My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 260KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #if ENABLED(USE_WATCHDOG)
  57. #include "watchdog.h"
  58. #endif
  59. #if ENABLED(BLINKM)
  60. #include "blinkm.h"
  61. #include "Wire.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_DIGIPOTSS
  67. #include <SPI.h>
  68. #endif
  69. #if ENABLED(DAC_STEPPER_CURRENT)
  70. #include "stepper_dac.h"
  71. #endif
  72. #if ENABLED(EXPERIMENTAL_I2CBUS)
  73. #include "twibus.h"
  74. #endif
  75. /**
  76. * Look here for descriptions of G-codes:
  77. * - http://linuxcnc.org/handbook/gcode/g-code.html
  78. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  79. *
  80. * Help us document these G-codes online:
  81. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  82. * - http://reprap.org/wiki/G-code
  83. *
  84. * -----------------
  85. * Implemented Codes
  86. * -----------------
  87. *
  88. * "G" Codes
  89. *
  90. * G0 -> G1
  91. * G1 - Coordinated Movement X Y Z E
  92. * G2 - CW ARC
  93. * G3 - CCW ARC
  94. * G4 - Dwell S<seconds> or P<milliseconds>
  95. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  96. * G10 - retract filament according to settings of M207
  97. * G11 - retract recover filament according to settings of M208
  98. * G20 - Set input units to inches
  99. * G21 - Set input units to millimeters
  100. * G28 - Home one or more axes
  101. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  102. * G30 - Single Z probe, probes bed at current XY location.
  103. * G31 - Dock sled (Z_PROBE_SLED only)
  104. * G32 - Undock sled (Z_PROBE_SLED only)
  105. * G90 - Use Absolute Coordinates
  106. * G91 - Use Relative Coordinates
  107. * G92 - Set current position to coordinates given
  108. *
  109. * "M" Codes
  110. *
  111. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  112. * M1 - Same as M0
  113. * M17 - Enable/Power all stepper motors
  114. * M18 - Disable all stepper motors; same as M84
  115. * M20 - List SD card
  116. * M21 - Init SD card
  117. * M22 - Release SD card
  118. * M23 - Select SD file (M23 filename.g)
  119. * M24 - Start/resume SD print
  120. * M25 - Pause SD print
  121. * M26 - Set SD position in bytes (M26 S12345)
  122. * M27 - Report SD print status
  123. * M28 - Start SD write (M28 filename.g)
  124. * M29 - Stop SD write
  125. * M30 - Delete file from SD (M30 filename.g)
  126. * M31 - Output time since last M109 or SD card start to serial
  127. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  128. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  129. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  130. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  131. * M33 - Get the longname version of a path
  132. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  133. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  134. * M75 - Start the print job timer
  135. * M76 - Pause the print job timer
  136. * M77 - Stop the print job timer
  137. * M78 - Show statistical information about the print jobs
  138. * M80 - Turn on Power Supply
  139. * M81 - Turn off Power Supply
  140. * M82 - Set E codes absolute (default)
  141. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  142. * M84 - Disable steppers until next move,
  143. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  144. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  145. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  146. * M104 - Set extruder target temp
  147. * M105 - Read current temp
  148. * M106 - Fan on
  149. * M107 - Fan off
  150. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  151. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  152. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  153. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  154. * M110 - Set the current line number
  155. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  156. * M112 - Emergency stop
  157. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  158. * M114 - Output current position to serial port
  159. * M115 - Capabilities string
  160. * M117 - Display a message on the controller screen
  161. * M119 - Output Endstop status to serial port
  162. * M120 - Enable endstop detection
  163. * M121 - Disable endstop detection
  164. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  165. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  166. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  167. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  168. * M140 - Set bed target temp
  169. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  170. * M149 - Set temperature units
  171. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  172. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  173. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  174. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  175. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  176. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  177. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  178. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  179. * M205 - Set advanced settings. Current units apply:
  180. S<print> T<travel> minimum speeds
  181. B<minimum segment time>
  182. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  183. * M206 - Set additional homing offset
  184. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  185. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  186. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  187. Every normal extrude-only move will be classified as retract depending on the direction.
  188. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  189. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  190. * M221 - Set Flow Percentage: S<percent>
  191. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  192. * M240 - Trigger a camera to take a photograph
  193. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  194. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  195. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  196. * M301 - Set PID parameters P I and D
  197. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  198. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  199. * M304 - Set bed PID parameters P I and D
  200. * M380 - Activate solenoid on active extruder
  201. * M381 - Disable all solenoids
  202. * M400 - Finish all moves
  203. * M401 - Lower Z probe if present
  204. * M402 - Raise Z probe if present
  205. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  206. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  207. * M406 - Disable Filament Sensor extrusion control
  208. * M407 - Display measured filament diameter in millimeters
  209. * M410 - Quickstop. Abort all the planned moves
  210. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  211. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  212. * M428 - Set the home_offset logically based on the current_position
  213. * M500 - Store parameters in EEPROM
  214. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  215. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  216. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  217. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  218. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  219. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  220. * M666 - Set delta endstop adjustment
  221. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  222. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  223. * M907 - Set digital trimpot motor current using axis codes.
