12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040 |
- /**
- * planner.cpp - Buffer movement commands and manage the acceleration profile plan
- * Part of Grbl
- *
- * Copyright (c) 2009-2011 Simen Svale Skogsrud
- *
- * Grbl is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * Grbl is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
- *
- *
- * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
- *
- *
- * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
- *
- * s == speed, a == acceleration, t == time, d == distance
- *
- * Basic definitions:
- * Speed[s_, a_, t_] := s + (a*t)
- * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
- *
- * Distance to reach a specific speed with a constant acceleration:
- * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
- * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
- *
- * Speed after a given distance of travel with constant acceleration:
- * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
- * m -> Sqrt[2 a d + s^2]
- *
- * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
- *
- * When to start braking (di) to reach a specified destination speed (s2) after accelerating
- * from initial speed s1 without ever stopping at a plateau:
- * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
- * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
- *
- * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
- *
- */
-
- #include "Marlin.h"
- #include "planner.h"
- #include "stepper.h"
- #include "temperature.h"
- #include "ultralcd.h"
- #include "language.h"
-
- #ifdef MESH_BED_LEVELING
- #include "mesh_bed_leveling.h"
- #endif
-
- //===========================================================================
- //============================= public variables ============================
- //===========================================================================
-
- millis_t minsegmenttime;
- float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
- float axis_steps_per_unit[NUM_AXIS];
- unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
- float minimumfeedrate;
- float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
- float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
- float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
- float max_xy_jerk; // The largest speed change requiring no acceleration
- float max_z_jerk;
- float max_e_jerk;
- float mintravelfeedrate;
- unsigned long axis_steps_per_sqr_second[NUM_AXIS];
-
- #ifdef ENABLE_AUTO_BED_LEVELING
- // Transform required to compensate for bed level
- matrix_3x3 plan_bed_level_matrix = {
- 1.0, 0.0, 0.0,
- 0.0, 1.0, 0.0,
- 0.0, 0.0, 1.0
- };
- #endif // ENABLE_AUTO_BED_LEVELING
-
- #ifdef AUTOTEMP
- float autotemp_max = 250;
- float autotemp_min = 210;
- float autotemp_factor = 0.1;
- bool autotemp_enabled = false;
- #endif
-
- //===========================================================================
- //============ semi-private variables, used in inline functions =============
- //===========================================================================
-
- block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
- volatile unsigned char block_buffer_head; // Index of the next block to be pushed
- volatile unsigned char block_buffer_tail; // Index of the block to process now
-
- //===========================================================================
- //============================ private variables ============================
- //===========================================================================
-
- // The current position of the tool in absolute steps
- long position[NUM_AXIS]; // Rescaled from extern when axis_steps_per_unit are changed by gcode
- static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
- static float previous_nominal_speed; // Nominal speed of previous path line segment
-
- unsigned char g_uc_extruder_last_move[4] = {0,0,0,0};
-
- #ifdef XY_FREQUENCY_LIMIT
- // Used for the frequency limit
- #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
- // Old direction bits. Used for speed calculations
- static unsigned char old_direction_bits = 0;
- // Segment times (in µs). Used for speed calculations
- static long axis_segment_time[2][3] = { {MAX_FREQ_TIME+1,0,0}, {MAX_FREQ_TIME+1,0,0} };
- #endif
-
- #ifdef FILAMENT_SENSOR
- static char meas_sample; //temporary variable to hold filament measurement sample
- #endif
-
- //===========================================================================
- //================================ functions ================================
- //===========================================================================
-
- // Get the next / previous index of the next block in the ring buffer
- // NOTE: Using & here (not %) because BLOCK_BUFFER_SIZE is always a power of 2
- FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
- FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
-
- // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
- // given acceleration:
- FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
- if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
- return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2);
- }
-
- // This function gives you the point at which you must start braking (at the rate of -acceleration) if
- // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
- // a total travel of distance. This can be used to compute the intersection point between acceleration and
- // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
-
- FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
- if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0
- return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4);
- }
-
- // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
-
- void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
- unsigned long initial_rate = ceil(block->nominal_rate * entry_factor); // (step/min)
- unsigned long final_rate = ceil(block->nominal_rate * exit_factor); // (step/min)
-
- // Limit minimal step rate (Otherwise the timer will overflow.)
