My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316
  1. /**
  2. * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
  3. * Marlin Firmware
  4. *
  5. * Derived from Grbl
  6. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  7. *
  8. * Grbl is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * Grbl is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  20. */
  21. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  22. and Philipp Tiefenbacher. */
  23. #include "Marlin.h"
  24. #include "stepper.h"
  25. #include "planner.h"
  26. #include "temperature.h"
  27. #include "ultralcd.h"
  28. #include "language.h"
  29. #include "cardreader.h"
  30. #include "speed_lookuptable.h"
  31. #if HAS_DIGIPOTSS
  32. #include <SPI.h>
  33. #endif
  34. //===========================================================================
  35. //============================= public variables ============================
  36. //===========================================================================
  37. block_t *current_block; // A pointer to the block currently being traced
  38. //===========================================================================
  39. //============================= private variables ===========================
  40. //===========================================================================
  41. //static makes it impossible to be called from outside of this file by extern.!
  42. // Variables used by The Stepper Driver Interrupt
  43. static unsigned char out_bits = 0; // The next stepping-bits to be output
  44. static unsigned int cleaning_buffer_counter;
  45. #ifdef Z_DUAL_ENDSTOPS
  46. static bool performing_homing = false,
  47. locked_z_motor = false,
  48. locked_z2_motor = false;
  49. #endif
  50. // Counter variables for the Bresenham line tracer
  51. static long counter_x, counter_y, counter_z, counter_e;
  52. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  53. #ifdef ADVANCE
  54. static long advance_rate, advance, final_advance = 0;
  55. static long old_advance = 0;
  56. static long e_steps[4];
  57. #endif
  58. static long acceleration_time, deceleration_time;
  59. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  60. static unsigned short acc_step_rate; // needed for deceleration start point
  61. static char step_loops;
  62. static unsigned short OCR1A_nominal;
  63. static unsigned short step_loops_nominal;
  64. volatile long endstops_trigsteps[3] = { 0 };
  65. volatile long endstops_stepsTotal, endstops_stepsDone;
  66. static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_PROBE as BIT value
  67. #ifndef Z_DUAL_ENDSTOPS
  68. static byte
  69. #else
  70. static uint16_t
  71. #endif
  72. old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_PROBE, Z2_MIN, Z2_MAX
  73. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  74. bool abort_on_endstop_hit = false;
  75. #endif
  76. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  77. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  78. #endif
  79. static bool check_endstops = true;
  80. volatile long count_position[NUM_AXIS] = { 0 };
  81. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  82. //===========================================================================
  83. //================================ functions ================================
  84. //===========================================================================
  85. #ifdef DUAL_X_CARRIAGE
  86. #define X_APPLY_DIR(v,ALWAYS) \
  87. if (extruder_duplication_enabled || ALWAYS) { \
  88. X_DIR_WRITE(v); \
  89. X2_DIR_WRITE(v); \
  90. } \
  91. else { \
  92. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  93. }
  94. #define X_APPLY_STEP(v,ALWAYS) \
  95. if (extruder_duplication_enabled || ALWAYS) { \
  96. X_STEP_WRITE(v); \
  97. X2_STEP_WRITE(v); \
  98. } \
  99. else { \
  100. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  101. }
  102. #else
  103. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  104. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  105. #endif
  106. #ifdef Y_DUAL_STEPPER_DRIVERS
  107. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  108. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  109. #else
  110. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  111. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  112. #endif
  113. #ifdef Z_DUAL_STEPPER_DRIVERS
  114. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  115. #ifdef Z_DUAL_ENDSTOPS
  116. #define Z_APPLY_STEP(v,Q) \
  117. if (performing_homing) { \
  118. if (Z_HOME_DIR > 0) {\
  119. if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  120. if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  121. } else {\
  122. if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  123. if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  124. } \
  125. } else { \
  126. Z_STEP_WRITE(v); \
  127. Z2_STEP_WRITE(v); \
  128. }
  129. #else
  130. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  131. #endif
  132. #else
  133. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  134. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  135. #endif
