My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 343KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G38 - Probe target - similar to G28 except it uses the Z_MIN endstop for all three axes
  63. * G90 - Use Absolute Coordinates
  64. * G91 - Use Relative Coordinates
  65. * G92 - Set current position to coordinates given
  66. *
  67. * "M" Codes
  68. *
  69. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  70. * M1 - Same as M0
  71. * M17 - Enable/Power all stepper motors
  72. * M18 - Disable all stepper motors; same as M84
  73. * M20 - List SD card. (Requires SDSUPPORT)
  74. * M21 - Init SD card. (Requires SDSUPPORT)
  75. * M22 - Release SD card. (Requires SDSUPPORT)
  76. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  77. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  78. * M25 - Pause SD print. (Requires SDSUPPORT)
  79. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  80. * M27 - Report SD print status. (Requires SDSUPPORT)
  81. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  82. * M29 - Stop SD write. (Requires SDSUPPORT)
  83. * M30 - Delete file from SD: "M30 /path/file.gco"
  84. * M31 - Report time since last M109 or SD card start to serial.
  85. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  86. * Use P to run other files as sub-programs: "M32 P !filename#"
  87. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  88. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  89. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  90. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  91. * M43 - Monitor pins & report changes - report active pins
  92. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  93. * M75 - Start the print job timer.
  94. * M76 - Pause the print job timer.
  95. * M77 - Stop the print job timer.
  96. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  97. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  98. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  99. * M82 - Set E codes absolute (default).
  100. * M83 - Set E codes relative while in Absolute (G90) mode.
  101. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  102. * duration after which steppers should turn off. S0 disables the timeout.
  103. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  104. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  105. * M104 - Set extruder target temp.
  106. * M105 - Report current temperatures.
  107. * M106 - Fan on.
  108. * M107 - Fan off.
  109. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  110. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  111. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  112. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  113. * M110 - Set the current line number. (Used by host printing)
  114. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  115. * M112 - Emergency stop.
  116. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  117. * M114 - Report current position.
  118. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  119. * M117 - Display a message on the controller screen. (Requires an LCD)
  120. * M119 - Report endstops status.
  121. * M120 - Enable endstops detection.
  122. * M121 - Disable endstops detection.
  123. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  124. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  125. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  126. * M128 - EtoP Open. (Requires BARICUDA)
  127. * M129 - EtoP Closed. (Requires BARICUDA)
  128. * M140 - Set bed target temp. S<temp>
  129. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  130. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  131. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  132. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  133. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  134. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  135. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  136. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  137. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  138. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  139. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  140. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  141. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  142. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  143. * M205 - Set advanced settings. Current units apply:
  144. S<print> T<travel> minimum speeds
  145. B<minimum segment time>
  146. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  147. * M206 - Set additional homing offset.
  148. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  149. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  150. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  151. Every normal extrude-only move will be classified as retract depending on the direction.
  152. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  153. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  154. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  155. * M221 - Set Flow Percentage: "M221 S<percent>"
  156. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  157. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  158. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  159. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  160. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  162. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  163. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  164. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  165. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  166. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  167. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  168. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  169. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  170. * M400 - Finish all moves.
  171. * M401 - Lower Z probe. (Requires a probe)
  172. * M402 - Raise Z probe. (Requires a probe)
  173. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  174. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  176. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M410 - Quickstop. Abort all planned moves.
  178. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  179. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  180. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  181. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  182. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  183. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  184. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  185. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  186. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  187. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  188. * M666 - Set delta endstop adjustment. (Requires DELTA)
  189. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  190. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  191. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  192. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  193. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  194. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  195. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  196. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  197. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  198. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  199. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  200. *
  201. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  202. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  203. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  204. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  205. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  209. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  215. *
  216. */
  217. #include "Marlin.h"
  218. #include "ultralcd.h"
  219. #include "planner.h"
  220. #include "stepper.h"
  221. #include "endstops.h"
  222. #include "temperature.h"
  223. #include "cardreader.h"
  224. #include "configuration_store.h"
  225. #include "language.h"
  226. #include "pins_arduino.h"
  227. #include "math.h"
  228. #include "nozzle.h"
  229. #include "duration_t.h"
  230. #include "types.h"
  231. #if HAS_ABL
  232. #include "vector_3.h"
  233. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  234. #include "qr_solve.h"
  235. #endif
  236. #elif ENABLED(MESH_BED_LEVELING)
  237. #include "mesh_bed_leveling.h"
  238. #endif
  239. #if ENABLED(BEZIER_CURVE_SUPPORT)
  240. #include "planner_bezier.h"
  241. #endif
  242. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  243. #include "buzzer.h"
  244. #endif
  245. #if ENABLED(USE_WATCHDOG)
  246. #include "watchdog.h"
  247. #endif
  248. #if ENABLED(BLINKM)
  249. #include "blinkm.h"
  250. #include "Wire.h"
  251. #endif
  252. #if HAS_SERVOS
  253. #include "servo.h"
  254. #endif
  255. #if HAS_DIGIPOTSS
  256. #include <SPI.h>
  257. #endif
  258. #if ENABLED(DAC_STEPPER_CURRENT)
  259. #include "stepper_dac.h"
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. #include "twibus.h"
  263. #endif
  264. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  265. #include "endstop_interrupts.h"
  266. #endif
  267. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  268. void gcode_M100();
  269. #endif
  270. #if ENABLED(SDSUPPORT)
  271. CardReader card;
  272. #endif
  273. #if ENABLED(EXPERIMENTAL_I2CBUS)
  274. TWIBus i2c;
  275. #endif
  276. #if ENABLED(G38_PROBE_TARGET)
  277. bool G38_move = false,
  278. G38_endstop_hit = false;
  279. #endif
  280. #if ENABLED(AUTO_BED_LEVELING_UBL)
  281. #include "UBL.h"
  282. unified_bed_leveling ubl;
  283. #define UBL_MESH_VALID !( z_values[0][0] == z_values[0][1] && z_values[0][1] == z_values[0][2] \
  284. && z_values[1][0] == z_values[1][1] && z_values[1][1] == z_values[1][2] \
  285. && z_values[2][0] == z_values[2][1] && z_values[2][1] == z_values[2][2] \
  286. && z_values[0][0] == 0 && z_values[1][0] == 0 && z_values[2][0] == 0 \
  287. || isnan(z_values[0][0]))
  288. #endif
  289. bool Running = true;
  290. uint8_t marlin_debug_flags = DEBUG_NONE;
  291. /**
  292. * Cartesian Current Position
  293. * Used to track the logical position as moves are queued.
  294. * Used by 'line_to_current_position' to do a move after changing it.
  295. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  296. */
  297. float current_position[XYZE] = { 0.0 };
  298. /**
  299. * Cartesian Destination
  300. * A temporary position, usually applied to 'current_position'.
  301. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  302. * 'line_to_destination' sets 'current_position' to 'destination'.
  303. */
  304. float destination[XYZE] = { 0.0 };
  305. /**
  306. * axis_homed
  307. * Flags that each linear axis was homed.
  308. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  309. *
  310. * axis_known_position
  311. * Flags that the position is known in each linear axis. Set when homed.
  312. * Cleared whenever a stepper powers off, potentially losing its position.
  313. */
  314. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  315. /**
  316. * GCode line number handling. Hosts may opt to include line numbers when
  317. * sending commands to Marlin, and lines will be checked for sequentiality.
  318. * M110 N<int> sets the current line number.
  319. */
  320. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  321. /**
  322. * GCode Command Queue
  323. * A simple ring buffer of BUFSIZE command strings.
  324. *
  325. * Commands are copied into this buffer by the command injectors
  326. * (immediate, serial, sd card) and they are processed sequentially by
  327. * the main loop. The process_next_command function parses the next
  328. * command and hands off execution to individual handler functions.
  329. */
  330. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  331. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  332. cmd_queue_index_w = 0, // Ring buffer write position
  333. commands_in_queue = 0; // Count of commands in the queue
  334. /**
  335. * Current GCode Command
  336. * When a GCode handler is running, these will be set
  337. */
  338. static char *current_command, // The command currently being executed
  339. *current_command_args, // The address where arguments begin
  340. *seen_pointer; // Set by code_seen(), used by the code_value functions
  341. /**
  342. * Next Injected Command pointer. NULL if no commands are being injected.
  343. * Used by Marlin internally to ensure that commands initiated from within
  344. * are enqueued ahead of any pending serial or sd card commands.
  345. */
  346. static const char *injected_commands_P = NULL;
  347. #if ENABLED(INCH_MODE_SUPPORT)
  348. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  349. #endif
  350. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  351. TempUnit input_temp_units = TEMPUNIT_C;
  352. #endif
  353. /**
  354. * Feed rates are often configured with mm/m
  355. * but the planner and stepper like mm/s units.
  356. */
  357. float constexpr homing_feedrate_mm_s[] = {
  358. #if ENABLED(DELTA)
  359. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  360. #else
  361. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  362. #endif
  363. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  364. };
  365. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  366. int feedrate_percentage = 100, saved_feedrate_percentage,
  367. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  368. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  369. volumetric_enabled =
  370. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  371. true
  372. #else
  373. false
  374. #endif
  375. ;
  376. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  377. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  378. #if DISABLED(NO_WORKSPACE_OFFSETS)
  379. // The distance that XYZ has been offset by G92. Reset by G28.
  380. float position_shift[XYZ] = { 0 };
  381. // This offset is added to the configured home position.
  382. // Set by M206, M428, or menu item. Saved to EEPROM.
  383. float home_offset[XYZ] = { 0 };
  384. // The above two are combined to save on computes
  385. float workspace_offset[XYZ] = { 0 };
  386. #endif
  387. // Software Endstops are based on the configured limits.
  388. #if HAS_SOFTWARE_ENDSTOPS
  389. bool soft_endstops_enabled = true;
  390. #endif
  391. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  392. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  393. #if FAN_COUNT > 0
  394. int fanSpeeds[FAN_COUNT] = { 0 };
  395. #endif
  396. // The active extruder (tool). Set with T<extruder> command.
  397. uint8_t active_extruder = 0;
  398. // Relative Mode. Enable with G91, disable with G90.
  399. static bool relative_mode = false;
  400. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  401. volatile bool wait_for_heatup = true;
  402. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  403. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  404. volatile bool wait_for_user = false;
  405. #endif
  406. const char errormagic[] PROGMEM = "Error:";
  407. const char echomagic[] PROGMEM = "echo:";
  408. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  409. // Number of characters read in the current line of serial input
  410. static int serial_count = 0;
  411. // Inactivity shutdown
  412. millis_t previous_cmd_ms = 0;
  413. static millis_t max_inactive_time = 0;
  414. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  415. // Print Job Timer
  416. #if ENABLED(PRINTCOUNTER)
  417. PrintCounter print_job_timer = PrintCounter();
  418. #else
  419. Stopwatch print_job_timer = Stopwatch();
  420. #endif
  421. // Buzzer - I2C on the LCD or a BEEPER_PIN
  422. #if ENABLED(LCD_USE_I2C_BUZZER)
  423. #define BUZZ(d,f) lcd_buzz(d, f)
  424. #elif PIN_EXISTS(BEEPER)
  425. Buzzer buzzer;
  426. #define BUZZ(d,f) buzzer.tone(d, f)
  427. #else
  428. #define BUZZ(d,f) NOOP
  429. #endif
  430. static uint8_t target_extruder;
  431. #if HAS_BED_PROBE
  432. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  433. #endif
  434. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  435. #if HAS_ABL
  436. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  437. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  438. #elif defined(XY_PROBE_SPEED)
  439. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  440. #else
  441. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  442. #endif
  443. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  444. #if ENABLED(DELTA)
  445. #define ADJUST_DELTA(V) \
  446. if (planner.abl_enabled) { \
  447. const float zadj = bilinear_z_offset(V); \
  448. delta[A_AXIS] += zadj; \
  449. delta[B_AXIS] += zadj; \
  450. delta[C_AXIS] += zadj; \
  451. }
  452. #else
  453. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  454. #endif
  455. #elif IS_KINEMATIC
  456. #define ADJUST_DELTA(V) NOOP
  457. #endif
  458. #if ENABLED(Z_DUAL_ENDSTOPS)
  459. float z_endstop_adj =
  460. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  461. Z_DUAL_ENDSTOPS_ADJUSTMENT
  462. #else
  463. 0
  464. #endif
  465. ;
  466. #endif
  467. // Extruder offsets
  468. #if HOTENDS > 1
  469. float hotend_offset[XYZ][HOTENDS];
  470. #endif
  471. #if HAS_Z_SERVO_ENDSTOP
  472. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  473. #endif
  474. #if ENABLED(BARICUDA)
  475. int baricuda_valve_pressure = 0;
  476. int baricuda_e_to_p_pressure = 0;
  477. #endif
  478. #if ENABLED(FWRETRACT)
  479. bool autoretract_enabled = false;
  480. bool retracted[EXTRUDERS] = { false };
  481. bool retracted_swap[EXTRUDERS] = { false };
  482. float retract_length = RETRACT_LENGTH;
  483. float retract_length_swap = RETRACT_LENGTH_SWAP;
  484. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  485. float retract_zlift = RETRACT_ZLIFT;
  486. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  487. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  488. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  489. #endif // FWRETRACT
  490. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  491. bool powersupply =
  492. #if ENABLED(PS_DEFAULT_OFF)
  493. false
  494. #else
  495. true
  496. #endif
  497. ;
  498. #endif
  499. #if HAS_CASE_LIGHT
  500. bool case_light_on =
  501. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  502. true
  503. #else
  504. false
  505. #endif
  506. ;
  507. #endif
  508. #if ENABLED(DELTA)
  509. float delta[ABC],
  510. endstop_adj[ABC] = { 0 };
  511. // These values are loaded or reset at boot time when setup() calls
  512. // Config_RetrieveSettings(), which calls recalc_delta_settings().
  513. float delta_radius,
  514. delta_tower_angle_trim[ABC],
  515. delta_tower[ABC][2],
  516. delta_diagonal_rod,
  517. delta_diagonal_rod_trim[ABC],
  518. delta_diagonal_rod_2_tower[ABC],
  519. delta_segments_per_second,
  520. delta_clip_start_height = Z_MAX_POS;
  521. float delta_safe_distance_from_top();
  522. #endif
  523. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  524. #define UNPROBED 9999.0f
  525. int bilinear_grid_spacing[2], bilinear_start[2];
  526. float bed_level_grid[ABL_GRID_MAX_POINTS_X][ABL_GRID_MAX_POINTS_Y];
  527. #endif
  528. #if IS_SCARA
  529. // Float constants for SCARA calculations
  530. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  531. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  532. L2_2 = sq(float(L2));
  533. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  534. delta[ABC];
  535. #endif
  536. float cartes[XYZ] = { 0 };
  537. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  538. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  539. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  540. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  541. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  542. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  543. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  544. #endif
  545. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  546. static bool filament_ran_out = false;
  547. #endif
  548. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  549. FilamentChangeMenuResponse filament_change_menu_response;
  550. #endif
  551. #if ENABLED(MIXING_EXTRUDER)
  552. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  553. #if MIXING_VIRTUAL_TOOLS > 1
  554. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  555. #endif
  556. #endif
  557. static bool send_ok[BUFSIZE];
  558. #if HAS_SERVOS
  559. Servo servo[NUM_SERVOS];
  560. #define MOVE_SERVO(I, P) servo[I].move(P)
  561. #if HAS_Z_SERVO_ENDSTOP
  562. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  563. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  564. #endif
  565. #endif
  566. #ifdef CHDK
  567. millis_t chdkHigh = 0;
  568. bool chdkActive = false;
  569. #endif
  570. #if ENABLED(PID_EXTRUSION_SCALING)
  571. int lpq_len = 20;
  572. #endif
  573. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  574. MarlinBusyState busy_state = NOT_BUSY;
  575. static millis_t next_busy_signal_ms = 0;
  576. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  577. #else
  578. #define host_keepalive() NOOP
  579. #endif
  580. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  581. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  582. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  583. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  584. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); }
  585. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  586. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  587. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  588. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  589. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  590. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  591. /**
  592. * ***************************************************************************
  593. * ******************************** FUNCTIONS ********************************
  594. * ***************************************************************************
  595. */
  596. void stop();
  597. void get_available_commands();
  598. void process_next_command();
  599. void prepare_move_to_destination();
  600. void get_cartesian_from_steppers();
  601. void set_current_from_steppers_for_axis(const AxisEnum axis);
  602. #if ENABLED(ARC_SUPPORT)
  603. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  604. #endif
  605. #if ENABLED(BEZIER_CURVE_SUPPORT)
  606. void plan_cubic_move(const float offset[4]);
  607. #endif
  608. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  609. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  610. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  611. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  612. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  613. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  614. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  615. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  616. static void report_current_position();
  617. #if ENABLED(DEBUG_LEVELING_FEATURE)
  618. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  619. serialprintPGM(prefix);
  620. SERIAL_ECHOPAIR("(", x);
  621. SERIAL_ECHOPAIR(", ", y);
  622. SERIAL_ECHOPAIR(", ", z);
  623. SERIAL_CHAR(')');
  624. if (suffix) serialprintPGM(suffix);
  625. else SERIAL_EOL;
  626. }
  627. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  628. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  629. }
  630. #if HAS_ABL
  631. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  632. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  633. }
  634. #endif
  635. #define DEBUG_POS(SUFFIX,VAR) do { \
  636. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  637. #endif
  638. /**
  639. * sync_plan_position
  640. *
  641. * Set the planner/stepper positions directly from current_position with
  642. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  643. */
  644. inline void sync_plan_position() {
  645. #if ENABLED(DEBUG_LEVELING_FEATURE)
  646. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  647. #endif
  648. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  649. }
  650. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  651. #if IS_KINEMATIC
  652. inline void sync_plan_position_kinematic() {
  653. #if ENABLED(DEBUG_LEVELING_FEATURE)
  654. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  655. #endif
  656. planner.set_position_mm_kinematic(current_position);
  657. }
  658. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  659. #else
  660. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  661. #endif
  662. #if ENABLED(SDSUPPORT)
  663. #include "SdFatUtil.h"
  664. int freeMemory() { return SdFatUtil::FreeRam(); }
  665. #else
  666. extern "C" {
  667. extern char __bss_end;
  668. extern char __heap_start;
  669. extern void* __brkval;
  670. int freeMemory() {
  671. int free_memory;
  672. if ((int)__brkval == 0)
  673. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  674. else
  675. free_memory = ((int)&free_memory) - ((int)__brkval);
  676. return free_memory;
  677. }
  678. }
  679. #endif //!SDSUPPORT
  680. #if ENABLED(DIGIPOT_I2C)
  681. extern void digipot_i2c_set_current(int channel, float current);
  682. extern void digipot_i2c_init();
  683. #endif
  684. inline void echo_command(const char* cmd) {
  685. SERIAL_ECHO_START;
  686. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  687. SERIAL_CHAR('"');
  688. SERIAL_EOL;
  689. }
  690. /**
  691. * Shove a command in RAM to the front of the main command queue.
  692. * Return true if the command is successfully added.
  693. */
  694. inline bool _shovecommand(const char* cmd, bool say_ok=false) {
  695. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  696. cmd_queue_index_r = (cmd_queue_index_r + BUFSIZE - 1) % BUFSIZE; // Index of the previous slot
  697. commands_in_queue++;
  698. strcpy(command_queue[cmd_queue_index_r], cmd);
  699. send_ok[cmd_queue_index_r] = say_ok;
  700. return true;
  701. }
  702. /**
  703. * Shove a command to the front of the queue with Serial Echo
  704. * Return true if the command is successfully added.
  705. */
  706. bool shove_and_echo_command(const char* cmd, bool say_ok=false) {
  707. if (_shovecommand(cmd, say_ok)) {
  708. echo_command(cmd);
  709. return true;
  710. }
  711. return false;
  712. }
  713. /**
  714. * Shove a command onto the front of the queue,
  715. * and don't return until successful.
  716. */
  717. void shove_and_echo_command_now(const char* cmd) {
  718. while (!shove_and_echo_command(cmd)) idle();
  719. }
  720. /**
  721. * Inject the next "immediate" command, when possible, onto the front of the queue.
  722. * Return true if any immediate commands remain to inject.
  723. */
  724. static bool drain_injected_commands_P() {
  725. if (injected_commands_P != NULL) {
  726. size_t i = 0;
  727. char c, cmd[30];
  728. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  729. cmd[sizeof(cmd) - 1] = '\0';
  730. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  731. cmd[i] = '\0';
  732. if (shove_and_echo_command(cmd)) // success?
  733. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  734. }
  735. return (injected_commands_P != NULL); // return whether any more remain
  736. }
  737. /**
  738. * Record one or many commands to run from program memory.
  739. * Aborts the current queue, if any.
  740. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  741. */
  742. void enqueue_and_echo_commands_P(const char* pgcode) {
  743. injected_commands_P = pgcode;
  744. drain_injected_commands_P(); // first command executed asap (when possible)
  745. }
  746. /**
  747. * Clear the Marlin command queue
  748. */
  749. void clear_command_queue() {
  750. cmd_queue_index_r = cmd_queue_index_w;
  751. commands_in_queue = 0;
  752. }
  753. /**
  754. * Once a new command is in the ring buffer, call this to commit it
  755. */
  756. inline void _commit_command(bool say_ok) {
  757. send_ok[cmd_queue_index_w] = say_ok;
  758. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  759. commands_in_queue++;
  760. }
  761. /**
  762. * Copy a command from RAM into the main command buffer.
  763. * Return true if the command was successfully added.
  764. * Return false for a full buffer, or if the 'command' is a comment.
  765. */
  766. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  767. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  768. strcpy(command_queue[cmd_queue_index_w], cmd);
  769. _commit_command(say_ok);
  770. return true;
  771. }
  772. /**
  773. * Enqueue with Serial Echo
  774. */
  775. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  776. if (_enqueuecommand(cmd, say_ok)) {
  777. echo_command(cmd);
  778. return true;
  779. }
  780. return false;
  781. }
  782. void enqueue_and_echo_command_now(const char* cmd) {
  783. while (!enqueue_and_echo_command(cmd)) idle();
  784. }
  785. void setup_killpin() {
  786. #if HAS_KILL
  787. SET_INPUT_PULLUP(KILL_PIN);
  788. #endif
  789. }
  790. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  791. void setup_filrunoutpin() {
  792. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  793. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  794. #else
  795. SET_INPUT(FIL_RUNOUT_PIN);
  796. #endif
  797. }
  798. #endif
  799. void setup_homepin(void) {
  800. #if HAS_HOME
  801. SET_INPUT_PULLUP(HOME_PIN);
  802. #endif
  803. }
  804. void setup_powerhold() {
  805. #if HAS_SUICIDE
  806. OUT_WRITE(SUICIDE_PIN, HIGH);
  807. #endif
  808. #if HAS_POWER_SWITCH
  809. #if ENABLED(PS_DEFAULT_OFF)
  810. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  811. #else
  812. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  813. #endif
  814. #endif
  815. }
  816. void suicide() {
  817. #if HAS_SUICIDE
  818. OUT_WRITE(SUICIDE_PIN, LOW);
  819. #endif
  820. }
  821. void servo_init() {
  822. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  823. servo[0].attach(SERVO0_PIN);
  824. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  825. #endif
  826. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  827. servo[1].attach(SERVO1_PIN);
  828. servo[1].detach();
  829. #endif
  830. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  831. servo[2].attach(SERVO2_PIN);
  832. servo[2].detach();
  833. #endif
  834. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  835. servo[3].attach(SERVO3_PIN);
  836. servo[3].detach();
  837. #endif
  838. #if HAS_Z_SERVO_ENDSTOP
  839. /**
  840. * Set position of Z Servo Endstop
  841. *
  842. * The servo might be deployed and positioned too low to stow
  843. * when starting up the machine or rebooting the board.
  844. * There's no way to know where the nozzle is positioned until
  845. * homing has been done - no homing with z-probe without init!
  846. *
  847. */
  848. STOW_Z_SERVO();
  849. #endif
  850. }
  851. /**
  852. * Stepper Reset (RigidBoard, et.al.)
  853. */
  854. #if HAS_STEPPER_RESET
  855. void disableStepperDrivers() {
  856. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  857. }
  858. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  859. #endif
  860. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  861. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  862. i2c.receive(bytes);
  863. }
  864. void i2c_on_request() { // just send dummy data for now
  865. i2c.reply("Hello World!\n");
  866. }
  867. #endif
  868. void gcode_line_error(const char* err, bool doFlush = true) {
  869. SERIAL_ERROR_START;
  870. serialprintPGM(err);
  871. SERIAL_ERRORLN(gcode_LastN);
  872. //Serial.println(gcode_N);
  873. if (doFlush) FlushSerialRequestResend();
  874. serial_count = 0;
  875. }
  876. /**
  877. * Get all commands waiting on the serial port and queue them.
  878. * Exit when the buffer is full or when no more characters are
  879. * left on the serial port.
  880. */
  881. inline void get_serial_commands() {
  882. static char serial_line_buffer[MAX_CMD_SIZE];
  883. static bool serial_comment_mode = false;
  884. // If the command buffer is empty for too long,
  885. // send "wait" to indicate Marlin is still waiting.
  886. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  887. static millis_t last_command_time = 0;
  888. const millis_t ms = millis();
  889. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  890. SERIAL_ECHOLNPGM(MSG_WAIT);
  891. last_command_time = ms;
  892. }
  893. #endif
  894. /**
  895. * Loop while serial characters are incoming and the queue is not full
  896. */
  897. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  898. char serial_char = MYSERIAL.read();
  899. /**
  900. * If the character ends the line
  901. */
  902. if (serial_char == '\n' || serial_char == '\r') {
  903. serial_comment_mode = false; // end of line == end of comment
  904. if (!serial_count) continue; // skip empty lines
  905. serial_line_buffer[serial_count] = 0; // terminate string
  906. serial_count = 0; //reset buffer
  907. char* command = serial_line_buffer;
  908. while (*command == ' ') command++; // skip any leading spaces
  909. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  910. char* apos = strchr(command, '*');
  911. if (npos) {
  912. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  913. if (M110) {
  914. char* n2pos = strchr(command + 4, 'N');
  915. if (n2pos) npos = n2pos;
  916. }
  917. gcode_N = strtol(npos + 1, NULL, 10);
  918. if (gcode_N != gcode_LastN + 1 && !M110) {
  919. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  920. return;
  921. }
  922. if (apos) {
  923. byte checksum = 0, count = 0;
  924. while (command[count] != '*') checksum ^= command[count++];
  925. if (strtol(apos + 1, NULL, 10) != checksum) {
  926. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  927. return;
  928. }
  929. // if no errors, continue parsing
  930. }
  931. else {
  932. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  933. return;
  934. }
  935. gcode_LastN = gcode_N;
  936. // if no errors, continue parsing
  937. }
  938. else if (apos) { // No '*' without 'N'
  939. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  940. return;
  941. }
  942. // Movement commands alert when stopped
  943. if (IsStopped()) {
  944. char* gpos = strchr(command, 'G');
  945. if (gpos) {
  946. int codenum = strtol(gpos + 1, NULL, 10);
  947. switch (codenum) {
  948. case 0:
  949. case 1:
  950. case 2:
  951. case 3:
  952. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  953. LCD_MESSAGEPGM(MSG_STOPPED);
  954. break;
  955. }
  956. }
  957. }
  958. #if DISABLED(EMERGENCY_PARSER)
  959. // If command was e-stop process now
  960. if (strcmp(command, "M108") == 0) {
  961. wait_for_heatup = false;
  962. #if ENABLED(ULTIPANEL)
  963. wait_for_user = false;
  964. #endif
  965. }
  966. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  967. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  968. #endif
  969. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  970. last_command_time = ms;
  971. #endif
  972. // Add the command to the queue
  973. _enqueuecommand(serial_line_buffer, true);
  974. }
  975. else if (serial_count >= MAX_CMD_SIZE - 1) {
  976. // Keep fetching, but ignore normal characters beyond the max length
  977. // The command will be injected when EOL is reached
  978. }
  979. else if (serial_char == '\\') { // Handle escapes
  980. if (MYSERIAL.available() > 0) {
  981. // if we have one more character, copy it over
  982. serial_char = MYSERIAL.read();
  983. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  984. }
  985. // otherwise do nothing
  986. }
  987. else { // it's not a newline, carriage return or escape char
  988. if (serial_char == ';') serial_comment_mode = true;
  989. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  990. }
  991. } // queue has space, serial has data
  992. }
  993. #if ENABLED(SDSUPPORT)
  994. /**
  995. * Get commands from the SD Card until the command buffer is full
  996. * or until the end of the file is reached. The special character '#'
  997. * can also interrupt buffering.
  998. */
  999. inline void get_sdcard_commands() {
  1000. static bool stop_buffering = false,
  1001. sd_comment_mode = false;
  1002. if (!card.sdprinting) return;
  1003. /**
  1004. * '#' stops reading from SD to the buffer prematurely, so procedural
  1005. * macro calls are possible. If it occurs, stop_buffering is triggered
  1006. * and the buffer is run dry; this character _can_ occur in serial com
  1007. * due to checksums, however, no checksums are used in SD printing.
  1008. */
  1009. if (commands_in_queue == 0) stop_buffering = false;
  1010. uint16_t sd_count = 0;
  1011. bool card_eof = card.eof();
  1012. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1013. const int16_t n = card.get();
  1014. char sd_char = (char)n;
  1015. card_eof = card.eof();
  1016. if (card_eof || n == -1
  1017. || sd_char == '\n' || sd_char == '\r'
  1018. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1019. ) {
  1020. if (card_eof) {
  1021. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1022. card.printingHasFinished();
  1023. card.checkautostart(true);
  1024. }
  1025. else if (n == -1) {
  1026. SERIAL_ERROR_START;
  1027. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1028. }
  1029. if (sd_char == '#') stop_buffering = true;
  1030. sd_comment_mode = false; // for new command
  1031. if (!sd_count) continue; // skip empty lines (and comment lines)
  1032. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1033. sd_count = 0; // clear sd line buffer
  1034. _commit_command(false);
  1035. }
  1036. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1037. /**
  1038. * Keep fetching, but ignore normal characters beyond the max length
  1039. * The command will be injected when EOL is reached
  1040. */
  1041. }
  1042. else {
  1043. if (sd_char == ';') sd_comment_mode = true;
  1044. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1045. }
  1046. }
  1047. }
  1048. #endif // SDSUPPORT
  1049. /**
  1050. * Add to the circular command queue the next command from:
  1051. * - The command-injection queue (injected_commands_P)
  1052. * - The active serial input (usually USB)
  1053. * - The SD card file being actively printed
  1054. */
  1055. void get_available_commands() {
  1056. // if any immediate commands remain, don't get other commands yet
  1057. if (drain_injected_commands_P()) return;
  1058. get_serial_commands();
  1059. #if ENABLED(SDSUPPORT)
  1060. get_sdcard_commands();
  1061. #endif
  1062. }
  1063. inline bool code_has_value() {
  1064. int i = 1;
  1065. char c = seen_pointer[i];
  1066. while (c == ' ') c = seen_pointer[++i];
  1067. if (c == '-' || c == '+') c = seen_pointer[++i];
  1068. if (c == '.') c = seen_pointer[++i];
  1069. return NUMERIC(c);
  1070. }
  1071. inline float code_value_float() {
  1072. char* e = strchr(seen_pointer, 'E');
  1073. if (!e) return strtod(seen_pointer + 1, NULL);
  1074. *e = 0;
  1075. float ret = strtod(seen_pointer + 1, NULL);
  1076. *e = 'E';
  1077. return ret;
  1078. }
  1079. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1080. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1081. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1082. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1083. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1084. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1085. #if ENABLED(INCH_MODE_SUPPORT)
  1086. inline void set_input_linear_units(LinearUnit units) {
  1087. switch (units) {
  1088. case LINEARUNIT_INCH:
  1089. linear_unit_factor = 25.4;
  1090. break;
  1091. case LINEARUNIT_MM:
  1092. default:
  1093. linear_unit_factor = 1.0;
  1094. break;
  1095. }
  1096. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1097. }
  1098. inline float axis_unit_factor(int axis) {
  1099. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1100. }
  1101. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1102. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1103. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1104. #else
  1105. inline float code_value_linear_units() { return code_value_float(); }
  1106. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1107. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1108. #endif
  1109. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1110. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1111. float code_value_temp_abs() {
  1112. switch (input_temp_units) {
  1113. case TEMPUNIT_C:
  1114. return code_value_float();
  1115. case TEMPUNIT_F:
  1116. return (code_value_float() - 32) * 0.5555555556;
  1117. case TEMPUNIT_K:
  1118. return code_value_float() - 273.15;
  1119. default:
  1120. return code_value_float();
  1121. }
  1122. }
  1123. float code_value_temp_diff() {
  1124. switch (input_temp_units) {
  1125. case TEMPUNIT_C:
  1126. case TEMPUNIT_K:
  1127. return code_value_float();
  1128. case TEMPUNIT_F:
  1129. return code_value_float() * 0.5555555556;
  1130. default:
  1131. return code_value_float();
  1132. }
  1133. }
  1134. #else
  1135. float code_value_temp_abs() { return code_value_float(); }
  1136. float code_value_temp_diff() { return code_value_float(); }
  1137. #endif
  1138. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1139. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1140. bool code_seen(char code) {
  1141. seen_pointer = strchr(current_command_args, code);
  1142. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1143. }
  1144. /**
  1145. * Set target_extruder from the T parameter or the active_extruder
  1146. *
  1147. * Returns TRUE if the target is invalid
  1148. */
  1149. bool get_target_extruder_from_command(int code) {
  1150. if (code_seen('T')) {
  1151. if (code_value_byte() >= EXTRUDERS) {
  1152. SERIAL_ECHO_START;
  1153. SERIAL_CHAR('M');
  1154. SERIAL_ECHO(code);
  1155. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1156. return true;
  1157. }
  1158. target_extruder = code_value_byte();
  1159. }
  1160. else
  1161. target_extruder = active_extruder;
  1162. return false;
  1163. }
  1164. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1165. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1166. #endif
  1167. #if ENABLED(DUAL_X_CARRIAGE)
  1168. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1169. static float x_home_pos(const int extruder) {
  1170. if (extruder == 0)
  1171. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1172. else
  1173. /**
  1174. * In dual carriage mode the extruder offset provides an override of the
  1175. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1176. * This allows soft recalibration of the second extruder home position
  1177. * without firmware reflash (through the M218 command).
  1178. */
  1179. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1180. }
  1181. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1182. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1183. static bool active_extruder_parked = false; // used in mode 1 & 2
  1184. static float raised_parked_position[XYZE]; // used in mode 1
  1185. static millis_t delayed_move_time = 0; // used in mode 1
  1186. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1187. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1188. #endif // DUAL_X_CARRIAGE
  1189. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
  1190. /**
  1191. * Software endstops can be used to monitor the open end of
  1192. * an axis that has a hardware endstop on the other end. Or
  1193. * they can prevent axes from moving past endstops and grinding.
  1194. *
  1195. * To keep doing their job as the coordinate system changes,
  1196. * the software endstop positions must be refreshed to remain
  1197. * at the same positions relative to the machine.
  1198. */
  1199. void update_software_endstops(const AxisEnum axis) {
  1200. const float offs = workspace_offset[axis] = LOGICAL_POSITION(0, axis);
  1201. #if ENABLED(DUAL_X_CARRIAGE)
  1202. if (axis == X_AXIS) {
  1203. // In Dual X mode hotend_offset[X] is T1's home position
  1204. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1205. if (active_extruder != 0) {
  1206. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1207. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1208. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1209. }
  1210. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1211. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1212. // but not so far to the right that T1 would move past the end
  1213. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1214. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1215. }
  1216. else {
  1217. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1218. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1219. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1220. }
  1221. }
  1222. #else
  1223. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1224. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1225. #endif
  1226. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1227. if (DEBUGGING(LEVELING)) {
  1228. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1229. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1230. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1231. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1232. #endif
  1233. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1234. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1235. }
  1236. #endif
  1237. #if ENABLED(DELTA)
  1238. if (axis == Z_AXIS)
  1239. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1240. #endif
  1241. }
  1242. #endif // NO_WORKSPACE_OFFSETS
  1243. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1244. /**
  1245. * Change the home offset for an axis, update the current
  1246. * position and the software endstops to retain the same
  1247. * relative distance to the new home.
  1248. *
  1249. * Since this changes the current_position, code should
  1250. * call sync_plan_position soon after this.
  1251. */
  1252. static void set_home_offset(const AxisEnum axis, const float v) {
  1253. current_position[axis] += v - home_offset[axis];
  1254. home_offset[axis] = v;
  1255. update_software_endstops(axis);
  1256. }
  1257. #endif // NO_WORKSPACE_OFFSETS
  1258. /**
  1259. * Set an axis' current position to its home position (after homing).
  1260. *
  1261. * For Core and Cartesian robots this applies one-to-one when an
  1262. * individual axis has been homed.
  1263. *
  1264. * DELTA should wait until all homing is done before setting the XYZ
  1265. * current_position to home, because homing is a single operation.
  1266. * In the case where the axis positions are already known and previously
  1267. * homed, DELTA could home to X or Y individually by moving either one
  1268. * to the center. However, homing Z always homes XY and Z.
  1269. *
  1270. * SCARA should wait until all XY homing is done before setting the XY
  1271. * current_position to home, because neither X nor Y is at home until
  1272. * both are at home. Z can however be homed individually.
