My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

temperature.h 15KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * temperature.h - temperature controller
  24. */
  25. #ifndef TEMPERATURE_H
  26. #define TEMPERATURE_H
  27. #include "thermistortables.h"
  28. #include "MarlinConfig.h"
  29. #if ENABLED(PID_EXTRUSION_SCALING)
  30. #include "stepper.h"
  31. #endif
  32. #ifndef SOFT_PWM_SCALE
  33. #define SOFT_PWM_SCALE 0
  34. #endif
  35. #define HOTEND_LOOP() for (int8_t e = 0; e < HOTENDS; e++)
  36. #if HOTENDS == 1
  37. #define HOTEND_INDEX 0
  38. #define EXTRUDER_IDX 0
  39. #else
  40. #define HOTEND_INDEX e
  41. #define EXTRUDER_IDX active_extruder
  42. #endif
  43. /**
  44. * States for ADC reading in the ISR
  45. */
  46. enum ADCSensorState {
  47. #if HAS_TEMP_0
  48. PrepareTemp_0,
  49. MeasureTemp_0,
  50. #endif
  51. #if HAS_TEMP_1
  52. PrepareTemp_1,
  53. MeasureTemp_1,
  54. #endif
  55. #if HAS_TEMP_2
  56. PrepareTemp_2,
  57. MeasureTemp_2,
  58. #endif
  59. #if HAS_TEMP_3
  60. PrepareTemp_3,
  61. MeasureTemp_3,
  62. #endif
  63. #if HAS_TEMP_4
  64. PrepareTemp_4,
  65. MeasureTemp_4,
  66. #endif
  67. #if HAS_TEMP_BED
  68. PrepareTemp_BED,
  69. MeasureTemp_BED,
  70. #endif
  71. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  72. Prepare_FILWIDTH,
  73. Measure_FILWIDTH,
  74. #endif
  75. SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.
  76. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  77. };
  78. // Minimum number of Temperature::ISR loops between sensor readings.
  79. // Multiplied by 16 (OVERSAMPLENR) to obtain the total time to
  80. // get all oversampled sensor readings
  81. #define MIN_ADC_ISR_LOOPS 10
  82. #define ACTUAL_ADC_SAMPLES max(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))
  83. #if !HAS_HEATER_BED
  84. constexpr int16_t target_temperature_bed = 0;
  85. #endif
  86. class Temperature {
  87. public:
  88. static float current_temperature[HOTENDS],
  89. current_temperature_bed;
  90. static int16_t current_temperature_raw[HOTENDS],
  91. target_temperature[HOTENDS],
  92. current_temperature_bed_raw;
  93. #if HAS_HEATER_BED
  94. static int16_t target_temperature_bed;
  95. #endif
  96. static volatile bool in_temp_isr;
  97. static uint8_t soft_pwm_amount[HOTENDS],
  98. soft_pwm_amount_bed;
  99. #if ENABLED(FAN_SOFT_PWM)
  100. static uint8_t soft_pwm_amount_fan[FAN_COUNT],
  101. soft_pwm_count_fan[FAN_COUNT];
  102. #endif
  103. #if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED)
  104. #define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / (F_CPU / 64.0 / 256.0))
  105. #endif
  106. #if ENABLED(PIDTEMP)
  107. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  108. static float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS];
  109. #if ENABLED(PID_EXTRUSION_SCALING)
  110. static float Kc[HOTENDS];
  111. #endif
  112. #define PID_PARAM(param, h) Temperature::param[h]
  113. #else
  114. static float Kp, Ki, Kd;
  115. #if ENABLED(PID_EXTRUSION_SCALING)
  116. static float Kc;
  117. #endif
  118. #define PID_PARAM(param, h) Temperature::param
  119. #endif // PID_PARAMS_PER_HOTEND
  120. // Apply the scale factors to the PID values
  121. #define scalePID_i(i) ( (i) * PID_dT )
  122. #define unscalePID_i(i) ( (i) / PID_dT )
  123. #define scalePID_d(d) ( (d) / PID_dT )
  124. #define unscalePID_d(d) ( (d) * PID_dT )
  125. #endif
  126. #if ENABLED(PIDTEMPBED)
  127. static float bedKp, bedKi, bedKd;
  128. #endif
  129. #if ENABLED(BABYSTEPPING)
  130. static volatile int babystepsTodo[3];
  131. #endif
  132. #if WATCH_HOTENDS
  133. static uint16_t watch_target_temp[HOTENDS];
  134. static millis_t watch_heater_next_ms[HOTENDS];
  135. #endif
  136. #if WATCH_THE_BED
  137. static uint16_t watch_target_bed_temp;
  138. static millis_t watch_bed_next_ms;
  139. #endif
  140. #if ENABLED(PREVENT_COLD_EXTRUSION)
  141. static bool allow_cold_extrude;
  142. static uint16_t extrude_min_temp;
  143. static bool tooColdToExtrude(uint8_t e) {
  144. #if HOTENDS == 1
  145. UNUSED(e);
  146. #endif
