My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

Marlin_main.cpp 155KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  52. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  53. //Implemented Codes
  54. //-------------------
  55. // G0 -> G1
  56. // G1 - Coordinated Movement X Y Z E
  57. // G2 - CW ARC
  58. // G3 - CCW ARC
  59. // G4 - Dwell S<seconds> or P<milliseconds>
  60. // G10 - retract filament according to settings of M207
  61. // G11 - retract recover filament according to settings of M208
  62. // G28 - Home all Axis
  63. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  64. // G30 - Single Z Probe, probes bed at current XY location.
  65. // G31 - Dock sled (Z_PROBE_SLED only)
  66. // G32 - Undock sled (Z_PROBE_SLED only)
  67. // G90 - Use Absolute Coordinates
  68. // G91 - Use Relative Coordinates
  69. // G92 - Set current position to coordinates given
  70. // M Codes
  71. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  72. // M1 - Same as M0
  73. // M17 - Enable/Power all stepper motors
  74. // M18 - Disable all stepper motors; same as M84
  75. // M20 - List SD card
  76. // M21 - Init SD card
  77. // M22 - Release SD card
  78. // M23 - Select SD file (M23 filename.g)
  79. // M24 - Start/resume SD print
  80. // M25 - Pause SD print
  81. // M26 - Set SD position in bytes (M26 S12345)
  82. // M27 - Report SD print status
  83. // M28 - Start SD write (M28 filename.g)
  84. // M29 - Stop SD write
  85. // M30 - Delete file from SD (M30 filename.g)
  86. // M31 - Output time since last M109 or SD card start to serial
  87. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  88. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  89. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  90. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  91. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  92. // M80 - Turn on Power Supply
  93. // M81 - Turn off Power Supply
  94. // M82 - Set E codes absolute (default)
  95. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  96. // M84 - Disable steppers until next move,
  97. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  98. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  99. // M92 - Set axis_steps_per_unit - same syntax as G92
  100. // M104 - Set extruder target temp
  101. // M105 - Read current temp
  102. // M106 - Fan on
  103. // M107 - Fan off
  104. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  105. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  106. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  107. // M112 - Emergency stop
  108. // M114 - Output current position to serial port
  109. // M115 - Capabilities string
  110. // M117 - display message
  111. // M119 - Output Endstop status to serial port
  112. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  113. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  114. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  115. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  116. // M140 - Set bed target temp
  117. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  118. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  119. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  120. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  121. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  122. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  123. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  124. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  125. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  126. // M206 - Set additional homing offset
  127. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  128. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  129. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  130. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  131. // M220 S<factor in percent>- set speed factor override percentage
  132. // M221 S<factor in percent>- set extrude factor override percentage
  133. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  134. // M240 - Trigger a camera to take a photograph
  135. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  136. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  137. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  138. // M301 - Set PID parameters P I and D
  139. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  140. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  141. // M304 - Set bed PID parameters P I and D
  142. // M400 - Finish all moves
  143. // M401 - Lower z-probe if present
  144. // M402 - Raise z-probe if present
  145. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  146. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  147. // M406 - Turn off Filament Sensor extrusion control
  148. // M407 - Displays measured filament diameter
  149. // M500 - Store parameters in EEPROM
  150. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  151. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  152. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  153. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  154. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  155. // M665 - Set delta configurations
  156. // M666 - Set delta endstop adjustment
  157. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  158. // M907 - Set digital trimpot motor current using axis codes.
  159. // M908 - Control digital trimpot directly.
  160. // M350 - Set microstepping mode.
  161. // M351 - Toggle MS1 MS2 pins directly.
  162. // ************ SCARA Specific - This can change to suit future G-code regulations
  163. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  164. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  165. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  166. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  167. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  168. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  169. //************* SCARA End ***************
  170. // M928 - Start SD logging (M928 filename.g) - ended by M29
  171. // M999 - Restart after being stopped by error
  172. #ifdef SDSUPPORT
  173. CardReader card;
  174. #endif
  175. float homing_feedrate[] = HOMING_FEEDRATE;
  176. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  177. int feedmultiply = 100; //100->1 200->2
  178. int saved_feedmultiply;
  179. int extrudemultiply = 100; //100->1 200->2
  180. int extruder_multiply[EXTRUDERS] = { 100
  181. #if EXTRUDERS > 1
  182. , 100
  183. #if EXTRUDERS > 2
  184. , 100
  185. #if EXTRUDERS > 3
  186. , 100
  187. #endif
  188. #endif
  189. #endif
  190. };
  191. bool volumetric_enabled = false;
  192. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  193. #if EXTRUDERS > 1
  194. , DEFAULT_NOMINAL_FILAMENT_DIA
  195. #if EXTRUDERS > 2
  196. , DEFAULT_NOMINAL_FILAMENT_DIA
  197. #if EXTRUDERS > 3
  198. , DEFAULT_NOMINAL_FILAMENT_DIA
  199. #endif
  200. #endif
  201. #endif
  202. };
  203. float volumetric_multiplier[EXTRUDERS] = {1.0
  204. #if EXTRUDERS > 1
  205. , 1.0
  206. #if EXTRUDERS > 2
  207. , 1.0
  208. #if EXTRUDERS > 3
  209. , 1.0
  210. #endif
  211. #endif
  212. #endif
  213. };
  214. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  215. float add_homing[3] = { 0, 0, 0 };
  216. #ifdef DELTA
  217. float endstop_adj[3] = { 0, 0, 0 };
  218. #endif
  219. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  220. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  221. bool axis_known_position[3] = { false, false, false };
  222. float zprobe_zoffset;
  223. // Extruder offset
  224. #if EXTRUDERS > 1
  225. #ifndef DUAL_X_CARRIAGE
  226. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  227. #else
  228. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  229. #endif
  230. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  231. #if defined(EXTRUDER_OFFSET_X)
  232. EXTRUDER_OFFSET_X
  233. #else
  234. 0
  235. #endif
  236. ,
  237. #if defined(EXTRUDER_OFFSET_Y)
  238. EXTRUDER_OFFSET_Y
  239. #else
  240. 0
  241. #endif
  242. };
  243. #endif
  244. uint8_t active_extruder = 0;
  245. int fanSpeed = 0;
  246. #ifdef SERVO_ENDSTOPS
  247. int servo_endstops[] = SERVO_ENDSTOPS;
  248. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  249. #endif
  250. #ifdef BARICUDA
  251. int ValvePressure = 0;
  252. int EtoPPressure = 0;
  253. #endif
  254. #ifdef FWRETRACT
  255. bool autoretract_enabled = false;
  256. bool retracted[EXTRUDERS] = { false
  257. #if EXTRUDERS > 1
  258. , false
  259. #if EXTRUDERS > 2
  260. , false
  261. #if EXTRUDERS > 3
  262. , false
  263. #endif
  264. #endif
  265. #endif
  266. };
  267. bool retracted_swap[EXTRUDERS] = { false
  268. #if EXTRUDERS > 1
  269. , false
  270. #if EXTRUDERS > 2
  271. , false
  272. #if EXTRUDERS > 3
  273. , false
  274. #endif
  275. #endif
  276. #endif
  277. };
  278. float retract_length = RETRACT_LENGTH;
  279. float retract_length_swap = RETRACT_LENGTH_SWAP;
  280. float retract_feedrate = RETRACT_FEEDRATE;
  281. float retract_zlift = RETRACT_ZLIFT;
  282. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  283. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  284. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  285. #endif // FWRETRACT
  286. #ifdef ULTIPANEL
  287. bool powersupply =
  288. #ifdef PS_DEFAULT_OFF
  289. false
  290. #else
  291. true
  292. #endif
  293. ;
  294. #endif
  295. #ifdef DELTA
  296. float delta[3] = { 0, 0, 0 };
  297. #define SIN_60 0.8660254037844386
  298. #define COS_60 0.5
  299. // these are the default values, can be overriden with M665
  300. float delta_radius = DELTA_RADIUS;
  301. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  302. float delta_tower1_y = -COS_60 * delta_radius;
  303. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  304. float delta_tower2_y = -COS_60 * delta_radius;
  305. float delta_tower3_x = 0; // back middle tower
  306. float delta_tower3_y = delta_radius;
  307. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  308. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  309. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  310. #endif
  311. #ifdef SCARA
  312. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  313. #endif
  314. bool cancel_heatup = false;
  315. #ifdef FILAMENT_SENSOR
  316. //Variables for Filament Sensor input
  317. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  318. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  319. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  320. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  321. int delay_index1=0; //index into ring buffer
  322. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  323. float delay_dist=0; //delay distance counter
  324. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  325. #endif
  326. const char errormagic[] PROGMEM = "Error:";
  327. const char echomagic[] PROGMEM = "echo:";
  328. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  329. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  330. #ifndef DELTA
  331. static float delta[3] = { 0, 0, 0 };
  332. #endif
  333. static float offset[3] = { 0, 0, 0 };
  334. static bool home_all_axis = true;
  335. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  336. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  337. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  338. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  339. static bool fromsd[BUFSIZE];
  340. static int bufindr = 0;
  341. static int bufindw = 0;
  342. static int buflen = 0;
  343. static char serial_char;
  344. static int serial_count = 0;
  345. static boolean comment_mode = false;
  346. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  347. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  348. // Inactivity shutdown
  349. static unsigned long previous_millis_cmd = 0;
  350. static unsigned long max_inactive_time = 0;
  351. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  352. unsigned long starttime = 0; ///< Print job start time
  353. unsigned long stoptime = 0; ///< Print job stop time
  354. static uint8_t tmp_extruder;
  355. bool Stopped = false;
  356. #if NUM_SERVOS > 0
  357. Servo servos[NUM_SERVOS];
  358. #endif
  359. bool CooldownNoWait = true;
  360. bool target_direction;
  361. #ifdef CHDK
  362. unsigned long chdkHigh = 0;
  363. boolean chdkActive = false;
  364. #endif
  365. //===========================================================================
  366. //=============================Routines======================================
  367. //===========================================================================
  368. void get_arc_coordinates();
  369. bool setTargetedHotend(int code);
  370. void serial_echopair_P(const char *s_P, float v)
  371. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  372. void serial_echopair_P(const char *s_P, double v)
  373. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  374. void serial_echopair_P(const char *s_P, unsigned long v)
  375. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  376. #ifdef SDSUPPORT
  377. #include "SdFatUtil.h"
  378. int freeMemory() { return SdFatUtil::FreeRam(); }
  379. #else
  380. extern "C" {
  381. extern unsigned int __bss_end;
  382. extern unsigned int __heap_start;
  383. extern void *__brkval;
  384. int freeMemory() {
  385. int free_memory;
  386. if ((int)__brkval == 0)
  387. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  388. else
  389. free_memory = ((int)&free_memory) - ((int)__brkval);
  390. return free_memory;
  391. }
  392. }
  393. #endif //!SDSUPPORT
  394. //adds an command to the main command buffer
  395. //thats really done in a non-safe way.
  396. //needs overworking someday
  397. void enquecommand(const char *cmd)
  398. {
  399. if(buflen < BUFSIZE)
  400. {
  401. //this is dangerous if a mixing of serial and this happens
  402. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  403. SERIAL_ECHO_START;
  404. SERIAL_ECHOPGM(MSG_Enqueing);
  405. SERIAL_ECHO(cmdbuffer[bufindw]);
  406. SERIAL_ECHOLNPGM("\"");
  407. bufindw= (bufindw + 1)%BUFSIZE;
  408. buflen += 1;
  409. }
  410. }
  411. void enquecommand_P(const char *cmd)
  412. {
  413. if(buflen < BUFSIZE)
  414. {
  415. //this is dangerous if a mixing of serial and this happens
  416. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  417. SERIAL_ECHO_START;
  418. SERIAL_ECHOPGM(MSG_Enqueing);
  419. SERIAL_ECHO(cmdbuffer[bufindw]);
  420. SERIAL_ECHOLNPGM("\"");
  421. bufindw= (bufindw + 1)%BUFSIZE;
  422. buflen += 1;
  423. }
  424. }
  425. void setup_killpin()
  426. {
  427. #if defined(KILL_PIN) && KILL_PIN > -1
  428. SET_INPUT(KILL_PIN);
  429. WRITE(KILL_PIN,HIGH);
  430. #endif
  431. }
  432. // Set home pin
  433. void setup_homepin(void)
  434. {
  435. #if defined(HOME_PIN) && HOME_PIN > -1
  436. SET_INPUT(HOME_PIN);
  437. WRITE(HOME_PIN,HIGH);
  438. #endif
  439. }
  440. void setup_photpin()
  441. {
  442. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  443. SET_OUTPUT(PHOTOGRAPH_PIN);
  444. WRITE(PHOTOGRAPH_PIN, LOW);
  445. #endif
  446. }
  447. void setup_powerhold()
  448. {
  449. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  450. SET_OUTPUT(SUICIDE_PIN);
  451. WRITE(SUICIDE_PIN, HIGH);
  452. #endif
  453. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  454. SET_OUTPUT(PS_ON_PIN);
  455. #if defined(PS_DEFAULT_OFF)
  456. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  457. #else
  458. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  459. #endif
  460. #endif
  461. }
  462. void suicide()
  463. {
  464. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  465. SET_OUTPUT(SUICIDE_PIN);
  466. WRITE(SUICIDE_PIN, LOW);
  467. #endif
  468. }
  469. void servo_init()
  470. {
  471. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  472. servos[0].attach(SERVO0_PIN);
  473. #endif
  474. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  475. servos[1].attach(SERVO1_PIN);
  476. #endif
  477. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  478. servos[2].attach(SERVO2_PIN);
  479. #endif
  480. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  481. servos[3].attach(SERVO3_PIN);
  482. #endif
  483. #if (NUM_SERVOS >= 5)
  484. #error "TODO: enter initalisation code for more servos"
  485. #endif
  486. // Set position of Servo Endstops that are defined
  487. #ifdef SERVO_ENDSTOPS
  488. for(int8_t i = 0; i < 3; i++)
  489. {
  490. if(servo_endstops[i] > -1) {
  491. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  492. }
  493. }
  494. #endif
  495. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  496. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  497. servos[servo_endstops[Z_AXIS]].detach();
  498. #endif
  499. }
  500. void setup()
  501. {
  502. setup_killpin();
  503. setup_powerhold();
  504. MYSERIAL.begin(BAUDRATE);
  505. SERIAL_PROTOCOLLNPGM("start");
  506. SERIAL_ECHO_START;
  507. // Check startup - does nothing if bootloader sets MCUSR to 0
  508. byte mcu = MCUSR;
  509. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  510. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  511. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  512. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  513. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  514. MCUSR=0;
  515. SERIAL_ECHOPGM(MSG_MARLIN);
  516. SERIAL_ECHOLNPGM(STRING_VERSION);
  517. #ifdef STRING_VERSION_CONFIG_H
  518. #ifdef STRING_CONFIG_H_AUTHOR
  519. SERIAL_ECHO_START;
  520. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  521. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  522. SERIAL_ECHOPGM(MSG_AUTHOR);
  523. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  524. SERIAL_ECHOPGM("Compiled: ");
  525. SERIAL_ECHOLNPGM(__DATE__);
  526. #endif // STRING_CONFIG_H_AUTHOR
  527. #endif // STRING_VERSION_CONFIG_H
  528. SERIAL_ECHO_START;
  529. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  530. SERIAL_ECHO(freeMemory());
  531. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  532. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  533. for(int8_t i = 0; i < BUFSIZE; i++)
  534. {
  535. fromsd[i] = false;
  536. }
  537. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  538. Config_RetrieveSettings();
  539. tp_init(); // Initialize temperature loop
  540. plan_init(); // Initialize planner;
  541. watchdog_init();
  542. st_init(); // Initialize stepper, this enables interrupts!
