My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

settings.cpp 119KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * settings.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. */
  36. // Change EEPROM version if the structure changes
  37. #define EEPROM_VERSION "V84"
  38. #define EEPROM_OFFSET 100
  39. // Check the integrity of data offsets.
  40. // Can be disabled for production build.
  41. //#define DEBUG_EEPROM_READWRITE
  42. #include "settings.h"
  43. #include "endstops.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "../lcd/marlinui.h"
  48. #include "../libs/vector_3.h" // for matrix_3x3
  49. #include "../gcode/gcode.h"
  50. #include "../MarlinCore.h"
  51. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  52. #include "../HAL/shared/eeprom_api.h"
  53. #endif
  54. #include "probe.h"
  55. #if HAS_LEVELING
  56. #include "../feature/bedlevel/bedlevel.h"
  57. #endif
  58. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  59. #include "../feature/z_stepper_align.h"
  60. #endif
  61. #if ENABLED(EXTENSIBLE_UI)
  62. #include "../lcd/extui/ui_api.h"
  63. #elif ENABLED(DWIN_CREALITY_LCD_ENHANCED)
  64. #include "../lcd/e3v2/enhanced/dwin.h"
  65. #elif ENABLED(DWIN_CREALITY_LCD_JYERSUI)
  66. #include "../lcd/e3v2/jyersui/dwin.h"
  67. #endif
  68. #if HAS_SERVOS
  69. #include "servo.h"
  70. #endif
  71. #if HAS_SERVOS && HAS_SERVO_ANGLES
  72. #define EEPROM_NUM_SERVOS NUM_SERVOS
  73. #else
  74. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  75. #endif
  76. #include "../feature/fwretract.h"
  77. #if ENABLED(POWER_LOSS_RECOVERY)
  78. #include "../feature/powerloss.h"
  79. #endif
  80. #if HAS_POWER_MONITOR
  81. #include "../feature/power_monitor.h"
  82. #endif
  83. #include "../feature/pause.h"
  84. #if ENABLED(BACKLASH_COMPENSATION)
  85. #include "../feature/backlash.h"
  86. #endif
  87. #if HAS_FILAMENT_SENSOR
  88. #include "../feature/runout.h"
  89. #ifndef FIL_RUNOUT_ENABLED_DEFAULT
  90. #define FIL_RUNOUT_ENABLED_DEFAULT true
  91. #endif
  92. #endif
  93. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  94. extern float other_extruder_advance_K[EXTRUDERS];
  95. #endif
  96. #if HAS_MULTI_EXTRUDER
  97. #include "tool_change.h"
  98. void M217_report(const bool eeprom);
  99. #endif
  100. #if ENABLED(BLTOUCH)
  101. #include "../feature/bltouch.h"
  102. #endif
  103. #if HAS_TRINAMIC_CONFIG
  104. #include "stepper/indirection.h"
  105. #include "../feature/tmc_util.h"
  106. #endif
  107. #if ENABLED(PROBE_TEMP_COMPENSATION)
  108. #include "../feature/probe_temp_comp.h"
  109. #endif
  110. #include "../feature/controllerfan.h"
  111. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  112. void M710_report(const bool forReplay=true);
  113. #endif
  114. #if ENABLED(CASE_LIGHT_ENABLE)
  115. #include "../feature/caselight.h"
  116. #endif
  117. #if ENABLED(PASSWORD_FEATURE)
  118. #include "../feature/password/password.h"
  119. #endif
  120. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  121. #include "../lcd/tft_io/touch_calibration.h"
  122. #endif
  123. #if HAS_ETHERNET
  124. #include "../feature/ethernet.h"
  125. #endif
  126. #if ENABLED(SOUND_MENU_ITEM)
  127. #include "../libs/buzzer.h"
  128. #endif
  129. #if ENABLED(DGUS_LCD_UI_MKS)
  130. #include "../lcd/extui/dgus/DGUSScreenHandler.h"
  131. #include "../lcd/extui/dgus/DGUSDisplayDef.h"
  132. #endif
  133. #pragma pack(push, 1) // No padding between variables
  134. #if HAS_ETHERNET
  135. void ETH0_report();
  136. void MAC_report();
  137. void M552_report();
  138. void M553_report();
  139. void M554_report();
  140. #endif
  141. #if EITHER(DELTA, HAS_EXTRA_ENDSTOPS)
  142. void M666_report(const bool forReplay=true);
  143. #endif
  144. #define _EN_ITEM(N) , E##N
  145. typedef struct { uint16_t LINEAR_AXIS_LIST(X, Y, Z, I, J, K), X2, Y2, Z2, Z3, Z4 REPEAT(E_STEPPERS, _EN_ITEM); } tmc_stepper_current_t;
  146. typedef struct { uint32_t LINEAR_AXIS_LIST(X, Y, Z, I, J, K), X2, Y2, Z2, Z3, Z4 REPEAT(E_STEPPERS, _EN_ITEM); } tmc_hybrid_threshold_t;
  147. typedef struct { int16_t LINEAR_AXIS_LIST(X, Y, Z, I, J, K), X2, Y2, Z2, Z3, Z4; } tmc_sgt_t;
  148. typedef struct { bool LINEAR_AXIS_LIST(X, Y, Z, I, J, K), X2, Y2, Z2, Z3, Z4 REPEAT(E_STEPPERS, _EN_ITEM); } tmc_stealth_enabled_t;
  149. #undef _EN_ITEM
  150. // Limit an index to an array size
  151. #define ALIM(I,ARR) _MIN(I, (signed)COUNT(ARR) - 1)
  152. // Defaults for reset / fill in on load
  153. static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  154. static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
  155. static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  156. /**
  157. * Current EEPROM Layout
  158. *
  159. * Keep this data structure up to date so
  160. * EEPROM size is known at compile time!
  161. */
  162. typedef struct SettingsDataStruct {
  163. char version[4]; // Vnn\0
  164. uint16_t crc; // Data Checksum
  165. //
  166. // DISTINCT_E_FACTORS
  167. //
  168. uint8_t esteppers; // DISTINCT_AXES - LINEAR_AXES
  169. planner_settings_t planner_settings;
  170. xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
  171. float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  172. xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
  173. #if HAS_HOTEND_OFFSET
  174. xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
  175. #endif
  176. //
  177. // FILAMENT_RUNOUT_SENSOR
  178. //
  179. bool runout_sensor_enabled; // M412 S
  180. float runout_distance_mm; // M412 D
  181. //
  182. // ENABLE_LEVELING_FADE_HEIGHT
  183. //
  184. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  185. //
  186. // MESH_BED_LEVELING
  187. //
  188. float mbl_z_offset; // mbl.z_offset
  189. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  190. float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // mbl.z_values
  191. [TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)];
  192. //
  193. // HAS_BED_PROBE
  194. //
  195. xyz_pos_t probe_offset;
  196. //
  197. // ABL_PLANAR
  198. //
  199. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  200. //
  201. // AUTO_BED_LEVELING_BILINEAR
  202. //
  203. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  204. xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
  205. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  206. bed_mesh_t z_values; // G29
  207. #else
  208. float z_values[3][3];
  209. #endif
  210. //
  211. // AUTO_BED_LEVELING_UBL
  212. //
  213. bool planner_leveling_active; // M420 S planner.leveling_active
  214. int8_t ubl_storage_slot; // ubl.storage_slot
  215. //
  216. // SERVO_ANGLES
  217. //
  218. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  219. //
  220. // Temperature first layer compensation values
  221. //
  222. #if ENABLED(PROBE_TEMP_COMPENSATION)
  223. int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V
  224. z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V
  225. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  226. , z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V
  227. #endif
  228. ;
  229. #endif
  230. //
  231. // BLTOUCH
  232. //
  233. bool bltouch_last_written_mode;
  234. //
  235. // DELTA / [XYZ]_DUAL_ENDSTOPS
  236. //
  237. #if ENABLED(DELTA)
  238. float delta_height; // M666 H
  239. abc_float_t delta_endstop_adj; // M666 X Y Z
  240. float delta_radius, // M665 R
  241. delta_diagonal_rod, // M665 L
  242. segments_per_second; // M665 S
  243. abc_float_t delta_tower_angle_trim, // M665 X Y Z
  244. delta_diagonal_rod_trim; // M665 A B C
  245. #elif HAS_EXTRA_ENDSTOPS
  246. float x2_endstop_adj, // M666 X
  247. y2_endstop_adj, // M666 Y
  248. z2_endstop_adj, // M666 (S2) Z
  249. z3_endstop_adj, // M666 (S3) Z
  250. z4_endstop_adj; // M666 (S4) Z
  251. #endif
  252. //
  253. // Z_STEPPER_AUTO_ALIGN, Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS
  254. //
  255. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  256. xy_pos_t z_stepper_align_xy[NUM_Z_STEPPER_DRIVERS]; // M422 S X Y
  257. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  258. xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPER_DRIVERS]; // M422 W X Y
  259. #endif
  260. #endif
  261. //
  262. // Material Presets
  263. //
  264. #if PREHEAT_COUNT
  265. preheat_t ui_material_preset[PREHEAT_COUNT]; // M145 S0 H B F
  266. #endif
  267. //
  268. // PIDTEMP
  269. //
  270. PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
  271. int16_t lpq_len; // M301 L
  272. //
  273. // PIDTEMPBED
  274. //
  275. PID_t bedPID; // M304 PID / M303 E-1 U
  276. //
  277. // PIDTEMPCHAMBER
  278. //
  279. PID_t chamberPID; // M309 PID / M303 E-2 U
  280. //
  281. // User-defined Thermistors
  282. //
  283. #if HAS_USER_THERMISTORS
  284. user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
  285. #endif
  286. //
  287. // Power monitor
  288. //
  289. uint8_t power_monitor_flags; // M430 I V W
  290. //
  291. // HAS_LCD_CONTRAST
  292. //
  293. int16_t lcd_contrast; // M250 C
  294. //
  295. // HAS_LCD_BRIGHTNESS
  296. //
  297. uint8_t lcd_brightness; // M256 B
  298. //
  299. // Controller fan settings
  300. //
  301. controllerFan_settings_t controllerFan_settings; // M710
  302. //
  303. // POWER_LOSS_RECOVERY
  304. //
  305. bool recovery_enabled; // M413 S
  306. //
  307. // FWRETRACT
  308. //
  309. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  310. bool autoretract_enabled; // M209 S
  311. //
  312. // !NO_VOLUMETRIC
  313. //
  314. bool parser_volumetric_enabled; // M200 S parser.volumetric_enabled
  315. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  316. float planner_volumetric_extruder_limit[EXTRUDERS]; // M200 T L planner.volumetric_extruder_limit[]
  317. //
  318. // HAS_TRINAMIC_CONFIG
  319. //
  320. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  321. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  322. tmc_sgt_t tmc_sgt; // M914 X Y Z X2 Y2 Z2 Z3 Z4
  323. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  324. //
  325. // LIN_ADVANCE
  326. //
  327. float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K
  328. //
  329. // HAS_MOTOR_CURRENT_PWM
  330. //
  331. #ifndef MOTOR_CURRENT_COUNT
  332. #define MOTOR_CURRENT_COUNT LINEAR_AXES
  333. #endif
  334. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // M907 X Z E ...
  335. //
  336. // CNC_COORDINATE_SYSTEMS
  337. //
  338. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
  339. //
  340. // SKEW_CORRECTION
  341. //
  342. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  343. //
  344. // ADVANCED_PAUSE_FEATURE
  345. //
  346. #if HAS_EXTRUDERS
  347. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  348. #endif
  349. //
  350. // Tool-change settings
  351. //
  352. #if HAS_MULTI_EXTRUDER
  353. toolchange_settings_t toolchange_settings; // M217 S P R
  354. #endif
  355. //
  356. // BACKLASH_COMPENSATION
  357. //
  358. xyz_float_t backlash_distance_mm; // M425 X Y Z
  359. uint8_t backlash_correction; // M425 F
  360. float backlash_smoothing_mm; // M425 S
  361. //
  362. // EXTENSIBLE_UI
  363. //
  364. #if ENABLED(EXTENSIBLE_UI)
  365. uint8_t extui_data[ExtUI::eeprom_data_size];
  366. #endif
  367. //
  368. // Ender-3 V2 DWIN
  369. //
  370. #if ENABLED(DWIN_CREALITY_LCD_ENHANCED)
  371. uint8_t dwin_data[eeprom_data_size];
  372. #elif ENABLED(DWIN_CREALITY_LCD_JYERSUI)
  373. uint8_t dwin_settings[CrealityDWIN.eeprom_data_size];
  374. #endif
  375. //
  376. // CASELIGHT_USES_BRIGHTNESS
  377. //
  378. #if CASELIGHT_USES_BRIGHTNESS
  379. uint8_t caselight_brightness; // M355 P
  380. #endif
  381. //
  382. // PASSWORD_FEATURE
  383. //
  384. #if ENABLED(PASSWORD_FEATURE)
  385. bool password_is_set;
  386. uint32_t password_value;
  387. #endif
  388. //
  389. // TOUCH_SCREEN_CALIBRATION
  390. //
  391. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  392. touch_calibration_t touch_calibration_data;
  393. #endif
  394. // Ethernet settings
  395. #if HAS_ETHERNET
  396. bool ethernet_hardware_enabled; // M552 S
  397. uint32_t ethernet_ip, // M552 P
  398. ethernet_dns,
  399. ethernet_gateway, // M553 P
  400. ethernet_subnet; // M554 P
  401. #endif
  402. //
  403. // Buzzer enable/disable
  404. //
  405. #if ENABLED(SOUND_MENU_ITEM)
  406. bool buzzer_enabled;
  407. #endif
  408. //
  409. // MKS UI controller
  410. //
  411. #if ENABLED(DGUS_LCD_UI_MKS)
  412. uint8_t mks_language_index; // Display Language
  413. xy_int_t mks_corner_offsets[5]; // Bed Tramming
  414. xyz_int_t mks_park_pos; // Custom Parking (without NOZZLE_PARK)
  415. celsius_t mks_min_extrusion_temp; // Min E Temp (shadow M302 value)
  416. #endif
  417. #if HAS_MULTI_LANGUAGE
  418. uint8_t ui_language; // M414 S
  419. #endif
  420. } SettingsData;
  421. //static_assert(sizeof(SettingsData) <= MARLIN_EEPROM_SIZE, "EEPROM too small to contain SettingsData!");
  422. MarlinSettings settings;
  423. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  424. /**
  425. * Post-process after Retrieve or Reset
  426. */
  427. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  428. float new_z_fade_height;
  429. #endif
  430. void MarlinSettings::postprocess() {
  431. xyze_pos_t oldpos = current_position;
  432. // steps per s2 needs to be updated to agree with units per s2
  433. planner.reset_acceleration_rates();
  434. // Make sure delta kinematics are updated before refreshing the
  435. // planner position so the stepper counts will be set correctly.
  436. TERN_(DELTA, recalc_delta_settings());
  437. TERN_(PIDTEMP, thermalManager.updatePID());
  438. #if DISABLED(NO_VOLUMETRICS)
  439. planner.calculate_volumetric_multipliers();
  440. #elif EXTRUDERS
  441. for (uint8_t i = COUNT(planner.e_factor); i--;)
  442. planner.refresh_e_factor(i);
  443. #endif
  444. // Software endstops depend on home_offset
  445. LOOP_LINEAR_AXES(i) {
  446. update_workspace_offset((AxisEnum)i);
  447. update_software_endstops((AxisEnum)i);
  448. }
  449. TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report
  450. TERN_(AUTO_BED_LEVELING_BILINEAR, refresh_bed_level());
  451. TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power());
  452. TERN_(FWRETRACT, fwretract.refresh_autoretract());
  453. TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk());
  454. TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.update_brightness());
  455. TERN_(EXTENSIBLE_UI, ExtUI::onPostprocessSettings());
  456. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  457. // and init stepper.count[], planner.position[] with current_position
  458. planner.refresh_positioning();
  459. // Various factors can change the current position
  460. if (oldpos != current_position)
  461. report_current_position();
  462. }
  463. #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
  464. #include "printcounter.h"
  465. static_assert(
  466. !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
  467. !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  468. "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
  469. );
  470. #endif
  471. #if ENABLED(SD_FIRMWARE_UPDATE)
  472. #if ENABLED(EEPROM_SETTINGS)
  473. static_assert(
  474. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  475. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  476. );
  477. #endif
  478. bool MarlinSettings::sd_update_status() {
  479. uint8_t val;
  480. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  481. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  482. }
  483. bool MarlinSettings::set_sd_update_status(const bool enable) {
  484. if (enable != sd_update_status())
  485. persistentStore.write_data(
  486. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  487. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  488. );
  489. return true;
  490. }
  491. #endif // SD_FIRMWARE_UPDATE
  492. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  493. static_assert(EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
  494. "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data.");
  495. #endif
  496. //
  497. // This file simply uses the DEBUG_ECHO macros to implement EEPROM_CHITCHAT.
  498. // For deeper debugging of EEPROM issues enable DEBUG_EEPROM_READWRITE.