  147. return allow_cold_extrude ? false : degHotend(HOTEND_INDEX) < extrude_min_temp;
  148. }
  149. #else
  150. static bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
  151. #endif
  152. private:
  153. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  154. static uint16_t redundant_temperature_raw;
  155. static float redundant_temperature;
  156. #endif
  157. static volatile bool temp_meas_ready;
  158. #if ENABLED(PIDTEMP)
  159. static float temp_iState[HOTENDS],
  160. temp_dState[HOTENDS],
  161. pTerm[HOTENDS],
  162. iTerm[HOTENDS],
  163. dTerm[HOTENDS];
  164. #if ENABLED(PID_EXTRUSION_SCALING)
  165. static float cTerm[HOTENDS];
  166. static long last_e_position;
  167. static long lpq[LPQ_MAX_LEN];
  168. static int lpq_ptr;
  169. #endif
  170. static float pid_error[HOTENDS];
  171. static bool pid_reset[HOTENDS];
  172. #endif
  173. #if ENABLED(PIDTEMPBED)
  174. static float temp_iState_bed,
  175. temp_dState_bed,
  176. pTerm_bed,
  177. iTerm_bed,
  178. dTerm_bed,
  179. pid_error_bed;
  180. #else
  181. static millis_t next_bed_check_ms;
  182. #endif
  183. static uint16_t raw_temp_value[MAX_EXTRUDERS],
  184. raw_temp_bed_value;
  185. // Init min and max temp with extreme values to prevent false errors during startup
  186. static int16_t minttemp_raw[HOTENDS],
  187. maxttemp_raw[HOTENDS],
  188. minttemp[HOTENDS],
  189. maxttemp[HOTENDS];
  190. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  191. static uint8_t consecutive_low_temperature_error[HOTENDS];
  192. #endif
  193. #ifdef MILLISECONDS_PREHEAT_TIME
  194. static millis_t preheat_end_time[HOTENDS];
  195. #endif
  196. #ifdef BED_MINTEMP
  197. static int16_t bed_minttemp_raw;
  198. #endif
  199. #ifdef BED_MAXTEMP
  200. static int16_t bed_maxttemp_raw;
  201. #endif
  202. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  203. static int16_t meas_shift_index; // Index of a delayed sample in buffer
  204. #endif
  205. #if HAS_AUTO_FAN
  206. static millis_t next_auto_fan_check_ms;
  207. #endif
  208. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  209. static int current_raw_filwidth; //Holds measured filament diameter - one extruder only
  210. #endif
  211. #if ENABLED(PROBING_HEATERS_OFF)
  212. static bool paused;
  213. #endif
  214. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  215. static millis_t heater_idle_timeout_ms[HOTENDS];
  216. static bool heater_idle_timeout_exceeded[HOTENDS];
  217. #if HAS_TEMP_BED
  218. static millis_t bed_idle_timeout_ms;
  219. static bool bed_idle_timeout_exceeded;
  220. #endif
  221. #endif
  222. public:
  223. /**
  224. * Instance Methods
  225. */
  226. Temperature();
  227. void init();
  228. /**
  229. * Static (class) methods
  230. */
  231. static float analog2temp(int raw, uint8_t e);
  232. static float analog2tempBed(int raw);
  233. /**
  234. * Called from the Temperature ISR
  235. */
  236. static void isr();
  237. /**
  238. * Call periodically to manage heaters
  239. */
  240. static void manage_heater() _O2; // Added _O2 to work around a compiler error
  241. /**
  242. * Preheating hotends
  243. */
  244. #ifdef MILLISECONDS_PREHEAT_TIME
  245. static bool is_preheating(uint8_t e) {
  246. #if HOTENDS == 1
  247. UNUSED(e);
  248. #endif
  249. return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
  250. }
  251. static void start_preheat_time(uint8_t e) {
  252. #if HOTENDS == 1
  253. UNUSED(e);
  254. #endif
  255. preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
  256. }
  257. static void reset_preheat_time(uint8_t e) {
  258. #if HOTENDS == 1
  259. UNUSED(e);
  260. #endif
  261. preheat_end_time[HOTEND_INDEX] = 0;
  262. }
  263. #else
  264. #define is_preheating(n) (false)
  265. #endif
  266. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  267. static float analog2widthFil(); // Convert raw Filament Width to millimeters
  268. static int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio
  269. #endif
  270. //high level conversion routines, for use outside of temperature.cpp
  271. //inline so that there is no performance decrease.
