My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

ubl_motion.cpp 31KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "Marlin.h"
  25. #include "ubl.h"
  26. #include "planner.h"
  27. #include "stepper.h"
  28. #include <avr/io.h>
  29. #include <math.h>
  30. extern float destination[XYZE];
  31. extern void set_current_to_destination();
  32. #if ENABLED(DELTA)
  33. extern float delta[ABC],
  34. endstop_adj[ABC];
  35. extern float delta_radius,
  36. delta_tower_angle_trim[2],
  37. delta_tower[ABC][2],
  38. delta_diagonal_rod,
  39. delta_calibration_radius,
  40. delta_diagonal_rod_2_tower[ABC],
  41. delta_segments_per_second,
  42. delta_clip_start_height;
  43. extern float delta_safe_distance_from_top();
  44. #endif
  45. static void debug_echo_axis(const AxisEnum axis) {
  46. if (current_position[axis] == destination[axis])
  47. SERIAL_ECHOPGM("-------------");
  48. else
  49. SERIAL_ECHO_F(destination[X_AXIS], 6);
  50. }
  51. void debug_current_and_destination(const char *title) {
  52. // if the title message starts with a '!' it is so important, we are going to
  53. // ignore the status of the g26_debug_flag
  54. if (*title != '!' && !ubl.g26_debug_flag) return;
  55. const float de = destination[E_AXIS] - current_position[E_AXIS];
  56. if (de == 0.0) return; // Printing moves only
  57. const float dx = destination[X_AXIS] - current_position[X_AXIS],
  58. dy = destination[Y_AXIS] - current_position[Y_AXIS],
  59. xy_dist = HYPOT(dx, dy);
  60. if (xy_dist == 0.0) return;
  61. SERIAL_ECHOPGM(" fpmm=");
  62. const float fpmm = de / xy_dist;
  63. SERIAL_ECHO_F(fpmm, 6);
  64. SERIAL_ECHOPGM(" current=( ");
  65. SERIAL_ECHO_F(current_position[X_AXIS], 6);
  66. SERIAL_ECHOPGM(", ");
  67. SERIAL_ECHO_F(current_position[Y_AXIS], 6);
  68. SERIAL_ECHOPGM(", ");
  69. SERIAL_ECHO_F(current_position[Z_AXIS], 6);
  70. SERIAL_ECHOPGM(", ");
  71. SERIAL_ECHO_F(current_position[E_AXIS], 6);
  72. SERIAL_ECHOPGM(" ) destination=( ");
  73. debug_echo_axis(X_AXIS);
  74. SERIAL_ECHOPGM(", ");
  75. debug_echo_axis(Y_AXIS);
  76. SERIAL_ECHOPGM(", ");
  77. debug_echo_axis(Z_AXIS);
  78. SERIAL_ECHOPGM(", ");
  79. debug_echo_axis(E_AXIS);
  80. SERIAL_ECHOPGM(" ) ");
  81. SERIAL_ECHO(title);
  82. SERIAL_EOL();
  83. }
  84. void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, uint8_t extruder) {
  85. /**
  86. * Much of the nozzle movement will be within the same cell. So we will do as little computation
  87. * as possible to determine if this is the case. If this move is within the same cell, we will
  88. * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
  89. */
  90. const float start[XYZE] = {
  91. current_position[X_AXIS],
  92. current_position[Y_AXIS],
  93. current_position[Z_AXIS],
  94. current_position[E_AXIS]
  95. },
  96. end[XYZE] = {
  97. destination[X_AXIS],
  98. destination[Y_AXIS],
  99. destination[Z_AXIS],
  100. destination[E_AXIS]
  101. };
  102. const int cell_start_xi = get_cell_index_x(RAW_X_POSITION(start[X_AXIS])),
  103. cell_start_yi = get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])),
  104. cell_dest_xi = get_cell_index_x(RAW_X_POSITION(end[X_AXIS])),
  105. cell_dest_yi = get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS]));
  106. if (g26_debug_flag) {
  107. SERIAL_ECHOPAIR(" ubl.line_to_destination(xe=", end[X_AXIS]);
  108. SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
  109. SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
  110. SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
  111. SERIAL_CHAR(')');
  112. SERIAL_EOL();
  113. debug_current_and_destination(PSTR("Start of ubl.line_to_destination()"));
  114. }
  115. if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
  116. /**
  117. * we don't need to break up the move
  118. *
  119. * If we are moving off the print bed, we are going to allow the move at this level.