  224. * M908 - Control digital trimpot directly.
  225. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  226. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  227. * M350 - Set microstepping mode.
  228. * M351 - Toggle MS1 MS2 pins directly.
  229. *
  230. * ************ SCARA Specific - This can change to suit future G-code regulations
  231. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  232. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  233. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  234. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  235. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  236. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  237. * ************* SCARA End ***************
  238. *
  239. * ************ Custom codes - This can change to suit future G-code regulations
  240. * M100 - Watch Free Memory (For Debugging Only)
  241. * M928 - Start SD logging (M928 filename.g) - ended by M29
  242. * M999 - Restart after being stopped by error
  243. *
  244. * "T" Codes
  245. *
  246. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  247. *
  248. */
  249. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  250. void gcode_M100();
  251. #endif
  252. #if ENABLED(SDSUPPORT)
  253. CardReader card;
  254. #endif
  255. #if ENABLED(EXPERIMENTAL_I2CBUS)
  256. TWIBus i2c;
  257. #endif
  258. bool Running = true;
  259. uint8_t marlin_debug_flags = DEBUG_NONE;
  260. static float feedrate = 1500.0, saved_feedrate;
  261. float current_position[NUM_AXIS] = { 0.0 };
  262. static float destination[NUM_AXIS] = { 0.0 };
  263. bool axis_known_position[3] = { false };
  264. bool axis_homed[3] = { false };
  265. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  266. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  267. static char* current_command, *current_command_args;
  268. static uint8_t cmd_queue_index_r = 0,
  269. cmd_queue_index_w = 0,
  270. commands_in_queue = 0;
  271. #if ENABLED(INCH_MODE_SUPPORT)
  272. float linear_unit_factor = 1.0;
  273. float volumetric_unit_factor = 1.0;
  274. #endif
  275. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  276. TempUnit input_temp_units = TEMPUNIT_C;
  277. #endif
  278. const float homing_feedrate[] = HOMING_FEEDRATE;
  279. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  280. int feedrate_multiplier = 100; //100->1 200->2
  281. int saved_feedrate_multiplier;
  282. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  283. bool volumetric_enabled = false;
  284. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  285. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  286. // The distance that XYZ has been offset by G92. Reset by G28.
  287. float position_shift[3] = { 0 };
  288. // This offset is added to the configured home position.
  289. // Set by M206, M428, or menu item. Saved to EEPROM.
  290. float home_offset[3] = { 0 };
  291. #define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
  292. #define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS))
  293. // Software Endstops. Default to configured limits.
  294. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  295. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  296. #if FAN_COUNT > 0
  297. int fanSpeeds[FAN_COUNT] = { 0 };
  298. #endif
  299. // The active extruder (tool). Set with T<extruder> command.
  300. uint8_t active_extruder = 0;
  301. // Relative Mode. Enable with G91, disable with G90.
  302. static bool relative_mode = false;
  303. volatile bool wait_for_heatup = true;
  304. const char errormagic[] PROGMEM = "Error:";
  305. const char echomagic[] PROGMEM = "echo:";
  306. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  307. static int serial_count = 0;
  308. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  309. static char* seen_pointer;
  310. // Next Immediate GCode Command pointer. NULL if none.
