My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

configuration_store.cpp 103KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. // Change EEPROM version if the structure changes
  38. #define EEPROM_VERSION "V75"
  39. #define EEPROM_OFFSET 100
  40. // Check the integrity of data offsets.
  41. // Can be disabled for production build.
  42. //#define DEBUG_EEPROM_READWRITE
  43. #include "configuration_store.h"
  44. #include "endstops.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "temperature.h"
  48. #include "../lcd/ultralcd.h"
  49. #include "../core/language.h"
  50. #include "../libs/vector_3.h" // for matrix_3x3
  51. #include "../gcode/gcode.h"
  52. #include "../MarlinCore.h"
  53. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  54. #include "../HAL/shared/persistent_store_api.h"
  55. #endif
  56. #include "probe.h"
  57. #if HAS_LEVELING
  58. #include "../feature/bedlevel/bedlevel.h"
  59. #endif
  60. #if ENABLED(EXTENSIBLE_UI)
  61. #include "../lcd/extensible_ui/ui_api.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_SERVOS && HAS_SERVO_ANGLES
  67. #define EEPROM_NUM_SERVOS NUM_SERVOS
  68. #else
  69. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  70. #endif
  71. #include "../feature/fwretract.h"
  72. #if ENABLED(POWER_LOSS_RECOVERY)
  73. #include "../feature/power_loss_recovery.h"
  74. #endif
  75. #include "../feature/pause.h"
  76. #if ENABLED(BACKLASH_COMPENSATION)
  77. #include "../feature/backlash.h"
  78. #endif
  79. #if HAS_FILAMENT_SENSOR
  80. #include "../feature/runout.h"
  81. #endif
  82. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  83. extern float saved_extruder_advance_K[EXTRUDERS];
  84. #endif
  85. #if EXTRUDERS > 1
  86. #include "tool_change.h"
  87. void M217_report(const bool eeprom);
  88. #endif
  89. #if ENABLED(BLTOUCH)
  90. #include "../feature/bltouch.h"
  91. #endif
  92. #if HAS_TRINAMIC
  93. #include "stepper/indirection.h"
  94. #include "../feature/tmc_util.h"
  95. #endif
  96. #if ENABLED(PROBE_TEMP_COMPENSATION)
  97. #include "../feature/probe_temp_compensation.h"
  98. #endif
  99. #pragma pack(push, 1) // No padding between variables
  100. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5; } tmc_stepper_current_t;
  101. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5; } tmc_hybrid_threshold_t;
  102. typedef struct { int16_t X, Y, Z, X2; } tmc_sgt_t;
  103. typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5; } tmc_stealth_enabled_t;
  104. // Limit an index to an array size
  105. #define ALIM(I,ARR) _MIN(I, COUNT(ARR) - 1)
  106. // Defaults for reset / fill in on load
  107. static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  108. static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
  109. static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  110. extern const char SP_X_STR[], SP_Y_STR[], SP_Z_STR[], SP_E_STR[];
  111. /**
  112. * Current EEPROM Layout
  113. *
  114. * Keep this data structure up to date so
  115. * EEPROM size is known at compile time!
  116. */
  117. typedef struct SettingsDataStruct {
  118. char version[4]; // Vnn\0
  119. uint16_t crc; // Data Checksum
  120. //
  121. // DISTINCT_E_FACTORS
  122. //
  123. uint8_t esteppers; // XYZE_N - XYZ
  124. planner_settings_t planner_settings;
  125. xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
  126. float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  127. xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
  128. #if HAS_HOTEND_OFFSET
  129. xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
  130. #endif
  131. //
  132. // FILAMENT_RUNOUT_SENSOR
  133. //
  134. bool runout_sensor_enabled; // M412 S
  135. float runout_distance_mm; // M412 D
  136. //
  137. // ENABLE_LEVELING_FADE_HEIGHT
  138. //
  139. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  140. //
  141. // MESH_BED_LEVELING
  142. //
  143. float mbl_z_offset; // mbl.z_offset
  144. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  145. #if ENABLED(MESH_BED_LEVELING)
  146. float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
  147. #else
  148. float mbl_z_values[3][3];
  149. #endif
  150. //
  151. // HAS_BED_PROBE
  152. //
  153. xyz_pos_t probe_offset;
  154. //
  155. // ABL_PLANAR
  156. //
  157. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  158. //
  159. // AUTO_BED_LEVELING_BILINEAR
  160. //
  161. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  162. xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
  163. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  164. bed_mesh_t z_values; // G29
  165. #else
  166. float z_values[3][3];
  167. #endif
  168. //
  169. // AUTO_BED_LEVELING_UBL
  170. //
  171. bool planner_leveling_active; // M420 S planner.leveling_active
  172. int8_t ubl_storage_slot; // ubl.storage_slot
  173. //
  174. // SERVO_ANGLES
  175. //
  176. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  177. //
  178. // Temperature first layer compensation values
  179. //
  180. #if ENABLED(PROBE_TEMP_COMPENSATION)
  181. int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V
  182. z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V
  183. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  184. , z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V
  185. #endif
  186. ;
  187. #endif
  188. //
  189. // BLTOUCH
  190. //
  191. bool bltouch_last_written_mode;
  192. //
  193. // DELTA / [XYZ]_DUAL_ENDSTOPS
  194. //
  195. #if ENABLED(DELTA)
  196. float delta_height; // M666 H
  197. abc_float_t delta_endstop_adj; // M666 XYZ
  198. float delta_radius, // M665 R
  199. delta_diagonal_rod, // M665 L
  200. delta_segments_per_second; // M665 S
  201. abc_float_t delta_tower_angle_trim; // M665 XYZ
  202. #elif HAS_EXTRA_ENDSTOPS
  203. float x2_endstop_adj, // M666 X
  204. y2_endstop_adj, // M666 Y
  205. z2_endstop_adj, // M666 (S2) Z
  206. z3_endstop_adj, // M666 (S3) Z
  207. z4_endstop_adj; // M666 (S4) Z
  208. #endif
  209. //
  210. // ULTIPANEL
  211. //
  212. int16_t ui_preheat_hotend_temp[2], // M145 S0 H
  213. ui_preheat_bed_temp[2]; // M145 S0 B
  214. uint8_t ui_preheat_fan_speed[2]; // M145 S0 F
  215. //
  216. // PIDTEMP
  217. //
  218. PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
  219. int16_t lpq_len; // M301 L
  220. //
  221. // PIDTEMPBED
  222. //
  223. PID_t bedPID; // M304 PID / M303 E-1 U
  224. //
  225. // User-defined Thermistors
  226. //
  227. #if HAS_USER_THERMISTORS
  228. user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
  229. #endif
  230. //
  231. // HAS_LCD_CONTRAST
  232. //
  233. int16_t lcd_contrast; // M250 C
  234. //
  235. // POWER_LOSS_RECOVERY
  236. //
  237. bool recovery_enabled; // M413 S
  238. //
  239. // FWRETRACT
  240. //
  241. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  242. bool autoretract_enabled; // M209 S
  243. //
  244. // !NO_VOLUMETRIC
  245. //
  246. bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
  247. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  248. //
  249. // HAS_TRINAMIC
  250. //
  251. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  252. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  253. tmc_sgt_t tmc_sgt; // M914 X Y Z X2
  254. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  255. //
  256. // LIN_ADVANCE
  257. //
  258. float planner_extruder_advance_K[EXTRUDERS]; // M900 K planner.extruder_advance_K
  259. //
  260. // HAS_MOTOR_CURRENT_PWM
  261. //
  262. uint32_t motor_current_setting[3]; // M907 X Z E
  263. //
  264. // CNC_COORDINATE_SYSTEMS
  265. //
  266. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
  267. //
  268. // SKEW_CORRECTION
  269. //
  270. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  271. //
  272. // ADVANCED_PAUSE_FEATURE
  273. //
  274. #if EXTRUDERS
  275. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  276. #endif
  277. //
  278. // Tool-change settings
  279. //
  280. #if EXTRUDERS > 1
  281. toolchange_settings_t toolchange_settings; // M217 S P R
  282. #endif
  283. //
  284. // BACKLASH_COMPENSATION
  285. //
  286. xyz_float_t backlash_distance_mm; // M425 X Y Z
  287. uint8_t backlash_correction; // M425 F
  288. float backlash_smoothing_mm; // M425 S
  289. //
  290. // EXTENSIBLE_UI
  291. //
  292. #if ENABLED(EXTENSIBLE_UI)
  293. // This is a significant hardware change; don't reserve space when not present
  294. uint8_t extui_data[ExtUI::eeprom_data_size];
  295. #endif
  296. } SettingsData;
  297. //static_assert(sizeof(SettingsData) <= E2END + 1, "EEPROM too small to contain SettingsData!");
  298. MarlinSettings settings;
  299. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  300. /**
  301. * Post-process after Retrieve or Reset
  302. */
  303. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  304. float new_z_fade_height;
  305. #endif
  306. void MarlinSettings::postprocess() {
  307. xyze_pos_t oldpos = current_position;
  308. // steps per s2 needs to be updated to agree with units per s2
  309. planner.reset_acceleration_rates();
  310. // Make sure delta kinematics are updated before refreshing the
  311. // planner position so the stepper counts will be set correctly.
  312. #if ENABLED(DELTA)
  313. recalc_delta_settings();
  314. #endif
  315. #if ENABLED(PIDTEMP)
  316. thermalManager.updatePID();
  317. #endif
  318. #if DISABLED(NO_VOLUMETRICS)
  319. planner.calculate_volumetric_multipliers();
  320. #elif EXTRUDERS
  321. for (uint8_t i = COUNT(planner.e_factor); i--;)
  322. planner.refresh_e_factor(i);
  323. #endif
  324. // Software endstops depend on home_offset
  325. LOOP_XYZ(i) {
  326. update_workspace_offset((AxisEnum)i);
  327. update_software_endstops((AxisEnum)i);
  328. }
  329. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  330. set_z_fade_height(new_z_fade_height, false); // false = no report
  331. #endif
  332. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  333. refresh_bed_level();
  334. #endif
  335. #if HAS_MOTOR_CURRENT_PWM
  336. stepper.refresh_motor_power();
  337. #endif
  338. #if ENABLED(FWRETRACT)
  339. fwretract.refresh_autoretract();
  340. #endif
  341. #if HAS_LINEAR_E_JERK
  342. planner.recalculate_max_e_jerk();
  343. #endif
  344. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  345. // and init stepper.count[], planner.position[] with current_position
  346. planner.refresh_positioning();
  347. // Various factors can change the current position
  348. if (oldpos != current_position)
  349. report_current_position();
  350. }
  351. #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
  352. #include "printcounter.h"
  353. static_assert(
  354. !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
  355. !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  356. "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
  357. );
  358. #endif
  359. #if ENABLED(SD_FIRMWARE_UPDATE)
  360. #if ENABLED(EEPROM_SETTINGS)
  361. static_assert(
  362. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  363. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  364. );
  365. #endif
  366. bool MarlinSettings::sd_update_status() {
  367. uint8_t val;
  368. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  369. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  370. }
  371. bool MarlinSettings::set_sd_update_status(const bool enable) {
  372. if (enable != sd_update_status())
  373. persistentStore.write_data(
  374. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  375. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  376. );
  377. return true;
  378. }
  379. #endif // SD_FIRMWARE_UPDATE
  380. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  381. static_assert(
  382. EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
  383. "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data."
  384. );
  385. #endif
  386. #define DEBUG_OUT ENABLED(EEPROM_CHITCHAT)
  387. #include "../core/debug_out.h"
  388. #if ENABLED(EEPROM_SETTINGS)
  389. #define EEPROM_START() if (!persistentStore.access_start()) { SERIAL_ECHO_MSG("No EEPROM."); return false; } \
  390. int eeprom_index = EEPROM_OFFSET
  391. #define EEPROM_FINISH() persistentStore.access_finish()
  392. #define EEPROM_SKIP(VAR) (eeprom_index += sizeof(VAR))
  393. #define EEPROM_WRITE(VAR) do{ persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  394. #define EEPROM_READ(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating); }while(0)
  395. #define EEPROM_READ_ALWAYS(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  396. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  397. #if ENABLED(DEBUG_EEPROM_READWRITE)
  398. #define _FIELD_TEST(FIELD) \
  399. EEPROM_ASSERT( \
  400. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  401. "Field " STRINGIFY(FIELD) " mismatch." \
  402. )
  403. #else
  404. #define _FIELD_TEST(FIELD) NOOP
  405. #endif
  406. const char version[4] = EEPROM_VERSION;
  407. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  408. bool MarlinSettings::size_error(const uint16_t size) {
  409. if (size != datasize()) {
  410. DEBUG_ERROR_MSG("EEPROM datasize error.");
  411. return true;
  412. }
  413. return false;
  414. }
  415. /**
  416. * M500 - Store Configuration
  417. */
  418. bool MarlinSettings::save() {
  419. float dummy = 0;
  420. char ver[4] = "ERR";
  421. uint16_t working_crc = 0;
  422. EEPROM_START();
  423. eeprom_error = false;
  424. #if ENABLED(FLASH_EEPROM_EMULATION)
  425. EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase
  426. #else
  427. EEPROM_WRITE(ver); // invalidate data first
  428. #endif
  429. EEPROM_SKIP(working_crc); // Skip the checksum slot
  430. working_crc = 0; // clear before first "real data"
  431. _FIELD_TEST(esteppers);
  432. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  433. EEPROM_WRITE(esteppers);
  434. //
  435. // Planner Motion
  436. //
  437. {
  438. EEPROM_WRITE(planner.settings);
  439. #if HAS_CLASSIC_JERK
  440. EEPROM_WRITE(planner.max_jerk);
  441. #if HAS_LINEAR_E_JERK
  442. dummy = float(DEFAULT_EJERK);
  443. EEPROM_WRITE(dummy);
  444. #endif
  445. #else
  446. const xyze_pos_t planner_max_jerk = { 10, 10, 0.4, float(DEFAULT_EJERK) };
  447. EEPROM_WRITE(planner_max_jerk);
  448. #endif
  449. #if DISABLED(CLASSIC_JERK)
  450. EEPROM_WRITE(planner.junction_deviation_mm);
  451. #else
  452. dummy = 0.02f;
  453. EEPROM_WRITE(dummy);
  454. #endif
  455. }
  456. //
  457. // Home Offset
  458. //
  459. {
  460. _FIELD_TEST(home_offset);
  461. #if HAS_SCARA_OFFSET
  462. EEPROM_WRITE(scara_home_offset);
  463. #else
  464. #if !HAS_HOME_OFFSET
  465. const xyz_pos_t home_offset{0};
  466. #endif
  467. EEPROM_WRITE(home_offset);
  468. #endif
  469. #if HAS_HOTEND_OFFSET
  470. // Skip hotend 0 which must be 0
  471. for (uint8_t e = 1; e < HOTENDS; e++)
  472. EEPROM_WRITE(hotend_offset[e]);
  473. #endif
  474. }
  475. //
  476. // Filament Runout Sensor
  477. //
  478. {
  479. #if HAS_FILAMENT_SENSOR
  480. const bool &runout_sensor_enabled = runout.enabled;
  481. #else
  482. const bool runout_sensor_enabled = true;
  483. #endif
  484. #if HAS_FILAMENT_SENSOR && defined(FILAMENT_RUNOUT_DISTANCE_MM)
  485. const float &runout_distance_mm = runout.runout_distance();
  486. #else
  487. const float runout_distance_mm = 0;
  488. #endif
  489. _FIELD_TEST(runout_sensor_enabled);
  490. EEPROM_WRITE(runout_sensor_enabled);
  491. EEPROM_WRITE(runout_distance_mm);
  492. }
  493. //
  494. // Global Leveling
  495. //
  496. {
  497. const float zfh = (
  498. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  499. planner.z_fade_height
  500. #else
  501. 10.0
  502. #endif
  503. );
  504. EEPROM_WRITE(zfh);
  505. }
  506. //
  507. // Mesh Bed Leveling
  508. //
  509. {
  510. #if ENABLED(MESH_BED_LEVELING)
  511. // Compile time test that sizeof(mbl.z_values) is as expected
  512. static_assert(
  513. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  514. "MBL Z array is the wrong size."