  120. * But we detect it and isolate it. For now, we just pass along the request.
  121. */
  122. if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
  123. // Note: There is no Z Correction in this case. We are off the grid and don't know what
  124. // a reasonable correction would be.
  125. planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + state.z_offset, end[E_AXIS], feed_rate, extruder);
  126. set_current_to_destination();
  127. if (g26_debug_flag)
  128. debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination()"));
  129. return;
  130. }
  131. FINAL_MOVE:
  132. /**
  133. * Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
  134. * generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
  135. * We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
  136. * We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
  137. * instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
  138. * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
  139. */
  140. const float xratio = (RAW_X_POSITION(end[X_AXIS]) - mesh_index_to_xpos(cell_dest_xi)) * (1.0 / (MESH_X_DIST)),
  141. z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
  142. (z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
  143. z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
  144. (z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
  145. // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
  146. // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
  147. const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST));
  148. float z0 = z1 + (z2 - z1) * yratio;
  149. z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
  150. /**
  151. * If part of the Mesh is undefined, it will show up as NAN
  152. * in z_values[][] and propagate through the
  153. * calculations. If our correction is NAN, we throw it out
  154. * because part of the Mesh is undefined and we don't have the
  155. * information we need to complete the height correction.
  156. */
  157. if (isnan(z0)) z0 = 0.0;
  158. planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + state.z_offset, end[E_AXIS], feed_rate, extruder);
  159. if (g26_debug_flag)
  160. debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination()"));
  161. set_current_to_destination();
  162. return;
  163. }
  164. /**
  165. * If we get here, we are processing a move that crosses at least one Mesh Line. We will check
  166. * for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
  167. * of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
  168. * computation and in fact most lines are of this nature. We will check for that in the following
  169. * blocks of code:
  170. */
  171. const float dx = end[X_AXIS] - start[X_AXIS],
  172. dy = end[Y_AXIS] - start[Y_AXIS];
  173. const int left_flag = dx < 0.0 ? 1 : 0,
  174. down_flag = dy < 0.0 ? 1 : 0;
  175. const float adx = left_flag ? -dx : dx,
  176. ady = down_flag ? -dy : dy;
  177. const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
  178. dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
  179. /**
  180. * Compute the scaling factor for the extruder for each partial move.
  181. * We need to watch out for zero length moves because it will cause us to
  182. * have an infinate scaling factor. We are stuck doing a floating point
  183. * divide to get our scaling factor, but after that, we just multiply by this
  184. * number. We also pick our scaling factor based on whether the X or Y
  185. * component is larger. We use the biggest of the two to preserve precision.
  186. */
  187. const bool use_x_dist = adx > ady;
  188. float on_axis_distance = use_x_dist ? dx : dy,
  189. e_position = end[E_AXIS] - start[E_AXIS],
  190. z_position = end[Z_AXIS] - start[Z_AXIS];
  191. const float e_normalized_dist = e_position / on_axis_distance,
  192. z_normalized_dist = z_position / on_axis_distance;
  193. int current_xi = cell_start_xi,
  194. current_yi = cell_start_yi;
  195. const float m = dy / dx,
  196. c = start[Y_AXIS] - m * start[X_AXIS];
  197. const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0),
  198. inf_m_flag = (isinf(m) != 0);
  199. /**
  200. * This block handles vertical lines. These are lines that stay within the same
  201. * X Cell column. They do not need to be perfectly vertical. They just can
  202. * not cross into another X Cell column.