  1273. *
  1274. * Callers must sync the planner position after calling this!
  1275. */
  1276. static void set_axis_is_at_home(AxisEnum axis) {
  1277. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1278. if (DEBUGGING(LEVELING)) {
  1279. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1280. SERIAL_CHAR(')');
  1281. SERIAL_EOL;
  1282. }
  1283. #endif
  1284. axis_known_position[axis] = axis_homed[axis] = true;
  1285. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1286. position_shift[axis] = 0;
  1287. update_software_endstops(axis);
  1288. #endif
  1289. #if ENABLED(DUAL_X_CARRIAGE)
  1290. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1291. current_position[X_AXIS] = x_home_pos(active_extruder);
  1292. return;
  1293. }
  1294. #endif
  1295. #if ENABLED(MORGAN_SCARA)
  1296. /**
  1297. * Morgan SCARA homes XY at the same time
  1298. */
  1299. if (axis == X_AXIS || axis == Y_AXIS) {
  1300. float homeposition[XYZ];
  1301. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1302. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1303. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1304. /**
  1305. * Get Home position SCARA arm angles using inverse kinematics,
  1306. * and calculate homing offset using forward kinematics
  1307. */
  1308. inverse_kinematics(homeposition);
  1309. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1310. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1311. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1312. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1313. /**
  1314. * SCARA home positions are based on configuration since the actual
  1315. * limits are determined by the inverse kinematic transform.
  1316. */
  1317. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1318. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1319. }
  1320. else
  1321. #endif
  1322. {
  1323. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1324. }
  1325. /**
  1326. * Z Probe Z Homing? Account for the probe's Z offset.
  1327. */
  1328. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1329. if (axis == Z_AXIS) {
  1330. #if HOMING_Z_WITH_PROBE
  1331. current_position[Z_AXIS] -= zprobe_zoffset;
  1332. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1333. if (DEBUGGING(LEVELING)) {
  1334. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1335. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1336. }
  1337. #endif
  1338. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1339. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1340. #endif
  1341. }
  1342. #endif
  1343. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1344. if (DEBUGGING(LEVELING)) {
  1345. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1346. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1347. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1348. #endif
  1349. DEBUG_POS("", current_position);
  1350. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1351. SERIAL_CHAR(')');
  1352. SERIAL_EOL;
  1353. }
  1354. #endif
  1355. }
  1356. /**
  1357. * Some planner shorthand inline functions
  1358. */
  1359. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1360. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1361. int hbd = homing_bump_divisor[axis];
  1362. if (hbd < 1) {
  1363. hbd = 10;
  1364. SERIAL_ECHO_START;
  1365. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1366. }
  1367. return homing_feedrate_mm_s[axis] / hbd;
  1368. }
  1369. //
  1370. // line_to_current_position
  1371. // Move the planner to the current position from wherever it last moved
  1372. // (or from wherever it has been told it is located).
  1373. //
  1374. inline void line_to_current_position() {
  1375. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1376. }
  1377. //
  1378. // line_to_destination
  1379. // Move the planner, not necessarily synced with current_position
  1380. //
  1381. inline void line_to_destination(float fr_mm_s) {
  1382. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1383. }
  1384. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1385. inline void set_current_to_destination() { COPY(current_position, destination); }
  1386. inline void set_destination_to_current() { COPY(destination, current_position); }
  1387. #if IS_KINEMATIC
  1388. /**
  1389. * Calculate delta, start a line, and set current_position to destination
  1390. */
  1391. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1392. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1393. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1394. #endif
  1395. if ( current_position[X_AXIS] == destination[X_AXIS]
  1396. && current_position[Y_AXIS] == destination[Y_AXIS]
  1397. && current_position[Z_AXIS] == destination[Z_AXIS]
  1398. && current_position[E_AXIS] == destination[E_AXIS]
  1399. ) return;
  1400. refresh_cmd_timeout();
  1401. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1402. set_current_to_destination();
  1403. }
  1404. #endif // IS_KINEMATIC
  1405. /**
  1406. * Plan a move to (X, Y, Z) and set the current_position
  1407. * The final current_position may not be the one that was requested
  1408. */
  1409. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1410. const float old_feedrate_mm_s = feedrate_mm_s;
  1411. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1412. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1413. #endif
  1414. #if ENABLED(DELTA)
  1415. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1416. set_destination_to_current(); // sync destination at the start
  1417. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1418. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1419. #endif
  1420. // when in the danger zone
  1421. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1422. if (z > delta_clip_start_height) { // staying in the danger zone
  1423. destination[X_AXIS] = x; // move directly (uninterpolated)
  1424. destination[Y_AXIS] = y;
  1425. destination[Z_AXIS] = z;
  1426. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1427. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1428. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1429. #endif
  1430. return;
  1431. }
  1432. else {
  1433. destination[Z_AXIS] = delta_clip_start_height;
  1434. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1435. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1436. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1437. #endif
  1438. }
  1439. }
  1440. if (z > current_position[Z_AXIS]) { // raising?
  1441. destination[Z_AXIS] = z;
  1442. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1443. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1444. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1445. #endif
  1446. }
  1447. destination[X_AXIS] = x;
  1448. destination[Y_AXIS] = y;
  1449. prepare_move_to_destination(); // set_current_to_destination
  1450. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1451. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1452. #endif
  1453. if (z < current_position[Z_AXIS]) { // lowering?
  1454. destination[Z_AXIS] = z;
  1455. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1456. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1457. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1458. #endif
  1459. }
  1460. #elif IS_SCARA
  1461. set_destination_to_current();
  1462. // If Z needs to raise, do it before moving XY
  1463. if (destination[Z_AXIS] < z) {
  1464. destination[Z_AXIS] = z;
  1465. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1466. }
  1467. destination[X_AXIS] = x;
  1468. destination[Y_AXIS] = y;
  1469. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1470. // If Z needs to lower, do it after moving XY
  1471. if (destination[Z_AXIS] > z) {
  1472. destination[Z_AXIS] = z;
  1473. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1474. }
  1475. #else
  1476. // If Z needs to raise, do it before moving XY
  1477. if (current_position[Z_AXIS] < z) {
  1478. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1479. current_position[Z_AXIS] = z;
  1480. line_to_current_position();
  1481. }
  1482. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1483. current_position[X_AXIS] = x;
  1484. current_position[Y_AXIS] = y;
  1485. line_to_current_position();
  1486. // If Z needs to lower, do it after moving XY
  1487. if (current_position[Z_AXIS] > z) {
  1488. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1489. current_position[Z_AXIS] = z;
  1490. line_to_current_position();
  1491. }
  1492. #endif
  1493. stepper.synchronize();
  1494. feedrate_mm_s = old_feedrate_mm_s;
  1495. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1496. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1497. #endif
  1498. }
  1499. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1500. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1501. }
  1502. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1503. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1504. }
  1505. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1506. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1507. }
  1508. //
  1509. // Prepare to do endstop or probe moves
  1510. // with custom feedrates.
  1511. //
  1512. // - Save current feedrates
  1513. // - Reset the rate multiplier
  1514. // - Reset the command timeout
  1515. // - Enable the endstops (for endstop moves)
  1516. //
  1517. static void setup_for_endstop_or_probe_move() {
  1518. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1519. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1520. #endif
  1521. saved_feedrate_mm_s = feedrate_mm_s;
  1522. saved_feedrate_percentage = feedrate_percentage;
  1523. feedrate_percentage = 100;
  1524. refresh_cmd_timeout();
  1525. }
  1526. static void clean_up_after_endstop_or_probe_move() {
  1527. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1528. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1529. #endif
  1530. feedrate_mm_s = saved_feedrate_mm_s;
  1531. feedrate_percentage = saved_feedrate_percentage;
  1532. refresh_cmd_timeout();
  1533. }
  1534. #if HAS_BED_PROBE
  1535. /**
  1536. * Raise Z to a minimum height to make room for a probe to move
  1537. */
  1538. inline void do_probe_raise(float z_raise) {
  1539. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1540. if (DEBUGGING(LEVELING)) {
  1541. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1542. SERIAL_CHAR(')');
  1543. SERIAL_EOL;
  1544. }
  1545. #endif
  1546. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1547. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1548. if (z_dest > current_position[Z_AXIS])
  1549. do_blocking_move_to_z(z_dest);
  1550. }
  1551. #endif //HAS_BED_PROBE
  1552. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1553. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1554. const bool xx = x && !axis_homed[X_AXIS],
  1555. yy = y && !axis_homed[Y_AXIS],
  1556. zz = z && !axis_homed[Z_AXIS];
  1557. if (xx || yy || zz) {
  1558. SERIAL_ECHO_START;
  1559. SERIAL_ECHOPGM(MSG_HOME " ");
  1560. if (xx) SERIAL_ECHOPGM(MSG_X);
  1561. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1562. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1563. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1564. #if ENABLED(ULTRA_LCD)
  1565. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1566. strcat_P(message, PSTR(MSG_HOME " "));
  1567. if (xx) strcat_P(message, PSTR(MSG_X));
  1568. if (yy) strcat_P(message, PSTR(MSG_Y));
  1569. if (zz) strcat_P(message, PSTR(MSG_Z));
  1570. strcat_P(message, PSTR(" " MSG_FIRST));
  1571. lcd_setstatus(message);
  1572. #endif
  1573. return true;
  1574. }
  1575. return false;
  1576. }
  1577. #endif
  1578. #if ENABLED(Z_PROBE_SLED)
  1579. #ifndef SLED_DOCKING_OFFSET
  1580. #define SLED_DOCKING_OFFSET 0
  1581. #endif
  1582. /**
  1583. * Method to dock/undock a sled designed by Charles Bell.
  1584. *
  1585. * stow[in] If false, move to MAX_X and engage the solenoid
  1586. * If true, move to MAX_X and release the solenoid
  1587. */
  1588. static void dock_sled(bool stow) {
  1589. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1590. if (DEBUGGING(LEVELING)) {
  1591. SERIAL_ECHOPAIR("dock_sled(", stow);
  1592. SERIAL_CHAR(')');
  1593. SERIAL_EOL;
  1594. }
  1595. #endif
  1596. // Dock sled a bit closer to ensure proper capturing
  1597. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1598. #if PIN_EXISTS(SLED)
  1599. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1600. #endif
  1601. }
  1602. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1603. void run_deploy_moves_script() {
  1604. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1605. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1606. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1607. #endif
  1608. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1609. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1610. #endif
  1611. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1612. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1613. #endif
  1614. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1615. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1616. #endif
  1617. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1618. #endif
  1619. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1620. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1621. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1622. #endif
  1623. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1624. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1625. #endif
  1626. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1627. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1628. #endif
  1629. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1630. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1631. #endif
  1632. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1633. #endif
  1634. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1635. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1636. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1637. #endif
  1638. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1639. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1640. #endif
  1641. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1642. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1643. #endif
  1644. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1645. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1646. #endif
  1647. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1648. #endif
  1649. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1650. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1651. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1652. #endif
  1653. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1654. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1655. #endif
  1656. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1657. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1658. #endif
  1659. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1660. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1661. #endif
  1662. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1663. #endif
  1664. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1665. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1666. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1667. #endif
  1668. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1669. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1670. #endif
  1671. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1672. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1673. #endif
  1674. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1675. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1676. #endif
  1677. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1678. #endif
  1679. }
  1680. void run_stow_moves_script() {
  1681. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1682. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1683. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1684. #endif
  1685. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1686. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1687. #endif
  1688. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1689. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1690. #endif
  1691. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1692. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1693. #endif
  1694. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1695. #endif
  1696. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1697. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1698. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1699. #endif
  1700. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1701. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1702. #endif
  1703. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1704. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1705. #endif
  1706. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1707. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1708. #endif
  1709. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1710. #endif
  1711. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1712. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1713. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1714. #endif
  1715. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1716. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1717. #endif
  1718. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1719. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1720. #endif
  1721. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1722. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1723. #endif
  1724. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1725. #endif
  1726. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1727. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1728. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1729. #endif
  1730. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1731. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1732. #endif
  1733. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1734. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1735. #endif
  1736. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1737. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1738. #endif
  1739. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1740. #endif
  1741. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1742. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1743. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1744. #endif
  1745. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1746. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1747. #endif
  1748. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1749. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1750. #endif
  1751. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1752. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1753. #endif
  1754. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1755. #endif
  1756. }
  1757. #endif
  1758. #if HAS_BED_PROBE
  1759. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1760. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1761. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1762. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1763. #else
  1764. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1765. #endif
  1766. #endif
  1767. #define DEPLOY_PROBE() set_probe_deployed(true)
  1768. #define STOW_PROBE() set_probe_deployed(false)
  1769. #if ENABLED(BLTOUCH)
  1770. void bltouch_command(int angle) {
  1771. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1772. safe_delay(375);
  1773. }
  1774. void set_bltouch_deployed(const bool deploy) {
  1775. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1776. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1777. if (DEBUGGING(LEVELING)) {
  1778. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1779. SERIAL_CHAR(')');
  1780. SERIAL_EOL;
  1781. }
  1782. #endif
  1783. }
  1784. #endif
  1785. // returns false for ok and true for failure
  1786. bool set_probe_deployed(bool deploy) {
  1787. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1788. if (DEBUGGING(LEVELING)) {
  1789. DEBUG_POS("set_probe_deployed", current_position);
  1790. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1791. }
  1792. #endif
  1793. if (endstops.z_probe_enabled == deploy) return false;
  1794. // Make room for probe
  1795. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1796. // When deploying make sure BLTOUCH is not already triggered
  1797. #if ENABLED(BLTOUCH)
  1798. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1799. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1800. set_bltouch_deployed(true); // Also needs to deploy and stow to
  1801. set_bltouch_deployed(false); // clear the triggered condition.
  1802. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1803. SERIAL_ERROR_START;
  1804. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1805. stop(); // punt!
  1806. return true;
  1807. }
  1808. }
  1809. #elif ENABLED(Z_PROBE_SLED)
  1810. if (axis_unhomed_error(true, false, false)) {
  1811. SERIAL_ERROR_START;
  1812. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1813. stop();
  1814. return true;
  1815. }
  1816. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1817. if (axis_unhomed_error(true, true, true )) {
  1818. SERIAL_ERROR_START;
  1819. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1820. stop();
  1821. return true;
  1822. }
  1823. #endif
  1824. const float oldXpos = current_position[X_AXIS],
  1825. oldYpos = current_position[Y_AXIS];
  1826. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1827. // If endstop is already false, the Z probe is deployed
  1828. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1829. // Would a goto be less ugly?
  1830. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1831. // for a triggered when stowed manual probe.
  1832. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1833. // otherwise an Allen-Key probe can't be stowed.
  1834. #endif
  1835. #if ENABLED(Z_PROBE_SLED)
  1836. dock_sled(!deploy);
  1837. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1838. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1839. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1840. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1841. #endif
  1842. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1843. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1844. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1845. if (IsRunning()) {
  1846. SERIAL_ERROR_START;
  1847. SERIAL_ERRORLNPGM("Z-Probe failed");
  1848. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1849. }
  1850. stop();
  1851. return true;
  1852. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1853. #endif
  1854. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1855. endstops.enable_z_probe(deploy);
  1856. return false;
  1857. }
  1858. static void do_probe_move(float z, float fr_mm_m) {
  1859. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1860. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1861. #endif
  1862. // Deploy BLTouch at the start of any probe
  1863. #if ENABLED(BLTOUCH)
  1864. set_bltouch_deployed(true);
  1865. #endif
  1866. // Move down until probe triggered
  1867. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1868. // Retract BLTouch immediately after a probe
  1869. #if ENABLED(BLTOUCH)
  1870. set_bltouch_deployed(false);
  1871. #endif
  1872. // Clear endstop flags
  1873. endstops.hit_on_purpose();
  1874. // Get Z where the steppers were interrupted
  1875. set_current_from_steppers_for_axis(Z_AXIS);
  1876. // Tell the planner where we actually are
  1877. SYNC_PLAN_POSITION_KINEMATIC();
  1878. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1879. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1880. #endif
  1881. }
  1882. // Do a single Z probe and return with current_position[Z_AXIS]
  1883. // at the height where the probe triggered.
  1884. static float run_z_probe() {
  1885. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1886. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1887. #endif
  1888. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1889. refresh_cmd_timeout();
  1890. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1891. // Do a first probe at the fast speed
  1892. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1893. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1894. float first_probe_z = current_position[Z_AXIS];
  1895. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1896. #endif
  1897. // move up by the bump distance
  1898. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1899. #else
  1900. // If the nozzle is above the travel height then
  1901. // move down quickly before doing the slow probe
  1902. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1903. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1904. if (z < current_position[Z_AXIS])
  1905. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1906. #endif
  1907. // move down slowly to find bed
  1908. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1909. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1910. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1911. #endif
  1912. // Debug: compare probe heights
  1913. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1914. if (DEBUGGING(LEVELING)) {
  1915. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1916. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1917. }
  1918. #endif
  1919. return current_position[Z_AXIS];
  1920. }
  1921. //
  1922. // - Move to the given XY
  1923. // - Deploy the probe, if not already deployed
  1924. // - Probe the bed, get the Z position
  1925. // - Depending on the 'stow' flag
  1926. // - Stow the probe, or
  1927. // - Raise to the BETWEEN height
  1928. // - Return the probed Z position
  1929. //
  1930. //float probe_pt(const float &x, const float &y, const bool stow = true, const int verbose_level = 1) {
  1931. float probe_pt(const float x, const float y, const bool stow, const int verbose_level) {
  1932. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1933. if (DEBUGGING(LEVELING)) {
  1934. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1935. SERIAL_ECHOPAIR(", ", y);
  1936. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1937. SERIAL_ECHOLNPGM("stow)");
  1938. DEBUG_POS("", current_position);
  1939. }
  1940. #endif
  1941. const float old_feedrate_mm_s = feedrate_mm_s;
  1942. #if ENABLED(DELTA)
  1943. if (current_position[Z_AXIS] > delta_clip_start_height)
  1944. do_blocking_move_to_z(delta_clip_start_height);
  1945. #endif
  1946. // Ensure a minimum height before moving the probe
  1947. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1948. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1949. // Move the probe to the given XY
  1950. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1951. if (DEPLOY_PROBE()) return NAN;
  1952. const float measured_z = run_z_probe();
  1953. if (!stow)
  1954. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1955. else
  1956. if (STOW_PROBE()) return NAN;
  1957. if (verbose_level > 2) {
  1958. SERIAL_PROTOCOLPGM("Bed X: ");
  1959. SERIAL_PROTOCOL_F(x, 3);
  1960. SERIAL_PROTOCOLPGM(" Y: ");
  1961. SERIAL_PROTOCOL_F(y, 3);
  1962. SERIAL_PROTOCOLPGM(" Z: ");
  1963. SERIAL_PROTOCOL_F(measured_z - -zprobe_zoffset + 0.0001, 3);
  1964. SERIAL_EOL;
  1965. }
  1966. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1967. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1968. #endif
  1969. feedrate_mm_s = old_feedrate_mm_s;
  1970. return measured_z;
  1971. }
  1972. #endif // HAS_BED_PROBE
  1973. #if PLANNER_LEVELING
  1974. /**
  1975. * Turn bed leveling on or off, fixing the current
  1976. * position as-needed.
  1977. *
  1978. * Disable: Current position = physical position
  1979. * Enable: Current position = "unleveled" physical position
  1980. */
  1981. void set_bed_leveling_enabled(bool enable/*=true*/) {
  1982. #if ENABLED(MESH_BED_LEVELING)
  1983. if (enable != mbl.active()) {
  1984. if (!enable)
  1985. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1986. mbl.set_active(enable && mbl.has_mesh());
  1987. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  1988. }
  1989. #elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
  1990. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1991. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  1992. #else
  1993. constexpr bool can_change = true;
  1994. #endif
  1995. if (can_change && enable != planner.abl_enabled) {
  1996. planner.abl_enabled = enable;
  1997. if (!enable)
  1998. set_current_from_steppers_for_axis(
  1999. #if ABL_PLANAR
  2000. ALL_AXES
  2001. #else
  2002. Z_AXIS
  2003. #endif
  2004. );
  2005. else
  2006. planner.unapply_leveling(current_position);
  2007. }
  2008. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2009. ubl.state.active = enable;
  2010. //set_current_from_steppers_for_axis(Z_AXIS);
  2011. #endif
  2012. }
  2013. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2014. void set_z_fade_height(const float zfh) {
  2015. planner.z_fade_height = zfh;
  2016. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2017. if (
  2018. #if ENABLED(MESH_BED_LEVELING)
  2019. mbl.active()
  2020. #else
  2021. planner.abl_enabled
  2022. #endif
  2023. ) {
  2024. set_current_from_steppers_for_axis(
  2025. #if ABL_PLANAR
  2026. ALL_AXES
  2027. #else
  2028. Z_AXIS
  2029. #endif
  2030. );
  2031. }
  2032. }
  2033. #endif // LEVELING_FADE_HEIGHT
  2034. /**
  2035. * Reset calibration results to zero.
  2036. */
  2037. void reset_bed_level() {
  2038. set_bed_leveling_enabled(false);
  2039. #if ENABLED(MESH_BED_LEVELING)
  2040. if (mbl.has_mesh()) {
  2041. mbl.reset();
  2042. mbl.set_has_mesh(false);
  2043. }
  2044. #else
  2045. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2046. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2047. #endif
  2048. #if ABL_PLANAR
  2049. planner.bed_level_matrix.set_to_identity();
  2050. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2051. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2052. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2053. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  2054. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  2055. bed_level_grid[x][y] = UNPROBED;
  2056. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2057. ubl.reset();
  2058. #endif
  2059. #endif
  2060. }
  2061. #endif // PLANNER_LEVELING
  2062. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2063. /**
  2064. * Extrapolate a single point from its neighbors
  2065. */
  2066. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  2067. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2068. if (DEBUGGING(LEVELING)) {
  2069. SERIAL_ECHOPGM("Extrapolate [");
  2070. if (x < 10) SERIAL_CHAR(' ');
  2071. SERIAL_ECHO((int)x);
  2072. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2073. SERIAL_CHAR(' ');
  2074. if (y < 10) SERIAL_CHAR(' ');
  2075. SERIAL_ECHO((int)y);
  2076. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2077. SERIAL_CHAR(']');
  2078. }
  2079. #endif
  2080. if (bed_level_grid[x][y] != UNPROBED) {
  2081. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2082. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2083. #endif
  2084. return; // Don't overwrite good values.
  2085. }
  2086. SERIAL_EOL;
  2087. // Get X neighbors, Y neighbors, and XY neighbors
  2088. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  2089. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  2090. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  2091. // Treat far unprobed points as zero, near as equal to far
  2092. if (a2 == UNPROBED) a2 = 0.0; if (a1 == UNPROBED) a1 = a2;
  2093. if (b2 == UNPROBED) b2 = 0.0; if (b1 == UNPROBED) b1 = b2;
  2094. if (c2 == UNPROBED) c2 = 0.0; if (c1 == UNPROBED) c1 = c2;
  2095. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2096. // Take the average instead of the median
  2097. bed_level_grid[x][y] = (a + b + c) / 3.0;
  2098. // Median is robust (ignores outliers).
  2099. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2100. // : ((c < b) ? b : (a < c) ? a : c);
  2101. }
  2102. //Enable this if your SCARA uses 180° of total area
  2103. //#define EXTRAPOLATE_FROM_EDGE
  2104. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2105. #if ABL_GRID_MAX_POINTS_X < ABL_GRID_MAX_POINTS_Y
  2106. #define HALF_IN_X
  2107. #elif ABL_GRID_MAX_POINTS_Y < ABL_GRID_MAX_POINTS_X
  2108. #define HALF_IN_Y
  2109. #endif
  2110. #endif
  2111. /**
  2112. * Fill in the unprobed points (corners of circular print surface)
  2113. * using linear extrapolation, away from the center.
  2114. */
  2115. static void extrapolate_unprobed_bed_level() {
  2116. #ifdef HALF_IN_X
  2117. const uint8_t ctrx2 = 0, xlen = ABL_GRID_MAX_POINTS_X - 1;
  2118. #else
  2119. const uint8_t ctrx1 = (ABL_GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2120. ctrx2 = ABL_GRID_MAX_POINTS_X / 2, // right-of-center
  2121. xlen = ctrx1;
  2122. #endif
  2123. #ifdef HALF_IN_Y
  2124. const uint8_t ctry2 = 0, ylen = ABL_GRID_MAX_POINTS_Y - 1;
  2125. #else
  2126. const uint8_t ctry1 = (ABL_GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2127. ctry2 = ABL_GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2128. ylen = ctry1;
  2129. #endif
  2130. for (uint8_t xo = 0; xo <= xlen; xo++)
  2131. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2132. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2133. #ifndef HALF_IN_X
  2134. const uint8_t x1 = ctrx1 - xo;
  2135. #endif
  2136. #ifndef HALF_IN_Y
  2137. const uint8_t y1 = ctry1 - yo;
  2138. #ifndef HALF_IN_X
  2139. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2140. #endif
  2141. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2142. #endif
  2143. #ifndef HALF_IN_X
  2144. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2145. #endif
  2146. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2147. }
  2148. }
  2149. /**
  2150. * Print calibration results for plotting or manual frame adjustment.
  2151. */
  2152. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2153. for (uint8_t x = 0; x < sx; x++) {
  2154. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2155. SERIAL_PROTOCOLCHAR(' ');
  2156. SERIAL_PROTOCOL((int)x);
  2157. }
  2158. SERIAL_EOL;
  2159. for (uint8_t y = 0; y < sy; y++) {
  2160. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2161. SERIAL_PROTOCOL((int)y);
  2162. for (uint8_t x = 0; x < sx; x++) {
  2163. SERIAL_PROTOCOLCHAR(' ');
  2164. float offset = fn(x, y);
  2165. if (offset != UNPROBED) {
  2166. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2167. SERIAL_PROTOCOL_F(offset, precision);
  2168. }
  2169. else
  2170. for (uint8_t i = 0; i < precision + 3; i++)
  2171. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2172. }
  2173. SERIAL_EOL;
  2174. }
  2175. SERIAL_EOL;
  2176. }
  2177. static void print_bilinear_leveling_grid() {
  2178. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2179. print_2d_array(ABL_GRID_MAX_POINTS_X, ABL_GRID_MAX_POINTS_Y, 2,
  2180. [](const uint8_t x, const uint8_t y) { return bed_level_grid[x][y]; }
  2181. );
  2182. }
  2183. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2184. #define ABL_GRID_POINTS_VIRT_X (ABL_GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2185. #define ABL_GRID_POINTS_VIRT_Y (ABL_GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2186. #define ABL_TEMP_POINTS_X (ABL_GRID_MAX_POINTS_X + 2)
  2187. #define ABL_TEMP_POINTS_Y (ABL_GRID_MAX_POINTS_Y + 2)
  2188. float bed_level_grid_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2189. int bilinear_grid_spacing_virt[2] = { 0 };
  2190. static void bed_level_virt_print() {
  2191. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2192. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2193. [](const uint8_t x, const uint8_t y) { return bed_level_grid_virt[x][y]; }
  2194. );
  2195. }
  2196. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2197. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2198. uint8_t ep = 0, ip = 1;
  2199. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2200. if (x) {
  2201. ep = ABL_GRID_MAX_POINTS_X - 1;
  2202. ip = ABL_GRID_MAX_POINTS_X - 2;
  2203. }
  2204. if (y > 0 && y < ABL_TEMP_POINTS_Y - 1)
  2205. return LINEAR_EXTRAPOLATION(
  2206. bed_level_grid[ep][y - 1],
  2207. bed_level_grid[ip][y - 1]
  2208. );
  2209. else
  2210. return LINEAR_EXTRAPOLATION(
  2211. bed_level_virt_coord(ep + 1, y),
  2212. bed_level_virt_coord(ip + 1, y)
  2213. );
  2214. }
  2215. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2216. if (y) {
  2217. ep = ABL_GRID_MAX_POINTS_Y - 1;
  2218. ip = ABL_GRID_MAX_POINTS_Y - 2;
  2219. }
  2220. if (x > 0 && x < ABL_TEMP_POINTS_X - 1)
  2221. return LINEAR_EXTRAPOLATION(
  2222. bed_level_grid[x - 1][ep],
  2223. bed_level_grid[x - 1][ip]
  2224. );
  2225. else
  2226. return LINEAR_EXTRAPOLATION(
  2227. bed_level_virt_coord(x, ep + 1),
  2228. bed_level_virt_coord(x, ip + 1)
  2229. );
  2230. }
  2231. return bed_level_grid[x - 1][y - 1];
  2232. }
  2233. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2234. return (
  2235. p[i-1] * -t * sq(1 - t)
  2236. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2237. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2238. - p[i+2] * sq(t) * (1 - t)
  2239. ) * 0.5;
  2240. }
  2241. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2242. float row[4], column[4];
  2243. for (uint8_t i = 0; i < 4; i++) {
  2244. for (uint8_t j = 0; j < 4; j++) {
  2245. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2246. }
  2247. row[i] = bed_level_virt_cmr(column, 1, ty);
  2248. }
  2249. return bed_level_virt_cmr(row, 1, tx);
  2250. }
  2251. void bed_level_virt_interpolate() {
  2252. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  2253. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  2254. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2255. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2256. if ((ty && y == ABL_GRID_MAX_POINTS_Y - 1) || (tx && x == ABL_GRID_MAX_POINTS_X - 1))
  2257. continue;
  2258. bed_level_grid_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2259. bed_level_virt_2cmr(
  2260. x + 1,
  2261. y + 1,
  2262. (float)tx / (BILINEAR_SUBDIVISIONS),
  2263. (float)ty / (BILINEAR_SUBDIVISIONS)
  2264. );
  2265. }
  2266. }
  2267. #endif // ABL_BILINEAR_SUBDIVISION
  2268. #endif // AUTO_BED_LEVELING_BILINEAR
  2269. /**
  2270. * Home an individual linear axis
  2271. */
  2272. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2273. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2274. if (DEBUGGING(LEVELING)) {
  2275. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2276. SERIAL_ECHOPAIR(", ", distance);
  2277. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2278. SERIAL_CHAR(')');
  2279. SERIAL_EOL;
  2280. }
  2281. #endif
  2282. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2283. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2284. if (deploy_bltouch) set_bltouch_deployed(true);
  2285. #endif
  2286. // Tell the planner we're at Z=0
  2287. current_position[axis] = 0;
  2288. #if IS_SCARA
  2289. SYNC_PLAN_POSITION_KINEMATIC();
  2290. current_position[axis] = distance;
  2291. inverse_kinematics(current_position);
  2292. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2293. #else
  2294. sync_plan_position();
  2295. current_position[axis] = distance;
  2296. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2297. #endif
  2298. stepper.synchronize();
  2299. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2300. if (deploy_bltouch) set_bltouch_deployed(false);
  2301. #endif
  2302. endstops.hit_on_purpose();
  2303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2304. if (DEBUGGING(LEVELING)) {
  2305. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2306. SERIAL_CHAR(')');
  2307. SERIAL_EOL;
  2308. }
  2309. #endif
  2310. }
  2311. /**
  2312. * Home an individual "raw axis" to its endstop.
  2313. * This applies to XYZ on Cartesian and Core robots, and
  2314. * to the individual ABC steppers on DELTA and SCARA.
  2315. *
  2316. * At the end of the procedure the axis is marked as
  2317. * homed and the current position of that axis is updated.
  2318. * Kinematic robots should wait till all axes are homed
  2319. * before updating the current position.
  2320. */
  2321. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2322. static void homeaxis(const AxisEnum axis) {
  2323. #if IS_SCARA
  2324. // Only Z homing (with probe) is permitted
  2325. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2326. #else
  2327. #define CAN_HOME(A) \
  2328. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2329. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2330. #endif
  2331. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2332. if (DEBUGGING(LEVELING)) {
  2333. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2334. SERIAL_CHAR(')');
  2335. SERIAL_EOL;
  2336. }
  2337. #endif
  2338. const int axis_home_dir =
  2339. #if ENABLED(DUAL_X_CARRIAGE)
  2340. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2341. #endif
  2342. home_dir(axis);
  2343. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2344. #if HOMING_Z_WITH_PROBE
  2345. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2346. #endif
  2347. // Set a flag for Z motor locking
  2348. #if ENABLED(Z_DUAL_ENDSTOPS)
  2349. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2350. #endif
  2351. // Fast move towards endstop until triggered
  2352. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2353. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2354. #endif
  2355. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2356. // When homing Z with probe respect probe clearance
  2357. const float bump = axis_home_dir * (
  2358. #if HOMING_Z_WITH_PROBE
  2359. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2360. #endif
  2361. home_bump_mm(axis)
  2362. );
  2363. // If a second homing move is configured...
  2364. if (bump) {
  2365. // Move away from the endstop by the axis HOME_BUMP_MM
  2366. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2367. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2368. #endif
  2369. do_homing_move(axis, -bump);
  2370. // Slow move towards endstop until triggered
  2371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2372. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2373. #endif
  2374. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2375. }
  2376. #if ENABLED(Z_DUAL_ENDSTOPS)
  2377. if (axis == Z_AXIS) {
  2378. float adj = fabs(z_endstop_adj);
  2379. bool lockZ1;
  2380. if (axis_home_dir > 0) {
  2381. adj = -adj;
  2382. lockZ1 = (z_endstop_adj > 0);
  2383. }
  2384. else
  2385. lockZ1 = (z_endstop_adj < 0);
  2386. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2387. // Move to the adjusted endstop height
  2388. do_homing_move(axis, adj);
  2389. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2390. stepper.set_homing_flag(false);
  2391. } // Z_AXIS
  2392. #endif
  2393. #if IS_SCARA
  2394. set_axis_is_at_home(axis);
  2395. SYNC_PLAN_POSITION_KINEMATIC();
  2396. #elif ENABLED(DELTA)
  2397. // Delta has already moved all three towers up in G28
  2398. // so here it re-homes each tower in turn.
  2399. // Delta homing treats the axes as normal linear axes.
  2400. // retrace by the amount specified in endstop_adj
  2401. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2402. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2403. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2404. #endif
  2405. do_homing_move(axis, endstop_adj[axis]);
  2406. }
  2407. #else
  2408. // For cartesian/core machines,
  2409. // set the axis to its home position
  2410. set_axis_is_at_home(axis);
  2411. sync_plan_position();
  2412. destination[axis] = current_position[axis];
  2413. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2414. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2415. #endif
  2416. #endif
  2417. // Put away the Z probe
  2418. #if HOMING_Z_WITH_PROBE
  2419. if (axis == Z_AXIS && STOW_PROBE()) return;
  2420. #endif
  2421. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2422. if (DEBUGGING(LEVELING)) {
  2423. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2424. SERIAL_CHAR(')');
  2425. SERIAL_EOL;
  2426. }
  2427. #endif
  2428. } // homeaxis()
  2429. #if ENABLED(FWRETRACT)
  2430. void retract(const bool retracting, const bool swapping = false) {
  2431. static float hop_height;
  2432. if (retracting == retracted[active_extruder]) return;
  2433. const float old_feedrate_mm_s = feedrate_mm_s;
  2434. set_destination_to_current();
  2435. if (retracting) {
  2436. feedrate_mm_s = retract_feedrate_mm_s;
  2437. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2438. sync_plan_position_e();
  2439. prepare_move_to_destination();
  2440. if (retract_zlift > 0.01) {
  2441. hop_height = current_position[Z_AXIS];
  2442. // Pretend current position is lower
  2443. current_position[Z_AXIS] -= retract_zlift;
  2444. SYNC_PLAN_POSITION_KINEMATIC();
  2445. // Raise up to the old current_position
  2446. prepare_move_to_destination();
  2447. }
  2448. }
  2449. else {
  2450. // If the height hasn't been altered, undo the Z hop
  2451. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2452. // Pretend current position is higher. Z will lower on the next move
  2453. current_position[Z_AXIS] += retract_zlift;
  2454. SYNC_PLAN_POSITION_KINEMATIC();
  2455. }
  2456. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2457. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2458. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2459. sync_plan_position_e();
  2460. // Lower Z and recover E
  2461. prepare_move_to_destination();
  2462. }
  2463. feedrate_mm_s = old_feedrate_mm_s;
  2464. retracted[active_extruder] = retracting;
  2465. } // retract()
  2466. #endif // FWRETRACT
  2467. #if ENABLED(MIXING_EXTRUDER)
  2468. void normalize_mix() {
  2469. float mix_total = 0.0;
  2470. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2471. // Scale all values if they don't add up to ~1.0
  2472. if (!NEAR(mix_total, 1.0)) {
  2473. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2474. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2475. }
  2476. }
  2477. #if ENABLED(DIRECT_MIXING_IN_G1)
  2478. // Get mixing parameters from the GCode
  2479. // The total "must" be 1.0 (but it will be normalized)
  2480. // If no mix factors are given, the old mix is preserved
  2481. void gcode_get_mix() {
  2482. const char* mixing_codes = "ABCDHI";
  2483. byte mix_bits = 0;
  2484. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2485. if (code_seen(mixing_codes[i])) {
  2486. SBI(mix_bits, i);
  2487. float v = code_value_float();
  2488. NOLESS(v, 0.0);
  2489. mixing_factor[i] = RECIPROCAL(v);
  2490. }
  2491. }
  2492. // If any mixing factors were included, clear the rest
  2493. // If none were included, preserve the last mix
  2494. if (mix_bits) {
  2495. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2496. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2497. normalize_mix();
  2498. }
  2499. }
  2500. #endif
  2501. #endif
  2502. /**
  2503. * ***************************************************************************
  2504. * ***************************** G-CODE HANDLING *****************************
  2505. * ***************************************************************************
  2506. */
  2507. /**
  2508. * Set XYZE destination and feedrate from the current GCode command
  2509. *
  2510. * - Set destination from included axis codes
  2511. * - Set to current for missing axis codes
  2512. * - Set the feedrate, if included
  2513. */
  2514. void gcode_get_destination() {
  2515. LOOP_XYZE(i) {
  2516. if (code_seen(axis_codes[i]))
  2517. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2518. else
  2519. destination[i] = current_position[i];
  2520. }
  2521. if (code_seen('F') && code_value_linear_units() > 0.0)
  2522. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2523. #if ENABLED(PRINTCOUNTER)
  2524. if (!DEBUGGING(DRYRUN))
  2525. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2526. #endif
  2527. // Get ABCDHI mixing factors
  2528. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2529. gcode_get_mix();
  2530. #endif
  2531. }
  2532. void unknown_command_error() {
  2533. SERIAL_ECHO_START;
  2534. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2535. SERIAL_CHAR('"');
  2536. SERIAL_EOL;
  2537. }
  2538. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2539. /**
  2540. * Output a "busy" message at regular intervals
  2541. * while the machine is not accepting commands.