  136. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  137. // intRes = intIn1 * intIn2 >> 16
  138. // uses:
  139. // r26 to store 0
  140. // r27 to store the byte 1 of the 24 bit result
  141. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  142. asm volatile ( \
  143. "clr r26 \n\t" \
  144. "mul %A1, %B2 \n\t" \
  145. "movw %A0, r0 \n\t" \
  146. "mul %A1, %A2 \n\t" \
  147. "add %A0, r1 \n\t" \
  148. "adc %B0, r26 \n\t" \
  149. "lsr r0 \n\t" \
  150. "adc %A0, r26 \n\t" \
  151. "adc %B0, r26 \n\t" \
  152. "clr r1 \n\t" \
  153. : \
  154. "=&r" (intRes) \
  155. : \
  156. "d" (charIn1), \
  157. "d" (intIn2) \
  158. : \
  159. "r26" \
  160. )
  161. // intRes = longIn1 * longIn2 >> 24
  162. // uses:
  163. // r26 to store 0
  164. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  165. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  166. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  167. // B0 A0 are bits 24-39 and are the returned value
  168. // C1 B1 A1 is longIn1
  169. // D2 C2 B2 A2 is longIn2
  170. //
  171. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  172. asm volatile ( \
  173. "clr r26 \n\t" \
  174. "mul %A1, %B2 \n\t" \
  175. "mov r27, r1 \n\t" \
  176. "mul %B1, %C2 \n\t" \
  177. "movw %A0, r0 \n\t" \
  178. "mul %C1, %C2 \n\t" \
  179. "add %B0, r0 \n\t" \
  180. "mul %C1, %B2 \n\t" \
  181. "add %A0, r0 \n\t" \
  182. "adc %B0, r1 \n\t" \
  183. "mul %A1, %C2 \n\t" \
  184. "add r27, r0 \n\t" \
  185. "adc %A0, r1 \n\t" \
  186. "adc %B0, r26 \n\t" \
  187. "mul %B1, %B2 \n\t" \
  188. "add r27, r0 \n\t" \
  189. "adc %A0, r1 \n\t" \
  190. "adc %B0, r26 \n\t" \
  191. "mul %C1, %A2 \n\t" \
  192. "add r27, r0 \n\t" \
  193. "adc %A0, r1 \n\t" \
  194. "adc %B0, r26 \n\t" \
  195. "mul %B1, %A2 \n\t" \
  196. "add r27, r1 \n\t" \
  197. "adc %A0, r26 \n\t" \
  198. "adc %B0, r26 \n\t" \
  199. "lsr r27 \n\t" \
  200. "adc %A0, r26 \n\t" \
  201. "adc %B0, r26 \n\t" \
  202. "mul %D2, %A1 \n\t" \
  203. "add %A0, r0 \n\t" \
  204. "adc %B0, r1 \n\t" \
  205. "mul %D2, %B1 \n\t" \
  206. "add %B0, r0 \n\t" \
  207. "clr r1 \n\t" \
  208. : \
  209. "=&r" (intRes) \
  210. : \
  211. "d" (longIn1), \
  212. "d" (longIn2) \
  213. : \
  214. "r26" , "r27" \
  215. )
  216. // Some useful constants
  217. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  218. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  219. void endstops_hit_on_purpose() {
  220. endstop_hit_bits = 0;
  221. }
  222. void checkHitEndstops() {
  223. if (endstop_hit_bits) {
  224. SERIAL_ECHO_START;
  225. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  226. if (endstop_hit_bits & BIT(X_MIN)) {
  227. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  228. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  229. }
  230. if (endstop_hit_bits & BIT(Y_MIN)) {
  231. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  232. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  233. }
  234. if (endstop_hit_bits & BIT(Z_MIN)) {
  235. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  236. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  237. }
  238. #ifdef Z_PROBE_ENDSTOP
  239. if (endstop_hit_bits & BIT(Z_PROBE)) {
  240. SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  241. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
  242. }
  243. #endif
  244. SERIAL_EOL;
  245. endstops_hit_on_purpose();
  246. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  247. if (abort_on_endstop_hit) {
  248. card.sdprinting = false;
  249. card.closefile();
  250. quickStop();
  251. disable_all_heaters(); // switch off all heaters.
  252. }
  253. #endif
  254. }
  255. }
  256. void enable_endstops(bool check) { check_endstops = check; }
  257. // Check endstops
  258. inline void update_endstops() {
  259. #ifdef Z_DUAL_ENDSTOPS
  260. uint16_t
  261. #else
  262. byte
  263. #endif
  264. current_endstop_bits = 0;
  265. #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
  266. #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
  267. #define _AXIS(AXIS) AXIS ##_AXIS
  268. #define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_ENDSTOP(AXIS, MIN))
  269. #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
  270. // SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
  271. #define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
  272. // COPY_BIT: copy the value of COPY_BIT to BIT in bits
  273. #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
  274. // TEST_ENDSTOP: test the old and the current status of an endstop
  275. #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
  276. #define UPDATE_ENDSTOP(AXIS,MINMAX) \
  277. SET_ENDSTOP_BIT(AXIS, MINMAX); \
  278. if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
  279. endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \
  280. _ENDSTOP_HIT(AXIS); \
  281. step_events_completed = current_block->step_event_count; \
  282. }
  283. #ifdef COREXY
  284. // Head direction in -X axis for CoreXY bots.
  285. // If DeltaX == -DeltaY, the movement is only in Y axis
  286. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
  287. if (TEST(out_bits, X_HEAD))
  288. #elif defined(COREXZ)
  289. // Head direction in -X axis for CoreXZ bots.