- NOLESS(initial_rate, 120);
- NOLESS(final_rate, 120);
-
- long acceleration = block->acceleration_st;
- int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
- int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
-
- // Calculate the size of Plateau of Nominal Rate.
- int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
-
- // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
- // have to use intersection_distance() to calculate when to abort acceleration and start braking
- // in order to reach the final_rate exactly at the end of this block.
- if (plateau_steps < 0) {
- accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
- accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off
- accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
- plateau_steps = 0;
- }
-
- #ifdef ADVANCE
- volatile long initial_advance = block->advance * entry_factor * entry_factor;
- volatile long final_advance = block->advance * exit_factor * exit_factor;
- #endif // ADVANCE
-
- // block->accelerate_until = accelerate_steps;
- // block->decelerate_after = accelerate_steps+plateau_steps;
- CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
- if (!block->busy) { // Don't update variables if block is busy.
- block->accelerate_until = accelerate_steps;
- block->decelerate_after = accelerate_steps+plateau_steps;
- block->initial_rate = initial_rate;
- block->final_rate = final_rate;
- #ifdef ADVANCE
- block->initial_advance = initial_advance;
- block->final_advance = final_advance;
- #endif
- }
- CRITICAL_SECTION_END;
- }
-
- // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
- // acceleration within the allotted distance.
- FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
- return sqrt(target_velocity * target_velocity - 2 * acceleration * distance);
- }
-
- // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
- // This method will calculate the junction jerk as the euclidean distance between the nominal
- // velocities of the respective blocks.
- //inline float junction_jerk(block_t *before, block_t *after) {
- // return sqrt(
- // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
- //}
-
-
- // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
- void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
- if (!current) return;
-
- if (next) {
- // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
- // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
- // check for maximum allowable speed reductions to ensure maximum possible planned speed.
- if (current->entry_speed != current->max_entry_speed) {
-
- // If nominal length true, max junction speed is guaranteed to be reached. Only compute
- // for max allowable speed if block is decelerating and nominal length is false.
- if (!current->nominal_length_flag && current->max_entry_speed > next->entry_speed) {
- current->entry_speed = min(current->max_entry_speed,
- max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
- }
- else {
- current->entry_speed = current->max_entry_speed;
- }
- current->recalculate_flag = true;
-
- }
- } // Skip last block. Already initialized and set for recalculation.
- }
-
- // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
- // implements the reverse pass.
- void planner_reverse_pass() {
- uint8_t block_index = block_buffer_head;
-
- //Make a local copy of block_buffer_tail, because the interrupt can alter it
- CRITICAL_SECTION_START;
- unsigned char tail = block_buffer_tail;
- CRITICAL_SECTION_END
-
- if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued
- block_index = BLOCK_MOD(block_buffer_head - 3);
- block_t *block[3] = { NULL, NULL, NULL };
- while (block_index != tail) {
- block_index = prev_block_index(block_index);
- block[2]= block[1];
- block[1]= block[0];
- block[0] = &block_buffer[block_index];
- planner_reverse_pass_kernel(block[0], block[1], block[2]);
- }
- }
- }
-
- // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
- void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
- if (!previous) return;
-
- // If the previous block is an acceleration block, but it is not long enough to complete the
- // full speed change within the block, we need to adjust the entry speed accordingly. Entry
- // speeds have already been reset, maximized, and reverse planned by reverse planner.
- // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
- if (!previous->nominal_length_flag) {
- if (previous->entry_speed < current->entry_speed) {
- double entry_speed = min(current->entry_speed,
- max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
-
- // Check for junction speed change
- if (current->entry_speed != entry_speed) {
- current->entry_speed = entry_speed;
- current->recalculate_flag = true;
- }
- }
- }
- }
-
- // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
- // implements the forward pass.