  515. );
  516. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  517. EEPROM_WRITE(mbl.z_offset);
  518. EEPROM_WRITE(mesh_num_x);
  519. EEPROM_WRITE(mesh_num_y);
  520. EEPROM_WRITE(mbl.z_values);
  521. #else // For disabled MBL write a default mesh
  522. dummy = 0;
  523. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  524. EEPROM_WRITE(dummy); // z_offset
  525. EEPROM_WRITE(mesh_num_x);
  526. EEPROM_WRITE(mesh_num_y);
  527. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  528. #endif
  529. }
  530. //
  531. // Probe XYZ Offsets
  532. //
  533. {
  534. _FIELD_TEST(probe_offset);
  535. EEPROM_WRITE(probe_offset);
  536. }
  537. //
  538. // Planar Bed Leveling matrix
  539. //
  540. {
  541. #if ABL_PLANAR
  542. EEPROM_WRITE(planner.bed_level_matrix);
  543. #else
  544. dummy = 0;
  545. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  546. #endif
  547. }
  548. //
  549. // Bilinear Auto Bed Leveling
  550. //
  551. {
  552. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  553. // Compile time test that sizeof(z_values) is as expected
  554. static_assert(
  555. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  556. "Bilinear Z array is the wrong size."
  557. );
  558. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  559. EEPROM_WRITE(grid_max_x); // 1 byte
  560. EEPROM_WRITE(grid_max_y); // 1 byte
  561. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  562. EEPROM_WRITE(bilinear_start); // 2 ints
  563. EEPROM_WRITE(z_values); // 9-256 floats
  564. #else
  565. // For disabled Bilinear Grid write an empty 3x3 grid
  566. const uint8_t grid_max_x = 3, grid_max_y = 3;
  567. const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0};
  568. dummy = 0;
  569. EEPROM_WRITE(grid_max_x);
  570. EEPROM_WRITE(grid_max_y);
  571. EEPROM_WRITE(bilinear_grid_spacing);
  572. EEPROM_WRITE(bilinear_start);
  573. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  574. #endif
  575. }
  576. //
  577. // Unified Bed Leveling
  578. //
  579. {
  580. _FIELD_TEST(planner_leveling_active);
  581. #if ENABLED(AUTO_BED_LEVELING_UBL)
  582. EEPROM_WRITE(planner.leveling_active);
  583. EEPROM_WRITE(ubl.storage_slot);
  584. #else
  585. const bool ubl_active = false;
  586. const int8_t storage_slot = -1;
  587. EEPROM_WRITE(ubl_active);
  588. EEPROM_WRITE(storage_slot);
  589. #endif // AUTO_BED_LEVELING_UBL
  590. }
  591. //
  592. // Servo Angles
  593. //
  594. {
  595. _FIELD_TEST(servo_angles);
  596. #if !HAS_SERVO_ANGLES
  597. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  598. #endif
  599. EEPROM_WRITE(servo_angles);
  600. }
  601. //
  602. // Thermal first layer compensation values
  603. //
  604. #if ENABLED(PROBE_TEMP_COMPENSATION)
  605. EEPROM_WRITE(temp_comp.z_offsets_probe);
  606. EEPROM_WRITE(temp_comp.z_offsets_bed);
  607. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  608. EEPROM_WRITE(temp_comp.z_offsets_ext);
  609. #endif
  610. #else
  611. // No placeholder data for this feature
  612. #endif
  613. //
  614. // BLTOUCH
  615. //
  616. {
  617. _FIELD_TEST(bltouch_last_written_mode);
  618. #if ENABLED(BLTOUCH)
  619. const bool &bltouch_last_written_mode = bltouch.last_written_mode;
  620. #else
  621. constexpr bool bltouch_last_written_mode = false;
  622. #endif
  623. EEPROM_WRITE(bltouch_last_written_mode);
  624. }
  625. //
  626. // DELTA Geometry or Dual Endstops offsets
  627. //
  628. {
  629. #if ENABLED(DELTA)
  630. _FIELD_TEST(delta_height);
  631. EEPROM_WRITE(delta_height); // 1 float
  632. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  633. EEPROM_WRITE(delta_radius); // 1 float
  634. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  635. EEPROM_WRITE(delta_segments_per_second); // 1 float
  636. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  637. #elif HAS_EXTRA_ENDSTOPS
  638. _FIELD_TEST(x2_endstop_adj);
  639. // Write dual endstops in X, Y, Z order. Unused = 0.0
  640. dummy = 0;
  641. #if ENABLED(X_DUAL_ENDSTOPS)
  642. EEPROM_WRITE(endstops.x2_endstop_adj); // 1 float
  643. #else
  644. EEPROM_WRITE(dummy);
  645. #endif
  646. #if ENABLED(Y_DUAL_ENDSTOPS)
  647. EEPROM_WRITE(endstops.y2_endstop_adj); // 1 float
  648. #else
  649. EEPROM_WRITE(dummy);
  650. #endif
  651. #if ENABLED(Z_MULTI_ENDSTOPS)
  652. EEPROM_WRITE(endstops.z2_endstop_adj); // 1 float
  653. #else
  654. EEPROM_WRITE(dummy);
  655. #endif
  656. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  657. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  658. #else
  659. EEPROM_WRITE(dummy);
  660. #endif
  661. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  662. EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
  663. #else
  664. EEPROM_WRITE(dummy);
  665. #endif
  666. #endif
  667. }
  668. //
  669. // LCD Preheat settings
  670. //
  671. {
  672. _FIELD_TEST(ui_preheat_hotend_temp);
  673. #if HOTENDS && HAS_LCD_MENU
  674. const int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  675. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  676. const uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  677. #else
  678. constexpr int16_t ui_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  679. ui_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED };
  680. constexpr uint8_t ui_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  681. #endif
  682. EEPROM_WRITE(ui_preheat_hotend_temp);
  683. EEPROM_WRITE(ui_preheat_bed_temp);
  684. EEPROM_WRITE(ui_preheat_fan_speed);
  685. }
  686. //
  687. // PIDTEMP
  688. //
  689. {
  690. _FIELD_TEST(hotendPID);
  691. HOTEND_LOOP() {
  692. PIDCF_t pidcf = {
  693. #if DISABLED(PIDTEMP)
  694. DUMMY_PID_VALUE, DUMMY_PID_VALUE, DUMMY_PID_VALUE,
  695. DUMMY_PID_VALUE, DUMMY_PID_VALUE
  696. #else
  697. PID_PARAM(Kp, e),
  698. unscalePID_i(PID_PARAM(Ki, e)),
  699. unscalePID_d(PID_PARAM(Kd, e)),
  700. PID_PARAM(Kc, e),
  701. PID_PARAM(Kf, e)
  702. #endif
  703. };
  704. EEPROM_WRITE(pidcf);
  705. }
  706. _FIELD_TEST(lpq_len);
  707. #if ENABLED(PID_EXTRUSION_SCALING)
  708. EEPROM_WRITE(thermalManager.lpq_len);
  709. #else
  710. const int16_t lpq_len = 20;
  711. EEPROM_WRITE(lpq_len);
  712. #endif
  713. }
  714. //
  715. // PIDTEMPBED
  716. //
  717. {
  718. _FIELD_TEST(bedPID);
  719. const PID_t bed_pid = {
  720. #if DISABLED(PIDTEMPBED)
  721. DUMMY_PID_VALUE, DUMMY_PID_VALUE, DUMMY_PID_VALUE
  722. #else
  723. // Store the unscaled PID values
  724. thermalManager.temp_bed.pid.Kp,
  725. unscalePID_i(thermalManager.temp_bed.pid.Ki),
  726. unscalePID_d(thermalManager.temp_bed.pid.Kd)
  727. #endif
  728. };
  729. EEPROM_WRITE(bed_pid);
  730. }
  731. //
  732. // User-defined Thermistors
  733. //
  734. #if HAS_USER_THERMISTORS
  735. {
  736. _FIELD_TEST(user_thermistor);
  737. EEPROM_WRITE(thermalManager.user_thermistor);
  738. }
  739. #endif
  740. //
  741. // LCD Contrast
  742. //
  743. {
  744. _FIELD_TEST(lcd_contrast);
  745. const int16_t lcd_contrast =
  746. #if HAS_LCD_CONTRAST
  747. ui.contrast
  748. #elif defined(DEFAULT_LCD_CONTRAST)
  749. DEFAULT_LCD_CONTRAST
  750. #else
  751. 127
  752. #endif
  753. ;
  754. EEPROM_WRITE(lcd_contrast);
  755. }
  756. //
  757. // Power-Loss Recovery
  758. //
  759. {
  760. _FIELD_TEST(recovery_enabled);
  761. const bool recovery_enabled =
  762. #if ENABLED(POWER_LOSS_RECOVERY)
  763. recovery.enabled
  764. #else
  765. true
  766. #endif
  767. ;
  768. EEPROM_WRITE(recovery_enabled);
  769. }
  770. //
  771. // Firmware Retraction
  772. //
  773. {
  774. _FIELD_TEST(fwretract_settings);
  775. #if ENABLED(FWRETRACT)
  776. EEPROM_WRITE(fwretract.settings);
  777. #else
  778. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  779. EEPROM_WRITE(autoretract_defaults);
  780. #endif
  781. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  782. EEPROM_WRITE(fwretract.autoretract_enabled);
  783. #else
  784. const bool autoretract_enabled = false;
  785. EEPROM_WRITE(autoretract_enabled);
  786. #endif
  787. }
  788. //
  789. // Volumetric & Filament Size
  790. //
  791. {
  792. _FIELD_TEST(parser_volumetric_enabled);
  793. #if DISABLED(NO_VOLUMETRICS)
  794. EEPROM_WRITE(parser.volumetric_enabled);
  795. EEPROM_WRITE(planner.filament_size);
  796. #else
  797. const bool volumetric_enabled = false;
  798. dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
  799. EEPROM_WRITE(volumetric_enabled);
  800. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  801. #endif
  802. }
  803. //
  804. // TMC Configuration
  805. //
  806. {
  807. _FIELD_TEST(tmc_stepper_current);
  808. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  809. #if HAS_TRINAMIC
  810. #if AXIS_IS_TMC(X)
  811. tmc_stepper_current.X = stepperX.getMilliamps();
  812. #endif
  813. #if AXIS_IS_TMC(Y)
  814. tmc_stepper_current.Y = stepperY.getMilliamps();
  815. #endif
  816. #if AXIS_IS_TMC(Z)
  817. tmc_stepper_current.Z = stepperZ.getMilliamps();
  818. #endif
  819. #if AXIS_IS_TMC(X2)
  820. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  821. #endif
  822. #if AXIS_IS_TMC(Y2)
  823. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  824. #endif
  825. #if AXIS_IS_TMC(Z2)
  826. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  827. #endif
  828. #if AXIS_IS_TMC(Z3)
  829. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  830. #endif
  831. #if AXIS_IS_TMC(Z4)
  832. tmc_stepper_current.Z4 = stepperZ4.getMilliamps();
  833. #endif
  834. #if MAX_EXTRUDERS
  835. #if AXIS_IS_TMC(E0)
  836. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  837. #endif
  838. #if MAX_EXTRUDERS > 1
  839. #if AXIS_IS_TMC(E1)
  840. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  841. #endif
  842. #if MAX_EXTRUDERS > 2
  843. #if AXIS_IS_TMC(E2)
  844. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  845. #endif
  846. #if MAX_EXTRUDERS > 3
  847. #if AXIS_IS_TMC(E3)
  848. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  849. #endif
  850. #if MAX_EXTRUDERS > 4
  851. #if AXIS_IS_TMC(E4)
  852. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  853. #endif
  854. #if MAX_EXTRUDERS > 5
  855. #if AXIS_IS_TMC(E5)
  856. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  857. #endif
  858. #endif // MAX_EXTRUDERS > 5
  859. #endif // MAX_EXTRUDERS > 4
  860. #endif // MAX_EXTRUDERS > 3
  861. #endif // MAX_EXTRUDERS > 2
  862. #endif // MAX_EXTRUDERS > 1
  863. #endif // MAX_EXTRUDERS
  864. #endif
  865. EEPROM_WRITE(tmc_stepper_current);
  866. }
  867. //
  868. // TMC Hybrid Threshold, and placeholder values
  869. //
  870. {
  871. _FIELD_TEST(tmc_hybrid_threshold);
  872. #if ENABLED(HYBRID_THRESHOLD)
  873. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  874. #if AXIS_HAS_STEALTHCHOP(X)
  875. tmc_hybrid_threshold.X = stepperX.get_pwm_thrs();
  876. #endif
  877. #if AXIS_HAS_STEALTHCHOP(Y)
  878. tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs();
  879. #endif
  880. #if AXIS_HAS_STEALTHCHOP(Z)
  881. tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs();
  882. #endif
  883. #if AXIS_HAS_STEALTHCHOP(X2)
  884. tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs();
  885. #endif
  886. #if AXIS_HAS_STEALTHCHOP(Y2)
  887. tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs();
  888. #endif
  889. #if AXIS_HAS_STEALTHCHOP(Z2)
  890. tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs();
  891. #endif
  892. #if AXIS_HAS_STEALTHCHOP(Z3)
  893. tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs();
  894. #endif
  895. #if AXIS_HAS_STEALTHCHOP(Z4)
  896. tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs();
  897. #endif
  898. #if MAX_EXTRUDERS
  899. #if AXIS_HAS_STEALTHCHOP(E0)