  290. // If DeltaX == -DeltaZ, the movement is only in Z axis
  291. if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, C_AXIS))) {
  292. if (TEST(out_bits, X_HEAD))
  293. #else
  294. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
  295. #endif
  296. { // -direction
  297. #ifdef DUAL_X_CARRIAGE
  298. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  299. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  300. #endif
  301. {
  302. #if HAS_X_MIN
  303. UPDATE_ENDSTOP(X, MIN);
  304. #endif
  305. }
  306. }
  307. else { // +direction
  308. #ifdef DUAL_X_CARRIAGE
  309. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  310. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  311. #endif
  312. {
  313. #if HAS_X_MAX
  314. UPDATE_ENDSTOP(X, MAX);
  315. #endif
  316. }
  317. }
  318. #if defined(COREXY) || defined(COREXZ)
  319. }
  320. #endif
  321. #ifdef COREXY
  322. // Head direction in -Y axis for CoreXY bots.
  323. // If DeltaX == DeltaY, the movement is only in X axis
  324. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  325. if (TEST(out_bits, Y_HEAD))
  326. #else
  327. if (TEST(out_bits, Y_AXIS)) // -direction
  328. #endif
  329. { // -direction
  330. #if HAS_Y_MIN
  331. UPDATE_ENDSTOP(Y, MIN);
  332. #endif
  333. }
  334. else { // +direction
  335. #if HAS_Y_MAX
  336. UPDATE_ENDSTOP(Y, MAX);
  337. #endif
  338. }
  339. #if defined(COREXY)
  340. }
  341. #endif
  342. #ifdef COREXZ
  343. // Head direction in -Z axis for CoreXZ bots.
  344. // If DeltaX == DeltaZ, the movement is only in X axis
  345. if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
  346. if (TEST(out_bits, Z_HEAD))
  347. #else
  348. if (TEST(out_bits, Z_AXIS))
  349. #endif
  350. { // z -direction
  351. #if HAS_Z_MIN
  352. #ifdef Z_DUAL_ENDSTOPS
  353. SET_ENDSTOP_BIT(Z, MIN);
  354. #if HAS_Z2_MIN
  355. SET_ENDSTOP_BIT(Z2, MIN);
  356. #else
  357. COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
  358. #endif
  359. byte z_test = TEST_ENDSTOP(Z_MIN) << 0 + TEST_ENDSTOP(Z2_MIN) << 1; // bit 0 for Z, bit 1 for Z2
  360. if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
  361. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  362. endstop_hit_bits |= BIT(Z_MIN);
  363. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  364. step_events_completed = current_block->step_event_count;
  365. }
  366. #else // !Z_DUAL_ENDSTOPS
  367. UPDATE_ENDSTOP(Z, MIN);
  368. #endif // !Z_DUAL_ENDSTOPS
  369. #endif // Z_MIN_PIN
  370. #ifdef Z_PROBE_ENDSTOP
  371. UPDATE_ENDSTOP(Z, PROBE);
  372. if (TEST_ENDSTOP(Z_PROBE))
  373. {
  374. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  375. endstop_hit_bits |= BIT(Z_PROBE);
  376. }
  377. #endif
  378. }
  379. else { // z +direction
  380. #if HAS_Z_MAX
  381. #ifdef Z_DUAL_ENDSTOPS
  382. SET_ENDSTOP_BIT(Z, MAX);
  383. #if HAS_Z2_MAX
  384. SET_ENDSTOP_BIT(Z2, MAX);
  385. #else
  386. COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX)
  387. #endif
  388. byte z_test = TEST_ENDSTOP(Z_MAX) << 0 + TEST_ENDSTOP(Z2_MAX) << 1; // bit 0 for Z, bit 1 for Z2
  389. if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
  390. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  391. endstop_hit_bits |= BIT(Z_MIN);
  392. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  393. step_events_completed = current_block->step_event_count;
  394. }
  395. #else // !Z_DUAL_ENDSTOPS
  396. UPDATE_ENDSTOP(Z, MAX);
  397. #endif // !Z_DUAL_ENDSTOPS
  398. #endif // Z_MAX_PIN
  399. #ifdef Z_PROBE_ENDSTOP
  400. UPDATE_ENDSTOP(Z, PROBE);
  401. if (TEST_ENDSTOP(Z_PROBE))
  402. {
  403. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  404. endstop_hit_bits |= BIT(Z_PROBE);
  405. }
  406. #endif
  407. }
  408. #if defined(COREXZ)
  409. }
  410. #endif
  411. old_endstop_bits = current_endstop_bits;
  412. }
  413. // __________________________
  414. // /| |\ _________________ ^
  415. // / | | \ /| |\ |
  416. // / | | \ / | | \ s
  417. // / | | | | | \ p
  418. // / | | | | | \ e
  419. // +-----+------------------------+---+--+---------------+----+ e
  420. // | BLOCK 1 | BLOCK 2 | d
  421. //
  422. // time ----->
  423. //
  424. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  425. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  426. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  427. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  428. void st_wake_up() {
  429. // TCNT1 = 0;
  430. ENABLE_STEPPER_DRIVER_INTERRUPT();
  431. }
  432. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  433. unsigned short timer;
  434. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  435. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  436. step_rate = (step_rate >> 2) & 0x3fff;