  203. */
  204. if (dxi == 0) { // Check for a vertical line
  205. current_yi += down_flag; // Line is heading down, we just want to go to the bottom
  206. while (current_yi != cell_dest_yi + down_flag) {
  207. current_yi += dyi;
  208. const float next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi));
  209. /**
  210. * if the slope of the line is infinite, we won't do the calculations
  211. * else, we know the next X is the same so we can recover and continue!
  212. * Calculate X at the next Y mesh line
  213. */
  214. const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
  215. float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi);
  216. z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
  217. /**
  218. * If part of the Mesh is undefined, it will show up as NAN
  219. * in z_values[][] and propagate through the
  220. * calculations. If our correction is NAN, we throw it out
  221. * because part of the Mesh is undefined and we don't have the
  222. * information we need to complete the height correction.
  223. */
  224. if (isnan(z0)) z0 = 0.0;
  225. const float y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi));
  226. /**
  227. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  228. * where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
  229. * happens, it might be best to remove the check and always 'schedule' the move because
  230. * the planner._buffer_line() routine will filter it if that happens.
  231. */
  232. if (y != start[Y_AXIS]) {
  233. if (!inf_normalized_flag) {
  234. on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS];
  235. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  236. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  237. }
  238. else {
  239. e_position = end[E_AXIS];
  240. z_position = end[Z_AXIS];
  241. }
  242. planner._buffer_line(x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
  243. } //else printf("FIRST MOVE PRUNED ");
  244. }
  245. if (g26_debug_flag)
  246. debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination()"));
  247. //
  248. // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
  249. //
  250. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  251. goto FINAL_MOVE;
  252. set_current_to_destination();
  253. return;
  254. }
  255. /**
  256. *
  257. * This block handles horizontal lines. These are lines that stay within the same
  258. * Y Cell row. They do not need to be perfectly horizontal. They just can
  259. * not cross into another Y Cell row.
  260. *
  261. */
  262. if (dyi == 0) { // Check for a horizontal line
  263. current_xi += left_flag; // Line is heading left, we just want to go to the left
  264. // edge of this cell for the first move.
  265. while (current_xi != cell_dest_xi + left_flag) {
  266. current_xi += dxi;
  267. const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi)),
  268. y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
  269. float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi);
  270. z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
  271. /**
  272. * If part of the Mesh is undefined, it will show up as NAN
  273. * in z_values[][] and propagate through the
  274. * calculations. If our correction is NAN, we throw it out
  275. * because part of the Mesh is undefined and we don't have the
  276. * information we need to complete the height correction.
  277. */
  278. if (isnan(z0)) z0 = 0.0;
  279. const float x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi));
  280. /**
  281. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  282. * where the line is heading left and it is starting right on a Mesh Line boundary. For how often
  283. * that happens, it might be best to remove the check and always 'schedule' the move because
  284. * the planner._buffer_line() routine will filter it if that happens.
  285. */
  286. if (x != start[X_AXIS]) {
  287. if (!inf_normalized_flag) {
  288. on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS];
  289. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
  290. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  291. }
  292. else {
  293. e_position = end[E_AXIS];
  294. z_position = end[Z_AXIS];
  295. }
  296. planner._buffer_line(x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
  297. } //else printf("FIRST MOVE PRUNED ");
  298. }
  299. if (g26_debug_flag)
  300. debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination()"));
  301. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  302. goto FINAL_MOVE;
  303. set_current_to_destination();
  304. return;
  305. }
  306. /**
  307. *
  308. * This block handles the generic case of a line crossing both X and Y Mesh lines.