  499. //
  500. #define DEBUG_OUT EITHER(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
  501. #include "../core/debug_out.h"
  502. #if ENABLED(EEPROM_SETTINGS)
  503. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  504. #if ENABLED(DEBUG_EEPROM_READWRITE)
  505. #define _FIELD_TEST(FIELD) \
  506. EEPROM_ASSERT( \
  507. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  508. "Field " STRINGIFY(FIELD) " mismatch." \
  509. )
  510. #else
  511. #define _FIELD_TEST(FIELD) NOOP
  512. #endif
  513. const char version[4] = EEPROM_VERSION;
  514. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  515. int MarlinSettings::eeprom_index;
  516. uint16_t MarlinSettings::working_crc;
  517. bool MarlinSettings::size_error(const uint16_t size) {
  518. if (size != datasize()) {
  519. DEBUG_ERROR_MSG("EEPROM datasize error.");
  520. return true;
  521. }
  522. return false;
  523. }
  524. /**
  525. * M500 - Store Configuration
  526. */
  527. bool MarlinSettings::save() {
  528. float dummyf = 0;
  529. char ver[4] = "ERR";
  530. if (!EEPROM_START(EEPROM_OFFSET)) return false;
  531. eeprom_error = false;
  532. // Write or Skip version. (Flash doesn't allow rewrite without erase.)
  533. TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver);
  534. EEPROM_SKIP(working_crc); // Skip the checksum slot
  535. working_crc = 0; // clear before first "real data"
  536. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - LINEAR_AXES;
  537. _FIELD_TEST(esteppers);
  538. EEPROM_WRITE(esteppers);
  539. //
  540. // Planner Motion
  541. //
  542. {
  543. EEPROM_WRITE(planner.settings);
  544. #if HAS_CLASSIC_JERK
  545. EEPROM_WRITE(planner.max_jerk);
  546. #if HAS_LINEAR_E_JERK
  547. dummyf = float(DEFAULT_EJERK);
  548. EEPROM_WRITE(dummyf);
  549. #endif
  550. #else
  551. const xyze_pos_t planner_max_jerk = LOGICAL_AXIS_ARRAY(float(DEFAULT_EJERK), 10, 10, 0.4, 0.4, 0.4, 0.4);
  552. EEPROM_WRITE(planner_max_jerk);
  553. #endif
  554. TERN_(CLASSIC_JERK, dummyf = 0.02f);
  555. EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  556. }
  557. //
  558. // Home Offset
  559. //
  560. {
  561. _FIELD_TEST(home_offset);
  562. #if HAS_SCARA_OFFSET
  563. EEPROM_WRITE(scara_home_offset);
  564. #else
  565. #if !HAS_HOME_OFFSET
  566. const xyz_pos_t home_offset{0};
  567. #endif
  568. EEPROM_WRITE(home_offset);
  569. #endif
  570. }
  571. //
  572. // Hotend Offsets, if any
  573. //
  574. {
  575. #if HAS_HOTEND_OFFSET
  576. // Skip hotend 0 which must be 0
  577. LOOP_S_L_N(e, 1, HOTENDS)
  578. EEPROM_WRITE(hotend_offset[e]);
  579. #endif
  580. }
  581. //
  582. // Filament Runout Sensor
  583. //
  584. {
  585. #if HAS_FILAMENT_SENSOR
  586. const bool &runout_sensor_enabled = runout.enabled;
  587. #else
  588. constexpr int8_t runout_sensor_enabled = -1;
  589. #endif
  590. _FIELD_TEST(runout_sensor_enabled);
  591. EEPROM_WRITE(runout_sensor_enabled);
  592. #if HAS_FILAMENT_RUNOUT_DISTANCE
  593. const float &runout_distance_mm = runout.runout_distance();
  594. #else
  595. constexpr float runout_distance_mm = 0;
  596. #endif
  597. EEPROM_WRITE(runout_distance_mm);
  598. }
  599. //
  600. // Global Leveling
  601. //
  602. {
  603. const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, (DEFAULT_LEVELING_FADE_HEIGHT));
  604. EEPROM_WRITE(zfh);
  605. }
  606. //
  607. // Mesh Bed Leveling
  608. //
  609. {
  610. #if ENABLED(MESH_BED_LEVELING)
  611. static_assert(
  612. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  613. "MBL Z array is the wrong size."
  614. );
  615. #else
  616. dummyf = 0;
  617. #endif
  618. const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3),
  619. mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3);
  620. EEPROM_WRITE(TERN(MESH_BED_LEVELING, mbl.z_offset, dummyf));
  621. EEPROM_WRITE(mesh_num_x);
  622. EEPROM_WRITE(mesh_num_y);
  623. #if ENABLED(MESH_BED_LEVELING)
  624. EEPROM_WRITE(mbl.z_values);
  625. #else
  626. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf);
  627. #endif
  628. }
  629. //
  630. // Probe XYZ Offsets
  631. //
  632. {
  633. _FIELD_TEST(probe_offset);
  634. #if HAS_BED_PROBE
  635. const xyz_pos_t &zpo = probe.offset;
  636. #else
  637. constexpr xyz_pos_t zpo{0};
  638. #endif
  639. EEPROM_WRITE(zpo);
  640. }
  641. //
  642. // Planar Bed Leveling matrix
  643. //
  644. {
  645. #if ABL_PLANAR
  646. EEPROM_WRITE(planner.bed_level_matrix);
  647. #else
  648. dummyf = 0;
  649. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf);
  650. #endif
  651. }
  652. //
  653. // Bilinear Auto Bed Leveling
  654. //
  655. {
  656. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  657. static_assert(
  658. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  659. "Bilinear Z array is the wrong size."
  660. );
  661. #else
  662. const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0};
  663. #endif
  664. const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3),
  665. grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3);
  666. EEPROM_WRITE(grid_max_x);
  667. EEPROM_WRITE(grid_max_y);
  668. EEPROM_WRITE(bilinear_grid_spacing);
  669. EEPROM_WRITE(bilinear_start);
  670. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  671. EEPROM_WRITE(z_values); // 9-256 floats
  672. #else
  673. dummyf = 0;
  674. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf);
  675. #endif
  676. }
  677. //
  678. // Unified Bed Leveling
  679. //
  680. {
  681. _FIELD_TEST(planner_leveling_active);
  682. const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false);
  683. const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, ubl.storage_slot, -1);
  684. EEPROM_WRITE(ubl_active);
  685. EEPROM_WRITE(storage_slot);
  686. }
  687. //
  688. // Servo Angles
  689. //
  690. {
  691. _FIELD_TEST(servo_angles);
  692. #if !HAS_SERVO_ANGLES
  693. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  694. #endif
  695. EEPROM_WRITE(servo_angles);
  696. }
  697. //
  698. // Thermal first layer compensation values
  699. //
  700. #if ENABLED(PROBE_TEMP_COMPENSATION)
  701. EEPROM_WRITE(temp_comp.z_offsets_probe);
  702. EEPROM_WRITE(temp_comp.z_offsets_bed);
  703. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  704. EEPROM_WRITE(temp_comp.z_offsets_ext);
  705. #endif
  706. #else
  707. // No placeholder data for this feature
  708. #endif
  709. //
  710. // BLTOUCH
  711. //
  712. {
  713. _FIELD_TEST(bltouch_last_written_mode);
  714. const bool bltouch_last_written_mode = TERN(BLTOUCH, bltouch.last_written_mode, false);
  715. EEPROM_WRITE(bltouch_last_written_mode);
  716. }
  717. //
  718. // DELTA Geometry or Dual Endstops offsets
  719. //
  720. {
  721. #if ENABLED(DELTA)
  722. _FIELD_TEST(delta_height);
  723. EEPROM_WRITE(delta_height); // 1 float
  724. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  725. EEPROM_WRITE(delta_radius); // 1 float
  726. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  727. EEPROM_WRITE(segments_per_second); // 1 float
  728. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  729. EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats
  730. #elif HAS_EXTRA_ENDSTOPS
  731. _FIELD_TEST(x2_endstop_adj);
  732. // Write dual endstops in X, Y, Z order. Unused = 0.0
  733. dummyf = 0;
  734. EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  735. EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  736. EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  737. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  738. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  739. #else
  740. EEPROM_WRITE(dummyf);
  741. #endif
  742. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  743. EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
  744. #else
  745. EEPROM_WRITE(dummyf);
  746. #endif
  747. #endif
  748. }
  749. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  750. EEPROM_WRITE(z_stepper_align.xy);
  751. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  752. EEPROM_WRITE(z_stepper_align.stepper_xy);
  753. #endif
  754. #endif
  755. //
  756. // LCD Preheat settings
  757. //
  758. #if PREHEAT_COUNT
  759. _FIELD_TEST(ui_material_preset);
  760. EEPROM_WRITE(ui.material_preset);
  761. #endif
  762. //
  763. // PIDTEMP
  764. //
  765. {
  766. _FIELD_TEST(hotendPID);
  767. HOTEND_LOOP() {
  768. PIDCF_t pidcf = {
  769. #if DISABLED(PIDTEMP)
  770. NAN, NAN, NAN,
  771. NAN, NAN
  772. #else
  773. PID_PARAM(Kp, e),
  774. unscalePID_i(PID_PARAM(Ki, e)),
  775. unscalePID_d(PID_PARAM(Kd, e)),
  776. PID_PARAM(Kc, e),
  777. PID_PARAM(Kf, e)
  778. #endif
  779. };
  780. EEPROM_WRITE(pidcf);
  781. }
  782. _FIELD_TEST(lpq_len);
  783. #if DISABLED(PID_EXTRUSION_SCALING)
  784. const int16_t lpq_len = 20;
  785. #endif
  786. EEPROM_WRITE(TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, lpq_len));
  787. }
  788. //
  789. // PIDTEMPBED
  790. //
  791. {
  792. _FIELD_TEST(bedPID);
  793. const PID_t bed_pid = {
  794. #if DISABLED(PIDTEMPBED)
  795. NAN, NAN, NAN
  796. #else
  797. // Store the unscaled PID values
  798. thermalManager.temp_bed.pid.Kp,
  799. unscalePID_i(thermalManager.temp_bed.pid.Ki),
  800. unscalePID_d(thermalManager.temp_bed.pid.Kd)
  801. #endif
  802. };
  803. EEPROM_WRITE(bed_pid);
  804. }
  805. //
  806. // PIDTEMPCHAMBER
  807. //
  808. {
  809. _FIELD_TEST(chamberPID);
  810. const PID_t chamber_pid = {
  811. #if DISABLED(PIDTEMPCHAMBER)
  812. NAN, NAN, NAN
  813. #else
  814. // Store the unscaled PID values
  815. thermalManager.temp_chamber.pid.Kp,
  816. unscalePID_i(thermalManager.temp_chamber.pid.Ki),
  817. unscalePID_d(thermalManager.temp_chamber.pid.Kd)
  818. #endif
  819. };
  820. EEPROM_WRITE(chamber_pid);
  821. }
  822. //
  823. // User-defined Thermistors
  824. //
  825. #if HAS_USER_THERMISTORS
  826. {
  827. _FIELD_TEST(user_thermistor);
  828. EEPROM_WRITE(thermalManager.user_thermistor);
  829. }
  830. #endif
  831. //
  832. // Power monitor
  833. //
  834. {
  835. #if HAS_POWER_MONITOR
  836. const uint8_t &power_monitor_flags = power_monitor.flags;
  837. #else
  838. constexpr uint8_t power_monitor_flags = 0x00;
  839. #endif
  840. _FIELD_TEST(power_monitor_flags);
  841. EEPROM_WRITE(power_monitor_flags);
  842. }
  843. //
  844. // LCD Contrast
  845. //
  846. {
  847. _FIELD_TEST(lcd_contrast);
  848. const int16_t lcd_contrast = TERN(HAS_LCD_CONTRAST, ui.contrast, 127);
  849. EEPROM_WRITE(lcd_contrast);
  850. }
  851. //
  852. // LCD Brightness
  853. //
  854. {
  855. _FIELD_TEST(lcd_brightness);
  856. const uint8_t lcd_brightness = TERN(HAS_LCD_BRIGHTNESS, ui.brightness, 255);
  857. EEPROM_WRITE(lcd_brightness);
  858. }
  859. //
  860. // Controller Fan
  861. //
  862. {
  863. _FIELD_TEST(controllerFan_settings);
  864. #if ENABLED(USE_CONTROLLER_FAN)
  865. const controllerFan_settings_t &cfs = controllerFan.settings;
  866. #else
  867. controllerFan_settings_t cfs = controllerFan_defaults;
  868. #endif
  869. EEPROM_WRITE(cfs);
  870. }
  871. //
  872. // Power-Loss Recovery
  873. //
  874. {
  875. _FIELD_TEST(recovery_enabled);
  876. const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT));
  877. EEPROM_WRITE(recovery_enabled);
  878. }
  879. //
  880. // Firmware Retraction
  881. //
  882. {
  883. _FIELD_TEST(fwretract_settings);
  884. #if DISABLED(FWRETRACT)
  885. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  886. #endif
  887. EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults));
  888. #if DISABLED(FWRETRACT_AUTORETRACT)
  889. const bool autoretract_enabled = false;
  890. #endif
  891. EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled));
  892. }
  893. //
  894. // Volumetric & Filament Size
  895. //
  896. {
  897. _FIELD_TEST(parser_volumetric_enabled);
  898. #if DISABLED(NO_VOLUMETRICS)
  899. EEPROM_WRITE(parser.volumetric_enabled);
  900. EEPROM_WRITE(planner.filament_size);
  901. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  902. EEPROM_WRITE(planner.volumetric_extruder_limit);
  903. #else
  904. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  905. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  906. #endif
  907. #else
  908. const bool volumetric_enabled = false;
  909. EEPROM_WRITE(volumetric_enabled);
  910. dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
  911. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  912. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  913. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  914. #endif
  915. }
  916. //
  917. // TMC Configuration
  918. //
  919. {
  920. _FIELD_TEST(tmc_stepper_current);
  921. tmc_stepper_current_t tmc_stepper_current{0};
  922. #if HAS_TRINAMIC_CONFIG
  923. #if AXIS_IS_TMC(X)
  924. tmc_stepper_current.X = stepperX.getMilliamps();
  925. #endif
  926. #if AXIS_IS_TMC(Y)
  927. tmc_stepper_current.Y = stepperY.getMilliamps();
  928. #endif
  929. #if AXIS_IS_TMC(Z)
  930. tmc_stepper_current.Z = stepperZ.getMilliamps();
  931. #endif
  932. #if AXIS_IS_TMC(I)
  933. tmc_stepper_current.I = stepperI.getMilliamps();
  934. #endif
  935. #if AXIS_IS_TMC(J)
  936. tmc_stepper_current.J = stepperJ.getMilliamps();
  937. #endif
  938. #if AXIS_IS_TMC(K)
  939. tmc_stepper_current.K = stepperK.getMilliamps();
  940. #endif
  941. #if AXIS_IS_TMC(X2)
  942. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  943. #endif
  944. #if AXIS_IS_TMC(Y2)
  945. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  946. #endif
  947. #if AXIS_IS_TMC(Z2)
  948. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  949. #endif
  950. #if AXIS_IS_TMC(Z3)
  951. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  952. #endif
  953. #if AXIS_IS_TMC(Z4)
  954. tmc_stepper_current.Z4 = stepperZ4.getMilliamps();
  955. #endif
  956. #if AXIS_IS_TMC(E0)
  957. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  958. #endif
  959. #if AXIS_IS_TMC(E1)
  960. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  961. #endif
  962. #if AXIS_IS_TMC(E2)
  963. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  964. #endif
  965. #if AXIS_IS_TMC(E3)
  966. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  967. #endif
  968. #if AXIS_IS_TMC(E4)
  969. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  970. #endif
  971. #if AXIS_IS_TMC(E5)
  972. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  973. #endif
  974. #if AXIS_IS_TMC(E6)