  437. step_loops = 4;
  438. }
  439. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  440. step_rate = (step_rate >> 1) & 0x7fff;
  441. step_loops = 2;
  442. }
  443. else {
  444. step_loops = 1;
  445. }
  446. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  447. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  448. if (step_rate >= (8 * 256)) { // higher step rate
  449. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  450. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  451. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  452. MultiU16X8toH16(timer, tmp_step_rate, gain);
  453. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  454. }
  455. else { // lower step rates
  456. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  457. table_address += ((step_rate)>>1) & 0xfffc;
  458. timer = (unsigned short)pgm_read_word_near(table_address);
  459. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  460. }
  461. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  462. return timer;
  463. }
  464. /**
  465. * Set the stepper direction of each axis
  466. *
  467. * X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY
  468. * X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ
  469. */
  470. void set_stepper_direction() {
  471. if (TEST(out_bits, X_AXIS)) { // A_AXIS
  472. X_APPLY_DIR(INVERT_X_DIR, 0);
  473. count_direction[X_AXIS] = -1;
  474. }
  475. else {
  476. X_APPLY_DIR(!INVERT_X_DIR, 0);
  477. count_direction[X_AXIS] = 1;
  478. }
  479. if (TEST(out_bits, Y_AXIS)) { // B_AXIS
  480. Y_APPLY_DIR(INVERT_Y_DIR, 0);
  481. count_direction[Y_AXIS] = -1;
  482. }
  483. else {
  484. Y_APPLY_DIR(!INVERT_Y_DIR, 0);
  485. count_direction[Y_AXIS] = 1;
  486. }
  487. if (TEST(out_bits, Z_AXIS)) { // C_AXIS
  488. Z_APPLY_DIR(INVERT_Z_DIR, 0);
  489. count_direction[Z_AXIS] = -1;
  490. }
  491. else {
  492. Z_APPLY_DIR(!INVERT_Z_DIR, 0);
  493. count_direction[Z_AXIS] = 1;
  494. }
  495. #ifndef ADVANCE
  496. if (TEST(out_bits, E_AXIS)) {
  497. REV_E_DIR();
  498. count_direction[E_AXIS] = -1;
  499. }
  500. else {
  501. NORM_E_DIR();
  502. count_direction[E_AXIS] = 1;
  503. }
  504. #endif //!ADVANCE
  505. }
  506. // Initializes the trapezoid generator from the current block. Called whenever a new
  507. // block begins.
  508. FORCE_INLINE void trapezoid_generator_reset() {
  509. if (current_block->direction_bits != out_bits) {
  510. out_bits = current_block->direction_bits;
  511. set_stepper_direction();
  512. }
  513. #ifdef ADVANCE
  514. advance = current_block->initial_advance;
  515. final_advance = current_block->final_advance;
  516. // Do E steps + advance steps
  517. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  518. old_advance = advance >>8;
  519. #endif
  520. deceleration_time = 0;
  521. // step_rate to timer interval
  522. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  523. // make a note of the number of step loops required at nominal speed
  524. step_loops_nominal = step_loops;
  525. acc_step_rate = current_block->initial_rate;
  526. acceleration_time = calc_timer(acc_step_rate);
  527. OCR1A = acceleration_time;
  528. // SERIAL_ECHO_START;
  529. // SERIAL_ECHOPGM("advance :");
  530. // SERIAL_ECHO(current_block->advance/256.0);
  531. // SERIAL_ECHOPGM("advance rate :");
  532. // SERIAL_ECHO(current_block->advance_rate/256.0);
  533. // SERIAL_ECHOPGM("initial advance :");
  534. // SERIAL_ECHO(current_block->initial_advance/256.0);
  535. // SERIAL_ECHOPGM("final advance :");
  536. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  537. }
  538. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  539. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  540. ISR(TIMER1_COMPA_vect) {
  541. if (cleaning_buffer_counter) {
  542. current_block = NULL;
  543. plan_discard_current_block();
  544. #ifdef SD_FINISHED_RELEASECOMMAND
  545. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  546. #endif
  547. cleaning_buffer_counter--;
  548. OCR1A = 200;
  549. return;
  550. }
  551. // If there is no current block, attempt to pop one from the buffer
  552. if (!current_block) {
  553. // Anything in the buffer?
  554. current_block = plan_get_current_block();
  555. if (current_block) {
  556. current_block->busy = true;
  557. trapezoid_generator_reset();
  558. counter_x = -(current_block->step_event_count >> 1);
  559. counter_y = counter_z = counter_e = counter_x;
  560. step_events_completed = 0;
  561. #ifdef Z_LATE_ENABLE
  562. if (current_block->steps[Z_AXIS] > 0) {
  563. enable_z();
  564. OCR1A = 2000; //1ms wait
  565. return;
  566. }
  567. #endif
  568. // #ifdef ADVANCE
  569. // e_steps[current_block->active_extruder] = 0;