  900. tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs();
  901. #endif
  902. #if MAX_EXTRUDERS > 1
  903. #if AXIS_HAS_STEALTHCHOP(E1)
  904. tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs();
  905. #endif
  906. #if MAX_EXTRUDERS > 2
  907. #if AXIS_HAS_STEALTHCHOP(E2)
  908. tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs();
  909. #endif
  910. #if MAX_EXTRUDERS > 3
  911. #if AXIS_HAS_STEALTHCHOP(E3)
  912. tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs();
  913. #endif
  914. #if MAX_EXTRUDERS > 4
  915. #if AXIS_HAS_STEALTHCHOP(E4)
  916. tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs();
  917. #endif
  918. #if MAX_EXTRUDERS > 5
  919. #if AXIS_HAS_STEALTHCHOP(E5)
  920. tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs();
  921. #endif
  922. #endif // MAX_EXTRUDERS > 5
  923. #endif // MAX_EXTRUDERS > 4
  924. #endif // MAX_EXTRUDERS > 3
  925. #endif // MAX_EXTRUDERS > 2
  926. #endif // MAX_EXTRUDERS > 1
  927. #endif // MAX_EXTRUDERS
  928. #else
  929. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  930. .X = 100, .Y = 100, .Z = 3,
  931. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3,
  932. .E0 = 30, .E1 = 30, .E2 = 30,
  933. .E3 = 30, .E4 = 30, .E5 = 30
  934. };
  935. #endif
  936. EEPROM_WRITE(tmc_hybrid_threshold);
  937. }
  938. //
  939. // TMC StallGuard threshold
  940. //
  941. {
  942. tmc_sgt_t tmc_sgt{0};
  943. #if USE_SENSORLESS
  944. #if X_SENSORLESS
  945. tmc_sgt.X = stepperX.homing_threshold();
  946. #endif
  947. #if X2_SENSORLESS
  948. tmc_sgt.X2 = stepperX2.homing_threshold();
  949. #endif
  950. #if Y_SENSORLESS
  951. tmc_sgt.Y = stepperY.homing_threshold();
  952. #endif
  953. #if Z_SENSORLESS
  954. tmc_sgt.Z = stepperZ.homing_threshold();
  955. #endif
  956. #endif
  957. EEPROM_WRITE(tmc_sgt);
  958. }
  959. //
  960. // TMC stepping mode
  961. //
  962. {
  963. _FIELD_TEST(tmc_stealth_enabled);
  964. tmc_stealth_enabled_t tmc_stealth_enabled = { false, false, false, false, false, false, false, false, false, false, false, false, false };
  965. #if HAS_STEALTHCHOP
  966. #if AXIS_HAS_STEALTHCHOP(X)
  967. tmc_stealth_enabled.X = stepperX.get_stealthChop_status();
  968. #endif
  969. #if AXIS_HAS_STEALTHCHOP(Y)
  970. tmc_stealth_enabled.Y = stepperY.get_stealthChop_status();
  971. #endif
  972. #if AXIS_HAS_STEALTHCHOP(Z)
  973. tmc_stealth_enabled.Z = stepperZ.get_stealthChop_status();
  974. #endif
  975. #if AXIS_HAS_STEALTHCHOP(X2)
  976. tmc_stealth_enabled.X2 = stepperX2.get_stealthChop_status();
  977. #endif
  978. #if AXIS_HAS_STEALTHCHOP(Y2)
  979. tmc_stealth_enabled.Y2 = stepperY2.get_stealthChop_status();
  980. #endif
  981. #if AXIS_HAS_STEALTHCHOP(Z2)
  982. tmc_stealth_enabled.Z2 = stepperZ2.get_stealthChop_status();
  983. #endif
  984. #if AXIS_HAS_STEALTHCHOP(Z3)
  985. tmc_stealth_enabled.Z3 = stepperZ3.get_stealthChop_status();
  986. #endif
  987. #if AXIS_HAS_STEALTHCHOP(Z4)
  988. tmc_stealth_enabled.Z4 = stepperZ4.get_stealthChop_status();
  989. #endif
  990. #if MAX_EXTRUDERS
  991. #if AXIS_HAS_STEALTHCHOP(E0)
  992. tmc_stealth_enabled.E0 = stepperE0.get_stealthChop_status();
  993. #endif
  994. #if MAX_EXTRUDERS > 1
  995. #if AXIS_HAS_STEALTHCHOP(E1)
  996. tmc_stealth_enabled.E1 = stepperE1.get_stealthChop_status();
  997. #endif
  998. #if MAX_EXTRUDERS > 2
  999. #if AXIS_HAS_STEALTHCHOP(E2)
  1000. tmc_stealth_enabled.E2 = stepperE2.get_stealthChop_status();
  1001. #endif
  1002. #if MAX_EXTRUDERS > 3
  1003. #if AXIS_HAS_STEALTHCHOP(E3)
  1004. tmc_stealth_enabled.E3 = stepperE3.get_stealthChop_status();
  1005. #endif
  1006. #if MAX_EXTRUDERS > 4
  1007. #if AXIS_HAS_STEALTHCHOP(E4)
  1008. tmc_stealth_enabled.E4 = stepperE4.get_stealthChop_status();
  1009. #endif
  1010. #if MAX_EXTRUDERS > 5
  1011. #if AXIS_HAS_STEALTHCHOP(E5)
  1012. tmc_stealth_enabled.E5 = stepperE5.get_stealthChop_status();
  1013. #endif
  1014. #endif // MAX_EXTRUDERS > 5
  1015. #endif // MAX_EXTRUDERS > 4
  1016. #endif // MAX_EXTRUDERS > 3
  1017. #endif // MAX_EXTRUDERS > 2
  1018. #endif // MAX_EXTRUDERS > 1
  1019. #endif // MAX_EXTRUDERS
  1020. #endif
  1021. EEPROM_WRITE(tmc_stealth_enabled);
  1022. }
  1023. //
  1024. // Linear Advance
  1025. //
  1026. {
  1027. _FIELD_TEST(planner_extruder_advance_K);
  1028. #if ENABLED(LIN_ADVANCE)
  1029. EEPROM_WRITE(planner.extruder_advance_K);
  1030. #else
  1031. dummy = 0;
  1032. for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummy);
  1033. #endif
  1034. }
  1035. //
  1036. // Motor Current PWM
  1037. //
  1038. {
  1039. _FIELD_TEST(motor_current_setting);
  1040. #if HAS_MOTOR_CURRENT_PWM
  1041. EEPROM_WRITE(stepper.motor_current_setting);
  1042. #else
  1043. const xyz_ulong_t no_current{0};
  1044. EEPROM_WRITE(no_current);
  1045. #endif
  1046. }
  1047. //
  1048. // CNC Coordinate Systems
  1049. //
  1050. _FIELD_TEST(coordinate_system);
  1051. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1052. EEPROM_WRITE(gcode.coordinate_system);
  1053. #else
  1054. const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
  1055. EEPROM_WRITE(coordinate_system);
  1056. #endif
  1057. //
  1058. // Skew correction factors
  1059. //
  1060. _FIELD_TEST(planner_skew_factor);
  1061. EEPROM_WRITE(planner.skew_factor);
  1062. //
  1063. // Advanced Pause filament load & unload lengths
  1064. //
  1065. #if EXTRUDERS
  1066. {
  1067. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1068. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  1069. #endif
  1070. _FIELD_TEST(fc_settings);
  1071. EEPROM_WRITE(fc_settings);
  1072. }
  1073. #endif
  1074. //
  1075. // Multiple Extruders
  1076. //
  1077. #if EXTRUDERS > 1
  1078. _FIELD_TEST(toolchange_settings);
  1079. EEPROM_WRITE(toolchange_settings);
  1080. #endif
  1081. //
  1082. // Backlash Compensation
  1083. //
  1084. {
  1085. #if ENABLED(BACKLASH_GCODE)
  1086. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1087. const uint8_t &backlash_correction = backlash.correction;
  1088. #else
  1089. const xyz_float_t backlash_distance_mm{0};
  1090. const uint8_t backlash_correction = 0;
  1091. #endif
  1092. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1093. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1094. #else
  1095. const float backlash_smoothing_mm = 3;
  1096. #endif
  1097. _FIELD_TEST(backlash_distance_mm);
  1098. EEPROM_WRITE(backlash_distance_mm);
  1099. EEPROM_WRITE(backlash_correction);
  1100. EEPROM_WRITE(backlash_smoothing_mm);
  1101. }
  1102. //
  1103. // Extensible UI User Data
  1104. //
  1105. #if ENABLED(EXTENSIBLE_UI)
  1106. {
  1107. char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1108. ExtUI::onStoreSettings(extui_data);
  1109. _FIELD_TEST(extui_data);
  1110. EEPROM_WRITE(extui_data);
  1111. }
  1112. #endif
  1113. //
  1114. // Validate CRC and Data Size
  1115. //
  1116. if (!eeprom_error) {
  1117. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  1118. final_crc = working_crc;
  1119. // Write the EEPROM header
  1120. eeprom_index = EEPROM_OFFSET;
  1121. EEPROM_WRITE(version);
  1122. EEPROM_WRITE(final_crc);
  1123. // Report storage size
  1124. DEBUG_ECHO_START();
  1125. DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  1126. eeprom_error |= size_error(eeprom_size);
  1127. }
  1128. EEPROM_FINISH();
  1129. //
  1130. // UBL Mesh
  1131. //
  1132. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  1133. if (ubl.storage_slot >= 0)
  1134. store_mesh(ubl.storage_slot);
  1135. #endif
  1136. #if ENABLED(EXTENSIBLE_UI)
  1137. ExtUI::onConfigurationStoreWritten(!eeprom_error);
  1138. #endif
  1139. return !eeprom_error;
  1140. }
  1141. /**
  1142. * M501 - Retrieve Configuration
  1143. */
  1144. bool MarlinSettings::_load() {
  1145. uint16_t working_crc = 0;
  1146. EEPROM_START();
  1147. char stored_ver[4];
  1148. EEPROM_READ_ALWAYS(stored_ver);
  1149. uint16_t stored_crc;
  1150. EEPROM_READ_ALWAYS(stored_crc);
  1151. // Version has to match or defaults are used
  1152. if (strncmp(version, stored_ver, 3) != 0) {
  1153. if (stored_ver[3] != '\0') {
  1154. stored_ver[0] = '?';
  1155. stored_ver[1] = '\0';
  1156. }
  1157. DEBUG_ECHO_START();
  1158. DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  1159. eeprom_error = true;
  1160. }
  1161. else {
  1162. float dummy = 0;
  1163. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  1164. _FIELD_TEST(esteppers);
  1165. // Number of esteppers may change
  1166. uint8_t esteppers;
  1167. EEPROM_READ_ALWAYS(esteppers);
  1168. //
  1169. // Planner Motion
  1170. //
  1171. {
  1172. // Get only the number of E stepper parameters previously stored
  1173. // Any steppers added later are set to their defaults
  1174. uint32_t tmp1[XYZ + esteppers];
  1175. float tmp2[XYZ + esteppers];
  1176. feedRate_t tmp3[XYZ + esteppers];
  1177. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  1178. EEPROM_READ(planner.settings.min_segment_time_us);
  1179. EEPROM_READ(tmp2); // axis_steps_per_mm
  1180. EEPROM_READ(tmp3); // max_feedrate_mm_s
  1181. if (!validating) LOOP_XYZE_N(i) {
  1182. const bool in = (i < esteppers + XYZ);
  1183. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  1184. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  1185. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  1186. }
  1187. EEPROM_READ(planner.settings.acceleration);
  1188. EEPROM_READ(planner.settings.retract_acceleration);
  1189. EEPROM_READ(planner.settings.travel_acceleration);
  1190. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1191. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1192. #if HAS_CLASSIC_JERK
  1193. EEPROM_READ(planner.max_jerk);
  1194. #if HAS_LINEAR_E_JERK
  1195. EEPROM_READ(dummy);
  1196. #endif
  1197. #else
  1198. for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
  1199. #endif
  1200. #if DISABLED(CLASSIC_JERK)
  1201. EEPROM_READ(planner.junction_deviation_mm);
  1202. #else
  1203. EEPROM_READ(dummy);
  1204. #endif
  1205. }
  1206. //
  1207. // Home Offset (M206 / M665)
  1208. //
  1209. {
  1210. _FIELD_TEST(home_offset);
  1211. #if HAS_SCARA_OFFSET
  1212. EEPROM_READ(scara_home_offset);
  1213. #else
  1214. #if !HAS_HOME_OFFSET
  1215. xyz_pos_t home_offset;
  1216. #endif
  1217. EEPROM_READ(home_offset);
  1218. #endif
  1219. }
  1220. //
  1221. // Hotend Offsets, if any
  1222. //
  1223. {
  1224. #if HAS_HOTEND_OFFSET
  1225. // Skip hotend 0 which must be 0
  1226. for (uint8_t e = 1; e < HOTENDS; e++)
  1227. EEPROM_READ(hotend_offset[e]);
  1228. #endif
  1229. }
  1230. //
  1231. // Filament Runout Sensor
  1232. //
  1233. {
  1234. #if HAS_FILAMENT_SENSOR
  1235. bool &runout_sensor_enabled = runout.enabled;
  1236. #else
  1237. bool runout_sensor_enabled;
  1238. #endif
  1239. _FIELD_TEST(runout_sensor_enabled);
  1240. EEPROM_READ(runout_sensor_enabled);
  1241. float runout_distance_mm;
  1242. EEPROM_READ(runout_distance_mm);
  1243. #if HAS_FILAMENT_SENSOR && defined(FILAMENT_RUNOUT_DISTANCE_MM)
  1244. if (!validating) runout.set_runout_distance(runout_distance_mm);
  1245. #endif
  1246. }
  1247. //
  1248. // Global Leveling
  1249. //
  1250. {
  1251. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1252. EEPROM_READ(new_z_fade_height);
  1253. #else
  1254. EEPROM_READ(dummy);
  1255. #endif
  1256. }
  1257. //
  1258. // Mesh (Manual) Bed Leveling
  1259. //
  1260. {
  1261. uint8_t mesh_num_x, mesh_num_y;
  1262. EEPROM_READ(dummy);
  1263. EEPROM_READ_ALWAYS(mesh_num_x);
  1264. EEPROM_READ_ALWAYS(mesh_num_y);
  1265. #if ENABLED(MESH_BED_LEVELING)
  1266. if (!validating) mbl.z_offset = dummy;
  1267. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  1268. // EEPROM data fits the current mesh