  975. tmc_stepper_current.E6 = stepperE6.getMilliamps();
  976. #endif
  977. #if AXIS_IS_TMC(E7)
  978. tmc_stepper_current.E7 = stepperE7.getMilliamps();
  979. #endif
  980. #endif
  981. EEPROM_WRITE(tmc_stepper_current);
  982. }
  983. //
  984. // TMC Hybrid Threshold, and placeholder values
  985. //
  986. {
  987. _FIELD_TEST(tmc_hybrid_threshold);
  988. #if ENABLED(HYBRID_THRESHOLD)
  989. tmc_hybrid_threshold_t tmc_hybrid_threshold{0};
  990. TERN_(X_HAS_STEALTHCHOP, tmc_hybrid_threshold.X = stepperX.get_pwm_thrs());
  991. TERN_(Y_HAS_STEALTHCHOP, tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs());
  992. TERN_(Z_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs());
  993. TERN_(I_HAS_STEALTHCHOP, tmc_hybrid_threshold.I = stepperI.get_pwm_thrs());
  994. TERN_(J_HAS_STEALTHCHOP, tmc_hybrid_threshold.J = stepperJ.get_pwm_thrs());
  995. TERN_(K_HAS_STEALTHCHOP, tmc_hybrid_threshold.K = stepperK.get_pwm_thrs());
  996. TERN_(X2_HAS_STEALTHCHOP, tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs());
  997. TERN_(Y2_HAS_STEALTHCHOP, tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs());
  998. TERN_(Z2_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs());
  999. TERN_(Z3_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs());
  1000. TERN_(Z4_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs());
  1001. TERN_(E0_HAS_STEALTHCHOP, tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs());
  1002. TERN_(E1_HAS_STEALTHCHOP, tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs());
  1003. TERN_(E2_HAS_STEALTHCHOP, tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs());
  1004. TERN_(E3_HAS_STEALTHCHOP, tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs());
  1005. TERN_(E4_HAS_STEALTHCHOP, tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs());
  1006. TERN_(E5_HAS_STEALTHCHOP, tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs());
  1007. TERN_(E6_HAS_STEALTHCHOP, tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs());
  1008. TERN_(E7_HAS_STEALTHCHOP, tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs());
  1009. #else
  1010. #define _EN_ITEM(N) , .E##N = 30
  1011. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  1012. LINEAR_AXIS_LIST(.X = 100, .Y = 100, .Z = 3, .I = 3, .J = 3, .K = 3),
  1013. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3
  1014. REPEAT(E_STEPPERS, _EN_ITEM)
  1015. };
  1016. #undef _EN_ITEM
  1017. #endif
  1018. EEPROM_WRITE(tmc_hybrid_threshold);
  1019. }
  1020. //
  1021. // TMC StallGuard threshold
  1022. //
  1023. {
  1024. tmc_sgt_t tmc_sgt{0};
  1025. #if USE_SENSORLESS
  1026. LINEAR_AXIS_CODE(
  1027. TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold()),
  1028. TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold()),
  1029. TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold()),
  1030. TERN_(I_SENSORLESS, tmc_sgt.I = stepperI.homing_threshold()),
  1031. TERN_(J_SENSORLESS, tmc_sgt.J = stepperJ.homing_threshold()),
  1032. TERN_(K_SENSORLESS, tmc_sgt.K = stepperK.homing_threshold())
  1033. );
  1034. TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold());
  1035. TERN_(Y2_SENSORLESS, tmc_sgt.Y2 = stepperY2.homing_threshold());
  1036. TERN_(Z2_SENSORLESS, tmc_sgt.Z2 = stepperZ2.homing_threshold());
  1037. TERN_(Z3_SENSORLESS, tmc_sgt.Z3 = stepperZ3.homing_threshold());
  1038. TERN_(Z4_SENSORLESS, tmc_sgt.Z4 = stepperZ4.homing_threshold());
  1039. #endif
  1040. EEPROM_WRITE(tmc_sgt);
  1041. }
  1042. //
  1043. // TMC stepping mode
  1044. //
  1045. {
  1046. _FIELD_TEST(tmc_stealth_enabled);
  1047. tmc_stealth_enabled_t tmc_stealth_enabled = { false };
  1048. TERN_(X_HAS_STEALTHCHOP, tmc_stealth_enabled.X = stepperX.get_stored_stealthChop());
  1049. TERN_(Y_HAS_STEALTHCHOP, tmc_stealth_enabled.Y = stepperY.get_stored_stealthChop());
  1050. TERN_(Z_HAS_STEALTHCHOP, tmc_stealth_enabled.Z = stepperZ.get_stored_stealthChop());
  1051. TERN_(I_HAS_STEALTHCHOP, tmc_stealth_enabled.I = stepperI.get_stored_stealthChop());
  1052. TERN_(J_HAS_STEALTHCHOP, tmc_stealth_enabled.J = stepperJ.get_stored_stealthChop());
  1053. TERN_(K_HAS_STEALTHCHOP, tmc_stealth_enabled.K = stepperK.get_stored_stealthChop());
  1054. TERN_(X2_HAS_STEALTHCHOP, tmc_stealth_enabled.X2 = stepperX2.get_stored_stealthChop());
  1055. TERN_(Y2_HAS_STEALTHCHOP, tmc_stealth_enabled.Y2 = stepperY2.get_stored_stealthChop());
  1056. TERN_(Z2_HAS_STEALTHCHOP, tmc_stealth_enabled.Z2 = stepperZ2.get_stored_stealthChop());
  1057. TERN_(Z3_HAS_STEALTHCHOP, tmc_stealth_enabled.Z3 = stepperZ3.get_stored_stealthChop());
  1058. TERN_(Z4_HAS_STEALTHCHOP, tmc_stealth_enabled.Z4 = stepperZ4.get_stored_stealthChop());
  1059. TERN_(E0_HAS_STEALTHCHOP, tmc_stealth_enabled.E0 = stepperE0.get_stored_stealthChop());
  1060. TERN_(E1_HAS_STEALTHCHOP, tmc_stealth_enabled.E1 = stepperE1.get_stored_stealthChop());
  1061. TERN_(E2_HAS_STEALTHCHOP, tmc_stealth_enabled.E2 = stepperE2.get_stored_stealthChop());
  1062. TERN_(E3_HAS_STEALTHCHOP, tmc_stealth_enabled.E3 = stepperE3.get_stored_stealthChop());
  1063. TERN_(E4_HAS_STEALTHCHOP, tmc_stealth_enabled.E4 = stepperE4.get_stored_stealthChop());
  1064. TERN_(E5_HAS_STEALTHCHOP, tmc_stealth_enabled.E5 = stepperE5.get_stored_stealthChop());
  1065. TERN_(E6_HAS_STEALTHCHOP, tmc_stealth_enabled.E6 = stepperE6.get_stored_stealthChop());
  1066. TERN_(E7_HAS_STEALTHCHOP, tmc_stealth_enabled.E7 = stepperE7.get_stored_stealthChop());
  1067. EEPROM_WRITE(tmc_stealth_enabled);
  1068. }
  1069. //
  1070. // Linear Advance
  1071. //
  1072. {
  1073. _FIELD_TEST(planner_extruder_advance_K);
  1074. #if ENABLED(LIN_ADVANCE)
  1075. EEPROM_WRITE(planner.extruder_advance_K);
  1076. #else
  1077. dummyf = 0;
  1078. for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf);
  1079. #endif
  1080. }
  1081. //
  1082. // Motor Current PWM
  1083. //
  1084. {
  1085. _FIELD_TEST(motor_current_setting);
  1086. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  1087. EEPROM_WRITE(stepper.motor_current_setting);
  1088. #else
  1089. const uint32_t no_current[MOTOR_CURRENT_COUNT] = { 0 };
  1090. EEPROM_WRITE(no_current);
  1091. #endif
  1092. }
  1093. //
  1094. // CNC Coordinate Systems
  1095. //
  1096. _FIELD_TEST(coordinate_system);
  1097. #if DISABLED(CNC_COORDINATE_SYSTEMS)
  1098. const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
  1099. #endif
  1100. EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system));
  1101. //
  1102. // Skew correction factors
  1103. //
  1104. _FIELD_TEST(planner_skew_factor);
  1105. EEPROM_WRITE(planner.skew_factor);
  1106. //
  1107. // Advanced Pause filament load & unload lengths
  1108. //
  1109. #if HAS_EXTRUDERS
  1110. {
  1111. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1112. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  1113. #endif
  1114. _FIELD_TEST(fc_settings);
  1115. EEPROM_WRITE(fc_settings);
  1116. }
  1117. #endif
  1118. //
  1119. // Multiple Extruders
  1120. //
  1121. #if HAS_MULTI_EXTRUDER
  1122. _FIELD_TEST(toolchange_settings);
  1123. EEPROM_WRITE(toolchange_settings);
  1124. #endif
  1125. //
  1126. // Backlash Compensation
  1127. //
  1128. {
  1129. #if ENABLED(BACKLASH_GCODE)
  1130. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1131. const uint8_t &backlash_correction = backlash.correction;
  1132. #else
  1133. const xyz_float_t backlash_distance_mm{0};
  1134. const uint8_t backlash_correction = 0;
  1135. #endif
  1136. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1137. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1138. #else
  1139. const float backlash_smoothing_mm = 3;
  1140. #endif
  1141. _FIELD_TEST(backlash_distance_mm);
  1142. EEPROM_WRITE(backlash_distance_mm);
  1143. EEPROM_WRITE(backlash_correction);
  1144. EEPROM_WRITE(backlash_smoothing_mm);
  1145. }
  1146. //
  1147. // Extensible UI User Data
  1148. //
  1149. #if ENABLED(EXTENSIBLE_UI)
  1150. {
  1151. char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1152. ExtUI::onStoreSettings(extui_data);
  1153. _FIELD_TEST(extui_data);
  1154. EEPROM_WRITE(extui_data);
  1155. }
  1156. #endif
  1157. //
  1158. // Creality DWIN User Data
  1159. //
  1160. #if ENABLED(DWIN_CREALITY_LCD_ENHANCED)
  1161. {
  1162. char dwin_data[eeprom_data_size] = { 0 };
  1163. DWIN_StoreSettings(dwin_data);
  1164. _FIELD_TEST(dwin_data);
  1165. EEPROM_WRITE(dwin_data);
  1166. }
  1167. #elif ENABLED(DWIN_CREALITY_LCD_JYERSUI)
  1168. {
  1169. char dwin_settings[CrealityDWIN.eeprom_data_size] = { 0 };
  1170. CrealityDWIN.Save_Settings(dwin_settings);
  1171. _FIELD_TEST(dwin_settings);
  1172. EEPROM_WRITE(dwin_settings);
  1173. }
  1174. #endif
  1175. //
  1176. // Case Light Brightness
  1177. //
  1178. #if CASELIGHT_USES_BRIGHTNESS
  1179. EEPROM_WRITE(caselight.brightness);
  1180. #endif
  1181. //
  1182. // Password feature
  1183. //
  1184. #if ENABLED(PASSWORD_FEATURE)
  1185. EEPROM_WRITE(password.is_set);
  1186. EEPROM_WRITE(password.value);
  1187. #endif
  1188. //
  1189. // TOUCH_SCREEN_CALIBRATION
  1190. //
  1191. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  1192. EEPROM_WRITE(touch_calibration.calibration);
  1193. #endif
  1194. //
  1195. // Ethernet network info
  1196. //
  1197. #if HAS_ETHERNET
  1198. {
  1199. _FIELD_TEST(ethernet_hardware_enabled);
  1200. const bool ethernet_hardware_enabled = ethernet.hardware_enabled;
  1201. const uint32_t ethernet_ip = ethernet.ip,
  1202. ethernet_dns = ethernet.myDns,
  1203. ethernet_gateway = ethernet.gateway,
  1204. ethernet_subnet = ethernet.subnet;
  1205. EEPROM_WRITE(ethernet_hardware_enabled);
  1206. EEPROM_WRITE(ethernet_ip);
  1207. EEPROM_WRITE(ethernet_dns);
  1208. EEPROM_WRITE(ethernet_gateway);
  1209. EEPROM_WRITE(ethernet_subnet);
  1210. }
  1211. #endif
  1212. //
  1213. // Buzzer enable/disable
  1214. //
  1215. #if ENABLED(SOUND_MENU_ITEM)
  1216. EEPROM_WRITE(ui.buzzer_enabled);
  1217. #endif
  1218. //
  1219. // MKS UI controller
  1220. //
  1221. #if ENABLED(DGUS_LCD_UI_MKS)
  1222. EEPROM_WRITE(mks_language_index);
  1223. EEPROM_WRITE(mks_corner_offsets);
  1224. EEPROM_WRITE(mks_park_pos);
  1225. EEPROM_WRITE(mks_min_extrusion_temp);
  1226. #endif
  1227. //
  1228. // Selected LCD language
  1229. //
  1230. #if HAS_MULTI_LANGUAGE
  1231. EEPROM_WRITE(ui.language);
  1232. #endif
  1233. //
  1234. // Report final CRC and Data Size
  1235. //
  1236. if (!eeprom_error) {
  1237. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  1238. final_crc = working_crc;
  1239. // Write the EEPROM header
  1240. eeprom_index = EEPROM_OFFSET;
  1241. EEPROM_WRITE(version);
  1242. EEPROM_WRITE(final_crc);
  1243. // Report storage size
  1244. DEBUG_ECHO_MSG("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  1245. eeprom_error |= size_error(eeprom_size);
  1246. }
  1247. EEPROM_FINISH();
  1248. //
  1249. // UBL Mesh
  1250. //
  1251. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  1252. if (ubl.storage_slot >= 0)
  1253. store_mesh(ubl.storage_slot);
  1254. #endif
  1255. if (!eeprom_error) LCD_MESSAGEPGM(MSG_SETTINGS_STORED);
  1256. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreWritten(!eeprom_error));
  1257. return !eeprom_error;
  1258. }
  1259. /**
  1260. * M501 - Retrieve Configuration
  1261. */
  1262. bool MarlinSettings::_load() {
  1263. if (!EEPROM_START(EEPROM_OFFSET)) return false;
  1264. char stored_ver[4];
  1265. EEPROM_READ_ALWAYS(stored_ver);
  1266. uint16_t stored_crc;
  1267. EEPROM_READ_ALWAYS(stored_crc);
  1268. // Version has to match or defaults are used
  1269. if (strncmp(version, stored_ver, 3) != 0) {
  1270. if (stored_ver[3] != '\0') {
  1271. stored_ver[0] = '?';
  1272. stored_ver[1] = '\0';
  1273. }
  1274. DEBUG_ECHO_MSG("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  1275. TERN_(DWIN_CREALITY_LCD_ENHANCED, ui.set_status(GET_TEXT(MSG_ERR_EEPROM_VERSION)));
  1276. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_version());
  1277. eeprom_error = true;
  1278. }
  1279. else {
  1280. float dummyf = 0;
  1281. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  1282. _FIELD_TEST(esteppers);
  1283. // Number of esteppers may change
  1284. uint8_t esteppers;
  1285. EEPROM_READ_ALWAYS(esteppers);
  1286. //
  1287. // Planner Motion
  1288. //
  1289. {
  1290. // Get only the number of E stepper parameters previously stored
  1291. // Any steppers added later are set to their defaults
  1292. uint32_t tmp1[LINEAR_AXES + esteppers];
  1293. float tmp2[LINEAR_AXES + esteppers];
  1294. feedRate_t tmp3[LINEAR_AXES + esteppers];
  1295. EEPROM_READ((uint8_t *)tmp1, sizeof(tmp1)); // max_acceleration_mm_per_s2
  1296. EEPROM_READ(planner.settings.min_segment_time_us);
  1297. EEPROM_READ((uint8_t *)tmp2, sizeof(tmp2)); // axis_steps_per_mm
  1298. EEPROM_READ((uint8_t *)tmp3, sizeof(tmp3)); // max_feedrate_mm_s
  1299. if (!validating) LOOP_DISTINCT_AXES(i) {
  1300. const bool in = (i < esteppers + LINEAR_AXES);
  1301. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  1302. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  1303. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  1304. }
  1305. EEPROM_READ(planner.settings.acceleration);
  1306. EEPROM_READ(planner.settings.retract_acceleration);
  1307. EEPROM_READ(planner.settings.travel_acceleration);
  1308. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1309. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1310. #if HAS_CLASSIC_JERK
  1311. EEPROM_READ(planner.max_jerk);
  1312. #if HAS_LINEAR_E_JERK
  1313. EEPROM_READ(dummyf);
  1314. #endif
  1315. #else
  1316. for (uint8_t q = LOGICAL_AXES; q--;) EEPROM_READ(dummyf);
  1317. #endif
  1318. EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  1319. }
  1320. //
  1321. // Home Offset (M206 / M665)
  1322. //
  1323. {
  1324. _FIELD_TEST(home_offset);
  1325. #if HAS_SCARA_OFFSET
  1326. EEPROM_READ(scara_home_offset);
  1327. #else
  1328. #if !HAS_HOME_OFFSET
  1329. xyz_pos_t home_offset;
  1330. #endif
  1331. EEPROM_READ(home_offset);
  1332. #endif
  1333. }
  1334. //
  1335. // Hotend Offsets, if any
  1336. //
  1337. {
  1338. #if HAS_HOTEND_OFFSET
  1339. // Skip hotend 0 which must be 0
  1340. LOOP_S_L_N(e, 1, HOTENDS)
  1341. EEPROM_READ(hotend_offset[e]);
  1342. #endif
  1343. }
  1344. //
  1345. // Filament Runout Sensor
  1346. //
  1347. {