- void planner_forward_pass() {
- uint8_t block_index = block_buffer_tail;
- block_t *block[3] = { NULL, NULL, NULL };
-
- while (block_index != block_buffer_head) {
- block[0] = block[1];
- block[1] = block[2];
- block[2] = &block_buffer[block_index];
- planner_forward_pass_kernel(block[0], block[1], block[2]);
- block_index = next_block_index(block_index);
- }
- planner_forward_pass_kernel(block[1], block[2], NULL);
- }
-
- // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
- // entry_factor for each junction. Must be called by planner_recalculate() after
- // updating the blocks.
- void planner_recalculate_trapezoids() {
- int8_t block_index = block_buffer_tail;
- block_t *current;
- block_t *next = NULL;
-
- while (block_index != block_buffer_head) {
- current = next;
- next = &block_buffer[block_index];
- if (current) {
- // Recalculate if current block entry or exit junction speed has changed.
- if (current->recalculate_flag || next->recalculate_flag) {
- // NOTE: Entry and exit factors always > 0 by all previous logic operations.
- float nom = current->nominal_speed;
- calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
- current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
- }
- }
- block_index = next_block_index( block_index );
- }
- // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
- if (next) {
- float nom = next->nominal_speed;
- calculate_trapezoid_for_block(next, next->entry_speed / nom, MINIMUM_PLANNER_SPEED / nom);
- next->recalculate_flag = false;
- }
- }
-
- // Recalculates the motion plan according to the following algorithm:
- //
- // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
- // so that:
- // a. The junction jerk is within the set limit
- // b. No speed reduction within one block requires faster deceleration than the one, true constant
- // acceleration.
- // 2. Go over every block in chronological order and dial down junction speed reduction values if
- // a. The speed increase within one block would require faster acceleration than the one, true
- // constant acceleration.
- //
- // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
- // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
- // the set limit. Finally it will:
- //
- // 3. Recalculate trapezoids for all blocks.
-
- void planner_recalculate() {
- planner_reverse_pass();
- planner_forward_pass();
- planner_recalculate_trapezoids();
- }
-
- void plan_init() {
- block_buffer_head = block_buffer_tail = 0;
- memset(position, 0, sizeof(position)); // clear position
- for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0;
- previous_nominal_speed = 0.0;
- }
-
-
- #ifdef AUTOTEMP
- void getHighESpeed() {
- static float oldt = 0;
-
- if (!autotemp_enabled) return;
- if (degTargetHotend0() + 2 < autotemp_min) return; // probably temperature set to zero.
-
- float high = 0.0;
- uint8_t block_index = block_buffer_tail;
-
- while (block_index != block_buffer_head) {
- block_t *block = &block_buffer[block_index];
- if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
- float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
- if (se > high) high = se;
- }
- block_index = next_block_index(block_index);
- }
-
- float t = autotemp_min + high * autotemp_factor;
- t = constrain(t, autotemp_min, autotemp_max);
- if (oldt > t) {
- t *= (1 - AUTOTEMP_OLDWEIGHT);
- t += AUTOTEMP_OLDWEIGHT * oldt;
- }
- oldt = t;
- setTargetHotend0(t);
- }
- #endif
-
- void check_axes_activity() {
- unsigned char axis_active[NUM_AXIS] = { 0 },
- tail_fan_speed = fanSpeed;
- #ifdef BARICUDA
- unsigned char tail_valve_pressure = ValvePressure,
- tail_e_to_p_pressure = EtoPPressure;
- #endif
-
- block_t *block;
-
- if (blocks_queued()) {
- uint8_t block_index = block_buffer_tail;
- tail_fan_speed = block_buffer[block_index].fan_speed;
- #ifdef BARICUDA
- block = &block_buffer[block_index];
- tail_valve_pressure = block->valve_pressure;
- tail_e_to_p_pressure = block->e_to_p_pressure;
- #endif
- while (block_index != block_buffer_head) {
- block = &block_buffer[block_index];
- for (int i=0; i<NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
- block_index = next_block_index(block_index);
- }
- }
- if (DISABLE_X && !axis_active[X_AXIS]) disable_x();
- if (DISABLE_Y && !axis_active[Y_AXIS]) disable_y();
- if (DISABLE_Z && !axis_active[Z_AXIS]) disable_z();
- if (DISABLE_E && !axis_active[E_AXIS]) {
- disable_e0();
- disable_e1();
- disable_e2();
- disable_e3();
- }
-
- #if HAS_FAN
- #ifdef FAN_KICKSTART_TIME
- static millis_t fan_kick_end;
- if (tail_fan_speed) {
- millis_t ms = millis();
- if (fan_kick_end == 0) {
- // Just starting up fan - run at full power.