  1269. EEPROM_READ(mbl.z_values);
  1270. }
  1271. else {
  1272. // EEPROM data is stale
  1273. if (!validating) mbl.reset();
  1274. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1275. }
  1276. #else
  1277. // MBL is disabled - skip the stored data
  1278. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1279. #endif // MESH_BED_LEVELING
  1280. }
  1281. //
  1282. // Probe Z Offset
  1283. //
  1284. {
  1285. _FIELD_TEST(probe_offset);
  1286. #if HAS_BED_PROBE
  1287. xyz_pos_t &zpo = probe_offset;
  1288. #else
  1289. xyz_pos_t zpo;
  1290. #endif
  1291. EEPROM_READ(zpo);
  1292. }
  1293. //
  1294. // Planar Bed Leveling matrix
  1295. //
  1296. {
  1297. #if ABL_PLANAR
  1298. EEPROM_READ(planner.bed_level_matrix);
  1299. #else
  1300. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  1301. #endif
  1302. }
  1303. //
  1304. // Bilinear Auto Bed Leveling
  1305. //
  1306. {
  1307. uint8_t grid_max_x, grid_max_y;
  1308. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1309. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1310. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1311. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1312. if (!validating) set_bed_leveling_enabled(false);
  1313. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1314. EEPROM_READ(bilinear_start); // 2 ints
  1315. EEPROM_READ(z_values); // 9 to 256 floats
  1316. }
  1317. else // EEPROM data is stale
  1318. #endif // AUTO_BED_LEVELING_BILINEAR
  1319. {
  1320. // Skip past disabled (or stale) Bilinear Grid data
  1321. xy_pos_t bgs, bs;
  1322. EEPROM_READ(bgs);
  1323. EEPROM_READ(bs);
  1324. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  1325. }
  1326. }
  1327. //
  1328. // Unified Bed Leveling active state
  1329. //
  1330. {
  1331. _FIELD_TEST(planner_leveling_active);
  1332. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1333. EEPROM_READ(planner.leveling_active);
  1334. EEPROM_READ(ubl.storage_slot);
  1335. #else
  1336. bool planner_leveling_active;
  1337. uint8_t ubl_storage_slot;
  1338. EEPROM_READ(planner_leveling_active);
  1339. EEPROM_READ(ubl_storage_slot);
  1340. #endif
  1341. }
  1342. //
  1343. // SERVO_ANGLES
  1344. //
  1345. {
  1346. _FIELD_TEST(servo_angles);
  1347. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1348. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1349. #else
  1350. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1351. #endif
  1352. EEPROM_READ(servo_angles_arr);
  1353. }
  1354. //
  1355. // Thermal first layer compensation values
  1356. //
  1357. #if ENABLED(PROBE_TEMP_COMPENSATION)
  1358. EEPROM_READ(temp_comp.z_offsets_probe);
  1359. EEPROM_READ(temp_comp.z_offsets_bed);
  1360. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  1361. EEPROM_READ(temp_comp.z_offsets_ext);
  1362. #endif
  1363. temp_comp.reset_index();
  1364. #else
  1365. // No placeholder data for this feature
  1366. #endif
  1367. //
  1368. // BLTOUCH
  1369. //
  1370. {
  1371. _FIELD_TEST(bltouch_last_written_mode);
  1372. #if ENABLED(BLTOUCH)
  1373. bool &bltouch_last_written_mode = bltouch.last_written_mode;
  1374. #else
  1375. bool bltouch_last_written_mode;
  1376. #endif
  1377. EEPROM_READ(bltouch_last_written_mode);
  1378. }
  1379. //
  1380. // DELTA Geometry or Dual Endstops offsets
  1381. //
  1382. {
  1383. #if ENABLED(DELTA)
  1384. _FIELD_TEST(delta_height);
  1385. EEPROM_READ(delta_height); // 1 float
  1386. EEPROM_READ(delta_endstop_adj); // 3 floats
  1387. EEPROM_READ(delta_radius); // 1 float
  1388. EEPROM_READ(delta_diagonal_rod); // 1 float
  1389. EEPROM_READ(delta_segments_per_second); // 1 float
  1390. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1391. #elif HAS_EXTRA_ENDSTOPS
  1392. _FIELD_TEST(x2_endstop_adj);
  1393. #if ENABLED(X_DUAL_ENDSTOPS)
  1394. EEPROM_READ(endstops.x2_endstop_adj); // 1 float
  1395. #else
  1396. EEPROM_READ(dummy);
  1397. #endif
  1398. #if ENABLED(Y_DUAL_ENDSTOPS)
  1399. EEPROM_READ(endstops.y2_endstop_adj); // 1 float
  1400. #else
  1401. EEPROM_READ(dummy);
  1402. #endif
  1403. #if ENABLED(Z_MULTI_ENDSTOPS)
  1404. EEPROM_READ(endstops.z2_endstop_adj); // 1 float
  1405. #else
  1406. EEPROM_READ(dummy);
  1407. #endif
  1408. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  1409. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1410. #else
  1411. EEPROM_READ(dummy);
  1412. #endif
  1413. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  1414. EEPROM_READ(endstops.z4_endstop_adj); // 1 float
  1415. #else
  1416. EEPROM_READ(dummy);
  1417. #endif
  1418. #endif
  1419. }
  1420. //
  1421. // LCD Preheat settings
  1422. //
  1423. {
  1424. _FIELD_TEST(ui_preheat_hotend_temp);
  1425. #if HOTENDS && HAS_LCD_MENU
  1426. int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  1427. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  1428. uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  1429. #else
  1430. int16_t ui_preheat_hotend_temp[2], ui_preheat_bed_temp[2];
  1431. uint8_t ui_preheat_fan_speed[2];
  1432. #endif
  1433. EEPROM_READ(ui_preheat_hotend_temp); // 2 floats
  1434. EEPROM_READ(ui_preheat_bed_temp); // 2 floats
  1435. EEPROM_READ(ui_preheat_fan_speed); // 2 floats
  1436. }
  1437. //
  1438. // Hotend PID
  1439. //
  1440. {
  1441. HOTEND_LOOP() {
  1442. PIDCF_t pidcf;
  1443. EEPROM_READ(pidcf);
  1444. #if ENABLED(PIDTEMP)
  1445. if (!validating && pidcf.Kp != DUMMY_PID_VALUE) {
  1446. // Scale PID values since EEPROM values are unscaled
  1447. PID_PARAM(Kp, e) = pidcf.Kp;
  1448. PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki);
  1449. PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd);
  1450. #if ENABLED(PID_EXTRUSION_SCALING)
  1451. PID_PARAM(Kc, e) = pidcf.Kc;
  1452. #endif
  1453. #if ENABLED(PID_FAN_SCALING)
  1454. PID_PARAM(Kf, e) = pidcf.Kf;
  1455. #endif
  1456. }
  1457. #endif
  1458. }
  1459. }
  1460. //
  1461. // PID Extrusion Scaling
  1462. //
  1463. {
  1464. _FIELD_TEST(lpq_len);
  1465. #if ENABLED(PID_EXTRUSION_SCALING)
  1466. EEPROM_READ(thermalManager.lpq_len);
  1467. #else
  1468. int16_t lpq_len;
  1469. EEPROM_READ(lpq_len);
  1470. #endif
  1471. }
  1472. //
  1473. // Heated Bed PID
  1474. //
  1475. {
  1476. PID_t pid;
  1477. EEPROM_READ(pid);
  1478. #if ENABLED(PIDTEMPBED)
  1479. if (!validating && pid.Kp != DUMMY_PID_VALUE) {
  1480. // Scale PID values since EEPROM values are unscaled
  1481. thermalManager.temp_bed.pid.Kp = pid.Kp;
  1482. thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki);
  1483. thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd);
  1484. }
  1485. #endif
  1486. }
  1487. //
  1488. // User-defined Thermistors
  1489. //
  1490. #if HAS_USER_THERMISTORS
  1491. {
  1492. _FIELD_TEST(user_thermistor);
  1493. EEPROM_READ(thermalManager.user_thermistor);
  1494. }
  1495. #endif
  1496. //
  1497. // LCD Contrast
  1498. //
  1499. {
  1500. _FIELD_TEST(lcd_contrast);
  1501. int16_t lcd_contrast;
  1502. EEPROM_READ(lcd_contrast);
  1503. #if HAS_LCD_CONTRAST
  1504. ui.set_contrast(lcd_contrast);
  1505. #endif
  1506. }
  1507. //
  1508. // Power-Loss Recovery
  1509. //
  1510. {
  1511. _FIELD_TEST(recovery_enabled);
  1512. #if ENABLED(POWER_LOSS_RECOVERY)
  1513. EEPROM_READ(recovery.enabled);
  1514. #else
  1515. bool recovery_enabled;
  1516. EEPROM_READ(recovery_enabled);
  1517. #endif
  1518. }
  1519. //
  1520. // Firmware Retraction
  1521. //
  1522. {
  1523. _FIELD_TEST(fwretract_settings);
  1524. #if ENABLED(FWRETRACT)
  1525. EEPROM_READ(fwretract.settings);
  1526. #else
  1527. fwretract_settings_t fwretract_settings;
  1528. EEPROM_READ(fwretract_settings);
  1529. #endif
  1530. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1531. EEPROM_READ(fwretract.autoretract_enabled);
  1532. #else
  1533. bool autoretract_enabled;
  1534. EEPROM_READ(autoretract_enabled);
  1535. #endif
  1536. }
  1537. //
  1538. // Volumetric & Filament Size
  1539. //
  1540. {
  1541. struct {
  1542. bool volumetric_enabled;
  1543. float filament_size[EXTRUDERS];
  1544. } storage;
  1545. _FIELD_TEST(parser_volumetric_enabled);
  1546. EEPROM_READ(storage);
  1547. #if DISABLED(NO_VOLUMETRICS)
  1548. if (!validating) {
  1549. parser.volumetric_enabled = storage.volumetric_enabled;
  1550. COPY(planner.filament_size, storage.filament_size);
  1551. }
  1552. #endif
  1553. }
  1554. //
  1555. // TMC Stepper Settings
  1556. //
  1557. if (!validating) reset_stepper_drivers();
  1558. // TMC Stepper Current
  1559. {
  1560. _FIELD_TEST(tmc_stepper_current);
  1561. tmc_stepper_current_t currents;
  1562. EEPROM_READ(currents);
  1563. #if HAS_TRINAMIC
  1564. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1565. if (!validating) {
  1566. #if AXIS_IS_TMC(X)
  1567. SET_CURR(X);
  1568. #endif
  1569. #if AXIS_IS_TMC(Y)
  1570. SET_CURR(Y);
  1571. #endif
  1572. #if AXIS_IS_TMC(Z)
  1573. SET_CURR(Z);
  1574. #endif
  1575. #if AXIS_IS_TMC(X2)
  1576. SET_CURR(X2);
  1577. #endif
  1578. #if AXIS_IS_TMC(Y2)
  1579. SET_CURR(Y2);
  1580. #endif
  1581. #if AXIS_IS_TMC(Z2)
  1582. SET_CURR(Z2);
  1583. #endif
  1584. #if AXIS_IS_TMC(Z3)
  1585. SET_CURR(Z3);
  1586. #endif
  1587. #if AXIS_IS_TMC(Z4)
  1588. SET_CURR(Z4);
  1589. #endif
  1590. #if AXIS_IS_TMC(E0)
  1591. SET_CURR(E0);
  1592. #endif
  1593. #if AXIS_IS_TMC(E1)
  1594. SET_CURR(E1);
  1595. #endif
  1596. #if AXIS_IS_TMC(E2)
  1597. SET_CURR(E2);
  1598. #endif
  1599. #if AXIS_IS_TMC(E3)
  1600. SET_CURR(E3);
  1601. #endif
  1602. #if AXIS_IS_TMC(E4)
  1603. SET_CURR(E4);
  1604. #endif
  1605. #if AXIS_IS_TMC(E5)
  1606. SET_CURR(E5);
  1607. #endif
  1608. }
  1609. #endif
  1610. }
  1611. // TMC Hybrid Threshold
  1612. {
  1613. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1614. _FIELD_TEST(tmc_hybrid_threshold);
  1615. EEPROM_READ(tmc_hybrid_threshold);
  1616. #if ENABLED(HYBRID_THRESHOLD)
  1617. if (!validating) {
  1618. #if AXIS_HAS_STEALTHCHOP(X)
  1619. stepperX.set_pwm_thrs(tmc_hybrid_threshold.X);
  1620. #endif
  1621. #if AXIS_HAS_STEALTHCHOP(Y)
  1622. stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y);
  1623. #endif
  1624. #if AXIS_HAS_STEALTHCHOP(Z)
  1625. stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z);
  1626. #endif
  1627. #if AXIS_HAS_STEALTHCHOP(X2)
  1628. stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2);
  1629. #endif
  1630. #if AXIS_HAS_STEALTHCHOP(Y2)
  1631. stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2);
  1632. #endif
  1633. #if AXIS_HAS_STEALTHCHOP(Z2)
  1634. stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2);
  1635. #endif
  1636. #if AXIS_HAS_STEALTHCHOP(Z3)
  1637. stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3);
  1638. #endif
  1639. #if AXIS_HAS_STEALTHCHOP(Z4)
  1640. stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4);
  1641. #endif
  1642. #if AXIS_HAS_STEALTHCHOP(E0)
  1643. stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0);
  1644. #endif
  1645. #if AXIS_HAS_STEALTHCHOP(E1)
  1646. stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1);
  1647. #endif
  1648. #if AXIS_HAS_STEALTHCHOP(E2)
  1649. stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2);
  1650. #endif
  1651. #if AXIS_HAS_STEALTHCHOP(E3)
  1652. stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3);
  1653. #endif
  1654. #if AXIS_HAS_STEALTHCHOP(E4)
  1655. stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4);
  1656. #endif
  1657. #if AXIS_HAS_STEALTHCHOP(E5)
  1658. stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5);
  1659. #endif
  1660. }
  1661. #endif
  1662. }
  1663. //
  1664. // TMC StallGuard threshold.