  543. setup_photpin();
  544. servo_init();
  545. lcd_init();
  546. _delay_ms(1000); // wait 1sec to display the splash screen
  547. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  548. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  549. #endif
  550. #ifdef DIGIPOT_I2C
  551. digipot_i2c_init();
  552. #endif
  553. #ifdef Z_PROBE_SLED
  554. pinMode(SERVO0_PIN, OUTPUT);
  555. digitalWrite(SERVO0_PIN, LOW); // turn it off
  556. #endif // Z_PROBE_SLED
  557. setup_homepin();
  558. }
  559. void loop()
  560. {
  561. if(buflen < (BUFSIZE-1))
  562. get_command();
  563. #ifdef SDSUPPORT
  564. card.checkautostart(false);
  565. #endif
  566. if(buflen)
  567. {
  568. #ifdef SDSUPPORT
  569. if(card.saving)
  570. {
  571. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  572. {
  573. card.write_command(cmdbuffer[bufindr]);
  574. if(card.logging)
  575. {
  576. process_commands();
  577. }
  578. else
  579. {
  580. SERIAL_PROTOCOLLNPGM(MSG_OK);
  581. }
  582. }
  583. else
  584. {
  585. card.closefile();
  586. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  587. }
  588. }
  589. else
  590. {
  591. process_commands();
  592. }
  593. #else
  594. process_commands();
  595. #endif //SDSUPPORT
  596. buflen = (buflen-1);
  597. bufindr = (bufindr + 1)%BUFSIZE;
  598. }
  599. //check heater every n milliseconds
  600. manage_heater();
  601. manage_inactivity();
  602. checkHitEndstops();
  603. lcd_update();
  604. }
  605. void get_command()
  606. {
  607. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  608. serial_char = MYSERIAL.read();
  609. if(serial_char == '\n' ||
  610. serial_char == '\r' ||
  611. (serial_char == ':' && comment_mode == false) ||
  612. serial_count >= (MAX_CMD_SIZE - 1) )
  613. {
  614. if(!serial_count) { //if empty line
  615. comment_mode = false; //for new command
  616. return;
  617. }
  618. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  619. if(!comment_mode){
  620. comment_mode = false; //for new command
  621. fromsd[bufindw] = false;
  622. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  623. {
  624. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  625. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  626. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  627. SERIAL_ERROR_START;
  628. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  629. SERIAL_ERRORLN(gcode_LastN);
  630. //Serial.println(gcode_N);
  631. FlushSerialRequestResend();
  632. serial_count = 0;
  633. return;
  634. }
  635. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  636. {
  637. byte checksum = 0;
  638. byte count = 0;
  639. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  640. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  641. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  642. SERIAL_ERROR_START;
  643. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  644. SERIAL_ERRORLN(gcode_LastN);
  645. FlushSerialRequestResend();
  646. serial_count = 0;
  647. return;
  648. }
  649. //if no errors, continue parsing
  650. }
  651. else
  652. {
  653. SERIAL_ERROR_START;
  654. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  655. SERIAL_ERRORLN(gcode_LastN);
  656. FlushSerialRequestResend();
  657. serial_count = 0;
  658. return;
  659. }
  660. gcode_LastN = gcode_N;
  661. //if no errors, continue parsing
  662. }
  663. else // if we don't receive 'N' but still see '*'
  664. {
  665. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  666. {
  667. SERIAL_ERROR_START;
  668. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  669. SERIAL_ERRORLN(gcode_LastN);
  670. serial_count = 0;
  671. return;
  672. }
  673. }
  674. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  675. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  676. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  677. case 0:
  678. case 1:
  679. case 2:
  680. case 3:
  681. if (Stopped == true) {
  682. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  683. LCD_MESSAGEPGM(MSG_STOPPED);
  684. }
  685. break;
  686. default:
  687. break;
  688. }
  689. }
  690. //If command was e-stop process now
  691. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  692. kill();
  693. bufindw = (bufindw + 1)%BUFSIZE;
  694. buflen += 1;
  695. }
  696. serial_count = 0; //clear buffer
  697. }
  698. else
  699. {
  700. if(serial_char == ';') comment_mode = true;
  701. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  702. }
  703. }
  704. #ifdef SDSUPPORT
  705. if(!card.sdprinting || serial_count!=0){
  706. return;
  707. }
  708. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  709. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  710. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  711. static bool stop_buffering=false;
  712. if(buflen==0) stop_buffering=false;
  713. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  714. int16_t n=card.get();
  715. serial_char = (char)n;
  716. if(serial_char == '\n' ||
  717. serial_char == '\r' ||
  718. (serial_char == '#' && comment_mode == false) ||
  719. (serial_char == ':' && comment_mode == false) ||
  720. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  721. {
  722. if(card.eof()){
  723. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  724. stoptime=millis();
  725. char time[30];
  726. unsigned long t=(stoptime-starttime)/1000;
  727. int hours, minutes;
  728. minutes=(t/60)%60;
  729. hours=t/60/60;
  730. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  731. SERIAL_ECHO_START;
  732. SERIAL_ECHOLN(time);
  733. lcd_setstatus(time);
  734. card.printingHasFinished();
  735. card.checkautostart(true);
  736. }
  737. if(serial_char=='#')
  738. stop_buffering=true;
  739. if(!serial_count)
  740. {
  741. comment_mode = false; //for new command
  742. return; //if empty line
  743. }
  744. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  745. // if(!comment_mode){
  746. fromsd[bufindw] = true;
  747. buflen += 1;
  748. bufindw = (bufindw + 1)%BUFSIZE;
  749. // }
  750. comment_mode = false; //for new command
  751. serial_count = 0; //clear buffer
  752. }
  753. else
  754. {
  755. if(serial_char == ';') comment_mode = true;
  756. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  757. }
  758. }
  759. #endif //SDSUPPORT
  760. }
  761. float code_value()
  762. {
  763. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  764. }
  765. long code_value_long()
  766. {
  767. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  768. }
  769. bool code_seen(char code)
  770. {
  771. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  772. return (strchr_pointer != NULL); //Return True if a character was found
  773. }
  774. #define DEFINE_PGM_READ_ANY(type, reader) \
  775. static inline type pgm_read_any(const type *p) \
  776. { return pgm_read_##reader##_near(p); }
  777. DEFINE_PGM_READ_ANY(float, float);
  778. DEFINE_PGM_READ_ANY(signed char, byte);
  779. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  780. static const PROGMEM type array##_P[3] = \
  781. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  782. static inline type array(int axis) \
  783. { return pgm_read_any(&array##_P[axis]); }
  784. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  785. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  786. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  787. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  788. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  789. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  790. #ifdef DUAL_X_CARRIAGE
  791. #if EXTRUDERS == 1 || defined(COREXY) \
  792. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  793. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  794. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  795. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  796. #endif
  797. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  798. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  799. #endif
  800. #define DXC_FULL_CONTROL_MODE 0
  801. #define DXC_AUTO_PARK_MODE 1
  802. #define DXC_DUPLICATION_MODE 2
  803. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  804. static float x_home_pos(int extruder) {
  805. if (extruder == 0)
  806. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  807. else
  808. // In dual carriage mode the extruder offset provides an override of the
  809. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  810. // This allow soft recalibration of the second extruder offset position without firmware reflash
  811. // (through the M218 command).
  812. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  813. }
  814. static int x_home_dir(int extruder) {
  815. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  816. }
  817. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  818. static bool active_extruder_parked = false; // used in mode 1 & 2
  819. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  820. static unsigned long delayed_move_time = 0; // used in mode 1
  821. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  822. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  823. bool extruder_duplication_enabled = false; // used in mode 2
  824. #endif //DUAL_X_CARRIAGE
  825. static void axis_is_at_home(int axis) {
  826. #ifdef DUAL_X_CARRIAGE
  827. if (axis == X_AXIS) {
  828. if (active_extruder != 0) {
  829. current_position[X_AXIS] = x_home_pos(active_extruder);
  830. min_pos[X_AXIS] = X2_MIN_POS;
  831. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  832. return;
  833. }
  834. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  835. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  836. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  837. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  838. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  839. return;
  840. }
  841. }
  842. #endif
  843. #ifdef SCARA
  844. float homeposition[3];
  845. char i;
  846. if (axis < 2)
  847. {
  848. for (i=0; i<3; i++)
  849. {
  850. homeposition[i] = base_home_pos(i);
  851. }
  852. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  853. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  854. // Works out real Homeposition angles using inverse kinematics,
  855. // and calculates homing offset using forward kinematics
  856. calculate_delta(homeposition);
  857. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  858. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  859. for (i=0; i<2; i++)
  860. {
  861. delta[i] -= add_homing[i];
  862. }
  863. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  864. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  865. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  866. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  867. calculate_SCARA_forward_Transform(delta);
  868. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  869. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  870. current_position[axis] = delta[axis];
  871. // SCARA home positions are based on configuration since the actual limits are determined by the
  872. // inverse kinematic transform.
  873. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  874. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  875. }
  876. else
  877. {
  878. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  879. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  880. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  881. }
  882. #else
  883. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  884. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  885. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  886. #endif
  887. }
  888. #ifdef ENABLE_AUTO_BED_LEVELING
  889. #ifdef AUTO_BED_LEVELING_GRID
  890. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  891. {
  892. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  893. planeNormal.debug("planeNormal");
  894. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  895. //bedLevel.debug("bedLevel");
  896. //plan_bed_level_matrix.debug("bed level before");
  897. //vector_3 uncorrected_position = plan_get_position_mm();
  898. //uncorrected_position.debug("position before");
  899. vector_3 corrected_position = plan_get_position();
  900. // corrected_position.debug("position after");
  901. current_position[X_AXIS] = corrected_position.x;
  902. current_position[Y_AXIS] = corrected_position.y;
  903. current_position[Z_AXIS] = corrected_position.z;
  904. // put the bed at 0 so we don't go below it.
  905. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  906. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  907. }
  908. #else // not AUTO_BED_LEVELING_GRID
  909. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  910. plan_bed_level_matrix.set_to_identity();
  911. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  912. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  913. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  914. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  915. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  916. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  917. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  918. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  919. vector_3 corrected_position = plan_get_position();
  920. current_position[X_AXIS] = corrected_position.x;
  921. current_position[Y_AXIS] = corrected_position.y;
  922. current_position[Z_AXIS] = corrected_position.z;
  923. // put the bed at 0 so we don't go below it.
  924. current_position[Z_AXIS] = zprobe_zoffset;
  925. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  926. }
  927. #endif // AUTO_BED_LEVELING_GRID
  928. static void run_z_probe() {
  929. plan_bed_level_matrix.set_to_identity();
  930. feedrate = homing_feedrate[Z_AXIS];
  931. // move down until you find the bed
  932. float zPosition = -10;
  933. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  934. st_synchronize();
  935. // we have to let the planner know where we are right now as it is not where we said to go.
  936. zPosition = st_get_position_mm(Z_AXIS);
  937. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  938. // move up the retract distance
  939. zPosition += home_retract_mm(Z_AXIS);
  940. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  941. st_synchronize();
  942. // move back down slowly to find bed
  943. feedrate = homing_feedrate[Z_AXIS]/4;
  944. zPosition -= home_retract_mm(Z_AXIS) * 2;
  945. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  946. st_synchronize();
  947. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  948. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  949. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  950. }
  951. static void do_blocking_move_to(float x, float y, float z) {
  952. float oldFeedRate = feedrate;
  953. feedrate = homing_feedrate[Z_AXIS];
  954. current_position[Z_AXIS] = z;
  955. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  956. st_synchronize();
  957. feedrate = XY_TRAVEL_SPEED;
  958. current_position[X_AXIS] = x;
  959. current_position[Y_AXIS] = y;
  960. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  961. st_synchronize();
  962. feedrate = oldFeedRate;
  963. }
  964. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  965. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  966. }
  967. static void setup_for_endstop_move() {
  968. saved_feedrate = feedrate;
  969. saved_feedmultiply = feedmultiply;
  970. feedmultiply = 100;
  971. previous_millis_cmd = millis();
  972. enable_endstops(true);
  973. }
  974. static void clean_up_after_endstop_move() {
  975. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  976. enable_endstops(false);
  977. #endif
  978. feedrate = saved_feedrate;
  979. feedmultiply = saved_feedmultiply;
  980. previous_millis_cmd = millis();
  981. }
  982. static void engage_z_probe() {
  983. // Engage Z Servo endstop if enabled
  984. #ifdef SERVO_ENDSTOPS
  985. if (servo_endstops[Z_AXIS] > -1) {
  986. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  987. servos[servo_endstops[Z_AXIS]].attach(0);
  988. #endif
  989. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  990. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  991. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  992. servos[servo_endstops[Z_AXIS]].detach();
  993. #endif
  994. }
  995. #endif
  996. }
  997. static void retract_z_probe() {
  998. // Retract Z Servo endstop if enabled
  999. #ifdef SERVO_ENDSTOPS
  1000. if (servo_endstops[Z_AXIS] > -1) {
  1001. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1002. servos[servo_endstops[Z_AXIS]].attach(0);
  1003. #endif
  1004. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1005. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1006. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1007. servos[servo_endstops[Z_AXIS]].detach();
  1008. #endif
  1009. }
  1010. #endif
  1011. }
  1012. /// Probe bed height at position (x,y), returns the measured z value
  1013. static float probe_pt(float x, float y, float z_before, int retract_action=0) {
  1014. // move to right place
  1015. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1016. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1017. #ifndef Z_PROBE_SLED
  1018. if ((retract_action==0) || (retract_action==1))
  1019. engage_z_probe(); // Engage Z Servo endstop if available
  1020. #endif // Z_PROBE_SLED
  1021. run_z_probe();
  1022. float measured_z = current_position[Z_AXIS];
  1023. #ifndef Z_PROBE_SLED
  1024. if ((retract_action==0) || (retract_action==3))
  1025. retract_z_probe();
  1026. #endif // Z_PROBE_SLED
  1027. SERIAL_PROTOCOLPGM(MSG_BED);
  1028. SERIAL_PROTOCOLPGM(" x: ");
  1029. SERIAL_PROTOCOL(x);
  1030. SERIAL_PROTOCOLPGM(" y: ");
  1031. SERIAL_PROTOCOL(y);
  1032. SERIAL_PROTOCOLPGM(" z: ");
  1033. SERIAL_PROTOCOL(measured_z);
  1034. SERIAL_PROTOCOLPGM("\n");
  1035. return measured_z;
  1036. }
  1037. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1038. static void homeaxis(int axis) {
  1039. #define HOMEAXIS_DO(LETTER) \
  1040. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1041. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1042. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1043. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1044. 0) {
  1045. int axis_home_dir = home_dir(axis);
  1046. #ifdef DUAL_X_CARRIAGE
  1047. if (axis == X_AXIS)
  1048. axis_home_dir = x_home_dir(active_extruder);
  1049. #endif
  1050. current_position[axis] = 0;
  1051. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1052. #ifndef Z_PROBE_SLED
  1053. // Engage Servo endstop if enabled
  1054. #ifdef SERVO_ENDSTOPS
  1055. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1056. if (axis==Z_AXIS) {
  1057. engage_z_probe();
  1058. }
  1059. else
  1060. #endif
  1061. if (servo_endstops[axis] > -1) {
  1062. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1063. }
  1064. #endif
  1065. #endif // Z_PROBE_SLED
  1066. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1067. feedrate = homing_feedrate[axis];
  1068. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1069. st_synchronize();
  1070. current_position[axis] = 0;
  1071. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1072. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1073. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1074. st_synchronize();
  1075. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1076. #ifdef DELTA
  1077. feedrate = homing_feedrate[axis]/10;
  1078. #else
  1079. feedrate = homing_feedrate[axis]/2 ;
  1080. #endif
  1081. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1082. st_synchronize();
  1083. #ifdef DELTA
  1084. // retrace by the amount specified in endstop_adj
  1085. if (endstop_adj[axis] * axis_home_dir < 0) {
  1086. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1087. destination[axis] = endstop_adj[axis];
  1088. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1089. st_synchronize();
  1090. }
  1091. #endif
  1092. axis_is_at_home(axis);
  1093. destination[axis] = current_position[axis];
  1094. feedrate = 0.0;
  1095. endstops_hit_on_purpose();
  1096. axis_known_position[axis] = true;
  1097. // Retract Servo endstop if enabled
  1098. #ifdef SERVO_ENDSTOPS
  1099. if (servo_endstops[axis] > -1) {
  1100. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1101. }
  1102. #endif
  1103. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1104. #ifndef Z_PROBE_SLED
  1105. if (axis==Z_AXIS) retract_z_probe();
  1106. #endif
  1107. #endif
  1108. }
  1109. }
  1110. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1111. void refresh_cmd_timeout(void)
  1112. {
  1113. previous_millis_cmd = millis();
  1114. }
  1115. #ifdef FWRETRACT
  1116. void retract(bool retracting, bool swapretract = false) {
  1117. if(retracting && !retracted[active_extruder]) {
  1118. destination[X_AXIS]=current_position[X_AXIS];
  1119. destination[Y_AXIS]=current_position[Y_AXIS];
  1120. destination[Z_AXIS]=current_position[Z_AXIS];
  1121. destination[E_AXIS]=current_position[E_AXIS];
  1122. if (swapretract) {
  1123. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1124. } else {
  1125. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1126. }
  1127. plan_set_e_position(current_position[E_AXIS]);
  1128. float oldFeedrate = feedrate;
  1129. feedrate=retract_feedrate*60;
  1130. retracted[active_extruder]=true;
  1131. prepare_move();
  1132. if(retract_zlift > 0.01) {
  1133. current_position[Z_AXIS]-=retract_zlift;
  1134. #ifdef DELTA
  1135. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1136. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1137. #else
  1138. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1139. #endif
  1140. prepare_move();
  1141. }
  1142. feedrate = oldFeedrate;
  1143. } else if(!retracting && retracted[active_extruder]) {
  1144. destination[X_AXIS]=current_position[X_AXIS];
  1145. destination[Y_AXIS]=current_position[Y_AXIS];
  1146. destination[Z_AXIS]=current_position[Z_AXIS];
  1147. destination[E_AXIS]=current_position[E_AXIS];
  1148. if(retract_zlift > 0.01) {
  1149. current_position[Z_AXIS]+=retract_zlift;
  1150. #ifdef DELTA
  1151. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1152. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1153. #else
  1154. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1155. #endif
  1156. //prepare_move();
  1157. }
  1158. if (swapretract) {
  1159. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1160. } else {
  1161. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1162. }
  1163. plan_set_e_position(current_position[E_AXIS]);
  1164. float oldFeedrate = feedrate;
  1165. feedrate=retract_recover_feedrate*60;
  1166. retracted[active_extruder]=false;
  1167. prepare_move();
  1168. feedrate = oldFeedrate;
  1169. }
  1170. } //retract
  1171. #endif //FWRETRACT
  1172. #ifdef Z_PROBE_SLED
  1173. //
  1174. // Method to dock/undock a sled designed by Charles Bell.