- fan_kick_end = ms + FAN_KICKSTART_TIME;
- tail_fan_speed = 255;
- } else if (fan_kick_end > ms)
- // Fan still spinning up.
- tail_fan_speed = 255;
- } else {
- fan_kick_end = 0;
- }
- #endif //FAN_KICKSTART_TIME
- #ifdef FAN_MIN_PWM
- #define CALC_FAN_SPEED (tail_fan_speed ? ( FAN_MIN_PWM + (tail_fan_speed * (255 - FAN_MIN_PWM)) / 255 ) : 0)
- #else
- #define CALC_FAN_SPEED tail_fan_speed
- #endif // FAN_MIN_PWM
- #ifdef FAN_SOFT_PWM
- fanSpeedSoftPwm = CALC_FAN_SPEED;
- #else
- analogWrite(FAN_PIN, CALC_FAN_SPEED);
- #endif // FAN_SOFT_PWM
- #endif // HAS_FAN
-
- #ifdef AUTOTEMP
- getHighESpeed();
- #endif
-
- #ifdef BARICUDA
- #if HAS_HEATER_1
- analogWrite(HEATER_1_PIN,tail_valve_pressure);
- #endif
- #if HAS_HEATER_2
- analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
- #endif
- #endif
- }
-
-
- float junction_deviation = 0.1;
- // Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in
- // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
- // calculation the caller must also provide the physical length of the line in millimeters.
- #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
- void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t extruder)
- #else
- void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t extruder)
- #endif // ENABLE_AUTO_BED_LEVELING
- {
- // Calculate the buffer head after we push this byte
- int next_buffer_head = next_block_index(block_buffer_head);
-
- // If the buffer is full: good! That means we are well ahead of the robot.
- // Rest here until there is room in the buffer.
- while (block_buffer_tail == next_buffer_head) idle();
-
- #ifdef MESH_BED_LEVELING
- if (mbl.active) z += mbl.get_z(x, y);
- #elif defined(ENABLE_AUTO_BED_LEVELING)
- apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
- #endif
-
- // The target position of the tool in absolute steps
- // Calculate target position in absolute steps
- //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
- long target[NUM_AXIS];
- target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]);
- target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]);
- target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);
- target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
-
- float dx = target[X_AXIS] - position[X_AXIS],
- dy = target[Y_AXIS] - position[Y_AXIS],
- dz = target[Z_AXIS] - position[Z_AXIS];
-
- // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
- if (marlin_debug_flags & DEBUG_DRYRUN)
- position[E_AXIS] = target[E_AXIS];
-
- float de = target[E_AXIS] - position[E_AXIS];
-
- #ifdef PREVENT_DANGEROUS_EXTRUDE
- if (de) {
- if (degHotend(extruder) < extrude_min_temp) {
- position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
- de = 0; // no difference
- SERIAL_ECHO_START;
- SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
- }
- #ifdef PREVENT_LENGTHY_EXTRUDE
- if (labs(de) > axis_steps_per_unit[E_AXIS] * EXTRUDE_MAXLENGTH) {
- position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
- de = 0; // no difference
- SERIAL_ECHO_START;
- SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
- }
- #endif
- }
- #endif
-
- // Prepare to set up new block
- block_t *block = &block_buffer[block_buffer_head];
-
- // Mark block as not busy (Not executed by the stepper interrupt)
- block->busy = false;
-
- // Number of steps for each axis
- #ifdef COREXY
- // corexy planning
- // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
- block->steps[A_AXIS] = labs(dx + dy);
- block->steps[B_AXIS] = labs(dx - dy);
- block->steps[Z_AXIS] = labs(dz);
- #elif defined(COREXZ)
- // corexz planning
- block->steps[A_AXIS] = labs(dx + dz);
- block->steps[Y_AXIS] = labs(dy);
- block->steps[C_AXIS] = labs(dx - dz);
- #else
- // default non-h-bot planning
- block->steps[X_AXIS] = labs(dx);