  1348. int8_t runout_sensor_enabled;
  1349. _FIELD_TEST(runout_sensor_enabled);
  1350. EEPROM_READ(runout_sensor_enabled);
  1351. #if HAS_FILAMENT_SENSOR
  1352. runout.enabled = runout_sensor_enabled < 0 ? FIL_RUNOUT_ENABLED_DEFAULT : runout_sensor_enabled;
  1353. #endif
  1354. TERN_(HAS_FILAMENT_SENSOR, if (runout.enabled) runout.reset());
  1355. float runout_distance_mm;
  1356. EEPROM_READ(runout_distance_mm);
  1357. #if HAS_FILAMENT_RUNOUT_DISTANCE
  1358. if (!validating) runout.set_runout_distance(runout_distance_mm);
  1359. #endif
  1360. }
  1361. //
  1362. // Global Leveling
  1363. //
  1364. EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf));
  1365. //
  1366. // Mesh (Manual) Bed Leveling
  1367. //
  1368. {
  1369. uint8_t mesh_num_x, mesh_num_y;
  1370. EEPROM_READ(dummyf);
  1371. EEPROM_READ_ALWAYS(mesh_num_x);
  1372. EEPROM_READ_ALWAYS(mesh_num_y);
  1373. #if ENABLED(MESH_BED_LEVELING)
  1374. if (!validating) mbl.z_offset = dummyf;
  1375. if (mesh_num_x == (GRID_MAX_POINTS_X) && mesh_num_y == (GRID_MAX_POINTS_Y)) {
  1376. // EEPROM data fits the current mesh
  1377. EEPROM_READ(mbl.z_values);
  1378. }
  1379. else {
  1380. // EEPROM data is stale
  1381. if (!validating) mbl.reset();
  1382. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1383. }
  1384. #else
  1385. // MBL is disabled - skip the stored data
  1386. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1387. #endif // MESH_BED_LEVELING
  1388. }
  1389. //
  1390. // Probe Z Offset
  1391. //
  1392. {
  1393. _FIELD_TEST(probe_offset);
  1394. #if HAS_BED_PROBE
  1395. const xyz_pos_t &zpo = probe.offset;
  1396. #else
  1397. xyz_pos_t zpo;
  1398. #endif
  1399. EEPROM_READ(zpo);
  1400. }
  1401. //
  1402. // Planar Bed Leveling matrix
  1403. //
  1404. {
  1405. #if ABL_PLANAR
  1406. EEPROM_READ(planner.bed_level_matrix);
  1407. #else
  1408. for (uint8_t q = 9; q--;) EEPROM_READ(dummyf);
  1409. #endif
  1410. }
  1411. //
  1412. // Bilinear Auto Bed Leveling
  1413. //
  1414. {
  1415. uint8_t grid_max_x, grid_max_y;
  1416. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1417. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1418. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1419. if (grid_max_x == (GRID_MAX_POINTS_X) && grid_max_y == (GRID_MAX_POINTS_Y)) {
  1420. if (!validating) set_bed_leveling_enabled(false);
  1421. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1422. EEPROM_READ(bilinear_start); // 2 ints
  1423. EEPROM_READ(z_values); // 9 to 256 floats
  1424. }
  1425. else // EEPROM data is stale
  1426. #endif // AUTO_BED_LEVELING_BILINEAR
  1427. {
  1428. // Skip past disabled (or stale) Bilinear Grid data
  1429. xy_pos_t bgs, bs;
  1430. EEPROM_READ(bgs);
  1431. EEPROM_READ(bs);
  1432. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf);
  1433. }
  1434. }
  1435. //
  1436. // Unified Bed Leveling active state
  1437. //
  1438. {
  1439. _FIELD_TEST(planner_leveling_active);
  1440. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1441. const bool &planner_leveling_active = planner.leveling_active;
  1442. const int8_t &ubl_storage_slot = ubl.storage_slot;
  1443. #else
  1444. bool planner_leveling_active;
  1445. int8_t ubl_storage_slot;
  1446. #endif
  1447. EEPROM_READ(planner_leveling_active);
  1448. EEPROM_READ(ubl_storage_slot);
  1449. }
  1450. //
  1451. // SERVO_ANGLES
  1452. //
  1453. {
  1454. _FIELD_TEST(servo_angles);
  1455. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1456. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1457. #else
  1458. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1459. #endif
  1460. EEPROM_READ(servo_angles_arr);
  1461. }
  1462. //
  1463. // Thermal first layer compensation values
  1464. //
  1465. #if ENABLED(PROBE_TEMP_COMPENSATION)
  1466. EEPROM_READ(temp_comp.z_offsets_probe);
  1467. EEPROM_READ(temp_comp.z_offsets_bed);
  1468. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  1469. EEPROM_READ(temp_comp.z_offsets_ext);
  1470. #endif
  1471. temp_comp.reset_index();
  1472. #else
  1473. // No placeholder data for this feature
  1474. #endif
  1475. //
  1476. // BLTOUCH
  1477. //
  1478. {
  1479. _FIELD_TEST(bltouch_last_written_mode);
  1480. #if ENABLED(BLTOUCH)
  1481. const bool &bltouch_last_written_mode = bltouch.last_written_mode;
  1482. #else
  1483. bool bltouch_last_written_mode;
  1484. #endif
  1485. EEPROM_READ(bltouch_last_written_mode);
  1486. }
  1487. //
  1488. // DELTA Geometry or Dual Endstops offsets
  1489. //
  1490. {
  1491. #if ENABLED(DELTA)
  1492. _FIELD_TEST(delta_height);
  1493. EEPROM_READ(delta_height); // 1 float
  1494. EEPROM_READ(delta_endstop_adj); // 3 floats
  1495. EEPROM_READ(delta_radius); // 1 float
  1496. EEPROM_READ(delta_diagonal_rod); // 1 float
  1497. EEPROM_READ(segments_per_second); // 1 float
  1498. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1499. EEPROM_READ(delta_diagonal_rod_trim); // 3 floats
  1500. #elif HAS_EXTRA_ENDSTOPS
  1501. _FIELD_TEST(x2_endstop_adj);
  1502. EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  1503. EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  1504. EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  1505. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  1506. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1507. #else
  1508. EEPROM_READ(dummyf);
  1509. #endif
  1510. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  1511. EEPROM_READ(endstops.z4_endstop_adj); // 1 float
  1512. #else
  1513. EEPROM_READ(dummyf);
  1514. #endif
  1515. #endif
  1516. }
  1517. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  1518. EEPROM_READ(z_stepper_align.xy);
  1519. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  1520. EEPROM_READ(z_stepper_align.stepper_xy);
  1521. #endif
  1522. #endif
  1523. //
  1524. // LCD Preheat settings
  1525. //
  1526. #if PREHEAT_COUNT
  1527. _FIELD_TEST(ui_material_preset);
  1528. EEPROM_READ(ui.material_preset);
  1529. #endif
  1530. //
  1531. // Hotend PID
  1532. //
  1533. {
  1534. HOTEND_LOOP() {
  1535. PIDCF_t pidcf;
  1536. EEPROM_READ(pidcf);
  1537. #if ENABLED(PIDTEMP)
  1538. if (!validating && !isnan(pidcf.Kp)) {
  1539. // Scale PID values since EEPROM values are unscaled
  1540. PID_PARAM(Kp, e) = pidcf.Kp;
  1541. PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki);
  1542. PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd);
  1543. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = pidcf.Kc);
  1544. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = pidcf.Kf);
  1545. }
  1546. #endif
  1547. }
  1548. }
  1549. //
  1550. // PID Extrusion Scaling
  1551. //
  1552. {
  1553. _FIELD_TEST(lpq_len);
  1554. #if ENABLED(PID_EXTRUSION_SCALING)
  1555. const int16_t &lpq_len = thermalManager.lpq_len;
  1556. #else
  1557. int16_t lpq_len;
  1558. #endif
  1559. EEPROM_READ(lpq_len);
  1560. }
  1561. //
  1562. // Heated Bed PID
  1563. //
  1564. {
  1565. PID_t pid;
  1566. EEPROM_READ(pid);
  1567. #if ENABLED(PIDTEMPBED)
  1568. if (!validating && !isnan(pid.Kp)) {
  1569. // Scale PID values since EEPROM values are unscaled
  1570. thermalManager.temp_bed.pid.Kp = pid.Kp;
  1571. thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki);
  1572. thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd);
  1573. }
  1574. #endif
  1575. }
  1576. //
  1577. // Heated Chamber PID
  1578. //
  1579. {
  1580. PID_t pid;
  1581. EEPROM_READ(pid);
  1582. #if ENABLED(PIDTEMPCHAMBER)
  1583. if (!validating && !isnan(pid.Kp)) {
  1584. // Scale PID values since EEPROM values are unscaled
  1585. thermalManager.temp_chamber.pid.Kp = pid.Kp;
  1586. thermalManager.temp_chamber.pid.Ki = scalePID_i(pid.Ki);
  1587. thermalManager.temp_chamber.pid.Kd = scalePID_d(pid.Kd);
  1588. }
  1589. #endif
  1590. }
  1591. //
  1592. // User-defined Thermistors
  1593. //
  1594. #if HAS_USER_THERMISTORS
  1595. {
  1596. _FIELD_TEST(user_thermistor);
  1597. EEPROM_READ(thermalManager.user_thermistor);
  1598. }
  1599. #endif
  1600. //
  1601. // Power monitor
  1602. //
  1603. {
  1604. #if HAS_POWER_MONITOR
  1605. uint8_t &power_monitor_flags = power_monitor.flags;
  1606. #else
  1607. uint8_t power_monitor_flags;
  1608. #endif
  1609. _FIELD_TEST(power_monitor_flags);
  1610. EEPROM_READ(power_monitor_flags);
  1611. }
  1612. //
  1613. // LCD Contrast
  1614. //
  1615. {
  1616. _FIELD_TEST(lcd_contrast);
  1617. int16_t lcd_contrast;
  1618. EEPROM_READ(lcd_contrast);
  1619. if (!validating) {
  1620. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(lcd_contrast));
  1621. }
  1622. }
  1623. //
  1624. // LCD Brightness
  1625. //
  1626. {
  1627. _FIELD_TEST(lcd_brightness);
  1628. uint8_t lcd_brightness;
  1629. EEPROM_READ(lcd_brightness);
  1630. TERN_(HAS_LCD_BRIGHTNESS, if (!validating) ui.set_brightness(lcd_brightness));
  1631. }
  1632. //
  1633. // Controller Fan
  1634. //
  1635. {
  1636. _FIELD_TEST(controllerFan_settings);
  1637. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  1638. const controllerFan_settings_t &cfs = controllerFan.settings;
  1639. #else
  1640. controllerFan_settings_t cfs = { 0 };
  1641. #endif
  1642. EEPROM_READ(cfs);
  1643. }
  1644. //
  1645. // Power-Loss Recovery
  1646. //
  1647. {
  1648. _FIELD_TEST(recovery_enabled);
  1649. #if ENABLED(POWER_LOSS_RECOVERY)
  1650. const bool &recovery_enabled = recovery.enabled;
  1651. #else
  1652. bool recovery_enabled;
  1653. #endif
  1654. EEPROM_READ(recovery_enabled);
  1655. }
  1656. //
  1657. // Firmware Retraction
  1658. //
  1659. {
  1660. _FIELD_TEST(fwretract_settings);
  1661. #if ENABLED(FWRETRACT)
  1662. EEPROM_READ(fwretract.settings);
  1663. #else
  1664. fwretract_settings_t fwretract_settings;
  1665. EEPROM_READ(fwretract_settings);
  1666. #endif
  1667. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1668. EEPROM_READ(fwretract.autoretract_enabled);
  1669. #else
  1670. bool autoretract_enabled;
  1671. EEPROM_READ(autoretract_enabled);
  1672. #endif
  1673. }
  1674. //
  1675. // Volumetric & Filament Size
  1676. //
  1677. {
  1678. struct {
  1679. bool volumetric_enabled;
  1680. float filament_size[EXTRUDERS];
  1681. float volumetric_extruder_limit[EXTRUDERS];
  1682. } storage;
  1683. _FIELD_TEST(parser_volumetric_enabled);
  1684. EEPROM_READ(storage);
  1685. #if DISABLED(NO_VOLUMETRICS)
  1686. if (!validating) {
  1687. parser.volumetric_enabled = storage.volumetric_enabled;
  1688. COPY(planner.filament_size, storage.filament_size);
  1689. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  1690. COPY(planner.volumetric_extruder_limit, storage.volumetric_extruder_limit);
  1691. #endif
  1692. }
  1693. #endif
  1694. }
  1695. //
  1696. // TMC Stepper Settings
  1697. //
  1698. if (!validating) reset_stepper_drivers();
  1699. // TMC Stepper Current
  1700. {
  1701. _FIELD_TEST(tmc_stepper_current);
  1702. tmc_stepper_current_t currents;
  1703. EEPROM_READ(currents);
  1704. #if HAS_TRINAMIC_CONFIG
  1705. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1706. if (!validating) {
  1707. #if AXIS_IS_TMC(X)
  1708. SET_CURR(X);
  1709. #endif
  1710. #if AXIS_IS_TMC(Y)
  1711. SET_CURR(Y);
  1712. #endif
  1713. #if AXIS_IS_TMC(Z)
  1714. SET_CURR(Z);
  1715. #endif
  1716. #if AXIS_IS_TMC(X2)
  1717. SET_CURR(X2);
  1718. #endif
  1719. #if AXIS_IS_TMC(Y2)
  1720. SET_CURR(Y2);
  1721. #endif
  1722. #if AXIS_IS_TMC(Z2)
  1723. SET_CURR(Z2);
  1724. #endif
  1725. #if AXIS_IS_TMC(Z3)
  1726. SET_CURR(Z3);
  1727. #endif
  1728. #if AXIS_IS_TMC(Z4)
  1729. SET_CURR(Z4);
  1730. #endif
  1731. #if AXIS_IS_TMC(I)
  1732. SET_CURR(I);
  1733. #endif
  1734. #if AXIS_IS_TMC(J)
  1735. SET_CURR(J);
  1736. #endif
  1737. #if AXIS_IS_TMC(K)
  1738. SET_CURR(K);
  1739. #endif
  1740. #if AXIS_IS_TMC(E0)
  1741. SET_CURR(E0);
  1742. #endif
  1743. #if AXIS_IS_TMC(E1)
  1744. SET_CURR(E1);
  1745. #endif
  1746. #if AXIS_IS_TMC(E2)
  1747. SET_CURR(E2);
  1748. #endif
  1749. #if AXIS_IS_TMC(E3)
  1750. SET_CURR(E3);
  1751. #endif
  1752. #if AXIS_IS_TMC(E4)
  1753. SET_CURR(E4);
  1754. #endif
  1755. #if AXIS_IS_TMC(E5)
  1756. SET_CURR(E5);
  1757. #endif
  1758. #if AXIS_IS_TMC(E6)
  1759. SET_CURR(E6);
  1760. #endif
  1761. #if AXIS_IS_TMC(E7)
  1762. SET_CURR(E7);
  1763. #endif
  1764. }
  1765. #endif
  1766. }
  1767. // TMC Hybrid Threshold
  1768. {
  1769. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1770. _FIELD_TEST(tmc_hybrid_threshold);
  1771. EEPROM_READ(tmc_hybrid_threshold);
  1772. #if ENABLED(HYBRID_THRESHOLD)
  1773. if (!validating) {
  1774. TERN_(X_HAS_STEALTHCHOP, stepperX.set_pwm_thrs(tmc_hybrid_threshold.X));
  1775. TERN_(Y_HAS_STEALTHCHOP, stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y));
  1776. TERN_(Z_HAS_STEALTHCHOP, stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z));
  1777. TERN_(X2_HAS_STEALTHCHOP, stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2));
  1778. TERN_(Y2_HAS_STEALTHCHOP, stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2));
  1779. TERN_(Z2_HAS_STEALTHCHOP, stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2));
  1780. TERN_(Z3_HAS_STEALTHCHOP, stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3));
  1781. TERN_(Z4_HAS_STEALTHCHOP, stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4));
  1782. TERN_(I_HAS_STEALTHCHOP, stepperI.set_pwm_thrs(tmc_hybrid_threshold.I));
  1783. TERN_(J_HAS_STEALTHCHOP, stepperJ.set_pwm_thrs(tmc_hybrid_threshold.J));
  1784. TERN_(K_HAS_STEALTHCHOP, stepperK.set_pwm_thrs(tmc_hybrid_threshold.K));
  1785. TERN_(E0_HAS_STEALTHCHOP, stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0));
  1786. TERN_(E1_HAS_STEALTHCHOP, stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1));
  1787. TERN_(E2_HAS_STEALTHCHOP, stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2));
  1788. TERN_(E3_HAS_STEALTHCHOP, stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3));
  1789. TERN_(E4_HAS_STEALTHCHOP, stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4));
  1790. TERN_(E5_HAS_STEALTHCHOP, stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5));
  1791. TERN_(E6_HAS_STEALTHCHOP, stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6));
  1792. TERN_(E7_HAS_STEALTHCHOP, stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7));
  1793. }
  1794. #endif
  1795. }
  1796. //
  1797. // TMC StallGuard threshold.