  1175. //
  1176. // dock[in] If true, move to MAX_X and engage the electromagnet
  1177. // offset[in] The additional distance to move to adjust docking location
  1178. //
  1179. static void dock_sled(bool dock, int offset=0) {
  1180. int z_loc;
  1181. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1182. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1183. SERIAL_ECHO_START;
  1184. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1185. return;
  1186. }
  1187. if (dock) {
  1188. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1189. current_position[Y_AXIS],
  1190. current_position[Z_AXIS]);
  1191. // turn off magnet
  1192. digitalWrite(SERVO0_PIN, LOW);
  1193. } else {
  1194. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1195. z_loc = Z_RAISE_BEFORE_PROBING;
  1196. else
  1197. z_loc = current_position[Z_AXIS];
  1198. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1199. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1200. // turn on magnet
  1201. digitalWrite(SERVO0_PIN, HIGH);
  1202. }
  1203. }
  1204. #endif
  1205. void process_commands()
  1206. {
  1207. unsigned long codenum; //throw away variable
  1208. char *starpos = NULL;
  1209. #ifdef ENABLE_AUTO_BED_LEVELING
  1210. float x_tmp, y_tmp, z_tmp, real_z;
  1211. #endif
  1212. if(code_seen('G'))
  1213. {
  1214. switch((int)code_value())
  1215. {
  1216. case 0: // G0 -> G1
  1217. case 1: // G1
  1218. if(Stopped == false) {
  1219. get_coordinates(); // For X Y Z E F
  1220. #ifdef FWRETRACT
  1221. if(autoretract_enabled)
  1222. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1223. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1224. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1225. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1226. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1227. retract(!retracted);
  1228. return;
  1229. }
  1230. }
  1231. #endif //FWRETRACT
  1232. prepare_move();
  1233. //ClearToSend();
  1234. }
  1235. break;
  1236. #ifndef SCARA //disable arc support
  1237. case 2: // G2 - CW ARC
  1238. if(Stopped == false) {
  1239. get_arc_coordinates();
  1240. prepare_arc_move(true);
  1241. }
  1242. break;
  1243. case 3: // G3 - CCW ARC
  1244. if(Stopped == false) {
  1245. get_arc_coordinates();
  1246. prepare_arc_move(false);
  1247. }
  1248. break;
  1249. #endif
  1250. case 4: // G4 dwell
  1251. LCD_MESSAGEPGM(MSG_DWELL);
  1252. codenum = 0;
  1253. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1254. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1255. st_synchronize();
  1256. codenum += millis(); // keep track of when we started waiting
  1257. previous_millis_cmd = millis();
  1258. while(millis() < codenum) {
  1259. manage_heater();
  1260. manage_inactivity();
  1261. lcd_update();
  1262. }
  1263. break;
  1264. #ifdef FWRETRACT
  1265. case 10: // G10 retract
  1266. #if EXTRUDERS > 1
  1267. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1268. retract(true,retracted_swap[active_extruder]);
  1269. #else
  1270. retract(true);
  1271. #endif
  1272. break;
  1273. case 11: // G11 retract_recover
  1274. #if EXTRUDERS > 1
  1275. retract(false,retracted_swap[active_extruder]);
  1276. #else
  1277. retract(false);
  1278. #endif
  1279. break;
  1280. #endif //FWRETRACT
  1281. case 28: //G28 Home all Axis one at a time
  1282. #ifdef ENABLE_AUTO_BED_LEVELING
  1283. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1284. #endif //ENABLE_AUTO_BED_LEVELING
  1285. saved_feedrate = feedrate;
  1286. saved_feedmultiply = feedmultiply;
  1287. feedmultiply = 100;
  1288. previous_millis_cmd = millis();
  1289. enable_endstops(true);
  1290. for(int8_t i=0; i < NUM_AXIS; i++) {
  1291. destination[i] = current_position[i];
  1292. }
  1293. feedrate = 0.0;
  1294. #ifdef DELTA
  1295. // A delta can only safely home all axis at the same time
  1296. // all axis have to home at the same time
  1297. // Move all carriages up together until the first endstop is hit.
  1298. current_position[X_AXIS] = 0;
  1299. current_position[Y_AXIS] = 0;
  1300. current_position[Z_AXIS] = 0;
  1301. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1302. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1303. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1304. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1305. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1306. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1307. st_synchronize();
  1308. endstops_hit_on_purpose();
  1309. current_position[X_AXIS] = destination[X_AXIS];
  1310. current_position[Y_AXIS] = destination[Y_AXIS];
  1311. current_position[Z_AXIS] = destination[Z_AXIS];
  1312. // take care of back off and rehome now we are all at the top
  1313. HOMEAXIS(X);
  1314. HOMEAXIS(Y);
  1315. HOMEAXIS(Z);
  1316. calculate_delta(current_position);
  1317. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1318. #else // NOT DELTA
  1319. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1320. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1321. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1322. HOMEAXIS(Z);
  1323. }
  1324. #endif
  1325. #ifdef QUICK_HOME
  1326. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1327. {
  1328. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1329. #ifndef DUAL_X_CARRIAGE
  1330. int x_axis_home_dir = home_dir(X_AXIS);
  1331. #else
  1332. int x_axis_home_dir = x_home_dir(active_extruder);
  1333. extruder_duplication_enabled = false;
  1334. #endif
  1335. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1336. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1337. feedrate = homing_feedrate[X_AXIS];
  1338. if(homing_feedrate[Y_AXIS]<feedrate)
  1339. feedrate = homing_feedrate[Y_AXIS];
  1340. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1341. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1342. } else {
  1343. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1344. }
  1345. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1346. st_synchronize();
  1347. axis_is_at_home(X_AXIS);
  1348. axis_is_at_home(Y_AXIS);
  1349. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1350. destination[X_AXIS] = current_position[X_AXIS];
  1351. destination[Y_AXIS] = current_position[Y_AXIS];
  1352. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1353. feedrate = 0.0;
  1354. st_synchronize();
  1355. endstops_hit_on_purpose();
  1356. current_position[X_AXIS] = destination[X_AXIS];
  1357. current_position[Y_AXIS] = destination[Y_AXIS];
  1358. #ifndef SCARA
  1359. current_position[Z_AXIS] = destination[Z_AXIS];
  1360. #endif
  1361. }
  1362. #endif
  1363. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1364. {
  1365. #ifdef DUAL_X_CARRIAGE
  1366. int tmp_extruder = active_extruder;
  1367. extruder_duplication_enabled = false;
  1368. active_extruder = !active_extruder;
  1369. HOMEAXIS(X);
  1370. inactive_extruder_x_pos = current_position[X_AXIS];
  1371. active_extruder = tmp_extruder;
  1372. HOMEAXIS(X);
  1373. // reset state used by the different modes
  1374. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1375. delayed_move_time = 0;
  1376. active_extruder_parked = true;
  1377. #else
  1378. HOMEAXIS(X);
  1379. #endif
  1380. }
  1381. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1382. HOMEAXIS(Y);
  1383. }
  1384. if(code_seen(axis_codes[X_AXIS]))
  1385. {
  1386. if(code_value_long() != 0) {
  1387. #ifdef SCARA
  1388. current_position[X_AXIS]=code_value();
  1389. #else
  1390. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1391. #endif
  1392. }
  1393. }
  1394. if(code_seen(axis_codes[Y_AXIS])) {
  1395. if(code_value_long() != 0) {
  1396. #ifdef SCARA
  1397. current_position[Y_AXIS]=code_value();
  1398. #else
  1399. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1400. #endif
  1401. }
  1402. }
  1403. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1404. #ifndef Z_SAFE_HOMING
  1405. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1406. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1407. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1408. feedrate = max_feedrate[Z_AXIS];
  1409. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1410. st_synchronize();
  1411. #endif
  1412. HOMEAXIS(Z);
  1413. }
  1414. #else // Z Safe mode activated.
  1415. if(home_all_axis) {
  1416. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1417. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1418. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1419. feedrate = XY_TRAVEL_SPEED/60;
  1420. current_position[Z_AXIS] = 0;
  1421. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1422. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1423. st_synchronize();
  1424. current_position[X_AXIS] = destination[X_AXIS];
  1425. current_position[Y_AXIS] = destination[Y_AXIS];
  1426. HOMEAXIS(Z);
  1427. }
  1428. // Let's see if X and Y are homed and probe is inside bed area.
  1429. if(code_seen(axis_codes[Z_AXIS])) {
  1430. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1431. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1432. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1433. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1434. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1435. current_position[Z_AXIS] = 0;
  1436. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1437. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1438. feedrate = max_feedrate[Z_AXIS];
  1439. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1440. st_synchronize();
  1441. HOMEAXIS(Z);
  1442. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1443. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1444. SERIAL_ECHO_START;
  1445. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1446. } else {
  1447. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1448. SERIAL_ECHO_START;
  1449. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1450. }
  1451. }
  1452. #endif
  1453. #endif
  1454. if(code_seen(axis_codes[Z_AXIS])) {
  1455. if(code_value_long() != 0) {
  1456. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1457. }
  1458. }
  1459. #ifdef ENABLE_AUTO_BED_LEVELING
  1460. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1461. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1462. }
  1463. #endif
  1464. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1465. #endif // else DELTA
  1466. #ifdef SCARA
  1467. calculate_delta(current_position);
  1468. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1469. #endif // SCARA
  1470. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1471. enable_endstops(false);
  1472. #endif
  1473. feedrate = saved_feedrate;
  1474. feedmultiply = saved_feedmultiply;
  1475. previous_millis_cmd = millis();
  1476. endstops_hit_on_purpose();
  1477. break;
  1478. #ifdef ENABLE_AUTO_BED_LEVELING
  1479. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1480. {
  1481. #if Z_MIN_PIN == -1
  1482. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1483. #endif
  1484. // Prevent user from running a G29 without first homing in X and Y
  1485. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1486. {
  1487. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1488. SERIAL_ECHO_START;
  1489. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1490. break; // abort G29, since we don't know where we are
  1491. }
  1492. #ifdef Z_PROBE_SLED
  1493. dock_sled(false);
  1494. #endif // Z_PROBE_SLED
  1495. st_synchronize();
  1496. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1497. //vector_3 corrected_position = plan_get_position_mm();
  1498. //corrected_position.debug("position before G29");
  1499. plan_bed_level_matrix.set_to_identity();
  1500. vector_3 uncorrected_position = plan_get_position();
  1501. //uncorrected_position.debug("position durring G29");
  1502. current_position[X_AXIS] = uncorrected_position.x;
  1503. current_position[Y_AXIS] = uncorrected_position.y;
  1504. current_position[Z_AXIS] = uncorrected_position.z;
  1505. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1506. setup_for_endstop_move();
  1507. feedrate = homing_feedrate[Z_AXIS];
  1508. #ifdef AUTO_BED_LEVELING_GRID
  1509. // probe at the points of a lattice grid
  1510. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1511. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1512. // solve the plane equation ax + by + d = z
  1513. // A is the matrix with rows [x y 1] for all the probed points
  1514. // B is the vector of the Z positions
  1515. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1516. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1517. // "A" matrix of the linear system of equations
  1518. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1519. // "B" vector of Z points
  1520. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1521. int probePointCounter = 0;
  1522. bool zig = true;
  1523. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1524. {
  1525. int xProbe, xInc;
  1526. if (zig)
  1527. {
  1528. xProbe = LEFT_PROBE_BED_POSITION;
  1529. //xEnd = RIGHT_PROBE_BED_POSITION;
  1530. xInc = xGridSpacing;
  1531. zig = false;
  1532. } else // zag
  1533. {
  1534. xProbe = RIGHT_PROBE_BED_POSITION;
  1535. //xEnd = LEFT_PROBE_BED_POSITION;
  1536. xInc = -xGridSpacing;
  1537. zig = true;
  1538. }
  1539. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1540. {
  1541. float z_before;
  1542. if (probePointCounter == 0)
  1543. {
  1544. // raise before probing
  1545. z_before = Z_RAISE_BEFORE_PROBING;
  1546. } else
  1547. {
  1548. // raise extruder
  1549. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1550. }
  1551. float measured_z;
  1552. //Enhanced G29 - Do not retract servo between probes
  1553. if (code_seen('E') || code_seen('e') )
  1554. {
  1555. if ((yProbe==FRONT_PROBE_BED_POSITION) && (xCount==0))
  1556. {
  1557. measured_z = probe_pt(xProbe, yProbe, z_before,1);
  1558. } else if ((yProbe==FRONT_PROBE_BED_POSITION + (yGridSpacing * (AUTO_BED_LEVELING_GRID_POINTS-1))) && (xCount == AUTO_BED_LEVELING_GRID_POINTS-1))
  1559. {
  1560. measured_z = probe_pt(xProbe, yProbe, z_before,3);
  1561. } else {
  1562. measured_z = probe_pt(xProbe, yProbe, z_before,2);
  1563. }
  1564. } else {
  1565. measured_z = probe_pt(xProbe, yProbe, z_before);
  1566. }
  1567. eqnBVector[probePointCounter] = measured_z;
  1568. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1569. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1570. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1571. probePointCounter++;
  1572. xProbe += xInc;
  1573. }
  1574. }
  1575. clean_up_after_endstop_move();
  1576. // solve lsq problem
  1577. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1578. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1579. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1580. SERIAL_PROTOCOLPGM(" b: ");
  1581. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1582. SERIAL_PROTOCOLPGM(" d: ");
  1583. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1584. set_bed_level_equation_lsq(plane_equation_coefficients);
  1585. free(plane_equation_coefficients);
  1586. #else // AUTO_BED_LEVELING_GRID not defined
  1587. // Probe at 3 arbitrary points
  1588. // Enhanced G29
  1589. float z_at_pt_1,z_at_pt_2,z_at_pt_3;
  1590. if (code_seen('E') || code_seen('e') )
  1591. {
  1592. // probe 1
  1593. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING,1);
  1594. // probe 2
  1595. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,2);
  1596. // probe 3
  1597. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,3);
  1598. }
  1599. else
  1600. {
  1601. // probe 1
  1602. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1603. // probe 2
  1604. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1605. // probe 3
  1606. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1607. }
  1608. clean_up_after_endstop_move();
  1609. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1610. #endif // AUTO_BED_LEVELING_GRID
  1611. st_synchronize();
  1612. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1613. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1614. // When the bed is uneven, this height must be corrected.