  2542. */
  2543. void host_keepalive() {
  2544. const millis_t ms = millis();
  2545. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2546. if (PENDING(ms, next_busy_signal_ms)) return;
  2547. switch (busy_state) {
  2548. case IN_HANDLER:
  2549. case IN_PROCESS:
  2550. SERIAL_ECHO_START;
  2551. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2552. break;
  2553. case PAUSED_FOR_USER:
  2554. SERIAL_ECHO_START;
  2555. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2556. break;
  2557. case PAUSED_FOR_INPUT:
  2558. SERIAL_ECHO_START;
  2559. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2560. break;
  2561. default:
  2562. break;
  2563. }
  2564. }
  2565. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2566. }
  2567. #endif //HOST_KEEPALIVE_FEATURE
  2568. bool position_is_reachable(float target[XYZ]
  2569. #if HAS_BED_PROBE
  2570. , bool by_probe=false
  2571. #endif
  2572. ) {
  2573. float dx = RAW_X_POSITION(target[X_AXIS]),
  2574. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2575. #if HAS_BED_PROBE
  2576. if (by_probe) {
  2577. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2578. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2579. }
  2580. #endif
  2581. #if IS_SCARA
  2582. #if MIDDLE_DEAD_ZONE_R > 0
  2583. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2584. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2585. #else
  2586. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2587. #endif
  2588. #elif ENABLED(DELTA)
  2589. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2590. #else
  2591. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2592. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2593. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2594. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2595. #endif
  2596. }
  2597. /**************************************************
  2598. ***************** GCode Handlers *****************
  2599. **************************************************/
  2600. /**
  2601. * G0, G1: Coordinated movement of X Y Z E axes
  2602. */
  2603. inline void gcode_G0_G1(
  2604. #if IS_SCARA
  2605. bool fast_move=false
  2606. #endif
  2607. ) {
  2608. if (IsRunning()) {
  2609. gcode_get_destination(); // For X Y Z E F
  2610. #if ENABLED(FWRETRACT)
  2611. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2612. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2613. // Is this move an attempt to retract or recover?
  2614. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2615. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2616. sync_plan_position_e(); // AND from the planner
  2617. retract(!retracted[active_extruder]);
  2618. return;
  2619. }
  2620. }
  2621. #endif //FWRETRACT
  2622. #if IS_SCARA
  2623. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2624. #else
  2625. prepare_move_to_destination();
  2626. #endif
  2627. }
  2628. }
  2629. /**
  2630. * G2: Clockwise Arc
  2631. * G3: Counterclockwise Arc
  2632. *
  2633. * This command has two forms: IJ-form and R-form.
  2634. *
  2635. * - I specifies an X offset. J specifies a Y offset.
  2636. * At least one of the IJ parameters is required.
  2637. * X and Y can be omitted to do a complete circle.
  2638. * The given XY is not error-checked. The arc ends
  2639. * based on the angle of the destination.
  2640. * Mixing I or J with R will throw an error.
  2641. *
  2642. * - R specifies the radius. X or Y is required.
  2643. * Omitting both X and Y will throw an error.
  2644. * X or Y must differ from the current XY.
  2645. * Mixing R with I or J will throw an error.
  2646. *
  2647. * Examples:
  2648. *
  2649. * G2 I10 ; CW circle centered at X+10
  2650. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2651. */
  2652. #if ENABLED(ARC_SUPPORT)
  2653. inline void gcode_G2_G3(bool clockwise) {
  2654. if (IsRunning()) {
  2655. #if ENABLED(SF_ARC_FIX)
  2656. const bool relative_mode_backup = relative_mode;
  2657. relative_mode = true;
  2658. #endif
  2659. gcode_get_destination();
  2660. #if ENABLED(SF_ARC_FIX)
  2661. relative_mode = relative_mode_backup;
  2662. #endif
  2663. float arc_offset[2] = { 0.0, 0.0 };
  2664. if (code_seen('R')) {
  2665. const float r = code_value_axis_units(X_AXIS),
  2666. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2667. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2668. if (r && (x2 != x1 || y2 != y1)) {
  2669. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2670. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2671. d = HYPOT(dx, dy), // Linear distance between the points
  2672. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2673. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2674. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2675. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2676. arc_offset[X_AXIS] = cx - x1;
  2677. arc_offset[Y_AXIS] = cy - y1;
  2678. }
  2679. }
  2680. else {
  2681. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2682. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2683. }
  2684. if (arc_offset[0] || arc_offset[1]) {
  2685. // Send an arc to the planner
  2686. plan_arc(destination, arc_offset, clockwise);
  2687. refresh_cmd_timeout();
  2688. }
  2689. else {
  2690. // Bad arguments
  2691. SERIAL_ERROR_START;
  2692. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2693. }
  2694. }
  2695. }
  2696. #endif
  2697. /**
  2698. * G4: Dwell S<seconds> or P<milliseconds>
  2699. */
  2700. inline void gcode_G4() {
  2701. millis_t dwell_ms = 0;
  2702. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2703. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2704. stepper.synchronize();
  2705. refresh_cmd_timeout();
  2706. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2707. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2708. while (PENDING(millis(), dwell_ms)) idle();
  2709. }
  2710. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2711. /**
  2712. * Parameters interpreted according to:
  2713. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2714. * However I, J omission is not supported at this point; all
  2715. * parameters can be omitted and default to zero.
  2716. */
  2717. /**
  2718. * G5: Cubic B-spline
  2719. */
  2720. inline void gcode_G5() {
  2721. if (IsRunning()) {
  2722. gcode_get_destination();
  2723. const float offset[] = {
  2724. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2725. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2726. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2727. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2728. };
  2729. plan_cubic_move(offset);
  2730. }
  2731. }
  2732. #endif // BEZIER_CURVE_SUPPORT
  2733. #if ENABLED(FWRETRACT)
  2734. /**
  2735. * G10 - Retract filament according to settings of M207
  2736. * G11 - Recover filament according to settings of M208
  2737. */
  2738. inline void gcode_G10_G11(bool doRetract=false) {
  2739. #if EXTRUDERS > 1
  2740. if (doRetract) {
  2741. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2742. }
  2743. #endif
  2744. retract(doRetract
  2745. #if EXTRUDERS > 1
  2746. , retracted_swap[active_extruder]
  2747. #endif
  2748. );
  2749. }
  2750. #endif //FWRETRACT
  2751. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2752. /**
  2753. * G12: Clean the nozzle
  2754. */
  2755. inline void gcode_G12() {
  2756. // Don't allow nozzle cleaning without homing first
  2757. if (axis_unhomed_error(true, true, true)) { return; }
  2758. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2759. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2760. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2761. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2762. Nozzle::clean(pattern, strokes, radius, objects);
  2763. }
  2764. #endif
  2765. #if ENABLED(INCH_MODE_SUPPORT)
  2766. /**
  2767. * G20: Set input mode to inches
  2768. */
  2769. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2770. /**
  2771. * G21: Set input mode to millimeters
  2772. */
  2773. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2774. #endif
  2775. #if ENABLED(NOZZLE_PARK_FEATURE)
  2776. /**
  2777. * G27: Park the nozzle
  2778. */
  2779. inline void gcode_G27() {
  2780. // Don't allow nozzle parking without homing first
  2781. if (axis_unhomed_error(true, true, true)) return;
  2782. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2783. }
  2784. #endif // NOZZLE_PARK_FEATURE
  2785. #if ENABLED(QUICK_HOME)
  2786. static void quick_home_xy() {
  2787. // Pretend the current position is 0,0
  2788. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2789. sync_plan_position();
  2790. const int x_axis_home_dir =
  2791. #if ENABLED(DUAL_X_CARRIAGE)
  2792. x_home_dir(active_extruder)
  2793. #else
  2794. home_dir(X_AXIS)
  2795. #endif
  2796. ;
  2797. const float mlx = max_length(X_AXIS),
  2798. mly = max_length(Y_AXIS),
  2799. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2800. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2801. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2802. endstops.hit_on_purpose(); // clear endstop hit flags
  2803. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2804. }
  2805. #endif // QUICK_HOME
  2806. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2807. void log_machine_info() {
  2808. SERIAL_ECHOPGM("Machine Type: ");
  2809. #if ENABLED(DELTA)
  2810. SERIAL_ECHOLNPGM("Delta");
  2811. #elif IS_SCARA
  2812. SERIAL_ECHOLNPGM("SCARA");
  2813. #elif IS_CORE
  2814. SERIAL_ECHOLNPGM("Core");
  2815. #else
  2816. SERIAL_ECHOLNPGM("Cartesian");
  2817. #endif
  2818. SERIAL_ECHOPGM("Probe: ");
  2819. #if ENABLED(PROBE_MANUALLY)
  2820. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  2821. #elif ENABLED(FIX_MOUNTED_PROBE)
  2822. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2823. #elif ENABLED(BLTOUCH)
  2824. SERIAL_ECHOLNPGM("BLTOUCH");
  2825. #elif HAS_Z_SERVO_ENDSTOP
  2826. SERIAL_ECHOLNPGM("SERVO PROBE");
  2827. #elif ENABLED(Z_PROBE_SLED)
  2828. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2829. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2830. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2831. #else
  2832. SERIAL_ECHOLNPGM("NONE");
  2833. #endif
  2834. #if HAS_BED_PROBE
  2835. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2836. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2837. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2838. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2839. SERIAL_ECHOPGM(" (Right");
  2840. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2841. SERIAL_ECHOPGM(" (Left");
  2842. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2843. SERIAL_ECHOPGM(" (Middle");
  2844. #else
  2845. SERIAL_ECHOPGM(" (Aligned With");
  2846. #endif
  2847. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2848. SERIAL_ECHOPGM("-Back");
  2849. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2850. SERIAL_ECHOPGM("-Front");
  2851. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2852. SERIAL_ECHOPGM("-Center");
  2853. #endif
  2854. if (zprobe_zoffset < 0)
  2855. SERIAL_ECHOPGM(" & Below");
  2856. else if (zprobe_zoffset > 0)
  2857. SERIAL_ECHOPGM(" & Above");
  2858. else
  2859. SERIAL_ECHOPGM(" & Same Z as");
  2860. SERIAL_ECHOLNPGM(" Nozzle)");
  2861. #endif
  2862. #if HAS_ABL
  2863. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2864. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2865. SERIAL_ECHOPGM("LINEAR");
  2866. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2867. SERIAL_ECHOPGM("BILINEAR");
  2868. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2869. SERIAL_ECHOPGM("3POINT");
  2870. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2871. SERIAL_ECHOPGM("UBL");
  2872. #endif
  2873. if (planner.abl_enabled) {
  2874. SERIAL_ECHOLNPGM(" (enabled)");
  2875. #if ABL_PLANAR
  2876. float diff[XYZ] = {
  2877. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2878. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2879. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2880. };
  2881. SERIAL_ECHOPGM("ABL Adjustment X");
  2882. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2883. SERIAL_ECHO(diff[X_AXIS]);
  2884. SERIAL_ECHOPGM(" Y");
  2885. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2886. SERIAL_ECHO(diff[Y_AXIS]);
  2887. SERIAL_ECHOPGM(" Z");
  2888. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2889. SERIAL_ECHO(diff[Z_AXIS]);
  2890. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2891. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  2892. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2893. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2894. #endif
  2895. }
  2896. else
  2897. SERIAL_ECHOLNPGM(" (disabled)");
  2898. SERIAL_EOL;
  2899. #elif ENABLED(MESH_BED_LEVELING)
  2900. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2901. if (mbl.active()) {
  2902. float lz = current_position[Z_AXIS];
  2903. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  2904. SERIAL_ECHOLNPGM(" (enabled)");
  2905. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  2906. }
  2907. else
  2908. SERIAL_ECHOPGM(" (disabled)");
  2909. SERIAL_EOL;
  2910. #endif // MESH_BED_LEVELING
  2911. }
  2912. #endif // DEBUG_LEVELING_FEATURE
  2913. #if ENABLED(DELTA)
  2914. /**
  2915. * A delta can only safely home all axes at the same time
  2916. * This is like quick_home_xy() but for 3 towers.
  2917. */
  2918. inline void home_delta() {
  2919. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2920. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2921. #endif
  2922. // Init the current position of all carriages to 0,0,0
  2923. ZERO(current_position);
  2924. sync_plan_position();
  2925. // Move all carriages together linearly until an endstop is hit.
  2926. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2927. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2928. line_to_current_position();
  2929. stepper.synchronize();
  2930. endstops.hit_on_purpose(); // clear endstop hit flags
  2931. // At least one carriage has reached the top.
  2932. // Now re-home each carriage separately.
  2933. HOMEAXIS(A);
  2934. HOMEAXIS(B);
  2935. HOMEAXIS(C);
  2936. // Set all carriages to their home positions
  2937. // Do this here all at once for Delta, because
  2938. // XYZ isn't ABC. Applying this per-tower would
  2939. // give the impression that they are the same.
  2940. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2941. SYNC_PLAN_POSITION_KINEMATIC();
  2942. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2943. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2944. #endif
  2945. }
  2946. #endif // DELTA
  2947. #if ENABLED(Z_SAFE_HOMING)
  2948. inline void home_z_safely() {
  2949. // Disallow Z homing if X or Y are unknown
  2950. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2951. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2952. SERIAL_ECHO_START;
  2953. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2954. return;
  2955. }
  2956. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2957. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2958. #endif
  2959. SYNC_PLAN_POSITION_KINEMATIC();
  2960. /**
  2961. * Move the Z probe (or just the nozzle) to the safe homing point
  2962. */
  2963. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2964. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2965. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2966. if (position_is_reachable(
  2967. destination
  2968. #if HOMING_Z_WITH_PROBE
  2969. , true
  2970. #endif
  2971. )
  2972. ) {
  2973. #if HOMING_Z_WITH_PROBE
  2974. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2975. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2976. #endif
  2977. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2978. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2979. #endif
  2980. // This causes the carriage on Dual X to unpark
  2981. #if ENABLED(DUAL_X_CARRIAGE)
  2982. active_extruder_parked = false;
  2983. #endif
  2984. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2985. HOMEAXIS(Z);
  2986. }
  2987. else {
  2988. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2989. SERIAL_ECHO_START;
  2990. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2991. }
  2992. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2993. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2994. #endif
  2995. }
  2996. #endif // Z_SAFE_HOMING
  2997. /**
  2998. * G28: Home all axes according to settings
  2999. *
  3000. * Parameters
  3001. *
  3002. * None Home to all axes with no parameters.
  3003. * With QUICK_HOME enabled XY will home together, then Z.
  3004. *
  3005. * Cartesian parameters
  3006. *
  3007. * X Home to the X endstop
  3008. * Y Home to the Y endstop
  3009. * Z Home to the Z endstop
  3010. *
  3011. */
  3012. inline void gcode_G28() {
  3013. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3014. if (DEBUGGING(LEVELING)) {
  3015. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3016. log_machine_info();
  3017. }
  3018. #endif
  3019. // Wait for planner moves to finish!
  3020. stepper.synchronize();
  3021. // Disable the leveling matrix before homing
  3022. #if PLANNER_LEVELING
  3023. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3024. const bool bed_leveling_state_at_entry = ubl.state.active;
  3025. #endif
  3026. set_bed_leveling_enabled(false);
  3027. #endif
  3028. // Always home with tool 0 active
  3029. #if HOTENDS > 1
  3030. const uint8_t old_tool_index = active_extruder;
  3031. tool_change(0, 0, true);
  3032. #endif
  3033. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3034. extruder_duplication_enabled = false;
  3035. #endif
  3036. setup_for_endstop_or_probe_move();
  3037. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3038. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3039. #endif
  3040. endstops.enable(true); // Enable endstops for next homing move
  3041. #if ENABLED(DELTA)
  3042. home_delta();
  3043. #else // NOT DELTA
  3044. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3045. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3046. set_destination_to_current();
  3047. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3048. if (home_all_axis || homeZ) {
  3049. HOMEAXIS(Z);
  3050. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3051. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3052. #endif
  3053. }
  3054. #else
  3055. if (home_all_axis || homeX || homeY) {
  3056. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3057. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3058. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3059. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3060. if (DEBUGGING(LEVELING))
  3061. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3062. #endif
  3063. do_blocking_move_to_z(destination[Z_AXIS]);
  3064. }
  3065. }
  3066. #endif
  3067. #if ENABLED(QUICK_HOME)
  3068. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3069. #endif
  3070. #if ENABLED(HOME_Y_BEFORE_X)
  3071. // Home Y
  3072. if (home_all_axis || homeY) {
  3073. HOMEAXIS(Y);
  3074. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3075. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3076. #endif
  3077. }
  3078. #endif
  3079. // Home X
  3080. if (home_all_axis || homeX) {
  3081. #if ENABLED(DUAL_X_CARRIAGE)
  3082. // Always home the 2nd (right) extruder first
  3083. active_extruder = 1;
  3084. HOMEAXIS(X);
  3085. // Remember this extruder's position for later tool change
  3086. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3087. // Home the 1st (left) extruder
  3088. active_extruder = 0;
  3089. HOMEAXIS(X);
  3090. // Consider the active extruder to be parked
  3091. COPY(raised_parked_position, current_position);
  3092. delayed_move_time = 0;
  3093. active_extruder_parked = true;
  3094. #else
  3095. HOMEAXIS(X);
  3096. #endif
  3097. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3098. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3099. #endif
  3100. }
  3101. #if DISABLED(HOME_Y_BEFORE_X)
  3102. // Home Y
  3103. if (home_all_axis || homeY) {
  3104. HOMEAXIS(Y);
  3105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3106. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3107. #endif
  3108. }
  3109. #endif
  3110. // Home Z last if homing towards the bed
  3111. #if Z_HOME_DIR < 0
  3112. if (home_all_axis || homeZ) {
  3113. #if ENABLED(Z_SAFE_HOMING)
  3114. home_z_safely();
  3115. #else
  3116. HOMEAXIS(Z);
  3117. #endif
  3118. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3119. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3120. #endif
  3121. } // home_all_axis || homeZ
  3122. #endif // Z_HOME_DIR < 0
  3123. SYNC_PLAN_POSITION_KINEMATIC();
  3124. #endif // !DELTA (gcode_G28)
  3125. endstops.not_homing();
  3126. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3127. // move to a height where we can use the full xy-area
  3128. do_blocking_move_to_z(delta_clip_start_height);
  3129. #endif
  3130. // Enable mesh leveling again
  3131. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3132. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  3133. #endif
  3134. #if ENABLED(MESH_BED_LEVELING)
  3135. if (mbl.reactivate()) {
  3136. set_bed_leveling_enabled(true);
  3137. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3138. #if ENABLED(MESH_G28_REST_ORIGIN)
  3139. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3140. set_destination_to_current();
  3141. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3142. stepper.synchronize();
  3143. #endif
  3144. }
  3145. }
  3146. #endif
  3147. clean_up_after_endstop_or_probe_move();
  3148. // Restore the active tool after homing
  3149. #if HOTENDS > 1
  3150. tool_change(old_tool_index, 0, true);
  3151. #endif
  3152. report_current_position();
  3153. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3154. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3155. #endif
  3156. }
  3157. #if HAS_PROBING_PROCEDURE
  3158. void out_of_range_error(const char* p_edge) {
  3159. SERIAL_PROTOCOLPGM("?Probe ");
  3160. serialprintPGM(p_edge);
  3161. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3162. }
  3163. #endif
  3164. #if ENABLED(MESH_BED_LEVELING)
  3165. inline void _mbl_goto_xy(const float &x, const float &y) {
  3166. const float old_feedrate_mm_s = feedrate_mm_s;
  3167. #if MANUAL_PROBE_HEIGHT > 0
  3168. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3169. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3170. line_to_current_position();
  3171. #endif
  3172. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3173. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3174. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3175. line_to_current_position();
  3176. #if MANUAL_PROBE_HEIGHT > 0
  3177. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3178. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3179. line_to_current_position();
  3180. #endif
  3181. feedrate_mm_s = old_feedrate_mm_s;
  3182. stepper.synchronize();
  3183. }
  3184. // Save 130 bytes with non-duplication of PSTR
  3185. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3186. void mbl_mesh_report() {
  3187. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  3188. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3189. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3190. for (uint8_t py = 0; py < MESH_NUM_Y_POINTS; py++) {
  3191. for (uint8_t px = 0; px < MESH_NUM_X_POINTS; px++) {
  3192. SERIAL_PROTOCOLPGM(" ");
  3193. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  3194. }
  3195. SERIAL_EOL;
  3196. }
  3197. }
  3198. /**
  3199. * G29: Mesh-based Z probe, probes a grid and produces a
  3200. * mesh to compensate for variable bed height
  3201. *
  3202. * Parameters With MESH_BED_LEVELING:
  3203. *
  3204. * S0 Produce a mesh report
  3205. * S1 Start probing mesh points
  3206. * S2 Probe the next mesh point
  3207. * S3 Xn Yn Zn.nn Manually modify a single point
  3208. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3209. * S5 Reset and disable mesh
  3210. *
  3211. * The S0 report the points as below
  3212. *
  3213. * +----> X-axis 1-n
  3214. * |
  3215. * |
  3216. * v Y-axis 1-n
  3217. *
  3218. */
  3219. inline void gcode_G29() {
  3220. static int probe_index = -1;
  3221. #if HAS_SOFTWARE_ENDSTOPS
  3222. static bool enable_soft_endstops;
  3223. #endif
  3224. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3225. if (state < 0 || state > 5) {
  3226. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3227. return;
  3228. }
  3229. int8_t px, py;
  3230. switch (state) {
  3231. case MeshReport:
  3232. if (mbl.has_mesh()) {
  3233. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3234. mbl_mesh_report();
  3235. }
  3236. else
  3237. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3238. break;
  3239. case MeshStart:
  3240. mbl.reset();
  3241. probe_index = 0;
  3242. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3243. break;
  3244. case MeshNext:
  3245. if (probe_index < 0) {
  3246. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3247. return;
  3248. }
  3249. // For each G29 S2...
  3250. if (probe_index == 0) {
  3251. #if HAS_SOFTWARE_ENDSTOPS
  3252. // For the initial G29 S2 save software endstop state
  3253. enable_soft_endstops = soft_endstops_enabled;
  3254. #endif
  3255. }
  3256. else {
  3257. // For G29 S2 after adjusting Z.
  3258. mbl.set_zigzag_z(probe_index - 1, current_position[Z_AXIS]);
  3259. #if HAS_SOFTWARE_ENDSTOPS
  3260. soft_endstops_enabled = enable_soft_endstops;
  3261. #endif
  3262. }
  3263. // If there's another point to sample, move there with optional lift.
  3264. if (probe_index < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  3265. mbl.zigzag(probe_index, px, py);
  3266. _mbl_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3267. #if HAS_SOFTWARE_ENDSTOPS
  3268. // Disable software endstops to allow manual adjustment
  3269. // If G29 is not completed, they will not be re-enabled
  3270. soft_endstops_enabled = false;
  3271. #endif
  3272. probe_index++;
  3273. }
  3274. else {
  3275. // One last "return to the bed" (as originally coded) at completion
  3276. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3277. line_to_current_position();
  3278. stepper.synchronize();
  3279. // After recording the last point, activate the mbl and home
  3280. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3281. probe_index = -1;
  3282. mbl.set_has_mesh(true);
  3283. mbl.set_reactivate(true);
  3284. enqueue_and_echo_commands_P(PSTR("G28"));
  3285. BUZZ(100, 659);
  3286. BUZZ(100, 698);
  3287. }
  3288. break;
  3289. case MeshSet:
  3290. if (code_seen('X')) {
  3291. px = code_value_int() - 1;
  3292. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  3293. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  3294. return;
  3295. }
  3296. }
  3297. else {
  3298. SERIAL_CHAR('X'); say_not_entered();
  3299. return;
  3300. }
  3301. if (code_seen('Y')) {
  3302. py = code_value_int() - 1;
  3303. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  3304. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  3305. return;
  3306. }
  3307. }
  3308. else {
  3309. SERIAL_CHAR('Y'); say_not_entered();
  3310. return;
  3311. }
  3312. if (code_seen('Z')) {
  3313. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3314. }
  3315. else {
  3316. SERIAL_CHAR('Z'); say_not_entered();
  3317. return;
  3318. }
  3319. break;
  3320. case MeshSetZOffset:
  3321. if (code_seen('Z')) {
  3322. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3323. }
  3324. else {
  3325. SERIAL_CHAR('Z'); say_not_entered();
  3326. return;
  3327. }
  3328. break;
  3329. case MeshReset:
  3330. reset_bed_level();
  3331. break;
  3332. } // switch(state)
  3333. report_current_position();
  3334. }
  3335. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3336. /**
  3337. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3338. * Will fail if the printer has not been homed with G28.
  3339. *
  3340. * Enhanced G29 Auto Bed Leveling Probe Routine
  3341. *
  3342. * Parameters With LINEAR and BILINEAR:
  3343. *
  3344. * P Set the size of the grid that will be probed (P x P points).
  3345. * Not supported by non-linear delta printer bed leveling.
  3346. * Example: "G29 P4"
  3347. *
  3348. * S Set the XY travel speed between probe points (in units/min)
  3349. *
  3350. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3351. * or clean the rotation Matrix. Useful to check the topology
  3352. * after a first run of G29.
  3353. *
  3354. * V Set the verbose level (0-4). Example: "G29 V3"
  3355. *
  3356. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3357. * This is useful for manual bed leveling and finding flaws in the bed (to
  3358. * assist with part placement).
  3359. * Not supported by non-linear delta printer bed leveling.
  3360. *
  3361. * F Set the Front limit of the probing grid
  3362. * B Set the Back limit of the probing grid
  3363. * L Set the Left limit of the probing grid
  3364. * R Set the Right limit of the probing grid
  3365. *
  3366. * Parameters with BILINEAR only:
  3367. *
  3368. * Z Supply an additional Z probe offset
  3369. *
  3370. * Global Parameters:
  3371. *
  3372. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  3373. * Include "E" to engage/disengage the Z probe for each sample.
  3374. * There's no extra effect if you have a fixed Z probe.
  3375. * Usage: "G29 E" or "G29 e"
  3376. *
  3377. */
  3378. inline void gcode_G29() {
  3379. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3380. const bool query = code_seen('Q');
  3381. const uint8_t old_debug_flags = marlin_debug_flags;
  3382. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3383. if (DEBUGGING(LEVELING)) {
  3384. DEBUG_POS(">>> gcode_G29", current_position);
  3385. log_machine_info();
  3386. }
  3387. marlin_debug_flags = old_debug_flags;
  3388. if (query) return;
  3389. #endif
  3390. // Don't allow auto-leveling without homing first
  3391. if (axis_unhomed_error(true, true, true)) return;
  3392. const int verbose_level = code_seen('V') ? code_value_int() : 1;
  3393. if (verbose_level < 0 || verbose_level > 4) {
  3394. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3395. return;
  3396. }
  3397. bool dryrun = code_seen('D'),
  3398. stow_probe_after_each = code_seen('E');
  3399. #if ABL_GRID
  3400. if (verbose_level > 0) {
  3401. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3402. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3403. }
  3404. #if ABL_PLANAR
  3405. bool do_topography_map = verbose_level > 2 || code_seen('T');
  3406. // X and Y specify points in each direction, overriding the default
  3407. // These values may be saved with the completed mesh
  3408. int abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_MAX_POINTS_X,
  3409. abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_MAX_POINTS_Y;
  3410. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3411. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3412. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3413. return;
  3414. }
  3415. #else
  3416. const uint8_t abl_grid_points_x = ABL_GRID_MAX_POINTS_X, abl_grid_points_y = ABL_GRID_MAX_POINTS_Y;
  3417. #endif
  3418. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3419. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  3420. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  3421. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  3422. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3423. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3424. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3425. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3426. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3427. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3428. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3429. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3430. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3431. if (left_out || right_out || front_out || back_out) {
  3432. if (left_out) {
  3433. out_of_range_error(PSTR("(L)eft"));
  3434. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3435. }
  3436. if (right_out) {
  3437. out_of_range_error(PSTR("(R)ight"));
  3438. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3439. }
  3440. if (front_out) {
  3441. out_of_range_error(PSTR("(F)ront"));
  3442. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3443. }
  3444. if (back_out) {
  3445. out_of_range_error(PSTR("(B)ack"));
  3446. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3447. }
  3448. return;
  3449. }
  3450. #endif // ABL_GRID
  3451. stepper.synchronize();
  3452. // Disable auto bed leveling during G29
  3453. bool abl_should_enable = planner.abl_enabled;
  3454. planner.abl_enabled = false;
  3455. if (!dryrun) {
  3456. // Re-orient the current position without leveling
  3457. // based on where the steppers are positioned.
  3458. set_current_from_steppers_for_axis(ALL_AXES);
  3459. // Sync the planner to where the steppers stopped
  3460. SYNC_PLAN_POSITION_KINEMATIC();
  3461. }
  3462. setup_for_endstop_or_probe_move();
  3463. // Deploy the probe. Probe will raise if needed.
  3464. if (DEPLOY_PROBE()) {
  3465. planner.abl_enabled = abl_should_enable;
  3466. return;
  3467. }
  3468. float xProbe = 0, yProbe = 0, measured_z = 0;
  3469. #if ABL_GRID
  3470. // probe at the points of a lattice grid
  3471. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3472. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3473. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3474. float zoffset = zprobe_zoffset;
  3475. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3476. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3477. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3478. || left_probe_bed_position != bilinear_start[X_AXIS]
  3479. || front_probe_bed_position != bilinear_start[Y_AXIS]
  3480. ) {
  3481. if (dryrun) {
  3482. // Before reset bed level, re-enable to correct the position
  3483. planner.abl_enabled = abl_should_enable;
  3484. }
  3485. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3486. reset_bed_level();
  3487. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3488. bilinear_grid_spacing_virt[X_AXIS] = xGridSpacing / (BILINEAR_SUBDIVISIONS);
  3489. bilinear_grid_spacing_virt[Y_AXIS] = yGridSpacing / (BILINEAR_SUBDIVISIONS);
  3490. #endif
  3491. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3492. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3493. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3494. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3495. // Can't re-enable (on error) until the new grid is written
  3496. abl_should_enable = false;
  3497. }
  3498. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3499. /**
  3500. * solve the plane equation ax + by + d = z
  3501. * A is the matrix with rows [x y 1] for all the probed points
  3502. * B is the vector of the Z positions
  3503. * the normal vector to the plane is formed by the coefficients of the
  3504. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3505. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3506. */
  3507. const int abl2 = abl_grid_points_x * abl_grid_points_y;
  3508. int indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3509. probe_index = -1;
  3510. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3511. eqnBVector[abl2], // "B" vector of Z points
  3512. mean = 0.0;
  3513. #endif // AUTO_BED_LEVELING_LINEAR
  3514. #if ENABLED(PROBE_Y_FIRST)
  3515. #define PR_OUTER_VAR xCount
  3516. #define PR_OUTER_NUM abl_grid_points_x
  3517. #define PR_INNER_VAR yCount
  3518. #define PR_INNER_NUM abl_grid_points_y
  3519. #else
  3520. #define PR_OUTER_VAR yCount
  3521. #define PR_OUTER_NUM abl_grid_points_y
  3522. #define PR_INNER_VAR xCount
  3523. #define PR_INNER_NUM abl_grid_points_x
  3524. #endif
  3525. bool zig = PR_OUTER_NUM & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3526. // Outer loop is Y with PROBE_Y_FIRST disabled
  3527. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_NUM; PR_OUTER_VAR++) {
  3528. int8_t inStart, inStop, inInc;
  3529. if (zig) { // away from origin
  3530. inStart = 0;
  3531. inStop = PR_INNER_NUM;
  3532. inInc = 1;
  3533. }
  3534. else { // towards origin
  3535. inStart = PR_INNER_NUM - 1;
  3536. inStop = -1;
  3537. inInc = -1;
  3538. }
  3539. zig = !zig; // zag
  3540. // Inner loop is Y with PROBE_Y_FIRST enabled
  3541. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3542. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3543. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3544. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3545. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3546. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3547. indexIntoAB[xCount][yCount] = ++probe_index;
  3548. #endif
  3549. #if IS_KINEMATIC
  3550. // Avoid probing outside the round or hexagonal area
  3551. float pos[XYZ] = { xProbe, yProbe, 0 };
  3552. if (!position_is_reachable(pos, true)) continue;
  3553. #endif
  3554. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3555. if (measured_z == NAN) {
  3556. planner.abl_enabled = abl_should_enable;
  3557. return;
  3558. }
  3559. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3560. mean += measured_z;
  3561. eqnBVector[probe_index] = measured_z;
  3562. eqnAMatrix[probe_index + 0 * abl2] = xProbe;
  3563. eqnAMatrix[probe_index + 1 * abl2] = yProbe;
  3564. eqnAMatrix[probe_index + 2 * abl2] = 1;
  3565. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3566. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3567. #endif
  3568. idle();
  3569. } // inner
  3570. } // outer
  3571. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3572. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3573. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3574. #endif
  3575. // Probe at 3 arbitrary points
  3576. vector_3 points[3] = {
  3577. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3578. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3579. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3580. };
  3581. for (uint8_t i = 0; i < 3; ++i) {
  3582. // Retain the last probe position
  3583. xProbe = LOGICAL_X_POSITION(points[i].x);
  3584. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3585. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3586. }
  3587. if (measured_z == NAN) {
  3588. planner.abl_enabled = abl_should_enable;
  3589. return;
  3590. }
  3591. if (!dryrun) {
  3592. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3593. if (planeNormal.z < 0) {
  3594. planeNormal.x *= -1;
  3595. planeNormal.y *= -1;
  3596. planeNormal.z *= -1;
  3597. }
  3598. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3599. // Can't re-enable (on error) until the new grid is written
  3600. abl_should_enable = false;
  3601. }
  3602. #endif // AUTO_BED_LEVELING_3POINT
  3603. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3604. if (STOW_PROBE()) {
  3605. planner.abl_enabled = abl_should_enable;
  3606. return;
  3607. }
  3608. //
  3609. // Unless this is a dry run, auto bed leveling will
  3610. // definitely be enabled after this point
  3611. //
  3612. // Restore state after probing
  3613. clean_up_after_endstop_or_probe_move();
  3614. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3615. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3616. #endif
  3617. // Calculate leveling, print reports, correct the position
  3618. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3619. if (!dryrun) extrapolate_unprobed_bed_level();
  3620. print_bilinear_leveling_grid();
  3621. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3622. bed_level_virt_interpolate();
  3623. bed_level_virt_print();
  3624. #endif
  3625. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3626. // For LINEAR leveling calculate matrix, print reports, correct the position
  3627. // solve lsq problem
  3628. float plane_equation_coefficients[3];
  3629. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3630. mean /= abl2;
  3631. if (verbose_level) {
  3632. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3633. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3634. SERIAL_PROTOCOLPGM(" b: ");
  3635. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3636. SERIAL_PROTOCOLPGM(" d: ");
  3637. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3638. SERIAL_EOL;
  3639. if (verbose_level > 2) {
  3640. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3641. SERIAL_PROTOCOL_F(mean, 8);
  3642. SERIAL_EOL;
  3643. }
  3644. }
  3645. // Create the matrix but don't correct the position yet
  3646. if (!dryrun) {
  3647. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3648. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3649. );
  3650. }
  3651. // Show the Topography map if enabled
  3652. if (do_topography_map) {
  3653. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3654. " +--- BACK --+\n"
  3655. " | |\n"
  3656. " L | (+) | R\n"
  3657. " E | | I\n"
  3658. " F | (-) N (+) | G\n"
  3659. " T | | H\n"
  3660. " | (-) | T\n"
  3661. " | |\n"
  3662. " O-- FRONT --+\n"
  3663. " (0,0)");
  3664. float min_diff = 999;
  3665. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3666. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3667. int ind = indexIntoAB[xx][yy];
  3668. float diff = eqnBVector[ind] - mean,
  3669. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3670. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3671. z_tmp = 0;
  3672. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3673. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3674. if (diff >= 0.0)
  3675. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3676. else
  3677. SERIAL_PROTOCOLCHAR(' ');
  3678. SERIAL_PROTOCOL_F(diff, 5);
  3679. } // xx
  3680. SERIAL_EOL;
  3681. } // yy
  3682. SERIAL_EOL;
  3683. if (verbose_level > 3) {
  3684. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3685. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3686. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3687. int ind = indexIntoAB[xx][yy];
  3688. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3689. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3690. z_tmp = 0;
  3691. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3692. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3693. if (diff >= 0.0)
  3694. SERIAL_PROTOCOLPGM(" +");
  3695. // Include + for column alignment
  3696. else
  3697. SERIAL_PROTOCOLCHAR(' ');
  3698. SERIAL_PROTOCOL_F(diff, 5);
  3699. } // xx
  3700. SERIAL_EOL;
  3701. } // yy
  3702. SERIAL_EOL;
  3703. }
  3704. } //do_topography_map
  3705. #endif // AUTO_BED_LEVELING_LINEAR
  3706. #if ABL_PLANAR
  3707. // For LINEAR and 3POINT leveling correct the current position
  3708. if (verbose_level > 0)
  3709. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3710. if (!dryrun) {
  3711. //
  3712. // Correct the current XYZ position based on the tilted plane.