  1665. // X and X2 use the same value
  1666. // Y and Y2 use the same value
  1667. // Z, Z2, Z3 and Z4 use the same value
  1668. //
  1669. {
  1670. tmc_sgt_t tmc_sgt;
  1671. _FIELD_TEST(tmc_sgt);
  1672. EEPROM_READ(tmc_sgt);
  1673. #if USE_SENSORLESS
  1674. if (!validating) {
  1675. #ifdef X_STALL_SENSITIVITY
  1676. #if AXIS_HAS_STALLGUARD(X)
  1677. stepperX.homing_threshold(tmc_sgt.X);
  1678. #endif
  1679. #if AXIS_HAS_STALLGUARD(X2) && !X2_SENSORLESS
  1680. stepperX2.homing_threshold(tmc_sgt.X);
  1681. #endif
  1682. #endif
  1683. #if X2_SENSORLESS
  1684. stepperX2.homing_threshold(tmc_sgt.X2);
  1685. #endif
  1686. #ifdef Y_STALL_SENSITIVITY
  1687. #if AXIS_HAS_STALLGUARD(Y)
  1688. stepperY.homing_threshold(tmc_sgt.Y);
  1689. #endif
  1690. #if AXIS_HAS_STALLGUARD(Y2)
  1691. stepperY2.homing_threshold(tmc_sgt.Y);
  1692. #endif
  1693. #endif
  1694. #ifdef Z_STALL_SENSITIVITY
  1695. #if AXIS_HAS_STALLGUARD(Z)
  1696. stepperZ.homing_threshold(tmc_sgt.Z);
  1697. #endif
  1698. #if AXIS_HAS_STALLGUARD(Z2)
  1699. stepperZ2.homing_threshold(tmc_sgt.Z);
  1700. #endif
  1701. #if AXIS_HAS_STALLGUARD(Z3)
  1702. stepperZ3.homing_threshold(tmc_sgt.Z);
  1703. #endif
  1704. #if AXIS_HAS_STALLGUARD(Z4)
  1705. stepperZ4.homing_threshold(tmc_sgt.Z);
  1706. #endif
  1707. #endif
  1708. }
  1709. #endif
  1710. }
  1711. // TMC stepping mode
  1712. {
  1713. _FIELD_TEST(tmc_stealth_enabled);
  1714. tmc_stealth_enabled_t tmc_stealth_enabled;
  1715. EEPROM_READ(tmc_stealth_enabled);
  1716. #if HAS_TRINAMIC
  1717. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1718. if (!validating) {
  1719. #if AXIS_HAS_STEALTHCHOP(X)
  1720. SET_STEPPING_MODE(X);
  1721. #endif
  1722. #if AXIS_HAS_STEALTHCHOP(Y)
  1723. SET_STEPPING_MODE(Y);
  1724. #endif
  1725. #if AXIS_HAS_STEALTHCHOP(Z)
  1726. SET_STEPPING_MODE(Z);
  1727. #endif
  1728. #if AXIS_HAS_STEALTHCHOP(X2)
  1729. SET_STEPPING_MODE(X2);
  1730. #endif
  1731. #if AXIS_HAS_STEALTHCHOP(Y2)
  1732. SET_STEPPING_MODE(Y2);
  1733. #endif
  1734. #if AXIS_HAS_STEALTHCHOP(Z2)
  1735. SET_STEPPING_MODE(Z2);
  1736. #endif
  1737. #if AXIS_HAS_STEALTHCHOP(Z3)
  1738. SET_STEPPING_MODE(Z3);
  1739. #endif
  1740. #if AXIS_HAS_STEALTHCHOP(Z4)
  1741. SET_STEPPING_MODE(Z4);
  1742. #endif
  1743. #if AXIS_HAS_STEALTHCHOP(E0)
  1744. SET_STEPPING_MODE(E0);
  1745. #endif
  1746. #if AXIS_HAS_STEALTHCHOP(E1)
  1747. SET_STEPPING_MODE(E1);
  1748. #endif
  1749. #if AXIS_HAS_STEALTHCHOP(E2)
  1750. SET_STEPPING_MODE(E2);
  1751. #endif
  1752. #if AXIS_HAS_STEALTHCHOP(E3)
  1753. SET_STEPPING_MODE(E3);
  1754. #endif
  1755. #if AXIS_HAS_STEALTHCHOP(E4)
  1756. SET_STEPPING_MODE(E4);
  1757. #endif
  1758. #if AXIS_HAS_STEALTHCHOP(E5)
  1759. SET_STEPPING_MODE(E5);
  1760. #endif
  1761. }
  1762. #endif
  1763. }
  1764. //
  1765. // Linear Advance
  1766. //
  1767. {
  1768. float extruder_advance_K[_MAX(EXTRUDERS, 1)];
  1769. _FIELD_TEST(planner_extruder_advance_K);
  1770. EEPROM_READ(extruder_advance_K);
  1771. #if ENABLED(LIN_ADVANCE)
  1772. if (!validating)
  1773. COPY(planner.extruder_advance_K, extruder_advance_K);
  1774. #endif
  1775. }
  1776. //
  1777. // Motor Current PWM
  1778. //
  1779. {
  1780. uint32_t motor_current_setting[3];
  1781. _FIELD_TEST(motor_current_setting);
  1782. EEPROM_READ(motor_current_setting);
  1783. #if HAS_MOTOR_CURRENT_PWM
  1784. if (!validating)
  1785. COPY(stepper.motor_current_setting, motor_current_setting);
  1786. #endif
  1787. }
  1788. //
  1789. // CNC Coordinate System
  1790. //
  1791. {
  1792. _FIELD_TEST(coordinate_system);
  1793. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1794. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1795. EEPROM_READ(gcode.coordinate_system);
  1796. #else
  1797. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
  1798. EEPROM_READ(coordinate_system);
  1799. #endif
  1800. }
  1801. //
  1802. // Skew correction factors
  1803. //
  1804. {
  1805. skew_factor_t skew_factor;
  1806. _FIELD_TEST(planner_skew_factor);
  1807. EEPROM_READ(skew_factor);
  1808. #if ENABLED(SKEW_CORRECTION_GCODE)
  1809. if (!validating) {
  1810. planner.skew_factor.xy = skew_factor.xy;
  1811. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1812. planner.skew_factor.xz = skew_factor.xz;
  1813. planner.skew_factor.yz = skew_factor.yz;
  1814. #endif
  1815. }
  1816. #endif
  1817. }
  1818. //
  1819. // Advanced Pause filament load & unload lengths
  1820. //
  1821. #if EXTRUDERS
  1822. {
  1823. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1824. fil_change_settings_t fc_settings[EXTRUDERS];
  1825. #endif
  1826. _FIELD_TEST(fc_settings);
  1827. EEPROM_READ(fc_settings);
  1828. }
  1829. #endif
  1830. //
  1831. // Tool-change settings
  1832. //
  1833. #if EXTRUDERS > 1
  1834. _FIELD_TEST(toolchange_settings);
  1835. EEPROM_READ(toolchange_settings);
  1836. #endif
  1837. //
  1838. // Backlash Compensation
  1839. //
  1840. {
  1841. #if ENABLED(BACKLASH_GCODE)
  1842. xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1843. uint8_t &backlash_correction = backlash.correction;
  1844. #else
  1845. float backlash_distance_mm[XYZ];
  1846. uint8_t backlash_correction;
  1847. #endif
  1848. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1849. float &backlash_smoothing_mm = backlash.smoothing_mm;
  1850. #else
  1851. float backlash_smoothing_mm;
  1852. #endif
  1853. _FIELD_TEST(backlash_distance_mm);
  1854. EEPROM_READ(backlash_distance_mm);
  1855. EEPROM_READ(backlash_correction);
  1856. EEPROM_READ(backlash_smoothing_mm);
  1857. }
  1858. //
  1859. // Extensible UI User Data
  1860. //
  1861. #if ENABLED(EXTENSIBLE_UI)
  1862. // This is a significant hardware change; don't reserve EEPROM space when not present
  1863. {
  1864. const char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1865. _FIELD_TEST(extui_data);
  1866. EEPROM_READ(extui_data);
  1867. if (!validating) ExtUI::onLoadSettings(extui_data);
  1868. }
  1869. #endif
  1870. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1871. if (eeprom_error) {
  1872. DEBUG_ECHO_START();
  1873. DEBUG_ECHOLNPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)), " Size: ", datasize());
  1874. }
  1875. else if (working_crc != stored_crc) {
  1876. eeprom_error = true;
  1877. DEBUG_ERROR_START();
  1878. DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  1879. }
  1880. else if (!validating) {
  1881. DEBUG_ECHO_START();
  1882. DEBUG_ECHO(version);
  1883. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  1884. }
  1885. if (!validating && !eeprom_error) postprocess();
  1886. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1887. if (!validating) {
  1888. ubl.report_state();
  1889. if (!ubl.sanity_check()) {
  1890. SERIAL_EOL();
  1891. #if ENABLED(EEPROM_CHITCHAT)
  1892. ubl.echo_name();
  1893. DEBUG_ECHOLNPGM(" initialized.\n");
  1894. #endif
  1895. }
  1896. else {
  1897. eeprom_error = true;
  1898. #if ENABLED(EEPROM_CHITCHAT)
  1899. DEBUG_ECHOPGM("?Can't enable ");
  1900. ubl.echo_name();
  1901. DEBUG_ECHOLNPGM(".");
  1902. #endif
  1903. ubl.reset();
  1904. }
  1905. if (ubl.storage_slot >= 0) {
  1906. load_mesh(ubl.storage_slot);
  1907. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  1908. }
  1909. else {
  1910. ubl.reset();
  1911. DEBUG_ECHOLNPGM("UBL reset");
  1912. }
  1913. }
  1914. #endif
  1915. }
  1916. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1917. if (!validating) report();
  1918. #endif
  1919. EEPROM_FINISH();
  1920. return !eeprom_error;
  1921. }
  1922. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  1923. extern bool restoreEEPROM();
  1924. #endif
  1925. bool MarlinSettings::validate() {
  1926. validating = true;
  1927. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  1928. bool success = _load();
  1929. if (!success && restoreEEPROM()) {
  1930. SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
  1931. success = _load();
  1932. }
  1933. #else
  1934. const bool success = _load();
  1935. #endif
  1936. validating = false;
  1937. return success;
  1938. }
  1939. bool MarlinSettings::load() {
  1940. if (validate()) {
  1941. const bool success = _load();
  1942. #if ENABLED(EXTENSIBLE_UI)
  1943. ExtUI::onConfigurationStoreRead(success);
  1944. #endif
  1945. return success;
  1946. }
  1947. reset();
  1948. #if ENABLED(EEPROM_AUTO_INIT)
  1949. (void)save();
  1950. SERIAL_ECHO_MSG("EEPROM Initialized");
  1951. #endif
  1952. return false;
  1953. }
  1954. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1955. inline void ubl_invalid_slot(const int s) {
  1956. #if ENABLED(EEPROM_CHITCHAT)
  1957. DEBUG_ECHOLNPGM("?Invalid slot.");
  1958. DEBUG_ECHO(s);
  1959. DEBUG_ECHOLNPGM(" mesh slots available.");
  1960. #else
  1961. UNUSED(s);
  1962. #endif
  1963. }
  1964. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  1965. // is a placeholder for the size of the MAT; the MAT will always
  1966. // live at the very end of the eeprom
  1967. uint16_t MarlinSettings::meshes_start_index() {
  1968. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  1969. // or down a little bit without disrupting the mesh data
  1970. }
  1971. uint16_t MarlinSettings::calc_num_meshes() {
  1972. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  1973. }
  1974. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  1975. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1976. }
  1977. void MarlinSettings::store_mesh(const int8_t slot) {
  1978. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1979. const int16_t a = calc_num_meshes();
  1980. if (!WITHIN(slot, 0, a - 1)) {
  1981. ubl_invalid_slot(a);
  1982. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  1983. DEBUG_EOL();
  1984. return;
  1985. }
  1986. int pos = mesh_slot_offset(slot);
  1987. uint16_t crc = 0;
  1988. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1989. persistentStore.access_start();
  1990. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1991. persistentStore.access_finish();
  1992. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  1993. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  1994. #else
  1995. // Other mesh types
  1996. #endif
  1997. }
  1998. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
  1999. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2000. const int16_t a = settings.calc_num_meshes();
  2001. if (!WITHIN(slot, 0, a - 1)) {
  2002. ubl_invalid_slot(a);
  2003. return;
  2004. }
  2005. int pos = mesh_slot_offset(slot);
  2006. uint16_t crc = 0;
  2007. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  2008. persistentStore.access_start();
  2009. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  2010. persistentStore.access_finish();
  2011. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  2012. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  2013. EEPROM_FINISH();
  2014. #else
  2015. // Other mesh types
  2016. #endif
  2017. }
  2018. //void MarlinSettings::delete_mesh() { return; }
  2019. //void MarlinSettings::defrag_meshes() { return; }
  2020. #endif // AUTO_BED_LEVELING_UBL
  2021. #else // !EEPROM_SETTINGS
  2022. bool MarlinSettings::save() {
  2023. DEBUG_ERROR_MSG("EEPROM disabled");
  2024. return false;
  2025. }
  2026. #endif // !EEPROM_SETTINGS
  2027. /**
  2028. * M502 - Reset Configuration
  2029. */
  2030. void MarlinSettings::reset() {
  2031. LOOP_XYZE_N(i) {
  2032. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  2033. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  2034. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  2035. }
  2036. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  2037. planner.settings.acceleration = DEFAULT_ACCELERATION;
  2038. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  2039. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  2040. planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
  2041. planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
  2042. #if HAS_CLASSIC_JERK
  2043. #ifndef DEFAULT_XJERK
  2044. #define DEFAULT_XJERK 0
  2045. #endif
  2046. #ifndef DEFAULT_YJERK
  2047. #define DEFAULT_YJERK 0
  2048. #endif
  2049. #ifndef DEFAULT_ZJERK
  2050. #define DEFAULT_ZJERK 0
  2051. #endif
  2052. planner.max_jerk.set(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK);
  2053. #if HAS_CLASSIC_E_JERK
  2054. planner.max_jerk.e = DEFAULT_EJERK;