- block->steps[Y_AXIS] = labs(dy);
- block->steps[Z_AXIS] = labs(dz);
- #endif
-
- block->steps[E_AXIS] = labs(de);
- block->steps[E_AXIS] *= volumetric_multiplier[extruder];
- block->steps[E_AXIS] *= extruder_multiplier[extruder];
- block->steps[E_AXIS] /= 100;
- block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
-
- // Bail if this is a zero-length block
- if (block->step_event_count <= dropsegments) return;
-
- block->fan_speed = fanSpeed;
- #ifdef BARICUDA
- block->valve_pressure = ValvePressure;
- block->e_to_p_pressure = EtoPPressure;
- #endif
-
- // Compute direction bits for this block
- uint8_t db = 0;
- #ifdef COREXY
- if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
- if (dy < 0) db |= BIT(Y_HEAD); // ...and Y
- if (dz < 0) db |= BIT(Z_AXIS);
- if (dx + dy < 0) db |= BIT(A_AXIS); // Motor A direction
- if (dx - dy < 0) db |= BIT(B_AXIS); // Motor B direction
- #elif defined(COREXZ)
- if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
- if (dy < 0) db |= BIT(Y_AXIS);
- if (dz < 0) db |= BIT(Z_HEAD); // ...and Z
- if (dx + dz < 0) db |= BIT(A_AXIS); // Motor A direction
- if (dx - dz < 0) db |= BIT(C_AXIS); // Motor B direction
- #else
- if (dx < 0) db |= BIT(X_AXIS);
- if (dy < 0) db |= BIT(Y_AXIS);
- if (dz < 0) db |= BIT(Z_AXIS);
- #endif
- if (de < 0) db |= BIT(E_AXIS);
- block->direction_bits = db;
-
- block->active_extruder = extruder;
-
- //enable active axes
- #ifdef COREXY
- if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
- enable_x();
- enable_y();
- }
- #ifndef Z_LATE_ENABLE
- if (block->steps[Z_AXIS]) enable_z();
- #endif
- #elif defined(COREXZ)
- if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
- enable_x();
- enable_z();
- }
- if (block->steps[Y_AXIS]) enable_y();
- #else
- if (block->steps[X_AXIS]) enable_x();
- if (block->steps[Y_AXIS]) enable_y();
- #ifndef Z_LATE_ENABLE
- if (block->steps[Z_AXIS]) enable_z();
- #endif
- #endif
-
- // Enable extruder(s)
- if (block->steps[E_AXIS]) {
- if (DISABLE_INACTIVE_EXTRUDER) { //enable only selected extruder
-
- for (int i=0; i<EXTRUDERS; i++)
- if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
-
- switch(extruder) {
- case 0:
- enable_e0();
- g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE * 2;
- #if EXTRUDERS > 1
- if (g_uc_extruder_last_move[1] == 0) disable_e1();
- #if EXTRUDERS > 2
- if (g_uc_extruder_last_move[2] == 0) disable_e2();
- #if EXTRUDERS > 3
- if (g_uc_extruder_last_move[3] == 0) disable_e3();
- #endif
- #endif
- #endif
- break;
- #if EXTRUDERS > 1
- case 1:
- enable_e1();
- g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE * 2;
- if (g_uc_extruder_last_move[0] == 0) disable_e0();
- #if EXTRUDERS > 2
- if (g_uc_extruder_last_move[2] == 0) disable_e2();
- #if EXTRUDERS > 3
- if (g_uc_extruder_last_move[3] == 0) disable_e3();
- #endif
- #endif
- break;
- #if EXTRUDERS > 2
- case 2:
- enable_e2();
- g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE * 2;
- if (g_uc_extruder_last_move[0] == 0) disable_e0();
- if (g_uc_extruder_last_move[1] == 0) disable_e1();
- #if EXTRUDERS > 3
- if (g_uc_extruder_last_move[3] == 0) disable_e3();
- #endif
- break;
- #if EXTRUDERS > 3
- case 3:
- enable_e3();
- g_uc_extruder_last_move[3] = BLOCK_BUFFER_SIZE * 2;
- if (g_uc_extruder_last_move[0] == 0) disable_e0();
- if (g_uc_extruder_last_move[1] == 0) disable_e1();
- if (g_uc_extruder_last_move[2] == 0) disable_e2();
- break;
- #endif // EXTRUDERS > 3
- #endif // EXTRUDERS > 2
- #endif // EXTRUDERS > 1
- }
- }
- else { // enable all
- enable_e0();
- enable_e1();
- enable_e2();
- enable_e3();
- }
- }
-
- if (block->steps[E_AXIS])
- NOLESS(feed_rate, minimumfeedrate);
- else
- NOLESS(feed_rate, mintravelfeedrate);
-
- /**
- * This part of the code calculates the total length of the movement.
- * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
- * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
- * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
- * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
- * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
- */
- #ifdef COREXY
- float delta_mm[6];
- delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
- delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
- delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
- delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
- delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
- #elif defined(COREXZ)
- float delta_mm[6];
- delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
- delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
- delta_mm[Z_HEAD] = dz / axis_steps_per_unit[C_AXIS];
- delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_unit[A_AXIS];
- delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_unit[C_AXIS];
- #else
- float delta_mm[4];
- delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
- delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
- delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
- #endif
- delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
-
- if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
- block->millimeters = fabs(delta_mm[E_AXIS]);
- }
- else {
- block->millimeters = sqrt(
- #ifdef COREXY
- square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS])
- #elif defined(COREXZ)
- square(delta_mm[X_HEAD]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_HEAD])
- #else
- square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])
- #endif
- );
- }
- float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
-
- // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
- float inverse_second = feed_rate * inverse_millimeters;
-
- int moves_queued = movesplanned();
-
- // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
- #if defined(OLD_SLOWDOWN) || defined(SLOWDOWN)
- bool mq = moves_queued > 1 && moves_queued < BLOCK_BUFFER_SIZE / 2;
- #ifdef OLD_SLOWDOWN
- if (mq) feed_rate *= 2.0 * moves_queued / BLOCK_BUFFER_SIZE;
- #endif
- #ifdef SLOWDOWN
- // segment time im micro seconds
- unsigned long segment_time = lround(1000000.0/inverse_second);
- if (mq) {
- if (segment_time < minsegmenttime) {
- // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
- inverse_second = 1000000.0 / (segment_time + lround(2 * (minsegmenttime - segment_time) / moves_queued));
- #ifdef XY_FREQUENCY_LIMIT
- segment_time = lround(1000000.0 / inverse_second);
- #endif
- }
- }
- #endif
- #endif
-
- block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
- block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
-
- #ifdef FILAMENT_SENSOR
- //FMM update ring buffer used for delay with filament measurements
-
- if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && delay_index2 > -1) { //only for extruder with filament sensor and if ring buffer is initialized
-
- const int MMD = MAX_MEASUREMENT_DELAY + 1, MMD10 = MMD * 10;
-
- delay_dist += delta_mm[E_AXIS]; // increment counter with next move in e axis
- while (delay_dist >= MMD10) delay_dist -= MMD10; // loop around the buffer
- while (delay_dist < 0) delay_dist += MMD10;
-
- delay_index1 = delay_dist / 10.0; // calculate index
- delay_index1 = constrain(delay_index1, 0, MAX_MEASUREMENT_DELAY); // (already constrained above)
-
- if (delay_index1 != delay_index2) { // moved index
- meas_sample = widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
- while (delay_index1 != delay_index2) {
- // Increment and loop around buffer
- if (++delay_index2 >= MMD) delay_index2 -= MMD;
- delay_index2 = constrain(delay_index2, 0, MAX_MEASUREMENT_DELAY);
- measurement_delay[delay_index2] = meas_sample;
- }
- }
- }
- #endif
-
- // Calculate and limit speed in mm/sec for each axis
- float current_speed[NUM_AXIS];
- float speed_factor = 1.0; //factor <=1 do decrease speed
- for (int i = 0; i < NUM_AXIS; i++) {
- current_speed[i] = delta_mm[i] * inverse_second;
- float cs = fabs(current_speed[i]), mf = max_feedrate[i];
- if (cs > mf) speed_factor = min(speed_factor, mf / cs);
- }
-
- // Max segement time in us.