  1798. //
  1799. {
  1800. tmc_sgt_t tmc_sgt;
  1801. _FIELD_TEST(tmc_sgt);
  1802. EEPROM_READ(tmc_sgt);
  1803. #if USE_SENSORLESS
  1804. if (!validating) {
  1805. LINEAR_AXIS_CODE(
  1806. TERN_(X_SENSORLESS, stepperX.homing_threshold(tmc_sgt.X)),
  1807. TERN_(Y_SENSORLESS, stepperY.homing_threshold(tmc_sgt.Y)),
  1808. TERN_(Z_SENSORLESS, stepperZ.homing_threshold(tmc_sgt.Z)),
  1809. TERN_(I_SENSORLESS, stepperI.homing_threshold(tmc_sgt.I)),
  1810. TERN_(J_SENSORLESS, stepperJ.homing_threshold(tmc_sgt.J)),
  1811. TERN_(K_SENSORLESS, stepperK.homing_threshold(tmc_sgt.K))
  1812. );
  1813. TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2));
  1814. TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(tmc_sgt.Y2));
  1815. TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(tmc_sgt.Z2));
  1816. TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(tmc_sgt.Z3));
  1817. TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(tmc_sgt.Z4));
  1818. }
  1819. #endif
  1820. }
  1821. // TMC stepping mode
  1822. {
  1823. _FIELD_TEST(tmc_stealth_enabled);
  1824. tmc_stealth_enabled_t tmc_stealth_enabled;
  1825. EEPROM_READ(tmc_stealth_enabled);
  1826. #if HAS_TRINAMIC_CONFIG
  1827. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1828. if (!validating) {
  1829. TERN_(X_HAS_STEALTHCHOP, SET_STEPPING_MODE(X));
  1830. TERN_(Y_HAS_STEALTHCHOP, SET_STEPPING_MODE(Y));
  1831. TERN_(Z_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z));
  1832. TERN_(I_HAS_STEALTHCHOP, SET_STEPPING_MODE(I));
  1833. TERN_(J_HAS_STEALTHCHOP, SET_STEPPING_MODE(J));
  1834. TERN_(K_HAS_STEALTHCHOP, SET_STEPPING_MODE(K));
  1835. TERN_(X2_HAS_STEALTHCHOP, SET_STEPPING_MODE(X2));
  1836. TERN_(Y2_HAS_STEALTHCHOP, SET_STEPPING_MODE(Y2));
  1837. TERN_(Z2_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z2));
  1838. TERN_(Z3_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z3));
  1839. TERN_(Z4_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z4));
  1840. TERN_(E0_HAS_STEALTHCHOP, SET_STEPPING_MODE(E0));
  1841. TERN_(E1_HAS_STEALTHCHOP, SET_STEPPING_MODE(E1));
  1842. TERN_(E2_HAS_STEALTHCHOP, SET_STEPPING_MODE(E2));
  1843. TERN_(E3_HAS_STEALTHCHOP, SET_STEPPING_MODE(E3));
  1844. TERN_(E4_HAS_STEALTHCHOP, SET_STEPPING_MODE(E4));
  1845. TERN_(E5_HAS_STEALTHCHOP, SET_STEPPING_MODE(E5));
  1846. TERN_(E6_HAS_STEALTHCHOP, SET_STEPPING_MODE(E6));
  1847. TERN_(E7_HAS_STEALTHCHOP, SET_STEPPING_MODE(E7));
  1848. }
  1849. #endif
  1850. }
  1851. //
  1852. // Linear Advance
  1853. //
  1854. {
  1855. float extruder_advance_K[_MAX(EXTRUDERS, 1)];
  1856. _FIELD_TEST(planner_extruder_advance_K);
  1857. EEPROM_READ(extruder_advance_K);
  1858. #if ENABLED(LIN_ADVANCE)
  1859. if (!validating)
  1860. COPY(planner.extruder_advance_K, extruder_advance_K);
  1861. #endif
  1862. }
  1863. //
  1864. // Motor Current PWM
  1865. //
  1866. {
  1867. _FIELD_TEST(motor_current_setting);
  1868. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]
  1869. #if HAS_MOTOR_CURRENT_SPI
  1870. = DIGIPOT_MOTOR_CURRENT
  1871. #endif
  1872. ;
  1873. #if HAS_MOTOR_CURRENT_SPI
  1874. DEBUG_ECHO_MSG("DIGIPOTS Loading");
  1875. #endif
  1876. EEPROM_READ(motor_current_setting);
  1877. #if HAS_MOTOR_CURRENT_SPI
  1878. DEBUG_ECHO_MSG("DIGIPOTS Loaded");
  1879. #endif
  1880. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  1881. if (!validating)
  1882. COPY(stepper.motor_current_setting, motor_current_setting);
  1883. #endif
  1884. }
  1885. //
  1886. // CNC Coordinate System
  1887. //
  1888. {
  1889. _FIELD_TEST(coordinate_system);
  1890. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1891. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1892. EEPROM_READ(gcode.coordinate_system);
  1893. #else
  1894. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
  1895. EEPROM_READ(coordinate_system);
  1896. #endif
  1897. }
  1898. //
  1899. // Skew correction factors
  1900. //
  1901. {
  1902. skew_factor_t skew_factor;
  1903. _FIELD_TEST(planner_skew_factor);
  1904. EEPROM_READ(skew_factor);
  1905. #if ENABLED(SKEW_CORRECTION_GCODE)
  1906. if (!validating) {
  1907. planner.skew_factor.xy = skew_factor.xy;
  1908. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1909. planner.skew_factor.xz = skew_factor.xz;
  1910. planner.skew_factor.yz = skew_factor.yz;
  1911. #endif
  1912. }
  1913. #endif
  1914. }
  1915. //
  1916. // Advanced Pause filament load & unload lengths
  1917. //
  1918. #if HAS_EXTRUDERS
  1919. {
  1920. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1921. fil_change_settings_t fc_settings[EXTRUDERS];
  1922. #endif
  1923. _FIELD_TEST(fc_settings);
  1924. EEPROM_READ(fc_settings);
  1925. }
  1926. #endif
  1927. //
  1928. // Tool-change settings
  1929. //
  1930. #if HAS_MULTI_EXTRUDER
  1931. _FIELD_TEST(toolchange_settings);
  1932. EEPROM_READ(toolchange_settings);
  1933. #endif
  1934. //
  1935. // Backlash Compensation
  1936. //
  1937. {
  1938. #if ENABLED(BACKLASH_GCODE)
  1939. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1940. const uint8_t &backlash_correction = backlash.correction;
  1941. #else
  1942. xyz_float_t backlash_distance_mm;
  1943. uint8_t backlash_correction;
  1944. #endif
  1945. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1946. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1947. #else
  1948. float backlash_smoothing_mm;
  1949. #endif
  1950. _FIELD_TEST(backlash_distance_mm);
  1951. EEPROM_READ(backlash_distance_mm);
  1952. EEPROM_READ(backlash_correction);
  1953. EEPROM_READ(backlash_smoothing_mm);
  1954. }
  1955. //
  1956. // Extensible UI User Data
  1957. //
  1958. #if ENABLED(EXTENSIBLE_UI)
  1959. { // This is a significant hardware change; don't reserve EEPROM space when not present
  1960. const char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1961. _FIELD_TEST(extui_data);
  1962. EEPROM_READ(extui_data);
  1963. if (!validating) ExtUI::onLoadSettings(extui_data);
  1964. }
  1965. #endif
  1966. //
  1967. // Creality DWIN User Data
  1968. //
  1969. #if ENABLED(DWIN_CREALITY_LCD_ENHANCED)
  1970. {
  1971. const char dwin_data[eeprom_data_size] = { 0 };
  1972. _FIELD_TEST(dwin_data);
  1973. EEPROM_READ(dwin_data);
  1974. if (!validating) DWIN_LoadSettings(dwin_data);
  1975. }
  1976. #elif ENABLED(DWIN_CREALITY_LCD_JYERSUI)
  1977. {
  1978. const char dwin_settings[CrealityDWIN.eeprom_data_size] = { 0 };
  1979. _FIELD_TEST(dwin_settings);
  1980. EEPROM_READ(dwin_settings);
  1981. if (!validating) CrealityDWIN.Load_Settings(dwin_settings);
  1982. }
  1983. #endif
  1984. //
  1985. // Case Light Brightness
  1986. //
  1987. #if CASELIGHT_USES_BRIGHTNESS
  1988. _FIELD_TEST(caselight_brightness);
  1989. EEPROM_READ(caselight.brightness);
  1990. #endif
  1991. //
  1992. // Password feature
  1993. //
  1994. #if ENABLED(PASSWORD_FEATURE)
  1995. _FIELD_TEST(password_is_set);
  1996. EEPROM_READ(password.is_set);
  1997. EEPROM_READ(password.value);
  1998. #endif
  1999. //
  2000. // TOUCH_SCREEN_CALIBRATION
  2001. //
  2002. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  2003. _FIELD_TEST(touch_calibration_data);
  2004. EEPROM_READ(touch_calibration.calibration);
  2005. #endif
  2006. //
  2007. // Ethernet network info
  2008. //
  2009. #if HAS_ETHERNET
  2010. _FIELD_TEST(ethernet_hardware_enabled);
  2011. uint32_t ethernet_ip, ethernet_dns, ethernet_gateway, ethernet_subnet;
  2012. EEPROM_READ(ethernet.hardware_enabled);
  2013. EEPROM_READ(ethernet_ip); ethernet.ip = ethernet_ip;
  2014. EEPROM_READ(ethernet_dns); ethernet.myDns = ethernet_dns;
  2015. EEPROM_READ(ethernet_gateway); ethernet.gateway = ethernet_gateway;
  2016. EEPROM_READ(ethernet_subnet); ethernet.subnet = ethernet_subnet;
  2017. #endif
  2018. //
  2019. // Buzzer enable/disable
  2020. //
  2021. #if ENABLED(SOUND_MENU_ITEM)
  2022. _FIELD_TEST(buzzer_enabled);
  2023. EEPROM_READ(ui.buzzer_enabled);
  2024. #endif
  2025. //
  2026. // MKS UI controller
  2027. //
  2028. #if ENABLED(DGUS_LCD_UI_MKS)
  2029. _FIELD_TEST(mks_language_index);
  2030. EEPROM_READ(mks_language_index);
  2031. EEPROM_READ(mks_corner_offsets);
  2032. EEPROM_READ(mks_park_pos);
  2033. EEPROM_READ(mks_min_extrusion_temp);
  2034. #endif
  2035. //
  2036. // Selected LCD language
  2037. //
  2038. #if HAS_MULTI_LANGUAGE
  2039. {
  2040. uint8_t ui_language;
  2041. EEPROM_READ(ui_language);
  2042. if (ui_language >= NUM_LANGUAGES) ui_language = 0;
  2043. ui.set_language(ui_language);
  2044. }
  2045. #endif
  2046. //
  2047. // Validate Final Size and CRC
  2048. //
  2049. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  2050. if (eeprom_error) {
  2051. DEBUG_ECHO_MSG("Index: ", eeprom_index - (EEPROM_OFFSET), " Size: ", datasize());
  2052. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_index());
  2053. }
  2054. else if (working_crc != stored_crc) {
  2055. eeprom_error = true;
  2056. DEBUG_ERROR_MSG("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  2057. TERN_(DWIN_CREALITY_LCD_ENHANCED, ui.set_status(GET_TEXT(MSG_ERR_EEPROM_CRC)));
  2058. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_crc());
  2059. }
  2060. else if (!validating) {
  2061. DEBUG_ECHO_START();
  2062. DEBUG_ECHO(version);
  2063. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  2064. }
  2065. if (!validating && !eeprom_error) postprocess();
  2066. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2067. if (!validating) {
  2068. ubl.report_state();
  2069. if (!ubl.sanity_check()) {
  2070. #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
  2071. ubl.echo_name();
  2072. DEBUG_ECHOLNPGM(" initialized.\n");
  2073. #endif
  2074. }
  2075. else {
  2076. eeprom_error = true;
  2077. #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
  2078. DEBUG_ECHOPGM("?Can't enable ");
  2079. ubl.echo_name();
  2080. DEBUG_ECHOLNPGM(".");
  2081. #endif
  2082. ubl.reset();
  2083. }
  2084. if (ubl.storage_slot >= 0) {
  2085. load_mesh(ubl.storage_slot);
  2086. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  2087. }
  2088. else {
  2089. ubl.reset();
  2090. DEBUG_ECHOLNPGM("UBL reset");
  2091. }
  2092. }
  2093. #endif
  2094. }
  2095. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  2096. // Report the EEPROM settings
  2097. if (!validating && TERN1(EEPROM_BOOT_SILENT, IsRunning())) report();
  2098. #endif
  2099. EEPROM_FINISH();
  2100. return !eeprom_error;
  2101. }
  2102. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2103. extern bool restoreEEPROM();
  2104. #endif
  2105. bool MarlinSettings::validate() {
  2106. validating = true;
  2107. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2108. bool success = _load();
  2109. if (!success && restoreEEPROM()) {
  2110. SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
  2111. success = _load();
  2112. }
  2113. #else
  2114. const bool success = _load();
  2115. #endif
  2116. validating = false;
  2117. return success;
  2118. }
  2119. bool MarlinSettings::load() {
  2120. if (validate()) {
  2121. const bool success = _load();
  2122. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreRead(success));
  2123. return success;
  2124. }
  2125. reset();
  2126. #if ENABLED(EEPROM_AUTO_INIT)
  2127. (void)save();
  2128. SERIAL_ECHO_MSG("EEPROM Initialized");
  2129. #endif
  2130. return false;
  2131. }
  2132. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2133. inline void ubl_invalid_slot(const int s) {
  2134. DEBUG_ECHOLNPAIR("?Invalid slot.\n", s, " mesh slots available.");
  2135. UNUSED(s);
  2136. }
  2137. // 128 (+1 because of the change to capacity rather than last valid address)
  2138. // is a placeholder for the size of the MAT; the MAT will always
  2139. // live at the very end of the eeprom
  2140. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129;
  2141. uint16_t MarlinSettings::meshes_start_index() {
  2142. // Pad the end of configuration data so it can float up
  2143. // or down a little bit without disrupting the mesh data
  2144. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8;
  2145. }
  2146. #define MESH_STORE_SIZE sizeof(TERN(OPTIMIZED_MESH_STORAGE, mesh_store_t, ubl.z_values))
  2147. uint16_t MarlinSettings::calc_num_meshes() {
  2148. return (meshes_end - meshes_start_index()) / MESH_STORE_SIZE;
  2149. }
  2150. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  2151. return meshes_end - (slot + 1) * MESH_STORE_SIZE;
  2152. }
  2153. void MarlinSettings::store_mesh(const int8_t slot) {
  2154. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2155. const int16_t a = calc_num_meshes();
  2156. if (!WITHIN(slot, 0, a - 1)) {
  2157. ubl_invalid_slot(a);
  2158. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  2159. DEBUG_EOL();
  2160. return;
  2161. }
  2162. int pos = mesh_slot_offset(slot);
  2163. uint16_t crc = 0;
  2164. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2165. int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2166. ubl.set_store_from_mesh(ubl.z_values, z_mesh_store);
  2167. uint8_t * const src = (uint8_t*)&z_mesh_store;
  2168. #else
  2169. uint8_t * const src = (uint8_t*)&ubl.z_values;
  2170. #endif
  2171. // Write crc to MAT along with other data, or just tack on to the beginning or end
  2172. persistentStore.access_start();
  2173. const bool status = persistentStore.write_data(pos, src, MESH_STORE_SIZE, &crc);
  2174. persistentStore.access_finish();
  2175. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  2176. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  2177. #else
  2178. // Other mesh types
  2179. #endif
  2180. }
  2181. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
  2182. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2183. const int16_t a = settings.calc_num_meshes();
  2184. if (!WITHIN(slot, 0, a - 1)) {
  2185. ubl_invalid_slot(a);
  2186. return;
  2187. }
  2188. int pos = mesh_slot_offset(slot);
  2189. uint16_t crc = 0;
  2190. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2191. int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2192. uint8_t * const dest = (uint8_t*)&z_mesh_store;
  2193. #else
  2194. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  2195. #endif
  2196. persistentStore.access_start();
  2197. const uint16_t status = persistentStore.read_data(pos, dest, MESH_STORE_SIZE, &crc);
  2198. persistentStore.access_finish();
  2199. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2200. if (into) {
  2201. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2202. ubl.set_mesh_from_store(z_mesh_store, z_values);
  2203. memcpy(into, z_values, sizeof(z_values));
  2204. }
  2205. else
  2206. ubl.set_mesh_from_store(z_mesh_store, ubl.z_values);
  2207. #endif
  2208. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  2209. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  2210. EEPROM_FINISH();
  2211. #else
  2212. // Other mesh types
  2213. #endif
  2214. }
  2215. //void MarlinSettings::delete_mesh() { return; }
  2216. //void MarlinSettings::defrag_meshes() { return; }
  2217. #endif // AUTO_BED_LEVELING_UBL
  2218. #else // !EEPROM_SETTINGS
  2219. bool MarlinSettings::save() {
  2220. DEBUG_ERROR_MSG("EEPROM disabled");
  2221. return false;
  2222. }