  2055. #endif
  2056. #endif
  2057. #if DISABLED(CLASSIC_JERK)
  2058. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  2059. #endif
  2060. #if HAS_SCARA_OFFSET
  2061. scara_home_offset.reset();
  2062. #elif HAS_HOME_OFFSET
  2063. home_offset.reset();
  2064. #endif
  2065. #if HAS_HOTEND_OFFSET
  2066. reset_hotend_offsets();
  2067. #endif
  2068. //
  2069. // Filament Runout Sensor
  2070. //
  2071. #if HAS_FILAMENT_SENSOR
  2072. runout.enabled = true;
  2073. runout.reset();
  2074. #ifdef FILAMENT_RUNOUT_DISTANCE_MM
  2075. runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM);
  2076. #endif
  2077. #endif
  2078. //
  2079. // Tool-change Settings
  2080. //
  2081. #if EXTRUDERS > 1
  2082. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  2083. toolchange_settings.swap_length = TOOLCHANGE_FIL_SWAP_LENGTH;
  2084. toolchange_settings.extra_prime = TOOLCHANGE_FIL_EXTRA_PRIME;
  2085. toolchange_settings.prime_speed = TOOLCHANGE_FIL_SWAP_PRIME_SPEED;
  2086. toolchange_settings.retract_speed = TOOLCHANGE_FIL_SWAP_RETRACT_SPEED;
  2087. #endif
  2088. #if ENABLED(TOOLCHANGE_PARK)
  2089. constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
  2090. toolchange_settings.change_point = tpxy;
  2091. #endif
  2092. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  2093. #endif
  2094. #if ENABLED(BACKLASH_GCODE)
  2095. backlash.correction = (BACKLASH_CORRECTION) * 255;
  2096. constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
  2097. backlash.distance_mm = tmp;
  2098. #ifdef BACKLASH_SMOOTHING_MM
  2099. backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
  2100. #endif
  2101. #endif
  2102. #if ENABLED(EXTENSIBLE_UI)
  2103. ExtUI::onFactoryReset();
  2104. #endif
  2105. //
  2106. // Magnetic Parking Extruder
  2107. //
  2108. #if ENABLED(MAGNETIC_PARKING_EXTRUDER)
  2109. mpe_settings_init();
  2110. #endif
  2111. //
  2112. // Global Leveling
  2113. //
  2114. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2115. new_z_fade_height = 0.0;
  2116. #endif
  2117. #if HAS_LEVELING
  2118. reset_bed_level();
  2119. #endif
  2120. #if HAS_BED_PROBE
  2121. constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
  2122. static_assert(COUNT(dpo) == 3, "NOZZLE_TO_PROBE_OFFSET must contain offsets for X, Y, and Z.");
  2123. #if HAS_PROBE_XY_OFFSET
  2124. LOOP_XYZ(a) probe_offset[a] = dpo[a];
  2125. #else
  2126. probe_offset.x = probe_offset.y = 0;
  2127. probe_offset.z = dpo[Z_AXIS];
  2128. #endif
  2129. #endif
  2130. //
  2131. // Servo Angles
  2132. //
  2133. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2134. COPY(servo_angles, base_servo_angles);
  2135. #endif
  2136. //
  2137. // BLTOUCH
  2138. //
  2139. //#if ENABLED(BLTOUCH)
  2140. // bltouch.last_written_mode;
  2141. //#endif
  2142. //
  2143. // Endstop Adjustments
  2144. //
  2145. #if ENABLED(DELTA)
  2146. const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM;
  2147. delta_height = DELTA_HEIGHT;
  2148. delta_endstop_adj = adj;
  2149. delta_radius = DELTA_RADIUS;
  2150. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  2151. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  2152. delta_tower_angle_trim = dta;
  2153. #endif
  2154. #if ENABLED(X_DUAL_ENDSTOPS)
  2155. #ifndef X2_ENDSTOP_ADJUSTMENT
  2156. #define X2_ENDSTOP_ADJUSTMENT 0
  2157. #endif
  2158. endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT;
  2159. #endif
  2160. #if ENABLED(Y_DUAL_ENDSTOPS)
  2161. #ifndef Y2_ENDSTOP_ADJUSTMENT
  2162. #define Y2_ENDSTOP_ADJUSTMENT 0
  2163. #endif
  2164. endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT;
  2165. #endif
  2166. #if ENABLED(Z_MULTI_ENDSTOPS)
  2167. #ifndef Z2_ENDSTOP_ADJUSTMENT
  2168. #define Z2_ENDSTOP_ADJUSTMENT 0
  2169. #endif
  2170. endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT;
  2171. #if NUM_Z_STEPPER_DRIVERS >= 3
  2172. #ifndef Z3_ENDSTOP_ADJUSTMENT
  2173. #define Z3_ENDSTOP_ADJUSTMENT 0
  2174. #endif
  2175. endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT;
  2176. #endif
  2177. #if NUM_Z_STEPPER_DRIVERS >= 4
  2178. #ifndef Z4_ENDSTOP_ADJUSTMENT
  2179. #define Z4_ENDSTOP_ADJUSTMENT 0
  2180. #endif
  2181. endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT;
  2182. #endif
  2183. #endif
  2184. //
  2185. // Preheat parameters
  2186. //
  2187. #if HOTENDS && HAS_LCD_MENU
  2188. ui.preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  2189. ui.preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  2190. ui.preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  2191. ui.preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  2192. ui.preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  2193. ui.preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  2194. #endif
  2195. //
  2196. // Hotend PID
  2197. //
  2198. #if ENABLED(PIDTEMP)
  2199. HOTEND_LOOP() {
  2200. PID_PARAM(Kp, e) = float(DEFAULT_Kp);
  2201. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  2202. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  2203. #if ENABLED(PID_EXTRUSION_SCALING)
  2204. PID_PARAM(Kc, e) = DEFAULT_Kc;
  2205. #endif
  2206. #if ENABLED(PID_FAN_SCALING)
  2207. PID_PARAM(Kf, e) = DEFAULT_Kf;
  2208. #endif
  2209. }
  2210. #endif
  2211. //
  2212. // PID Extrusion Scaling
  2213. //
  2214. #if ENABLED(PID_EXTRUSION_SCALING)
  2215. thermalManager.lpq_len = 20; // Default last-position-queue size
  2216. #endif
  2217. //
  2218. // Heated Bed PID
  2219. //
  2220. #if ENABLED(PIDTEMPBED)
  2221. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  2222. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  2223. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  2224. #endif
  2225. //
  2226. // User-Defined Thermistors
  2227. //
  2228. #if HAS_USER_THERMISTORS
  2229. thermalManager.reset_user_thermistors();
  2230. #endif
  2231. //
  2232. // LCD Contrast
  2233. //
  2234. #if HAS_LCD_CONTRAST
  2235. ui.set_contrast(DEFAULT_LCD_CONTRAST);
  2236. #endif
  2237. //
  2238. // Power-Loss Recovery
  2239. //
  2240. #if ENABLED(POWER_LOSS_RECOVERY)
  2241. recovery.enable(true);
  2242. #endif
  2243. //
  2244. // Firmware Retraction
  2245. //
  2246. #if ENABLED(FWRETRACT)
  2247. fwretract.reset();
  2248. #endif
  2249. //
  2250. // Volumetric & Filament Size
  2251. //
  2252. #if DISABLED(NO_VOLUMETRICS)
  2253. parser.volumetric_enabled =
  2254. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  2255. true
  2256. #else
  2257. false
  2258. #endif
  2259. ;
  2260. for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
  2261. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2262. #endif
  2263. endstops.enable_globally(
  2264. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  2265. true
  2266. #else
  2267. false
  2268. #endif
  2269. );
  2270. reset_stepper_drivers();
  2271. //
  2272. // Linear Advance
  2273. //
  2274. #if ENABLED(LIN_ADVANCE)
  2275. LOOP_L_N(i, EXTRUDERS) {
  2276. planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  2277. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  2278. saved_extruder_advance_K[i] = LIN_ADVANCE_K;
  2279. #endif
  2280. }
  2281. #endif
  2282. //
  2283. // Motor Current PWM
  2284. //
  2285. #if HAS_MOTOR_CURRENT_PWM
  2286. constexpr uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  2287. for (uint8_t q = 3; q--;)
  2288. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  2289. #endif
  2290. //
  2291. // CNC Coordinate System
  2292. //
  2293. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  2294. (void)gcode.select_coordinate_system(-1); // Go back to machine space
  2295. #endif
  2296. //
  2297. // Skew Correction
  2298. //
  2299. #if ENABLED(SKEW_CORRECTION_GCODE)
  2300. planner.skew_factor.xy = XY_SKEW_FACTOR;
  2301. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2302. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  2303. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  2304. #endif
  2305. #endif
  2306. //
  2307. // Advanced Pause filament load & unload lengths
  2308. //
  2309. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2310. for (uint8_t e = 0; e < EXTRUDERS; e++) {
  2311. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  2312. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  2313. }
  2314. #endif
  2315. postprocess();
  2316. DEBUG_ECHO_START();
  2317. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  2318. #if ENABLED(EXTENSIBLE_UI)
  2319. ExtUI::onFactoryReset();
  2320. #endif
  2321. }
  2322. #if DISABLED(DISABLE_M503)
  2323. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  2324. #define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); }while(0)
  2325. #define CONFIG_ECHO_HEADING(STR) do{ if (!forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); } }while(0)
  2326. #if HAS_TRINAMIC
  2327. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  2328. #if HAS_STEALTHCHOP
  2329. void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) {
  2330. CONFIG_ECHO_START();
  2331. SERIAL_ECHOPGM(" M569 S1");
  2332. if (etc) {
  2333. SERIAL_CHAR(' ');
  2334. serialprintPGM(etc);
  2335. }
  2336. if (newLine) SERIAL_EOL();
  2337. }
  2338. #endif
  2339. #if ENABLED(HYBRID_THRESHOLD)
  2340. inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); }
  2341. #endif
  2342. #if USE_SENSORLESS
  2343. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  2344. #endif
  2345. #endif
  2346. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2347. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  2348. #endif
  2349. inline void say_units(const bool colon) {
  2350. serialprintPGM(
  2351. #if ENABLED(INCH_MODE_SUPPORT)
  2352. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2353. #endif
  2354. PSTR(" (mm)")
  2355. );
  2356. if (colon) SERIAL_ECHOLNPGM(":");
  2357. }
  2358. void report_M92(const bool echo=true, const int8_t e=-1);
  2359. /**
  2360. * M503 - Report current settings in RAM
  2361. *
  2362. * Unless specifically disabled, M503 is available even without EEPROM
  2363. */
  2364. void MarlinSettings::report(const bool forReplay) {
  2365. /**
  2366. * Announce current units, in case inches are being displayed
  2367. */
  2368. CONFIG_ECHO_START();
  2369. #if ENABLED(INCH_MODE_SUPPORT)
  2370. SERIAL_ECHOPGM(" G2");
  2371. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2372. SERIAL_ECHOPGM(" ;");
  2373. say_units(false);
  2374. #else
  2375. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2376. say_units(false);
  2377. #endif
  2378. SERIAL_EOL();
  2379. #if HAS_LCD_MENU
  2380. // Temperature units - for Ultipanel temperature options
  2381. CONFIG_ECHO_START();
  2382. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2383. SERIAL_ECHOPGM(" M149 ");
  2384. SERIAL_CHAR(parser.temp_units_code());
  2385. SERIAL_ECHOPGM(" ; Units in ");
  2386. serialprintPGM(parser.temp_units_name());
  2387. #else
  2388. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2389. #endif
  2390. #endif
  2391. SERIAL_EOL();
  2392. #if DISABLED(NO_VOLUMETRICS)
  2393. /**
  2394. * Volumetric extrusion M200
  2395. */
  2396. if (!forReplay) {
  2397. CONFIG_ECHO_START();
  2398. SERIAL_ECHOPGM("Filament settings:");
  2399. if (parser.volumetric_enabled)
  2400. SERIAL_EOL();
  2401. else
  2402. SERIAL_ECHOLNPGM(" Disabled");
  2403. }
  2404. CONFIG_ECHO_START();
  2405. SERIAL_ECHOLNPAIR(" M200 D", LINEAR_UNIT(planner.filament_size[0]));
  2406. #if EXTRUDERS > 1
  2407. CONFIG_ECHO_START();
  2408. SERIAL_ECHOLNPAIR(" M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
  2409. #if EXTRUDERS > 2
  2410. CONFIG_ECHO_START();
  2411. SERIAL_ECHOLNPAIR(" M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
  2412. #if EXTRUDERS > 3
  2413. CONFIG_ECHO_START();
  2414. SERIAL_ECHOLNPAIR(" M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
  2415. #if EXTRUDERS > 4
  2416. CONFIG_ECHO_START();
  2417. SERIAL_ECHOLNPAIR(" M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
  2418. #if EXTRUDERS > 5
  2419. CONFIG_ECHO_START();
  2420. SERIAL_ECHOLNPAIR(" M200 T5 D", LINEAR_UNIT(planner.filament_size[5]));
  2421. #endif // EXTRUDERS > 5
  2422. #endif // EXTRUDERS > 4
  2423. #endif // EXTRUDERS > 3
  2424. #endif // EXTRUDERS > 2
  2425. #endif // EXTRUDERS > 1
  2426. if (!parser.volumetric_enabled)
  2427. CONFIG_ECHO_MSG(" M200 D0");