  3713. //
  3714. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3715. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3716. #endif
  3717. float converted[XYZ];
  3718. COPY(converted, current_position);
  3719. planner.abl_enabled = true;
  3720. planner.unapply_leveling(converted); // use conversion machinery
  3721. planner.abl_enabled = false;
  3722. // Use the last measured distance to the bed, if possible
  3723. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3724. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3725. ) {
  3726. float simple_z = current_position[Z_AXIS] - (measured_z - (-zprobe_zoffset));
  3727. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3728. if (DEBUGGING(LEVELING)) {
  3729. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3730. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  3731. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  3732. }
  3733. #endif
  3734. converted[Z_AXIS] = simple_z;
  3735. }
  3736. // The rotated XY and corrected Z are now current_position
  3737. COPY(current_position, converted);
  3738. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3739. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3740. #endif
  3741. }
  3742. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3743. if (!dryrun) {
  3744. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3745. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3746. #endif
  3747. // Unapply the offset because it is going to be immediately applied
  3748. // and cause compensation movement in Z
  3749. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3750. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3751. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3752. #endif
  3753. }
  3754. #endif // ABL_PLANAR
  3755. #ifdef Z_PROBE_END_SCRIPT
  3756. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3757. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3758. #endif
  3759. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3760. stepper.synchronize();
  3761. #endif
  3762. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3763. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3764. #endif
  3765. report_current_position();
  3766. KEEPALIVE_STATE(IN_HANDLER);
  3767. // Auto Bed Leveling is complete! Enable if possible.
  3768. planner.abl_enabled = dryrun ? abl_should_enable : true;
  3769. if (planner.abl_enabled)
  3770. SYNC_PLAN_POSITION_KINEMATIC();
  3771. }
  3772. #endif // HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3773. #if HAS_BED_PROBE
  3774. /**
  3775. * G30: Do a single Z probe at the current XY
  3776. * Usage:
  3777. * G30 <X#> <Y#> <S#>
  3778. * X = Probe X position (default=current probe position)
  3779. * Y = Probe Y position (default=current probe position)
  3780. * S = Stows the probe if 1 (default=1)
  3781. */
  3782. inline void gcode_G30() {
  3783. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3784. Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3785. float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
  3786. if (!position_is_reachable(pos, true)) return;
  3787. bool stow = code_seen('S') ? code_value_bool() : true;
  3788. // Disable leveling so the planner won't mess with us
  3789. #if PLANNER_LEVELING
  3790. set_bed_leveling_enabled(false);
  3791. #endif
  3792. setup_for_endstop_or_probe_move();
  3793. float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
  3794. SERIAL_PROTOCOLPGM("Bed X: ");
  3795. SERIAL_PROTOCOL(X_probe_location + 0.0001);
  3796. SERIAL_PROTOCOLPGM(" Y: ");
  3797. SERIAL_PROTOCOL(Y_probe_location + 0.0001);
  3798. SERIAL_PROTOCOLPGM(" Z: ");
  3799. SERIAL_PROTOCOLLN(measured_z - -zprobe_zoffset + 0.0001);
  3800. clean_up_after_endstop_or_probe_move();
  3801. report_current_position();
  3802. }
  3803. #if ENABLED(Z_PROBE_SLED)
  3804. /**
  3805. * G31: Deploy the Z probe
  3806. */
  3807. inline void gcode_G31() { DEPLOY_PROBE(); }
  3808. /**
  3809. * G32: Stow the Z probe
  3810. */
  3811. inline void gcode_G32() { STOW_PROBE(); }
  3812. #endif // Z_PROBE_SLED
  3813. #endif // HAS_BED_PROBE
  3814. #if ENABLED(G38_PROBE_TARGET)
  3815. static bool G38_run_probe() {
  3816. bool G38_pass_fail = false;
  3817. // Get direction of move and retract
  3818. float retract_mm[XYZ];
  3819. LOOP_XYZ(i) {
  3820. float dist = destination[i] - current_position[i];
  3821. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  3822. }
  3823. stepper.synchronize(); // wait until the machine is idle
  3824. // Move until destination reached or target hit
  3825. endstops.enable(true);
  3826. G38_move = true;
  3827. G38_endstop_hit = false;
  3828. prepare_move_to_destination();
  3829. stepper.synchronize();
  3830. G38_move = false;
  3831. endstops.hit_on_purpose();
  3832. set_current_from_steppers_for_axis(ALL_AXES);
  3833. SYNC_PLAN_POSITION_KINEMATIC();
  3834. // Only do remaining moves if target was hit
  3835. if (G38_endstop_hit) {
  3836. G38_pass_fail = true;
  3837. // Move away by the retract distance
  3838. set_destination_to_current();
  3839. LOOP_XYZ(i) destination[i] += retract_mm[i];
  3840. endstops.enable(false);
  3841. prepare_move_to_destination();
  3842. stepper.synchronize();
  3843. feedrate_mm_s /= 4;
  3844. // Bump the target more slowly
  3845. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  3846. endstops.enable(true);
  3847. G38_move = true;
  3848. prepare_move_to_destination();
  3849. stepper.synchronize();
  3850. G38_move = false;
  3851. set_current_from_steppers_for_axis(ALL_AXES);
  3852. SYNC_PLAN_POSITION_KINEMATIC();
  3853. }
  3854. endstops.hit_on_purpose();
  3855. endstops.not_homing();
  3856. return G38_pass_fail;
  3857. }
  3858. /**
  3859. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  3860. * G38.3 - probe toward workpiece, stop on contact
  3861. *
  3862. * Like G28 except uses Z min endstop for all axes
  3863. */
  3864. inline void gcode_G38(bool is_38_2) {
  3865. // Get X Y Z E F
  3866. gcode_get_destination();
  3867. setup_for_endstop_or_probe_move();
  3868. // If any axis has enough movement, do the move
  3869. LOOP_XYZ(i)
  3870. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  3871. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  3872. // If G38.2 fails throw an error
  3873. if (!G38_run_probe() && is_38_2) {
  3874. SERIAL_ERROR_START;
  3875. SERIAL_ERRORLNPGM("Failed to reach target");
  3876. }
  3877. break;
  3878. }
  3879. clean_up_after_endstop_or_probe_move();
  3880. }
  3881. #endif // G38_PROBE_TARGET
  3882. /**
  3883. * G92: Set current position to given X Y Z E
  3884. */
  3885. inline void gcode_G92() {
  3886. bool didXYZ = false,
  3887. didE = code_seen('E');
  3888. if (!didE) stepper.synchronize();
  3889. LOOP_XYZE(i) {
  3890. if (code_seen(axis_codes[i])) {
  3891. #if IS_SCARA
  3892. current_position[i] = code_value_axis_units(i);
  3893. if (i != E_AXIS) didXYZ = true;
  3894. #else
  3895. #if DISABLED(NO_WORKSPACE_OFFSETS)
  3896. float p = current_position[i];
  3897. #endif
  3898. float v = code_value_axis_units(i);
  3899. current_position[i] = v;
  3900. if (i != E_AXIS) {
  3901. didXYZ = true;
  3902. #if DISABLED(NO_WORKSPACE_OFFSETS)
  3903. position_shift[i] += v - p; // Offset the coordinate space
  3904. update_software_endstops((AxisEnum)i);
  3905. #endif
  3906. }
  3907. #endif
  3908. }
  3909. }
  3910. if (didXYZ)
  3911. SYNC_PLAN_POSITION_KINEMATIC();
  3912. else if (didE)
  3913. sync_plan_position_e();
  3914. report_current_position();
  3915. }
  3916. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  3917. /**
  3918. * M0: Unconditional stop - Wait for user button press on LCD
  3919. * M1: Conditional stop - Wait for user button press on LCD
  3920. */
  3921. inline void gcode_M0_M1() {
  3922. char* args = current_command_args;
  3923. millis_t codenum = 0;
  3924. bool hasP = false, hasS = false;
  3925. if (code_seen('P')) {
  3926. codenum = code_value_millis(); // milliseconds to wait
  3927. hasP = codenum > 0;
  3928. }
  3929. if (code_seen('S')) {
  3930. codenum = code_value_millis_from_seconds(); // seconds to wait
  3931. hasS = codenum > 0;
  3932. }
  3933. #if ENABLED(ULTIPANEL)
  3934. if (!hasP && !hasS && *args != '\0')
  3935. lcd_setstatus(args, true);
  3936. else {
  3937. LCD_MESSAGEPGM(MSG_USERWAIT);
  3938. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3939. dontExpireStatus();
  3940. #endif
  3941. }
  3942. #else
  3943. if (!hasP && !hasS && *args != '\0') {
  3944. SERIAL_ECHO_START;
  3945. SERIAL_ECHOLN(args);
  3946. }
  3947. #endif
  3948. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3949. wait_for_user = true;
  3950. stepper.synchronize();
  3951. refresh_cmd_timeout();
  3952. if (codenum > 0) {
  3953. codenum += previous_cmd_ms; // wait until this time for a click
  3954. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3955. }
  3956. else {
  3957. #if ENABLED(ULTIPANEL)
  3958. if (lcd_detected()) {
  3959. while (wait_for_user) idle();
  3960. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  3961. }
  3962. #else
  3963. while (wait_for_user) idle();
  3964. #endif
  3965. }
  3966. wait_for_user = false;
  3967. KEEPALIVE_STATE(IN_HANDLER);
  3968. }
  3969. #endif // EMERGENCY_PARSER || ULTIPANEL
  3970. /**
  3971. * M17: Enable power on all stepper motors
  3972. */
  3973. inline void gcode_M17() {
  3974. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3975. enable_all_steppers();
  3976. }
  3977. #if IS_KINEMATIC
  3978. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  3979. #else
  3980. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  3981. #endif
  3982. #if ENABLED(PARK_HEAD_ON_PAUSE)
  3983. float resume_position[XYZE];
  3984. bool move_away_flag = false;
  3985. inline void move_back_on_resume() {
  3986. if (!move_away_flag) return;
  3987. move_away_flag = false;
  3988. // Set extruder to saved position
  3989. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  3990. planner.set_e_position_mm(current_position[E_AXIS]);
  3991. #if IS_KINEMATIC
  3992. // Move XYZ to starting position
  3993. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  3994. #else
  3995. // Move XY to starting position, then Z
  3996. destination[X_AXIS] = resume_position[X_AXIS];
  3997. destination[Y_AXIS] = resume_position[Y_AXIS];
  3998. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  3999. destination[Z_AXIS] = resume_position[Z_AXIS];
  4000. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4001. #endif
  4002. stepper.synchronize();
  4003. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4004. filament_ran_out = false;
  4005. #endif
  4006. set_current_to_destination();
  4007. }
  4008. #endif // PARK_HEAD_ON_PAUSE
  4009. #if ENABLED(SDSUPPORT)
  4010. /**
  4011. * M20: List SD card to serial output
  4012. */
  4013. inline void gcode_M20() {
  4014. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4015. card.ls();
  4016. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4017. }
  4018. /**
  4019. * M21: Init SD Card
  4020. */
  4021. inline void gcode_M21() { card.initsd(); }
  4022. /**
  4023. * M22: Release SD Card
  4024. */
  4025. inline void gcode_M22() { card.release(); }
  4026. /**
  4027. * M23: Open a file
  4028. */
  4029. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4030. /**
  4031. * M24: Start or Resume SD Print
  4032. */
  4033. inline void gcode_M24() {
  4034. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4035. move_back_on_resume();
  4036. #endif
  4037. card.startFileprint();
  4038. print_job_timer.start();
  4039. }
  4040. /**
  4041. * M25: Pause SD Print
  4042. */
  4043. inline void gcode_M25() {
  4044. card.pauseSDPrint();
  4045. print_job_timer.pause();
  4046. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4047. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4048. #endif
  4049. }
  4050. /**
  4051. * M26: Set SD Card file index
  4052. */
  4053. inline void gcode_M26() {
  4054. if (card.cardOK && code_seen('S'))
  4055. card.setIndex(code_value_long());
  4056. }
  4057. /**
  4058. * M27: Get SD Card status
  4059. */
  4060. inline void gcode_M27() { card.getStatus(); }
  4061. /**
  4062. * M28: Start SD Write
  4063. */
  4064. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4065. /**
  4066. * M29: Stop SD Write
  4067. * Processed in write to file routine above
  4068. */
  4069. inline void gcode_M29() {
  4070. // card.saving = false;
  4071. }
  4072. /**
  4073. * M30 <filename>: Delete SD Card file
  4074. */
  4075. inline void gcode_M30() {
  4076. if (card.cardOK) {
  4077. card.closefile();
  4078. card.removeFile(current_command_args);
  4079. }
  4080. }
  4081. #endif // SDSUPPORT
  4082. /**
  4083. * M31: Get the time since the start of SD Print (or last M109)
  4084. */
  4085. inline void gcode_M31() {
  4086. char buffer[21];
  4087. duration_t elapsed = print_job_timer.duration();
  4088. elapsed.toString(buffer);
  4089. lcd_setstatus(buffer);
  4090. SERIAL_ECHO_START;
  4091. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4092. #if ENABLED(AUTOTEMP)
  4093. thermalManager.autotempShutdown();
  4094. #endif
  4095. }
  4096. #if ENABLED(SDSUPPORT)
  4097. /**
  4098. * M32: Select file and start SD Print
  4099. */
  4100. inline void gcode_M32() {
  4101. if (card.sdprinting)
  4102. stepper.synchronize();
  4103. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4104. if (!namestartpos)
  4105. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4106. else
  4107. namestartpos++; //to skip the '!'
  4108. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4109. if (card.cardOK) {
  4110. card.openFile(namestartpos, true, call_procedure);
  4111. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4112. card.setIndex(code_value_long());
  4113. card.startFileprint();
  4114. // Procedure calls count as normal print time.
  4115. if (!call_procedure) print_job_timer.start();
  4116. }
  4117. }
  4118. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4119. /**
  4120. * M33: Get the long full path of a file or folder
  4121. *
  4122. * Parameters:
  4123. * <dospath> Case-insensitive DOS-style path to a file or folder
  4124. *
  4125. * Example:
  4126. * M33 miscel~1/armchair/armcha~1.gco
  4127. *
  4128. * Output:
  4129. * /Miscellaneous/Armchair/Armchair.gcode
  4130. */
  4131. inline void gcode_M33() {
  4132. card.printLongPath(current_command_args);
  4133. }
  4134. #endif
  4135. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4136. /**
  4137. * M34: Set SD Card Sorting Options
  4138. */
  4139. inline void gcode_M34() {
  4140. if (code_seen('S')) card.setSortOn(code_value_bool());
  4141. if (code_seen('F')) {
  4142. int v = code_value_long();
  4143. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4144. }
  4145. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4146. }
  4147. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4148. /**
  4149. * M928: Start SD Write
  4150. */
  4151. inline void gcode_M928() {
  4152. card.openLogFile(current_command_args);
  4153. }
  4154. #endif // SDSUPPORT
  4155. /**
  4156. * Sensitive pin test for M42, M226
  4157. */
  4158. static bool pin_is_protected(uint8_t pin) {
  4159. static const int sensitive_pins[] = SENSITIVE_PINS;
  4160. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4161. if (sensitive_pins[i] == pin) return true;
  4162. return false;
  4163. }
  4164. /**
  4165. * M42: Change pin status via GCode
  4166. *
  4167. * P<pin> Pin number (LED if omitted)
  4168. * S<byte> Pin status from 0 - 255
  4169. */
  4170. inline void gcode_M42() {
  4171. if (!code_seen('S')) return;
  4172. int pin_status = code_value_int();
  4173. if (pin_status < 0 || pin_status > 255) return;
  4174. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4175. if (pin_number < 0) return;
  4176. if (pin_is_protected(pin_number)) {
  4177. SERIAL_ERROR_START;
  4178. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4179. return;
  4180. }
  4181. pinMode(pin_number, OUTPUT);
  4182. digitalWrite(pin_number, pin_status);
  4183. analogWrite(pin_number, pin_status);
  4184. #if FAN_COUNT > 0
  4185. switch (pin_number) {
  4186. #if HAS_FAN0
  4187. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4188. #endif
  4189. #if HAS_FAN1
  4190. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4191. #endif
  4192. #if HAS_FAN2
  4193. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4194. #endif
  4195. }
  4196. #endif
  4197. }
  4198. #if ENABLED(PINS_DEBUGGING)
  4199. #include "pinsDebug.h"
  4200. /**
  4201. * M43: Pin report and debug
  4202. *
  4203. * E<bool> Enable / disable background endstop monitoring
  4204. * - Machine continues to operate
  4205. * - Reports changes to endstops
  4206. * - Toggles LED when an endstop changes
  4207. *
  4208. * or
  4209. *
  4210. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  4211. * W<bool> Watch pins -reporting changes- until reset, click, or M108.
  4212. * I<bool> Flag to ignore Marlin's pin protection.
  4213. *
  4214. */
  4215. inline void gcode_M43() {
  4216. // Enable or disable endstop monitoring
  4217. if (code_seen('E')) {
  4218. endstop_monitor_flag = code_value_bool();
  4219. SERIAL_PROTOCOLPGM("endstop monitor ");
  4220. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  4221. SERIAL_PROTOCOLLNPGM("abled");
  4222. return;
  4223. }
  4224. // Get the range of pins to test or watch
  4225. int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
  4226. if (code_seen('P')) {
  4227. first_pin = last_pin = code_value_byte();
  4228. if (first_pin > NUM_DIGITAL_PINS - 1) return;
  4229. }
  4230. const bool ignore_protection = code_seen('I') ? code_value_bool() : false;
  4231. // Watch until click, M108, or reset
  4232. if (code_seen('W') && code_value_bool()) { // watch digital pins
  4233. byte pin_state[last_pin - first_pin + 1];
  4234. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4235. if (pin_is_protected(pin) && !ignore_protection) continue;
  4236. pinMode(pin, INPUT_PULLUP);
  4237. // if (IS_ANALOG(pin))
  4238. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  4239. // else
  4240. pin_state[pin - first_pin] = digitalRead(pin);
  4241. }
  4242. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4243. wait_for_user = true;
  4244. #endif
  4245. for(;;) {
  4246. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4247. if (pin_is_protected(pin)) continue;
  4248. byte val;
  4249. // if (IS_ANALOG(pin))
  4250. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  4251. // else
  4252. val = digitalRead(pin);
  4253. if (val != pin_state[pin - first_pin]) {
  4254. report_pin_state(pin);
  4255. pin_state[pin - first_pin] = val;
  4256. }
  4257. }
  4258. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4259. if (!wait_for_user) break;
  4260. #endif
  4261. safe_delay(500);
  4262. }
  4263. return;
  4264. }
  4265. // Report current state of selected pin(s)
  4266. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  4267. report_pin_state_extended(pin, ignore_protection);
  4268. }
  4269. #endif // PINS_DEBUGGING
  4270. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  4271. /**
  4272. * M48: Z probe repeatability measurement function.
  4273. *
  4274. * Usage:
  4275. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  4276. * P = Number of sampled points (4-50, default 10)
  4277. * X = Sample X position
  4278. * Y = Sample Y position
  4279. * V = Verbose level (0-4, default=1)
  4280. * E = Engage Z probe for each reading
  4281. * L = Number of legs of movement before probe
  4282. * S = Schizoid (Or Star if you prefer)
  4283. *
  4284. * This function assumes the bed has been homed. Specifically, that a G28 command
  4285. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  4286. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4287. * regenerated.
  4288. */
  4289. inline void gcode_M48() {
  4290. #if ENABLED(AUTO_BED_LEVELING_UBL)
  4291. bool bed_leveling_state_at_entry=0;
  4292. bed_leveling_state_at_entry = ubl.state.active;
  4293. #endif
  4294. if (axis_unhomed_error(true, true, true)) return;
  4295. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4296. if (verbose_level < 0 || verbose_level > 4) {
  4297. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  4298. return;
  4299. }
  4300. if (verbose_level > 0)
  4301. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  4302. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  4303. if (n_samples < 4 || n_samples > 50) {
  4304. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  4305. return;
  4306. }
  4307. float X_current = current_position[X_AXIS],
  4308. Y_current = current_position[Y_AXIS];
  4309. bool stow_probe_after_each = code_seen('E');
  4310. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  4311. #if DISABLED(DELTA)
  4312. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  4313. out_of_range_error(PSTR("X"));
  4314. return;
  4315. }
  4316. #endif
  4317. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4318. #if DISABLED(DELTA)
  4319. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  4320. out_of_range_error(PSTR("Y"));
  4321. return;
  4322. }
  4323. #else
  4324. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  4325. if (!position_is_reachable(pos, true)) {
  4326. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  4327. return;
  4328. }
  4329. #endif
  4330. bool seen_L = code_seen('L');
  4331. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  4332. if (n_legs > 15) {
  4333. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  4334. return;
  4335. }
  4336. if (n_legs == 1) n_legs = 2;
  4337. bool schizoid_flag = code_seen('S');
  4338. if (schizoid_flag && !seen_L) n_legs = 7;
  4339. /**
  4340. * Now get everything to the specified probe point So we can safely do a
  4341. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  4342. * we don't want to use that as a starting point for each probe.
  4343. */
  4344. if (verbose_level > 2)
  4345. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  4346. // Disable bed level correction in M48 because we want the raw data when we probe
  4347. #if HAS_ABL
  4348. const bool abl_was_enabled = planner.abl_enabled;
  4349. set_bed_leveling_enabled(false);
  4350. #endif
  4351. setup_for_endstop_or_probe_move();
  4352. // Move to the first point, deploy, and probe
  4353. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  4354. randomSeed(millis());
  4355. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  4356. for (uint8_t n = 0; n < n_samples; n++) {
  4357. if (n_legs) {
  4358. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  4359. float angle = random(0.0, 360.0),
  4360. radius = random(
  4361. #if ENABLED(DELTA)
  4362. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  4363. #else
  4364. 5, X_MAX_LENGTH / 8
  4365. #endif
  4366. );
  4367. if (verbose_level > 3) {
  4368. SERIAL_ECHOPAIR("Starting radius: ", radius);
  4369. SERIAL_ECHOPAIR(" angle: ", angle);
  4370. SERIAL_ECHOPGM(" Direction: ");
  4371. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4372. SERIAL_ECHOLNPGM("Clockwise");
  4373. }
  4374. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4375. double delta_angle;
  4376. if (schizoid_flag)
  4377. // The points of a 5 point star are 72 degrees apart. We need to
  4378. // skip a point and go to the next one on the star.
  4379. delta_angle = dir * 2.0 * 72.0;
  4380. else
  4381. // If we do this line, we are just trying to move further
  4382. // around the circle.
  4383. delta_angle = dir * (float) random(25, 45);
  4384. angle += delta_angle;
  4385. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4386. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4387. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4388. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4389. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4390. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4391. #if DISABLED(DELTA)
  4392. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4393. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4394. #else
  4395. // If we have gone out too far, we can do a simple fix and scale the numbers
  4396. // back in closer to the origin.
  4397. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4398. X_current /= 1.25;
  4399. Y_current /= 1.25;
  4400. if (verbose_level > 3) {
  4401. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4402. SERIAL_ECHOLNPAIR(", ", Y_current);
  4403. }
  4404. }
  4405. #endif
  4406. if (verbose_level > 3) {
  4407. SERIAL_PROTOCOLPGM("Going to:");
  4408. SERIAL_ECHOPAIR(" X", X_current);
  4409. SERIAL_ECHOPAIR(" Y", Y_current);
  4410. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4411. }
  4412. do_blocking_move_to_xy(X_current, Y_current);
  4413. } // n_legs loop
  4414. } // n_legs
  4415. // Probe a single point
  4416. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4417. /**
  4418. * Get the current mean for the data points we have so far
  4419. */
  4420. double sum = 0.0;
  4421. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4422. mean = sum / (n + 1);
  4423. NOMORE(min, sample_set[n]);
  4424. NOLESS(max, sample_set[n]);
  4425. /**
  4426. * Now, use that mean to calculate the standard deviation for the
  4427. * data points we have so far
  4428. */
  4429. sum = 0.0;
  4430. for (uint8_t j = 0; j <= n; j++)
  4431. sum += sq(sample_set[j] - mean);
  4432. sigma = sqrt(sum / (n + 1));
  4433. if (verbose_level > 0) {
  4434. if (verbose_level > 1) {
  4435. SERIAL_PROTOCOL(n + 1);
  4436. SERIAL_PROTOCOLPGM(" of ");
  4437. SERIAL_PROTOCOL((int)n_samples);
  4438. SERIAL_PROTOCOLPGM(": z: ");
  4439. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4440. if (verbose_level > 2) {
  4441. SERIAL_PROTOCOLPGM(" mean: ");
  4442. SERIAL_PROTOCOL_F(mean, 4);
  4443. SERIAL_PROTOCOLPGM(" sigma: ");
  4444. SERIAL_PROTOCOL_F(sigma, 6);
  4445. SERIAL_PROTOCOLPGM(" min: ");
  4446. SERIAL_PROTOCOL_F(min, 3);
  4447. SERIAL_PROTOCOLPGM(" max: ");
  4448. SERIAL_PROTOCOL_F(max, 3);
  4449. SERIAL_PROTOCOLPGM(" range: ");
  4450. SERIAL_PROTOCOL_F(max-min, 3);
  4451. }
  4452. SERIAL_EOL;
  4453. }
  4454. }
  4455. } // End of probe loop
  4456. if (STOW_PROBE()) return;
  4457. SERIAL_PROTOCOLPGM("Finished!");
  4458. SERIAL_EOL;
  4459. if (verbose_level > 0) {
  4460. SERIAL_PROTOCOLPGM("Mean: ");
  4461. SERIAL_PROTOCOL_F(mean, 6);
  4462. SERIAL_PROTOCOLPGM(" Min: ");
  4463. SERIAL_PROTOCOL_F(min, 3);
  4464. SERIAL_PROTOCOLPGM(" Max: ");
  4465. SERIAL_PROTOCOL_F(max, 3);
  4466. SERIAL_PROTOCOLPGM(" Range: ");
  4467. SERIAL_PROTOCOL_F(max-min, 3);
  4468. SERIAL_EOL;
  4469. }
  4470. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4471. SERIAL_PROTOCOL_F(sigma, 6);
  4472. SERIAL_EOL;
  4473. SERIAL_EOL;
  4474. clean_up_after_endstop_or_probe_move();
  4475. // Re-enable bed level correction if it has been on
  4476. #if HAS_ABL
  4477. set_bed_leveling_enabled(abl_was_enabled);
  4478. #endif
  4479. #if ENABLED(AUTO_BED_LEVELING_UBL)
  4480. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  4481. ubl.state.active = bed_leveling_state_at_entry;
  4482. #endif
  4483. report_current_position();
  4484. }
  4485. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4486. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED)
  4487. inline void gcode_M49() {
  4488. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  4489. if ((g26_debug_flag = !g26_debug_flag))
  4490. SERIAL_PROTOCOLLNPGM("on.");
  4491. else
  4492. SERIAL_PROTOCOLLNPGM("off.");
  4493. }
  4494. #endif // AUTO_BED_LEVELING_UBL && UBL_MESH_EDIT_ENABLED
  4495. /**
  4496. * M75: Start print timer
  4497. */
  4498. inline void gcode_M75() { print_job_timer.start(); }
  4499. /**
  4500. * M76: Pause print timer
  4501. */
  4502. inline void gcode_M76() { print_job_timer.pause(); }
  4503. /**
  4504. * M77: Stop print timer
  4505. */
  4506. inline void gcode_M77() { print_job_timer.stop(); }
  4507. #if ENABLED(PRINTCOUNTER)
  4508. /**
  4509. * M78: Show print statistics
  4510. */
  4511. inline void gcode_M78() {
  4512. // "M78 S78" will reset the statistics
  4513. if (code_seen('S') && code_value_int() == 78)
  4514. print_job_timer.initStats();
  4515. else
  4516. print_job_timer.showStats();
  4517. }
  4518. #endif
  4519. /**
  4520. * M104: Set hot end temperature
  4521. */
  4522. inline void gcode_M104() {
  4523. if (get_target_extruder_from_command(104)) return;
  4524. if (DEBUGGING(DRYRUN)) return;
  4525. #if ENABLED(SINGLENOZZLE)
  4526. if (target_extruder != active_extruder) return;
  4527. #endif
  4528. if (code_seen('S')) {
  4529. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4530. #if ENABLED(DUAL_X_CARRIAGE)
  4531. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4532. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4533. #endif
  4534. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4535. /**
  4536. * Stop the timer at the end of print, starting is managed by
  4537. * 'heat and wait' M109.
  4538. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4539. * stand by mode, for instance in a dual extruder setup, without affecting
  4540. * the running print timer.
  4541. */
  4542. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4543. print_job_timer.stop();
  4544. LCD_MESSAGEPGM(WELCOME_MSG);
  4545. }
  4546. #endif
  4547. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) status_printf(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  4548. }
  4549. #if ENABLED(AUTOTEMP)
  4550. planner.autotemp_M104_M109();
  4551. #endif
  4552. }
  4553. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4554. void print_heaterstates() {
  4555. #if HAS_TEMP_HOTEND
  4556. SERIAL_PROTOCOLPGM(" T:");
  4557. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4558. SERIAL_PROTOCOLPGM(" /");
  4559. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4560. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4561. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4562. SERIAL_PROTOCOLCHAR(')');
  4563. #endif
  4564. #endif
  4565. #if HAS_TEMP_BED
  4566. SERIAL_PROTOCOLPGM(" B:");
  4567. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4568. SERIAL_PROTOCOLPGM(" /");
  4569. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4570. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4571. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4572. SERIAL_PROTOCOLCHAR(')');
  4573. #endif
  4574. #endif
  4575. #if HOTENDS > 1
  4576. HOTEND_LOOP() {
  4577. SERIAL_PROTOCOLPAIR(" T", e);
  4578. SERIAL_PROTOCOLCHAR(':');
  4579. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4580. SERIAL_PROTOCOLPGM(" /");
  4581. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4582. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4583. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4584. SERIAL_PROTOCOLCHAR(')');
  4585. #endif
  4586. }
  4587. #endif
  4588. SERIAL_PROTOCOLPGM(" @:");
  4589. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4590. #if HAS_TEMP_BED
  4591. SERIAL_PROTOCOLPGM(" B@:");
  4592. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  4593. #endif
  4594. #if HOTENDS > 1
  4595. HOTEND_LOOP() {
  4596. SERIAL_PROTOCOLPAIR(" @", e);
  4597. SERIAL_PROTOCOLCHAR(':');
  4598. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  4599. }
  4600. #endif
  4601. }
  4602. #endif
  4603. /**
  4604. * M105: Read hot end and bed temperature
  4605. */
  4606. inline void gcode_M105() {
  4607. if (get_target_extruder_from_command(105)) return;
  4608. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4609. SERIAL_PROTOCOLPGM(MSG_OK);
  4610. print_heaterstates();
  4611. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  4612. SERIAL_ERROR_START;
  4613. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  4614. #endif
  4615. SERIAL_EOL;
  4616. }
  4617. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  4618. static uint8_t auto_report_temp_interval;
  4619. static millis_t next_temp_report_ms;
  4620. /**
  4621. * M155: Set temperature auto-report interval. M155 S<seconds>
  4622. */
  4623. inline void gcode_M155() {
  4624. if (code_seen('S')) {
  4625. auto_report_temp_interval = code_value_byte();
  4626. NOMORE(auto_report_temp_interval, 60);
  4627. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4628. }
  4629. }
  4630. inline void auto_report_temperatures() {
  4631. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  4632. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4633. print_heaterstates();
  4634. SERIAL_EOL;
  4635. }
  4636. }
  4637. #endif // AUTO_REPORT_TEMPERATURES
  4638. #if FAN_COUNT > 0
  4639. /**
  4640. * M106: Set Fan Speed
  4641. *
  4642. * S<int> Speed between 0-255
  4643. * P<index> Fan index, if more than one fan
  4644. */
  4645. inline void gcode_M106() {
  4646. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4647. p = code_seen('P') ? code_value_ushort() : 0;
  4648. NOMORE(s, 255);
  4649. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4650. }
  4651. /**
  4652. * M107: Fan Off
  4653. */
  4654. inline void gcode_M107() {
  4655. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4656. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4657. }
  4658. #endif // FAN_COUNT > 0
  4659. #if DISABLED(EMERGENCY_PARSER)
  4660. /**
  4661. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4662. */
  4663. inline void gcode_M108() { wait_for_heatup = false; }
  4664. /**
  4665. * M112: Emergency Stop
  4666. */
  4667. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4668. /**
  4669. * M410: Quickstop - Abort all planned moves
  4670. *
  4671. * This will stop the carriages mid-move, so most likely they
  4672. * will be out of sync with the stepper position after this.
  4673. */
  4674. inline void gcode_M410() { quickstop_stepper(); }
  4675. #endif
  4676. #ifndef MIN_COOLING_SLOPE_DEG
  4677. #define MIN_COOLING_SLOPE_DEG 1.50
  4678. #endif
  4679. #ifndef MIN_COOLING_SLOPE_TIME
  4680. #define MIN_COOLING_SLOPE_TIME 60
  4681. #endif
  4682. /**
  4683. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4684. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4685. */
  4686. inline void gcode_M109() {
  4687. if (get_target_extruder_from_command(109)) return;
  4688. if (DEBUGGING(DRYRUN)) return;
  4689. #if ENABLED(SINGLENOZZLE)
  4690. if (target_extruder != active_extruder) return;
  4691. #endif
  4692. bool no_wait_for_cooling = code_seen('S');
  4693. if (no_wait_for_cooling || code_seen('R')) {
  4694. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4695. #if ENABLED(DUAL_X_CARRIAGE)
  4696. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4697. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4698. #endif
  4699. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4700. /**
  4701. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4702. * stand by mode, for instance in a dual extruder setup, without affecting
  4703. * the running print timer.
  4704. */
  4705. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4706. print_job_timer.stop();
  4707. LCD_MESSAGEPGM(WELCOME_MSG);
  4708. }
  4709. /**
  4710. * We do not check if the timer is already running because this check will
  4711. * be done for us inside the Stopwatch::start() method thus a running timer
  4712. * will not restart.
  4713. */
  4714. else print_job_timer.start();
  4715. #endif
  4716. if (thermalManager.isHeatingHotend(target_extruder)) status_printf(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  4717. }
  4718. #if ENABLED(AUTOTEMP)
  4719. planner.autotemp_M104_M109();
  4720. #endif
  4721. #if TEMP_RESIDENCY_TIME > 0
  4722. millis_t residency_start_ms = 0;
  4723. // Loop until the temperature has stabilized
  4724. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4725. #else
  4726. // Loop until the temperature is very close target
  4727. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4728. #endif //TEMP_RESIDENCY_TIME > 0
  4729. float theTarget = -1.0, old_temp = 9999.0;
  4730. bool wants_to_cool = false;
  4731. wait_for_heatup = true;
  4732. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4733. KEEPALIVE_STATE(NOT_BUSY);
  4734. do {
  4735. // Target temperature might be changed during the loop
  4736. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4737. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4738. theTarget = thermalManager.degTargetHotend(target_extruder);
  4739. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4740. if (no_wait_for_cooling && wants_to_cool) break;
  4741. }
  4742. now = millis();
  4743. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4744. next_temp_ms = now + 1000UL;
  4745. print_heaterstates();
  4746. #if TEMP_RESIDENCY_TIME > 0
  4747. SERIAL_PROTOCOLPGM(" W:");
  4748. if (residency_start_ms) {
  4749. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4750. SERIAL_PROTOCOLLN(rem);
  4751. }
  4752. else {
  4753. SERIAL_PROTOCOLLNPGM("?");
  4754. }
  4755. #else
  4756. SERIAL_EOL;
  4757. #endif
  4758. }
  4759. idle();
  4760. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4761. float temp = thermalManager.degHotend(target_extruder);
  4762. #if TEMP_RESIDENCY_TIME > 0
  4763. float temp_diff = fabs(theTarget - temp);
  4764. if (!residency_start_ms) {
  4765. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4766. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4767. }
  4768. else if (temp_diff > TEMP_HYSTERESIS) {
  4769. // Restart the timer whenever the temperature falls outside the hysteresis.