  311. const char* queued_commands_P = NULL;
  312. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  313. // Inactivity shutdown
  314. millis_t previous_cmd_ms = 0;
  315. static millis_t max_inactive_time = 0;
  316. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  317. // Print Job Timer
  318. #if ENABLED(PRINTCOUNTER)
  319. PrintCounter print_job_timer = PrintCounter();
  320. #else
  321. Stopwatch print_job_timer = Stopwatch();
  322. #endif
  323. // Buzzer
  324. #if HAS_BUZZER
  325. #if ENABLED(SPEAKER)
  326. Speaker buzzer;
  327. #else
  328. Buzzer buzzer;
  329. #endif
  330. #endif
  331. static uint8_t target_extruder;
  332. #if HAS_BED_PROBE
  333. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  334. #endif
  335. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]))
  336. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  337. int xy_probe_speed = XY_PROBE_SPEED;
  338. bool bed_leveling_in_progress = false;
  339. #define XY_PROBE_FEEDRATE xy_probe_speed
  340. #elif defined(XY_PROBE_SPEED)
  341. #define XY_PROBE_FEEDRATE XY_PROBE_SPEED
  342. #else
  343. #define XY_PROBE_FEEDRATE (PLANNER_XY_FEEDRATE() * 60)
  344. #endif
  345. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  346. float z_endstop_adj = 0;
  347. #endif
  348. // Extruder offsets
  349. #if HOTENDS > 1
  350. #ifndef HOTEND_OFFSET_X
  351. #define HOTEND_OFFSET_X { 0 } // X offsets for each extruder
  352. #endif
  353. #ifndef HOTEND_OFFSET_Y
  354. #define HOTEND_OFFSET_Y { 0 } // Y offsets for each extruder
  355. #endif
  356. float hotend_offset[][HOTENDS] = {
  357. HOTEND_OFFSET_X,
  358. HOTEND_OFFSET_Y
  359. #if ENABLED(DUAL_X_CARRIAGE)
  360. , { 0 } // Z offsets for each extruder
  361. #endif
  362. };
  363. #endif
  364. #if HAS_Z_SERVO_ENDSTOP
  365. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  366. #endif
  367. #if ENABLED(BARICUDA)
  368. int baricuda_valve_pressure = 0;
  369. int baricuda_e_to_p_pressure = 0;
  370. #endif
  371. #if ENABLED(FWRETRACT)
  372. bool autoretract_enabled = false;
  373. bool retracted[EXTRUDERS] = { false };
  374. bool retracted_swap[EXTRUDERS] = { false };
  375. float retract_length = RETRACT_LENGTH;
  376. float retract_length_swap = RETRACT_LENGTH_SWAP;
  377. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  378. float retract_zlift = RETRACT_ZLIFT;
  379. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  380. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  381. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  382. #endif // FWRETRACT
  383. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  384. bool powersupply =
  385. #if ENABLED(PS_DEFAULT_OFF)
  386. false
  387. #else
  388. true
  389. #endif
  390. ;
  391. #endif
  392. #if ENABLED(DELTA)
  393. #define TOWER_1 X_AXIS
  394. #define TOWER_2 Y_AXIS
  395. #define TOWER_3 Z_AXIS
  396. float delta[3] = { 0 };
  397. #define SIN_60 0.8660254037844386
  398. #define COS_60 0.5
  399. float endstop_adj[3] = { 0 };
  400. // these are the default values, can be overriden with M665
  401. float delta_radius = DELTA_RADIUS;
  402. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  403. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  404. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  405. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  406. float delta_tower3_x = 0; // back middle tower
  407. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  408. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  409. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  410. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  411. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  412. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  413. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  414. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  415. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  416. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  417. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  418. int delta_grid_spacing[2] = { 0, 0 };
  419. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  420. #endif
  421. #else
  422. static bool home_all_axis = true;
  423. #endif
  424. #if ENABLED(SCARA)
  425. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  426. static float delta[3] = { 0 };
  427. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  428. #endif
  429. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  430. //Variables for Filament Sensor input
  431. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  432. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  433. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  434. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  435. int filwidth_delay_index1 = 0; //index into ring buffer
  436. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  437. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  438. #endif
  439. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  440. static bool filament_ran_out = false;
  441. #endif
  442. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  443. FilamentChangeMenuResponse filament_change_menu_response;
  444. #endif
  445. static bool send_ok[BUFSIZE];
  446. #if HAS_SERVOS
  447. Servo servo[NUM_SERVOS];
  448. #define MOVE_SERVO(I, P) servo[I].move(P)
  449. #if HAS_Z_SERVO_ENDSTOP
  450. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  451. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  452. #endif