  2428. #endif // !NO_VOLUMETRICS
  2429. CONFIG_ECHO_HEADING("Steps per unit:");
  2430. report_M92(!forReplay);
  2431. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2432. CONFIG_ECHO_START();
  2433. SERIAL_ECHOLNPAIR_P(
  2434. PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
  2435. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
  2436. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
  2437. #if DISABLED(DISTINCT_E_FACTORS)
  2438. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2439. #endif
  2440. );
  2441. #if ENABLED(DISTINCT_E_FACTORS)
  2442. CONFIG_ECHO_START();
  2443. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  2444. SERIAL_ECHOLNPAIR_P(
  2445. PSTR(" M203 T"), (int)i
  2446. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2447. );
  2448. }
  2449. #endif
  2450. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2451. CONFIG_ECHO_START();
  2452. SERIAL_ECHOLNPAIR_P(
  2453. PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
  2454. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
  2455. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
  2456. #if DISABLED(DISTINCT_E_FACTORS)
  2457. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2458. #endif
  2459. );
  2460. #if ENABLED(DISTINCT_E_FACTORS)
  2461. CONFIG_ECHO_START();
  2462. for (uint8_t i = 0; i < E_STEPPERS; i++)
  2463. SERIAL_ECHOLNPAIR_P(
  2464. PSTR(" M201 T"), (int)i
  2465. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2466. );
  2467. #endif
  2468. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2469. CONFIG_ECHO_START();
  2470. SERIAL_ECHOLNPAIR(
  2471. " M204 P", LINEAR_UNIT(planner.settings.acceleration)
  2472. , " R", LINEAR_UNIT(planner.settings.retract_acceleration)
  2473. , " T", LINEAR_UNIT(planner.settings.travel_acceleration)
  2474. );
  2475. if (!forReplay) {
  2476. CONFIG_ECHO_START();
  2477. SERIAL_ECHOPGM("Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>");
  2478. #if DISABLED(CLASSIC_JERK)
  2479. SERIAL_ECHOPGM(" J<junc_dev>");
  2480. #endif
  2481. #if HAS_CLASSIC_JERK
  2482. SERIAL_ECHOPGM(" X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>");
  2483. #if HAS_CLASSIC_E_JERK
  2484. SERIAL_ECHOPGM(" E<max_e_jerk>");
  2485. #endif
  2486. #endif
  2487. SERIAL_EOL();
  2488. }
  2489. CONFIG_ECHO_START();
  2490. SERIAL_ECHOLNPAIR_P(
  2491. PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us)
  2492. , PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2493. , PSTR(" T"), LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2494. #if DISABLED(CLASSIC_JERK)
  2495. , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm)
  2496. #endif
  2497. #if HAS_CLASSIC_JERK
  2498. , SP_X_STR, LINEAR_UNIT(planner.max_jerk.x)
  2499. , SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y)
  2500. , SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z)
  2501. #if HAS_CLASSIC_E_JERK
  2502. , SP_E_STR, LINEAR_UNIT(planner.max_jerk.e)
  2503. #endif
  2504. #endif
  2505. );
  2506. #if HAS_M206_COMMAND
  2507. CONFIG_ECHO_HEADING("Home offset:");
  2508. CONFIG_ECHO_START();
  2509. SERIAL_ECHOLNPAIR_P(
  2510. #if IS_CARTESIAN
  2511. PSTR(" M206 X"), LINEAR_UNIT(home_offset.x)
  2512. , SP_Y_STR, LINEAR_UNIT(home_offset.y)
  2513. , SP_Z_STR
  2514. #else
  2515. PSTR(" M206 Z")
  2516. #endif
  2517. , LINEAR_UNIT(home_offset.z)
  2518. );
  2519. #endif
  2520. #if HAS_HOTEND_OFFSET
  2521. CONFIG_ECHO_HEADING("Hotend offsets:");
  2522. CONFIG_ECHO_START();
  2523. for (uint8_t e = 1; e < HOTENDS; e++) {
  2524. SERIAL_ECHOPAIR_P(
  2525. PSTR(" M218 T"), (int)e,
  2526. SP_X_STR, LINEAR_UNIT(hotend_offset[e].x),
  2527. SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y)
  2528. );
  2529. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3);
  2530. }
  2531. #endif
  2532. /**
  2533. * Bed Leveling
  2534. */
  2535. #if HAS_LEVELING
  2536. #if ENABLED(MESH_BED_LEVELING)
  2537. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2538. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2539. if (!forReplay) {
  2540. CONFIG_ECHO_START();
  2541. ubl.echo_name();
  2542. SERIAL_ECHOLNPGM(":");
  2543. }
  2544. #elif HAS_ABL_OR_UBL
  2545. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2546. #endif
  2547. CONFIG_ECHO_START();
  2548. SERIAL_ECHOLNPAIR_P(
  2549. PSTR(" M420 S"), planner.leveling_active ? 1 : 0
  2550. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2551. , SP_Z_STR, LINEAR_UNIT(planner.z_fade_height)
  2552. #endif
  2553. );
  2554. #if ENABLED(MESH_BED_LEVELING)
  2555. if (leveling_is_valid()) {
  2556. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2557. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2558. CONFIG_ECHO_START();
  2559. SERIAL_ECHOPAIR_P(PSTR(" G29 S3 I"), (int)px, PSTR(" J"), (int)py);
  2560. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2561. }
  2562. }
  2563. CONFIG_ECHO_START();
  2564. SERIAL_ECHOLNPAIR_F_P(PSTR(" G29 S4 Z"), LINEAR_UNIT(mbl.z_offset), 5);
  2565. }
  2566. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2567. if (!forReplay) {
  2568. SERIAL_EOL();
  2569. ubl.report_state();
  2570. SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.storage_slot);
  2571. SERIAL_ECHOLNPAIR("EEPROM can hold ", calc_num_meshes(), " meshes.\n");
  2572. }
  2573. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2574. // solution needs to be found.
  2575. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2576. if (leveling_is_valid()) {
  2577. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2578. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2579. CONFIG_ECHO_START();
  2580. SERIAL_ECHOPAIR(" G29 W I", (int)px, " J", (int)py);
  2581. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5);
  2582. }
  2583. }
  2584. }
  2585. #endif
  2586. #endif // HAS_LEVELING
  2587. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2588. CONFIG_ECHO_HEADING("Servo Angles:");
  2589. for (uint8_t i = 0; i < NUM_SERVOS; i++) {
  2590. switch (i) {
  2591. #if ENABLED(SWITCHING_EXTRUDER)
  2592. case SWITCHING_EXTRUDER_SERVO_NR:
  2593. #if EXTRUDERS > 3
  2594. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2595. #endif
  2596. #elif ENABLED(SWITCHING_NOZZLE)
  2597. case SWITCHING_NOZZLE_SERVO_NR:
  2598. #elif (ENABLED(BLTOUCH) && defined(BLTOUCH_ANGLES)) || (defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR))
  2599. case Z_PROBE_SERVO_NR:
  2600. #endif
  2601. CONFIG_ECHO_START();
  2602. SERIAL_ECHOLNPAIR(" M281 P", int(i), " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2603. default: break;
  2604. }
  2605. }
  2606. #endif // EDITABLE_SERVO_ANGLES
  2607. #if HAS_SCARA_OFFSET
  2608. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2609. CONFIG_ECHO_START();
  2610. SERIAL_ECHOLNPAIR_P(
  2611. PSTR(" M665 S"), delta_segments_per_second
  2612. , PSTR(" P"), scara_home_offset.a
  2613. , PSTR(" T"), scara_home_offset.b
  2614. , SP_Z_STR, LINEAR_UNIT(scara_home_offset.z)
  2615. );
  2616. #elif ENABLED(DELTA)
  2617. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2618. CONFIG_ECHO_START();
  2619. SERIAL_ECHOLNPAIR_P(
  2620. PSTR(" M666 X"), LINEAR_UNIT(delta_endstop_adj.a)
  2621. , SP_Y_STR, LINEAR_UNIT(delta_endstop_adj.b)
  2622. , SP_Z_STR, LINEAR_UNIT(delta_endstop_adj.c)
  2623. );
  2624. CONFIG_ECHO_HEADING("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> XYZ<tower angle corrections>");
  2625. CONFIG_ECHO_START();
  2626. SERIAL_ECHOLNPAIR_P(
  2627. PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod)
  2628. , PSTR(" R"), LINEAR_UNIT(delta_radius)
  2629. , PSTR(" H"), LINEAR_UNIT(delta_height)
  2630. , PSTR(" S"), delta_segments_per_second
  2631. , SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a)
  2632. , SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b)
  2633. , SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c)
  2634. );
  2635. #elif HAS_EXTRA_ENDSTOPS
  2636. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2637. CONFIG_ECHO_START();
  2638. SERIAL_ECHOPGM(" M666");
  2639. #if ENABLED(X_DUAL_ENDSTOPS)
  2640. SERIAL_ECHOLNPAIR_P(SP_X_STR, LINEAR_UNIT(endstops.x2_endstop_adj));
  2641. #endif
  2642. #if ENABLED(Y_DUAL_ENDSTOPS)
  2643. SERIAL_ECHOLNPAIR_P(SP_Y_STR, LINEAR_UNIT(endstops.y2_endstop_adj));
  2644. #endif
  2645. #if ENABLED(Z_MULTI_ENDSTOPS)
  2646. #if NUM_Z_STEPPER_DRIVERS >= 3
  2647. SERIAL_ECHOPAIR(" S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2648. CONFIG_ECHO_START();
  2649. SERIAL_ECHOPAIR(" M666 S3 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2650. #if NUM_Z_STEPPER_DRIVERS >= 4
  2651. CONFIG_ECHO_START();
  2652. SERIAL_ECHOPAIR(" M666 S4 Z", LINEAR_UNIT(endstops.z4_endstop_adj));
  2653. #endif
  2654. #else
  2655. SERIAL_ECHOLNPAIR_P(SP_Z_STR, LINEAR_UNIT(endstops.z2_endstop_adj));
  2656. #endif
  2657. #endif
  2658. #endif // [XYZ]_DUAL_ENDSTOPS
  2659. #if HOTENDS && HAS_LCD_MENU
  2660. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2661. for (uint8_t i = 0; i < COUNT(ui.preheat_hotend_temp); i++) {
  2662. CONFIG_ECHO_START();
  2663. SERIAL_ECHOLNPAIR(
  2664. " M145 S", (int)i
  2665. , " H", TEMP_UNIT(ui.preheat_hotend_temp[i])
  2666. , " B", TEMP_UNIT(ui.preheat_bed_temp[i])
  2667. , " F", int(ui.preheat_fan_speed[i])
  2668. );
  2669. }
  2670. #endif
  2671. #if HAS_PID_HEATING
  2672. CONFIG_ECHO_HEADING("PID settings:");
  2673. #if ENABLED(PIDTEMP)
  2674. HOTEND_LOOP() {
  2675. CONFIG_ECHO_START();
  2676. SERIAL_ECHOPAIR_P(
  2677. #if HOTENDS > 1 && ENABLED(PID_PARAMS_PER_HOTEND)
  2678. PSTR(" M301 E"), e,
  2679. PSTR(" P")
  2680. #else
  2681. PSTR(" M301 P")
  2682. #endif
  2683. , PID_PARAM(Kp, e)
  2684. , PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e))
  2685. , PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e))
  2686. );
  2687. #if ENABLED(PID_EXTRUSION_SCALING)
  2688. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  2689. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2690. #endif
  2691. #if ENABLED(PID_FAN_SCALING)
  2692. SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e));
  2693. #endif
  2694. SERIAL_EOL();
  2695. }
  2696. #endif // PIDTEMP
  2697. #if ENABLED(PIDTEMPBED)
  2698. CONFIG_ECHO_START();
  2699. SERIAL_ECHOLNPAIR(
  2700. " M304 P", thermalManager.temp_bed.pid.Kp
  2701. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  2702. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  2703. );
  2704. #endif
  2705. #endif // PIDTEMP || PIDTEMPBED
  2706. #if HAS_USER_THERMISTORS
  2707. CONFIG_ECHO_HEADING("User thermistors:");
  2708. for (uint8_t i = 0; i < USER_THERMISTORS; i++)
  2709. thermalManager.log_user_thermistor(i, true);
  2710. #endif
  2711. #if HAS_LCD_CONTRAST
  2712. CONFIG_ECHO_HEADING("LCD Contrast:");
  2713. CONFIG_ECHO_START();
  2714. SERIAL_ECHOLNPAIR(" M250 C", ui.contrast);
  2715. #endif
  2716. #if ENABLED(POWER_LOSS_RECOVERY)
  2717. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  2718. CONFIG_ECHO_START();
  2719. SERIAL_ECHOLNPAIR(" M413 S", int(recovery.enabled));
  2720. #endif
  2721. #if ENABLED(FWRETRACT)
  2722. CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
  2723. CONFIG_ECHO_START();
  2724. SERIAL_ECHOLNPAIR_P(
  2725. PSTR(" M207 S"), LINEAR_UNIT(fwretract.settings.retract_length)
  2726. , PSTR(" W"), LINEAR_UNIT(fwretract.settings.swap_retract_length)
  2727. , PSTR(" F"), LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_feedrate_mm_s))
  2728. , SP_Z_STR, LINEAR_UNIT(fwretract.settings.retract_zraise)
  2729. );
  2730. CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
  2731. CONFIG_ECHO_START();
  2732. SERIAL_ECHOLNPAIR(
  2733. " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra)
  2734. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra)
  2735. , " F", LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_recover_feedrate_mm_s))
  2736. );
  2737. #if ENABLED(FWRETRACT_AUTORETRACT)
  2738. CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2739. CONFIG_ECHO_START();
  2740. SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2741. #endif // FWRETRACT_AUTORETRACT
  2742. #endif // FWRETRACT
  2743. /**
  2744. * Probe Offset
  2745. */
  2746. #if HAS_BED_PROBE
  2747. if (!forReplay) {
  2748. CONFIG_ECHO_START();
  2749. SERIAL_ECHOPGM("Z-Probe Offset");
  2750. say_units(true);
  2751. }
  2752. CONFIG_ECHO_START();
  2753. SERIAL_ECHOLNPAIR_P(