  570. // #endif
  571. }
  572. else {
  573. OCR1A = 2000; // 1kHz.
  574. }
  575. }
  576. if (current_block != NULL) {
  577. // Update endstops state, if enabled
  578. if (check_endstops) update_endstops();
  579. // Take multiple steps per interrupt (For high speed moves)
  580. for (int8_t i = 0; i < step_loops; i++) {
  581. #ifndef USBCON
  582. MSerial.checkRx(); // Check for serial chars.
  583. #endif
  584. #ifdef ADVANCE
  585. counter_e += current_block->steps[E_AXIS];
  586. if (counter_e > 0) {
  587. counter_e -= current_block->step_event_count;
  588. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  589. }
  590. #endif //ADVANCE
  591. #define _COUNTER(axis) counter_## axis
  592. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  593. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  594. #define STEP_ADD(axis, AXIS) \
  595. _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
  596. if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  597. STEP_ADD(x,X);
  598. STEP_ADD(y,Y);
  599. STEP_ADD(z,Z);
  600. #ifndef ADVANCE
  601. STEP_ADD(e,E);
  602. #endif
  603. #define STEP_IF_COUNTER(axis, AXIS) \
  604. if (_COUNTER(axis) > 0) { \
  605. _COUNTER(axis) -= current_block->step_event_count; \
  606. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  607. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  608. }
  609. STEP_IF_COUNTER(x, X);
  610. STEP_IF_COUNTER(y, Y);
  611. STEP_IF_COUNTER(z, Z);
  612. #ifndef ADVANCE
  613. STEP_IF_COUNTER(e, E);
  614. #endif
  615. step_events_completed++;
  616. if (step_events_completed >= current_block->step_event_count) break;
  617. }
  618. // Calculate new timer value
  619. unsigned short timer;
  620. unsigned short step_rate;
  621. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  622. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  623. acc_step_rate += current_block->initial_rate;
  624. // upper limit
  625. if (acc_step_rate > current_block->nominal_rate)
  626. acc_step_rate = current_block->nominal_rate;
  627. // step_rate to timer interval
  628. timer = calc_timer(acc_step_rate);
  629. OCR1A = timer;
  630. acceleration_time += timer;
  631. #ifdef ADVANCE
  632. for(int8_t i=0; i < step_loops; i++) {
  633. advance += advance_rate;
  634. }
  635. //if (advance > current_block->advance) advance = current_block->advance;
  636. // Do E steps + advance steps
  637. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  638. old_advance = advance >>8;
  639. #endif
  640. }
  641. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  642. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  643. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  644. step_rate = current_block->final_rate;
  645. }
  646. else {
  647. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  648. }
  649. // lower limit
  650. if (step_rate < current_block->final_rate)
  651. step_rate = current_block->final_rate;
  652. // step_rate to timer interval
  653. timer = calc_timer(step_rate);
  654. OCR1A = timer;
  655. deceleration_time += timer;
  656. #ifdef ADVANCE
  657. for(int8_t i=0; i < step_loops; i++) {
  658. advance -= advance_rate;
  659. }
  660. if (advance < final_advance) advance = final_advance;
  661. // Do E steps + advance steps
  662. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  663. old_advance = advance >>8;
  664. #endif //ADVANCE
  665. }
  666. else {
  667. OCR1A = OCR1A_nominal;
  668. // ensure we're running at the correct step rate, even if we just came off an acceleration
  669. step_loops = step_loops_nominal;
  670. }
  671. // If current block is finished, reset pointer
  672. if (step_events_completed >= current_block->step_event_count) {
  673. current_block = NULL;
  674. plan_discard_current_block();
  675. }
  676. }
  677. }
  678. #ifdef ADVANCE
  679. unsigned char old_OCR0A;
  680. // Timer interrupt for E. e_steps is set in the main routine;
  681. // Timer 0 is shared with millies
  682. ISR(TIMER0_COMPA_vect)
  683. {
  684. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  685. OCR0A = old_OCR0A;
  686. // Set E direction (Depends on E direction + advance)
  687. for(unsigned char i=0; i<4;i++) {
  688. if (e_steps[0] != 0) {
  689. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  690. if (e_steps[0] < 0) {
  691. E0_DIR_WRITE(INVERT_E0_DIR);
  692. e_steps[0]++;