- #ifdef XY_FREQUENCY_LIMIT
- #define MAX_FREQ_TIME (1000000.0 / XY_FREQUENCY_LIMIT)
-
- // Check and limit the xy direction change frequency
- unsigned char direction_change = block->direction_bits ^ old_direction_bits;
- old_direction_bits = block->direction_bits;
- segment_time = lround((float)segment_time / speed_factor);
-
- long xs0 = axis_segment_time[X_AXIS][0],
- xs1 = axis_segment_time[X_AXIS][1],
- xs2 = axis_segment_time[X_AXIS][2],
- ys0 = axis_segment_time[Y_AXIS][0],
- ys1 = axis_segment_time[Y_AXIS][1],
- ys2 = axis_segment_time[Y_AXIS][2];
-
- if ((direction_change & BIT(X_AXIS)) != 0) {
- xs2 = axis_segment_time[X_AXIS][2] = xs1;
- xs1 = axis_segment_time[X_AXIS][1] = xs0;
- xs0 = 0;
- }
- xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
-
- if ((direction_change & BIT(Y_AXIS)) != 0) {
- ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
- ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
- ys0 = 0;
- }
- ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
-
- long max_x_segment_time = max(xs0, max(xs1, xs2)),
- max_y_segment_time = max(ys0, max(ys1, ys2)),
- min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
- if (min_xy_segment_time < MAX_FREQ_TIME) {
- float low_sf = speed_factor * min_xy_segment_time / MAX_FREQ_TIME;
- speed_factor = min(speed_factor, low_sf);
- }
- #endif // XY_FREQUENCY_LIMIT
-
- // Correct the speed
- if (speed_factor < 1.0) {
- for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
- block->nominal_speed *= speed_factor;
- block->nominal_rate *= speed_factor;
- }
-
- // Compute and limit the acceleration rate for the trapezoid generator.
- float steps_per_mm = block->step_event_count / block->millimeters;
- long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
- if (bsx == 0 && bsy == 0 && bsz == 0) {
- block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
- }
- else if (bse == 0) {
- block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
- }
- else {
- block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
- }
- // Limit acceleration per axis
- unsigned long acc_st = block->acceleration_st,
- xsteps = axis_steps_per_sqr_second[X_AXIS],
- ysteps = axis_steps_per_sqr_second[Y_AXIS],
- zsteps = axis_steps_per_sqr_second[Z_AXIS],
- esteps = axis_steps_per_sqr_second[E_AXIS];
- if ((float)acc_st * bsx / block->step_event_count > xsteps) acc_st = xsteps;
- if ((float)acc_st * bsy / block->step_event_count > ysteps) acc_st = ysteps;
- if ((float)acc_st * bsz / block->step_event_count > zsteps) acc_st = zsteps;
- if ((float)acc_st * bse / block->step_event_count > esteps) acc_st = esteps;
-
- block->acceleration_st = acc_st;
- block->acceleration = acc_st / steps_per_mm;
- block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
-
- #if 0 // Use old jerk for now
- // Compute path unit vector
- double unit_vec[3];
-
- unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
- unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
- unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
-
- // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
- // Let a circle be tangent to both previous and current path line segments, where the junction
- // deviation is defined as the distance from the junction to the closest edge of the circle,
- // colinear with the circle center. The circular segment joining the two paths represents the
- // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
- // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
- // path width or max_jerk in the previous grbl version. This approach does not actually deviate
- // from path, but used as a robust way to compute cornering speeds, as it takes into account the
- // nonlinearities of both the junction angle and junction velocity.
- double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
-
- // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
- if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
- // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
- // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
- double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
- - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
- - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
-
- // Skip and use default max junction speed for 0 degree acute junction.
