_X_DIST),
  114. MESH_MIN_X + 14 * (MESH_X_DIST), MESH_MIN_X + 15 * (MESH_X_DIST)
  115. };
  116. constexpr static float _mesh_index_to_ypos[16] PROGMEM = {
  117. MESH_MIN_Y + 0 * (MESH_Y_DIST), MESH_MIN_Y + 1 * (MESH_Y_DIST),
  118. MESH_MIN_Y + 2 * (MESH_Y_DIST), MESH_MIN_Y + 3 * (MESH_Y_DIST),
  119. MESH_MIN_Y + 4 * (MESH_Y_DIST), MESH_MIN_Y + 5 * (MESH_Y_DIST),
  120. MESH_MIN_Y + 6 * (MESH_Y_DIST), MESH_MIN_Y + 7 * (MESH_Y_DIST),
  121. MESH_MIN_Y + 8 * (MESH_Y_DIST), MESH_MIN_Y + 9 * (MESH_Y_DIST),
  122. MESH_MIN_Y + 10 * (MESH_Y_DIST), MESH_MIN_Y + 11 * (MESH_Y_DIST),
  123. MESH_MIN_Y + 12 * (MESH_Y_DIST), MESH_MIN_Y + 13 * (MESH_Y_DIST),
  124. MESH_MIN_Y + 14 * (MESH_Y_DIST), MESH_MIN_Y + 15 * (MESH_Y_DIST)
  125. };
  126. #if ENABLED(ULTIPANEL)
  127. static bool lcd_map_control;
  128. #endif
  129. static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
  130. unified_bed_leveling();
  131. FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
  132. static int8_t get_cell_index_x(const float &x) {
  133. const int8_t cx = (x - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
  134. return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX
  135. } // position. But with this defined this way, it is possible
  136. // to extrapolate off of this point even further out. Probably
  137. // that is OK because something else should be keeping that from
  138. // happening and should not be worried about at this level.
  139. static int8_t get_cell_index_y(const float &y) {
  140. const int8_t cy = (y - (MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
  141. return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX
  142. } // position. But with this defined this way, it is possible
  143. // to extrapolate off of this point even further out. Probably
  144. // that is OK because something else should be keeping that from
  145. // happening and should not be worried about at this level.
  146. static int8_t find_closest_x_index(const float &x) {
  147. const int8_t px = (x - (MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
  148. return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
  149. }
  150. static int8_t find_closest_y_index(const float &y) {
  151. const int8_t py = (y - (MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
  152. return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
  153. }
  154. /**
  155. * z2 --|
  156. * z0 | |
  157. * | | + (z2-z1)
  158. * z1 | | |
  159. * ---+-------------+--------+-- --|
  160. * a1 a0 a2
  161. * |<---delta_a---------->|
  162. *
  163. * calc_z0 is the basis for all the Mesh Based correction. It is used to
  164. * find the expected Z Height at a position between two known Z-Height locations.
  165. *
  166. * It is fairly expensive with its 4 floating point additions and 2 floating point
  167. * multiplications.
  168. */
  169. FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
  170. return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
  171. }
  172. /**
  173. * z_correction_for_x_on_horizontal_mesh_line is an optimization for
  174. * the case where the printer is making a vertical line that only crosses horizontal mesh lines.
  175. */
  176. inline static float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) {
  177. if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
  178. #if ENABLED(DEBUG_LEVELING_FEATURE)
  179. if (DEBUGGING(LEVELING)) {
  180. serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1_i") : PSTR("yi") );
  181. SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(rx0=", rx0);
  182. SERIAL_ECHOPAIR(",x1_i=", x1_i);
  183. SERIAL_ECHOPAIR(",yi=", yi);
  184. SERIAL_CHAR(')');
  185. SERIAL_EOL();
  186. }
  187. #endif
  188. return NAN;
  189. }
  190. const float xratio = (rx0 - mesh_index_to_xpos(x1_i)) * (1.0 / (MESH_X_DIST)),
  191. z1 = z_values[x1_i][yi];
  192. return z1 + xratio * (z_values[min(x1_i, GRID_MAX_POINTS_X - 2) + 1][yi] - z1); // Don't allow x1_i+1 to be past the end of the array
  193. // If it is, it is clamped to the last element of the
  194. // z_values[][] array and no correction is applied.