  2223. #endif // !EEPROM_SETTINGS
  2224. /**
  2225. * M502 - Reset Configuration
  2226. */
  2227. void MarlinSettings::reset() {
  2228. LOOP_DISTINCT_AXES(i) {
  2229. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  2230. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  2231. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  2232. }
  2233. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  2234. planner.settings.acceleration = DEFAULT_ACCELERATION;
  2235. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  2236. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  2237. planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
  2238. planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
  2239. #if HAS_CLASSIC_JERK
  2240. #ifndef DEFAULT_XJERK
  2241. #define DEFAULT_XJERK 0
  2242. #endif
  2243. #if HAS_Y_AXIS && !defined(DEFAULT_YJERK)
  2244. #define DEFAULT_YJERK 0
  2245. #endif
  2246. #if HAS_Z_AXIS && !defined(DEFAULT_ZJERK)
  2247. #define DEFAULT_ZJERK 0
  2248. #endif
  2249. #if LINEAR_AXES >= 4 && !defined(DEFAULT_IJERK)
  2250. #define DEFAULT_IJERK 0
  2251. #endif
  2252. #if LINEAR_AXES >= 5 && !defined(DEFAULT_JJERK)
  2253. #define DEFAULT_JJERK 0
  2254. #endif
  2255. #if LINEAR_AXES >= 6 && !defined(DEFAULT_KJERK)
  2256. #define DEFAULT_KJERK 0
  2257. #endif
  2258. planner.max_jerk.set(
  2259. LINEAR_AXIS_LIST(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK, DEFAULT_IJERK, DEFAULT_JJERK, DEFAULT_KJERK)
  2260. );
  2261. TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK);
  2262. #endif
  2263. TERN_(HAS_JUNCTION_DEVIATION, planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM));
  2264. #if HAS_SCARA_OFFSET
  2265. scara_home_offset.reset();
  2266. #elif HAS_HOME_OFFSET
  2267. home_offset.reset();
  2268. #endif
  2269. TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
  2270. //
  2271. // Filament Runout Sensor
  2272. //
  2273. #if HAS_FILAMENT_SENSOR
  2274. runout.enabled = FIL_RUNOUT_ENABLED_DEFAULT;
  2275. runout.reset();
  2276. TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM));
  2277. #endif
  2278. //
  2279. // Tool-change Settings
  2280. //
  2281. #if HAS_MULTI_EXTRUDER
  2282. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  2283. toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH;
  2284. toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH;
  2285. toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED;
  2286. toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED;
  2287. toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME;
  2288. toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED;
  2289. toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED;
  2290. toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME;
  2291. #endif
  2292. #if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
  2293. enable_first_prime = false;
  2294. #endif
  2295. #if ENABLED(TOOLCHANGE_PARK)
  2296. constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
  2297. toolchange_settings.enable_park = true;
  2298. toolchange_settings.change_point = tpxy;
  2299. #endif
  2300. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  2301. #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
  2302. migration = migration_defaults;
  2303. #endif
  2304. #endif
  2305. #if ENABLED(BACKLASH_GCODE)
  2306. backlash.correction = (BACKLASH_CORRECTION) * 255;
  2307. constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
  2308. backlash.distance_mm = tmp;
  2309. #ifdef BACKLASH_SMOOTHING_MM
  2310. backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
  2311. #endif
  2312. #endif
  2313. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2314. TERN_(DWIN_CREALITY_LCD_ENHANCED, DWIN_SetDataDefaults());
  2315. TERN_(DWIN_CREALITY_LCD_JYERSUI, CrealityDWIN.Reset_Settings());
  2316. //
  2317. // Case Light Brightness
  2318. //
  2319. TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS);
  2320. //
  2321. // TOUCH_SCREEN_CALIBRATION
  2322. //
  2323. TERN_(TOUCH_SCREEN_CALIBRATION, touch_calibration.calibration_reset());
  2324. //
  2325. // Buzzer enable/disable
  2326. //
  2327. TERN_(SOUND_MENU_ITEM, ui.buzzer_enabled = true);
  2328. //
  2329. // Magnetic Parking Extruder
  2330. //
  2331. TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init());
  2332. //
  2333. // Global Leveling
  2334. //
  2335. TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = (DEFAULT_LEVELING_FADE_HEIGHT));
  2336. TERN_(HAS_LEVELING, reset_bed_level());
  2337. #if HAS_BED_PROBE
  2338. constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
  2339. static_assert(COUNT(dpo) == LINEAR_AXES, "NOZZLE_TO_PROBE_OFFSET must contain offsets for each linear axis X, Y, Z....");
  2340. #if HAS_PROBE_XY_OFFSET
  2341. LOOP_LINEAR_AXES(a) probe.offset[a] = dpo[a];
  2342. #else
  2343. probe.offset.set(LINEAR_AXIS_LIST(0, 0, dpo[Z_AXIS], 0, 0, 0));
  2344. #endif
  2345. #endif
  2346. //
  2347. // Z Stepper Auto-alignment points
  2348. //
  2349. TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default());
  2350. //
  2351. // Servo Angles
  2352. //
  2353. TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists
  2354. //
  2355. // BLTOUCH
  2356. //
  2357. //#if ENABLED(BLTOUCH)
  2358. // bltouch.last_written_mode;
  2359. //#endif
  2360. //
  2361. // Endstop Adjustments
  2362. //
  2363. #if ENABLED(DELTA)
  2364. const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM, ddr = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  2365. delta_height = DELTA_HEIGHT;
  2366. delta_endstop_adj = adj;
  2367. delta_radius = DELTA_RADIUS;
  2368. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  2369. segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  2370. delta_tower_angle_trim = dta;
  2371. delta_diagonal_rod_trim = ddr;
  2372. #endif
  2373. #if ENABLED(X_DUAL_ENDSTOPS)
  2374. #ifndef X2_ENDSTOP_ADJUSTMENT
  2375. #define X2_ENDSTOP_ADJUSTMENT 0
  2376. #endif
  2377. endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT;
  2378. #endif
  2379. #if ENABLED(Y_DUAL_ENDSTOPS)
  2380. #ifndef Y2_ENDSTOP_ADJUSTMENT
  2381. #define Y2_ENDSTOP_ADJUSTMENT 0
  2382. #endif
  2383. endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT;
  2384. #endif
  2385. #if ENABLED(Z_MULTI_ENDSTOPS)
  2386. #ifndef Z2_ENDSTOP_ADJUSTMENT
  2387. #define Z2_ENDSTOP_ADJUSTMENT 0
  2388. #endif
  2389. endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT;
  2390. #if NUM_Z_STEPPER_DRIVERS >= 3
  2391. #ifndef Z3_ENDSTOP_ADJUSTMENT
  2392. #define Z3_ENDSTOP_ADJUSTMENT 0
  2393. #endif
  2394. endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT;
  2395. #endif
  2396. #if NUM_Z_STEPPER_DRIVERS >= 4
  2397. #ifndef Z4_ENDSTOP_ADJUSTMENT
  2398. #define Z4_ENDSTOP_ADJUSTMENT 0
  2399. #endif
  2400. endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT;
  2401. #endif
  2402. #endif
  2403. //
  2404. // Preheat parameters
  2405. //
  2406. #if PREHEAT_COUNT
  2407. #define _PITEM(N,T) PREHEAT_##N##_##T,
  2408. #if HAS_HOTEND
  2409. constexpr uint16_t hpre[] = { REPEAT2_S(1, INCREMENT(PREHEAT_COUNT), _PITEM, TEMP_HOTEND) };
  2410. #endif
  2411. #if HAS_HEATED_BED
  2412. constexpr uint16_t bpre[] = { REPEAT2_S(1, INCREMENT(PREHEAT_COUNT), _PITEM, TEMP_BED) };
  2413. #endif
  2414. #if HAS_FAN
  2415. constexpr uint8_t fpre[] = { REPEAT2_S(1, INCREMENT(PREHEAT_COUNT), _PITEM, FAN_SPEED) };
  2416. #endif
  2417. LOOP_L_N(i, PREHEAT_COUNT) {
  2418. TERN_(HAS_HOTEND, ui.material_preset[i].hotend_temp = hpre[i]);
  2419. TERN_(HAS_HEATED_BED, ui.material_preset[i].bed_temp = bpre[i]);
  2420. TERN_(HAS_FAN, ui.material_preset[i].fan_speed = fpre[i]);
  2421. }
  2422. #endif
  2423. //
  2424. // Hotend PID
  2425. //
  2426. #if ENABLED(PIDTEMP)
  2427. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2428. constexpr float defKp[] =
  2429. #ifdef DEFAULT_Kp_LIST
  2430. DEFAULT_Kp_LIST
  2431. #else
  2432. ARRAY_BY_HOTENDS1(DEFAULT_Kp)
  2433. #endif
  2434. , defKi[] =
  2435. #ifdef DEFAULT_Ki_LIST
  2436. DEFAULT_Ki_LIST
  2437. #else
  2438. ARRAY_BY_HOTENDS1(DEFAULT_Ki)
  2439. #endif
  2440. , defKd[] =
  2441. #ifdef DEFAULT_Kd_LIST
  2442. DEFAULT_Kd_LIST
  2443. #else
  2444. ARRAY_BY_HOTENDS1(DEFAULT_Kd)
  2445. #endif
  2446. ;
  2447. static_assert(WITHIN(COUNT(defKp), 1, HOTENDS), "DEFAULT_Kp_LIST must have between 1 and HOTENDS items.");
  2448. static_assert(WITHIN(COUNT(defKi), 1, HOTENDS), "DEFAULT_Ki_LIST must have between 1 and HOTENDS items.");
  2449. static_assert(WITHIN(COUNT(defKd), 1, HOTENDS), "DEFAULT_Kd_LIST must have between 1 and HOTENDS items.");
  2450. #if ENABLED(PID_EXTRUSION_SCALING)
  2451. constexpr float defKc[] =
  2452. #ifdef DEFAULT_Kc_LIST
  2453. DEFAULT_Kc_LIST
  2454. #else
  2455. ARRAY_BY_HOTENDS1(DEFAULT_Kc)
  2456. #endif
  2457. ;
  2458. static_assert(WITHIN(COUNT(defKc), 1, HOTENDS), "DEFAULT_Kc_LIST must have between 1 and HOTENDS items.");
  2459. #endif
  2460. #if ENABLED(PID_FAN_SCALING)
  2461. constexpr float defKf[] =
  2462. #ifdef DEFAULT_Kf_LIST
  2463. DEFAULT_Kf_LIST
  2464. #else
  2465. ARRAY_BY_HOTENDS1(DEFAULT_Kf)
  2466. #endif
  2467. ;
  2468. static_assert(WITHIN(COUNT(defKf), 1, HOTENDS), "DEFAULT_Kf_LIST must have between 1 and HOTENDS items.");
  2469. #endif
  2470. #define PID_DEFAULT(N,E) def##N[E]
  2471. #else
  2472. #define PID_DEFAULT(N,E) DEFAULT_##N
  2473. #endif
  2474. HOTEND_LOOP() {
  2475. PID_PARAM(Kp, e) = float(PID_DEFAULT(Kp, ALIM(e, defKp)));
  2476. PID_PARAM(Ki, e) = scalePID_i(PID_DEFAULT(Ki, ALIM(e, defKi)));
  2477. PID_PARAM(Kd, e) = scalePID_d(PID_DEFAULT(Kd, ALIM(e, defKd)));
  2478. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = float(PID_DEFAULT(Kc, ALIM(e, defKc))));
  2479. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = float(PID_DEFAULT(Kf, ALIM(e, defKf))));
  2480. }
  2481. #endif
  2482. //
  2483. // PID Extrusion Scaling
  2484. //
  2485. TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size
  2486. //
  2487. // Heated Bed PID
  2488. //
  2489. #if ENABLED(PIDTEMPBED)
  2490. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  2491. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  2492. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  2493. #endif
  2494. //
  2495. // Heated Chamber PID
  2496. //
  2497. #if ENABLED(PIDTEMPCHAMBER)
  2498. thermalManager.temp_chamber.pid.Kp = DEFAULT_chamberKp;
  2499. thermalManager.temp_chamber.pid.Ki = scalePID_i(DEFAULT_chamberKi);
  2500. thermalManager.temp_chamber.pid.Kd = scalePID_d(DEFAULT_chamberKd);
  2501. #endif
  2502. //
  2503. // User-Defined Thermistors
  2504. //
  2505. TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors());
  2506. //
  2507. // Power Monitor
  2508. //
  2509. TERN_(POWER_MONITOR, power_monitor.reset());
  2510. //
  2511. // LCD Contrast
  2512. //
  2513. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(DEFAULT_LCD_CONTRAST));
  2514. //
  2515. // LCD Brightness
  2516. //
  2517. TERN_(HAS_LCD_BRIGHTNESS, ui.set_brightness(DEFAULT_LCD_BRIGHTNESS));
  2518. //
  2519. // Controller Fan
  2520. //
  2521. TERN_(USE_CONTROLLER_FAN, controllerFan.reset());
  2522. //
  2523. // Power-Loss Recovery
  2524. //
  2525. TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT)));
  2526. //
  2527. // Firmware Retraction
  2528. //
  2529. TERN_(FWRETRACT, fwretract.reset());
  2530. //
  2531. // Volumetric & Filament Size
  2532. //
  2533. #if DISABLED(NO_VOLUMETRICS)
  2534. parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON);
  2535. LOOP_L_N(q, COUNT(planner.filament_size))
  2536. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2537. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2538. LOOP_L_N(q, COUNT(planner.volumetric_extruder_limit))
  2539. planner.volumetric_extruder_limit[q] = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  2540. #endif
  2541. #endif
  2542. endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
  2543. reset_stepper_drivers();
  2544. //
  2545. // Linear Advance
  2546. //
  2547. #if ENABLED(LIN_ADVANCE)
  2548. LOOP_L_N(i, EXTRUDERS) {
  2549. planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  2550. TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[i] = LIN_ADVANCE_K);
  2551. }
  2552. #endif
  2553. //
  2554. // Motor Current PWM
  2555. //
  2556. #if HAS_MOTOR_CURRENT_PWM
  2557. constexpr uint32_t tmp_motor_current_setting[MOTOR_CURRENT_COUNT] = PWM_MOTOR_CURRENT;
  2558. LOOP_L_N(q, MOTOR_CURRENT_COUNT)
  2559. stepper.set_digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  2560. #endif
  2561. //
  2562. // DIGIPOTS
  2563. //
  2564. #if HAS_MOTOR_CURRENT_SPI
  2565. static constexpr uint32_t tmp_motor_current_setting[] = DIGIPOT_MOTOR_CURRENT;
  2566. DEBUG_ECHOLNPGM("Writing Digipot");
  2567. LOOP_L_N(q, COUNT(tmp_motor_current_setting))
  2568. stepper.set_digipot_current(q, tmp_motor_current_setting[q]);
  2569. DEBUG_ECHOLNPGM("Digipot Written");
  2570. #endif
  2571. //
  2572. // CNC Coordinate System
  2573. //
  2574. TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space
  2575. //
  2576. // Skew Correction
  2577. //
  2578. #if ENABLED(SKEW_CORRECTION_GCODE)
  2579. planner.skew_factor.xy = XY_SKEW_FACTOR;
  2580. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2581. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  2582. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  2583. #endif
  2584. #endif
  2585. //
  2586. // Advanced Pause filament load & unload lengths
  2587. //
  2588. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2589. LOOP_L_N(e, EXTRUDERS) {
  2590. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  2591. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  2592. }
  2593. #endif
  2594. #if ENABLED(PASSWORD_FEATURE)
  2595. #ifdef PASSWORD_DEFAULT_VALUE
  2596. password.is_set = true;
  2597. password.value = PASSWORD_DEFAULT_VALUE;
  2598. #else
  2599. password.is_set = false;
  2600. #endif
  2601. #endif
  2602. //
  2603. // MKS UI controller
  2604. //
  2605. TERN_(DGUS_LCD_UI_MKS, MKS_reset_settings());
  2606. postprocess();
  2607. DEBUG_ECHO_START();
  2608. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  2609. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2610. }
  2611. #if DISABLED(DISABLE_M503)
  2612. static void config_heading(const bool repl, PGM_P const pstr, const bool eol=true) {
  2613. if (!repl) {
  2614. SERIAL_ECHO_START();
  2615. SERIAL_ECHOPGM("; ");
  2616. SERIAL_ECHOPGM_P(pstr);
  2617. if (eol) SERIAL_EOL();
  2618. }
  2619. }
  2620. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  2621. #define CONFIG_ECHO_MSG(V...) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR(V); }while(0)
  2622. #define CONFIG_ECHO_HEADING(STR) config_heading(forReplay, PSTR(STR))
  2623. #if HAS_TRINAMIC_CONFIG
  2624. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  2625. #if HAS_STEALTHCHOP
  2626. void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) {
  2627. CONFIG_ECHO_START();
  2628. SERIAL_ECHOPGM(" M569 S1");
  2629. if (etc) {
  2630. SERIAL_CHAR(' ');
  2631. SERIAL_ECHOPGM_P(etc);
  2632. }
  2633. if (newLine) SERIAL_EOL();
  2634. }
  2635. #endif