  4770. residency_start_ms = now;
  4771. }
  4772. #endif //TEMP_RESIDENCY_TIME > 0
  4773. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4774. if (wants_to_cool) {
  4775. // break after MIN_COOLING_SLOPE_TIME seconds
  4776. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4777. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4778. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4779. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4780. old_temp = temp;
  4781. }
  4782. }
  4783. } while (wait_for_heatup && TEMP_CONDITIONS);
  4784. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4785. KEEPALIVE_STATE(IN_HANDLER);
  4786. }
  4787. #if HAS_TEMP_BED
  4788. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4789. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4790. #endif
  4791. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4792. #define MIN_COOLING_SLOPE_TIME_BED 60
  4793. #endif
  4794. /**
  4795. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4796. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4797. */
  4798. inline void gcode_M190() {
  4799. if (DEBUGGING(DRYRUN)) return;
  4800. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4801. bool no_wait_for_cooling = code_seen('S');
  4802. if (no_wait_for_cooling || code_seen('R')) {
  4803. thermalManager.setTargetBed(code_value_temp_abs());
  4804. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4805. if (code_value_temp_abs() > BED_MINTEMP) {
  4806. /**
  4807. * We start the timer when 'heating and waiting' command arrives, LCD
  4808. * functions never wait. Cooling down managed by extruders.
  4809. *
  4810. * We do not check if the timer is already running because this check will
  4811. * be done for us inside the Stopwatch::start() method thus a running timer
  4812. * will not restart.
  4813. */
  4814. print_job_timer.start();
  4815. }
  4816. #endif
  4817. }
  4818. #if TEMP_BED_RESIDENCY_TIME > 0
  4819. millis_t residency_start_ms = 0;
  4820. // Loop until the temperature has stabilized
  4821. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4822. #else
  4823. // Loop until the temperature is very close target
  4824. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4825. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4826. float theTarget = -1.0, old_temp = 9999.0;
  4827. bool wants_to_cool = false;
  4828. wait_for_heatup = true;
  4829. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4830. KEEPALIVE_STATE(NOT_BUSY);
  4831. target_extruder = active_extruder; // for print_heaterstates
  4832. do {
  4833. // Target temperature might be changed during the loop
  4834. if (theTarget != thermalManager.degTargetBed()) {
  4835. wants_to_cool = thermalManager.isCoolingBed();
  4836. theTarget = thermalManager.degTargetBed();
  4837. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4838. if (no_wait_for_cooling && wants_to_cool) break;
  4839. }
  4840. now = millis();
  4841. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4842. next_temp_ms = now + 1000UL;
  4843. print_heaterstates();
  4844. #if TEMP_BED_RESIDENCY_TIME > 0
  4845. SERIAL_PROTOCOLPGM(" W:");
  4846. if (residency_start_ms) {
  4847. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4848. SERIAL_PROTOCOLLN(rem);
  4849. }
  4850. else {
  4851. SERIAL_PROTOCOLLNPGM("?");
  4852. }
  4853. #else
  4854. SERIAL_EOL;
  4855. #endif
  4856. }
  4857. idle();
  4858. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4859. float temp = thermalManager.degBed();
  4860. #if TEMP_BED_RESIDENCY_TIME > 0
  4861. float temp_diff = fabs(theTarget - temp);
  4862. if (!residency_start_ms) {
  4863. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4864. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4865. }
  4866. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4867. // Restart the timer whenever the temperature falls outside the hysteresis.
  4868. residency_start_ms = now;
  4869. }
  4870. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4871. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4872. if (wants_to_cool) {
  4873. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4874. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4875. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4876. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4877. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4878. old_temp = temp;
  4879. }
  4880. }
  4881. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4882. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4883. KEEPALIVE_STATE(IN_HANDLER);
  4884. }
  4885. #endif // HAS_TEMP_BED
  4886. /**
  4887. * M110: Set Current Line Number
  4888. */
  4889. inline void gcode_M110() {
  4890. if (code_seen('N')) gcode_LastN = code_value_long();
  4891. }
  4892. /**
  4893. * M111: Set the debug level
  4894. */
  4895. inline void gcode_M111() {
  4896. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4897. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4898. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4899. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4900. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4901. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4902. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4903. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4904. #endif
  4905. const static char* const debug_strings[] PROGMEM = {
  4906. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4907. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4908. str_debug_32
  4909. #endif
  4910. };
  4911. SERIAL_ECHO_START;
  4912. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4913. if (marlin_debug_flags) {
  4914. uint8_t comma = 0;
  4915. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4916. if (TEST(marlin_debug_flags, i)) {
  4917. if (comma++) SERIAL_CHAR(',');
  4918. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4919. }
  4920. }
  4921. }
  4922. else {
  4923. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4924. }
  4925. SERIAL_EOL;
  4926. }
  4927. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4928. /**
  4929. * M113: Get or set Host Keepalive interval (0 to disable)
  4930. *
  4931. * S<seconds> Optional. Set the keepalive interval.
  4932. */
  4933. inline void gcode_M113() {
  4934. if (code_seen('S')) {
  4935. host_keepalive_interval = code_value_byte();
  4936. NOMORE(host_keepalive_interval, 60);
  4937. }
  4938. else {
  4939. SERIAL_ECHO_START;
  4940. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4941. }
  4942. }
  4943. #endif
  4944. #if ENABLED(BARICUDA)
  4945. #if HAS_HEATER_1
  4946. /**
  4947. * M126: Heater 1 valve open
  4948. */
  4949. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4950. /**
  4951. * M127: Heater 1 valve close
  4952. */
  4953. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4954. #endif
  4955. #if HAS_HEATER_2
  4956. /**
  4957. * M128: Heater 2 valve open
  4958. */
  4959. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4960. /**
  4961. * M129: Heater 2 valve close
  4962. */
  4963. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4964. #endif
  4965. #endif //BARICUDA
  4966. /**
  4967. * M140: Set bed temperature
  4968. */
  4969. inline void gcode_M140() {
  4970. if (DEBUGGING(DRYRUN)) return;
  4971. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4972. }
  4973. #if ENABLED(ULTIPANEL)
  4974. /**
  4975. * M145: Set the heatup state for a material in the LCD menu
  4976. * S<material> (0=PLA, 1=ABS)
  4977. * H<hotend temp>
  4978. * B<bed temp>
  4979. * F<fan speed>
  4980. */
  4981. inline void gcode_M145() {
  4982. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  4983. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  4984. SERIAL_ERROR_START;
  4985. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4986. }
  4987. else {
  4988. int v;
  4989. if (code_seen('H')) {
  4990. v = code_value_int();
  4991. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4992. }
  4993. if (code_seen('F')) {
  4994. v = code_value_int();
  4995. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  4996. }
  4997. #if TEMP_SENSOR_BED != 0
  4998. if (code_seen('B')) {
  4999. v = code_value_int();
  5000. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  5001. }
  5002. #endif
  5003. }
  5004. }
  5005. #endif // ULTIPANEL
  5006. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5007. /**
  5008. * M149: Set temperature units
  5009. */
  5010. inline void gcode_M149() {
  5011. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  5012. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  5013. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  5014. }
  5015. #endif
  5016. #if HAS_POWER_SWITCH
  5017. /**
  5018. * M80: Turn on Power Supply
  5019. */
  5020. inline void gcode_M80() {
  5021. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  5022. /**
  5023. * If you have a switch on suicide pin, this is useful
  5024. * if you want to start another print with suicide feature after
  5025. * a print without suicide...
  5026. */
  5027. #if HAS_SUICIDE
  5028. OUT_WRITE(SUICIDE_PIN, HIGH);
  5029. #endif
  5030. #if ENABLED(ULTIPANEL)
  5031. powersupply = true;
  5032. LCD_MESSAGEPGM(WELCOME_MSG);
  5033. lcd_update();
  5034. #endif
  5035. }
  5036. #endif // HAS_POWER_SWITCH
  5037. /**
  5038. * M81: Turn off Power, including Power Supply, if there is one.
  5039. *
  5040. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  5041. */
  5042. inline void gcode_M81() {
  5043. thermalManager.disable_all_heaters();
  5044. stepper.finish_and_disable();
  5045. #if FAN_COUNT > 0
  5046. #if FAN_COUNT > 1
  5047. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  5048. #else
  5049. fanSpeeds[0] = 0;
  5050. #endif
  5051. #endif
  5052. safe_delay(1000); // Wait 1 second before switching off
  5053. #if HAS_SUICIDE
  5054. stepper.synchronize();
  5055. suicide();
  5056. #elif HAS_POWER_SWITCH
  5057. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5058. #endif
  5059. #if ENABLED(ULTIPANEL)
  5060. #if HAS_POWER_SWITCH
  5061. powersupply = false;
  5062. #endif
  5063. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  5064. lcd_update();
  5065. #endif
  5066. }
  5067. /**
  5068. * M82: Set E codes absolute (default)
  5069. */
  5070. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  5071. /**
  5072. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  5073. */
  5074. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  5075. /**
  5076. * M18, M84: Disable all stepper motors
  5077. */
  5078. inline void gcode_M18_M84() {
  5079. if (code_seen('S')) {
  5080. stepper_inactive_time = code_value_millis_from_seconds();
  5081. }
  5082. else {
  5083. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  5084. if (all_axis) {
  5085. stepper.finish_and_disable();
  5086. }
  5087. else {
  5088. stepper.synchronize();
  5089. if (code_seen('X')) disable_x();
  5090. if (code_seen('Y')) disable_y();
  5091. if (code_seen('Z')) disable_z();
  5092. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5093. if (code_seen('E')) disable_e_steppers();
  5094. #endif
  5095. }
  5096. }
  5097. }
  5098. /**
  5099. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  5100. */
  5101. inline void gcode_M85() {
  5102. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  5103. }
  5104. /**
  5105. * Multi-stepper support for M92, M201, M203
  5106. */
  5107. #if ENABLED(DISTINCT_E_FACTORS)
  5108. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  5109. #define TARGET_EXTRUDER target_extruder
  5110. #else
  5111. #define GET_TARGET_EXTRUDER(CMD) NOOP
  5112. #define TARGET_EXTRUDER 0
  5113. #endif
  5114. /**
  5115. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  5116. * (Follows the same syntax as G92)
  5117. *
  5118. * With multiple extruders use T to specify which one.
  5119. */
  5120. inline void gcode_M92() {
  5121. GET_TARGET_EXTRUDER(92);
  5122. LOOP_XYZE(i) {
  5123. if (code_seen(axis_codes[i])) {
  5124. if (i == E_AXIS) {
  5125. float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  5126. if (value < 20.0) {
  5127. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  5128. planner.max_jerk[E_AXIS] *= factor;
  5129. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  5130. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  5131. }
  5132. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  5133. }
  5134. else {
  5135. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  5136. }
  5137. }
  5138. }
  5139. planner.refresh_positioning();
  5140. }
  5141. /**
  5142. * Output the current position to serial
  5143. */
  5144. static void report_current_position() {
  5145. SERIAL_PROTOCOLPGM("X:");
  5146. SERIAL_PROTOCOL(current_position[X_AXIS]);
  5147. SERIAL_PROTOCOLPGM(" Y:");
  5148. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  5149. SERIAL_PROTOCOLPGM(" Z:");
  5150. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  5151. SERIAL_PROTOCOLPGM(" E:");
  5152. SERIAL_PROTOCOL(current_position[E_AXIS]);
  5153. stepper.report_positions();
  5154. #if IS_SCARA
  5155. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  5156. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  5157. SERIAL_EOL;
  5158. #endif
  5159. }
  5160. /**
  5161. * M114: Output current position to serial port
  5162. */
  5163. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  5164. /**
  5165. * M115: Capabilities string
  5166. */
  5167. inline void gcode_M115() {
  5168. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  5169. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  5170. // EEPROM (M500, M501)
  5171. #if ENABLED(EEPROM_SETTINGS)
  5172. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  5173. #else
  5174. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  5175. #endif
  5176. // AUTOREPORT_TEMP (M155)
  5177. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  5178. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  5179. #else
  5180. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  5181. #endif
  5182. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  5183. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  5184. // AUTOLEVEL (G29)
  5185. #if HAS_ABL
  5186. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  5187. #else
  5188. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  5189. #endif
  5190. // Z_PROBE (G30)
  5191. #if HAS_BED_PROBE
  5192. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  5193. #else
  5194. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  5195. #endif
  5196. // SOFTWARE_POWER (G30)
  5197. #if HAS_POWER_SWITCH
  5198. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  5199. #else
  5200. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  5201. #endif
  5202. // TOGGLE_LIGHTS (M355)
  5203. #if HAS_CASE_LIGHT
  5204. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  5205. #else
  5206. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  5207. #endif
  5208. // EMERGENCY_PARSER (M108, M112, M410)
  5209. #if ENABLED(EMERGENCY_PARSER)
  5210. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  5211. #else
  5212. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  5213. #endif
  5214. #endif // EXTENDED_CAPABILITIES_REPORT
  5215. }
  5216. /**
  5217. * M117: Set LCD Status Message
  5218. */
  5219. inline void gcode_M117() {
  5220. lcd_setstatus(current_command_args);
  5221. }
  5222. /**
  5223. * M119: Output endstop states to serial output
  5224. */
  5225. inline void gcode_M119() { endstops.M119(); }
  5226. /**
  5227. * M120: Enable endstops and set non-homing endstop state to "enabled"
  5228. */
  5229. inline void gcode_M120() { endstops.enable_globally(true); }
  5230. /**
  5231. * M121: Disable endstops and set non-homing endstop state to "disabled"
  5232. */
  5233. inline void gcode_M121() { endstops.enable_globally(false); }
  5234. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5235. /**
  5236. * M125: Store current position and move to filament change position.
  5237. * Called on pause (by M25) to prevent material leaking onto the
  5238. * object. On resume (M24) the head will be moved back and the
  5239. * print will resume.
  5240. *
  5241. * If Marlin is compiled without SD Card support, M125 can be
  5242. * used directly to pause the print and move to park position,
  5243. * resuming with a button click or M108.
  5244. *
  5245. * L = override retract length
  5246. * X = override X
  5247. * Y = override Y
  5248. * Z = override Z raise
  5249. */
  5250. inline void gcode_M125() {
  5251. if (move_away_flag) return; // already paused
  5252. const bool job_running = print_job_timer.isRunning();
  5253. // there are blocks after this one, or sd printing
  5254. move_away_flag = job_running || planner.blocks_queued()
  5255. #if ENABLED(SDSUPPORT)
  5256. || card.sdprinting
  5257. #endif
  5258. ;
  5259. if (!move_away_flag) return; // nothing to pause
  5260. // M125 can be used to pause a print too
  5261. #if ENABLED(SDSUPPORT)
  5262. card.pauseSDPrint();
  5263. #endif
  5264. print_job_timer.pause();
  5265. // Save current position
  5266. COPY(resume_position, current_position);
  5267. set_destination_to_current();
  5268. // Initial retract before move to filament change position
  5269. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  5270. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5271. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  5272. #endif
  5273. ;
  5274. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5275. // Lift Z axis
  5276. const float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5277. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5278. FILAMENT_CHANGE_Z_ADD
  5279. #else
  5280. 0
  5281. #endif
  5282. ;
  5283. if (z_lift > 0) {
  5284. destination[Z_AXIS] += z_lift;
  5285. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5286. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5287. }
  5288. // Move XY axes to filament change position or given position
  5289. destination[X_AXIS] = code_seen('X') ? code_value_axis_units(X_AXIS) : 0
  5290. #ifdef FILAMENT_CHANGE_X_POS
  5291. + FILAMENT_CHANGE_X_POS
  5292. #endif
  5293. ;
  5294. destination[Y_AXIS] = code_seen('Y') ? code_value_axis_units(Y_AXIS) : 0
  5295. #ifdef FILAMENT_CHANGE_Y_POS
  5296. + FILAMENT_CHANGE_Y_POS
  5297. #endif
  5298. ;
  5299. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  5300. if (active_extruder > 0) {
  5301. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  5302. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  5303. }
  5304. #endif
  5305. clamp_to_software_endstops(destination);
  5306. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5307. set_current_to_destination();
  5308. stepper.synchronize();
  5309. disable_e_steppers();
  5310. #if DISABLED(SDSUPPORT)
  5311. // Wait for lcd click or M108
  5312. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5313. wait_for_user = true;
  5314. while (wait_for_user) idle();
  5315. KEEPALIVE_STATE(IN_HANDLER);
  5316. // Return to print position and continue
  5317. move_back_on_resume();
  5318. if (job_running) print_job_timer.start();
  5319. move_away_flag = false;
  5320. #endif
  5321. }
  5322. #endif // PARK_HEAD_ON_PAUSE
  5323. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  5324. void set_led_color(const uint8_t r, const uint8_t g, const uint8_t b) {
  5325. #if ENABLED(BLINKM)
  5326. // This variant uses i2c to send the RGB components to the device.
  5327. SendColors(r, g, b);
  5328. #else
  5329. // This variant uses 3 separate pins for the RGB components.
  5330. // If the pins can do PWM then their intensity will be set.
  5331. digitalWrite(RGB_LED_R_PIN, r ? HIGH : LOW);
  5332. digitalWrite(RGB_LED_G_PIN, g ? HIGH : LOW);
  5333. digitalWrite(RGB_LED_B_PIN, b ? HIGH : LOW);
  5334. analogWrite(RGB_LED_R_PIN, r);
  5335. analogWrite(RGB_LED_G_PIN, g);
  5336. analogWrite(RGB_LED_B_PIN, b);
  5337. #endif
  5338. }
  5339. /**
  5340. * M150: Set Status LED Color - Use R-U-B for R-G-B
  5341. *
  5342. * Always sets all 3 components. If a component is left out, set to 0.
  5343. *
  5344. * Examples:
  5345. *
  5346. * M150 R255 ; Turn LED red
  5347. * M150 R255 U127 ; Turn LED orange (PWM only)
  5348. * M150 ; Turn LED off
  5349. * M150 R U B ; Turn LED white
  5350. *
  5351. */
  5352. inline void gcode_M150() {
  5353. set_led_color(
  5354. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5355. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5356. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  5357. );
  5358. }
  5359. #endif // BLINKM || RGB_LED
  5360. /**
  5361. * M200: Set filament diameter and set E axis units to cubic units
  5362. *
  5363. * T<extruder> - Optional extruder number. Current extruder if omitted.
  5364. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  5365. */
  5366. inline void gcode_M200() {
  5367. if (get_target_extruder_from_command(200)) return;
  5368. if (code_seen('D')) {
  5369. // setting any extruder filament size disables volumetric on the assumption that
  5370. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5371. // for all extruders
  5372. volumetric_enabled = (code_value_linear_units() != 0.0);
  5373. if (volumetric_enabled) {
  5374. filament_size[target_extruder] = code_value_linear_units();
  5375. // make sure all extruders have some sane value for the filament size
  5376. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  5377. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  5378. }
  5379. }
  5380. else {
  5381. //reserved for setting filament diameter via UFID or filament measuring device
  5382. return;
  5383. }
  5384. calculate_volumetric_multipliers();
  5385. }
  5386. /**
  5387. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  5388. *
  5389. * With multiple extruders use T to specify which one.
  5390. */
  5391. inline void gcode_M201() {
  5392. GET_TARGET_EXTRUDER(201);
  5393. LOOP_XYZE(i) {
  5394. if (code_seen(axis_codes[i])) {
  5395. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5396. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units(a);
  5397. }
  5398. }
  5399. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5400. planner.reset_acceleration_rates();
  5401. }
  5402. #if 0 // Not used for Sprinter/grbl gen6
  5403. inline void gcode_M202() {
  5404. LOOP_XYZE(i) {
  5405. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  5406. }
  5407. }
  5408. #endif
  5409. /**
  5410. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  5411. *
  5412. * With multiple extruders use T to specify which one.
  5413. */
  5414. inline void gcode_M203() {
  5415. GET_TARGET_EXTRUDER(203);
  5416. LOOP_XYZE(i)
  5417. if (code_seen(axis_codes[i])) {
  5418. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5419. planner.max_feedrate_mm_s[a] = code_value_axis_units(a);
  5420. }
  5421. }
  5422. /**
  5423. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  5424. *
  5425. * P = Printing moves
  5426. * R = Retract only (no X, Y, Z) moves
  5427. * T = Travel (non printing) moves
  5428. *
  5429. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  5430. */
  5431. inline void gcode_M204() {
  5432. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  5433. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  5434. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  5435. }
  5436. if (code_seen('P')) {
  5437. planner.acceleration = code_value_linear_units();
  5438. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  5439. }
  5440. if (code_seen('R')) {
  5441. planner.retract_acceleration = code_value_linear_units();
  5442. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  5443. }
  5444. if (code_seen('T')) {
  5445. planner.travel_acceleration = code_value_linear_units();
  5446. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  5447. }
  5448. }
  5449. /**
  5450. * M205: Set Advanced Settings
  5451. *
  5452. * S = Min Feed Rate (units/s)
  5453. * T = Min Travel Feed Rate (units/s)
  5454. * B = Min Segment Time (µs)
  5455. * X = Max X Jerk (units/sec^2)
  5456. * Y = Max Y Jerk (units/sec^2)
  5457. * Z = Max Z Jerk (units/sec^2)
  5458. * E = Max E Jerk (units/sec^2)
  5459. */
  5460. inline void gcode_M205() {
  5461. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  5462. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  5463. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  5464. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  5465. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5466. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  5467. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  5468. }
  5469. #if DISABLED(NO_WORKSPACE_OFFSETS)
  5470. /**
  5471. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  5472. */
  5473. inline void gcode_M206() {
  5474. LOOP_XYZ(i)
  5475. if (code_seen(axis_codes[i]))
  5476. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  5477. #if ENABLED(MORGAN_SCARA)
  5478. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  5479. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  5480. #endif
  5481. SYNC_PLAN_POSITION_KINEMATIC();
  5482. report_current_position();
  5483. }
  5484. #endif // NO_WORKSPACE_OFFSETS
  5485. #if ENABLED(DELTA)
  5486. /**
  5487. * M665: Set delta configurations
  5488. *
  5489. * L = diagonal rod
  5490. * R = delta radius
  5491. * S = segments per second
  5492. * A = Alpha (Tower 1) diagonal rod trim
  5493. * B = Beta (Tower 2) diagonal rod trim
  5494. * C = Gamma (Tower 3) diagonal rod trim
  5495. */
  5496. inline void gcode_M665() {
  5497. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  5498. if (code_seen('R')) delta_radius = code_value_linear_units();
  5499. if (code_seen('S')) delta_segments_per_second = code_value_float();
  5500. if (code_seen('A')) delta_diagonal_rod_trim[A_AXIS] = code_value_linear_units();
  5501. if (code_seen('B')) delta_diagonal_rod_trim[B_AXIS] = code_value_linear_units();
  5502. if (code_seen('C')) delta_diagonal_rod_trim[C_AXIS] = code_value_linear_units();
  5503. if (code_seen('I')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  5504. if (code_seen('J')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  5505. if (code_seen('K')) delta_tower_angle_trim[C_AXIS] = code_value_linear_units();
  5506. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  5507. }
  5508. /**
  5509. * M666: Set delta endstop adjustment
  5510. */
  5511. inline void gcode_M666() {
  5512. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5513. if (DEBUGGING(LEVELING)) {
  5514. SERIAL_ECHOLNPGM(">>> gcode_M666");
  5515. }
  5516. #endif
  5517. LOOP_XYZ(i) {
  5518. if (code_seen(axis_codes[i])) {
  5519. endstop_adj[i] = code_value_axis_units(i);
  5520. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5521. if (DEBUGGING(LEVELING)) {
  5522. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  5523. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  5524. }
  5525. #endif
  5526. }
  5527. }
  5528. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5529. if (DEBUGGING(LEVELING)) {
  5530. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5531. }
  5532. #endif
  5533. }
  5534. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5535. /**
  5536. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5537. */
  5538. inline void gcode_M666() {
  5539. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5540. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5541. }
  5542. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5543. #if ENABLED(FWRETRACT)
  5544. /**
  5545. * M207: Set firmware retraction values
  5546. *
  5547. * S[+units] retract_length
  5548. * W[+units] retract_length_swap (multi-extruder)
  5549. * F[units/min] retract_feedrate_mm_s
  5550. * Z[units] retract_zlift
  5551. */
  5552. inline void gcode_M207() {
  5553. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5554. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5555. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  5556. #if EXTRUDERS > 1
  5557. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  5558. #endif
  5559. }
  5560. /**
  5561. * M208: Set firmware un-retraction values
  5562. *
  5563. * S[+units] retract_recover_length (in addition to M207 S*)
  5564. * W[+units] retract_recover_length_swap (multi-extruder)
  5565. * F[units/min] retract_recover_feedrate_mm_s
  5566. */
  5567. inline void gcode_M208() {
  5568. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  5569. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5570. #if EXTRUDERS > 1
  5571. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  5572. #endif
  5573. }
  5574. /**
  5575. * M209: Enable automatic retract (M209 S1)
  5576. * For slicers that don't support G10/11, reversed extrude-only
  5577. * moves will be classified as retraction.
  5578. */
  5579. inline void gcode_M209() {
  5580. if (code_seen('S')) {
  5581. autoretract_enabled = code_value_bool();
  5582. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  5583. }
  5584. }
  5585. #endif // FWRETRACT
  5586. /**
  5587. * M211: Enable, Disable, and/or Report software endstops
  5588. *
  5589. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  5590. */
  5591. inline void gcode_M211() {
  5592. SERIAL_ECHO_START;
  5593. #if HAS_SOFTWARE_ENDSTOPS
  5594. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  5595. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5596. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  5597. #else
  5598. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5599. SERIAL_ECHOPGM(MSG_OFF);
  5600. #endif
  5601. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  5602. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  5603. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  5604. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  5605. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  5606. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  5607. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  5608. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  5609. }
  5610. #if HOTENDS > 1
  5611. /**
  5612. * M218 - set hotend offset (in linear units)
  5613. *
  5614. * T<tool>
  5615. * X<xoffset>
  5616. * Y<yoffset>
  5617. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  5618. */
  5619. inline void gcode_M218() {
  5620. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  5621. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  5622. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  5623. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5624. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  5625. #endif
  5626. SERIAL_ECHO_START;
  5627. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5628. HOTEND_LOOP() {
  5629. SERIAL_CHAR(' ');
  5630. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  5631. SERIAL_CHAR(',');
  5632. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  5633. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5634. SERIAL_CHAR(',');
  5635. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  5636. #endif
  5637. }
  5638. SERIAL_EOL;
  5639. }
  5640. #endif // HOTENDS > 1
  5641. /**
  5642. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  5643. */
  5644. inline void gcode_M220() {
  5645. if (code_seen('S')) feedrate_percentage = code_value_int();
  5646. }
  5647. /**
  5648. * M221: Set extrusion percentage (M221 T0 S95)
  5649. */
  5650. inline void gcode_M221() {
  5651. if (get_target_extruder_from_command(221)) return;
  5652. if (code_seen('S'))
  5653. flow_percentage[target_extruder] = code_value_int();
  5654. }
  5655. /**
  5656. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  5657. */
  5658. inline void gcode_M226() {
  5659. if (code_seen('P')) {
  5660. int pin_number = code_value_int(),
  5661. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  5662. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  5663. int target = LOW;
  5664. stepper.synchronize();
  5665. pinMode(pin_number, INPUT);
  5666. switch (pin_state) {
  5667. case 1:
  5668. target = HIGH;
  5669. break;
  5670. case 0:
  5671. target = LOW;
  5672. break;
  5673. case -1:
  5674. target = !digitalRead(pin_number);
  5675. break;
  5676. }
  5677. while (digitalRead(pin_number) != target) idle();
  5678. } // pin_state -1 0 1 && pin_number > -1
  5679. } // code_seen('P')
  5680. }
  5681. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5682. /**
  5683. * M260: Send data to a I2C slave device
  5684. *
  5685. * This is a PoC, the formating and arguments for the GCODE will
  5686. * change to be more compatible, the current proposal is:
  5687. *
  5688. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  5689. *
  5690. * M260 B<byte-1 value in base 10>
  5691. * M260 B<byte-2 value in base 10>
  5692. * M260 B<byte-3 value in base 10>
  5693. *
  5694. * M260 S1 ; Send the buffered data and reset the buffer
  5695. * M260 R1 ; Reset the buffer without sending data
  5696. *
  5697. */
  5698. inline void gcode_M260() {
  5699. // Set the target address
  5700. if (code_seen('A')) i2c.address(code_value_byte());
  5701. // Add a new byte to the buffer
  5702. if (code_seen('B')) i2c.addbyte(code_value_byte());
  5703. // Flush the buffer to the bus
  5704. if (code_seen('S')) i2c.send();
  5705. // Reset and rewind the buffer
  5706. else if (code_seen('R')) i2c.reset();
  5707. }
  5708. /**
  5709. * M261: Request X bytes from I2C slave device
  5710. *
  5711. * Usage: M261 A<slave device address base 10> B<number of bytes>
  5712. */
  5713. inline void gcode_M261() {
  5714. if (code_seen('A')) i2c.address(code_value_byte());
  5715. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  5716. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  5717. i2c.relay(bytes);
  5718. }
  5719. else {
  5720. SERIAL_ERROR_START;
  5721. SERIAL_ERRORLN("Bad i2c request");
  5722. }
  5723. }
  5724. #endif // EXPERIMENTAL_I2CBUS
  5725. #if HAS_SERVOS
  5726. /**
  5727. * M280: Get or set servo position. P<index> [S<angle>]
  5728. */
  5729. inline void gcode_M280() {
  5730. if (!code_seen('P')) return;
  5731. int servo_index = code_value_int();
  5732. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  5733. if (code_seen('S'))
  5734. MOVE_SERVO(servo_index, code_value_int());
  5735. else {
  5736. SERIAL_ECHO_START;
  5737. SERIAL_ECHOPAIR(" Servo ", servo_index);
  5738. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  5739. }
  5740. }
  5741. else {
  5742. SERIAL_ERROR_START;
  5743. SERIAL_ECHOPAIR("Servo ", servo_index);
  5744. SERIAL_ECHOLNPGM(" out of range");
  5745. }
  5746. }
  5747. #endif // HAS_SERVOS
  5748. #if HAS_BUZZER
  5749. /**
  5750. * M300: Play beep sound S<frequency Hz> P<duration ms>
  5751. */
  5752. inline void gcode_M300() {
  5753. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  5754. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  5755. // Limits the tone duration to 0-5 seconds.
  5756. NOMORE(duration, 5000);
  5757. BUZZ(duration, frequency);
  5758. }
  5759. #endif // HAS_BUZZER
  5760. #if ENABLED(PIDTEMP)
  5761. /**
  5762. * M301: Set PID parameters P I D (and optionally C, L)
  5763. *
  5764. * P[float] Kp term
  5765. * I[float] Ki term (unscaled)
  5766. * D[float] Kd term (unscaled)
  5767. *
  5768. * With PID_EXTRUSION_SCALING:
  5769. *
  5770. * C[float] Kc term
  5771. * L[float] LPQ length
  5772. */
  5773. inline void gcode_M301() {
  5774. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  5775. // default behaviour (omitting E parameter) is to update for extruder 0 only
  5776. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  5777. if (e < HOTENDS) { // catch bad input value
  5778. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  5779. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  5780. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  5781. #if ENABLED(PID_EXTRUSION_SCALING)
  5782. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  5783. if (code_seen('L')) lpq_len = code_value_float();
  5784. NOMORE(lpq_len, LPQ_MAX_LEN);
  5785. #endif
  5786. thermalManager.updatePID();
  5787. SERIAL_ECHO_START;
  5788. #if ENABLED(PID_PARAMS_PER_HOTEND)
  5789. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  5790. #endif // PID_PARAMS_PER_HOTEND
  5791. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  5792. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  5793. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  5794. #if ENABLED(PID_EXTRUSION_SCALING)
  5795. //Kc does not have scaling applied above, or in resetting defaults
  5796. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  5797. #endif
  5798. SERIAL_EOL;
  5799. }
  5800. else {
  5801. SERIAL_ERROR_START;
  5802. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  5803. }
  5804. }
  5805. #endif // PIDTEMP
  5806. #if ENABLED(PIDTEMPBED)
  5807. inline void gcode_M304() {
  5808. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  5809. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  5810. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  5811. thermalManager.updatePID();
  5812. SERIAL_ECHO_START;
  5813. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  5814. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  5815. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  5816. }
  5817. #endif // PIDTEMPBED
  5818. #if defined(CHDK) || HAS_PHOTOGRAPH
  5819. /**
  5820. * M240: Trigger a camera by emulating a Canon RC-1
  5821. * See http://www.doc-diy.net/photo/rc-1_hacked/
  5822. */
  5823. inline void gcode_M240() {
  5824. #ifdef CHDK
  5825. OUT_WRITE(CHDK, HIGH);
  5826. chdkHigh = millis();
  5827. chdkActive = true;
  5828. #elif HAS_PHOTOGRAPH
  5829. const uint8_t NUM_PULSES = 16;
  5830. const float PULSE_LENGTH = 0.01524;
  5831. for (int i = 0; i < NUM_PULSES; i++) {
  5832. WRITE(PHOTOGRAPH_PIN, HIGH);
  5833. _delay_ms(PULSE_LENGTH);
  5834. WRITE(PHOTOGRAPH_PIN, LOW);
  5835. _delay_ms(PULSE_LENGTH);
  5836. }
  5837. delay(7.33);
  5838. for (int i = 0; i < NUM_PULSES; i++) {
  5839. WRITE(PHOTOGRAPH_PIN, HIGH);
  5840. _delay_ms(PULSE_LENGTH);
  5841. WRITE(PHOTOGRAPH_PIN, LOW);
  5842. _delay_ms(PULSE_LENGTH);
  5843. }
  5844. #endif // !CHDK && HAS_PHOTOGRAPH
  5845. }
  5846. #endif // CHDK || PHOTOGRAPH_PIN
  5847. #if HAS_LCD_CONTRAST
  5848. /**
  5849. * M250: Read and optionally set the LCD contrast
  5850. */
  5851. inline void gcode_M250() {
  5852. if (code_seen('C')) set_lcd_contrast(code_value_int());
  5853. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5854. SERIAL_PROTOCOL(lcd_contrast);
  5855. SERIAL_EOL;
  5856. }
  5857. #endif // HAS_LCD_CONTRAST
  5858. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5859. /**
  5860. * M302: Allow cold extrudes, or set the minimum extrude temperature
  5861. *
  5862. * S<temperature> sets the minimum extrude temperature
  5863. * P<bool> enables (1) or disables (0) cold extrusion
  5864. *
  5865. * Examples:
  5866. *
  5867. * M302 ; report current cold extrusion state
  5868. * M302 P0 ; enable cold extrusion checking
  5869. * M302 P1 ; disables cold extrusion checking
  5870. * M302 S0 ; always allow extrusion (disables checking)
  5871. * M302 S170 ; only allow extrusion above 170
  5872. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  5873. */
  5874. inline void gcode_M302() {
  5875. bool seen_S = code_seen('S');
  5876. if (seen_S) {
  5877. thermalManager.extrude_min_temp = code_value_temp_abs();
  5878. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  5879. }
  5880. if (code_seen('P'))
  5881. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  5882. else if (!seen_S) {
  5883. // Report current state
  5884. SERIAL_ECHO_START;
  5885. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  5886. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  5887. SERIAL_ECHOLNPGM("C)");
  5888. }
  5889. }
  5890. #endif // PREVENT_COLD_EXTRUSION
  5891. /**
  5892. * M303: PID relay autotune
  5893. *
  5894. * S<temperature> sets the target temperature. (default 150C)
  5895. * E<extruder> (-1 for the bed) (default 0)
  5896. * C<cycles>
  5897. * U<bool> with a non-zero value will apply the result to current settings
  5898. */
  5899. inline void gcode_M303() {
  5900. #if HAS_PID_HEATING
  5901. int e = code_seen('E') ? code_value_int() : 0;
  5902. int c = code_seen('C') ? code_value_int() : 5;
  5903. bool u = code_seen('U') && code_value_bool();
  5904. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  5905. if (e >= 0 && e < HOTENDS)
  5906. target_extruder = e;
  5907. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  5908. thermalManager.PID_autotune(temp, e, c, u);
  5909. KEEPALIVE_STATE(IN_HANDLER);
  5910. #else
  5911. SERIAL_ERROR_START;
  5912. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  5913. #endif
  5914. }
  5915. #if ENABLED(MORGAN_SCARA)
  5916. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  5917. if (IsRunning()) {
  5918. forward_kinematics_SCARA(delta_a, delta_b);
  5919. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  5920. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  5921. destination[Z_AXIS] = current_position[Z_AXIS];
  5922. prepare_move_to_destination();
  5923. return true;
  5924. }
  5925. return false;
  5926. }
  5927. /**
  5928. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5929. */
  5930. inline bool gcode_M360() {
  5931. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5932. return SCARA_move_to_cal(0, 120);
  5933. }
  5934. /**
  5935. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5936. */
  5937. inline bool gcode_M361() {
  5938. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5939. return SCARA_move_to_cal(90, 130);
  5940. }
  5941. /**
  5942. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5943. */
  5944. inline bool gcode_M362() {
  5945. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5946. return SCARA_move_to_cal(60, 180);
  5947. }
  5948. /**
  5949. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5950. */
  5951. inline bool gcode_M363() {
  5952. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5953. return SCARA_move_to_cal(50, 90);
  5954. }
  5955. /**
  5956. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5957. */
  5958. inline bool gcode_M364() {
  5959. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5960. return SCARA_move_to_cal(45, 135);
  5961. }
  5962. #endif // SCARA
  5963. #if ENABLED(EXT_SOLENOID)
  5964. void enable_solenoid(uint8_t num) {
  5965. switch (num) {
  5966. case 0:
  5967. OUT_WRITE(SOL0_PIN, HIGH);
  5968. break;
  5969. #if HAS_SOLENOID_1
  5970. case 1:
  5971. OUT_WRITE(SOL1_PIN, HIGH);
  5972. break;
  5973. #endif
  5974. #if HAS_SOLENOID_2
  5975. case 2:
  5976. OUT_WRITE(SOL2_PIN, HIGH);
  5977. break;
  5978. #endif
  5979. #if HAS_SOLENOID_3
  5980. case 3:
  5981. OUT_WRITE(SOL3_PIN, HIGH);
  5982. break;
  5983. #endif
  5984. default:
  5985. SERIAL_ECHO_START;
  5986. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5987. break;
  5988. }
  5989. }
  5990. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5991. void disable_all_solenoids() {
  5992. OUT_WRITE(SOL0_PIN, LOW);
  5993. OUT_WRITE(SOL1_PIN, LOW);
  5994. OUT_WRITE(SOL2_PIN, LOW);
  5995. OUT_WRITE(SOL3_PIN, LOW);
  5996. }
  5997. /**
  5998. * M380: Enable solenoid on the active extruder
  5999. */
  6000. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  6001. /**
  6002. * M381: Disable all solenoids
  6003. */
  6004. inline void gcode_M381() { disable_all_solenoids(); }
  6005. #endif // EXT_SOLENOID
  6006. /**
  6007. * M400: Finish all moves
  6008. */
  6009. inline void gcode_M400() { stepper.synchronize(); }
  6010. #if HAS_BED_PROBE
  6011. /**
  6012. * M401: Engage Z Servo endstop if available
  6013. */
  6014. inline void gcode_M401() { DEPLOY_PROBE(); }
  6015. /**
  6016. * M402: Retract Z Servo endstop if enabled
  6017. */
  6018. inline void gcode_M402() { STOW_PROBE(); }
  6019. #endif // HAS_BED_PROBE
  6020. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6021. /**
  6022. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  6023. */
  6024. inline void gcode_M404() {
  6025. if (code_seen('W')) {
  6026. filament_width_nominal = code_value_linear_units();
  6027. }
  6028. else {
  6029. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  6030. SERIAL_PROTOCOLLN(filament_width_nominal);
  6031. }
  6032. }
  6033. /**
  6034. * M405: Turn on filament sensor for control
  6035. */
  6036. inline void gcode_M405() {
  6037. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  6038. // everything else, it uses code_value_int() instead of code_value_linear_units().