  453. #endif
  454. #ifdef CHDK
  455. millis_t chdkHigh = 0;
  456. boolean chdkActive = false;
  457. #endif
  458. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  459. int lpq_len = 20;
  460. #endif
  461. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  462. // States for managing Marlin and host communication
  463. // Marlin sends messages if blocked or busy
  464. enum MarlinBusyState {
  465. NOT_BUSY, // Not in a handler
  466. IN_HANDLER, // Processing a GCode
  467. IN_PROCESS, // Known to be blocking command input (as in G29)
  468. PAUSED_FOR_USER, // Blocking pending any input
  469. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  470. };
  471. static MarlinBusyState busy_state = NOT_BUSY;
  472. static millis_t next_busy_signal_ms = 0;
  473. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  474. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  475. #else
  476. #define host_keepalive() ;
  477. #define KEEPALIVE_STATE(n) ;
  478. #endif // HOST_KEEPALIVE_FEATURE
  479. /**
  480. * ***************************************************************************
  481. * ******************************** FUNCTIONS ********************************
  482. * ***************************************************************************
  483. */
  484. void stop();
  485. void get_available_commands();
  486. void process_next_command();
  487. void prepare_move_to_destination();
  488. #if ENABLED(ARC_SUPPORT)
  489. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  490. #endif
  491. #if ENABLED(BEZIER_CURVE_SUPPORT)
  492. void plan_cubic_move(const float offset[4]);
  493. #endif
  494. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  495. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  496. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  497. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  498. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  499. static void report_current_position();
  500. #if ENABLED(DEBUG_LEVELING_FEATURE)
  501. void print_xyz(const char* suffix, const float x, const float y, const float z) {
  502. SERIAL_ECHOPAIR("(", x);
  503. SERIAL_ECHOPAIR(", ", y);
  504. SERIAL_ECHOPAIR(", ", z);
  505. SERIAL_ECHOLNPGM(") ");
  506. SERIAL_ECHO(suffix);
  507. }
  508. void print_xyz(const char* suffix, const float xyz[]) {
  509. print_xyz(suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  510. }
  511. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  512. void print_xyz(const char* suffix, const vector_3 &xyz) {
  513. print_xyz(suffix, xyz.x, xyz.y, xyz.z);
  514. }
  515. #endif
  516. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  517. #endif
  518. #if ENABLED(DELTA) || ENABLED(SCARA)
  519. inline void sync_plan_position_delta() {
  520. #if ENABLED(DEBUG_LEVELING_FEATURE)
  521. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  522. #endif
  523. calculate_delta(current_position);
  524. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  525. }
  526. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  527. #else
  528. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  529. #endif
  530. #if ENABLED(SDSUPPORT)
  531. #include "SdFatUtil.h"
  532. int freeMemory() { return SdFatUtil::FreeRam(); }
  533. #else
  534. extern "C" {
  535. extern unsigned int __bss_end;
  536. extern unsigned int __heap_start;
  537. extern void* __brkval;
  538. int freeMemory() {
  539. int free_memory;
  540. if ((int)__brkval == 0)
  541. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  542. else
  543. free_memory = ((int)&free_memory) - ((int)__brkval);
  544. return free_memory;
  545. }
  546. }
  547. #endif //!SDSUPPORT
  548. #if ENABLED(DIGIPOT_I2C)
  549. extern void digipot_i2c_set_current(int channel, float current);
  550. extern void digipot_i2c_init();
  551. #endif
  552. /**
  553. * Inject the next "immediate" command, when possible.
  554. * Return true if any immediate commands remain to inject.
  555. */
  556. static bool drain_queued_commands_P() {
  557. if (queued_commands_P != NULL) {
  558. size_t i = 0;
  559. char c, cmd[30];
  560. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  561. cmd[sizeof(cmd) - 1] = '\0';
  562. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  563. cmd[i] = '\0';
  564. if (enqueue_and_echo_command(cmd)) { // success?
  565. if (c) // newline char?
  566. queued_commands_P += i + 1; // advance to the next command
  567. else
  568. queued_commands_P = NULL; // nul char? no more commands
  569. }
  570. }
  571. return (queued_commands_P != NULL); // return whether any more remain
  572. }
  573. /**
  574. * Record one or many commands to run from program memory.
  575. * Aborts the current queue, if any.
  576. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  577. */
  578. void enqueue_and_echo_commands_P(const char* pgcode) {
  579. queued_commands_P = pgcode;
  580. drain_queued_commands_P(); // first command executed asap (when possible)
  581. }
  582. void clear_command_queue() {
  583. cmd_queue_index_r = cmd_queue_index_w;
  584. commands_in_queue = 0;
  585. }
  586. /**
  587. * Once a new command is in the ring buffer, call this to commit it
  588. */
  589. inline void _commit_command(bool say_ok) {
  590. send_ok[cmd_queue_index_w] = say_ok;
  591. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  592. commands_in_queue++;
  593. }
  594. /**
  595. * Copy a command directly into the main command buffer, from RAM.