  309. *
  310. */
  311. int xi_cnt = cell_start_xi - cell_dest_xi,
  312. yi_cnt = cell_start_yi - cell_dest_yi;
  313. if (xi_cnt < 0) xi_cnt = -xi_cnt;
  314. if (yi_cnt < 0) yi_cnt = -yi_cnt;
  315. current_xi += left_flag;
  316. current_yi += down_flag;
  317. while (xi_cnt > 0 || yi_cnt > 0) {
  318. const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi + dxi)),
  319. next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi + dyi)),
  320. y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
  321. x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
  322. // (No need to worry about m being zero.
  323. // If that was the case, it was already detected
  324. // as a vertical line move above.)
  325. if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
  326. // Yes! Crossing a Y Mesh Line next
  327. float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi);
  328. z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
  329. /**
  330. * If part of the Mesh is undefined, it will show up as NAN
  331. * in z_values[][] and propagate through the
  332. * calculations. If our correction is NAN, we throw it out
  333. * because part of the Mesh is undefined and we don't have the
  334. * information we need to complete the height correction.
  335. */
  336. if (isnan(z0)) z0 = 0.0;
  337. if (!inf_normalized_flag) {
  338. on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
  339. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  340. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  341. }
  342. else {
  343. e_position = end[E_AXIS];
  344. z_position = end[Z_AXIS];
  345. }
  346. planner._buffer_line(x, next_mesh_line_y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
  347. current_yi += dyi;
  348. yi_cnt--;
  349. }
  350. else {
  351. // Yes! Crossing a X Mesh Line next
  352. float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag);
  353. z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
  354. /**
  355. * If part of the Mesh is undefined, it will show up as NAN
  356. * in z_values[][] and propagate through the
  357. * calculations. If our correction is NAN, we throw it out
  358. * because part of the Mesh is undefined and we don't have the
  359. * information we need to complete the height correction.
  360. */
  361. if (isnan(z0)) z0 = 0.0;
  362. if (!inf_normalized_flag) {
  363. on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
  364. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  365. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  366. }
  367. else {
  368. e_position = end[E_AXIS];
  369. z_position = end[Z_AXIS];
  370. }
  371. planner._buffer_line(next_mesh_line_x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
  372. current_xi += dxi;
  373. xi_cnt--;
  374. }
  375. if (xi_cnt < 0 || yi_cnt < 0) break; // we've gone too far, so exit the loop and move on to FINAL_MOVE
  376. }
  377. if (g26_debug_flag)
  378. debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination()"));
  379. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  380. goto FINAL_MOVE;
  381. set_current_to_destination();
  382. }
  383. #if UBL_DELTA
  384. // macro to inline copy exactly 4 floats, don't rely on sizeof operator
  385. #define COPY_XYZE( target, source ) { \
  386. target[X_AXIS] = source[X_AXIS]; \
  387. target[Y_AXIS] = source[Y_AXIS]; \
  388. target[Z_AXIS] = source[Z_AXIS]; \
  389. target[E_AXIS] = source[E_AXIS]; \
  390. }
  391. #if IS_SCARA // scale the feed rate from mm/s to degrees/s
  392. static float scara_feed_factor, scara_oldA, scara_oldB;
  393. #endif
  394. // We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
  395. // so we call _buffer_line directly here. Per-segmented leveling and kinematics performed first.