  2636. #if ENABLED(HYBRID_THRESHOLD)
  2637. inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); }
  2638. #endif
  2639. #if USE_SENSORLESS
  2640. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  2641. #endif
  2642. #endif
  2643. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2644. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  2645. #endif
  2646. inline void say_units(const bool colon) {
  2647. SERIAL_ECHOPGM_P(
  2648. #if ENABLED(INCH_MODE_SUPPORT)
  2649. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2650. #endif
  2651. PSTR(" (mm)")
  2652. );
  2653. if (colon) SERIAL_ECHOLNPGM(":");
  2654. }
  2655. void report_M92(const bool echo=true, const int8_t e=-1);
  2656. /**
  2657. * M503 - Report current settings in RAM
  2658. *
  2659. * Unless specifically disabled, M503 is available even without EEPROM
  2660. */
  2661. void MarlinSettings::report(const bool forReplay) {
  2662. /**
  2663. * Announce current units, in case inches are being displayed
  2664. */
  2665. CONFIG_ECHO_START();
  2666. #if ENABLED(INCH_MODE_SUPPORT)
  2667. SERIAL_ECHOPGM(" G2");
  2668. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2669. SERIAL_ECHOPGM(" ;");
  2670. say_units(false);
  2671. #else
  2672. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2673. say_units(false);
  2674. #endif
  2675. SERIAL_EOL();
  2676. #if HAS_LCD_MENU
  2677. // Temperature units - for Ultipanel temperature options
  2678. CONFIG_ECHO_START();
  2679. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2680. SERIAL_ECHOPGM(" M149 ");
  2681. SERIAL_CHAR(parser.temp_units_code());
  2682. SERIAL_ECHOPGM(" ; Units in ");
  2683. SERIAL_ECHOPGM_P(parser.temp_units_name());
  2684. #else
  2685. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2686. #endif
  2687. #endif
  2688. SERIAL_EOL();
  2689. #if EXTRUDERS && DISABLED(NO_VOLUMETRICS)
  2690. /**
  2691. * Volumetric extrusion M200
  2692. */
  2693. if (!forReplay) {
  2694. config_heading(forReplay, PSTR("Filament settings:"), false);
  2695. if (parser.volumetric_enabled)
  2696. SERIAL_EOL();
  2697. else
  2698. SERIAL_ECHOLNPGM(" Disabled");
  2699. }
  2700. #if EXTRUDERS == 1
  2701. CONFIG_ECHO_MSG(" M200 S", parser.volumetric_enabled
  2702. , " D", LINEAR_UNIT(planner.filament_size[0])
  2703. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2704. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[0])
  2705. #endif
  2706. );
  2707. #else
  2708. LOOP_L_N(i, EXTRUDERS) {
  2709. CONFIG_ECHO_MSG(" M200 T", i
  2710. , " D", LINEAR_UNIT(planner.filament_size[i])
  2711. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2712. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[i])
  2713. #endif
  2714. );
  2715. }
  2716. CONFIG_ECHO_MSG(" M200 S", parser.volumetric_enabled);
  2717. #endif
  2718. #endif // EXTRUDERS && !NO_VOLUMETRICS
  2719. CONFIG_ECHO_HEADING("Steps per unit:");
  2720. report_M92(!forReplay);
  2721. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2722. CONFIG_ECHO_START();
  2723. SERIAL_ECHOLNPAIR_P(
  2724. LIST_N(DOUBLE(LINEAR_AXES),
  2725. PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS]),
  2726. SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS]),
  2727. SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS]),
  2728. SP_I_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[I_AXIS]),
  2729. SP_J_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[J_AXIS]),
  2730. SP_K_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[K_AXIS])
  2731. )
  2732. #if HAS_EXTRUDERS && DISABLED(DISTINCT_E_FACTORS)
  2733. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2734. #endif
  2735. );
  2736. #if ENABLED(DISTINCT_E_FACTORS)
  2737. LOOP_L_N(i, E_STEPPERS) {
  2738. CONFIG_ECHO_START();
  2739. SERIAL_ECHOLNPAIR_P(
  2740. PSTR(" M203 T"), i
  2741. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2742. );
  2743. }
  2744. #endif
  2745. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2746. CONFIG_ECHO_START();
  2747. SERIAL_ECHOLNPAIR_P(
  2748. LIST_N(DOUBLE(LINEAR_AXES),
  2749. PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS]),
  2750. SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS]),
  2751. SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS]),
  2752. SP_I_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[I_AXIS]),
  2753. SP_J_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[J_AXIS]),
  2754. SP_K_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[K_AXIS])
  2755. )
  2756. #if HAS_EXTRUDERS && DISABLED(DISTINCT_E_FACTORS)
  2757. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2758. #endif
  2759. );
  2760. #if ENABLED(DISTINCT_E_FACTORS)
  2761. LOOP_L_N(i, E_STEPPERS) {
  2762. CONFIG_ECHO_START();
  2763. SERIAL_ECHOLNPAIR_P(
  2764. PSTR(" M201 T"), i
  2765. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2766. );
  2767. }
  2768. #endif
  2769. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2770. CONFIG_ECHO_START();
  2771. SERIAL_ECHOLNPAIR_P(
  2772. PSTR(" M204 P"), LINEAR_UNIT(planner.settings.acceleration)
  2773. , PSTR(" R"), LINEAR_UNIT(planner.settings.retract_acceleration)
  2774. , SP_T_STR, LINEAR_UNIT(planner.settings.travel_acceleration)
  2775. );
  2776. CONFIG_ECHO_HEADING(
  2777. "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>"
  2778. TERN_(HAS_JUNCTION_DEVIATION, " J<junc_dev>")
  2779. #if HAS_CLASSIC_JERK
  2780. " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>"
  2781. TERN_(HAS_CLASSIC_E_JERK, " E<max_e_jerk>")
  2782. #endif
  2783. );
  2784. CONFIG_ECHO_START();
  2785. SERIAL_ECHOLNPAIR_P(
  2786. PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us)
  2787. , PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2788. , SP_T_STR, LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2789. #if HAS_JUNCTION_DEVIATION
  2790. , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm)
  2791. #endif
  2792. #if HAS_CLASSIC_JERK
  2793. , LIST_N(DOUBLE(LINEAR_AXES),
  2794. SP_X_STR, LINEAR_UNIT(planner.max_jerk.x),
  2795. SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y),
  2796. SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z),
  2797. SP_I_STR, LINEAR_UNIT(planner.max_jerk.i),
  2798. SP_J_STR, LINEAR_UNIT(planner.max_jerk.j),
  2799. SP_K_STR, LINEAR_UNIT(planner.max_jerk.k)
  2800. )
  2801. #if HAS_CLASSIC_E_JERK
  2802. , SP_E_STR, LINEAR_UNIT(planner.max_jerk.e)
  2803. #endif
  2804. #endif
  2805. );
  2806. #if HAS_M206_COMMAND
  2807. CONFIG_ECHO_HEADING("Home offset:");
  2808. CONFIG_ECHO_START();
  2809. SERIAL_ECHOLNPAIR_P(
  2810. #if IS_CARTESIAN
  2811. LIST_N(DOUBLE(LINEAR_AXES),
  2812. PSTR(" M206 X"), LINEAR_UNIT(home_offset.x),
  2813. SP_Y_STR, LINEAR_UNIT(home_offset.y),
  2814. SP_Z_STR, LINEAR_UNIT(home_offset.z),
  2815. SP_I_STR, LINEAR_UNIT(home_offset.i),
  2816. SP_J_STR, LINEAR_UNIT(home_offset.j),
  2817. SP_K_STR, LINEAR_UNIT(home_offset.k)
  2818. )
  2819. #else
  2820. PSTR(" M206 Z"), LINEAR_UNIT(home_offset.z)
  2821. #endif
  2822. );
  2823. #endif
  2824. #if HAS_HOTEND_OFFSET
  2825. CONFIG_ECHO_HEADING("Hotend offsets:");
  2826. CONFIG_ECHO_START();
  2827. LOOP_S_L_N(e, 1, HOTENDS) {
  2828. SERIAL_ECHOPAIR_P(
  2829. PSTR(" M218 T"), e,
  2830. SP_X_STR, LINEAR_UNIT(hotend_offset[e].x),
  2831. SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y)
  2832. );
  2833. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3);
  2834. }
  2835. #endif
  2836. /**
  2837. * Bed Leveling
  2838. */
  2839. #if HAS_LEVELING
  2840. #if ENABLED(MESH_BED_LEVELING)
  2841. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2842. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2843. config_heading(forReplay, NUL_STR, false);
  2844. if (!forReplay) {
  2845. ubl.echo_name();
  2846. SERIAL_CHAR(':');
  2847. SERIAL_EOL();
  2848. }
  2849. #elif HAS_ABL_OR_UBL
  2850. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2851. #endif
  2852. CONFIG_ECHO_START();
  2853. SERIAL_ECHOLNPAIR_P(
  2854. PSTR(" M420 S"), planner.leveling_active
  2855. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2856. , SP_Z_STR, LINEAR_UNIT(planner.z_fade_height)
  2857. #endif
  2858. );
  2859. #if ENABLED(MESH_BED_LEVELING)
  2860. if (leveling_is_valid()) {
  2861. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2862. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2863. CONFIG_ECHO_START();
  2864. SERIAL_ECHOPAIR(" G29 S3 I", px, " J", py);
  2865. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2866. }
  2867. }
  2868. CONFIG_ECHO_START();
  2869. SERIAL_ECHOLNPAIR_F(" G29 S4 Z", LINEAR_UNIT(mbl.z_offset), 5);
  2870. }
  2871. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2872. if (!forReplay) {
  2873. SERIAL_EOL();
  2874. ubl.report_state();
  2875. config_heading(false, PSTR("Active Mesh Slot: "), false);
  2876. SERIAL_ECHOLN(ubl.storage_slot);
  2877. config_heading(false, PSTR("EEPROM can hold "), false);
  2878. SERIAL_ECHO(calc_num_meshes());
  2879. SERIAL_ECHOLNPGM(" meshes.\n");
  2880. }
  2881. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2882. // solution needs to be found.
  2883. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2884. if (leveling_is_valid()) {
  2885. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2886. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2887. CONFIG_ECHO_START();
  2888. SERIAL_ECHOPAIR(" G29 W I", px, " J", py);
  2889. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5);
  2890. }
  2891. }
  2892. }
  2893. #endif
  2894. #endif // HAS_LEVELING
  2895. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2896. CONFIG_ECHO_HEADING("Servo Angles:");
  2897. LOOP_L_N(i, NUM_SERVOS) {
  2898. switch (i) {
  2899. #if ENABLED(SWITCHING_EXTRUDER)
  2900. case SWITCHING_EXTRUDER_SERVO_NR:
  2901. #if EXTRUDERS > 3
  2902. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2903. #endif
  2904. #elif ENABLED(SWITCHING_NOZZLE)
  2905. case SWITCHING_NOZZLE_SERVO_NR:
  2906. #elif ENABLED(BLTOUCH) || (HAS_Z_SERVO_PROBE && defined(Z_SERVO_ANGLES))
  2907. case Z_PROBE_SERVO_NR:
  2908. #endif
  2909. CONFIG_ECHO_MSG(" M281 P", i, " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2910. default: break;
  2911. }
  2912. }
  2913. #endif // EDITABLE_SERVO_ANGLES
  2914. #if HAS_SCARA_OFFSET
  2915. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2916. CONFIG_ECHO_START();
  2917. SERIAL_ECHOLNPAIR_P(
  2918. PSTR(" M665 S"), segments_per_second
  2919. , SP_P_STR, scara_home_offset.a
  2920. , SP_T_STR, scara_home_offset.b
  2921. , SP_Z_STR, LINEAR_UNIT(scara_home_offset.z)
  2922. );
  2923. #elif ENABLED(DELTA)
  2924. CONFIG_ECHO_HEADING("Delta settings: L<diagonal rod> R<radius> H<height> S<segments per sec> XYZ<tower angle trim> ABC<rod trim>");
  2925. CONFIG_ECHO_START();
  2926. SERIAL_ECHOLNPAIR_P(
  2927. PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod)
  2928. , PSTR(" R"), LINEAR_UNIT(delta_radius)
  2929. , PSTR(" H"), LINEAR_UNIT(delta_height)
  2930. , PSTR(" S"), segments_per_second
  2931. , SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a)
  2932. , SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b)
  2933. , SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c)
  2934. , PSTR(" A"), LINEAR_UNIT(delta_diagonal_rod_trim.a)
  2935. , PSTR(" B"), LINEAR_UNIT(delta_diagonal_rod_trim.b)
  2936. , PSTR(" C"), LINEAR_UNIT(delta_diagonal_rod_trim.c)
  2937. );
  2938. #endif
  2939. #if EITHER(DELTA, HAS_EXTRA_ENDSTOPS)
  2940. M666_report(forReplay);
  2941. #endif
  2942. #if PREHEAT_COUNT
  2943. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2944. LOOP_L_N(i, PREHEAT_COUNT) {
  2945. CONFIG_ECHO_START();
  2946. SERIAL_ECHOLNPAIR_P(
  2947. PSTR(" M145 S"), i
  2948. #if HAS_HOTEND
  2949. , PSTR(" H"), parser.to_temp_units(ui.material_preset[i].hotend_temp)
  2950. #endif
  2951. #if HAS_HEATED_BED
  2952. , SP_B_STR, parser.to_temp_units(ui.material_preset[i].bed_temp)
  2953. #endif
  2954. #if HAS_FAN
  2955. , PSTR(" F"), ui.material_preset[i].fan_speed
  2956. #endif
  2957. );
  2958. }
  2959. #endif
  2960. #if HAS_PID_HEATING
  2961. CONFIG_ECHO_HEADING("PID settings:");
  2962. #if ENABLED(PIDTEMP)
  2963. HOTEND_LOOP() {
  2964. CONFIG_ECHO_START();
  2965. SERIAL_ECHOPAIR_P(
  2966. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2967. PSTR(" M301 E"), e,
  2968. SP_P_STR
  2969. #else
  2970. PSTR(" M301 P")
  2971. #endif
  2972. , PID_PARAM(Kp, e)
  2973. , PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e))
  2974. , PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e))
  2975. );
  2976. #if ENABLED(PID_EXTRUSION_SCALING)
  2977. SERIAL_ECHOPAIR_P(SP_C_STR, PID_PARAM(Kc, e));
  2978. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2979. #endif
  2980. #if ENABLED(PID_FAN_SCALING)
  2981. SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e));
  2982. #endif
  2983. SERIAL_EOL();
  2984. }
  2985. #endif // PIDTEMP
  2986. #if ENABLED(PIDTEMPBED)
  2987. CONFIG_ECHO_MSG(
  2988. " M304 P", thermalManager.temp_bed.pid.Kp
  2989. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  2990. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  2991. );
  2992. #endif
  2993. #if ENABLED(PIDTEMPCHAMBER)
  2994. CONFIG_ECHO_START();
  2995. SERIAL_ECHOLNPAIR(
  2996. " M309 P", thermalManager.temp_chamber.pid.Kp
  2997. , " I", unscalePID_i(thermalManager.temp_chamber.pid.Ki)
  2998. , " D", unscalePID_d(thermalManager.temp_chamber.pid.Kd)
  2999. );
  3000. #endif
  3001. #endif // PIDTEMP || PIDTEMPBED || PIDTEMPCHAMBER
  3002. #if HAS_USER_THERMISTORS
  3003. CONFIG_ECHO_HEADING("User thermistors:");
  3004. LOOP_L_N(i, USER_THERMISTORS)
  3005. thermalManager.log_user_thermistor(i, true);
  3006. #endif
  3007. #if HAS_LCD_CONTRAST
  3008. CONFIG_ECHO_HEADING("LCD Contrast:");
  3009. CONFIG_ECHO_MSG(" M250 C", ui.contrast);
  3010. #endif
  3011. #if HAS_LCD_BRIGHTNESS
  3012. CONFIG_ECHO_HEADING("LCD Brightness:");
  3013. CONFIG_ECHO_MSG(" M256 B", ui.brightness);
  3014. #endif
  3015. TERN_(CONTROLLER_FAN_EDITABLE, M710_report(forReplay));
  3016. #if ENABLED(POWER_LOSS_RECOVERY)
  3017. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  3018. CONFIG_ECHO_MSG(" M413 S", recovery.enabled);
  3019. #endif
  3020. #if ENABLED(FWRETRACT)
  3021. fwretract.M207_report(forReplay);
  3022. fwretract.M208_report(forReplay);
  3023. TERN_(FWRETRACT_AUTORETRACT, fwretract.M209_report(forReplay));
  3024. #endif
  3025. /**
  3026. * Probe Offset
  3027. */
  3028. #if HAS_BED_PROBE
  3029. config_heading(forReplay, PSTR("Z-Probe Offset"), false);
  3030. if (!forReplay) say_units(true);
  3031. CONFIG_ECHO_START();
  3032. SERIAL_ECHOLNPAIR_P(
  3033. #if HAS_PROBE_XY_OFFSET
  3034. PSTR(" M851 X"), LINEAR_UNIT(probe.offset_xy.x),
  3035. SP_Y_STR, LINEAR_UNIT(probe.offset_xy.y),
  3036. SP_Z_STR
  3037. #else
  3038. PSTR(" M851 X0 Y0 Z")
  3039. #endif
  3040. , LINEAR_UNIT(probe.offset.z)
  3041. );
  3042. #endif
  3043. /**
  3044. * Bed Skew Correction
  3045. */
  3046. #if ENABLED(SKEW_CORRECTION_GCODE)
  3047. CONFIG_ECHO_HEADING("Skew Factor: ");
  3048. CONFIG_ECHO_START();