  195. }
  196. //
  197. // See comments above for z_correction_for_x_on_horizontal_mesh_line
  198. //
  199. inline static float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) {
  200. if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) {
  201. #if ENABLED(DEBUG_LEVELING_FEATURE)
  202. if (DEBUGGING(LEVELING)) {
  203. serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("y1_i") );
  204. SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ry0=", ry0);
  205. SERIAL_ECHOPAIR(", xi=", xi);
  206. SERIAL_ECHOPAIR(", y1_i=", y1_i);
  207. SERIAL_CHAR(')');
  208. SERIAL_EOL();
  209. }
  210. #endif
  211. return NAN;
  212. }
  213. const float yratio = (ry0 - mesh_index_to_ypos(y1_i)) * (1.0 / (MESH_Y_DIST)),
  214. z1 = z_values[xi][y1_i];
  215. return z1 + yratio * (z_values[xi][min(y1_i, GRID_MAX_POINTS_Y - 2) + 1] - z1); // Don't allow y1_i+1 to be past the end of the array
  216. // If it is, it is clamped to the last element of the
  217. // z_values[][] array and no correction is applied.
  218. }
  219. /**
  220. * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
  221. * does a linear interpolation along both of the bounding X-Mesh-Lines to find the
  222. * Z-Height at both ends. Then it does a linear interpolation of these heights based
  223. * on the Y position within the cell.
  224. */
  225. static float get_z_correction(const float &rx0, const float &ry0) {
  226. const int8_t cx = get_cell_index_x(rx0),
  227. cy = get_cell_index_y(ry0); // return values are clamped
  228. const float z1 = calc_z0(rx0,
  229. mesh_index_to_xpos(cx), z_values[cx][cy],
  230. mesh_index_to_xpos(cx + 1), z_values[min(cx, GRID_MAX_POINTS_X - 2) + 1][cy]);
  231. const float z2 = calc_z0(rx0,
  232. mesh_index_to_xpos(cx), z_values[cx][min(cy, GRID_MAX_POINTS_Y - 2) + 1],
  233. mesh_index_to_xpos(cx + 1), z_values[min(cx, GRID_MAX_POINTS_X - 2) + 1][min(cy, GRID_MAX_POINTS_Y - 2) + 1]);
  234. float z0 = calc_z0(ry0,
  235. mesh_index_to_ypos(cy), z1,
  236. mesh_index_to_ypos(cy + 1), z2);
  237. #if ENABLED(DEBUG_LEVELING_FEATURE)
  238. if (DEBUGGING(MESH_ADJUST)) {
  239. SERIAL_ECHOPAIR(" raw get_z_correction(", rx0);
  240. SERIAL_CHAR(',');
  241. SERIAL_ECHO(ry0);
  242. SERIAL_ECHOPGM(") = ");
  243. SERIAL_ECHO_F(z0, 6);
  244. }
  245. #endif
  246. #if ENABLED(DEBUG_LEVELING_FEATURE)
  247. if (DEBUGGING(MESH_ADJUST)) {
  248. SERIAL_ECHOPGM(" >>>---> ");
  249. SERIAL_ECHO_F(z0, 6);
  250. SERIAL_EOL();
  251. }
  252. #endif
  253. if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
  254. z0 = 0.0; // in ubl.z_values[][] and propagate through the
  255. // calculations. If our correction is NAN, we throw it out
  256. // because part of the Mesh is undefined and we don't have the
  257. // information we need to complete the height correction.
  258. #if ENABLED(DEBUG_LEVELING_FEATURE)
  259. if (DEBUGGING(MESH_ADJUST)) {
  260. SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", rx0);
  261. SERIAL_CHAR(',');
  262. SERIAL_ECHO(ry0);
  263. SERIAL_CHAR(')');
  264. SERIAL_EOL();
  265. }
  266. #endif
  267. }
  268. return z0;
  269. }
  270. FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) {
  271. return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : MESH_MIN_X + i * (MESH_X_DIST);
  272. }
  273. FORCE_INLINE static float mesh_index_to_ypos(const uint8_t i) {
  274. return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : MESH_MIN_Y + i * (MESH_Y_DIST);
  275. }
  276. #if UBL_SEGMENTED
  277. static bool prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate);
  278. #else
  279. static void line_to_destination_cartesian(const float &fr, const uint8_t e);
  280. #endif
  281. #define _CMPZ(a,b) (z_values[a][b] == z_values[a][b+1])
  282. #define CMPZ(a) (_CMPZ(a, 0) && _CMPZ(a, 1))
  283. #define ZZER(a) (z_values[a][0] == 0)
  284. FORCE_INLINE bool mesh_is_valid() {
  285. return !(
  286. ( CMPZ(0) && CMPZ(1) && CMPZ(2) // adjacent z values all equal?
  287. && ZZER(0) && ZZER(1) && ZZER(2) // all zero at the edge?
  288. )
  289. || isnan(z_values[0][0])
  290. );
  291. }
  292. }; // class unified_bed_leveling
  293. extern unified_bed_leveling ubl;
  294. FORCE_INLINE void gcode_G29() { ubl.G29(); }
  295. #endif // AUTO_BED_LEVELING_UBL
  296. #endif // UNIFIED_BED_LEVELING_H