  272. //deg=degreeCelsius
  273. static float degHotend(uint8_t e) {
  274. #if HOTENDS == 1
  275. UNUSED(e);
  276. #endif
  277. return current_temperature[HOTEND_INDEX];
  278. }
  279. static float degBed() { return current_temperature_bed; }
  280. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  281. static int16_t rawHotendTemp(uint8_t e) {
  282. #if HOTENDS == 1
  283. UNUSED(e);
  284. #endif
  285. return current_temperature_raw[HOTEND_INDEX];
  286. }
  287. static int16_t rawBedTemp() { return current_temperature_bed_raw; }
  288. #endif
  289. static int16_t degTargetHotend(uint8_t e) {
  290. #if HOTENDS == 1
  291. UNUSED(e);
  292. #endif
  293. return target_temperature[HOTEND_INDEX];
  294. }
  295. static int16_t degTargetBed() { return target_temperature_bed; }
  296. #if WATCH_HOTENDS
  297. static void start_watching_heater(uint8_t e = 0);
  298. #endif
  299. #if WATCH_THE_BED
  300. static void start_watching_bed();
  301. #endif
  302. static void setTargetHotend(const int16_t celsius, uint8_t e) {
  303. #if HOTENDS == 1
  304. UNUSED(e);
  305. #endif
  306. #ifdef MILLISECONDS_PREHEAT_TIME
  307. if (celsius == 0)
  308. reset_preheat_time(HOTEND_INDEX);
  309. else if (target_temperature[HOTEND_INDEX] == 0)
  310. start_preheat_time(HOTEND_INDEX);
  311. #endif
  312. target_temperature[HOTEND_INDEX] = celsius;
  313. #if WATCH_HOTENDS
  314. start_watching_heater(HOTEND_INDEX);
  315. #endif
  316. }
  317. static void setTargetBed(const int16_t celsius) {
  318. #if HAS_HEATER_BED
  319. target_temperature_bed =
  320. #ifdef BED_MAXTEMP
  321. min(celsius, BED_MAXTEMP)
  322. #else
  323. celsius
  324. #endif
  325. ;
  326. #if WATCH_THE_BED
  327. start_watching_bed();
  328. #endif
  329. #endif
  330. }
  331. static bool isHeatingHotend(uint8_t e) {
  332. #if HOTENDS == 1
  333. UNUSED(e);
  334. #endif
  335. return target_temperature[HOTEND_INDEX] > current_temperature[HOTEND_INDEX];
  336. }
  337. static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
  338. static bool isCoolingHotend(uint8_t e) {
  339. #if HOTENDS == 1
  340. UNUSED(e);
  341. #endif
  342. return target_temperature[HOTEND_INDEX] < current_temperature[HOTEND_INDEX];
  343. }
  344. static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
  345. /**
  346. * The software PWM power for a heater
  347. */
  348. static int getHeaterPower(int heater);
  349. /**
  350. * Switch off all heaters, set all target temperatures to 0
  351. */
  352. static void disable_all_heaters();
  353. /**
  354. * Perform auto-tuning for hotend or bed in response to M303
  355. */
  356. #if HAS_PID_HEATING
  357. static void PID_autotune(float temp, int hotend, int ncycles, bool set_result=false);
  358. #endif
  359. /**
  360. * Update the temp manager when PID values change
  361. */
  362. static void updatePID();
  363. #if ENABLED(BABYSTEPPING)
  364. static void babystep_axis(const AxisEnum axis, const int distance) {
  365. if (axis_known_position[axis]) {
  366. #if IS_CORE
  367. #if ENABLED(BABYSTEP_XY)
  368. switch (axis) {
  369. case CORE_AXIS_1: // X on CoreXY and CoreXZ, Y on CoreYZ
  370. babystepsTodo[CORE_AXIS_1] += distance * 2;
  371. babystepsTodo[CORE_AXIS_2] += distance * 2;
  372. break;
  373. case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ and CoreYZ