  1615. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1616. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1617. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1618. z_tmp = current_position[Z_AXIS];
  1619. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1620. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1621. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1622. #ifdef Z_PROBE_SLED
  1623. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1624. #endif // Z_PROBE_SLED
  1625. }
  1626. break;
  1627. #ifndef Z_PROBE_SLED
  1628. case 30: // G30 Single Z Probe
  1629. {
  1630. engage_z_probe(); // Engage Z Servo endstop if available
  1631. st_synchronize();
  1632. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1633. setup_for_endstop_move();
  1634. feedrate = homing_feedrate[Z_AXIS];
  1635. run_z_probe();
  1636. SERIAL_PROTOCOLPGM(MSG_BED);
  1637. SERIAL_PROTOCOLPGM(" X: ");
  1638. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1639. SERIAL_PROTOCOLPGM(" Y: ");
  1640. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1641. SERIAL_PROTOCOLPGM(" Z: ");
  1642. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1643. SERIAL_PROTOCOLPGM("\n");
  1644. clean_up_after_endstop_move();
  1645. retract_z_probe(); // Retract Z Servo endstop if available
  1646. }
  1647. break;
  1648. #else
  1649. case 31: // dock the sled
  1650. dock_sled(true);
  1651. break;
  1652. case 32: // undock the sled
  1653. dock_sled(false);
  1654. break;
  1655. #endif // Z_PROBE_SLED
  1656. #endif // ENABLE_AUTO_BED_LEVELING
  1657. case 90: // G90
  1658. relative_mode = false;
  1659. break;
  1660. case 91: // G91
  1661. relative_mode = true;
  1662. break;
  1663. case 92: // G92
  1664. if(!code_seen(axis_codes[E_AXIS]))
  1665. st_synchronize();
  1666. for(int8_t i=0; i < NUM_AXIS; i++) {
  1667. if(code_seen(axis_codes[i])) {
  1668. if(i == E_AXIS) {
  1669. current_position[i] = code_value();
  1670. plan_set_e_position(current_position[E_AXIS]);
  1671. }
  1672. else {
  1673. #ifdef SCARA
  1674. if (i == X_AXIS || i == Y_AXIS) {
  1675. current_position[i] = code_value();
  1676. }
  1677. else {
  1678. current_position[i] = code_value()+add_homing[i];
  1679. }
  1680. #else
  1681. current_position[i] = code_value()+add_homing[i];
  1682. #endif
  1683. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1684. }
  1685. }
  1686. }
  1687. break;
  1688. }
  1689. }
  1690. else if(code_seen('M'))
  1691. {
  1692. switch( (int)code_value() )
  1693. {
  1694. #ifdef ULTIPANEL
  1695. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1696. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1697. {
  1698. char *src = strchr_pointer + 2;
  1699. codenum = 0;
  1700. bool hasP = false, hasS = false;
  1701. if (code_seen('P')) {
  1702. codenum = code_value(); // milliseconds to wait
  1703. hasP = codenum > 0;
  1704. }
  1705. if (code_seen('S')) {
  1706. codenum = code_value() * 1000; // seconds to wait
  1707. hasS = codenum > 0;
  1708. }
  1709. starpos = strchr(src, '*');
  1710. if (starpos != NULL) *(starpos) = '\0';
  1711. while (*src == ' ') ++src;
  1712. if (!hasP && !hasS && *src != '\0') {
  1713. lcd_setstatus(src);
  1714. } else {
  1715. LCD_MESSAGEPGM(MSG_USERWAIT);
  1716. }
  1717. lcd_ignore_click();
  1718. st_synchronize();
  1719. previous_millis_cmd = millis();
  1720. if (codenum > 0){
  1721. codenum += millis(); // keep track of when we started waiting
  1722. while(millis() < codenum && !lcd_clicked()){
  1723. manage_heater();
  1724. manage_inactivity();
  1725. lcd_update();
  1726. }
  1727. lcd_ignore_click(false);
  1728. }else{
  1729. if (!lcd_detected())
  1730. break;
  1731. while(!lcd_clicked()){
  1732. manage_heater();
  1733. manage_inactivity();
  1734. lcd_update();
  1735. }
  1736. }
  1737. if (IS_SD_PRINTING)
  1738. LCD_MESSAGEPGM(MSG_RESUMING);
  1739. else
  1740. LCD_MESSAGEPGM(WELCOME_MSG);
  1741. }
  1742. break;
  1743. #endif
  1744. case 17:
  1745. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1746. enable_x();
  1747. enable_y();
  1748. enable_z();
  1749. enable_e0();
  1750. enable_e1();
  1751. enable_e2();
  1752. break;
  1753. #ifdef SDSUPPORT
  1754. case 20: // M20 - list SD card
  1755. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1756. card.ls();
  1757. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1758. break;
  1759. case 21: // M21 - init SD card
  1760. card.initsd();
  1761. break;
  1762. case 22: //M22 - release SD card
  1763. card.release();
  1764. break;
  1765. case 23: //M23 - Select file
  1766. starpos = (strchr(strchr_pointer + 4,'*'));
  1767. if(starpos!=NULL)
  1768. *(starpos)='\0';
  1769. card.openFile(strchr_pointer + 4,true);
  1770. break;
  1771. case 24: //M24 - Start SD print
  1772. card.startFileprint();
  1773. starttime=millis();
  1774. break;
  1775. case 25: //M25 - Pause SD print
  1776. card.pauseSDPrint();
  1777. break;
  1778. case 26: //M26 - Set SD index
  1779. if(card.cardOK && code_seen('S')) {
  1780. card.setIndex(code_value_long());
  1781. }
  1782. break;
  1783. case 27: //M27 - Get SD status
  1784. card.getStatus();
  1785. break;
  1786. case 28: //M28 - Start SD write
  1787. starpos = (strchr(strchr_pointer + 4,'*'));
  1788. if(starpos != NULL){
  1789. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1790. strchr_pointer = strchr(npos,' ') + 1;
  1791. *(starpos) = '\0';
  1792. }
  1793. card.openFile(strchr_pointer+4,false);
  1794. break;
  1795. case 29: //M29 - Stop SD write
  1796. //processed in write to file routine above
  1797. //card,saving = false;
  1798. break;
  1799. case 30: //M30 <filename> Delete File
  1800. if (card.cardOK){
  1801. card.closefile();
  1802. starpos = (strchr(strchr_pointer + 4,'*'));
  1803. if(starpos != NULL){
  1804. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1805. strchr_pointer = strchr(npos,' ') + 1;
  1806. *(starpos) = '\0';
  1807. }
  1808. card.removeFile(strchr_pointer + 4);
  1809. }
  1810. break;
  1811. case 32: //M32 - Select file and start SD print
  1812. {
  1813. if(card.sdprinting) {
  1814. st_synchronize();
  1815. }
  1816. starpos = (strchr(strchr_pointer + 4,'*'));
  1817. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1818. if(namestartpos==NULL)
  1819. {
  1820. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1821. }
  1822. else
  1823. namestartpos++; //to skip the '!'
  1824. if(starpos!=NULL)
  1825. *(starpos)='\0';
  1826. bool call_procedure=(code_seen('P'));
  1827. if(strchr_pointer>namestartpos)
  1828. call_procedure=false; //false alert, 'P' found within filename
  1829. if( card.cardOK )
  1830. {
  1831. card.openFile(namestartpos,true,!call_procedure);
  1832. if(code_seen('S'))
  1833. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1834. card.setIndex(code_value_long());
  1835. card.startFileprint();
  1836. if(!call_procedure)
  1837. starttime=millis(); //procedure calls count as normal print time.
  1838. }
  1839. } break;
  1840. case 928: //M928 - Start SD write
  1841. starpos = (strchr(strchr_pointer + 5,'*'));
  1842. if(starpos != NULL){
  1843. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1844. strchr_pointer = strchr(npos,' ') + 1;
  1845. *(starpos) = '\0';
  1846. }
  1847. card.openLogFile(strchr_pointer+5);
  1848. break;
  1849. #endif //SDSUPPORT
  1850. case 31: //M31 take time since the start of the SD print or an M109 command
  1851. {
  1852. stoptime=millis();
  1853. char time[30];
  1854. unsigned long t=(stoptime-starttime)/1000;
  1855. int sec,min;
  1856. min=t/60;
  1857. sec=t%60;
  1858. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1859. SERIAL_ECHO_START;
  1860. SERIAL_ECHOLN(time);
  1861. lcd_setstatus(time);
  1862. autotempShutdown();
  1863. }
  1864. break;
  1865. case 42: //M42 -Change pin status via gcode
  1866. if (code_seen('S'))
  1867. {
  1868. int pin_status = code_value();
  1869. int pin_number = LED_PIN;
  1870. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1871. pin_number = code_value();
  1872. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1873. {
  1874. if (sensitive_pins[i] == pin_number)
  1875. {
  1876. pin_number = -1;
  1877. break;
  1878. }
  1879. }
  1880. #if defined(FAN_PIN) && FAN_PIN > -1
  1881. if (pin_number == FAN_PIN)
  1882. fanSpeed = pin_status;
  1883. #endif
  1884. if (pin_number > -1)
  1885. {
  1886. pinMode(pin_number, OUTPUT);
  1887. digitalWrite(pin_number, pin_status);
  1888. analogWrite(pin_number, pin_status);
  1889. }
  1890. }
  1891. break;
  1892. // M48 Z-Probe repeatability measurement function.
  1893. //
  1894. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  1895. //
  1896. // This function assumes the bed has been homed. Specificaly, that a G28 command
  1897. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  1898. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  1899. // regenerated.
  1900. //
  1901. // The number of samples will default to 10 if not specified. You can use upper or lower case
  1902. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  1903. // N for its communication protocol and will get horribly confused if you send it a capital N.
  1904. //
  1905. #ifdef ENABLE_AUTO_BED_LEVELING
  1906. #ifdef Z_PROBE_REPEATABILITY_TEST
  1907. case 48: // M48 Z-Probe repeatability
  1908. {
  1909. #if Z_MIN_PIN == -1
  1910. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  1911. #endif
  1912. double sum=0.0;
  1913. double mean=0.0;
  1914. double sigma=0.0;
  1915. double sample_set[50];
  1916. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  1917. double X_current, Y_current, Z_current;
  1918. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  1919. if (code_seen('V') || code_seen('v')) {
  1920. verbose_level = code_value();
  1921. if (verbose_level<0 || verbose_level>4 ) {
  1922. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  1923. goto Sigma_Exit;
  1924. }
  1925. }
  1926. if (verbose_level > 0) {
  1927. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  1928. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  1929. }
  1930. if (code_seen('n')) {
  1931. n_samples = code_value();
  1932. if (n_samples<4 || n_samples>50 ) {
  1933. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  1934. goto Sigma_Exit;
  1935. }
  1936. }
  1937. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  1938. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  1939. Z_current = st_get_position_mm(Z_AXIS);
  1940. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1941. ext_position = st_get_position_mm(E_AXIS);
  1942. if (code_seen('E') || code_seen('e') )
  1943. engage_probe_for_each_reading++;
  1944. if (code_seen('X') || code_seen('x') ) {
  1945. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  1946. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  1947. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  1948. goto Sigma_Exit;
  1949. }
  1950. }
  1951. if (code_seen('Y') || code_seen('y') ) {
  1952. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1953. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  1954. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  1955. goto Sigma_Exit;
  1956. }
  1957. }
  1958. if (code_seen('L') || code_seen('l') ) {
  1959. n_legs = code_value();
  1960. if ( n_legs==1 )
  1961. n_legs = 2;
  1962. if ( n_legs<0 || n_legs>15 ) {
  1963. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  1964. goto Sigma_Exit;
  1965. }
  1966. }
  1967. //
  1968. // Do all the preliminary setup work. First raise the probe.
  1969. //
  1970. st_synchronize();
  1971. plan_bed_level_matrix.set_to_identity();
  1972. plan_buffer_line( X_current, Y_current, Z_start_location,
  1973. ext_position,
  1974. homing_feedrate[Z_AXIS]/60,
  1975. active_extruder);
  1976. st_synchronize();
  1977. //
  1978. // Now get everything to the specified probe point So we can safely do a probe to
  1979. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  1980. // use that as a starting point for each probe.
  1981. //
  1982. if (verbose_level > 2)
  1983. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  1984. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1985. ext_position,
  1986. homing_feedrate[X_AXIS]/60,
  1987. active_extruder);
  1988. st_synchronize();
  1989. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  1990. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  1991. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1992. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  1993. //
  1994. // OK, do the inital probe to get us close to the bed.