  693. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  694. }
  695. else if (e_steps[0] > 0) {
  696. E0_DIR_WRITE(!INVERT_E0_DIR);
  697. e_steps[0]--;
  698. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  699. }
  700. }
  701. #if EXTRUDERS > 1
  702. if (e_steps[1] != 0) {
  703. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  704. if (e_steps[1] < 0) {
  705. E1_DIR_WRITE(INVERT_E1_DIR);
  706. e_steps[1]++;
  707. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  708. }
  709. else if (e_steps[1] > 0) {
  710. E1_DIR_WRITE(!INVERT_E1_DIR);
  711. e_steps[1]--;
  712. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  713. }
  714. }
  715. #endif
  716. #if EXTRUDERS > 2
  717. if (e_steps[2] != 0) {
  718. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  719. if (e_steps[2] < 0) {
  720. E2_DIR_WRITE(INVERT_E2_DIR);
  721. e_steps[2]++;
  722. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  723. }
  724. else if (e_steps[2] > 0) {
  725. E2_DIR_WRITE(!INVERT_E2_DIR);
  726. e_steps[2]--;
  727. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  728. }
  729. }
  730. #endif
  731. #if EXTRUDERS > 3
  732. if (e_steps[3] != 0) {
  733. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  734. if (e_steps[3] < 0) {
  735. E3_DIR_WRITE(INVERT_E3_DIR);
  736. e_steps[3]++;
  737. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  738. }
  739. else if (e_steps[3] > 0) {
  740. E3_DIR_WRITE(!INVERT_E3_DIR);
  741. e_steps[3]--;
  742. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  743. }
  744. }
  745. #endif
  746. }
  747. }
  748. #endif // ADVANCE
  749. void st_init() {
  750. digipot_init(); //Initialize Digipot Motor Current
  751. microstep_init(); //Initialize Microstepping Pins
  752. // initialise TMC Steppers
  753. #ifdef HAVE_TMCDRIVER
  754. tmc_init();
  755. #endif
  756. // initialise L6470 Steppers
  757. #ifdef HAVE_L6470DRIVER
  758. L6470_init();
  759. #endif
  760. // Initialize Dir Pins
  761. #if HAS_X_DIR
  762. X_DIR_INIT;
  763. #endif
  764. #if HAS_X2_DIR
  765. X2_DIR_INIT;
  766. #endif
  767. #if HAS_Y_DIR
  768. Y_DIR_INIT;
  769. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  770. Y2_DIR_INIT;
  771. #endif
  772. #endif
  773. #if HAS_Z_DIR
  774. Z_DIR_INIT;
  775. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  776. Z2_DIR_INIT;
  777. #endif
  778. #endif
  779. #if HAS_E0_DIR
  780. E0_DIR_INIT;
  781. #endif
  782. #if HAS_E1_DIR
  783. E1_DIR_INIT;
  784. #endif
  785. #if HAS_E2_DIR
  786. E2_DIR_INIT;
  787. #endif
  788. #if HAS_E3_DIR
  789. E3_DIR_INIT;
  790. #endif
  791. //Initialize Enable Pins - steppers default to disabled.
  792. #if HAS_X_ENABLE
  793. X_ENABLE_INIT;
  794. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  795. #endif
  796. #if HAS_X2_ENABLE
  797. X2_ENABLE_INIT;
  798. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  799. #endif
  800. #if HAS_Y_ENABLE
  801. Y_ENABLE_INIT;
  802. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  803. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  804. Y2_ENABLE_INIT;
  805. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  806. #endif
  807. #endif
  808. #if HAS_Z_ENABLE
  809. Z_ENABLE_INIT;
  810. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  811. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  812. Z2_ENABLE_INIT;
  813. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  814. #endif
  815. #endif
  816. #if HAS_E0_ENABLE
  817. E0_ENABLE_INIT;
  818. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  819. #endif
  820. #if HAS_E1_ENABLE
  821. E1_ENABLE_INIT;
  822. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  823. #endif
  824. #if HAS_E2_ENABLE
  825. E2_ENABLE_INIT;
  826. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  827. #endif
  828. #if HAS_E3_ENABLE
  829. E3_ENABLE_INIT;
  830. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  831. #endif
  832. //endstops and pullups
  833. #if HAS_X_MIN
  834. SET_INPUT(X_MIN_PIN);
  835. #ifdef ENDSTOPPULLUP_XMIN
  836. WRITE(X_MIN_PIN,HIGH);
  837. #endif
  838. #endif
  839. #if HAS_Y_MIN
  840. SET_INPUT(Y_MIN_PIN);
  841. #ifdef ENDSTOPPULLUP_YMIN
  842. WRITE(Y_MIN_PIN,HIGH);
  843. #endif
  844. #endif
  845. #if HAS_Z_MIN
  846. SET_INPUT(Z_MIN_PIN);
  847. #ifdef ENDSTOPPULLUP_ZMIN
  848. WRITE(Z_MIN_PIN,HIGH);
  849. #endif
  850. #endif
  851. #if HAS_X_MAX
  852. SET_INPUT(X_MAX_PIN);