  3049. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  3050. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  3051. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  3052. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  3053. #else
  3054. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  3055. #endif
  3056. #endif
  3057. #if HAS_TRINAMIC_CONFIG
  3058. /**
  3059. * TMC stepper driver current
  3060. */
  3061. CONFIG_ECHO_HEADING("Stepper driver current:");
  3062. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  3063. say_M906(forReplay);
  3064. #if AXIS_IS_TMC(X)
  3065. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps());
  3066. #endif
  3067. #if AXIS_IS_TMC(Y)
  3068. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps());
  3069. #endif
  3070. #if AXIS_IS_TMC(Z)
  3071. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps());
  3072. #endif
  3073. SERIAL_EOL();
  3074. #endif
  3075. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  3076. say_M906(forReplay);
  3077. SERIAL_ECHOPGM(" I1");
  3078. #if AXIS_IS_TMC(X2)
  3079. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps());
  3080. #endif
  3081. #if AXIS_IS_TMC(Y2)
  3082. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps());
  3083. #endif
  3084. #if AXIS_IS_TMC(Z2)
  3085. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps());
  3086. #endif
  3087. SERIAL_EOL();
  3088. #endif
  3089. #if AXIS_IS_TMC(Z3)
  3090. say_M906(forReplay);
  3091. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  3092. #endif
  3093. #if AXIS_IS_TMC(Z4)
  3094. say_M906(forReplay);
  3095. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.getMilliamps());
  3096. #endif
  3097. #if AXIS_IS_TMC(I)
  3098. say_M906(forReplay);
  3099. SERIAL_ECHOLNPAIR_P(SP_I_STR, stepperI.getMilliamps());
  3100. #endif
  3101. #if AXIS_IS_TMC(J)
  3102. say_M906(forReplay);
  3103. SERIAL_ECHOLNPAIR_P(SP_J_STR, stepperJ.getMilliamps());
  3104. #endif
  3105. #if AXIS_IS_TMC(K)
  3106. say_M906(forReplay);
  3107. SERIAL_ECHOLNPAIR_P(SP_K_STR, stepperK.getMilliamps());
  3108. #endif
  3109. #if AXIS_IS_TMC(E0)
  3110. say_M906(forReplay);
  3111. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  3112. #endif
  3113. #if AXIS_IS_TMC(E1)
  3114. say_M906(forReplay);
  3115. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  3116. #endif
  3117. #if AXIS_IS_TMC(E2)
  3118. say_M906(forReplay);
  3119. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  3120. #endif
  3121. #if AXIS_IS_TMC(E3)
  3122. say_M906(forReplay);
  3123. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  3124. #endif
  3125. #if AXIS_IS_TMC(E4)
  3126. say_M906(forReplay);
  3127. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  3128. #endif
  3129. #if AXIS_IS_TMC(E5)
  3130. say_M906(forReplay);
  3131. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  3132. #endif
  3133. #if AXIS_IS_TMC(E6)
  3134. say_M906(forReplay);
  3135. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.getMilliamps());
  3136. #endif
  3137. #if AXIS_IS_TMC(E7)
  3138. say_M906(forReplay);
  3139. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.getMilliamps());
  3140. #endif
  3141. SERIAL_EOL();
  3142. /**
  3143. * TMC Hybrid Threshold
  3144. */
  3145. #if ENABLED(HYBRID_THRESHOLD)
  3146. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  3147. #if X_HAS_STEALTHCHOP || Y_HAS_STEALTHCHOP || Z_HAS_STEALTHCHOP
  3148. say_M913(forReplay);
  3149. #if X_HAS_STEALTHCHOP
  3150. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs());
  3151. #endif
  3152. #if Y_HAS_STEALTHCHOP
  3153. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs());
  3154. #endif
  3155. #if Z_HAS_STEALTHCHOP
  3156. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs());
  3157. #endif
  3158. SERIAL_EOL();
  3159. #endif
  3160. #if X2_HAS_STEALTHCHOP || Y2_HAS_STEALTHCHOP || Z2_HAS_STEALTHCHOP
  3161. say_M913(forReplay);
  3162. SERIAL_ECHOPGM(" I1");
  3163. #if X2_HAS_STEALTHCHOP
  3164. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs());
  3165. #endif
  3166. #if Y2_HAS_STEALTHCHOP
  3167. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs());
  3168. #endif
  3169. #if Z2_HAS_STEALTHCHOP
  3170. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs());
  3171. #endif
  3172. SERIAL_EOL();
  3173. #endif
  3174. #if Z3_HAS_STEALTHCHOP
  3175. say_M913(forReplay);
  3176. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs());
  3177. #endif
  3178. #if Z4_HAS_STEALTHCHOP
  3179. say_M913(forReplay);
  3180. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.get_pwm_thrs());
  3181. #endif
  3182. #if I_HAS_STEALTHCHOP
  3183. say_M913(forReplay);
  3184. SERIAL_ECHOLNPAIR_P(SP_I_STR, stepperI.get_pwm_thrs());
  3185. #endif
  3186. #if J_HAS_STEALTHCHOP
  3187. say_M913(forReplay);
  3188. SERIAL_ECHOLNPAIR_P(SP_J_STR, stepperJ.get_pwm_thrs());
  3189. #endif
  3190. #if K_HAS_STEALTHCHOP
  3191. say_M913(forReplay);
  3192. SERIAL_ECHOLNPAIR_P(SP_K_STR, stepperK.get_pwm_thrs());
  3193. #endif
  3194. #if E0_HAS_STEALTHCHOP
  3195. say_M913(forReplay);
  3196. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs());
  3197. #endif
  3198. #if E1_HAS_STEALTHCHOP
  3199. say_M913(forReplay);
  3200. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs());
  3201. #endif
  3202. #if E2_HAS_STEALTHCHOP
  3203. say_M913(forReplay);
  3204. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs());
  3205. #endif
  3206. #if E3_HAS_STEALTHCHOP
  3207. say_M913(forReplay);
  3208. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs());
  3209. #endif
  3210. #if E4_HAS_STEALTHCHOP
  3211. say_M913(forReplay);
  3212. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs());
  3213. #endif
  3214. #if E5_HAS_STEALTHCHOP
  3215. say_M913(forReplay);
  3216. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs());
  3217. #endif
  3218. #if E6_HAS_STEALTHCHOP
  3219. say_M913(forReplay);
  3220. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.get_pwm_thrs());
  3221. #endif
  3222. #if E7_HAS_STEALTHCHOP
  3223. say_M913(forReplay);
  3224. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.get_pwm_thrs());
  3225. #endif
  3226. SERIAL_EOL();
  3227. #endif // HYBRID_THRESHOLD
  3228. /**
  3229. * TMC Sensorless homing thresholds
  3230. */
  3231. #if USE_SENSORLESS
  3232. CONFIG_ECHO_HEADING("StallGuard threshold:");
  3233. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  3234. CONFIG_ECHO_START();
  3235. say_M914();
  3236. #if X_SENSORLESS
  3237. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold());
  3238. #endif
  3239. #if Y_SENSORLESS
  3240. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold());
  3241. #endif
  3242. #if Z_SENSORLESS
  3243. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold());
  3244. #endif
  3245. SERIAL_EOL();
  3246. #endif
  3247. #if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS
  3248. CONFIG_ECHO_START();
  3249. say_M914();
  3250. SERIAL_ECHOPGM(" I1");
  3251. #if X2_SENSORLESS
  3252. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold());
  3253. #endif
  3254. #if Y2_SENSORLESS
  3255. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold());
  3256. #endif
  3257. #if Z2_SENSORLESS
  3258. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold());
  3259. #endif
  3260. SERIAL_EOL();
  3261. #endif
  3262. #if Z3_SENSORLESS
  3263. CONFIG_ECHO_START();
  3264. say_M914();
  3265. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold());
  3266. #endif
  3267. #if Z4_SENSORLESS
  3268. CONFIG_ECHO_START();
  3269. say_M914();
  3270. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.homing_threshold());
  3271. #endif
  3272. #if I_SENSORLESS
  3273. CONFIG_ECHO_START();
  3274. say_M914();
  3275. SERIAL_ECHOLNPAIR_P(SP_I_STR, stepperI.homing_threshold());
  3276. #endif
  3277. #if J_SENSORLESS
  3278. CONFIG_ECHO_START();
  3279. say_M914();
  3280. SERIAL_ECHOLNPAIR_P(SP_J_STR, stepperJ.homing_threshold());
  3281. #endif
  3282. #if K_SENSORLESS
  3283. CONFIG_ECHO_START();
  3284. say_M914();
  3285. SERIAL_ECHOLNPAIR_P(SP_K_STR, stepperK.homing_threshold());
  3286. #endif
  3287. #endif // USE_SENSORLESS
  3288. /**
  3289. * TMC stepping mode
  3290. */
  3291. #if HAS_STEALTHCHOP
  3292. CONFIG_ECHO_HEADING("Driver stepping mode:");
  3293. const bool chop_x = TERN0(X_HAS_STEALTHCHOP, stepperX.get_stored_stealthChop()),
  3294. chop_y = TERN0(Y_HAS_STEALTHCHOP, stepperY.get_stored_stealthChop()),
  3295. chop_z = TERN0(Z_HAS_STEALTHCHOP, stepperZ.get_stored_stealthChop()),
  3296. chop_i = TERN0(I_HAS_STEALTHCHOP, stepperI.get_stored_stealthChop()),
  3297. chop_j = TERN0(J_HAS_STEALTHCHOP, stepperJ.get_stored_stealthChop()),
  3298. chop_k = TERN0(K_HAS_STEALTHCHOP, stepperK.get_stored_stealthChop());
  3299. if (chop_x || chop_y || chop_z || chop_i || chop_j || chop_k) {
  3300. say_M569(forReplay);
  3301. LINEAR_AXIS_CODE(
  3302. if (chop_x) SERIAL_ECHOPGM_P(SP_X_STR),
  3303. if (chop_y) SERIAL_ECHOPGM_P(SP_Y_STR),
  3304. if (chop_z) SERIAL_ECHOPGM_P(SP_Z_STR),
  3305. if (chop_i) SERIAL_ECHOPGM_P(SP_I_STR),
  3306. if (chop_j) SERIAL_ECHOPGM_P(SP_J_STR),
  3307. if (chop_k) SERIAL_ECHOPGM_P(SP_K_STR)
  3308. );
  3309. SERIAL_EOL();
  3310. }
  3311. const bool chop_x2 = TERN0(X2_HAS_STEALTHCHOP, stepperX2.get_stored_stealthChop()),
  3312. chop_y2 = TERN0(Y2_HAS_STEALTHCHOP, stepperY2.get_stored_stealthChop()),
  3313. chop_z2 = TERN0(Z2_HAS_STEALTHCHOP, stepperZ2.get_stored_stealthChop());
  3314. if (chop_x2 || chop_y2 || chop_z2) {
  3315. say_M569(forReplay, PSTR("I1"));
  3316. if (chop_x2) SERIAL_ECHOPGM_P(SP_X_STR);
  3317. if (chop_y2) SERIAL_ECHOPGM_P(SP_Y_STR);
  3318. if (chop_z2) SERIAL_ECHOPGM_P(SP_Z_STR);
  3319. SERIAL_EOL();
  3320. }
  3321. if (TERN0(Z3_HAS_STEALTHCHOP, stepperZ3.get_stored_stealthChop())) { say_M569(forReplay, PSTR("I2 Z"), true); }
  3322. if (TERN0(Z4_HAS_STEALTHCHOP, stepperZ4.get_stored_stealthChop())) { say_M569(forReplay, PSTR("I3 Z"), true); }
  3323. if (TERN0( I_HAS_STEALTHCHOP, stepperI.get_stored_stealthChop())) { say_M569(forReplay, SP_I_STR, true); }
  3324. if (TERN0( J_HAS_STEALTHCHOP, stepperJ.get_stored_stealthChop())) { say_M569(forReplay, SP_J_STR, true); }
  3325. if (TERN0( K_HAS_STEALTHCHOP, stepperK.get_stored_stealthChop())) { say_M569(forReplay, SP_K_STR, true); }
  3326. if (TERN0(E0_HAS_STEALTHCHOP, stepperE0.get_stored_stealthChop())) { say_M569(forReplay, PSTR("T0 E"), true); }
  3327. if (TERN0(E1_HAS_STEALTHCHOP, stepperE1.get_stored_stealthChop())) { say_M569(forReplay, PSTR("T1 E"), true); }
  3328. if (TERN0(E2_HAS_STEALTHCHOP, stepperE2.get_stored_stealthChop())) { say_M569(forReplay, PSTR("T2 E"), true); }
  3329. if (TERN0(E3_HAS_STEALTHCHOP, stepperE3.get_stored_stealthChop())) { say_M569(forReplay, PSTR("T3 E"), true); }
  3330. if (TERN0(E4_HAS_STEALTHCHOP, stepperE4.get_stored_stealthChop())) { say_M569(forReplay, PSTR("T4 E"), true); }
  3331. if (TERN0(E5_HAS_STEALTHCHOP, stepperE5.get_stored_stealthChop())) { say_M569(forReplay, PSTR("T5 E"), true); }
  3332. if (TERN0(E6_HAS_STEALTHCHOP, stepperE6.get_stored_stealthChop())) { say_M569(forReplay, PSTR("T6 E"), true); }
  3333. if (TERN0(E7_HAS_STEALTHCHOP, stepperE7.get_stored_stealthChop())) { say_M569(forReplay, PSTR("T7 E"), true); }
  3334. #endif // HAS_STEALTHCHOP
  3335. #endif // HAS_TRINAMIC_CONFIG
  3336. /**
  3337. * Linear Advance
  3338. */
  3339. #if ENABLED(LIN_ADVANCE)
  3340. CONFIG_ECHO_HEADING("Linear Advance:");
  3341. #if EXTRUDERS < 2
  3342. CONFIG_ECHO_MSG(" M900 K", planner.extruder_advance_K[0]);
  3343. #else
  3344. LOOP_L_N(i, EXTRUDERS)
  3345. CONFIG_ECHO_MSG(" M900 T", i, " K", planner.extruder_advance_K[i]);
  3346. #endif
  3347. #endif
  3348. #if EITHER(HAS_MOTOR_CURRENT_SPI, HAS_MOTOR_CURRENT_PWM)
  3349. CONFIG_ECHO_HEADING("Stepper motor currents:");
  3350. CONFIG_ECHO_START();
  3351. #if HAS_MOTOR_CURRENT_PWM
  3352. SERIAL_ECHOLNPAIR_P( // PWM-based has 3 values:
  3353. PSTR(" M907 X"), stepper.motor_current_setting[0] // X and Y
  3354. , SP_Z_STR, stepper.motor_current_setting[1] // Z
  3355. , SP_E_STR, stepper.motor_current_setting[2] // E
  3356. );
  3357. #elif HAS_MOTOR_CURRENT_SPI
  3358. SERIAL_ECHOPGM(" M907"); // SPI-based has 5 values:
  3359. LOOP_LOGICAL_AXES(q) { // X Y Z (I J K) E (map to X Y Z (I J K) E0 by default)
  3360. SERIAL_CHAR(' ', axis_codes[q]);
  3361. SERIAL_ECHO(stepper.motor_current_setting[q]);
  3362. }
  3363. SERIAL_CHAR(' ', 'B'); // B (maps to E1 by default)
  3364. SERIAL_ECHOLN(stepper.motor_current_setting[4]);
  3365. #endif
  3366. #elif HAS_MOTOR_CURRENT_I2C // i2c-based has any number of values
  3367. // Values sent over i2c are not stored.
  3368. // Indexes map directly to drivers, not axes.
  3369. #elif HAS_MOTOR_CURRENT_DAC // DAC-based has 4 values, for X Y Z (I J K) E
  3370. // Values sent over i2c are not stored. Uses indirect mapping.
  3371. #endif
  3372. /**
  3373. * Advanced Pause filament load & unload lengths
  3374. */
  3375. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  3376. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  3377. #if EXTRUDERS == 1
  3378. say_M603(forReplay);
  3379. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  3380. #else
  3381. auto echo_603 = [](const bool f, const uint8_t n) { say_M603(f); SERIAL_ECHOLNPAIR("T", n, " L", LINEAR_UNIT(fc_settings[n].load_length), " U", LINEAR_UNIT(fc_settings[n].unload_length)); };
  3382. LOOP_L_N(i, EXTRUDERS) echo_603(forReplay, i);
  3383. #endif
  3384. #endif
  3385. #if HAS_MULTI_EXTRUDER
  3386. CONFIG_ECHO_HEADING("Tool-changing:");
  3387. CONFIG_ECHO_START();
  3388. M217_report(true);
  3389. #endif
  3390. #if ENABLED(BACKLASH_GCODE)
  3391. CONFIG_ECHO_HEADING("Backlash compensation:");
  3392. CONFIG_ECHO_START();
  3393. SERIAL_ECHOLNPAIR_P(
  3394. PSTR(" M425 F"), backlash.get_correction()
  3395. , LIST_N(DOUBLE(LINEAR_AXES),
  3396. SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x),
  3397. SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y),
  3398. SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z),
  3399. SP_I_STR, LINEAR_UNIT(backlash.distance_mm.i),
  3400. SP_J_STR, LINEAR_UNIT(backlash.distance_mm.j),
  3401. SP_K_STR, LINEAR_UNIT(backlash.distance_mm.k)
  3402. )
  3403. #ifdef BACKLASH_SMOOTHING_MM
  3404. , PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm)
  3405. #endif
  3406. );
  3407. #endif
  3408. #if HAS_FILAMENT_SENSOR
  3409. CONFIG_ECHO_HEADING("Filament runout sensor:");
  3410. CONFIG_ECHO_MSG(
  3411. " M412 S", runout.enabled
  3412. #if HAS_FILAMENT_RUNOUT_DISTANCE
  3413. , " D", LINEAR_UNIT(runout.runout_distance())
  3414. #endif
  3415. );
  3416. #endif
  3417. #if HAS_ETHERNET
  3418. CONFIG_ECHO_HEADING("Ethernet:");
  3419. if (!forReplay) { CONFIG_ECHO_START(); ETH0_report(); }
  3420. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); MAC_report();
  3421. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M552_report();
  3422. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M553_report();
  3423. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M554_report();
  3424. #endif
  3425. #if HAS_MULTI_LANGUAGE
  3426. CONFIG_ECHO_HEADING("UI Language:");
  3427. CONFIG_ECHO_MSG(" M414 S", ui.language);
  3428. #endif
  3429. }
  3430. #endif // !DISABLE_M503
  3431. #pragma pack(pop)