  596. * Returns true if successfully adds the command
  597. */
  598. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  599. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  600. strcpy(command_queue[cmd_queue_index_w], cmd);
  601. _commit_command(say_ok);
  602. return true;
  603. }
  604. void enqueue_and_echo_command_now(const char* cmd) {
  605. while (!enqueue_and_echo_command(cmd)) idle();
  606. }
  607. /**
  608. * Enqueue with Serial Echo
  609. */
  610. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  611. if (_enqueuecommand(cmd, say_ok)) {
  612. SERIAL_ECHO_START;
  613. SERIAL_ECHOPGM(MSG_Enqueueing);
  614. SERIAL_ECHO(cmd);
  615. SERIAL_ECHOLNPGM("\"");
  616. return true;
  617. }
  618. return false;
  619. }
  620. void setup_killpin() {
  621. #if HAS_KILL
  622. SET_INPUT(KILL_PIN);
  623. WRITE(KILL_PIN, HIGH);
  624. #endif
  625. }
  626. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  627. void setup_filrunoutpin() {
  628. pinMode(FIL_RUNOUT_PIN, INPUT);
  629. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  630. WRITE(FIL_RUNOUT_PIN, HIGH);
  631. #endif
  632. }
  633. #endif
  634. // Set home pin
  635. void setup_homepin(void) {
  636. #if HAS_HOME
  637. SET_INPUT(HOME_PIN);
  638. WRITE(HOME_PIN, HIGH);
  639. #endif
  640. }
  641. void setup_photpin() {
  642. #if HAS_PHOTOGRAPH
  643. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  644. #endif
  645. }
  646. void setup_powerhold() {
  647. #if HAS_SUICIDE
  648. OUT_WRITE(SUICIDE_PIN, HIGH);
  649. #endif
  650. #if HAS_POWER_SWITCH
  651. #if ENABLED(PS_DEFAULT_OFF)
  652. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  653. #else
  654. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  655. #endif
  656. #endif
  657. }
  658. void suicide() {
  659. #if HAS_SUICIDE
  660. OUT_WRITE(SUICIDE_PIN, LOW);
  661. #endif
  662. }
  663. void servo_init() {
  664. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  665. servo[0].attach(SERVO0_PIN);
  666. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  667. #endif
  668. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  669. servo[1].attach(SERVO1_PIN);
  670. servo[1].detach();
  671. #endif
  672. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  673. servo[2].attach(SERVO2_PIN);
  674. servo[2].detach();
  675. #endif
  676. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  677. servo[3].attach(SERVO3_PIN);
  678. servo[3].detach();
  679. #endif
  680. #if HAS_Z_SERVO_ENDSTOP
  681. /**
  682. * Set position of Z Servo Endstop
  683. *
  684. * The servo might be deployed and positioned too low to stow
  685. * when starting up the machine or rebooting the board.
  686. * There's no way to know where the nozzle is positioned until
  687. * homing has been done - no homing with z-probe without init!
  688. *
  689. */
  690. STOW_Z_SERVO();
  691. #endif
  692. #if HAS_BED_PROBE
  693. endstops.enable_z_probe(false);
  694. #endif
  695. }
  696. /**
  697. * Stepper Reset (RigidBoard, et.al.)
  698. */
  699. #if HAS_STEPPER_RESET
  700. void disableStepperDrivers() {
  701. pinMode(STEPPER_RESET_PIN, OUTPUT);
  702. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  703. }
  704. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  705. #endif
  706. /**
  707. * Marlin entry-point: Set up before the program loop
  708. * - Set up the kill pin, filament runout, power hold
  709. * - Start the serial port
  710. * - Print startup messages and diagnostics
  711. * - Get EEPROM or default settings
  712. * - Initialize managers for:
  713. * • temperature
  714. * • planner
  715. * • watchdog
  716. * • stepper
  717. * • photo pin
  718. * • servos
  719. * • LCD controller
  720. * • Digipot I2C
  721. * • Z probe sled
  722. * • status LEDs
  723. */
  724. void setup() {
  725. #ifdef DISABLE_JTAG
  726. // Disable JTAG on AT90USB chips to free up pins for IO
  727. MCUCR = 0x80;
  728. MCUCR = 0x80;
  729. #endif
  730. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  731. setup_filrunoutpin();
  732. #endif
  733. setup_killpin();
  734. setup_powerhold();
  735. #if HAS_STEPPER_RESET
  736. disableStepperDrivers();
  737. #endif
  738. MYSERIAL.begin(BAUDRATE);
  739. SERIAL_PROTOCOLLNPGM("start");
  740. SERIAL_ECHO_START;
  741. // Check startup - does nothing if bootloader sets MCUSR to 0
  742. byte mcu = MCUSR;
  743. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  744. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  745. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  746. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  747. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  748. MCUSR = 0;
  749. SERIAL_ECHOPGM(MSG_MARLIN);
  750. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  751. #ifdef STRING_DISTRIBUTION_DATE
  752. #ifdef STRING_CONFIG_H_AUTHOR
  753. SERIAL_ECHO_START;
  754. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  755. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  756. SERIAL_ECHOPGM(MSG_AUTHOR);
  757. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  758. SERIAL_ECHOPGM("Compiled: ");
  759. SERIAL_ECHOLNPGM(__DATE__);
  760. #endif // STRING_CONFIG_H_AUTHOR
  761. #endif // STRING_DISTRIBUTION_DATE
  762. SERIAL_ECHO_START;
  763. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  764. SERIAL_ECHO(freeMemory());
  765. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  766. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  767. // Send "ok" after commands by default
  768. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  769. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  770. Config_RetrieveSettings();
  771. // Initialize current position based on home_offset
  772. memcpy(current_position, home_offset, sizeof(home_offset));
  773. #if ENABLED(DELTA) || ENABLED(SCARA)
  774. // Vital to init kinematic equivalent for X0 Y0 Z0
  775. SYNC_PLAN_POSITION_KINEMATIC();
  776. #endif
  777. thermalManager.init(); // Initialize temperature loop
  778. #if ENABLED(USE_WATCHDOG)
  779. watchdog_init();
  780. #endif
  781. stepper.init(); // Initialize stepper, this enables interrupts!