  1995. // Then retrace the right amount and use that in subsequent probes
  1996. //
  1997. engage_z_probe();
  1998. setup_for_endstop_move();
  1999. run_z_probe();
  2000. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2001. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2002. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2003. ext_position,
  2004. homing_feedrate[X_AXIS]/60,
  2005. active_extruder);
  2006. st_synchronize();
  2007. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2008. if (engage_probe_for_each_reading)
  2009. retract_z_probe();
  2010. for( n=0; n<n_samples; n++) {
  2011. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2012. if ( n_legs) {
  2013. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2014. int rotational_direction, l;
  2015. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2016. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2017. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2018. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2019. //SERIAL_ECHOPAIR(" theta: ",theta);
  2020. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2021. //SERIAL_PROTOCOLLNPGM("");
  2022. for( l=0; l<n_legs-1; l++) {
  2023. if (rotational_direction==1)
  2024. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2025. else
  2026. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2027. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2028. if ( radius<0.0 )
  2029. radius = -radius;
  2030. X_current = X_probe_location + cos(theta) * radius;
  2031. Y_current = Y_probe_location + sin(theta) * radius;
  2032. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2033. X_current = X_MIN_POS;
  2034. if ( X_current>X_MAX_POS)
  2035. X_current = X_MAX_POS;
  2036. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2037. Y_current = Y_MIN_POS;
  2038. if ( Y_current>Y_MAX_POS)
  2039. Y_current = Y_MAX_POS;
  2040. if (verbose_level>3 ) {
  2041. SERIAL_ECHOPAIR("x: ", X_current);
  2042. SERIAL_ECHOPAIR("y: ", Y_current);
  2043. SERIAL_PROTOCOLLNPGM("");
  2044. }
  2045. do_blocking_move_to( X_current, Y_current, Z_current );
  2046. }
  2047. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2048. }
  2049. if (engage_probe_for_each_reading) {
  2050. engage_z_probe();
  2051. delay(1000);
  2052. }
  2053. setup_for_endstop_move();
  2054. run_z_probe();
  2055. sample_set[n] = current_position[Z_AXIS];
  2056. //
  2057. // Get the current mean for the data points we have so far
  2058. //
  2059. sum=0.0;
  2060. for( j=0; j<=n; j++) {
  2061. sum = sum + sample_set[j];
  2062. }
  2063. mean = sum / (double (n+1));
  2064. //
  2065. // Now, use that mean to calculate the standard deviation for the
  2066. // data points we have so far
  2067. //
  2068. sum=0.0;
  2069. for( j=0; j<=n; j++) {
  2070. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2071. }
  2072. sigma = sqrt( sum / (double (n+1)) );
  2073. if (verbose_level > 1) {
  2074. SERIAL_PROTOCOL(n+1);
  2075. SERIAL_PROTOCOL(" of ");
  2076. SERIAL_PROTOCOL(n_samples);
  2077. SERIAL_PROTOCOLPGM(" z: ");
  2078. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2079. }
  2080. if (verbose_level > 2) {
  2081. SERIAL_PROTOCOL(" mean: ");
  2082. SERIAL_PROTOCOL_F(mean,6);
  2083. SERIAL_PROTOCOL(" sigma: ");
  2084. SERIAL_PROTOCOL_F(sigma,6);
  2085. }
  2086. if (verbose_level > 0)
  2087. SERIAL_PROTOCOLPGM("\n");
  2088. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2089. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2090. st_synchronize();
  2091. if (engage_probe_for_each_reading) {
  2092. retract_z_probe();
  2093. delay(1000);
  2094. }
  2095. }
  2096. retract_z_probe();
  2097. delay(1000);
  2098. clean_up_after_endstop_move();
  2099. // enable_endstops(true);
  2100. if (verbose_level > 0) {
  2101. SERIAL_PROTOCOLPGM("Mean: ");
  2102. SERIAL_PROTOCOL_F(mean, 6);
  2103. SERIAL_PROTOCOLPGM("\n");
  2104. }
  2105. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2106. SERIAL_PROTOCOL_F(sigma, 6);
  2107. SERIAL_PROTOCOLPGM("\n\n");
  2108. Sigma_Exit:
  2109. break;
  2110. }
  2111. #endif // Z_PROBE_REPEATABILITY_TEST
  2112. #endif // ENABLE_AUTO_BED_LEVELING
  2113. case 104: // M104
  2114. if(setTargetedHotend(104)){
  2115. break;
  2116. }
  2117. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2118. #ifdef DUAL_X_CARRIAGE
  2119. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2120. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2121. #endif
  2122. setWatch();
  2123. break;
  2124. case 112: // M112 -Emergency Stop
  2125. kill();
  2126. break;
  2127. case 140: // M140 set bed temp
  2128. if (code_seen('S')) setTargetBed(code_value());
  2129. break;
  2130. case 105 : // M105
  2131. if(setTargetedHotend(105)){
  2132. break;
  2133. }
  2134. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2135. SERIAL_PROTOCOLPGM("ok T:");
  2136. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2137. SERIAL_PROTOCOLPGM(" /");
  2138. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2139. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2140. SERIAL_PROTOCOLPGM(" B:");
  2141. SERIAL_PROTOCOL_F(degBed(),1);
  2142. SERIAL_PROTOCOLPGM(" /");
  2143. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2144. #endif //TEMP_BED_PIN
  2145. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2146. SERIAL_PROTOCOLPGM(" T");
  2147. SERIAL_PROTOCOL(cur_extruder);
  2148. SERIAL_PROTOCOLPGM(":");
  2149. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2150. SERIAL_PROTOCOLPGM(" /");
  2151. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2152. }
  2153. #else
  2154. SERIAL_ERROR_START;
  2155. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2156. #endif
  2157. SERIAL_PROTOCOLPGM(" @:");
  2158. #ifdef EXTRUDER_WATTS
  2159. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2160. SERIAL_PROTOCOLPGM("W");
  2161. #else
  2162. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2163. #endif
  2164. SERIAL_PROTOCOLPGM(" B@:");
  2165. #ifdef BED_WATTS
  2166. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2167. SERIAL_PROTOCOLPGM("W");
  2168. #else
  2169. SERIAL_PROTOCOL(getHeaterPower(-1));
  2170. #endif
  2171. #ifdef SHOW_TEMP_ADC_VALUES
  2172. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2173. SERIAL_PROTOCOLPGM(" ADC B:");
  2174. SERIAL_PROTOCOL_F(degBed(),1);
  2175. SERIAL_PROTOCOLPGM("C->");
  2176. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2177. #endif
  2178. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2179. SERIAL_PROTOCOLPGM(" T");
  2180. SERIAL_PROTOCOL(cur_extruder);
  2181. SERIAL_PROTOCOLPGM(":");
  2182. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2183. SERIAL_PROTOCOLPGM("C->");
  2184. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2185. }
  2186. #endif
  2187. SERIAL_PROTOCOLLN("");
  2188. return;
  2189. break;
  2190. case 109:
  2191. {// M109 - Wait for extruder heater to reach target.
  2192. if(setTargetedHotend(109)){
  2193. break;
  2194. }
  2195. LCD_MESSAGEPGM(MSG_HEATING);
  2196. #ifdef AUTOTEMP
  2197. autotemp_enabled=false;
  2198. #endif
  2199. if (code_seen('S')) {
  2200. setTargetHotend(code_value(), tmp_extruder);
  2201. #ifdef DUAL_X_CARRIAGE
  2202. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2203. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2204. #endif
  2205. CooldownNoWait = true;
  2206. } else if (code_seen('R')) {
  2207. setTargetHotend(code_value(), tmp_extruder);
  2208. #ifdef DUAL_X_CARRIAGE
  2209. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2210. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2211. #endif
  2212. CooldownNoWait = false;
  2213. }
  2214. #ifdef AUTOTEMP
  2215. if (code_seen('S')) autotemp_min=code_value();
  2216. if (code_seen('B')) autotemp_max=code_value();
  2217. if (code_seen('F'))
  2218. {
  2219. autotemp_factor=code_value();
  2220. autotemp_enabled=true;
  2221. }
  2222. #endif
  2223. setWatch();
  2224. codenum = millis();
  2225. /* See if we are heating up or cooling down */
  2226. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2227. cancel_heatup = false;
  2228. #ifdef TEMP_RESIDENCY_TIME
  2229. long residencyStart;
  2230. residencyStart = -1;
  2231. /* continue to loop until we have reached the target temp
  2232. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2233. while((!cancel_heatup)&&((residencyStart == -1) ||
  2234. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2235. #else
  2236. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2237. #endif //TEMP_RESIDENCY_TIME
  2238. if( (millis() - codenum) > 1000UL )
  2239. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2240. SERIAL_PROTOCOLPGM("T:");
  2241. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2242. SERIAL_PROTOCOLPGM(" E:");
  2243. SERIAL_PROTOCOL((int)tmp_extruder);
  2244. #ifdef TEMP_RESIDENCY_TIME
  2245. SERIAL_PROTOCOLPGM(" W:");
  2246. if(residencyStart > -1)
  2247. {
  2248. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2249. SERIAL_PROTOCOLLN( codenum );
  2250. }
  2251. else
  2252. {
  2253. SERIAL_PROTOCOLLN( "?" );
  2254. }
  2255. #else
  2256. SERIAL_PROTOCOLLN("");
  2257. #endif
  2258. codenum = millis();
  2259. }
  2260. manage_heater();
  2261. manage_inactivity();
  2262. lcd_update();
  2263. #ifdef TEMP_RESIDENCY_TIME
  2264. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2265. or when current temp falls outside the hysteresis after target temp was reached */
  2266. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2267. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2268. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2269. {
  2270. residencyStart = millis();
  2271. }
  2272. #endif //TEMP_RESIDENCY_TIME
  2273. }
  2274. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2275. starttime=millis();
  2276. previous_millis_cmd = millis();
  2277. }
  2278. break;
  2279. case 190: // M190 - Wait for bed heater to reach target.
  2280. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2281. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2282. if (code_seen('S')) {
  2283. setTargetBed(code_value());
  2284. CooldownNoWait = true;
  2285. } else if (code_seen('R')) {
  2286. setTargetBed(code_value());
  2287. CooldownNoWait = false;
  2288. }
  2289. codenum = millis();
  2290. cancel_heatup = false;
  2291. target_direction = isHeatingBed(); // true if heating, false if cooling
  2292. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2293. {
  2294. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2295. {
  2296. float tt=degHotend(active_extruder);
  2297. SERIAL_PROTOCOLPGM("T:");
  2298. SERIAL_PROTOCOL(tt);
  2299. SERIAL_PROTOCOLPGM(" E:");
  2300. SERIAL_PROTOCOL((int)active_extruder);
  2301. SERIAL_PROTOCOLPGM(" B:");
  2302. SERIAL_PROTOCOL_F(degBed(),1);
  2303. SERIAL_PROTOCOLLN("");
  2304. codenum = millis();
  2305. }
  2306. manage_heater();
  2307. manage_inactivity();
  2308. lcd_update();
  2309. }
  2310. LCD_MESSAGEPGM(MSG_BED_DONE);
  2311. previous_millis_cmd = millis();
  2312. #endif
  2313. break;
  2314. #if defined(FAN_PIN) && FAN_PIN > -1
  2315. case 106: //M106 Fan On
  2316. if (code_seen('S')){
  2317. fanSpeed=constrain(code_value(),0,255);
  2318. }
  2319. else {
  2320. fanSpeed=255;
  2321. }
  2322. break;
  2323. case 107: //M107 Fan Off
  2324. fanSpeed = 0;
  2325. break;
  2326. #endif //FAN_PIN
  2327. #ifdef BARICUDA
  2328. // PWM for HEATER_1_PIN
  2329. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2330. case 126: //M126 valve open
  2331. if (code_seen('S')){
  2332. ValvePressure=constrain(code_value(),0,255);
  2333. }
  2334. else {
  2335. ValvePressure=255;
  2336. }
  2337. break;
  2338. case 127: //M127 valve closed
  2339. ValvePressure = 0;
  2340. break;
  2341. #endif //HEATER_1_PIN
  2342. // PWM for HEATER_2_PIN
  2343. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2344. case 128: //M128 valve open
  2345. if (code_seen('S')){
  2346. EtoPPressure=constrain(code_value(),0,255);
  2347. }
  2348. else {
  2349. EtoPPressure=255;
  2350. }
  2351. break;
  2352. case 129: //M129 valve closed
  2353. EtoPPressure = 0;
  2354. break;
  2355. #endif //HEATER_2_PIN
  2356. #endif
  2357. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2358. case 80: // M80 - Turn on Power Supply
  2359. SET_OUTPUT(PS_ON_PIN); //GND
  2360. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2361. // If you have a switch on suicide pin, this is useful
  2362. // if you want to start another print with suicide feature after
  2363. // a print without suicide...
  2364. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2365. SET_OUTPUT(SUICIDE_PIN);
  2366. WRITE(SUICIDE_PIN, HIGH);
  2367. #endif
  2368. #ifdef ULTIPANEL
  2369. powersupply = true;
  2370. LCD_MESSAGEPGM(WELCOME_MSG);
  2371. lcd_update();
  2372. #endif
  2373. break;
  2374. #endif
  2375. case 81: // M81 - Turn off Power Supply
  2376. disable_heater();
  2377. st_synchronize();
  2378. disable_e0();
  2379. disable_e1();
  2380. disable_e2();
  2381. finishAndDisableSteppers();
  2382. fanSpeed = 0;
  2383. delay(1000); // Wait a little before to switch off
  2384. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2385. st_synchronize();
  2386. suicide();
  2387. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2388. SET_OUTPUT(PS_ON_PIN);
  2389. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2390. #endif
  2391. #ifdef ULTIPANEL
  2392. powersupply = false;
  2393. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2394. lcd_update();
  2395. #endif
  2396. break;
  2397. case 82:
  2398. axis_relative_modes[3] = false;
  2399. break;
  2400. case 83:
  2401. axis_relative_modes[3] = true;
  2402. break;
  2403. case 18: //compatibility
  2404. case 84: // M84
  2405. if(code_seen('S')){
  2406. stepper_inactive_time = code_value() * 1000;
  2407. }
  2408. else
  2409. {
  2410. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2411. if(all_axis)
  2412. {
  2413. st_synchronize();
  2414. disable_e0();
  2415. disable_e1();
  2416. disable_e2();
  2417. finishAndDisableSteppers();
  2418. }
  2419. else
  2420. {
  2421. st_synchronize();
  2422. if(code_seen('X')) disable_x();
  2423. if(code_seen('Y')) disable_y();
  2424. if(code_seen('Z')) disable_z();
  2425. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2426. if(code_seen('E')) {
  2427. disable_e0();
  2428. disable_e1();
  2429. disable_e2();
  2430. }
  2431. #endif
  2432. }
  2433. }
  2434. break;
  2435. case 85: // M85
  2436. if(code_seen('S')) {
  2437. max_inactive_time = code_value() * 1000;
  2438. }
  2439. break;
  2440. case 92: // M92
  2441. for(int8_t i=0; i < NUM_AXIS; i++)
  2442. {
  2443. if(code_seen(axis_codes[i]))
  2444. {
  2445. if(i == 3) { // E
  2446. float value = code_value();
  2447. if(value < 20.0) {
  2448. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2449. max_e_jerk *= factor;
  2450. max_feedrate[i] *= factor;
  2451. axis_steps_per_sqr_second[i] *= factor;
  2452. }
  2453. axis_steps_per_unit[i] = value;
  2454. }
  2455. else {
  2456. axis_steps_per_unit[i] = code_value();
  2457. }
  2458. }
  2459. }
  2460. break;
  2461. case 115: // M115
  2462. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2463. break;
  2464. case 117: // M117 display message
  2465. starpos = (strchr(strchr_pointer + 5,'*'));
  2466. if(starpos!=NULL)
  2467. *(starpos)='\0';
  2468. lcd_setstatus(strchr_pointer + 5);
  2469. break;
  2470. case 114: // M114
  2471. SERIAL_PROTOCOLPGM("X:");
  2472. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2473. SERIAL_PROTOCOLPGM(" Y:");
  2474. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2475. SERIAL_PROTOCOLPGM(" Z:");
  2476. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2477. SERIAL_PROTOCOLPGM(" E:");
  2478. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2479. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2480. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2481. SERIAL_PROTOCOLPGM(" Y:");
  2482. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2483. SERIAL_PROTOCOLPGM(" Z:");
  2484. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2485. SERIAL_PROTOCOLLN("");
  2486. #ifdef SCARA
  2487. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2488. SERIAL_PROTOCOL(delta[X_AXIS]);
  2489. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2490. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2491. SERIAL_PROTOCOLLN("");
  2492. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2493. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2494. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2495. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2496. SERIAL_PROTOCOLLN("");
  2497. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2498. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2499. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2500. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2501. SERIAL_PROTOCOLLN("");
  2502. SERIAL_PROTOCOLLN("");
  2503. #endif
  2504. break;
  2505. case 120: // M120
  2506. enable_endstops(false) ;
  2507. break;
  2508. case 121: // M121
  2509. enable_endstops(true) ;
  2510. break;
  2511. case 119: // M119
  2512. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2513. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2514. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2515. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2516. #endif