  853. #ifdef ENDSTOPPULLUP_XMAX
  854. WRITE(X_MAX_PIN,HIGH);
  855. #endif
  856. #endif
  857. #if HAS_Y_MAX
  858. SET_INPUT(Y_MAX_PIN);
  859. #ifdef ENDSTOPPULLUP_YMAX
  860. WRITE(Y_MAX_PIN,HIGH);
  861. #endif
  862. #endif
  863. #if HAS_Z_MAX
  864. SET_INPUT(Z_MAX_PIN);
  865. #ifdef ENDSTOPPULLUP_ZMAX
  866. WRITE(Z_MAX_PIN,HIGH);
  867. #endif
  868. #endif
  869. #if HAS_Z2_MAX
  870. SET_INPUT(Z2_MAX_PIN);
  871. #ifdef ENDSTOPPULLUP_ZMAX
  872. WRITE(Z2_MAX_PIN,HIGH);
  873. #endif
  874. #endif
  875. #if (defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0) && defined(Z_PROBE_ENDSTOP) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
  876. SET_INPUT(Z_PROBE_PIN);
  877. #ifdef ENDSTOPPULLUP_ZPROBE
  878. WRITE(Z_PROBE_PIN,HIGH);
  879. #endif
  880. #endif
  881. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  882. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  883. #define _DISABLE(axis) disable_## axis()
  884. #define AXIS_INIT(axis, AXIS, PIN) \
  885. _STEP_INIT(AXIS); \
  886. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  887. _DISABLE(axis)
  888. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  889. // Initialize Step Pins
  890. #if HAS_X_STEP
  891. AXIS_INIT(x, X, X);
  892. #endif
  893. #if HAS_X2_STEP
  894. AXIS_INIT(x, X2, X);
  895. #endif
  896. #if HAS_Y_STEP
  897. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  898. Y2_STEP_INIT;
  899. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  900. #endif
  901. AXIS_INIT(y, Y, Y);
  902. #endif
  903. #if HAS_Z_STEP
  904. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  905. Z2_STEP_INIT;
  906. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  907. #endif
  908. AXIS_INIT(z, Z, Z);
  909. #endif
  910. #if HAS_E0_STEP
  911. E_AXIS_INIT(0);
  912. #endif
  913. #if HAS_E1_STEP
  914. E_AXIS_INIT(1);
  915. #endif
  916. #if HAS_E2_STEP
  917. E_AXIS_INIT(2);
  918. #endif
  919. #if HAS_E3_STEP
  920. E_AXIS_INIT(3);
  921. #endif
  922. // waveform generation = 0100 = CTC
  923. TCCR1B &= ~BIT(WGM13);
  924. TCCR1B |= BIT(WGM12);
  925. TCCR1A &= ~BIT(WGM11);
  926. TCCR1A &= ~BIT(WGM10);
  927. // output mode = 00 (disconnected)
  928. TCCR1A &= ~(3<<COM1A0);
  929. TCCR1A &= ~(3<<COM1B0);
  930. // Set the timer pre-scaler
  931. // Generally we use a divider of 8, resulting in a 2MHz timer
  932. // frequency on a 16MHz MCU. If you are going to change this, be
  933. // sure to regenerate speed_lookuptable.h with
  934. // create_speed_lookuptable.py
  935. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  936. OCR1A = 0x4000;
  937. TCNT1 = 0;
  938. ENABLE_STEPPER_DRIVER_INTERRUPT();
  939. #ifdef ADVANCE
  940. #if defined(TCCR0A) && defined(WGM01)
  941. TCCR0A &= ~BIT(WGM01);
  942. TCCR0A &= ~BIT(WGM00);
  943. #endif
  944. e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
  945. TIMSK0 |= BIT(OCIE0A);
  946. #endif //ADVANCE
  947. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  948. sei();
  949. set_stepper_direction(); // Init directions to out_bits = 0
  950. }
  951. /**
  952. * Block until all buffered steps are executed
  953. */
  954. void st_synchronize() { while (blocks_queued()) idle(); }
  955. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  956. CRITICAL_SECTION_START;
  957. count_position[X_AXIS] = x;
  958. count_position[Y_AXIS] = y;
  959. count_position[Z_AXIS] = z;
  960. count_position[E_AXIS] = e;
  961. CRITICAL_SECTION_END;
  962. }
  963. void st_set_e_position(const long &e) {
  964. CRITICAL_SECTION_START;
  965. count_position[E_AXIS] = e;
  966. CRITICAL_SECTION_END;
  967. }
  968. long st_get_position(uint8_t axis) {
  969. long count_pos;
  970. CRITICAL_SECTION_START;
  971. count_pos = count_position[axis];
  972. CRITICAL_SECTION_END;
  973. return count_pos;
  974. }
  975. float st_get_position_mm(AxisEnum axis) { return st_get_position(axis) / axis_steps_per_unit[axis]; }
  976. void finishAndDisableSteppers() {
  977. st_synchronize();
  978. disable_all_steppers();
  979. }
  980. void quickStop() {
  981. cleaning_buffer_counter = 5000;
  982. DISABLE_STEPPER_DRIVER_INTERRUPT();
  983. while (blocks_queued()) plan_discard_current_block();
  984. current_block = NULL;
  985. ENABLE_STEPPER_DRIVER_INTERRUPT();
  986. }
  987. #ifdef BABYSTEPPING
  988. // MUST ONLY BE CALLED BY AN ISR,
  989. // No other ISR should ever interrupt this!