  782. setup_photpin();
  783. servo_init();
  784. #if HAS_CONTROLLERFAN
  785. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  786. #endif
  787. #if HAS_STEPPER_RESET
  788. enableStepperDrivers();
  789. #endif
  790. #if ENABLED(DIGIPOT_I2C)
  791. digipot_i2c_init();
  792. #endif
  793. #if ENABLED(DAC_STEPPER_CURRENT)
  794. dac_init();
  795. #endif
  796. #if ENABLED(Z_PROBE_SLED)
  797. pinMode(SLED_PIN, OUTPUT);
  798. digitalWrite(SLED_PIN, LOW); // turn it off
  799. #endif // Z_PROBE_SLED
  800. setup_homepin();
  801. #ifdef STAT_LED_RED
  802. pinMode(STAT_LED_RED, OUTPUT);
  803. digitalWrite(STAT_LED_RED, LOW); // turn it off
  804. #endif
  805. #ifdef STAT_LED_BLUE
  806. pinMode(STAT_LED_BLUE, OUTPUT);
  807. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  808. #endif
  809. lcd_init();
  810. #if ENABLED(SHOW_BOOTSCREEN)
  811. #if ENABLED(DOGLCD)
  812. delay(1000);
  813. #elif ENABLED(ULTRA_LCD)
  814. bootscreen();
  815. lcd_init();
  816. #endif
  817. #endif
  818. }
  819. /**
  820. * The main Marlin program loop
  821. *
  822. * - Save or log commands to SD
  823. * - Process available commands (if not saving)
  824. * - Call heater manager
  825. * - Call inactivity manager
  826. * - Call endstop manager
  827. * - Call LCD update
  828. */
  829. void loop() {
  830. if (commands_in_queue < BUFSIZE) get_available_commands();
  831. #if ENABLED(SDSUPPORT)
  832. card.checkautostart(false);
  833. #endif
  834. if (commands_in_queue) {
  835. #if ENABLED(SDSUPPORT)
  836. if (card.saving) {
  837. char* command = command_queue[cmd_queue_index_r];
  838. if (strstr_P(command, PSTR("M29"))) {
  839. // M29 closes the file
  840. card.closefile();
  841. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  842. ok_to_send();
  843. }
  844. else {
  845. // Write the string from the read buffer to SD
  846. card.write_command(command);
  847. if (card.logging)
  848. process_next_command(); // The card is saving because it's logging
  849. else
  850. ok_to_send();
  851. }
  852. }
  853. else
  854. process_next_command();
  855. #else
  856. process_next_command();
  857. #endif // SDSUPPORT
  858. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  859. if (commands_in_queue) {
  860. --commands_in_queue;
  861. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  862. }
  863. }
  864. endstops.report_state();
  865. idle();
  866. }
  867. void gcode_line_error(const char* err, bool doFlush = true) {
  868. SERIAL_ERROR_START;
  869. serialprintPGM(err);
  870. SERIAL_ERRORLN(gcode_LastN);
  871. //Serial.println(gcode_N);
  872. if (doFlush) FlushSerialRequestResend();
  873. serial_count = 0;
  874. }
  875. inline void get_serial_commands() {
  876. static char serial_line_buffer[MAX_CMD_SIZE];
  877. static boolean serial_comment_mode = false;
  878. // If the command buffer is empty for too long,
  879. // send "wait" to indicate Marlin is still waiting.