  2517. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2518. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2519. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2520. #endif
  2521. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2522. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2523. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2524. #endif
  2525. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2526. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2527. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2528. #endif
  2529. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2530. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2531. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2532. #endif
  2533. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2534. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2535. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2536. #endif
  2537. break;
  2538. //TODO: update for all axis, use for loop
  2539. #ifdef BLINKM
  2540. case 150: // M150
  2541. {
  2542. byte red;
  2543. byte grn;
  2544. byte blu;
  2545. if(code_seen('R')) red = code_value();
  2546. if(code_seen('U')) grn = code_value();
  2547. if(code_seen('B')) blu = code_value();
  2548. SendColors(red,grn,blu);
  2549. }
  2550. break;
  2551. #endif //BLINKM
  2552. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2553. {
  2554. tmp_extruder = active_extruder;
  2555. if(code_seen('T')) {
  2556. tmp_extruder = code_value();
  2557. if(tmp_extruder >= EXTRUDERS) {
  2558. SERIAL_ECHO_START;
  2559. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2560. break;
  2561. }
  2562. }
  2563. float area = .0;
  2564. if(code_seen('D')) {
  2565. float diameter = (float)code_value();
  2566. if (diameter == 0.0) {
  2567. // setting any extruder filament size disables volumetric on the assumption that
  2568. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2569. // for all extruders
  2570. volumetric_enabled = false;
  2571. } else {
  2572. filament_size[tmp_extruder] = (float)code_value();
  2573. // make sure all extruders have some sane value for the filament size
  2574. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  2575. #if EXTRUDERS > 1
  2576. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  2577. #if EXTRUDERS > 2
  2578. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  2579. #if EXTRUDERS > 3
  2580. filament_size[3] = (filament_size[3] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[3]);
  2581. #endif //EXTRUDERS > 3
  2582. #endif //EXTRUDERS > 2
  2583. #endif //EXTRUDERS > 1
  2584. volumetric_enabled = true;
  2585. }
  2586. } else {
  2587. //reserved for setting filament diameter via UFID or filament measuring device
  2588. break;
  2589. }
  2590. calculate_volumetric_multipliers();
  2591. }
  2592. break;
  2593. case 201: // M201
  2594. for(int8_t i=0; i < NUM_AXIS; i++)
  2595. {
  2596. if(code_seen(axis_codes[i]))
  2597. {
  2598. max_acceleration_units_per_sq_second[i] = code_value();
  2599. }
  2600. }
  2601. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2602. reset_acceleration_rates();
  2603. break;
  2604. #if 0 // Not used for Sprinter/grbl gen6
  2605. case 202: // M202
  2606. for(int8_t i=0; i < NUM_AXIS; i++) {
  2607. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2608. }
  2609. break;
  2610. #endif
  2611. case 203: // M203 max feedrate mm/sec
  2612. for(int8_t i=0; i < NUM_AXIS; i++) {
  2613. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2614. }
  2615. break;
  2616. case 204: // M204 acclereration S normal moves T filmanent only moves
  2617. {
  2618. if(code_seen('S')) acceleration = code_value() ;
  2619. if(code_seen('T')) retract_acceleration = code_value() ;
  2620. }
  2621. break;
  2622. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2623. {
  2624. if(code_seen('S')) minimumfeedrate = code_value();
  2625. if(code_seen('T')) mintravelfeedrate = code_value();
  2626. if(code_seen('B')) minsegmenttime = code_value() ;
  2627. if(code_seen('X')) max_xy_jerk = code_value() ;
  2628. if(code_seen('Z')) max_z_jerk = code_value() ;
  2629. if(code_seen('E')) max_e_jerk = code_value() ;
  2630. }
  2631. break;
  2632. case 206: // M206 additional homing offset
  2633. for(int8_t i=0; i < 3; i++)
  2634. {
  2635. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2636. }
  2637. #ifdef SCARA
  2638. if(code_seen('T')) // Theta
  2639. {
  2640. add_homing[X_AXIS] = code_value() ;
  2641. }
  2642. if(code_seen('P')) // Psi
  2643. {
  2644. add_homing[Y_AXIS] = code_value() ;
  2645. }
  2646. #endif
  2647. break;
  2648. #ifdef DELTA
  2649. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2650. if(code_seen('L')) {
  2651. delta_diagonal_rod= code_value();
  2652. }
  2653. if(code_seen('R')) {
  2654. delta_radius= code_value();
  2655. }
  2656. if(code_seen('S')) {
  2657. delta_segments_per_second= code_value();
  2658. }
  2659. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2660. break;
  2661. case 666: // M666 set delta endstop adjustemnt
  2662. for(int8_t i=0; i < 3; i++)
  2663. {
  2664. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2665. }
  2666. break;
  2667. #endif
  2668. #ifdef FWRETRACT
  2669. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2670. {
  2671. if(code_seen('S'))
  2672. {
  2673. retract_length = code_value() ;
  2674. }
  2675. if(code_seen('F'))
  2676. {
  2677. retract_feedrate = code_value()/60 ;
  2678. }
  2679. if(code_seen('Z'))
  2680. {
  2681. retract_zlift = code_value() ;
  2682. }
  2683. }break;
  2684. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2685. {
  2686. if(code_seen('S'))
  2687. {
  2688. retract_recover_length = code_value() ;
  2689. }
  2690. if(code_seen('F'))
  2691. {
  2692. retract_recover_feedrate = code_value()/60 ;
  2693. }
  2694. }break;
  2695. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2696. {
  2697. if(code_seen('S'))
  2698. {
  2699. int t= code_value() ;
  2700. switch(t)
  2701. {
  2702. case 0:
  2703. {
  2704. autoretract_enabled=false;
  2705. retracted[0]=false;
  2706. #if EXTRUDERS > 1
  2707. retracted[1]=false;
  2708. #endif
  2709. #if EXTRUDERS > 2
  2710. retracted[2]=false;
  2711. #endif
  2712. #if EXTRUDERS > 3
  2713. retracted[3]=false;
  2714. #endif
  2715. }break;
  2716. case 1:
  2717. {
  2718. autoretract_enabled=true;
  2719. retracted[0]=false;
  2720. #if EXTRUDERS > 1
  2721. retracted[1]=false;
  2722. #endif
  2723. #if EXTRUDERS > 2
  2724. retracted[2]=false;
  2725. #endif
  2726. #if EXTRUDERS > 3
  2727. retracted[3]=false;
  2728. #endif
  2729. }break;
  2730. default:
  2731. SERIAL_ECHO_START;
  2732. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2733. SERIAL_ECHO(cmdbuffer[bufindr]);
  2734. SERIAL_ECHOLNPGM("\"");
  2735. }
  2736. }
  2737. }break;
  2738. #endif // FWRETRACT
  2739. #if EXTRUDERS > 1
  2740. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2741. {
  2742. if(setTargetedHotend(218)){
  2743. break;
  2744. }
  2745. if(code_seen('X'))
  2746. {
  2747. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2748. }
  2749. if(code_seen('Y'))
  2750. {
  2751. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2752. }
  2753. #ifdef DUAL_X_CARRIAGE
  2754. if(code_seen('Z'))
  2755. {
  2756. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2757. }
  2758. #endif
  2759. SERIAL_ECHO_START;
  2760. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2761. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2762. {
  2763. SERIAL_ECHO(" ");
  2764. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2765. SERIAL_ECHO(",");
  2766. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2767. #ifdef DUAL_X_CARRIAGE
  2768. SERIAL_ECHO(",");
  2769. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2770. #endif
  2771. }
  2772. SERIAL_ECHOLN("");
  2773. }break;
  2774. #endif
  2775. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2776. {
  2777. if(code_seen('S'))
  2778. {
  2779. feedmultiply = code_value() ;
  2780. }
  2781. }
  2782. break;
  2783. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2784. {
  2785. if(code_seen('S'))
  2786. {
  2787. int tmp_code = code_value();
  2788. if (code_seen('T'))
  2789. {
  2790. if(setTargetedHotend(221)){
  2791. break;
  2792. }
  2793. extruder_multiply[tmp_extruder] = tmp_code;
  2794. }
  2795. else
  2796. {
  2797. extrudemultiply = tmp_code ;
  2798. }
  2799. }
  2800. }
  2801. break;
  2802. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2803. {
  2804. if(code_seen('P')){
  2805. int pin_number = code_value(); // pin number
  2806. int pin_state = -1; // required pin state - default is inverted
  2807. if(code_seen('S')) pin_state = code_value(); // required pin state
  2808. if(pin_state >= -1 && pin_state <= 1){
  2809. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2810. {
  2811. if (sensitive_pins[i] == pin_number)
  2812. {
  2813. pin_number = -1;
  2814. break;
  2815. }
  2816. }
  2817. if (pin_number > -1)
  2818. {
  2819. int target = LOW;
  2820. st_synchronize();
  2821. pinMode(pin_number, INPUT);
  2822. switch(pin_state){
  2823. case 1:
  2824. target = HIGH;
  2825. break;
  2826. case 0:
  2827. target = LOW;
  2828. break;
  2829. case -1:
  2830. target = !digitalRead(pin_number);
  2831. break;
  2832. }
  2833. while(digitalRead(pin_number) != target){
  2834. manage_heater();
  2835. manage_inactivity();
  2836. lcd_update();
  2837. }
  2838. }
  2839. }
  2840. }
  2841. }
  2842. break;
  2843. #if NUM_SERVOS > 0
  2844. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2845. {
  2846. int servo_index = -1;
  2847. int servo_position = 0;
  2848. if (code_seen('P'))
  2849. servo_index = code_value();
  2850. if (code_seen('S')) {
  2851. servo_position = code_value();
  2852. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2853. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2854. servos[servo_index].attach(0);
  2855. #endif
  2856. servos[servo_index].write(servo_position);
  2857. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2858. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2859. servos[servo_index].detach();
  2860. #endif
  2861. }
  2862. else {
  2863. SERIAL_ECHO_START;
  2864. SERIAL_ECHO("Servo ");
  2865. SERIAL_ECHO(servo_index);
  2866. SERIAL_ECHOLN(" out of range");
  2867. }
  2868. }
  2869. else if (servo_index >= 0) {
  2870. SERIAL_PROTOCOL(MSG_OK);
  2871. SERIAL_PROTOCOL(" Servo ");
  2872. SERIAL_PROTOCOL(servo_index);
  2873. SERIAL_PROTOCOL(": ");
  2874. SERIAL_PROTOCOL(servos[servo_index].read());
  2875. SERIAL_PROTOCOLLN("");
  2876. }
  2877. }
  2878. break;
  2879. #endif // NUM_SERVOS > 0
  2880. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2881. case 300: // M300
  2882. {
  2883. int beepS = code_seen('S') ? code_value() : 110;
  2884. int beepP = code_seen('P') ? code_value() : 1000;
  2885. if (beepS > 0)
  2886. {
  2887. #if BEEPER > 0
  2888. tone(BEEPER, beepS);
  2889. delay(beepP);
  2890. noTone(BEEPER);
  2891. #elif defined(ULTRALCD)
  2892. lcd_buzz(beepS, beepP);
  2893. #elif defined(LCD_USE_I2C_BUZZER)
  2894. lcd_buzz(beepP, beepS);
  2895. #endif
  2896. }
  2897. else
  2898. {
  2899. delay(beepP);
  2900. }
  2901. }
  2902. break;
  2903. #endif // M300
  2904. #ifdef PIDTEMP
  2905. case 301: // M301
  2906. {
  2907. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  2908. // default behaviour (omitting E parameter) is to update for extruder 0 only
  2909. int e = 0; // extruder being updated
  2910. if (code_seen('E'))
  2911. {
  2912. e = (int)code_value();
  2913. }
  2914. if (e < EXTRUDERS) // catch bad input value
  2915. {
  2916. if (code_seen('P')) PID_PARAM(Kp,e) = code_value();
  2917. if (code_seen('I')) PID_PARAM(Ki,e) = scalePID_i(code_value());
  2918. if (code_seen('D')) PID_PARAM(Kd,e) = scalePID_d(code_value());
  2919. #ifdef PID_ADD_EXTRUSION_RATE
  2920. if (code_seen('C')) PID_PARAM(Kc,e) = code_value();
  2921. #endif
  2922. updatePID();
  2923. SERIAL_PROTOCOL(MSG_OK);
  2924. #ifdef PID_PARAMS_PER_EXTRUDER
  2925. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  2926. SERIAL_PROTOCOL(e);
  2927. #endif // PID_PARAMS_PER_EXTRUDER
  2928. SERIAL_PROTOCOL(" p:");
  2929. SERIAL_PROTOCOL(PID_PARAM(Kp,e));
  2930. SERIAL_PROTOCOL(" i:");
  2931. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki,e)));
  2932. SERIAL_PROTOCOL(" d:");
  2933. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd,e)));
  2934. #ifdef PID_ADD_EXTRUSION_RATE
  2935. SERIAL_PROTOCOL(" c:");
  2936. //Kc does not have scaling applied above, or in resetting defaults
  2937. SERIAL_PROTOCOL(PID_PARAM(Kc,e));
  2938. #endif
  2939. SERIAL_PROTOCOLLN("");
  2940. }
  2941. else
  2942. {
  2943. SERIAL_ECHO_START;
  2944. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2945. }
  2946. }
  2947. break;
  2948. #endif //PIDTEMP
  2949. #ifdef PIDTEMPBED
  2950. case 304: // M304
  2951. {
  2952. if(code_seen('P')) bedKp = code_value();
  2953. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2954. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2955. updatePID();
  2956. SERIAL_PROTOCOL(MSG_OK);
  2957. SERIAL_PROTOCOL(" p:");
  2958. SERIAL_PROTOCOL(bedKp);
  2959. SERIAL_PROTOCOL(" i:");
  2960. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2961. SERIAL_PROTOCOL(" d:");
  2962. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2963. SERIAL_PROTOCOLLN("");
  2964. }
  2965. break;
  2966. #endif //PIDTEMP
  2967. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2968. {
  2969. #ifdef CHDK
  2970. SET_OUTPUT(CHDK);
  2971. WRITE(CHDK, HIGH);
  2972. chdkHigh = millis();
  2973. chdkActive = true;
  2974. #else
  2975. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2976. const uint8_t NUM_PULSES=16;
  2977. const float PULSE_LENGTH=0.01524;
  2978. for(int i=0; i < NUM_PULSES; i++) {
  2979. WRITE(PHOTOGRAPH_PIN, HIGH);
  2980. _delay_ms(PULSE_LENGTH);
  2981. WRITE(PHOTOGRAPH_PIN, LOW);
  2982. _delay_ms(PULSE_LENGTH);
  2983. }
  2984. delay(7.33);
  2985. for(int i=0; i < NUM_PULSES; i++) {
  2986. WRITE(PHOTOGRAPH_PIN, HIGH);
  2987. _delay_ms(PULSE_LENGTH);
  2988. WRITE(PHOTOGRAPH_PIN, LOW);
  2989. _delay_ms(PULSE_LENGTH);
  2990. }
  2991. #endif
  2992. #endif //chdk end if
  2993. }
  2994. break;
  2995. #ifdef DOGLCD
  2996. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2997. {
  2998. if (code_seen('C')) {
  2999. lcd_setcontrast( ((int)code_value())&63 );
  3000. }
  3001. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3002. SERIAL_PROTOCOL(lcd_contrast);
  3003. SERIAL_PROTOCOLLN("");
  3004. }
  3005. break;
  3006. #endif
  3007. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3008. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3009. {
  3010. float temp = .0;
  3011. if (code_seen('S')) temp=code_value();
  3012. set_extrude_min_temp(temp);
  3013. }
  3014. break;
  3015. #endif
  3016. case 303: // M303 PID autotune
  3017. {
  3018. float temp = 150.0;
  3019. int e=0;
  3020. int c=5;
  3021. if (code_seen('E')) e=code_value();
  3022. if (e<0)
  3023. temp=70;
  3024. if (code_seen('S')) temp=code_value();
  3025. if (code_seen('C')) c=code_value();
  3026. PID_autotune(temp, e, c);
  3027. }
  3028. break;
  3029. #ifdef SCARA
  3030. case 360: // M360 SCARA Theta pos1
  3031. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3032. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3033. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3034. if(Stopped == false) {
  3035. //get_coordinates(); // For X Y Z E F
  3036. delta[X_AXIS] = 0;
  3037. delta[Y_AXIS] = 120;
  3038. calculate_SCARA_forward_Transform(delta);
  3039. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3040. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3041. prepare_move();
  3042. //ClearToSend();
  3043. return;
  3044. }
  3045. break;
  3046. case 361: // SCARA Theta pos2
  3047. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3048. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3049. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3050. if(Stopped == false) {
  3051. //get_coordinates(); // For X Y Z E F
  3052. delta[X_AXIS] = 90;
  3053. delta[Y_AXIS] = 130;
  3054. calculate_SCARA_forward_Transform(delta);
  3055. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3056. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3057. prepare_move();
  3058. //ClearToSend();
  3059. return;
  3060. }
  3061. break;
  3062. case 362: // SCARA Psi pos1
  3063. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3064. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3065. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3066. if(Stopped == false) {
  3067. //get_coordinates(); // For X Y Z E F
  3068. delta[X_AXIS] = 60;
  3069. delta[Y_AXIS] = 180;
  3070. calculate_SCARA_forward_Transform(delta);
  3071. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3072. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3073. prepare_move();
  3074. //ClearToSend();
  3075. return;
  3076. }
  3077. break;
  3078. case 363: // SCARA Psi pos2
  3079. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3080. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3081. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3082. if(Stopped == false) {