  6039. if (code_seen('D')) meas_delay_cm = code_value_int();
  6040. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  6041. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  6042. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  6043. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  6044. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  6045. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  6046. }
  6047. filament_sensor = true;
  6048. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6049. //SERIAL_PROTOCOL(filament_width_meas);
  6050. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  6051. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  6052. }
  6053. /**
  6054. * M406: Turn off filament sensor for control
  6055. */
  6056. inline void gcode_M406() { filament_sensor = false; }
  6057. /**
  6058. * M407: Get measured filament diameter on serial output
  6059. */
  6060. inline void gcode_M407() {
  6061. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6062. SERIAL_PROTOCOLLN(filament_width_meas);
  6063. }
  6064. #endif // FILAMENT_WIDTH_SENSOR
  6065. void quickstop_stepper() {
  6066. stepper.quick_stop();
  6067. stepper.synchronize();
  6068. set_current_from_steppers_for_axis(ALL_AXES);
  6069. SYNC_PLAN_POSITION_KINEMATIC();
  6070. }
  6071. #if PLANNER_LEVELING
  6072. /**
  6073. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  6074. *
  6075. * S[bool] Turns leveling on or off
  6076. * Z[height] Sets the Z fade height (0 or none to disable)
  6077. * V[bool] Verbose - Print the leveling grid
  6078. */
  6079. inline void gcode_M420() {
  6080. bool to_enable = false;
  6081. if (code_seen('S')) {
  6082. to_enable = code_value_bool();
  6083. set_bed_leveling_enabled(to_enable);
  6084. }
  6085. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  6086. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  6087. #endif
  6088. const bool new_status =
  6089. #if ENABLED(MESH_BED_LEVELING)
  6090. mbl.active()
  6091. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6092. ubl.state.active
  6093. #else
  6094. planner.abl_enabled
  6095. #endif
  6096. ;
  6097. if (to_enable && !new_status) {
  6098. SERIAL_ERROR_START;
  6099. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  6100. }
  6101. SERIAL_ECHO_START;
  6102. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  6103. // V to print the matrix or mesh
  6104. if (code_seen('V')) {
  6105. #if ABL_PLANAR
  6106. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  6107. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6108. if (bilinear_grid_spacing[X_AXIS]) {
  6109. print_bilinear_leveling_grid();
  6110. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6111. bed_level_virt_print();
  6112. #endif
  6113. }
  6114. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6115. ubl.display_map(0); // Right now, we only support one type of map
  6116. #elif ENABLED(MESH_BED_LEVELING)
  6117. if (mbl.has_mesh()) {
  6118. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  6119. mbl_mesh_report();
  6120. }
  6121. #endif
  6122. }
  6123. }
  6124. #endif
  6125. #if ENABLED(MESH_BED_LEVELING)
  6126. /**
  6127. * M421: Set a single Mesh Bed Leveling Z coordinate
  6128. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  6129. */
  6130. inline void gcode_M421() {
  6131. int8_t px = 0, py = 0;
  6132. float z = 0;
  6133. bool hasX, hasY, hasZ, hasI, hasJ;
  6134. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  6135. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  6136. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6137. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6138. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6139. if (hasX && hasY && hasZ) {
  6140. if (px >= 0 && py >= 0)
  6141. mbl.set_z(px, py, z);
  6142. else {
  6143. SERIAL_ERROR_START;
  6144. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6145. }
  6146. }
  6147. else if (hasI && hasJ && hasZ) {
  6148. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  6149. mbl.set_z(px, py, z);
  6150. else {
  6151. SERIAL_ERROR_START;
  6152. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6153. }
  6154. }
  6155. else {
  6156. SERIAL_ERROR_START;
  6157. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6158. }
  6159. }
  6160. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6161. /**
  6162. * M421: Set a single Mesh Bed Leveling Z coordinate
  6163. *
  6164. * M421 I<xindex> J<yindex> Z<linear>
  6165. */
  6166. inline void gcode_M421() {
  6167. int8_t px = 0, py = 0;
  6168. float z = 0;
  6169. bool hasI, hasJ, hasZ;
  6170. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6171. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6172. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6173. if (hasI && hasJ && hasZ) {
  6174. if (px >= 0 && px < ABL_GRID_MAX_POINTS_X && py >= 0 && py < ABL_GRID_MAX_POINTS_X) {
  6175. bed_level_grid[px][py] = z;
  6176. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6177. bed_level_virt_interpolate();
  6178. #endif
  6179. }
  6180. else {
  6181. SERIAL_ERROR_START;
  6182. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6183. }
  6184. }
  6185. else {
  6186. SERIAL_ERROR_START;
  6187. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6188. }
  6189. }
  6190. #endif
  6191. #if DISABLED(NO_WORKSPACE_OFFSETS)
  6192. /**
  6193. * M428: Set home_offset based on the distance between the
  6194. * current_position and the nearest "reference point."
  6195. * If an axis is past center its endstop position
  6196. * is the reference-point. Otherwise it uses 0. This allows
  6197. * the Z offset to be set near the bed when using a max endstop.
  6198. *
  6199. * M428 can't be used more than 2cm away from 0 or an endstop.
  6200. *
  6201. * Use M206 to set these values directly.
  6202. */
  6203. inline void gcode_M428() {
  6204. bool err = false;
  6205. LOOP_XYZ(i) {
  6206. if (axis_homed[i]) {
  6207. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  6208. diff = current_position[i] - LOGICAL_POSITION(base, i);
  6209. if (diff > -20 && diff < 20) {
  6210. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  6211. }
  6212. else {
  6213. SERIAL_ERROR_START;
  6214. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  6215. LCD_ALERTMESSAGEPGM("Err: Too far!");
  6216. BUZZ(200, 40);
  6217. err = true;
  6218. break;
  6219. }
  6220. }
  6221. }
  6222. if (!err) {
  6223. SYNC_PLAN_POSITION_KINEMATIC();
  6224. report_current_position();
  6225. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  6226. BUZZ(100, 659);
  6227. BUZZ(100, 698);
  6228. }
  6229. }
  6230. #endif // NO_WORKSPACE_OFFSETS
  6231. /**
  6232. * M500: Store settings in EEPROM
  6233. */
  6234. inline void gcode_M500() {
  6235. (void)Config_StoreSettings();
  6236. }
  6237. /**
  6238. * M501: Read settings from EEPROM
  6239. */
  6240. inline void gcode_M501() {
  6241. (void)Config_RetrieveSettings();
  6242. }
  6243. /**
  6244. * M502: Revert to default settings
  6245. */
  6246. inline void gcode_M502() {
  6247. (void)Config_ResetDefault();
  6248. }
  6249. /**
  6250. * M503: print settings currently in memory
  6251. */
  6252. inline void gcode_M503() {
  6253. (void)Config_PrintSettings(code_seen('S') && !code_value_bool());
  6254. }
  6255. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6256. /**
  6257. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  6258. */
  6259. inline void gcode_M540() {
  6260. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  6261. }
  6262. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6263. #if HAS_BED_PROBE
  6264. inline void gcode_M851() {
  6265. SERIAL_ECHO_START;
  6266. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  6267. SERIAL_CHAR(' ');
  6268. if (code_seen('Z')) {
  6269. float value = code_value_axis_units(Z_AXIS);
  6270. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  6271. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6272. // Correct bilinear grid for new probe offset
  6273. const float diff = value - zprobe_zoffset;
  6274. if (diff) {
  6275. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  6276. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  6277. bed_level_grid[x][y] += diff;
  6278. }
  6279. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6280. bed_level_virt_interpolate();
  6281. #endif
  6282. #endif
  6283. zprobe_zoffset = value;
  6284. SERIAL_ECHO(zprobe_zoffset);
  6285. }
  6286. else {
  6287. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  6288. SERIAL_CHAR(' ');
  6289. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  6290. }
  6291. }
  6292. else {
  6293. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  6294. }
  6295. SERIAL_EOL;
  6296. }
  6297. #endif // HAS_BED_PROBE
  6298. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6299. void filament_change_beep(const bool init=false) {
  6300. static millis_t next_buzz = 0;
  6301. static uint16_t runout_beep = 0;
  6302. if (init) next_buzz = runout_beep = 0;
  6303. const millis_t ms = millis();
  6304. if (ELAPSED(ms, next_buzz)) {
  6305. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  6306. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  6307. BUZZ(300, 2000);
  6308. runout_beep++;
  6309. }
  6310. }
  6311. }
  6312. static bool busy_doing_M600 = false;
  6313. /**
  6314. * M600: Pause for filament change
  6315. *
  6316. * E[distance] - Retract the filament this far (negative value)
  6317. * Z[distance] - Move the Z axis by this distance
  6318. * X[position] - Move to this X position, with Y
  6319. * Y[position] - Move to this Y position, with X
  6320. * L[distance] - Retract distance for removal (manual reload)
  6321. *
  6322. * Default values are used for omitted arguments.
  6323. *
  6324. */
  6325. inline void gcode_M600() {
  6326. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  6327. SERIAL_ERROR_START;
  6328. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  6329. return;
  6330. }
  6331. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  6332. // Pause the print job timer
  6333. const bool job_running = print_job_timer.isRunning();
  6334. print_job_timer.pause();
  6335. // Show initial message and wait for synchronize steppers
  6336. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  6337. stepper.synchronize();
  6338. // Save current position of all axes
  6339. float lastpos[XYZE];
  6340. COPY(lastpos, current_position);
  6341. set_destination_to_current();
  6342. // Initial retract before move to filament change position
  6343. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  6344. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6345. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6346. #endif
  6347. ;
  6348. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6349. // Lift Z axis
  6350. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  6351. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6352. FILAMENT_CHANGE_Z_ADD
  6353. #else
  6354. 0
  6355. #endif
  6356. ;
  6357. if (z_lift > 0) {
  6358. destination[Z_AXIS] += z_lift;
  6359. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6360. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6361. }
  6362. // Move XY axes to filament exchange position
  6363. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  6364. #ifdef FILAMENT_CHANGE_X_POS
  6365. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  6366. #endif
  6367. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  6368. #ifdef FILAMENT_CHANGE_Y_POS
  6369. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  6370. #endif
  6371. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6372. stepper.synchronize();
  6373. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  6374. idle();
  6375. // Unload filament
  6376. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6377. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  6378. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  6379. #endif
  6380. ;
  6381. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  6382. // Synchronize steppers and then disable extruders steppers for manual filament changing
  6383. stepper.synchronize();
  6384. disable_e_steppers();
  6385. safe_delay(100);
  6386. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  6387. bool nozzle_timed_out = false;
  6388. float temps[4];
  6389. // Wait for filament insert by user and press button
  6390. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6391. #if HAS_BUZZER
  6392. filament_change_beep(true);
  6393. #endif
  6394. idle();
  6395. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  6396. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6397. wait_for_user = true; // LCD click or M108 will clear this
  6398. while (wait_for_user) {
  6399. if (nozzle_timed_out)
  6400. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6401. #if HAS_BUZZER
  6402. filament_change_beep();
  6403. #endif
  6404. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  6405. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  6406. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  6407. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6408. }
  6409. idle(true);
  6410. }
  6411. KEEPALIVE_STATE(IN_HANDLER);
  6412. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  6413. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  6414. // Show "wait for heating"
  6415. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  6416. wait_for_heatup = true;
  6417. while (wait_for_heatup) {
  6418. idle();
  6419. wait_for_heatup = false;
  6420. HOTEND_LOOP() {
  6421. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  6422. wait_for_heatup = true;
  6423. break;
  6424. }
  6425. }
  6426. }
  6427. // Show "insert filament"
  6428. if (nozzle_timed_out)
  6429. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6430. #if HAS_BUZZER
  6431. filament_change_beep(true);
  6432. #endif
  6433. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6434. wait_for_user = true; // LCD click or M108 will clear this
  6435. while (wait_for_user && nozzle_timed_out) {
  6436. #if HAS_BUZZER
  6437. filament_change_beep();
  6438. #endif
  6439. idle(true);
  6440. }
  6441. KEEPALIVE_STATE(IN_HANDLER);
  6442. // Show "load" message
  6443. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  6444. // Load filament
  6445. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  6446. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  6447. + FILAMENT_CHANGE_LOAD_LENGTH
  6448. #endif
  6449. ;
  6450. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  6451. stepper.synchronize();
  6452. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  6453. do {
  6454. // "Wait for filament extrude"
  6455. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  6456. // Extrude filament to get into hotend
  6457. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  6458. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  6459. stepper.synchronize();
  6460. // Show "Extrude More" / "Resume" menu and wait for reply
  6461. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6462. wait_for_user = false;
  6463. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  6464. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  6465. KEEPALIVE_STATE(IN_HANDLER);
  6466. // Keep looping if "Extrude More" was selected
  6467. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  6468. #endif
  6469. // "Wait for print to resume"
  6470. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  6471. // Set extruder to saved position
  6472. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  6473. planner.set_e_position_mm(current_position[E_AXIS]);
  6474. #if IS_KINEMATIC
  6475. // Move XYZ to starting position
  6476. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  6477. #else
  6478. // Move XY to starting position, then Z
  6479. destination[X_AXIS] = lastpos[X_AXIS];
  6480. destination[Y_AXIS] = lastpos[Y_AXIS];
  6481. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6482. destination[Z_AXIS] = lastpos[Z_AXIS];
  6483. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6484. #endif
  6485. stepper.synchronize();
  6486. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6487. filament_ran_out = false;
  6488. #endif
  6489. // Show status screen
  6490. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  6491. // Resume the print job timer if it was running
  6492. if (job_running) print_job_timer.start();
  6493. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  6494. }
  6495. #endif // FILAMENT_CHANGE_FEATURE
  6496. #if ENABLED(DUAL_X_CARRIAGE)
  6497. /**
  6498. * M605: Set dual x-carriage movement mode
  6499. *
  6500. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  6501. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  6502. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  6503. * units x-offset and an optional differential hotend temperature of
  6504. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  6505. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  6506. *
  6507. * Note: the X axis should be homed after changing dual x-carriage mode.
  6508. */
  6509. inline void gcode_M605() {
  6510. stepper.synchronize();
  6511. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  6512. switch (dual_x_carriage_mode) {
  6513. case DXC_FULL_CONTROL_MODE:
  6514. case DXC_AUTO_PARK_MODE:
  6515. break;
  6516. case DXC_DUPLICATION_MODE:
  6517. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  6518. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  6519. SERIAL_ECHO_START;
  6520. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6521. SERIAL_CHAR(' ');
  6522. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  6523. SERIAL_CHAR(',');
  6524. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  6525. SERIAL_CHAR(' ');
  6526. SERIAL_ECHO(duplicate_extruder_x_offset);
  6527. SERIAL_CHAR(',');
  6528. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  6529. break;
  6530. default:
  6531. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  6532. break;
  6533. }
  6534. active_extruder_parked = false;
  6535. extruder_duplication_enabled = false;
  6536. delayed_move_time = 0;
  6537. }
  6538. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  6539. inline void gcode_M605() {
  6540. stepper.synchronize();
  6541. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  6542. SERIAL_ECHO_START;
  6543. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  6544. }
  6545. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  6546. #if ENABLED(LIN_ADVANCE)
  6547. /**
  6548. * M905: Set advance factor
  6549. */
  6550. inline void gcode_M905() {
  6551. stepper.synchronize();
  6552. const float newK = code_seen('K') ? code_value_float() : -1,
  6553. newD = code_seen('D') ? code_value_float() : -1,
  6554. newW = code_seen('W') ? code_value_float() : -1,
  6555. newH = code_seen('H') ? code_value_float() : -1;
  6556. if (newK >= 0.0) planner.set_extruder_advance_k(newK);
  6557. SERIAL_ECHO_START;
  6558. SERIAL_ECHOLNPAIR("Advance factor: ", planner.get_extruder_advance_k());
  6559. if (newD >= 0 || newW >= 0 || newH >= 0) {
  6560. const float ratio = (!newD || !newW || !newH) ? 0 : (newW * newH) / (sq(newD * 0.5) * M_PI);
  6561. planner.set_advance_ed_ratio(ratio);
  6562. SERIAL_ECHO_START;
  6563. SERIAL_ECHOPGM("E/D ratio: ");
  6564. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Automatic");
  6565. }
  6566. }
  6567. #endif // LIN_ADVANCE
  6568. #if ENABLED(HAVE_TMC2130)
  6569. static void tmc2130_print_current(const int mA, const char name) {
  6570. SERIAL_CHAR(name);
  6571. SERIAL_ECHOPGM(" axis driver current: ");
  6572. SERIAL_ECHOLN(mA);
  6573. }
  6574. static void tmc2130_set_current(const int mA, TMC2130Stepper &st, const char name) {
  6575. tmc2130_print_current(mA, name);
  6576. st.setCurrent(mA, 0.11, 0.5);
  6577. }
  6578. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  6579. tmc2130_print_current(st.getCurrent(), name);
  6580. }
  6581. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  6582. SERIAL_CHAR(name);
  6583. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  6584. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  6585. }
  6586. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  6587. st.clear_otpw();
  6588. SERIAL_CHAR(name);
  6589. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  6590. }
  6591. /**
  6592. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  6593. *
  6594. * Report driver currents when no axis specified
  6595. */
  6596. inline void gcode_M906() {
  6597. uint16_t values[XYZE];
  6598. LOOP_XYZE(i)
  6599. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  6600. #if ENABLED(X_IS_TMC2130)
  6601. if (values[X_AXIS]) tmc2130_set_current(values[X_AXIS], stepperX, 'X');
  6602. else tmc2130_get_current(stepperX, 'X');
  6603. #endif
  6604. #if ENABLED(Y_IS_TMC2130)
  6605. if (values[Y_AXIS]) tmc2130_set_current(values[Y_AXIS], stepperY, 'Y');
  6606. else tmc2130_get_current(stepperY, 'Y');
  6607. #endif
  6608. #if ENABLED(Z_IS_TMC2130)
  6609. if (values[Z_AXIS]) tmc2130_set_current(values[Z_AXIS], stepperZ, 'Z');
  6610. else tmc2130_get_current(stepperZ, 'Z');
  6611. #endif
  6612. #if ENABLED(E0_IS_TMC2130)
  6613. if (values[E_AXIS]) tmc2130_set_current(values[E_AXIS], stepperE0, 'E');
  6614. else tmc2130_get_current(stepperE0, 'E');
  6615. #endif
  6616. }
  6617. /**
  6618. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  6619. * The flag is held by the library and persist until manually cleared by M912
  6620. */
  6621. inline void gcode_M911() {
  6622. #if ENABLED(X_IS_TMC2130)
  6623. tmc2130_report_otpw(stepperX, 'X');
  6624. #endif
  6625. #if ENABLED(Y_IS_TMC2130)
  6626. tmc2130_report_otpw(stepperY, 'Y');
  6627. #endif
  6628. #if ENABLED(Z_IS_TMC2130)
  6629. tmc2130_report_otpw(stepperZ, 'Z');
  6630. #endif
  6631. #if ENABLED(E0_IS_TMC2130)
  6632. tmc2130_report_otpw(stepperE0, 'E');
  6633. #endif
  6634. }
  6635. /**
  6636. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  6637. */
  6638. inline void gcode_M912() {
  6639. #if ENABLED(X_IS_TMC2130)
  6640. if (code_seen('X')) tmc2130_clear_otpw(stepperX, 'X');
  6641. #endif
  6642. #if ENABLED(Y_IS_TMC2130)
  6643. if (code_seen('Y')) tmc2130_clear_otpw(stepperY, 'Y');
  6644. #endif
  6645. #if ENABLED(Z_IS_TMC2130)
  6646. if (code_seen('Z')) tmc2130_clear_otpw(stepperZ, 'Z');
  6647. #endif
  6648. #if ENABLED(E0_IS_TMC2130)
  6649. if (code_seen('E')) tmc2130_clear_otpw(stepperE0, 'E');
  6650. #endif
  6651. }
  6652. #endif // HAVE_TMC2130
  6653. /**
  6654. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  6655. */
  6656. inline void gcode_M907() {
  6657. #if HAS_DIGIPOTSS
  6658. LOOP_XYZE(i)
  6659. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  6660. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  6661. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  6662. #elif HAS_MOTOR_CURRENT_PWM
  6663. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  6664. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  6665. #endif
  6666. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  6667. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  6668. #endif
  6669. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  6670. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  6671. #endif
  6672. #endif
  6673. #if ENABLED(DIGIPOT_I2C)
  6674. // this one uses actual amps in floating point
  6675. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  6676. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  6677. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  6678. #endif
  6679. #if ENABLED(DAC_STEPPER_CURRENT)
  6680. if (code_seen('S')) {
  6681. float dac_percent = code_value_float();
  6682. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  6683. }
  6684. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  6685. #endif
  6686. }
  6687. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6688. /**
  6689. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  6690. */
  6691. inline void gcode_M908() {
  6692. #if HAS_DIGIPOTSS
  6693. stepper.digitalPotWrite(
  6694. code_seen('P') ? code_value_int() : 0,
  6695. code_seen('S') ? code_value_int() : 0
  6696. );
  6697. #endif
  6698. #ifdef DAC_STEPPER_CURRENT
  6699. dac_current_raw(
  6700. code_seen('P') ? code_value_byte() : -1,
  6701. code_seen('S') ? code_value_ushort() : 0
  6702. );
  6703. #endif
  6704. }
  6705. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6706. inline void gcode_M909() { dac_print_values(); }
  6707. inline void gcode_M910() { dac_commit_eeprom(); }
  6708. #endif
  6709. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6710. #if HAS_MICROSTEPS
  6711. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6712. inline void gcode_M350() {
  6713. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  6714. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  6715. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  6716. stepper.microstep_readings();
  6717. }
  6718. /**
  6719. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  6720. * S# determines MS1 or MS2, X# sets the pin high/low.
  6721. */
  6722. inline void gcode_M351() {
  6723. if (code_seen('S')) switch (code_value_byte()) {
  6724. case 1:
  6725. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  6726. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  6727. break;
  6728. case 2:
  6729. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  6730. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  6731. break;
  6732. }
  6733. stepper.microstep_readings();
  6734. }
  6735. #endif // HAS_MICROSTEPS
  6736. #if HAS_CASE_LIGHT
  6737. uint8_t case_light_brightness = 255;
  6738. void update_case_light() {
  6739. digitalWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  6740. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  6741. }
  6742. #endif // HAS_CASE_LIGHT
  6743. /**
  6744. * M355: Turn case lights on/off and set brightness
  6745. *
  6746. * S<bool> Turn case light on or off
  6747. * P<byte> Set case light brightness (PWM pin required)
  6748. */
  6749. inline void gcode_M355() {
  6750. #if HAS_CASE_LIGHT
  6751. if (code_seen('P')) case_light_brightness = code_value_byte();
  6752. if (code_seen('S')) case_light_on = code_value_bool();
  6753. update_case_light();
  6754. SERIAL_ECHO_START;
  6755. SERIAL_ECHOPGM("Case lights ");
  6756. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  6757. #else
  6758. SERIAL_ERROR_START;
  6759. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  6760. #endif // HAS_CASE_LIGHT
  6761. }
  6762. #if ENABLED(MIXING_EXTRUDER)
  6763. /**
  6764. * M163: Set a single mix factor for a mixing extruder
  6765. * This is called "weight" by some systems.
  6766. *
  6767. * S[index] The channel index to set
  6768. * P[float] The mix value
  6769. *
  6770. */
  6771. inline void gcode_M163() {
  6772. int mix_index = code_seen('S') ? code_value_int() : 0;
  6773. if (mix_index < MIXING_STEPPERS) {
  6774. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  6775. NOLESS(mix_value, 0.0);
  6776. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  6777. }
  6778. }
  6779. #if MIXING_VIRTUAL_TOOLS > 1
  6780. /**
  6781. * M164: Store the current mix factors as a virtual tool.
  6782. *
  6783. * S[index] The virtual tool to store
  6784. *
  6785. */
  6786. inline void gcode_M164() {
  6787. int tool_index = code_seen('S') ? code_value_int() : 0;
  6788. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  6789. normalize_mix();
  6790. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  6791. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  6792. }
  6793. }
  6794. #endif
  6795. #if ENABLED(DIRECT_MIXING_IN_G1)
  6796. /**
  6797. * M165: Set multiple mix factors for a mixing extruder.
  6798. * Factors that are left out will be set to 0.
  6799. * All factors together must add up to 1.0.
  6800. *
  6801. * A[factor] Mix factor for extruder stepper 1
  6802. * B[factor] Mix factor for extruder stepper 2
  6803. * C[factor] Mix factor for extruder stepper 3
  6804. * D[factor] Mix factor for extruder stepper 4
  6805. * H[factor] Mix factor for extruder stepper 5
  6806. * I[factor] Mix factor for extruder stepper 6
  6807. *
  6808. */
  6809. inline void gcode_M165() { gcode_get_mix(); }
  6810. #endif
  6811. #endif // MIXING_EXTRUDER
  6812. /**
  6813. * M999: Restart after being stopped
  6814. *
  6815. * Default behaviour is to flush the serial buffer and request
  6816. * a resend to the host starting on the last N line received.
  6817. *
  6818. * Sending "M999 S1" will resume printing without flushing the
  6819. * existing command buffer.
  6820. *
  6821. */
  6822. inline void gcode_M999() {
  6823. Running = true;
  6824. lcd_reset_alert_level();
  6825. if (code_seen('S') && code_value_bool()) return;
  6826. // gcode_LastN = Stopped_gcode_LastN;
  6827. FlushSerialRequestResend();
  6828. }
  6829. #if ENABLED(SWITCHING_EXTRUDER)
  6830. inline void move_extruder_servo(uint8_t e) {
  6831. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  6832. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  6833. safe_delay(500);
  6834. }
  6835. #endif
  6836. inline void invalid_extruder_error(const uint8_t &e) {
  6837. SERIAL_ECHO_START;
  6838. SERIAL_CHAR('T');
  6839. SERIAL_ECHO_F(e, DEC);
  6840. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  6841. }
  6842. /**
  6843. * Perform a tool-change, which may result in moving the
  6844. * previous tool out of the way and the new tool into place.
  6845. */
  6846. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  6847. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  6848. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  6849. return invalid_extruder_error(tmp_extruder);
  6850. // T0-Tnnn: Switch virtual tool by changing the mix
  6851. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  6852. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  6853. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6854. #if HOTENDS > 1
  6855. if (tmp_extruder >= EXTRUDERS)
  6856. return invalid_extruder_error(tmp_extruder);
  6857. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  6858. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  6859. if (tmp_extruder != active_extruder) {
  6860. if (!no_move && axis_unhomed_error(true, true, true)) {
  6861. SERIAL_ECHOLNPGM("No move on toolchange");
  6862. no_move = true;
  6863. }
  6864. // Save current position to destination, for use later
  6865. set_destination_to_current();
  6866. #if ENABLED(DUAL_X_CARRIAGE)
  6867. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6868. if (DEBUGGING(LEVELING)) {
  6869. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  6870. switch (dual_x_carriage_mode) {
  6871. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  6872. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  6873. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  6874. }
  6875. }
  6876. #endif
  6877. const float xhome = x_home_pos(active_extruder);
  6878. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  6879. && IsRunning()
  6880. && (delayed_move_time || current_position[X_AXIS] != xhome)
  6881. ) {
  6882. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  6883. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  6884. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  6885. #endif
  6886. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6887. if (DEBUGGING(LEVELING)) {
  6888. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  6889. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  6890. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  6891. }
  6892. #endif
  6893. // Park old head: 1) raise 2) move to park position 3) lower
  6894. for (uint8_t i = 0; i < 3; i++)
  6895. planner.buffer_line(
  6896. i == 0 ? current_position[X_AXIS] : xhome,
  6897. current_position[Y_AXIS],
  6898. i == 2 ? current_position[Z_AXIS] : raised_z,
  6899. current_position[E_AXIS],
  6900. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  6901. active_extruder
  6902. );
  6903. stepper.synchronize();
  6904. }
  6905. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  6906. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  6907. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  6908. // Activate the new extruder
  6909. active_extruder = tmp_extruder;
  6910. // This function resets the max/min values - the current position may be overwritten below.
  6911. set_axis_is_at_home(X_AXIS);
  6912. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6913. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  6914. #endif
  6915. // Only when auto-parking are carriages safe to move
  6916. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  6917. switch (dual_x_carriage_mode) {
  6918. case DXC_FULL_CONTROL_MODE:
  6919. // New current position is the position of the activated extruder
  6920. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6921. // Save the inactive extruder's position (from the old current_position)
  6922. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6923. break;
  6924. case DXC_AUTO_PARK_MODE:
  6925. // record raised toolhead position for use by unpark
  6926. COPY(raised_parked_position, current_position);
  6927. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  6928. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  6929. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6930. #endif
  6931. active_extruder_parked = true;
  6932. delayed_move_time = 0;
  6933. break;
  6934. case DXC_DUPLICATION_MODE:
  6935. // If the new extruder is the left one, set it "parked"
  6936. // This triggers the second extruder to move into the duplication position
  6937. active_extruder_parked = (active_extruder == 0);
  6938. if (active_extruder_parked)
  6939. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6940. else
  6941. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  6942. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6943. extruder_duplication_enabled = false;
  6944. break;
  6945. }
  6946. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6947. if (DEBUGGING(LEVELING)) {
  6948. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  6949. DEBUG_POS("New extruder (parked)", current_position);
  6950. }
  6951. #endif
  6952. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  6953. #else // !DUAL_X_CARRIAGE
  6954. #if ENABLED(SWITCHING_EXTRUDER)
  6955. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  6956. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  6957. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  6958. // Always raise by some amount (destination copied from current_position earlier)
  6959. current_position[Z_AXIS] += z_raise;
  6960. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6961. stepper.synchronize();
  6962. move_extruder_servo(active_extruder);
  6963. #endif
  6964. /**
  6965. * Set current_position to the position of the new nozzle.
  6966. * Offsets are based on linear distance, so we need to get
  6967. * the resulting position in coordinate space.
  6968. *
  6969. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  6970. * - With mesh leveling, update Z for the new position
  6971. * - Otherwise, just use the raw linear distance
  6972. *
  6973. * Software endstops are altered here too. Consider a case where:
  6974. * E0 at X=0 ... E1 at X=10
  6975. * When we switch to E1 now X=10, but E1 can't move left.
  6976. * To express this we apply the change in XY to the software endstops.
  6977. * E1 can move farther right than E0, so the right limit is extended.
  6978. *
  6979. * Note that we don't adjust the Z software endstops. Why not?
  6980. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  6981. * because the bed is 1mm lower at the new position. As long as
  6982. * the first nozzle is out of the way, the carriage should be
  6983. * allowed to move 1mm lower. This technically "breaks" the
  6984. * Z software endstop. But this is technically correct (and
  6985. * there is no viable alternative).
  6986. */
  6987. #if ABL_PLANAR
  6988. // Offset extruder, make sure to apply the bed level rotation matrix
  6989. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  6990. hotend_offset[Y_AXIS][tmp_extruder],
  6991. 0),
  6992. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  6993. hotend_offset[Y_AXIS][active_extruder],
  6994. 0),
  6995. offset_vec = tmp_offset_vec - act_offset_vec;
  6996. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6997. if (DEBUGGING(LEVELING)) {
  6998. tmp_offset_vec.debug("tmp_offset_vec");
  6999. act_offset_vec.debug("act_offset_vec");
  7000. offset_vec.debug("offset_vec (BEFORE)");
  7001. }
  7002. #endif
  7003. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  7004. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7005. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  7006. #endif
  7007. // Adjustments to the current position
  7008. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  7009. current_position[Z_AXIS] += offset_vec.z;
  7010. #else // !ABL_PLANAR
  7011. const float xydiff[2] = {
  7012. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  7013. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  7014. };
  7015. #if ENABLED(MESH_BED_LEVELING)
  7016. if (mbl.active()) {
  7017. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7018. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  7019. #endif
  7020. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  7021. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  7022. z1 = current_position[Z_AXIS], z2 = z1;
  7023. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  7024. planner.apply_leveling(x2, y2, z2);
  7025. current_position[Z_AXIS] += z2 - z1;
  7026. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7027. if (DEBUGGING(LEVELING))
  7028. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  7029. #endif
  7030. }
  7031. #endif // MESH_BED_LEVELING
  7032. #endif // !HAS_ABL
  7033. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7034. if (DEBUGGING(LEVELING)) {
  7035. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  7036. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  7037. SERIAL_ECHOLNPGM(" }");
  7038. }
  7039. #endif
  7040. // The newly-selected extruder XY is actually at...
  7041. current_position[X_AXIS] += xydiff[X_AXIS];
  7042. current_position[Y_AXIS] += xydiff[Y_AXIS];
  7043. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE)
  7044. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  7045. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7046. position_shift[i] += xydiff[i];
  7047. #endif
  7048. update_software_endstops((AxisEnum)i);
  7049. }
  7050. #endif
  7051. // Set the new active extruder
  7052. active_extruder = tmp_extruder;
  7053. #endif // !DUAL_X_CARRIAGE
  7054. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7055. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  7056. #endif
  7057. // Tell the planner the new "current position"
  7058. SYNC_PLAN_POSITION_KINEMATIC();
  7059. // Move to the "old position" (move the extruder into place)
  7060. if (!no_move && IsRunning()) {
  7061. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7062. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  7063. #endif
  7064. prepare_move_to_destination();
  7065. }
  7066. #if ENABLED(SWITCHING_EXTRUDER)
  7067. // Move back down, if needed. (Including when the new tool is higher.)