- if (cos_theta < 0.95) {
- vmax_junction = min(previous_nominal_speed,block->nominal_speed);
- // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
- if (cos_theta > -0.95) {
- // Compute maximum junction velocity based on maximum acceleration and junction deviation
- double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
- vmax_junction = min(vmax_junction,
- sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
- }
- }
- }
- #endif
-
- // Start with a safe speed
- float vmax_junction = max_xy_jerk / 2;
- float vmax_junction_factor = 1.0;
- float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2;
- float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS];
- if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
- if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
- vmax_junction = min(vmax_junction, block->nominal_speed);
- float safe_speed = vmax_junction;
-
- if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
- float dx = current_speed[X_AXIS] - previous_speed[X_AXIS],
- dy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
- dz = fabs(csz - previous_speed[Z_AXIS]),
- de = fabs(cse - previous_speed[E_AXIS]),
- jerk = sqrt(dx * dx + dy * dy);
-
- // if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
- vmax_junction = block->nominal_speed;
- // }
- if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk;
- if (dz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dz);
- if (de > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / de);
-
- vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
- }
- block->max_entry_speed = vmax_junction;
-
- // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
- double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
- block->entry_speed = min(vmax_junction, v_allowable);
-
- // Initialize planner efficiency flags
- // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
- // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
- // the current block and next block junction speeds are guaranteed to always be at their maximum
- // junction speeds in deceleration and acceleration, respectively. This is due to how the current
- // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
- // the reverse and forward planners, the corresponding block junction speed will always be at the
- // the maximum junction speed and may always be ignored for any speed reduction checks.
- block->nominal_length_flag = (block->nominal_speed <= v_allowable);
- block->recalculate_flag = true; // Always calculate trapezoid for new block
-
- // Update previous path unit_vector and nominal speed
- for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
- previous_nominal_speed = block->nominal_speed;
-
- #ifdef ADVANCE
- // Calculate advance rate
- if (!bse || (!bsx && !bsy && !bsz)) {
- block->advance_rate = 0;
- block->advance = 0;
- }
- else {
- long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
- float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * (cse * cse * EXTRUSION_AREA * EXTRUSION_AREA) * 256;
- block->advance = advance;
- block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
- }
- /*
- SERIAL_ECHO_START;
- SERIAL_ECHOPGM("advance :");
- SERIAL_ECHO(block->advance/256.0);
- SERIAL_ECHOPGM("advance rate :");
- SERIAL_ECHOLN(block->advance_rate/256.0);
- */
- #endif // ADVANCE
-
- calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
-
- // Move buffer head
- block_buffer_head = next_buffer_head;
-
- // Update position
- for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
-
- planner_recalculate();
-
- st_wake_up();
-
- } // plan_buffer_line()
-
- #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(DELTA)
- vector_3 plan_get_position() {
- vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
-
- //position.debug("in plan_get position");
- //plan_bed_level_matrix.debug("in plan_get_position");
- matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
- //inverse.debug("in plan_get inverse");
- position.apply_rotation(inverse);
- //position.debug("after rotation");
-
- return position;
- }
- #endif // ENABLE_AUTO_BED_LEVELING && !DELTA
-
- #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
- void plan_set_position(float x, float y, float z, const float &e)
- #else
- void plan_set_position(const float &x, const float &y, const float &z, const float &e)
- #endif // ENABLE_AUTO_BED_LEVELING || MESH_BED_LEVELING
- {
- #ifdef MESH_BED_LEVELING
- if (mbl.active) z += mbl.get_z(x, y);
- #elif defined(ENABLE_AUTO_BED_LEVELING)
- apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
- #endif
-
- float nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]),
- ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]),
- nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]),
- ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
- st_set_position(nx, ny, nz, ne);
- previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
-
- for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0;
- }
-
- void plan_set_e_position(const float &e) {
- position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
- st_set_e_position(position[E_AXIS]);
- }
-
- // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
- void reset_acceleration_rates() {
- for (int i = 0; i < NUM_AXIS; i++)
- axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
- }
|