  3083. //get_coordinates(); // For X Y Z E F
  3084. delta[X_AXIS] = 50;
  3085. delta[Y_AXIS] = 90;
  3086. calculate_SCARA_forward_Transform(delta);
  3087. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3088. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3089. prepare_move();
  3090. //ClearToSend();
  3091. return;
  3092. }
  3093. break;
  3094. case 364: // SCARA Psi pos3 (90 deg to Theta)
  3095. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3096. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3097. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3098. if(Stopped == false) {
  3099. //get_coordinates(); // For X Y Z E F
  3100. delta[X_AXIS] = 45;
  3101. delta[Y_AXIS] = 135;
  3102. calculate_SCARA_forward_Transform(delta);
  3103. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3104. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3105. prepare_move();
  3106. //ClearToSend();
  3107. return;
  3108. }
  3109. break;
  3110. case 365: // M364 Set SCARA scaling for X Y Z
  3111. for(int8_t i=0; i < 3; i++)
  3112. {
  3113. if(code_seen(axis_codes[i]))
  3114. {
  3115. axis_scaling[i] = code_value();
  3116. }
  3117. }
  3118. break;
  3119. #endif
  3120. case 400: // M400 finish all moves
  3121. {
  3122. st_synchronize();
  3123. }
  3124. break;
  3125. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3126. case 401:
  3127. {
  3128. engage_z_probe(); // Engage Z Servo endstop if available
  3129. }
  3130. break;
  3131. case 402:
  3132. {
  3133. retract_z_probe(); // Retract Z Servo endstop if enabled
  3134. }
  3135. break;
  3136. #endif
  3137. #ifdef FILAMENT_SENSOR
  3138. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3139. {
  3140. #if (FILWIDTH_PIN > -1)
  3141. if(code_seen('N')) filament_width_nominal=code_value();
  3142. else{
  3143. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3144. SERIAL_PROTOCOLLN(filament_width_nominal);
  3145. }
  3146. #endif
  3147. }
  3148. break;
  3149. case 405: //M405 Turn on filament sensor for control
  3150. {
  3151. if(code_seen('D')) meas_delay_cm=code_value();
  3152. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3153. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3154. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3155. {
  3156. int temp_ratio = widthFil_to_size_ratio();
  3157. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3158. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3159. }
  3160. delay_index1=0;
  3161. delay_index2=0;
  3162. }
  3163. filament_sensor = true ;
  3164. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3165. //SERIAL_PROTOCOL(filament_width_meas);
  3166. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3167. //SERIAL_PROTOCOL(extrudemultiply);
  3168. }
  3169. break;
  3170. case 406: //M406 Turn off filament sensor for control
  3171. {
  3172. filament_sensor = false ;
  3173. }
  3174. break;
  3175. case 407: //M407 Display measured filament diameter
  3176. {
  3177. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3178. SERIAL_PROTOCOLLN(filament_width_meas);
  3179. }
  3180. break;
  3181. #endif
  3182. case 500: // M500 Store settings in EEPROM
  3183. {
  3184. Config_StoreSettings();
  3185. }
  3186. break;
  3187. case 501: // M501 Read settings from EEPROM
  3188. {
  3189. Config_RetrieveSettings();
  3190. }
  3191. break;
  3192. case 502: // M502 Revert to default settings
  3193. {
  3194. Config_ResetDefault();
  3195. }
  3196. break;
  3197. case 503: // M503 print settings currently in memory
  3198. {
  3199. Config_PrintSettings(code_seen('S') && code_value == 0);
  3200. }
  3201. break;
  3202. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3203. case 540:
  3204. {
  3205. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3206. }
  3207. break;
  3208. #endif
  3209. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3210. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3211. {
  3212. float value;
  3213. if (code_seen('Z'))
  3214. {
  3215. value = code_value();
  3216. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3217. {
  3218. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3219. SERIAL_ECHO_START;
  3220. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3221. SERIAL_PROTOCOLLN("");
  3222. }
  3223. else
  3224. {
  3225. SERIAL_ECHO_START;
  3226. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3227. SERIAL_ECHOPGM(MSG_Z_MIN);
  3228. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3229. SERIAL_ECHOPGM(MSG_Z_MAX);
  3230. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3231. SERIAL_PROTOCOLLN("");
  3232. }
  3233. }
  3234. else
  3235. {
  3236. SERIAL_ECHO_START;
  3237. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3238. SERIAL_ECHO(-zprobe_zoffset);
  3239. SERIAL_PROTOCOLLN("");
  3240. }
  3241. break;
  3242. }
  3243. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3244. #ifdef FILAMENTCHANGEENABLE
  3245. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3246. {
  3247. float target[4];
  3248. float lastpos[4];
  3249. target[X_AXIS]=current_position[X_AXIS];
  3250. target[Y_AXIS]=current_position[Y_AXIS];
  3251. target[Z_AXIS]=current_position[Z_AXIS];
  3252. target[E_AXIS]=current_position[E_AXIS];
  3253. lastpos[X_AXIS]=current_position[X_AXIS];
  3254. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3255. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3256. lastpos[E_AXIS]=current_position[E_AXIS];
  3257. //retract by E
  3258. if(code_seen('E'))
  3259. {
  3260. target[E_AXIS]+= code_value();
  3261. }
  3262. else
  3263. {
  3264. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3265. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3266. #endif
  3267. }
  3268. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3269. //lift Z
  3270. if(code_seen('Z'))
  3271. {
  3272. target[Z_AXIS]+= code_value();
  3273. }
  3274. else
  3275. {
  3276. #ifdef FILAMENTCHANGE_ZADD
  3277. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3278. #endif
  3279. }
  3280. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3281. //move xy
  3282. if(code_seen('X'))
  3283. {
  3284. target[X_AXIS]+= code_value();
  3285. }
  3286. else
  3287. {
  3288. #ifdef FILAMENTCHANGE_XPOS
  3289. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3290. #endif
  3291. }
  3292. if(code_seen('Y'))
  3293. {
  3294. target[Y_AXIS]= code_value();
  3295. }
  3296. else
  3297. {
  3298. #ifdef FILAMENTCHANGE_YPOS
  3299. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3300. #endif
  3301. }
  3302. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3303. if(code_seen('L'))
  3304. {
  3305. target[E_AXIS]+= code_value();
  3306. }
  3307. else
  3308. {
  3309. #ifdef FILAMENTCHANGE_FINALRETRACT
  3310. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3311. #endif
  3312. }
  3313. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3314. //finish moves
  3315. st_synchronize();
  3316. //disable extruder steppers so filament can be removed
  3317. disable_e0();
  3318. disable_e1();
  3319. disable_e2();
  3320. delay(100);
  3321. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3322. uint8_t cnt=0;
  3323. while(!lcd_clicked()){
  3324. cnt++;
  3325. manage_heater();
  3326. manage_inactivity(true);
  3327. lcd_update();
  3328. if(cnt==0)
  3329. {
  3330. #if BEEPER > 0
  3331. SET_OUTPUT(BEEPER);
  3332. WRITE(BEEPER,HIGH);
  3333. delay(3);
  3334. WRITE(BEEPER,LOW);
  3335. delay(3);
  3336. #else
  3337. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3338. lcd_buzz(1000/6,100);
  3339. #else
  3340. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3341. #endif
  3342. #endif
  3343. }
  3344. }
  3345. //return to normal
  3346. if(code_seen('L'))
  3347. {
  3348. target[E_AXIS]+= -code_value();
  3349. }
  3350. else
  3351. {
  3352. #ifdef FILAMENTCHANGE_FINALRETRACT
  3353. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  3354. #endif
  3355. }
  3356. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3357. plan_set_e_position(current_position[E_AXIS]);
  3358. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  3359. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  3360. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  3361. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  3362. }
  3363. break;
  3364. #endif //FILAMENTCHANGEENABLE
  3365. #ifdef DUAL_X_CARRIAGE
  3366. case 605: // Set dual x-carriage movement mode:
  3367. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3368. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3369. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3370. // millimeters x-offset and an optional differential hotend temperature of
  3371. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3372. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3373. //
  3374. // Note: the X axis should be homed after changing dual x-carriage mode.
  3375. {
  3376. st_synchronize();
  3377. if (code_seen('S'))
  3378. dual_x_carriage_mode = code_value();
  3379. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3380. {
  3381. if (code_seen('X'))
  3382. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3383. if (code_seen('R'))
  3384. duplicate_extruder_temp_offset = code_value();
  3385. SERIAL_ECHO_START;
  3386. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3387. SERIAL_ECHO(" ");
  3388. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3389. SERIAL_ECHO(",");
  3390. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3391. SERIAL_ECHO(" ");
  3392. SERIAL_ECHO(duplicate_extruder_x_offset);
  3393. SERIAL_ECHO(",");
  3394. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3395. }
  3396. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3397. {
  3398. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3399. }
  3400. active_extruder_parked = false;
  3401. extruder_duplication_enabled = false;
  3402. delayed_move_time = 0;
  3403. }
  3404. break;
  3405. #endif //DUAL_X_CARRIAGE
  3406. case 907: // M907 Set digital trimpot motor current using axis codes.
  3407. {
  3408. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3409. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3410. if(code_seen('B')) digipot_current(4,code_value());
  3411. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3412. #endif
  3413. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3414. if(code_seen('X')) digipot_current(0, code_value());
  3415. #endif
  3416. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3417. if(code_seen('Z')) digipot_current(1, code_value());
  3418. #endif
  3419. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3420. if(code_seen('E')) digipot_current(2, code_value());
  3421. #endif
  3422. #ifdef DIGIPOT_I2C
  3423. // this one uses actual amps in floating point
  3424. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3425. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3426. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3427. #endif
  3428. }
  3429. break;
  3430. case 908: // M908 Control digital trimpot directly.
  3431. {
  3432. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3433. uint8_t channel,current;
  3434. if(code_seen('P')) channel=code_value();
  3435. if(code_seen('S')) current=code_value();
  3436. digitalPotWrite(channel, current);
  3437. #endif
  3438. }
  3439. break;
  3440. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3441. {
  3442. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3443. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3444. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3445. if(code_seen('B')) microstep_mode(4,code_value());
  3446. microstep_readings();
  3447. #endif
  3448. }
  3449. break;
  3450. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3451. {
  3452. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3453. if(code_seen('S')) switch((int)code_value())
  3454. {
  3455. case 1:
  3456. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3457. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3458. break;
  3459. case 2:
  3460. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3461. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3462. break;
  3463. }
  3464. microstep_readings();
  3465. #endif
  3466. }
  3467. break;
  3468. case 999: // M999: Restart after being stopped
  3469. Stopped = false;
  3470. lcd_reset_alert_level();
  3471. gcode_LastN = Stopped_gcode_LastN;
  3472. FlushSerialRequestResend();
  3473. break;
  3474. }
  3475. }
  3476. else if(code_seen('T'))
  3477. {
  3478. tmp_extruder = code_value();
  3479. if(tmp_extruder >= EXTRUDERS) {
  3480. SERIAL_ECHO_START;
  3481. SERIAL_ECHO("T");
  3482. SERIAL_ECHO(tmp_extruder);
  3483. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3484. }
  3485. else {
  3486. boolean make_move = false;
  3487. if(code_seen('F')) {
  3488. make_move = true;
  3489. next_feedrate = code_value();
  3490. if(next_feedrate > 0.0) {
  3491. feedrate = next_feedrate;
  3492. }
  3493. }
  3494. #if EXTRUDERS > 1
  3495. if(tmp_extruder != active_extruder) {
  3496. // Save current position to return to after applying extruder offset
  3497. memcpy(destination, current_position, sizeof(destination));
  3498. #ifdef DUAL_X_CARRIAGE
  3499. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3500. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3501. {
  3502. // Park old head: 1) raise 2) move to park position 3) lower
  3503. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3504. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3505. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3506. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3507. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3508. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3509. st_synchronize();
  3510. }
  3511. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3512. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3513. extruder_offset[Y_AXIS][active_extruder] +
  3514. extruder_offset[Y_AXIS][tmp_extruder];
  3515. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3516. extruder_offset[Z_AXIS][active_extruder] +
  3517. extruder_offset[Z_AXIS][tmp_extruder];
  3518. active_extruder = tmp_extruder;
  3519. // This function resets the max/min values - the current position may be overwritten below.
  3520. axis_is_at_home(X_AXIS);
  3521. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3522. {
  3523. current_position[X_AXIS] = inactive_extruder_x_pos;
  3524. inactive_extruder_x_pos = destination[X_AXIS];
  3525. }
  3526. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3527. {
  3528. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3529. if (active_extruder == 0 || active_extruder_parked)
  3530. current_position[X_AXIS] = inactive_extruder_x_pos;
  3531. else
  3532. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3533. inactive_extruder_x_pos = destination[X_AXIS];
  3534. extruder_duplication_enabled = false;
  3535. }
  3536. else
  3537. {
  3538. // record raised toolhead position for use by unpark
  3539. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3540. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3541. active_extruder_parked = true;
  3542. delayed_move_time = 0;
  3543. }
  3544. #else
  3545. // Offset extruder (only by XY)
  3546. int i;
  3547. for(i = 0; i < 2; i++) {
  3548. current_position[i] = current_position[i] -
  3549. extruder_offset[i][active_extruder] +
  3550. extruder_offset[i][tmp_extruder];
  3551. }
  3552. // Set the new active extruder and position
  3553. active_extruder = tmp_extruder;
  3554. #endif //else DUAL_X_CARRIAGE
  3555. #ifdef DELTA
  3556. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3557. //sent position to plan_set_position();
  3558. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3559. #else
  3560. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3561. #endif
  3562. // Move to the old position if 'F' was in the parameters
  3563. if(make_move && Stopped == false) {
  3564. prepare_move();
  3565. }
  3566. }
  3567. #endif
  3568. SERIAL_ECHO_START;
  3569. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3570. SERIAL_PROTOCOLLN((int)active_extruder);
  3571. }
  3572. }
  3573. else
  3574. {
  3575. SERIAL_ECHO_START;
  3576. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3577. SERIAL_ECHO(cmdbuffer[bufindr]);
  3578. SERIAL_ECHOLNPGM("\"");
  3579. }
  3580. ClearToSend();
  3581. }
  3582. void FlushSerialRequestResend()
  3583. {
  3584. //char cmdbuffer[bufindr][100]="Resend:";
  3585. MYSERIAL.flush();
  3586. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3587. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3588. ClearToSend();
  3589. }
  3590. void ClearToSend()
  3591. {
  3592. previous_millis_cmd = millis();
  3593. #ifdef SDSUPPORT
  3594. if(fromsd[bufindr])
  3595. return;
  3596. #endif //SDSUPPORT
  3597. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3598. }
  3599. void get_coordinates()
  3600. {
  3601. bool seen[4]={false,false,false,false};
  3602. for(int8_t i=0; i < NUM_AXIS; i++) {
  3603. if(code_seen(axis_codes[i]))
  3604. {
  3605. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3606. seen[i]=true;
  3607. }
  3608. else destination[i] = current_position[i]; //Are these else lines really needed?