  880. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  881. static millis_t last_command_time = 0;
  882. millis_t ms = millis();
  883. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  884. SERIAL_ECHOLNPGM(MSG_WAIT);
  885. last_command_time = ms;
  886. }
  887. #endif
  888. /**
  889. * Loop while serial characters are incoming and the queue is not full
  890. */
  891. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  892. char serial_char = MYSERIAL.read();
  893. /**
  894. * If the character ends the line
  895. */
  896. if (serial_char == '\n' || serial_char == '\r') {
  897. serial_comment_mode = false; // end of line == end of comment
  898. if (!serial_count) continue; // skip empty lines
  899. serial_line_buffer[serial_count] = 0; // terminate string
  900. serial_count = 0; //reset buffer
  901. char* command = serial_line_buffer;
  902. while (*command == ' ') command++; // skip any leading spaces
  903. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  904. char* apos = strchr(command, '*');
  905. if (npos) {
  906. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  907. if (M110) {
  908. char* n2pos = strchr(command + 4, 'N');
  909. if (n2pos) npos = n2pos;
  910. }
  911. gcode_N = strtol(npos + 1, NULL, 10);
  912. if (gcode_N != gcode_LastN + 1 && !M110) {
  913. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  914. return;
  915. }
  916. if (apos) {
  917. byte checksum = 0, count = 0;
  918. while (command[count] != '*') checksum ^= command[count++];
  919. if (strtol(apos + 1, NULL, 10) != checksum) {
  920. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  921. return;
  922. }
  923. // if no errors, continue parsing
  924. }
  925. else {
  926. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  927. return;
  928. }
  929. gcode_LastN = gcode_N;
  930. // if no errors, continue parsing
  931. }
  932. else if (apos) { // No '*' without 'N'
  933. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  934. return;
  935. }
  936. // Movement commands alert when stopped
  937. if (IsStopped()) {
  938. char* gpos = strchr(command, 'G');
  939. if (gpos) {
  940. int codenum = strtol(gpos + 1, NULL, 10);
  941. switch (codenum) {
  942. case 0:
  943. case 1:
  944. case 2:
  945. case 3:
  946. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  947. LCD_MESSAGEPGM(MSG_STOPPED);
  948. break;
  949. }
  950. }
  951. }
  952. #if DISABLED(EMERGENCY_PARSER)
  953. // If command was e-stop process now
  954. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  955. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  956. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  957. #endif
  958. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  959. last_command_time = ms;
  960. #endif
  961. // Add the command to the queue
  962. _enqueuecommand(serial_line_buffer, true);
  963. }
  964. else if (serial_count >= MAX_CMD_SIZE - 1) {
  965. // Keep fetching, but ignore normal characters beyond the max length
  966. // The command will be injected when EOL is reached
  967. }
  968. else if (serial_char == '\\') { // Handle escapes
  969. if (MYSERIAL.available() > 0) {
  970. // if we have one more character, copy it over
  971. serial_char = MYSERIAL.read();
  972. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  973. }
  974. // otherwise do nothing
  975. }
  976. else { // it's not a newline, carriage return or escape char
  977. if (serial_char == ';') serial_comment_mode = true;
  978. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  979. }
  980. } // queue has space, serial has data
  981. }
  982. #if ENABLED(SDSUPPORT)
  983. inline void get_sdcard_commands() {
  984. static bool stop_buffering = false,
  985. sd_comment_mode = false;
  986. if (!card.sdprinting) return;
  987. /**
  988. * '#' stops reading from SD to the buffer prematurely, so procedural
  989. * macro calls are possible. If it occurs, stop_buffering is triggered
  990. * and the buffer is run dry; this character _can_ occur in serial com
  991. * due to checksums, however, no checksums are used in SD printing.
  992. */
  993. if (commands_in_queue == 0) stop_buffering = false;
  994. uint16_t sd_count = 0;
  995. bool card_eof = card.eof();
  996. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  997. int16_t n = card.get();
  998. char sd_char = (char)n;
  999. card_eof = card.eof();
  1000. if (card_eof || n == -1
  1001. || sd_char == '\n' || sd_char == '\r'
  1002. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1003. ) {
  1004. if (card_eof) {
  1005. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1006. print_job_timer.stop();
  1007. char time[30];
  1008. millis_t t = print_job_timer.duration();
  1009. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  1010. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  1011. SERIAL_ECHO_START;
  1012. SERIAL_ECHOLN(time);
  1013. lcd_setstatus(time, true);
  1014. card.printingHasFinished();
  1015. card.checkautostart(true);
  1016. }
  1017. else if (n == -1) {
  1018. SERIAL_ERROR_START;
  1019. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1020. }
  1021. if (sd_char == '#') stop_buffering = true;
  1022. sd_comment_mode = false; //for new command
  1023. if (!sd_count) continue; //skip empty lines
  1024. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1025. sd_count = 0; //clear buffer
  1026. _commit_command(false);
  1027. }
  1028. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1029. /**
  1030. * Keep fetching, but ignore normal characters beyond the max length
  1031. * The command will be injected when EOL is reached
  1032. */
  1033. }
  1034. else {
  1035. if (sd_char == ';') sd_comment_mode = true;
  1036. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1037. }
  1038. }
  1039. }
  1040. #endif // SDSUPPORT
  1041. /**
  1042. * Add to the circular command queue the next command from:
  1043. * - The command-injection queue (queued_commands_P)
  1044. * - The active serial input (usually USB)
  1045. * - The SD card file being actively printed
  1046. */
  1047. void get_available_commands() {