  2754. #if HAS_PROBE_XY_OFFSET
  2755. PSTR(" M851 X"), LINEAR_UNIT(probe_offset_xy.x),
  2756. SP_Y_STR, LINEAR_UNIT(probe_offset_xy.y),
  2757. SP_Z_STR
  2758. #else
  2759. PSTR(" M851 X0 Y0 Z")
  2760. #endif
  2761. , LINEAR_UNIT(probe_offset.z)
  2762. );
  2763. #endif
  2764. /**
  2765. * Bed Skew Correction
  2766. */
  2767. #if ENABLED(SKEW_CORRECTION_GCODE)
  2768. CONFIG_ECHO_HEADING("Skew Factor: ");
  2769. CONFIG_ECHO_START();
  2770. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2771. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2772. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  2773. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  2774. #else
  2775. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2776. #endif
  2777. #endif
  2778. #if HAS_TRINAMIC
  2779. /**
  2780. * TMC stepper driver current
  2781. */
  2782. CONFIG_ECHO_HEADING("Stepper driver current:");
  2783. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2784. say_M906(forReplay);
  2785. #if AXIS_IS_TMC(X)
  2786. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps());
  2787. #endif
  2788. #if AXIS_IS_TMC(Y)
  2789. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps());
  2790. #endif
  2791. #if AXIS_IS_TMC(Z)
  2792. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps());
  2793. #endif
  2794. SERIAL_EOL();
  2795. #endif
  2796. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2797. say_M906(forReplay);
  2798. SERIAL_ECHOPGM(" I1");
  2799. #if AXIS_IS_TMC(X2)
  2800. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps());
  2801. #endif
  2802. #if AXIS_IS_TMC(Y2)
  2803. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps());
  2804. #endif
  2805. #if AXIS_IS_TMC(Z2)
  2806. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps());
  2807. #endif
  2808. SERIAL_EOL();
  2809. #endif
  2810. #if AXIS_IS_TMC(Z3)
  2811. say_M906(forReplay);
  2812. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  2813. #endif
  2814. #if AXIS_IS_TMC(Z4)
  2815. say_M906(forReplay);
  2816. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.getMilliamps());
  2817. #endif
  2818. #if AXIS_IS_TMC(E0)
  2819. say_M906(forReplay);
  2820. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  2821. #endif
  2822. #if AXIS_IS_TMC(E1)
  2823. say_M906(forReplay);
  2824. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  2825. #endif
  2826. #if AXIS_IS_TMC(E2)
  2827. say_M906(forReplay);
  2828. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  2829. #endif
  2830. #if AXIS_IS_TMC(E3)
  2831. say_M906(forReplay);
  2832. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  2833. #endif
  2834. #if AXIS_IS_TMC(E4)
  2835. say_M906(forReplay);
  2836. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  2837. #endif
  2838. #if AXIS_IS_TMC(E5)
  2839. say_M906(forReplay);
  2840. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  2841. #endif
  2842. SERIAL_EOL();
  2843. /**
  2844. * TMC Hybrid Threshold
  2845. */
  2846. #if ENABLED(HYBRID_THRESHOLD)
  2847. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  2848. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2849. say_M913(forReplay);
  2850. #endif
  2851. #if AXIS_HAS_STEALTHCHOP(X)
  2852. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs());
  2853. #endif
  2854. #if AXIS_HAS_STEALTHCHOP(Y)
  2855. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs());
  2856. #endif
  2857. #if AXIS_HAS_STEALTHCHOP(Z)
  2858. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs());
  2859. #endif
  2860. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2861. SERIAL_EOL();
  2862. #endif
  2863. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2864. say_M913(forReplay);
  2865. SERIAL_ECHOPGM(" I1");
  2866. #endif
  2867. #if AXIS_HAS_STEALTHCHOP(X2)
  2868. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs());
  2869. #endif
  2870. #if AXIS_HAS_STEALTHCHOP(Y2)
  2871. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs());
  2872. #endif
  2873. #if AXIS_HAS_STEALTHCHOP(Z2)
  2874. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs());
  2875. #endif
  2876. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2877. SERIAL_EOL();
  2878. #endif
  2879. #if AXIS_HAS_STEALTHCHOP(Z3)
  2880. say_M913(forReplay);
  2881. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs());
  2882. #endif
  2883. #if AXIS_HAS_STEALTHCHOP(Z4)
  2884. say_M913(forReplay);
  2885. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.get_pwm_thrs());
  2886. #endif
  2887. #if AXIS_HAS_STEALTHCHOP(E0)
  2888. say_M913(forReplay);
  2889. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs());
  2890. #endif
  2891. #if AXIS_HAS_STEALTHCHOP(E1)
  2892. say_M913(forReplay);
  2893. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs());
  2894. #endif
  2895. #if AXIS_HAS_STEALTHCHOP(E2)
  2896. say_M913(forReplay);
  2897. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs());
  2898. #endif
  2899. #if AXIS_HAS_STEALTHCHOP(E3)
  2900. say_M913(forReplay);
  2901. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs());
  2902. #endif
  2903. #if AXIS_HAS_STEALTHCHOP(E4)
  2904. say_M913(forReplay);
  2905. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs());
  2906. #endif
  2907. #if AXIS_HAS_STEALTHCHOP(E5)
  2908. say_M913(forReplay);
  2909. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs());
  2910. #endif
  2911. SERIAL_EOL();
  2912. #endif // HYBRID_THRESHOLD
  2913. /**
  2914. * TMC Sensorless homing thresholds
  2915. */
  2916. #if USE_SENSORLESS
  2917. CONFIG_ECHO_HEADING("StallGuard threshold:");
  2918. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  2919. CONFIG_ECHO_START();
  2920. say_M914();
  2921. #if X_SENSORLESS
  2922. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold());
  2923. #endif
  2924. #if Y_SENSORLESS
  2925. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold());
  2926. #endif
  2927. #if Z_SENSORLESS
  2928. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold());
  2929. #endif
  2930. SERIAL_EOL();
  2931. #endif
  2932. #if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS
  2933. CONFIG_ECHO_START();
  2934. say_M914();
  2935. SERIAL_ECHOPGM(" I1");
  2936. #if X2_SENSORLESS
  2937. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold());
  2938. #endif
  2939. #if Y2_SENSORLESS
  2940. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold());
  2941. #endif
  2942. #if Z2_SENSORLESS
  2943. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold());
  2944. #endif
  2945. SERIAL_EOL();
  2946. #endif
  2947. #if Z3_SENSORLESS
  2948. CONFIG_ECHO_START();
  2949. say_M914();
  2950. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold());
  2951. #endif
  2952. #if Z4_SENSORLESS
  2953. CONFIG_ECHO_START();
  2954. say_M914();
  2955. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.homing_threshold());
  2956. #endif
  2957. #endif // USE_SENSORLESS
  2958. /**
  2959. * TMC stepping mode
  2960. */
  2961. #if HAS_STEALTHCHOP
  2962. CONFIG_ECHO_HEADING("Driver stepping mode:");
  2963. #if AXIS_HAS_STEALTHCHOP(X)
  2964. const bool chop_x = stepperX.get_stealthChop_status();
  2965. #else
  2966. constexpr bool chop_x = false;
  2967. #endif
  2968. #if AXIS_HAS_STEALTHCHOP(Y)
  2969. const bool chop_y = stepperY.get_stealthChop_status();
  2970. #else
  2971. constexpr bool chop_y = false;
  2972. #endif
  2973. #if AXIS_HAS_STEALTHCHOP(Z)
  2974. const bool chop_z = stepperZ.get_stealthChop_status();
  2975. #else
  2976. constexpr bool chop_z = false;
  2977. #endif
  2978. if (chop_x || chop_y || chop_z) {
  2979. say_M569(forReplay);
  2980. if (chop_x) SERIAL_ECHO_P(SP_X_STR);
  2981. if (chop_y) SERIAL_ECHO_P(SP_Y_STR);
  2982. if (chop_z) SERIAL_ECHO_P(SP_Z_STR);
  2983. SERIAL_EOL();
  2984. }
  2985. #if AXIS_HAS_STEALTHCHOP(X2)
  2986. const bool chop_x2 = stepperX2.get_stealthChop_status();
  2987. #else
  2988. constexpr bool chop_x2 = false;
  2989. #endif
  2990. #if AXIS_HAS_STEALTHCHOP(Y2)
  2991. const bool chop_y2 = stepperY2.get_stealthChop_status();
  2992. #else
  2993. constexpr bool chop_y2 = false;
  2994. #endif
  2995. #if AXIS_HAS_STEALTHCHOP(Z2)
  2996. const bool chop_z2 = stepperZ2.get_stealthChop_status();
  2997. #else
  2998. constexpr bool chop_z2 = false;
  2999. #endif
  3000. if (chop_x2 || chop_y2 || chop_z2) {
  3001. say_M569(forReplay, PSTR("I1"));
  3002. if (chop_x2) SERIAL_ECHO_P(SP_X_STR);
  3003. if (chop_y2) SERIAL_ECHO_P(SP_Y_STR);
  3004. if (chop_z2) SERIAL_ECHO_P(SP_Z_STR);
  3005. SERIAL_EOL();
  3006. }
  3007. #if AXIS_HAS_STEALTHCHOP(Z3)
  3008. if (stepperZ3.get_stealthChop_status()) { say_M569(forReplay, PSTR("I2 Z"), true); }
  3009. #endif
  3010. #if AXIS_HAS_STEALTHCHOP(Z4)
  3011. if (stepperZ4.get_stealthChop_status()) { say_M569(forReplay, PSTR("I3 Z"), true); }
  3012. #endif
  3013. #if AXIS_HAS_STEALTHCHOP(E0)
  3014. if (stepperE0.get_stealthChop_status()) { say_M569(forReplay, PSTR("T0 E"), true); }
  3015. #endif
  3016. #if AXIS_HAS_STEALTHCHOP(E1)
  3017. if (stepperE1.get_stealthChop_status()) { say_M569(forReplay, PSTR("T1 E"), true); }
  3018. #endif
  3019. #if AXIS_HAS_STEALTHCHOP(E2)
  3020. if (stepperE2.get_stealthChop_status()) { say_M569(forReplay, PSTR("T2 E"), true); }
  3021. #endif
  3022. #if AXIS_HAS_STEALTHCHOP(E3)
  3023. if (stepperE3.get_stealthChop_status()) { say_M569(forReplay, PSTR("T3 E"), true); }
  3024. #endif
  3025. #if AXIS_HAS_STEALTHCHOP(E4)
  3026. if (stepperE4.get_stealthChop_status()) { say_M569(forReplay, PSTR("T4 E"), true); }
  3027. #endif
  3028. #if AXIS_HAS_STEALTHCHOP(E5)
  3029. if (stepperE5.get_stealthChop_status()) { say_M569(forReplay, PSTR("T5 E"), true); }
  3030. #endif
  3031. #endif // HAS_STEALTHCHOP
  3032. #endif // HAS_TRINAMIC
  3033. /**
  3034. * Linear Advance
  3035. */
  3036. #if ENABLED(LIN_ADVANCE)
  3037. CONFIG_ECHO_HEADING("Linear Advance:");
  3038. CONFIG_ECHO_START();
  3039. #if EXTRUDERS < 2
  3040. SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K[0]);
  3041. #else
  3042. LOOP_L_N(i, EXTRUDERS)
  3043. SERIAL_ECHOLNPAIR(" M900 T", int(i), " K", planner.extruder_advance_K[i]);
  3044. #endif
  3045. #endif
  3046. #if HAS_MOTOR_CURRENT_PWM
  3047. CONFIG_ECHO_HEADING("Stepper motor currents:");
  3048. CONFIG_ECHO_START();
  3049. SERIAL_ECHOLNPAIR_P(
  3050. PSTR(" M907 X"), stepper.motor_current_setting[0]
  3051. , SP_Z_STR, stepper.motor_current_setting[1]
  3052. , SP_E_STR, stepper.motor_current_setting[2]
  3053. );
  3054. #endif
  3055. /**
  3056. * Advanced Pause filament load & unload lengths
  3057. */
  3058. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  3059. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  3060. #if EXTRUDERS == 1
  3061. say_M603(forReplay);
  3062. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  3063. #else
  3064. #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0)
  3065. _ECHO_603(0);
  3066. _ECHO_603(1);
  3067. #if EXTRUDERS > 2
  3068. _ECHO_603(2);
  3069. #if EXTRUDERS > 3
  3070. _ECHO_603(3);
  3071. #if EXTRUDERS > 4
  3072. _ECHO_603(4);
  3073. #if EXTRUDERS > 5
  3074. _ECHO_603(5);
  3075. #endif // EXTRUDERS > 5
  3076. #endif // EXTRUDERS > 4
  3077. #endif // EXTRUDERS > 3
  3078. #endif // EXTRUDERS > 2
  3079. #endif // EXTRUDERS == 1
  3080. #endif // ADVANCED_PAUSE_FEATURE
  3081. #if EXTRUDERS > 1
  3082. CONFIG_ECHO_HEADING("Tool-changing:");
  3083. CONFIG_ECHO_START();
  3084. M217_report(true);
  3085. #endif
  3086. #if ENABLED(BACKLASH_GCODE)
  3087. CONFIG_ECHO_HEADING("Backlash compensation:");
  3088. CONFIG_ECHO_START();
  3089. SERIAL_ECHOLNPAIR_P(
  3090. PSTR(" M425 F"), backlash.get_correction()
  3091. , SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x)
  3092. , SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y)
  3093. , SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z)
  3094. #ifdef BACKLASH_SMOOTHING_MM
  3095. , PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm)
  3096. #endif
  3097. );
  3098. #endif
  3099. #if HAS_FILAMENT_SENSOR
  3100. CONFIG_ECHO_HEADING("Filament runout sensor:");
  3101. CONFIG_ECHO_START();
  3102. SERIAL_ECHOLNPAIR(
  3103. " M412 S", int(runout.enabled)
  3104. #ifdef FILAMENT_RUNOUT_DISTANCE_MM
  3105. , " D", LINEAR_UNIT(runout.runout_distance())
  3106. #endif
  3107. );
  3108. #endif
  3109. }
  3110. #endif // !DISABLE_M503
  3111. #pragma pack(pop)