  374. babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
  375. babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
  376. break;
  377. case NORMAL_AXIS: // Z on CoreXY, Y on CoreXZ, X on CoreYZ
  378. babystepsTodo[NORMAL_AXIS] += distance;
  379. break;
  380. }
  381. #elif CORE_IS_XZ || CORE_IS_YZ
  382. // Only Z stepping needs to be handled here
  383. babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
  384. babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
  385. #else
  386. babystepsTodo[Z_AXIS] += distance;
  387. #endif
  388. #else
  389. babystepsTodo[axis] += distance;
  390. #endif
  391. }
  392. }
  393. #endif // BABYSTEPPING
  394. #if ENABLED(PROBING_HEATERS_OFF)
  395. static void pause(const bool p);
  396. static bool is_paused() { return paused; }
  397. #endif
  398. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  399. static void start_heater_idle_timer(uint8_t e, millis_t timeout_ms) {
  400. #if HOTENDS == 1
  401. UNUSED(e);
  402. #endif
  403. heater_idle_timeout_ms[HOTEND_INDEX] = millis() + timeout_ms;
  404. heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
  405. }
  406. static void reset_heater_idle_timer(uint8_t e) {
  407. #if HOTENDS == 1
  408. UNUSED(e);
  409. #endif
  410. heater_idle_timeout_ms[HOTEND_INDEX] = 0;
  411. heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
  412. #if WATCH_HOTENDS
  413. start_watching_heater(HOTEND_INDEX);
  414. #endif
  415. }
  416. static bool is_heater_idle(uint8_t e) {
  417. #if HOTENDS == 1
  418. UNUSED(e);
  419. #endif
  420. return heater_idle_timeout_exceeded[HOTEND_INDEX];
  421. }
  422. #if HAS_TEMP_BED
  423. static void start_bed_idle_timer(millis_t timeout_ms) {
  424. bed_idle_timeout_ms = millis() + timeout_ms;
  425. bed_idle_timeout_exceeded = false;
  426. }
  427. static void reset_bed_idle_timer() {
  428. bed_idle_timeout_ms = 0;
  429. bed_idle_timeout_exceeded = false;
  430. #if WATCH_THE_BED
  431. start_watching_bed();
  432. #endif
  433. }
  434. static bool is_bed_idle() {
  435. return bed_idle_timeout_exceeded;
  436. }
  437. #endif
  438. #endif
  439. private:
  440. static void set_current_temp_raw();
  441. static void updateTemperaturesFromRawValues();
  442. #if ENABLED(HEATER_0_USES_MAX6675)
  443. static int read_max6675();
  444. #endif
  445. static void checkExtruderAutoFans();
  446. static float get_pid_output(int e);
  447. #if ENABLED(PIDTEMPBED)
  448. static float get_pid_output_bed();
  449. #endif
  450. static void _temp_error(int e, const char* serial_msg, const char* lcd_msg);
  451. static void min_temp_error(int8_t e);
  452. static void max_temp_error(int8_t e);
  453. #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
  454. typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate;
  455. static void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
  456. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  457. static TRState thermal_runaway_state_machine[HOTENDS];
  458. static millis_t thermal_runaway_timer[HOTENDS];
  459. #endif
  460. #if HAS_THERMALLY_PROTECTED_BED
  461. static TRState thermal_runaway_bed_state_machine;
  462. static millis_t thermal_runaway_bed_timer;
  463. #endif
  464. #endif // THERMAL_PROTECTION
  465. };
  466. extern Temperature thermalManager;
  467. #endif // TEMPERATURE_H