  990. void babystep(const uint8_t axis, const bool direction) {
  991. #define _ENABLE(axis) enable_## axis()
  992. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  993. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  994. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  995. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  996. _ENABLE(axis); \
  997. uint8_t old_pin = _READ_DIR(AXIS); \
  998. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  999. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1000. delayMicroseconds(2); \
  1001. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1002. _APPLY_DIR(AXIS, old_pin); \
  1003. }
  1004. switch(axis) {
  1005. case X_AXIS:
  1006. BABYSTEP_AXIS(x, X, false);
  1007. break;
  1008. case Y_AXIS:
  1009. BABYSTEP_AXIS(y, Y, false);
  1010. break;
  1011. case Z_AXIS: {
  1012. #ifndef DELTA
  1013. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1014. #else // DELTA
  1015. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1016. enable_x();
  1017. enable_y();
  1018. enable_z();
  1019. uint8_t old_x_dir_pin = X_DIR_READ,
  1020. old_y_dir_pin = Y_DIR_READ,
  1021. old_z_dir_pin = Z_DIR_READ;
  1022. //setup new step
  1023. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  1024. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  1025. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  1026. //perform step
  1027. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1028. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1029. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1030. delayMicroseconds(2);
  1031. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1032. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1033. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1034. //get old pin state back.
  1035. X_DIR_WRITE(old_x_dir_pin);
  1036. Y_DIR_WRITE(old_y_dir_pin);
  1037. Z_DIR_WRITE(old_z_dir_pin);
  1038. #endif
  1039. } break;
  1040. default: break;
  1041. }
  1042. }
  1043. #endif //BABYSTEPPING
  1044. // From Arduino DigitalPotControl example
  1045. void digitalPotWrite(int address, int value) {
  1046. #if HAS_DIGIPOTSS
  1047. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1048. SPI.transfer(address); // send in the address and value via SPI:
  1049. SPI.transfer(value);
  1050. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1051. //delay(10);
  1052. #endif
  1053. }
  1054. // Initialize Digipot Motor Current
  1055. void digipot_init() {
  1056. #if HAS_DIGIPOTSS
  1057. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1058. SPI.begin();
  1059. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1060. for (int i = 0; i <= 4; i++) {
  1061. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1062. digipot_current(i,digipot_motor_current[i]);
  1063. }
  1064. #endif
  1065. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1066. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1067. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1068. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1069. digipot_current(0, motor_current_setting[0]);
  1070. digipot_current(1, motor_current_setting[1]);
  1071. digipot_current(2, motor_current_setting[2]);
  1072. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1073. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1074. #endif
  1075. }
  1076. void digipot_current(uint8_t driver, int current) {
  1077. #if HAS_DIGIPOTSS
  1078. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1079. digitalPotWrite(digipot_ch[driver], current);
  1080. #endif
  1081. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1082. switch(driver) {
  1083. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1084. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1085. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1086. }
  1087. #endif
  1088. }
  1089. void microstep_init() {
  1090. #if HAS_MICROSTEPS_E1
  1091. pinMode(E1_MS1_PIN,OUTPUT);
  1092. pinMode(E1_MS2_PIN,OUTPUT);
  1093. #endif
  1094. #if HAS_MICROSTEPS
  1095. pinMode(X_MS1_PIN,OUTPUT);
  1096. pinMode(X_MS2_PIN,OUTPUT);
  1097. pinMode(Y_MS1_PIN,OUTPUT);
  1098. pinMode(Y_MS2_PIN,OUTPUT);
  1099. pinMode(Z_MS1_PIN,OUTPUT);
  1100. pinMode(Z_MS2_PIN,OUTPUT);
  1101. pinMode(E0_MS1_PIN,OUTPUT);
  1102. pinMode(E0_MS2_PIN,OUTPUT);
  1103. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1104. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1105. microstep_mode(i, microstep_modes[i]);
  1106. #endif
  1107. }
  1108. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1109. if (ms1 >= 0) switch(driver) {
  1110. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1111. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1112. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1113. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1114. #if HAS_MICROSTEPS_E1
  1115. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1116. #endif
  1117. }
  1118. if (ms2 >= 0) switch(driver) {
  1119. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1120. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1121. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1122. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1123. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1124. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1125. #endif
  1126. }
  1127. }
  1128. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1129. switch(stepping_mode) {
  1130. case 1: microstep_ms(driver,MICROSTEP1); break;
  1131. case 2: microstep_ms(driver,MICROSTEP2); break;
  1132. case 4: microstep_ms(driver,MICROSTEP4); break;
  1133. case 8: microstep_ms(driver,MICROSTEP8); break;
  1134. case 16: microstep_ms(driver,MICROSTEP16); break;
  1135. }
  1136. }
  1137. void microstep_readings() {
  1138. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1139. SERIAL_PROTOCOLPGM("X: ");
  1140. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1141. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1142. SERIAL_PROTOCOLPGM("Y: ");
  1143. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1144. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1145. SERIAL_PROTOCOLPGM("Z: ");
  1146. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1147. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1148. SERIAL_PROTOCOLPGM("E0: ");
  1149. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1150. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1151. #if HAS_MICROSTEPS_E1
  1152. SERIAL_PROTOCOLPGM("E1: ");
  1153. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1154. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1155. #endif
  1156. }
  1157. #ifdef Z_DUAL_ENDSTOPS
  1158. void In_Homing_Process(bool state) { performing_homing = state; }
  1159. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1160. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1161. #endif