  396. inline void _O2 ubl_buffer_segment_raw( float rx, float ry, float rz, float le, float fr ) {
  397. #if ENABLED(DELTA) // apply delta inverse_kinematics
  398. const float delta_A = rz + sqrt( delta_diagonal_rod_2_tower[A_AXIS]
  399. - HYPOT2( delta_tower[A_AXIS][X_AXIS] - rx,
  400. delta_tower[A_AXIS][Y_AXIS] - ry ));
  401. const float delta_B = rz + sqrt( delta_diagonal_rod_2_tower[B_AXIS]
  402. - HYPOT2( delta_tower[B_AXIS][X_AXIS] - rx,
  403. delta_tower[B_AXIS][Y_AXIS] - ry ));
  404. const float delta_C = rz + sqrt( delta_diagonal_rod_2_tower[C_AXIS]
  405. - HYPOT2( delta_tower[C_AXIS][X_AXIS] - rx,
  406. delta_tower[C_AXIS][Y_AXIS] - ry ));
  407. planner._buffer_line(delta_A, delta_B, delta_C, le, fr, active_extruder);
  408. #elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
  409. const float lseg[XYZ] = { LOGICAL_X_POSITION(rx),
  410. LOGICAL_Y_POSITION(ry),
  411. LOGICAL_Z_POSITION(rz)
  412. };
  413. inverse_kinematics(lseg); // this writes delta[ABC] from lseg[XYZ]
  414. // should move the feedrate scaling to scara inverse_kinematics
  415. float adiff = abs(delta[A_AXIS] - scara_oldA),
  416. bdiff = abs(delta[B_AXIS] - scara_oldB);
  417. scara_oldA = delta[A_AXIS];
  418. scara_oldB = delta[B_AXIS];
  419. float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
  420. planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], le, s_feedrate, active_extruder);
  421. #else // CARTESIAN
  422. // Cartesian _buffer_line seems to take LOGICAL, not RAW coordinates
  423. const float lx = LOGICAL_X_POSITION(rx),
  424. ly = LOGICAL_Y_POSITION(ry),
  425. lz = LOGICAL_Z_POSITION(rz);
  426. planner._buffer_line(lx, ly, lz, le, fr, active_extruder);
  427. #endif
  428. }
  429. /**
  430. * Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
  431. * This calls planner._buffer_line multiple times for small incremental moves.
  432. * Returns true if did NOT move, false if moved (requires current_position update).
  433. */
  434. bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float ltarget[XYZE], const float &feedrate) {
  435. if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) // fail if moving outside reachable boundary
  436. return true; // did not move, so current_position still accurate
  437. const float tot_dx = ltarget[X_AXIS] - current_position[X_AXIS],
  438. tot_dy = ltarget[Y_AXIS] - current_position[Y_AXIS],
  439. tot_dz = ltarget[Z_AXIS] - current_position[Z_AXIS],
  440. tot_de = ltarget[E_AXIS] - current_position[E_AXIS];
  441. const float cartesian_xy_mm = HYPOT(tot_dx, tot_dy); // total horizontal xy distance
  442. #if IS_KINEMATIC
  443. const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
  444. uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate
  445. seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
  446. NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)
  447. #else
  448. uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
  449. #endif
  450. NOLESS(segments, 1); // must have at least one segment
  451. const float inv_segments = 1.0 / segments; // divide once, multiply thereafter
  452. #if IS_SCARA // scale the feed rate from mm/s to degrees/s
  453. scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;
  454. scara_oldA = stepper.get_axis_position_degrees(A_AXIS);
  455. scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
  456. #endif
  457. const float seg_dx = tot_dx * inv_segments,
  458. seg_dy = tot_dy * inv_segments,
  459. seg_dz = tot_dz * inv_segments,
  460. seg_de = tot_de * inv_segments;
  461. // Note that E segment distance could vary slightly as z mesh height
  462. // changes for each segment, but small enough to ignore.
  463. float seg_rx = RAW_X_POSITION(current_position[X_AXIS]),
  464. seg_ry = RAW_Y_POSITION(current_position[Y_AXIS]),
  465. seg_rz = RAW_Z_POSITION(current_position[Z_AXIS]),
  466. seg_le = current_position[E_AXIS];
  467. const bool above_fade_height = (
  468. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  469. planner.z_fade_height != 0 && planner.z_fade_height < RAW_Z_POSITION(ltarget[Z_AXIS])
  470. #else
  471. false
  472. #endif
  473. );
  474. // Only compute leveling per segment if ubl active and target below z_fade_height.