  7068. if (z_raise != z_diff) {
  7069. destination[Z_AXIS] += z_diff;
  7070. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  7071. prepare_move_to_destination();
  7072. }
  7073. #endif
  7074. } // (tmp_extruder != active_extruder)
  7075. stepper.synchronize();
  7076. #if ENABLED(EXT_SOLENOID)
  7077. disable_all_solenoids();
  7078. enable_solenoid_on_active_extruder();
  7079. #endif // EXT_SOLENOID
  7080. feedrate_mm_s = old_feedrate_mm_s;
  7081. #else // HOTENDS <= 1
  7082. // Set the new active extruder
  7083. active_extruder = tmp_extruder;
  7084. UNUSED(fr_mm_s);
  7085. UNUSED(no_move);
  7086. #endif // HOTENDS <= 1
  7087. SERIAL_ECHO_START;
  7088. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  7089. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7090. }
  7091. /**
  7092. * T0-T3: Switch tool, usually switching extruders
  7093. *
  7094. * F[units/min] Set the movement feedrate
  7095. * S1 Don't move the tool in XY after change
  7096. */
  7097. inline void gcode_T(uint8_t tmp_extruder) {
  7098. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7099. if (DEBUGGING(LEVELING)) {
  7100. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  7101. SERIAL_CHAR(')');
  7102. SERIAL_EOL;
  7103. DEBUG_POS("BEFORE", current_position);
  7104. }
  7105. #endif
  7106. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  7107. tool_change(tmp_extruder);
  7108. #elif HOTENDS > 1
  7109. tool_change(
  7110. tmp_extruder,
  7111. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  7112. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  7113. );
  7114. #endif
  7115. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7116. if (DEBUGGING(LEVELING)) {
  7117. DEBUG_POS("AFTER", current_position);
  7118. SERIAL_ECHOLNPGM("<<< gcode_T");
  7119. }
  7120. #endif
  7121. }
  7122. /**
  7123. * Process a single command and dispatch it to its handler
  7124. * This is called from the main loop()
  7125. */
  7126. void process_next_command() {
  7127. current_command = command_queue[cmd_queue_index_r];
  7128. if (DEBUGGING(ECHO)) {
  7129. SERIAL_ECHO_START;
  7130. SERIAL_ECHOLN(current_command);
  7131. }
  7132. // Sanitize the current command:
  7133. // - Skip leading spaces
  7134. // - Bypass N[-0-9][0-9]*[ ]*
  7135. // - Overwrite * with nul to mark the end
  7136. while (*current_command == ' ') ++current_command;
  7137. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  7138. current_command += 2; // skip N[-0-9]
  7139. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  7140. while (*current_command == ' ') ++current_command; // skip [ ]*
  7141. }
  7142. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  7143. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  7144. char *cmd_ptr = current_command;
  7145. // Get the command code, which must be G, M, or T
  7146. char command_code = *cmd_ptr++;
  7147. // Skip spaces to get the numeric part
  7148. while (*cmd_ptr == ' ') cmd_ptr++;
  7149. // Allow for decimal point in command
  7150. #if ENABLED(G38_PROBE_TARGET)
  7151. uint8_t subcode = 0;
  7152. #endif
  7153. uint16_t codenum = 0; // define ahead of goto
  7154. // Bail early if there's no code
  7155. bool code_is_good = NUMERIC(*cmd_ptr);
  7156. if (!code_is_good) goto ExitUnknownCommand;
  7157. // Get and skip the code number
  7158. do {
  7159. codenum = (codenum * 10) + (*cmd_ptr - '0');
  7160. cmd_ptr++;
  7161. } while (NUMERIC(*cmd_ptr));
  7162. // Allow for decimal point in command
  7163. #if ENABLED(G38_PROBE_TARGET)
  7164. if (*cmd_ptr == '.') {
  7165. cmd_ptr++;
  7166. while (NUMERIC(*cmd_ptr))
  7167. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  7168. }
  7169. #endif
  7170. // Skip all spaces to get to the first argument, or nul
  7171. while (*cmd_ptr == ' ') cmd_ptr++;
  7172. // The command's arguments (if any) start here, for sure!
  7173. current_command_args = cmd_ptr;
  7174. KEEPALIVE_STATE(IN_HANDLER);
  7175. // Handle a known G, M, or T
  7176. switch (command_code) {
  7177. case 'G': switch (codenum) {
  7178. // G0, G1
  7179. case 0:
  7180. case 1:
  7181. #if IS_SCARA
  7182. gcode_G0_G1(codenum == 0);
  7183. #else
  7184. gcode_G0_G1();
  7185. #endif
  7186. break;
  7187. // G2, G3
  7188. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  7189. case 2: // G2 - CW ARC
  7190. case 3: // G3 - CCW ARC
  7191. gcode_G2_G3(codenum == 2);
  7192. break;
  7193. #endif
  7194. // G4 Dwell
  7195. case 4:
  7196. gcode_G4();
  7197. break;
  7198. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7199. // G5
  7200. case 5: // G5 - Cubic B_spline
  7201. gcode_G5();
  7202. break;
  7203. #endif // BEZIER_CURVE_SUPPORT
  7204. #if ENABLED(FWRETRACT)
  7205. case 10: // G10: retract
  7206. case 11: // G11: retract_recover
  7207. gcode_G10_G11(codenum == 10);
  7208. break;
  7209. #endif // FWRETRACT
  7210. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  7211. case 12:
  7212. gcode_G12(); // G12: Nozzle Clean
  7213. break;
  7214. #endif // NOZZLE_CLEAN_FEATURE
  7215. #if ENABLED(INCH_MODE_SUPPORT)
  7216. case 20: //G20: Inch Mode
  7217. gcode_G20();
  7218. break;
  7219. case 21: //G21: MM Mode
  7220. gcode_G21();
  7221. break;
  7222. #endif // INCH_MODE_SUPPORT
  7223. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED)
  7224. case 26: // G26: Mesh Validation Pattern generation
  7225. gcode_G26();
  7226. break;
  7227. #endif // AUTO_BED_LEVELING_UBL
  7228. #if ENABLED(NOZZLE_PARK_FEATURE)
  7229. case 27: // G27: Nozzle Park
  7230. gcode_G27();
  7231. break;
  7232. #endif // NOZZLE_PARK_FEATURE
  7233. case 28: // G28: Home all axes, one at a time
  7234. gcode_G28();
  7235. break;
  7236. #if PLANNER_LEVELING
  7237. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  7238. // or provides access to the UBL System if enabled.
  7239. gcode_G29();
  7240. break;
  7241. #endif // PLANNER_LEVELING
  7242. #if HAS_BED_PROBE
  7243. case 30: // G30 Single Z probe
  7244. gcode_G30();
  7245. break;
  7246. #if ENABLED(Z_PROBE_SLED)
  7247. case 31: // G31: dock the sled
  7248. gcode_G31();
  7249. break;
  7250. case 32: // G32: undock the sled
  7251. gcode_G32();
  7252. break;
  7253. #endif // Z_PROBE_SLED
  7254. #endif // HAS_BED_PROBE
  7255. #if ENABLED(G38_PROBE_TARGET)
  7256. case 38: // G38.2 & G38.3
  7257. if (subcode == 2 || subcode == 3)
  7258. gcode_G38(subcode == 2);
  7259. break;
  7260. #endif
  7261. case 90: // G90
  7262. relative_mode = false;
  7263. break;
  7264. case 91: // G91
  7265. relative_mode = true;
  7266. break;
  7267. case 92: // G92
  7268. gcode_G92();
  7269. break;
  7270. }
  7271. break;
  7272. case 'M': switch (codenum) {
  7273. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  7274. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  7275. case 1: // M1: Conditional stop - Wait for user button press on LCD
  7276. gcode_M0_M1();
  7277. break;
  7278. #endif // ULTIPANEL
  7279. case 17: // M17: Enable all stepper motors
  7280. gcode_M17();
  7281. break;
  7282. #if ENABLED(SDSUPPORT)
  7283. case 20: // M20: list SD card
  7284. gcode_M20(); break;
  7285. case 21: // M21: init SD card
  7286. gcode_M21(); break;
  7287. case 22: // M22: release SD card
  7288. gcode_M22(); break;
  7289. case 23: // M23: Select file
  7290. gcode_M23(); break;
  7291. case 24: // M24: Start SD print
  7292. gcode_M24(); break;
  7293. case 25: // M25: Pause SD print
  7294. gcode_M25(); break;
  7295. case 26: // M26: Set SD index
  7296. gcode_M26(); break;
  7297. case 27: // M27: Get SD status
  7298. gcode_M27(); break;
  7299. case 28: // M28: Start SD write
  7300. gcode_M28(); break;
  7301. case 29: // M29: Stop SD write
  7302. gcode_M29(); break;
  7303. case 30: // M30 <filename> Delete File
  7304. gcode_M30(); break;
  7305. case 32: // M32: Select file and start SD print
  7306. gcode_M32(); break;
  7307. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  7308. case 33: // M33: Get the long full path to a file or folder
  7309. gcode_M33(); break;
  7310. #endif
  7311. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  7312. case 34: //M34 - Set SD card sorting options
  7313. gcode_M34(); break;
  7314. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  7315. case 928: // M928: Start SD write
  7316. gcode_M928(); break;
  7317. #endif //SDSUPPORT
  7318. case 31: // M31: Report time since the start of SD print or last M109
  7319. gcode_M31(); break;
  7320. case 42: // M42: Change pin state
  7321. gcode_M42(); break;
  7322. #if ENABLED(PINS_DEBUGGING)
  7323. case 43: // M43: Read pin state
  7324. gcode_M43(); break;
  7325. #endif
  7326. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  7327. case 48: // M48: Z probe repeatability test
  7328. gcode_M48();
  7329. break;
  7330. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  7331. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED)
  7332. case 49: // M49: Turn on or off g26_debug_flag for verbose output
  7333. gcode_M49();
  7334. break;
  7335. #endif // AUTO_BED_LEVELING_UBL && UBL_MESH_EDIT_ENABLED
  7336. case 75: // M75: Start print timer
  7337. gcode_M75(); break;
  7338. case 76: // M76: Pause print timer
  7339. gcode_M76(); break;
  7340. case 77: // M77: Stop print timer
  7341. gcode_M77(); break;
  7342. #if ENABLED(PRINTCOUNTER)
  7343. case 78: // M78: Show print statistics
  7344. gcode_M78(); break;
  7345. #endif
  7346. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  7347. case 100: // M100: Free Memory Report
  7348. gcode_M100();
  7349. break;
  7350. #endif
  7351. case 104: // M104: Set hot end temperature
  7352. gcode_M104();
  7353. break;
  7354. case 110: // M110: Set Current Line Number
  7355. gcode_M110();
  7356. break;
  7357. case 111: // M111: Set debug level
  7358. gcode_M111();
  7359. break;
  7360. #if DISABLED(EMERGENCY_PARSER)
  7361. case 108: // M108: Cancel Waiting
  7362. gcode_M108();
  7363. break;
  7364. case 112: // M112: Emergency Stop
  7365. gcode_M112();
  7366. break;
  7367. case 410: // M410 quickstop - Abort all the planned moves.
  7368. gcode_M410();
  7369. break;
  7370. #endif
  7371. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  7372. case 113: // M113: Set Host Keepalive interval
  7373. gcode_M113();
  7374. break;
  7375. #endif
  7376. case 140: // M140: Set bed temperature
  7377. gcode_M140();
  7378. break;
  7379. case 105: // M105: Report current temperature
  7380. gcode_M105();
  7381. KEEPALIVE_STATE(NOT_BUSY);
  7382. return; // "ok" already printed
  7383. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  7384. case 155: // M155: Set temperature auto-report interval
  7385. gcode_M155();
  7386. break;
  7387. #endif
  7388. case 109: // M109: Wait for hotend temperature to reach target
  7389. gcode_M109();
  7390. break;
  7391. #if HAS_TEMP_BED
  7392. case 190: // M190: Wait for bed temperature to reach target
  7393. gcode_M190();
  7394. break;
  7395. #endif // HAS_TEMP_BED
  7396. #if FAN_COUNT > 0
  7397. case 106: // M106: Fan On
  7398. gcode_M106();
  7399. break;
  7400. case 107: // M107: Fan Off
  7401. gcode_M107();
  7402. break;
  7403. #endif // FAN_COUNT > 0
  7404. #if ENABLED(PARK_HEAD_ON_PAUSE)
  7405. case 125: // M125: Store current position and move to filament change position
  7406. gcode_M125(); break;
  7407. #endif
  7408. #if ENABLED(BARICUDA)
  7409. // PWM for HEATER_1_PIN
  7410. #if HAS_HEATER_1
  7411. case 126: // M126: valve open
  7412. gcode_M126();
  7413. break;
  7414. case 127: // M127: valve closed
  7415. gcode_M127();
  7416. break;
  7417. #endif // HAS_HEATER_1
  7418. // PWM for HEATER_2_PIN
  7419. #if HAS_HEATER_2
  7420. case 128: // M128: valve open
  7421. gcode_M128();
  7422. break;
  7423. case 129: // M129: valve closed
  7424. gcode_M129();
  7425. break;
  7426. #endif // HAS_HEATER_2
  7427. #endif // BARICUDA
  7428. #if HAS_POWER_SWITCH
  7429. case 80: // M80: Turn on Power Supply
  7430. gcode_M80();
  7431. break;
  7432. #endif // HAS_POWER_SWITCH
  7433. case 81: // M81: Turn off Power, including Power Supply, if possible
  7434. gcode_M81();
  7435. break;
  7436. case 82: // M83: Set E axis normal mode (same as other axes)
  7437. gcode_M82();
  7438. break;
  7439. case 83: // M83: Set E axis relative mode
  7440. gcode_M83();
  7441. break;
  7442. case 18: // M18 => M84
  7443. case 84: // M84: Disable all steppers or set timeout
  7444. gcode_M18_M84();
  7445. break;
  7446. case 85: // M85: Set inactivity stepper shutdown timeout
  7447. gcode_M85();
  7448. break;
  7449. case 92: // M92: Set the steps-per-unit for one or more axes
  7450. gcode_M92();
  7451. break;
  7452. case 114: // M114: Report current position
  7453. gcode_M114();
  7454. break;
  7455. case 115: // M115: Report capabilities
  7456. gcode_M115();
  7457. break;
  7458. case 117: // M117: Set LCD message text, if possible
  7459. gcode_M117();
  7460. break;
  7461. case 119: // M119: Report endstop states
  7462. gcode_M119();
  7463. break;
  7464. case 120: // M120: Enable endstops
  7465. gcode_M120();
  7466. break;
  7467. case 121: // M121: Disable endstops
  7468. gcode_M121();
  7469. break;
  7470. #if ENABLED(ULTIPANEL)
  7471. case 145: // M145: Set material heatup parameters
  7472. gcode_M145();
  7473. break;
  7474. #endif
  7475. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  7476. case 149: // M149: Set temperature units
  7477. gcode_M149();
  7478. break;
  7479. #endif
  7480. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  7481. case 150: // M150: Set Status LED Color
  7482. gcode_M150();
  7483. break;
  7484. #endif // BLINKM
  7485. #if ENABLED(MIXING_EXTRUDER)
  7486. case 163: // M163: Set a component weight for mixing extruder
  7487. gcode_M163();
  7488. break;
  7489. #if MIXING_VIRTUAL_TOOLS > 1
  7490. case 164: // M164: Save current mix as a virtual extruder
  7491. gcode_M164();
  7492. break;
  7493. #endif
  7494. #if ENABLED(DIRECT_MIXING_IN_G1)
  7495. case 165: // M165: Set multiple mix weights
  7496. gcode_M165();
  7497. break;
  7498. #endif
  7499. #endif
  7500. case 200: // M200: Set filament diameter, E to cubic units
  7501. gcode_M200();
  7502. break;
  7503. case 201: // M201: Set max acceleration for print moves (units/s^2)
  7504. gcode_M201();
  7505. break;
  7506. #if 0 // Not used for Sprinter/grbl gen6
  7507. case 202: // M202
  7508. gcode_M202();
  7509. break;
  7510. #endif
  7511. case 203: // M203: Set max feedrate (units/sec)
  7512. gcode_M203();
  7513. break;
  7514. case 204: // M204: Set acceleration
  7515. gcode_M204();
  7516. break;
  7517. case 205: //M205: Set advanced settings
  7518. gcode_M205();
  7519. break;
  7520. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7521. case 206: // M206: Set home offsets
  7522. gcode_M206();
  7523. break;
  7524. #endif
  7525. #if ENABLED(DELTA)
  7526. case 665: // M665: Set delta configurations
  7527. gcode_M665();
  7528. break;
  7529. #endif
  7530. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  7531. case 666: // M666: Set delta or dual endstop adjustment
  7532. gcode_M666();
  7533. break;
  7534. #endif
  7535. #if ENABLED(FWRETRACT)
  7536. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  7537. gcode_M207();
  7538. break;
  7539. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  7540. gcode_M208();
  7541. break;
  7542. case 209: // M209: Turn Automatic Retract Detection on/off
  7543. gcode_M209();
  7544. break;
  7545. #endif // FWRETRACT
  7546. case 211: // M211: Enable, Disable, and/or Report software endstops
  7547. gcode_M211();
  7548. break;
  7549. #if HOTENDS > 1
  7550. case 218: // M218: Set a tool offset
  7551. gcode_M218();
  7552. break;
  7553. #endif
  7554. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  7555. gcode_M220();
  7556. break;
  7557. case 221: // M221: Set Flow Percentage
  7558. gcode_M221();
  7559. break;
  7560. case 226: // M226: Wait until a pin reaches a state
  7561. gcode_M226();
  7562. break;
  7563. #if HAS_SERVOS
  7564. case 280: // M280: Set servo position absolute
  7565. gcode_M280();
  7566. break;
  7567. #endif // HAS_SERVOS
  7568. #if HAS_BUZZER
  7569. case 300: // M300: Play beep tone
  7570. gcode_M300();
  7571. break;
  7572. #endif // HAS_BUZZER
  7573. #if ENABLED(PIDTEMP)
  7574. case 301: // M301: Set hotend PID parameters
  7575. gcode_M301();
  7576. break;
  7577. #endif // PIDTEMP
  7578. #if ENABLED(PIDTEMPBED)
  7579. case 304: // M304: Set bed PID parameters
  7580. gcode_M304();
  7581. break;
  7582. #endif // PIDTEMPBED
  7583. #if defined(CHDK) || HAS_PHOTOGRAPH
  7584. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  7585. gcode_M240();
  7586. break;
  7587. #endif // CHDK || PHOTOGRAPH_PIN
  7588. #if HAS_LCD_CONTRAST
  7589. case 250: // M250: Set LCD contrast
  7590. gcode_M250();
  7591. break;
  7592. #endif // HAS_LCD_CONTRAST
  7593. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7594. case 260: // M260: Send data to an i2c slave
  7595. gcode_M260();
  7596. break;
  7597. case 261: // M261: Request data from an i2c slave
  7598. gcode_M261();
  7599. break;
  7600. #endif // EXPERIMENTAL_I2CBUS
  7601. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7602. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  7603. gcode_M302();
  7604. break;
  7605. #endif // PREVENT_COLD_EXTRUSION
  7606. case 303: // M303: PID autotune
  7607. gcode_M303();
  7608. break;
  7609. #if ENABLED(MORGAN_SCARA)
  7610. case 360: // M360: SCARA Theta pos1
  7611. if (gcode_M360()) return;
  7612. break;
  7613. case 361: // M361: SCARA Theta pos2
  7614. if (gcode_M361()) return;
  7615. break;
  7616. case 362: // M362: SCARA Psi pos1
  7617. if (gcode_M362()) return;
  7618. break;
  7619. case 363: // M363: SCARA Psi pos2
  7620. if (gcode_M363()) return;
  7621. break;
  7622. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  7623. if (gcode_M364()) return;
  7624. break;
  7625. #endif // SCARA
  7626. case 400: // M400: Finish all moves
  7627. gcode_M400();
  7628. break;
  7629. #if HAS_BED_PROBE
  7630. case 401: // M401: Deploy probe
  7631. gcode_M401();
  7632. break;
  7633. case 402: // M402: Stow probe
  7634. gcode_M402();
  7635. break;
  7636. #endif // HAS_BED_PROBE
  7637. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7638. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  7639. gcode_M404();
  7640. break;
  7641. case 405: // M405: Turn on filament sensor for control
  7642. gcode_M405();
  7643. break;
  7644. case 406: // M406: Turn off filament sensor for control
  7645. gcode_M406();
  7646. break;
  7647. case 407: // M407: Display measured filament diameter
  7648. gcode_M407();
  7649. break;
  7650. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  7651. #if PLANNER_LEVELING
  7652. case 420: // M420: Enable/Disable Bed Leveling
  7653. gcode_M420();
  7654. break;
  7655. #endif
  7656. #if ENABLED(MESH_BED_LEVELING)
  7657. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  7658. gcode_M421();
  7659. break;
  7660. #endif
  7661. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7662. case 428: // M428: Apply current_position to home_offset
  7663. gcode_M428();
  7664. break;
  7665. #endif
  7666. case 500: // M500: Store settings in EEPROM
  7667. gcode_M500();
  7668. break;
  7669. case 501: // M501: Read settings from EEPROM
  7670. gcode_M501();
  7671. break;
  7672. case 502: // M502: Revert to default settings
  7673. gcode_M502();
  7674. break;
  7675. case 503: // M503: print settings currently in memory
  7676. gcode_M503();
  7677. break;
  7678. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7679. case 540: // M540: Set abort on endstop hit for SD printing
  7680. gcode_M540();
  7681. break;
  7682. #endif
  7683. #if HAS_BED_PROBE
  7684. case 851: // M851: Set Z Probe Z Offset
  7685. gcode_M851();
  7686. break;
  7687. #endif // HAS_BED_PROBE
  7688. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7689. case 600: // M600: Pause for filament change
  7690. gcode_M600();
  7691. break;
  7692. #endif // FILAMENT_CHANGE_FEATURE
  7693. #if ENABLED(DUAL_X_CARRIAGE)
  7694. case 605: // M605: Set Dual X Carriage movement mode
  7695. gcode_M605();
  7696. break;
  7697. #endif // DUAL_X_CARRIAGE
  7698. #if ENABLED(LIN_ADVANCE)
  7699. case 905: // M905: Set advance K factor.
  7700. gcode_M905();
  7701. break;
  7702. #endif
  7703. #if ENABLED(HAVE_TMC2130)
  7704. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7705. gcode_M906();
  7706. break;
  7707. #endif
  7708. case 907: // M907: Set digital trimpot motor current using axis codes.
  7709. gcode_M907();
  7710. break;
  7711. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7712. case 908: // M908: Control digital trimpot directly.
  7713. gcode_M908();
  7714. break;
  7715. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7716. case 909: // M909: Print digipot/DAC current value
  7717. gcode_M909();
  7718. break;
  7719. case 910: // M910: Commit digipot/DAC value to external EEPROM
  7720. gcode_M910();
  7721. break;
  7722. #endif
  7723. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7724. #if ENABLED(HAVE_TMC2130)
  7725. case 911: // M911: Report TMC2130 prewarn triggered flags
  7726. gcode_M911();
  7727. break;
  7728. case 912: // M911: Clear TMC2130 prewarn triggered flags
  7729. gcode_M912();
  7730. break;
  7731. #endif
  7732. #if HAS_MICROSTEPS
  7733. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7734. gcode_M350();
  7735. break;
  7736. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  7737. gcode_M351();
  7738. break;
  7739. #endif // HAS_MICROSTEPS
  7740. case 355: // M355 Turn case lights on/off
  7741. gcode_M355();
  7742. break;
  7743. case 999: // M999: Restart after being Stopped
  7744. gcode_M999();
  7745. break;
  7746. }
  7747. break;
  7748. case 'T':
  7749. gcode_T(codenum);
  7750. break;
  7751. default: code_is_good = false;
  7752. }
  7753. KEEPALIVE_STATE(NOT_BUSY);
  7754. ExitUnknownCommand:
  7755. // Still unknown command? Throw an error
  7756. if (!code_is_good) unknown_command_error();
  7757. ok_to_send();
  7758. }
  7759. /**
  7760. * Send a "Resend: nnn" message to the host to
  7761. * indicate that a command needs to be re-sent.
  7762. */
  7763. void FlushSerialRequestResend() {
  7764. //char command_queue[cmd_queue_index_r][100]="Resend:";
  7765. MYSERIAL.flush();
  7766. SERIAL_PROTOCOLPGM(MSG_RESEND);
  7767. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  7768. ok_to_send();
  7769. }
  7770. /**
  7771. * Send an "ok" message to the host, indicating
  7772. * that a command was successfully processed.
  7773. *
  7774. * If ADVANCED_OK is enabled also include:
  7775. * N<int> Line number of the command, if any
  7776. * P<int> Planner space remaining
  7777. * B<int> Block queue space remaining
  7778. */
  7779. void ok_to_send() {
  7780. refresh_cmd_timeout();
  7781. if (!send_ok[cmd_queue_index_r]) return;
  7782. SERIAL_PROTOCOLPGM(MSG_OK);
  7783. #if ENABLED(ADVANCED_OK)
  7784. char* p = command_queue[cmd_queue_index_r];
  7785. if (*p == 'N') {
  7786. SERIAL_PROTOCOL(' ');
  7787. SERIAL_ECHO(*p++);
  7788. while (NUMERIC_SIGNED(*p))
  7789. SERIAL_ECHO(*p++);
  7790. }
  7791. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  7792. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  7793. #endif
  7794. SERIAL_EOL;
  7795. }
  7796. #if HAS_SOFTWARE_ENDSTOPS
  7797. /**
  7798. * Constrain the given coordinates to the software endstops.
  7799. */
  7800. void clamp_to_software_endstops(float target[XYZ]) {
  7801. if (!soft_endstops_enabled) return;
  7802. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  7803. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  7804. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  7805. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  7806. #endif
  7807. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7808. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  7809. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  7810. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7811. #endif
  7812. }
  7813. #endif
  7814. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7815. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7816. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  7817. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  7818. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  7819. #define ABL_BG_GRID(X,Y) bed_level_grid_virt[X][Y]
  7820. #else
  7821. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  7822. #define ABL_BG_POINTS_X ABL_GRID_MAX_POINTS_X
  7823. #define ABL_BG_POINTS_Y ABL_GRID_MAX_POINTS_Y
  7824. #define ABL_BG_GRID(X,Y) bed_level_grid[X][Y]
  7825. #endif
  7826. // Get the Z adjustment for non-linear bed leveling
  7827. float bilinear_z_offset(float cartesian[XYZ]) {
  7828. // XY relative to the probed area
  7829. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  7830. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  7831. // Convert to grid box units
  7832. float ratio_x = x / ABL_BG_SPACING(X_AXIS),
  7833. ratio_y = y / ABL_BG_SPACING(Y_AXIS);
  7834. // Whole units for the grid line indices. Constrained within bounds.
  7835. const int gridx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1),
  7836. gridy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1),
  7837. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1),
  7838. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  7839. // Subtract whole to get the ratio within the grid box
  7840. ratio_x -= gridx; ratio_y -= gridy;
  7841. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  7842. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  7843. // Z at the box corners
  7844. const float z1 = ABL_BG_GRID(gridx, gridy), // left-front
  7845. z2 = ABL_BG_GRID(gridx, nexty), // left-back
  7846. z3 = ABL_BG_GRID(nextx, gridy), // right-front
  7847. z4 = ABL_BG_GRID(nextx, nexty), // right-back
  7848. // Bilinear interpolate
  7849. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  7850. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  7851. offset = L + ratio_x * (R - L);
  7852. /*
  7853. static float last_offset = 0;
  7854. if (fabs(last_offset - offset) > 0.2) {
  7855. SERIAL_ECHOPGM("Sudden Shift at ");
  7856. SERIAL_ECHOPAIR("x=", x);
  7857. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  7858. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  7859. SERIAL_ECHOPAIR(" y=", y);
  7860. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  7861. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  7862. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  7863. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  7864. SERIAL_ECHOPAIR(" z1=", z1);
  7865. SERIAL_ECHOPAIR(" z2=", z2);
  7866. SERIAL_ECHOPAIR(" z3=", z3);
  7867. SERIAL_ECHOLNPAIR(" z4=", z4);
  7868. SERIAL_ECHOPAIR(" L=", L);
  7869. SERIAL_ECHOPAIR(" R=", R);
  7870. SERIAL_ECHOLNPAIR(" offset=", offset);
  7871. }
  7872. last_offset = offset;
  7873. */
  7874. return offset;
  7875. }
  7876. #endif // AUTO_BED_LEVELING_BILINEAR
  7877. #if ENABLED(DELTA)
  7878. /**
  7879. * Recalculate factors used for delta kinematics whenever
  7880. * settings have been changed (e.g., by M665).
  7881. */
  7882. void recalc_delta_settings(float radius, float diagonal_rod) {
  7883. delta_tower[A_AXIS][X_AXIS] = -sin(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  7884. delta_tower[A_AXIS][Y_AXIS] = -cos(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  7885. delta_tower[B_AXIS][X_AXIS] = sin(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  7886. delta_tower[B_AXIS][Y_AXIS] = -cos(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  7887. delta_tower[C_AXIS][X_AXIS] = -sin(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); // back middle tower
  7888. delta_tower[C_AXIS][Y_AXIS] = cos(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3);
  7889. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[A_AXIS]);
  7890. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[B_AXIS]);
  7891. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[C_AXIS]);
  7892. }
  7893. #if ENABLED(DELTA_FAST_SQRT)
  7894. /**
  7895. * Fast inverse sqrt from Quake III Arena
  7896. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  7897. */
  7898. float Q_rsqrt(float number) {
  7899. long i;
  7900. float x2, y;
  7901. const float threehalfs = 1.5f;
  7902. x2 = number * 0.5f;
  7903. y = number;
  7904. i = * ( long * ) &y; // evil floating point bit level hacking
  7905. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  7906. y = * ( float * ) &i;
  7907. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  7908. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  7909. return y;
  7910. }
  7911. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  7912. #else
  7913. #define _SQRT(n) sqrt(n)
  7914. #endif
  7915. /**
  7916. * Delta Inverse Kinematics
  7917. *
  7918. * Calculate the tower positions for a given logical
  7919. * position, storing the result in the delta[] array.
  7920. *
  7921. * This is an expensive calculation, requiring 3 square
  7922. * roots per segmented linear move, and strains the limits
  7923. * of a Mega2560 with a Graphical Display.
  7924. *
  7925. * Suggested optimizations include:
  7926. *
  7927. * - Disable the home_offset (M206) and/or position_shift (G92)
  7928. * features to remove up to 12 float additions.
  7929. *
  7930. * - Use a fast-inverse-sqrt function and add the reciprocal.
  7931. * (see above)
  7932. */
  7933. // Macro to obtain the Z position of an individual tower
  7934. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  7935. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  7936. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  7937. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  7938. ) \
  7939. )
  7940. #define DELTA_RAW_IK() do { \
  7941. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  7942. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  7943. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  7944. } while(0)
  7945. #define DELTA_LOGICAL_IK() do { \
  7946. const float raw[XYZ] = { \
  7947. RAW_X_POSITION(logical[X_AXIS]), \
  7948. RAW_Y_POSITION(logical[Y_AXIS]), \
  7949. RAW_Z_POSITION(logical[Z_AXIS]) \
  7950. }; \
  7951. DELTA_RAW_IK(); \
  7952. } while(0)
  7953. #define DELTA_DEBUG() do { \
  7954. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  7955. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  7956. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  7957. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  7958. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  7959. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  7960. } while(0)
  7961. void inverse_kinematics(const float logical[XYZ]) {
  7962. DELTA_LOGICAL_IK();
  7963. // DELTA_DEBUG();
  7964. }
  7965. /**
  7966. * Calculate the highest Z position where the
  7967. * effector has the full range of XY motion.
  7968. */
  7969. float delta_safe_distance_from_top() {
  7970. float cartesian[XYZ] = {
  7971. LOGICAL_X_POSITION(0),
  7972. LOGICAL_Y_POSITION(0),
  7973. LOGICAL_Z_POSITION(0)
  7974. };
  7975. inverse_kinematics(cartesian);
  7976. float distance = delta[A_AXIS];
  7977. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  7978. inverse_kinematics(cartesian);
  7979. return abs(distance - delta[A_AXIS]);
  7980. }
  7981. /**
  7982. * Delta Forward Kinematics
  7983. *
  7984. * See the Wikipedia article "Trilateration"
  7985. * https://en.wikipedia.org/wiki/Trilateration
  7986. *
  7987. * Establish a new coordinate system in the plane of the
  7988. * three carriage points. This system has its origin at
  7989. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  7990. * plane with a Z component of zero.
  7991. * We will define unit vectors in this coordinate system
  7992. * in our original coordinate system. Then when we calculate
  7993. * the Xnew, Ynew and Znew values, we can translate back into
  7994. * the original system by moving along those unit vectors
  7995. * by the corresponding values.
  7996. *
  7997. * Variable names matched to Marlin, c-version, and avoid the
  7998. * use of any vector library.
  7999. *
  8000. * by Andreas Hardtung 2016-06-07
  8001. * based on a Java function from "Delta Robot Kinematics V3"
  8002. * by Steve Graves
  8003. *
  8004. * The result is stored in the cartes[] array.
  8005. */
  8006. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  8007. // Create a vector in old coordinates along x axis of new coordinate
  8008. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  8009. // Get the Magnitude of vector.
  8010. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  8011. // Create unit vector by dividing by magnitude.
  8012. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  8013. // Get the vector from the origin of the new system to the third point.
  8014. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  8015. // Use the dot product to find the component of this vector on the X axis.
  8016. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  8017. // Create a vector along the x axis that represents the x component of p13.
  8018. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  8019. // Subtract the X component from the original vector leaving only Y. We use the
  8020. // variable that will be the unit vector after we scale it.
  8021. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  8022. // The magnitude of Y component
  8023. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  8024. // Convert to a unit vector
  8025. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  8026. // The cross product of the unit x and y is the unit z
  8027. // float[] ez = vectorCrossProd(ex, ey);
  8028. float ez[3] = {
  8029. ex[1] * ey[2] - ex[2] * ey[1],
  8030. ex[2] * ey[0] - ex[0] * ey[2],
  8031. ex[0] * ey[1] - ex[1] * ey[0]
  8032. };
  8033. // We now have the d, i and j values defined in Wikipedia.
  8034. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  8035. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  8036. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  8037. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  8038. // Start from the origin of the old coordinates and add vectors in the
  8039. // old coords that represent the Xnew, Ynew and Znew to find the point
  8040. // in the old system.
  8041. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  8042. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  8043. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  8044. }
  8045. void forward_kinematics_DELTA(float point[ABC]) {
  8046. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  8047. }
  8048. #endif // DELTA
  8049. /**
  8050. * Get the stepper positions in the cartes[] array.
  8051. * Forward kinematics are applied for DELTA and SCARA.
  8052. *
  8053. * The result is in the current coordinate space with
  8054. * leveling applied. The coordinates need to be run through
  8055. * unapply_leveling to obtain the "ideal" coordinates
  8056. * suitable for current_position, etc.
  8057. */
  8058. void get_cartesian_from_steppers() {
  8059. #if ENABLED(DELTA)
  8060. forward_kinematics_DELTA(
  8061. stepper.get_axis_position_mm(A_AXIS),
  8062. stepper.get_axis_position_mm(B_AXIS),
  8063. stepper.get_axis_position_mm(C_AXIS)
  8064. );
  8065. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  8066. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  8067. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  8068. #elif IS_SCARA
  8069. forward_kinematics_SCARA(
  8070. stepper.get_axis_position_degrees(A_AXIS),
  8071. stepper.get_axis_position_degrees(B_AXIS)
  8072. );
  8073. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  8074. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  8075. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8076. #else
  8077. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  8078. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  8079. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8080. #endif
  8081. }
  8082. /**
  8083. * Set the current_position for an axis based on
  8084. * the stepper positions, removing any leveling that
  8085. * may have been applied.
  8086. */
  8087. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  8088. get_cartesian_from_steppers();
  8089. #if PLANNER_LEVELING && DISABLED(AUTO_BED_LEVELING_UBL)
  8090. planner.unapply_leveling(cartes);
  8091. #endif
  8092. if (axis == ALL_AXES)
  8093. COPY(current_position, cartes);
  8094. else
  8095. current_position[axis] = cartes[axis];
  8096. }
  8097. #if ENABLED(MESH_BED_LEVELING)
  8098. /**
  8099. * Prepare a mesh-leveled linear move in a Cartesian setup,
  8100. * splitting the move where it crosses mesh borders.
  8101. */
  8102. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  8103. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  8104. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  8105. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  8106. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  8107. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  8108. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  8109. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  8110. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  8111. if (cx1 == cx2 && cy1 == cy2) {
  8112. // Start and end on same mesh square
  8113. line_to_destination(fr_mm_s);
  8114. set_current_to_destination();
  8115. return;
  8116. }
  8117. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8118. float normalized_dist, end[XYZE];
  8119. // Split at the left/front border of the right/top square
  8120. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8121. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8122. COPY(end, destination);
  8123. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  8124. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8125. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  8126. CBI(x_splits, gcx);
  8127. }
  8128. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8129. COPY(end, destination);
  8130. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  8131. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8132. destination[X_AXIS] = MBL_SEGMENT_END(X);
  8133. CBI(y_splits, gcy);
  8134. }
  8135. else {
  8136. // Already split on a border
  8137. line_to_destination(fr_mm_s);
  8138. set_current_to_destination();
  8139. return;
  8140. }
  8141. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  8142. destination[E_AXIS] = MBL_SEGMENT_END(E);
  8143. // Do the split and look for more borders
  8144. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8145. // Restore destination from stack
  8146. COPY(destination, end);
  8147. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8148. }
  8149. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  8150. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / ABL_BG_SPACING(A##_AXIS))
  8151. /**
  8152. * Prepare a bilinear-leveled linear move on Cartesian,
  8153. * splitting the move where it crosses grid borders.