  3609. }
  3610. if(code_seen('F')) {
  3611. next_feedrate = code_value();
  3612. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3613. }
  3614. }
  3615. void get_arc_coordinates()
  3616. {
  3617. #ifdef SF_ARC_FIX
  3618. bool relative_mode_backup = relative_mode;
  3619. relative_mode = true;
  3620. #endif
  3621. get_coordinates();
  3622. #ifdef SF_ARC_FIX
  3623. relative_mode=relative_mode_backup;
  3624. #endif
  3625. if(code_seen('I')) {
  3626. offset[0] = code_value();
  3627. }
  3628. else {
  3629. offset[0] = 0.0;
  3630. }
  3631. if(code_seen('J')) {
  3632. offset[1] = code_value();
  3633. }
  3634. else {
  3635. offset[1] = 0.0;
  3636. }
  3637. }
  3638. void clamp_to_software_endstops(float target[3])
  3639. {
  3640. if (min_software_endstops) {
  3641. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3642. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3643. float negative_z_offset = 0;
  3644. #ifdef ENABLE_AUTO_BED_LEVELING
  3645. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  3646. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  3647. #endif
  3648. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  3649. }
  3650. if (max_software_endstops) {
  3651. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3652. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3653. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3654. }
  3655. }
  3656. #ifdef DELTA
  3657. void recalc_delta_settings(float radius, float diagonal_rod)
  3658. {
  3659. delta_tower1_x= -SIN_60*radius; // front left tower
  3660. delta_tower1_y= -COS_60*radius;
  3661. delta_tower2_x= SIN_60*radius; // front right tower
  3662. delta_tower2_y= -COS_60*radius;
  3663. delta_tower3_x= 0.0; // back middle tower
  3664. delta_tower3_y= radius;
  3665. delta_diagonal_rod_2= sq(diagonal_rod);
  3666. }
  3667. void calculate_delta(float cartesian[3])
  3668. {
  3669. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3670. - sq(delta_tower1_x-cartesian[X_AXIS])
  3671. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3672. ) + cartesian[Z_AXIS];
  3673. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3674. - sq(delta_tower2_x-cartesian[X_AXIS])
  3675. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3676. ) + cartesian[Z_AXIS];
  3677. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3678. - sq(delta_tower3_x-cartesian[X_AXIS])
  3679. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3680. ) + cartesian[Z_AXIS];
  3681. /*
  3682. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3683. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3684. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3685. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3686. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3687. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3688. */
  3689. }
  3690. #endif
  3691. void prepare_move()
  3692. {
  3693. clamp_to_software_endstops(destination);
  3694. previous_millis_cmd = millis();
  3695. #ifdef SCARA //for now same as delta-code
  3696. float difference[NUM_AXIS];
  3697. for (int8_t i=0; i < NUM_AXIS; i++) {
  3698. difference[i] = destination[i] - current_position[i];
  3699. }
  3700. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3701. sq(difference[Y_AXIS]) +
  3702. sq(difference[Z_AXIS]));
  3703. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3704. if (cartesian_mm < 0.000001) { return; }
  3705. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3706. int steps = max(1, int(scara_segments_per_second * seconds));
  3707. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3708. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3709. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3710. for (int s = 1; s <= steps; s++) {
  3711. float fraction = float(s) / float(steps);
  3712. for(int8_t i=0; i < NUM_AXIS; i++) {
  3713. destination[i] = current_position[i] + difference[i] * fraction;
  3714. }
  3715. calculate_delta(destination);
  3716. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  3717. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  3718. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  3719. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3720. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3721. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3722. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3723. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3724. active_extruder);
  3725. }
  3726. #endif // SCARA
  3727. #ifdef DELTA
  3728. float difference[NUM_AXIS];
  3729. for (int8_t i=0; i < NUM_AXIS; i++) {
  3730. difference[i] = destination[i] - current_position[i];
  3731. }
  3732. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3733. sq(difference[Y_AXIS]) +
  3734. sq(difference[Z_AXIS]));
  3735. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3736. if (cartesian_mm < 0.000001) { return; }
  3737. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3738. int steps = max(1, int(delta_segments_per_second * seconds));
  3739. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3740. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3741. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3742. for (int s = 1; s <= steps; s++) {
  3743. float fraction = float(s) / float(steps);
  3744. for(int8_t i=0; i < NUM_AXIS; i++) {
  3745. destination[i] = current_position[i] + difference[i] * fraction;
  3746. }
  3747. calculate_delta(destination);
  3748. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3749. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3750. active_extruder);
  3751. }
  3752. #endif // DELTA
  3753. #ifdef DUAL_X_CARRIAGE
  3754. if (active_extruder_parked)
  3755. {
  3756. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3757. {
  3758. // move duplicate extruder into correct duplication position.
  3759. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3760. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3761. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3762. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3763. st_synchronize();
  3764. extruder_duplication_enabled = true;
  3765. active_extruder_parked = false;
  3766. }
  3767. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3768. {
  3769. if (current_position[E_AXIS] == destination[E_AXIS])
  3770. {
  3771. // this is a travel move - skit it but keep track of current position (so that it can later
  3772. // be used as start of first non-travel move)
  3773. if (delayed_move_time != 0xFFFFFFFFUL)
  3774. {
  3775. memcpy(current_position, destination, sizeof(current_position));
  3776. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3777. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3778. delayed_move_time = millis();
  3779. return;
  3780. }
  3781. }
  3782. delayed_move_time = 0;
  3783. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3784. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3786. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3788. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3789. active_extruder_parked = false;
  3790. }
  3791. }
  3792. #endif //DUAL_X_CARRIAGE
  3793. #if ! (defined DELTA || defined SCARA)
  3794. // Do not use feedmultiply for E or Z only moves
  3795. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3796. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3797. }
  3798. else {
  3799. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3800. }
  3801. #endif // !(DELTA || SCARA)
  3802. for(int8_t i=0; i < NUM_AXIS; i++) {
  3803. current_position[i] = destination[i];
  3804. }
  3805. }
  3806. void prepare_arc_move(char isclockwise) {
  3807. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3808. // Trace the arc
  3809. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3810. // As far as the parser is concerned, the position is now == target. In reality the
  3811. // motion control system might still be processing the action and the real tool position
  3812. // in any intermediate location.
  3813. for(int8_t i=0; i < NUM_AXIS; i++) {
  3814. current_position[i] = destination[i];
  3815. }
  3816. previous_millis_cmd = millis();
  3817. }
  3818. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3819. #if defined(FAN_PIN)
  3820. #if CONTROLLERFAN_PIN == FAN_PIN
  3821. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3822. #endif
  3823. #endif
  3824. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3825. unsigned long lastMotorCheck = 0;
  3826. void controllerFan()
  3827. {
  3828. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3829. {
  3830. lastMotorCheck = millis();
  3831. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3832. #if EXTRUDERS > 2
  3833. || !READ(E2_ENABLE_PIN)
  3834. #endif
  3835. #if EXTRUDER > 1
  3836. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3837. || !READ(X2_ENABLE_PIN)
  3838. #endif
  3839. || !READ(E1_ENABLE_PIN)
  3840. #endif
  3841. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3842. {
  3843. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3844. }
  3845. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3846. {
  3847. digitalWrite(CONTROLLERFAN_PIN, 0);
  3848. analogWrite(CONTROLLERFAN_PIN, 0);
  3849. }
  3850. else
  3851. {
  3852. // allows digital or PWM fan output to be used (see M42 handling)
  3853. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3854. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3855. }
  3856. }
  3857. }
  3858. #endif
  3859. #ifdef SCARA
  3860. void calculate_SCARA_forward_Transform(float f_scara[3])
  3861. {
  3862. // Perform forward kinematics, and place results in delta[3]
  3863. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3864. float x_sin, x_cos, y_sin, y_cos;
  3865. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3866. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3867. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3868. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3869. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3870. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3871. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  3872. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  3873. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  3874. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  3875. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  3876. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  3877. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  3878. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3879. }
  3880. void calculate_delta(float cartesian[3]){
  3881. //reverse kinematics.
  3882. // Perform reversed kinematics, and place results in delta[3]
  3883. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3884. float SCARA_pos[2];
  3885. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  3886. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  3887. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  3888. #if (Linkage_1 == Linkage_2)
  3889. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  3890. #else
  3891. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  3892. #endif
  3893. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  3894. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  3895. SCARA_K2 = Linkage_2 * SCARA_S2;
  3896. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  3897. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  3898. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  3899. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  3900. delta[Z_AXIS] = cartesian[Z_AXIS];
  3901. /*
  3902. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3903. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3904. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3905. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  3906. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  3907. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3908. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3909. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3910. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  3911. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  3912. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  3913. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  3914. SERIAL_ECHOLN(" ");*/
  3915. }
  3916. #endif
  3917. #ifdef TEMP_STAT_LEDS
  3918. static bool blue_led = false;
  3919. static bool red_led = false;
  3920. static uint32_t stat_update = 0;
  3921. void handle_status_leds(void) {
  3922. float max_temp = 0.0;
  3923. if(millis() > stat_update) {
  3924. stat_update += 500; // Update every 0.5s
  3925. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3926. max_temp = max(max_temp, degHotend(cur_extruder));
  3927. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3928. }
  3929. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3930. max_temp = max(max_temp, degTargetBed());
  3931. max_temp = max(max_temp, degBed());
  3932. #endif
  3933. if((max_temp > 55.0) && (red_led == false)) {
  3934. digitalWrite(STAT_LED_RED, 1);
  3935. digitalWrite(STAT_LED_BLUE, 0);
  3936. red_led = true;
  3937. blue_led = false;
  3938. }
  3939. if((max_temp < 54.0) && (blue_led == false)) {
  3940. digitalWrite(STAT_LED_RED, 0);
  3941. digitalWrite(STAT_LED_BLUE, 1);
  3942. red_led = false;
  3943. blue_led = true;
  3944. }
  3945. }
  3946. }
  3947. #endif
  3948. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  3949. {
  3950. #if defined(KILL_PIN) && KILL_PIN > -1
  3951. static int killCount = 0; // make the inactivity button a bit less responsive
  3952. const int KILL_DELAY = 10000;
  3953. #endif
  3954. #if defined(HOME_PIN) && HOME_PIN > -1
  3955. static int homeDebounceCount = 0; // poor man's debouncing count
  3956. const int HOME_DEBOUNCE_DELAY = 10000;
  3957. #endif
  3958. if(buflen < (BUFSIZE-1))
  3959. get_command();
  3960. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3961. if(max_inactive_time)
  3962. kill();
  3963. if(stepper_inactive_time) {
  3964. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3965. {
  3966. if(blocks_queued() == false && ignore_stepper_queue == false) {
  3967. disable_x();
  3968. disable_y();
  3969. disable_z();
  3970. disable_e0();
  3971. disable_e1();
  3972. disable_e2();
  3973. }
  3974. }
  3975. }
  3976. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3977. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  3978. {
  3979. chdkActive = false;
  3980. WRITE(CHDK, LOW);
  3981. }
  3982. #endif
  3983. #if defined(KILL_PIN) && KILL_PIN > -1
  3984. // Check if the kill button was pressed and wait just in case it was an accidental
  3985. // key kill key press
  3986. // -------------------------------------------------------------------------------
  3987. if( 0 == READ(KILL_PIN) )
  3988. {
  3989. killCount++;
  3990. }
  3991. else if (killCount > 0)
  3992. {
  3993. killCount--;
  3994. }
  3995. // Exceeded threshold and we can confirm that it was not accidental
  3996. // KILL the machine
  3997. // ----------------------------------------------------------------
  3998. if ( killCount >= KILL_DELAY)
  3999. {
  4000. kill();
  4001. }
  4002. #endif
  4003. #if defined(HOME_PIN) && HOME_PIN > -1
  4004. // Check to see if we have to home, use poor man's debouncer
  4005. // ---------------------------------------------------------
  4006. if ( 0 == READ(HOME_PIN) )
  4007. {
  4008. if (homeDebounceCount == 0)
  4009. {
  4010. enquecommand_P((PSTR("G28")));
  4011. homeDebounceCount++;
  4012. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4013. }
  4014. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4015. {
  4016. homeDebounceCount++;
  4017. }
  4018. else
  4019. {
  4020. homeDebounceCount = 0;
  4021. }
  4022. }
  4023. #endif
  4024. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4025. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4026. #endif
  4027. #ifdef EXTRUDER_RUNOUT_PREVENT
  4028. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4029. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4030. {
  4031. bool oldstatus=READ(E0_ENABLE_PIN);
  4032. enable_e0();
  4033. float oldepos=current_position[E_AXIS];
  4034. float oldedes=destination[E_AXIS];
  4035. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4036. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4037. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4038. current_position[E_AXIS]=oldepos;
  4039. destination[E_AXIS]=oldedes;
  4040. plan_set_e_position(oldepos);
  4041. previous_millis_cmd=millis();
  4042. st_synchronize();
  4043. WRITE(E0_ENABLE_PIN,oldstatus);
  4044. }
  4045. #endif
  4046. #if defined(DUAL_X_CARRIAGE)
  4047. // handle delayed move timeout
  4048. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4049. {
  4050. // travel moves have been received so enact them
  4051. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4052. memcpy(destination,current_position,sizeof(destination));
  4053. prepare_move();
  4054. }
  4055. #endif
  4056. #ifdef TEMP_STAT_LEDS
  4057. handle_status_leds();
  4058. #endif
  4059. check_axes_activity();
  4060. }
  4061. void kill()
  4062. {
  4063. cli(); // Stop interrupts
  4064. disable_heater();
  4065. disable_x();
  4066. disable_y();
  4067. disable_z();
  4068. disable_e0();
  4069. disable_e1();
  4070. disable_e2();
  4071. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4072. pinMode(PS_ON_PIN,INPUT);
  4073. #endif
  4074. SERIAL_ERROR_START;
  4075. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4076. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4077. // FMC small patch to update the LCD before ending
  4078. sei(); // enable interrupts
  4079. for ( int i=5; i--; lcd_update())
  4080. {
  4081. delay(200);
  4082. }
  4083. cli(); // disable interrupts
  4084. suicide();
  4085. while(1) { /* Intentionally left empty */ } // Wait for reset
  4086. }
  4087. void Stop()
  4088. {
  4089. disable_heater();
  4090. if(Stopped == false) {
  4091. Stopped = true;
  4092. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4093. SERIAL_ERROR_START;
  4094. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4095. LCD_MESSAGEPGM(MSG_STOPPED);
  4096. }
  4097. }
  4098. bool IsStopped() { return Stopped; };
  4099. #ifdef FAST_PWM_FAN
  4100. void setPwmFrequency(uint8_t pin, int val)
  4101. {
  4102. val &= 0x07;
  4103. switch(digitalPinToTimer(pin))
  4104. {
  4105. #if defined(TCCR0A)
  4106. case TIMER0A:
  4107. case TIMER0B:
  4108. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4109. // TCCR0B |= val;
  4110. break;
  4111. #endif
  4112. #if defined(TCCR1A)
  4113. case TIMER1A:
  4114. case TIMER1B:
  4115. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4116. // TCCR1B |= val;
  4117. break;
  4118. #endif
  4119. #if defined(TCCR2)
  4120. case TIMER2:
  4121. case TIMER2:
  4122. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4123. TCCR2 |= val;
  4124. break;
  4125. #endif
  4126. #if defined(TCCR2A)
  4127. case TIMER2A:
  4128. case TIMER2B:
  4129. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4130. TCCR2B |= val;
  4131. break;
  4132. #endif
  4133. #if defined(TCCR3A)
  4134. case TIMER3A:
  4135. case TIMER3B:
  4136. case TIMER3C:
  4137. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4138. TCCR3B |= val;
  4139. break;
  4140. #endif
  4141. #if defined(TCCR4A)
  4142. case TIMER4A:
  4143. case TIMER4B:
  4144. case TIMER4C:
  4145. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4146. TCCR4B |= val;
  4147. break;
  4148. #endif
  4149. #if defined(TCCR5A)
  4150. case TIMER5A:
  4151. case TIMER5B:
  4152. case TIMER5C:
  4153. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4154. TCCR5B |= val;
  4155. break;
  4156. #endif
  4157. }
  4158. }
  4159. #endif //FAST_PWM_FAN
  4160. bool setTargetedHotend(int code){
  4161. tmp_extruder = active_extruder;
  4162. if(code_seen('T')) {
  4163. tmp_extruder = code_value();
  4164. if(tmp_extruder >= EXTRUDERS) {
  4165. SERIAL_ECHO_START;
  4166. switch(code){
  4167. case 104:
  4168. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4169. break;
  4170. case 105:
  4171. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4172. break;
  4173. case 109:
  4174. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4175. break;
  4176. case 218:
  4177. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4178. break;
  4179. case 221:
  4180. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4181. break;
  4182. }
  4183. SERIAL_ECHOLN(tmp_extruder);
  4184. return true;
  4185. }
  4186. }
  4187. return false;
  4188. }
  4189. float calculate_volumetric_multiplier(float diameter) {
  4190. float area = .0;
  4191. float radius = .0;
  4192. radius = diameter * .5;
  4193. if (! volumetric_enabled || radius == 0) {
  4194. area = 1;
  4195. }
  4196. else {
  4197. area = M_PI * pow(radius, 2);
  4198. }
  4199. return 1.0 / area;
  4200. }
  4201. void calculate_volumetric_multipliers() {
  4202. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4203. #if EXTRUDERS > 1
  4204. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4205. #if EXTRUDERS > 2
  4206. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4207. #if EXTRUDERS > 3
  4208. volumetric_multiplier[3] = calculate_volumetric_multiplier(filament_size[3]);
  4209. #endif //EXTRUDERS > 3
  4210. #endif //EXTRUDERS > 2
  4211. #endif //EXTRUDERS > 1
  4212. }