  475. if (!state.active || above_fade_height) { // no mesh leveling
  476. const float z_offset = state.active ? state.z_offset : 0.0;
  477. do {
  478. if (--segments) { // not the last segment
  479. seg_rx += seg_dx;
  480. seg_ry += seg_dy;
  481. seg_rz += seg_dz;
  482. seg_le += seg_de;
  483. } else { // last segment, use exact destination
  484. seg_rx = RAW_X_POSITION(ltarget[X_AXIS]);
  485. seg_ry = RAW_Y_POSITION(ltarget[Y_AXIS]);
  486. seg_rz = RAW_Z_POSITION(ltarget[Z_AXIS]);
  487. seg_le = ltarget[E_AXIS];
  488. }
  489. ubl_buffer_segment_raw( seg_rx, seg_ry, seg_rz + z_offset, seg_le, feedrate );
  490. } while (segments);
  491. return false; // moved but did not set_current_to_destination();
  492. }
  493. // Otherwise perform per-segment leveling
  494. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  495. const float fade_scaling_factor = fade_scaling_factor_for_z(ltarget[Z_AXIS]);
  496. #endif
  497. // increment to first segment destination
  498. seg_rx += seg_dx;
  499. seg_ry += seg_dy;
  500. seg_rz += seg_dz;
  501. seg_le += seg_de;
  502. for(;;) { // for each mesh cell encountered during the move
  503. // Compute mesh cell invariants that remain constant for all segments within cell.
  504. // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
  505. // the bilinear interpolation from the adjacent cell within the mesh will still work.
  506. // Inner loop will exit each time (because out of cell bounds) but will come back
  507. // in top of loop and again re-find same adjacent cell and use it, just less efficient
  508. // for mesh inset area.
  509. int8_t cell_xi = (seg_rx - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
  510. cell_yi = (seg_ry - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
  511. cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
  512. cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
  513. const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
  514. y0 = mesh_index_to_ypos(cell_yi);
  515. float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
  516. z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
  517. z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
  518. z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
  519. if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating state.active (G29 A)
  520. if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
  521. if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
  522. if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
  523. float cx = seg_rx - x0, // cell-relative x and y
  524. cy = seg_ry - y0;
  525. const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
  526. z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
  527. float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)
  528. const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
  529. z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
  530. float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)
  531. // float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)
  532. // As subsequent segments step through this cell, the z_cxy0 intercept will change
  533. // and the z_cxym slope will change, both as a function of cx within the cell, and
  534. // each change by a constant for fixed segment lengths.
  535. const float z_sxy0 = z_xmy0 * seg_dx, // per-segment adjustment to z_cxy0
  536. z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * seg_dx; // per-segment adjustment to z_cxym
  537. for(;;) { // for all segments within this mesh cell
  538. float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy
  539. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  540. z_cxcy *= fade_scaling_factor; // apply fade factor to interpolated mesh height
  541. #endif
  542. z_cxcy += state.z_offset; // add fixed mesh offset from G29 Z
  543. if (--segments == 0) { // if this is last segment, use ltarget for exact
  544. seg_rx = RAW_X_POSITION(ltarget[X_AXIS]);
  545. seg_ry = RAW_Y_POSITION(ltarget[Y_AXIS]);
  546. seg_rz = RAW_Z_POSITION(ltarget[Z_AXIS]);
  547. seg_le = ltarget[E_AXIS];
  548. }
  549. ubl_buffer_segment_raw( seg_rx, seg_ry, seg_rz + z_cxcy, seg_le, feedrate );
  550. if (segments == 0 ) // done with last segment
  551. return false; // did not set_current_to_destination()
  552. seg_rx += seg_dx;
  553. seg_ry += seg_dy;
  554. seg_rz += seg_dz;
  555. seg_le += seg_de;
  556. cx += seg_dx;
  557. cy += seg_dy;
  558. if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) { // done within this cell, break to next
  559. break;
  560. }
  561. // Next segment still within same mesh cell, adjust the per-segment
  562. // slope and intercept to compute next z height.
  563. z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
  564. z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
  565. } // segment loop
  566. } // cell loop
  567. }
  568. #endif // UBL_DELTA
  569. #endif // AUTO_BED_LEVELING_UBL