  8154. */
  8155. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  8156. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  8157. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  8158. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  8159. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  8160. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  8161. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  8162. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  8163. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  8164. if (cx1 == cx2 && cy1 == cy2) {
  8165. // Start and end on same mesh square
  8166. line_to_destination(fr_mm_s);
  8167. set_current_to_destination();
  8168. return;
  8169. }
  8170. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8171. float normalized_dist, end[XYZE];
  8172. // Split at the left/front border of the right/top square
  8173. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8174. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8175. COPY(end, destination);
  8176. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  8177. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8178. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  8179. CBI(x_splits, gcx);
  8180. }
  8181. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8182. COPY(end, destination);
  8183. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  8184. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8185. destination[X_AXIS] = LINE_SEGMENT_END(X);
  8186. CBI(y_splits, gcy);
  8187. }
  8188. else {
  8189. // Already split on a border
  8190. line_to_destination(fr_mm_s);
  8191. set_current_to_destination();
  8192. return;
  8193. }
  8194. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  8195. destination[E_AXIS] = LINE_SEGMENT_END(E);
  8196. // Do the split and look for more borders
  8197. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8198. // Restore destination from stack
  8199. COPY(destination, end);
  8200. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8201. }
  8202. #endif // AUTO_BED_LEVELING_BILINEAR
  8203. #if IS_KINEMATIC
  8204. /**
  8205. * Prepare a linear move in a DELTA or SCARA setup.
  8206. *
  8207. * This calls planner.buffer_line several times, adding
  8208. * small incremental moves for DELTA or SCARA.
  8209. */
  8210. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  8211. // Get the top feedrate of the move in the XY plane
  8212. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  8213. // If the move is only in Z/E don't split up the move
  8214. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  8215. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8216. return true;
  8217. }
  8218. // Get the cartesian distances moved in XYZE
  8219. float difference[XYZE];
  8220. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  8221. // Get the linear distance in XYZ
  8222. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  8223. // If the move is very short, check the E move distance
  8224. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  8225. // No E move either? Game over.
  8226. if (UNEAR_ZERO(cartesian_mm)) return false;
  8227. // Minimum number of seconds to move the given distance
  8228. float seconds = cartesian_mm / _feedrate_mm_s;
  8229. // The number of segments-per-second times the duration
  8230. // gives the number of segments
  8231. uint16_t segments = delta_segments_per_second * seconds;
  8232. // For SCARA minimum segment size is 0.25mm
  8233. #if IS_SCARA
  8234. NOMORE(segments, cartesian_mm * 4);
  8235. #endif
  8236. // At least one segment is required
  8237. NOLESS(segments, 1);
  8238. // The approximate length of each segment
  8239. const float inv_segments = 1.0 / float(segments),
  8240. segment_distance[XYZE] = {
  8241. difference[X_AXIS] * inv_segments,
  8242. difference[Y_AXIS] * inv_segments,
  8243. difference[Z_AXIS] * inv_segments,
  8244. difference[E_AXIS] * inv_segments
  8245. };
  8246. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  8247. // SERIAL_ECHOPAIR(" seconds=", seconds);
  8248. // SERIAL_ECHOLNPAIR(" segments=", segments);
  8249. #if IS_SCARA
  8250. // SCARA needs to scale the feed rate from mm/s to degrees/s
  8251. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  8252. feed_factor = inv_segment_length * _feedrate_mm_s;
  8253. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  8254. oldB = stepper.get_axis_position_degrees(B_AXIS);
  8255. #endif
  8256. // Get the logical current position as starting point
  8257. float logical[XYZE];
  8258. COPY(logical, current_position);
  8259. // Drop one segment so the last move is to the exact target.
  8260. // If there's only 1 segment, loops will be skipped entirely.
  8261. --segments;
  8262. // Calculate and execute the segments
  8263. for (uint16_t s = segments + 1; --s;) {
  8264. LOOP_XYZE(i) logical[i] += segment_distance[i];
  8265. #if ENABLED(DELTA)
  8266. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  8267. #else
  8268. inverse_kinematics(logical);
  8269. #endif
  8270. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  8271. #if IS_SCARA
  8272. // For SCARA scale the feed rate from mm/s to degrees/s
  8273. // Use ratio between the length of the move and the larger angle change
  8274. const float adiff = abs(delta[A_AXIS] - oldA),
  8275. bdiff = abs(delta[B_AXIS] - oldB);
  8276. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  8277. oldA = delta[A_AXIS];
  8278. oldB = delta[B_AXIS];
  8279. #else
  8280. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  8281. #endif
  8282. }
  8283. // Since segment_distance is only approximate,
  8284. // the final move must be to the exact destination.
  8285. #if IS_SCARA
  8286. // For SCARA scale the feed rate from mm/s to degrees/s
  8287. // With segments > 1 length is 1 segment, otherwise total length
  8288. inverse_kinematics(ltarget);
  8289. ADJUST_DELTA(logical);
  8290. const float adiff = abs(delta[A_AXIS] - oldA),
  8291. bdiff = abs(delta[B_AXIS] - oldB);
  8292. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  8293. #else
  8294. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8295. #endif
  8296. return true;
  8297. }
  8298. #else // !IS_KINEMATIC
  8299. /**
  8300. * Prepare a linear move in a Cartesian setup.
  8301. * If Mesh Bed Leveling is enabled, perform a mesh move.
  8302. */
  8303. inline bool prepare_move_to_destination_cartesian() {
  8304. // Do not use feedrate_percentage for E or Z only moves
  8305. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  8306. line_to_destination();
  8307. }
  8308. else {
  8309. #if ENABLED(MESH_BED_LEVELING)
  8310. if (mbl.active()) {
  8311. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8312. return false;
  8313. }
  8314. else
  8315. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  8316. if (ubl.state.active) {
  8317. // ubl_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8318. ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
  8319. // (feedrate*(1.0/60.0))*(feedrate_percentage*(1.0/100.0) ), active_extruder);
  8320. MMS_SCALED(feedrate_mm_s), active_extruder);
  8321. return false;
  8322. }
  8323. else
  8324. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8325. if (planner.abl_enabled) {
  8326. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8327. return false;
  8328. }
  8329. else
  8330. #endif
  8331. line_to_destination(MMS_SCALED(feedrate_mm_s));
  8332. }
  8333. return true;
  8334. }
  8335. #endif // !IS_KINEMATIC
  8336. #if ENABLED(DUAL_X_CARRIAGE)
  8337. /**
  8338. * Prepare a linear move in a dual X axis setup
  8339. */
  8340. inline bool prepare_move_to_destination_dualx() {
  8341. if (active_extruder_parked) {
  8342. switch (dual_x_carriage_mode) {
  8343. case DXC_FULL_CONTROL_MODE:
  8344. break;
  8345. case DXC_AUTO_PARK_MODE:
  8346. if (current_position[E_AXIS] == destination[E_AXIS]) {
  8347. // This is a travel move (with no extrusion)
  8348. // Skip it, but keep track of the current position
  8349. // (so it can be used as the start of the next non-travel move)
  8350. if (delayed_move_time != 0xFFFFFFFFUL) {
  8351. set_current_to_destination();
  8352. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  8353. delayed_move_time = millis();
  8354. return false;
  8355. }
  8356. }
  8357. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  8358. for (uint8_t i = 0; i < 3; i++)
  8359. planner.buffer_line(
  8360. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  8361. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  8362. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  8363. current_position[E_AXIS],
  8364. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  8365. active_extruder
  8366. );
  8367. delayed_move_time = 0;
  8368. active_extruder_parked = false;
  8369. break;
  8370. case DXC_DUPLICATION_MODE:
  8371. if (active_extruder == 0) {
  8372. // move duplicate extruder into correct duplication position.
  8373. planner.set_position_mm(
  8374. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  8375. current_position[Y_AXIS],
  8376. current_position[Z_AXIS],
  8377. current_position[E_AXIS]
  8378. );
  8379. planner.buffer_line(
  8380. current_position[X_AXIS] + duplicate_extruder_x_offset,
  8381. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  8382. planner.max_feedrate_mm_s[X_AXIS], 1
  8383. );
  8384. SYNC_PLAN_POSITION_KINEMATIC();
  8385. stepper.synchronize();
  8386. extruder_duplication_enabled = true;
  8387. active_extruder_parked = false;
  8388. }
  8389. break;
  8390. }
  8391. }
  8392. return true;
  8393. }
  8394. #endif // DUAL_X_CARRIAGE
  8395. /**
  8396. * Prepare a single move and get ready for the next one
  8397. *
  8398. * This may result in several calls to planner.buffer_line to
  8399. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  8400. */
  8401. void prepare_move_to_destination() {
  8402. clamp_to_software_endstops(destination);
  8403. refresh_cmd_timeout();
  8404. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8405. if (!DEBUGGING(DRYRUN)) {
  8406. if (destination[E_AXIS] != current_position[E_AXIS]) {
  8407. if (thermalManager.tooColdToExtrude(active_extruder)) {
  8408. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8409. SERIAL_ECHO_START;
  8410. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  8411. }
  8412. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  8413. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  8414. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8415. SERIAL_ECHO_START;
  8416. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  8417. }
  8418. #endif
  8419. }
  8420. }
  8421. #endif
  8422. #if IS_KINEMATIC
  8423. if (!prepare_kinematic_move_to(destination)) return;
  8424. #else
  8425. #if ENABLED(DUAL_X_CARRIAGE)
  8426. if (!prepare_move_to_destination_dualx()) return;
  8427. #endif
  8428. if (!prepare_move_to_destination_cartesian()) return;
  8429. #endif
  8430. set_current_to_destination();
  8431. }
  8432. #if ENABLED(ARC_SUPPORT)
  8433. /**
  8434. * Plan an arc in 2 dimensions
  8435. *
  8436. * The arc is approximated by generating many small linear segments.
  8437. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  8438. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  8439. * larger segments will tend to be more efficient. Your slicer should have
  8440. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  8441. */
  8442. void plan_arc(
  8443. float logical[XYZE], // Destination position
  8444. float* offset, // Center of rotation relative to current_position
  8445. uint8_t clockwise // Clockwise?
  8446. ) {
  8447. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  8448. center_X = current_position[X_AXIS] + offset[X_AXIS],
  8449. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  8450. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  8451. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  8452. r_X = -offset[X_AXIS], // Radius vector from center to current location
  8453. r_Y = -offset[Y_AXIS],
  8454. rt_X = logical[X_AXIS] - center_X,
  8455. rt_Y = logical[Y_AXIS] - center_Y;
  8456. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  8457. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  8458. if (angular_travel < 0) angular_travel += RADIANS(360);
  8459. if (clockwise) angular_travel -= RADIANS(360);
  8460. // Make a circle if the angular rotation is 0
  8461. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  8462. angular_travel += RADIANS(360);
  8463. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  8464. if (mm_of_travel < 0.001) return;
  8465. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  8466. if (segments == 0) segments = 1;
  8467. /**
  8468. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  8469. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  8470. * r_T = [cos(phi) -sin(phi);
  8471. * sin(phi) cos(phi)] * r ;
  8472. *
  8473. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  8474. * defined from the circle center to the initial position. Each line segment is formed by successive
  8475. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  8476. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  8477. * all double numbers are single precision on the Arduino. (True double precision will not have
  8478. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  8479. * tool precision in some cases. Therefore, arc path correction is implemented.
  8480. *
  8481. * Small angle approximation may be used to reduce computation overhead further. This approximation
  8482. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  8483. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  8484. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  8485. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  8486. * issue for CNC machines with the single precision Arduino calculations.
  8487. *
  8488. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  8489. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  8490. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  8491. * This is important when there are successive arc motions.
  8492. */
  8493. // Vector rotation matrix values
  8494. float arc_target[XYZE],
  8495. theta_per_segment = angular_travel / segments,
  8496. linear_per_segment = linear_travel / segments,
  8497. extruder_per_segment = extruder_travel / segments,
  8498. sin_T = theta_per_segment,
  8499. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  8500. // Initialize the linear axis
  8501. arc_target[Z_AXIS] = current_position[Z_AXIS];
  8502. // Initialize the extruder axis
  8503. arc_target[E_AXIS] = current_position[E_AXIS];
  8504. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  8505. millis_t next_idle_ms = millis() + 200UL;
  8506. int8_t count = 0;
  8507. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  8508. thermalManager.manage_heater();
  8509. if (ELAPSED(millis(), next_idle_ms)) {
  8510. next_idle_ms = millis() + 200UL;
  8511. idle();
  8512. }
  8513. if (++count < N_ARC_CORRECTION) {
  8514. // Apply vector rotation matrix to previous r_X / 1
  8515. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  8516. r_X = r_X * cos_T - r_Y * sin_T;
  8517. r_Y = r_new_Y;
  8518. }
  8519. else {
  8520. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  8521. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  8522. // To reduce stuttering, the sin and cos could be computed at different times.
  8523. // For now, compute both at the same time.
  8524. float cos_Ti = cos(i * theta_per_segment),
  8525. sin_Ti = sin(i * theta_per_segment);
  8526. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  8527. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  8528. count = 0;
  8529. }
  8530. // Update arc_target location
  8531. arc_target[X_AXIS] = center_X + r_X;
  8532. arc_target[Y_AXIS] = center_Y + r_Y;
  8533. arc_target[Z_AXIS] += linear_per_segment;
  8534. arc_target[E_AXIS] += extruder_per_segment;
  8535. clamp_to_software_endstops(arc_target);
  8536. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  8537. }
  8538. // Ensure last segment arrives at target location.
  8539. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  8540. // As far as the parser is concerned, the position is now == target. In reality the
  8541. // motion control system might still be processing the action and the real tool position
  8542. // in any intermediate location.
  8543. set_current_to_destination();
  8544. }
  8545. #endif
  8546. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8547. void plan_cubic_move(const float offset[4]) {
  8548. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  8549. // As far as the parser is concerned, the position is now == destination. In reality the
  8550. // motion control system might still be processing the action and the real tool position
  8551. // in any intermediate location.
  8552. set_current_to_destination();
  8553. }
  8554. #endif // BEZIER_CURVE_SUPPORT
  8555. #if HAS_CONTROLLERFAN
  8556. void controllerFan() {
  8557. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  8558. nextMotorCheck = 0; // Last time the state was checked
  8559. const millis_t ms = millis();
  8560. if (ELAPSED(ms, nextMotorCheck)) {
  8561. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  8562. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  8563. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  8564. #if E_STEPPERS > 1
  8565. || E1_ENABLE_READ == E_ENABLE_ON
  8566. #if HAS_X2_ENABLE
  8567. || X2_ENABLE_READ == X_ENABLE_ON
  8568. #endif
  8569. #if E_STEPPERS > 2
  8570. || E2_ENABLE_READ == E_ENABLE_ON
  8571. #if E_STEPPERS > 3
  8572. || E3_ENABLE_READ == E_ENABLE_ON
  8573. #endif
  8574. #endif
  8575. #endif
  8576. ) {
  8577. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  8578. }
  8579. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  8580. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  8581. // allows digital or PWM fan output to be used (see M42 handling)
  8582. digitalWrite(CONTROLLERFAN_PIN, speed);
  8583. analogWrite(CONTROLLERFAN_PIN, speed);
  8584. }
  8585. }
  8586. #endif // HAS_CONTROLLERFAN
  8587. #if ENABLED(MORGAN_SCARA)
  8588. /**
  8589. * Morgan SCARA Forward Kinematics. Results in cartes[].
  8590. * Maths and first version by QHARLEY.
  8591. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8592. */
  8593. void forward_kinematics_SCARA(const float &a, const float &b) {
  8594. float a_sin = sin(RADIANS(a)) * L1,
  8595. a_cos = cos(RADIANS(a)) * L1,
  8596. b_sin = sin(RADIANS(b)) * L2,
  8597. b_cos = cos(RADIANS(b)) * L2;
  8598. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  8599. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  8600. /*
  8601. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  8602. SERIAL_ECHOPAIR(" b=", b);
  8603. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  8604. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  8605. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  8606. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  8607. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  8608. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  8609. //*/
  8610. }
  8611. /**
  8612. * Morgan SCARA Inverse Kinematics. Results in delta[].
  8613. *
  8614. * See http://forums.reprap.org/read.php?185,283327
  8615. *
  8616. * Maths and first version by QHARLEY.
  8617. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8618. */
  8619. void inverse_kinematics(const float logical[XYZ]) {
  8620. static float C2, S2, SK1, SK2, THETA, PSI;
  8621. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  8622. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  8623. if (L1 == L2)
  8624. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  8625. else
  8626. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  8627. S2 = sqrt(sq(C2) - 1);
  8628. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  8629. SK1 = L1 + L2 * C2;
  8630. // Rotated Arm2 gives the distance from Arm1 to Arm2
  8631. SK2 = L2 * S2;
  8632. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  8633. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  8634. // Angle of Arm2
  8635. PSI = atan2(S2, C2);
  8636. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  8637. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  8638. delta[C_AXIS] = logical[Z_AXIS];
  8639. /*
  8640. DEBUG_POS("SCARA IK", logical);
  8641. DEBUG_POS("SCARA IK", delta);
  8642. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  8643. SERIAL_ECHOPAIR(",", sy);
  8644. SERIAL_ECHOPAIR(" C2=", C2);
  8645. SERIAL_ECHOPAIR(" S2=", S2);
  8646. SERIAL_ECHOPAIR(" Theta=", THETA);
  8647. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  8648. //*/
  8649. }
  8650. #endif // MORGAN_SCARA
  8651. #if ENABLED(TEMP_STAT_LEDS)
  8652. static bool red_led = false;
  8653. static millis_t next_status_led_update_ms = 0;
  8654. void handle_status_leds(void) {
  8655. if (ELAPSED(millis(), next_status_led_update_ms)) {
  8656. next_status_led_update_ms += 500; // Update every 0.5s
  8657. float max_temp = 0.0;
  8658. #if HAS_TEMP_BED
  8659. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  8660. #endif
  8661. HOTEND_LOOP() {
  8662. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  8663. }
  8664. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  8665. if (new_led != red_led) {
  8666. red_led = new_led;
  8667. #if PIN_EXISTS(STAT_LED_RED)
  8668. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  8669. #if PIN_EXISTS(STAT_LED_BLUE)
  8670. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  8671. #endif
  8672. #else
  8673. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  8674. #endif
  8675. }
  8676. }
  8677. }
  8678. #endif
  8679. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8680. void handle_filament_runout() {
  8681. if (!filament_ran_out) {
  8682. filament_ran_out = true;
  8683. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  8684. stepper.synchronize();
  8685. }
  8686. }
  8687. #endif // FILAMENT_RUNOUT_SENSOR
  8688. #if ENABLED(FAST_PWM_FAN)
  8689. void setPwmFrequency(uint8_t pin, int val) {
  8690. val &= 0x07;
  8691. switch (digitalPinToTimer(pin)) {
  8692. #ifdef TCCR0A
  8693. case TIMER0A:
  8694. case TIMER0B:
  8695. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8696. // TCCR0B |= val;
  8697. break;
  8698. #endif
  8699. #ifdef TCCR1A
  8700. case TIMER1A:
  8701. case TIMER1B:
  8702. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8703. // TCCR1B |= val;
  8704. break;
  8705. #endif
  8706. #ifdef TCCR2
  8707. case TIMER2:
  8708. case TIMER2:
  8709. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8710. TCCR2 |= val;
  8711. break;
  8712. #endif
  8713. #ifdef TCCR2A
  8714. case TIMER2A:
  8715. case TIMER2B:
  8716. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8717. TCCR2B |= val;
  8718. break;
  8719. #endif
  8720. #ifdef TCCR3A
  8721. case TIMER3A:
  8722. case TIMER3B:
  8723. case TIMER3C:
  8724. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8725. TCCR3B |= val;
  8726. break;
  8727. #endif
  8728. #ifdef TCCR4A
  8729. case TIMER4A:
  8730. case TIMER4B:
  8731. case TIMER4C:
  8732. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8733. TCCR4B |= val;
  8734. break;
  8735. #endif
  8736. #ifdef TCCR5A
  8737. case TIMER5A:
  8738. case TIMER5B:
  8739. case TIMER5C:
  8740. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8741. TCCR5B |= val;
  8742. break;
  8743. #endif
  8744. }
  8745. }
  8746. #endif // FAST_PWM_FAN
  8747. float calculate_volumetric_multiplier(float diameter) {
  8748. if (!volumetric_enabled || diameter == 0) return 1.0;
  8749. return 1.0 / (M_PI * sq(diameter * 0.5));
  8750. }
  8751. void calculate_volumetric_multipliers() {
  8752. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  8753. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  8754. }
  8755. void enable_all_steppers() {
  8756. enable_x();
  8757. enable_y();
  8758. enable_z();
  8759. enable_e0();
  8760. enable_e1();
  8761. enable_e2();
  8762. enable_e3();
  8763. }
  8764. void disable_e_steppers() {
  8765. disable_e0();
  8766. disable_e1();
  8767. disable_e2();
  8768. disable_e3();
  8769. }
  8770. void disable_all_steppers() {
  8771. disable_x();
  8772. disable_y();
  8773. disable_z();
  8774. disable_e_steppers();
  8775. }
  8776. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  8777. void automatic_current_control(const TMC2130Stepper &st) {
  8778. #if CURRENT_STEP > 0
  8779. const bool is_otpw = st.checkOT(), // Check otpw even if we don't adjust. Allows for flag inspection.
  8780. is_otpw_triggered = st.getOTPW();
  8781. if (!is_otpw && !is_otpw_triggered) {
  8782. // OTPW bit not triggered yet -> Increase current
  8783. const uint16_t current = st.getCurrent() + CURRENT_STEP;
  8784. if (current <= AUTO_ADJUST_MAX) st.SilentStepStick2130(current);
  8785. }
  8786. else if (is_otpw && is_otpw_triggered) {
  8787. // OTPW bit triggered, triggered flag raised -> Decrease current
  8788. st.SilentStepStick2130((float)st.getCurrent() - CURRENT_STEP);
  8789. }
  8790. // OTPW bit cleared (we've cooled down), triggered flag still raised until manually cleared -> Do nothing, we're good
  8791. #endif
  8792. }
  8793. void checkOverTemp() {
  8794. static millis_t next_cOT = 0;
  8795. if (ELAPSED(millis(), next_cOT)) {
  8796. next_cOT = millis() + 5000;
  8797. #if ENABLED(X_IS_TMC2130)
  8798. automatic_current_control(stepperX);
  8799. #endif
  8800. #if ENABLED(Y_IS_TMC2130)
  8801. automatic_current_control(stepperY);
  8802. #endif
  8803. #if ENABLED(Z_IS_TMC2130)
  8804. automatic_current_control(stepperZ);
  8805. #endif
  8806. #if ENABLED(X2_IS_TMC2130)
  8807. automatic_current_control(stepperX2);
  8808. #endif
  8809. #if ENABLED(Y2_IS_TMC2130)
  8810. automatic_current_control(stepperY2);
  8811. #endif
  8812. #if ENABLED(Z2_IS_TMC2130)
  8813. automatic_current_control(stepperZ2);
  8814. #endif
  8815. #if ENABLED(E0_IS_TMC2130)
  8816. automatic_current_control(stepperE0);
  8817. #endif
  8818. #if ENABLED(E1_IS_TMC2130)
  8819. automatic_current_control(stepperE1);
  8820. #endif
  8821. #if ENABLED(E2_IS_TMC2130)
  8822. automatic_current_control(stepperE2);
  8823. #endif
  8824. #if ENABLED(E3_IS_TMC2130)
  8825. automatic_current_control(stepperE3);
  8826. #endif
  8827. }
  8828. }
  8829. #endif // AUTOMATIC_CURRENT_CONTROL
  8830. /**
  8831. * Manage several activities:
  8832. * - Check for Filament Runout
  8833. * - Keep the command buffer full
  8834. * - Check for maximum inactive time between commands
  8835. * - Check for maximum inactive time between stepper commands
  8836. * - Check if pin CHDK needs to go LOW
  8837. * - Check for KILL button held down
  8838. * - Check for HOME button held down
  8839. * - Check if cooling fan needs to be switched on
  8840. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  8841. */
  8842. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  8843. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8844. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  8845. handle_filament_runout();
  8846. #endif
  8847. if (commands_in_queue < BUFSIZE) get_available_commands();
  8848. const millis_t ms = millis();
  8849. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  8850. SERIAL_ERROR_START;
  8851. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  8852. kill(PSTR(MSG_KILLED));
  8853. }
  8854. // Prevent steppers timing-out in the middle of M600
  8855. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  8856. #define M600_TEST !busy_doing_M600
  8857. #else
  8858. #define M600_TEST true
  8859. #endif
  8860. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  8861. && !ignore_stepper_queue && !planner.blocks_queued()) {
  8862. #if ENABLED(DISABLE_INACTIVE_X)
  8863. disable_x();
  8864. #endif
  8865. #if ENABLED(DISABLE_INACTIVE_Y)
  8866. disable_y();
  8867. #endif
  8868. #if ENABLED(DISABLE_INACTIVE_Z)
  8869. disable_z();
  8870. #endif
  8871. #if ENABLED(DISABLE_INACTIVE_E)
  8872. disable_e_steppers();
  8873. #endif
  8874. }
  8875. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  8876. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  8877. chdkActive = false;
  8878. WRITE(CHDK, LOW);
  8879. }
  8880. #endif
  8881. #if HAS_KILL
  8882. // Check if the kill button was pressed and wait just in case it was an accidental
  8883. // key kill key press
  8884. // -------------------------------------------------------------------------------
  8885. static int killCount = 0; // make the inactivity button a bit less responsive
  8886. const int KILL_DELAY = 750;
  8887. if (!READ(KILL_PIN))
  8888. killCount++;
  8889. else if (killCount > 0)
  8890. killCount--;
  8891. // Exceeded threshold and we can confirm that it was not accidental
  8892. // KILL the machine
  8893. // ----------------------------------------------------------------
  8894. if (killCount >= KILL_DELAY) {
  8895. SERIAL_ERROR_START;
  8896. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  8897. kill(PSTR(MSG_KILLED));
  8898. }
  8899. #endif
  8900. #if HAS_HOME
  8901. // Check to see if we have to home, use poor man's debouncer
  8902. // ---------------------------------------------------------
  8903. static int homeDebounceCount = 0; // poor man's debouncing count
  8904. const int HOME_DEBOUNCE_DELAY = 2500;
  8905. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  8906. if (!homeDebounceCount) {
  8907. enqueue_and_echo_commands_P(PSTR("G28"));
  8908. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  8909. }
  8910. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  8911. homeDebounceCount++;
  8912. else
  8913. homeDebounceCount = 0;
  8914. }
  8915. #endif
  8916. #if HAS_CONTROLLERFAN
  8917. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  8918. #endif
  8919. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  8920. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  8921. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  8922. bool oldstatus;
  8923. #if ENABLED(SWITCHING_EXTRUDER)
  8924. oldstatus = E0_ENABLE_READ;
  8925. enable_e0();
  8926. #else // !SWITCHING_EXTRUDER
  8927. switch (active_extruder) {
  8928. case 0:
  8929. oldstatus = E0_ENABLE_READ;
  8930. enable_e0();
  8931. break;
  8932. #if E_STEPPERS > 1
  8933. case 1:
  8934. oldstatus = E1_ENABLE_READ;
  8935. enable_e1();
  8936. break;
  8937. #if E_STEPPERS > 2
  8938. case 2:
  8939. oldstatus = E2_ENABLE_READ;
  8940. enable_e2();
  8941. break;
  8942. #if E_STEPPERS > 3
  8943. case 3:
  8944. oldstatus = E3_ENABLE_READ;
  8945. enable_e3();
  8946. break;
  8947. #endif
  8948. #endif
  8949. #endif
  8950. }
  8951. #endif // !SWITCHING_EXTRUDER
  8952. previous_cmd_ms = ms; // refresh_cmd_timeout()
  8953. const float olde = current_position[E_AXIS];
  8954. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  8955. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  8956. current_position[E_AXIS] = olde;
  8957. planner.set_e_position_mm(olde);
  8958. stepper.synchronize();
  8959. #if ENABLED(SWITCHING_EXTRUDER)
  8960. E0_ENABLE_WRITE(oldstatus);
  8961. #else
  8962. switch (active_extruder) {
  8963. case 0:
  8964. E0_ENABLE_WRITE(oldstatus);
  8965. break;
  8966. #if E_STEPPERS > 1
  8967. case 1:
  8968. E1_ENABLE_WRITE(oldstatus);
  8969. break;
  8970. #if E_STEPPERS > 2
  8971. case 2:
  8972. E2_ENABLE_WRITE(oldstatus);
  8973. break;
  8974. #if E_STEPPERS > 3
  8975. case 3:
  8976. E3_ENABLE_WRITE(oldstatus);
  8977. break;
  8978. #endif
  8979. #endif
  8980. #endif
  8981. }
  8982. #endif // !SWITCHING_EXTRUDER
  8983. }
  8984. #endif // EXTRUDER_RUNOUT_PREVENT
  8985. #if ENABLED(DUAL_X_CARRIAGE)
  8986. // handle delayed move timeout
  8987. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  8988. // travel moves have been received so enact them
  8989. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  8990. set_destination_to_current();
  8991. prepare_move_to_destination();
  8992. }
  8993. #endif
  8994. #if ENABLED(TEMP_STAT_LEDS)
  8995. handle_status_leds();
  8996. #endif
  8997. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  8998. checkOverTemp();
  8999. #endif
  9000. planner.check_axes_activity();
  9001. }
  9002. /**
  9003. * Standard idle routine keeps the machine alive
  9004. */
  9005. void idle(
  9006. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  9007. bool no_stepper_sleep/*=false*/
  9008. #endif
  9009. ) {
  9010. lcd_update();
  9011. host_keepalive();
  9012. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9013. auto_report_temperatures();
  9014. #endif
  9015. manage_inactivity(
  9016. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  9017. no_stepper_sleep
  9018. #endif
  9019. );
  9020. thermalManager.manage_heater();
  9021. #if ENABLED(PRINTCOUNTER)
  9022. print_job_timer.tick();
  9023. #endif
  9024. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  9025. buzzer.tick();
  9026. #endif
  9027. }
  9028. /**
  9029. * Kill all activity and lock the machine.
  9030. * After this the machine will need to be reset.
  9031. */
  9032. void kill(const char* lcd_msg) {
  9033. SERIAL_ERROR_START;
  9034. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  9035. thermalManager.disable_all_heaters();
  9036. disable_all_steppers();
  9037. #if ENABLED(ULTRA_LCD)
  9038. kill_screen(lcd_msg);
  9039. #else
  9040. UNUSED(lcd_msg);
  9041. #endif
  9042. _delay_ms(250); // Wait a short time
  9043. cli(); // Stop interrupts
  9044. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  9045. thermalManager.disable_all_heaters(); //turn off heaters again
  9046. #if HAS_POWER_SWITCH
  9047. SET_INPUT(PS_ON_PIN);
  9048. #endif
  9049. suicide();
  9050. while (1) {
  9051. #if ENABLED(USE_WATCHDOG)
  9052. watchdog_reset();
  9053. #endif
  9054. } // Wait for reset
  9055. }
  9056. /**
  9057. * Turn off heaters and stop the print in progress
  9058. * After a stop the machine may be resumed with M999
  9059. */
  9060. void stop() {
  9061. thermalManager.disable_all_heaters();
  9062. if (IsRunning()) {
  9063. Running = false;
  9064. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  9065. SERIAL_ERROR_START;
  9066. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  9067. LCD_MESSAGEPGM(MSG_STOPPED);
  9068. }
  9069. }
  9070. /**
  9071. * Marlin entry-point: Set up before the program loop
  9072. * - Set up the kill pin, filament runout, power hold
  9073. * - Start the serial port
  9074. * - Print startup messages and diagnostics
  9075. * - Get EEPROM or default settings
  9076. * - Initialize managers for:
  9077. * • temperature
  9078. * • planner
  9079. * • watchdog
  9080. * • stepper
  9081. * • photo pin
  9082. * • servos
  9083. * • LCD controller
  9084. * • Digipot I2C
  9085. * • Z probe sled
  9086. * • status LEDs
  9087. */
  9088. void setup() {
  9089. #ifdef DISABLE_JTAG
  9090. // Disable JTAG on AT90USB chips to free up pins for IO
  9091. MCUCR = 0x80;
  9092. MCUCR = 0x80;
  9093. #endif
  9094. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9095. setup_filrunoutpin();
  9096. #endif
  9097. setup_killpin();
  9098. setup_powerhold();
  9099. #if HAS_STEPPER_RESET
  9100. disableStepperDrivers();
  9101. #endif
  9102. MYSERIAL.begin(BAUDRATE);
  9103. SERIAL_PROTOCOLLNPGM("start");
  9104. SERIAL_ECHO_START;
  9105. // Check startup - does nothing if bootloader sets MCUSR to 0
  9106. byte mcu = MCUSR;
  9107. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  9108. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  9109. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  9110. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  9111. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  9112. MCUSR = 0;
  9113. SERIAL_ECHOPGM(MSG_MARLIN);
  9114. SERIAL_CHAR(' ');
  9115. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  9116. SERIAL_EOL;
  9117. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  9118. SERIAL_ECHO_START;
  9119. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  9120. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  9121. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  9122. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  9123. #endif
  9124. SERIAL_ECHO_START;
  9125. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  9126. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  9127. // Send "ok" after commands by default
  9128. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  9129. // Load data from EEPROM if available (or use defaults)
  9130. // This also updates variables in the planner, elsewhere
  9131. (void)Config_RetrieveSettings();
  9132. #if DISABLED(NO_WORKSPACE_OFFSETS)
  9133. // Initialize current position based on home_offset
  9134. COPY(current_position, home_offset);
  9135. #else
  9136. ZERO(current_position);
  9137. #endif
  9138. // Vital to init stepper/planner equivalent for current_position
  9139. SYNC_PLAN_POSITION_KINEMATIC();
  9140. thermalManager.init(); // Initialize temperature loop
  9141. #if ENABLED(USE_WATCHDOG)
  9142. watchdog_init();
  9143. #endif
  9144. stepper.init(); // Initialize stepper, this enables interrupts!
  9145. servo_init();
  9146. #if HAS_PHOTOGRAPH
  9147. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  9148. #endif
  9149. #if HAS_CASE_LIGHT
  9150. update_case_light();
  9151. #endif
  9152. #if HAS_BED_PROBE
  9153. endstops.enable_z_probe(false);
  9154. #endif
  9155. #if HAS_CONTROLLERFAN
  9156. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  9157. #endif
  9158. #if HAS_STEPPER_RESET
  9159. enableStepperDrivers();
  9160. #endif
  9161. #if ENABLED(DIGIPOT_I2C)
  9162. digipot_i2c_init();
  9163. #endif
  9164. #if ENABLED(DAC_STEPPER_CURRENT)
  9165. dac_init();
  9166. #endif
  9167. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  9168. OUT_WRITE(SLED_PIN, LOW); // turn it off
  9169. #endif // Z_PROBE_SLED
  9170. setup_homepin();
  9171. #if PIN_EXISTS(STAT_LED_RED)
  9172. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  9173. #endif
  9174. #if PIN_EXISTS(STAT_LED_BLUE)
  9175. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  9176. #endif
  9177. #if ENABLED(RGB_LED)
  9178. SET_OUTPUT(RGB_LED_R_PIN);
  9179. SET_OUTPUT(RGB_LED_G_PIN);
  9180. SET_OUTPUT(RGB_LED_B_PIN);
  9181. #endif
  9182. lcd_init();
  9183. #if ENABLED(SHOW_BOOTSCREEN)
  9184. #if ENABLED(DOGLCD)
  9185. safe_delay(BOOTSCREEN_TIMEOUT);
  9186. #elif ENABLED(ULTRA_LCD)
  9187. bootscreen();
  9188. #if DISABLED(SDSUPPORT)
  9189. lcd_init();
  9190. #endif
  9191. #endif
  9192. #endif
  9193. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  9194. // Initialize mixing to 100% color 1
  9195. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9196. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  9197. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  9198. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9199. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  9200. #endif
  9201. #if ENABLED(BLTOUCH)
  9202. bltouch_command(BLTOUCH_RESET); // Just in case the BLTouch is in the error state, try to
  9203. set_bltouch_deployed(true); // reset it. Also needs to deploy and stow to clear the
  9204. set_bltouch_deployed(false); // error condition.
  9205. #endif
  9206. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  9207. i2c.onReceive(i2c_on_receive);
  9208. i2c.onRequest(i2c_on_request);
  9209. #endif
  9210. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  9211. setup_endstop_interrupts();
  9212. #endif
  9213. }
  9214. /**
  9215. * The main Marlin program loop
  9216. *
  9217. * - Save or log commands to SD
  9218. * - Process available commands (if not saving)
  9219. * - Call heater manager
  9220. * - Call inactivity manager
  9221. * - Call endstop manager
  9222. * - Call LCD update
  9223. */
  9224. void loop() {
  9225. if (commands_in_queue < BUFSIZE) get_available_commands();
  9226. #if ENABLED(SDSUPPORT)
  9227. card.checkautostart(false);
  9228. #endif
  9229. if (commands_in_queue) {
  9230. #if ENABLED(SDSUPPORT)
  9231. if (card.saving) {
  9232. char* command = command_queue[cmd_queue_index_r];
  9233. if (strstr_P(command, PSTR("M29"))) {
  9234. // M29 closes the file
  9235. card.closefile();
  9236. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  9237. ok_to_send();
  9238. }
  9239. else {
  9240. // Write the string from the read buffer to SD
  9241. card.write_command(command);
  9242. if (card.logging)
  9243. process_next_command(); // The card is saving because it's logging
  9244. else
  9245. ok_to_send();
  9246. }
  9247. }
  9248. else
  9249. process_next_command();
  9250. #else
  9251. process_next_command();
  9252. #endif // SDSUPPORT
  9253. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  9254. if (commands_in_queue) {
  9255. --commands_in_queue;
  9256. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  9257. }
  9258. }
  9259. endstops.report_state();
  9260. idle();
  9261. }