  1048. // if any immediate commands remain, don't get other commands yet
  1049. if (drain_queued_commands_P()) return;
  1050. get_serial_commands();
  1051. #if ENABLED(SDSUPPORT)
  1052. get_sdcard_commands();
  1053. #endif
  1054. }
  1055. inline bool code_has_value() {
  1056. int i = 1;
  1057. char c = seen_pointer[i];
  1058. while (c == ' ') c = seen_pointer[++i];
  1059. if (c == '-' || c == '+') c = seen_pointer[++i];
  1060. if (c == '.') c = seen_pointer[++i];
  1061. return NUMERIC(c);
  1062. }
  1063. inline float code_value_float() {
  1064. float ret;
  1065. char* e = strchr(seen_pointer, 'E');
  1066. if (e) {
  1067. *e = 0;
  1068. ret = strtod(seen_pointer + 1, NULL);
  1069. *e = 'E';
  1070. }
  1071. else
  1072. ret = strtod(seen_pointer + 1, NULL);
  1073. return ret;
  1074. }
  1075. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1076. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1077. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1078. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1079. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1080. inline bool code_value_bool() { return code_value_byte() > 0; }
  1081. #if ENABLED(INCH_MODE_SUPPORT)
  1082. inline void set_input_linear_units(LinearUnit units) {
  1083. switch (units) {
  1084. case LINEARUNIT_INCH:
  1085. linear_unit_factor = 25.4;
  1086. break;
  1087. case LINEARUNIT_MM:
  1088. default:
  1089. linear_unit_factor = 1.0;
  1090. break;
  1091. }
  1092. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1093. }
  1094. inline float axis_unit_factor(int axis) {
  1095. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1096. }
  1097. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1098. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1099. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1100. #else
  1101. inline float code_value_linear_units() { return code_value_float(); }
  1102. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1103. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1104. #endif
  1105. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1106. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1107. float code_value_temp_abs() {
  1108. switch (input_temp_units) {
  1109. case TEMPUNIT_C:
  1110. return code_value_float();
  1111. case TEMPUNIT_F:
  1112. return (code_value_float() - 32) / 1.8;
  1113. case TEMPUNIT_K:
  1114. return code_value_float() - 272.15;
  1115. default:
  1116. return code_value_float();
  1117. }
  1118. }
  1119. float code_value_temp_diff() {
  1120. switch (input_temp_units) {
  1121. case TEMPUNIT_C:
  1122. case TEMPUNIT_K:
  1123. return code_value_float();
  1124. case TEMPUNIT_F:
  1125. return code_value_float() / 1.8;
  1126. default:
  1127. return code_value_float();
  1128. }
  1129. }
  1130. #else
  1131. float code_value_temp_abs() { return code_value_float(); }
  1132. float code_value_temp_diff() { return code_value_float(); }
  1133. #endif
  1134. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1135. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1136. bool code_seen(char code) {
  1137. seen_pointer = strchr(current_command_args, code);
  1138. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1139. }
  1140. /**
  1141. * Set target_extruder from the T parameter or the active_extruder
  1142. *
  1143. * Returns TRUE if the target is invalid
  1144. */
  1145. bool get_target_extruder_from_command(int code) {
  1146. if (code_seen('T')) {
  1147. if (code_value_byte() >= EXTRUDERS) {
  1148. SERIAL_ECHO_START;
  1149. SERIAL_CHAR('M');
  1150. SERIAL_ECHO(code);
  1151. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1152. SERIAL_EOL;
  1153. return true;
  1154. }
  1155. target_extruder = code_value_byte();
  1156. }
  1157. else
  1158. target_extruder = active_extruder;
  1159. return false;
  1160. }
  1161. #define DEFINE_PGM_READ_ANY(type, reader) \
  1162. static inline type pgm_read_any(const type *p) \
  1163. { return pgm_read_##reader##_near(p); }
  1164. DEFINE_PGM_READ_ANY(float, float);
  1165. DEFINE_PGM_READ_ANY(signed char, byte);
  1166. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1167. static const PROGMEM type array##_P[3] = \
  1168. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1169. static inline type array(int axis) \
  1170. { return pgm_read_any(&array##_P[axis]); }
  1171. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1172. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1173. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1174. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1175. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1176. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1177. #if ENABLED(DUAL_X_CARRIAGE)
  1178. #define DXC_FULL_CONTROL_MODE 0
  1179. #define DXC_AUTO_PARK_MODE 1
  1180. #define DXC_DUPLICATION_MODE 2
  1181. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1182. static float x_home_pos(int extruder) {
  1183. if (extruder == 0)
  1184. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1185. else
  1186. /**
  1187. * In dual carriage mode the extruder offset provides an override of the
  1188. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1189. * This allow soft recalibration of the second extruder offset position
  1190. * without firmware reflash (through the M218 command).
  1191. */
  1192. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1193. }
  1194. static int x_home_dir(int extruder) {
  1195. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1196. }
  1197. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1198. static bool active_extruder_parked = false; // used in mode 1 & 2
  1199. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1200. static millis_t delayed_move_time = 0; // used in mode 1
  1201. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1202. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1203. bool extruder_duplication_enabled = false; // used in mode 2
  1204. #endif //DUAL_X_CARRIAGE
  1205. /**
  1206. * Software endstops can be used to monitor the open end of
  1207. * an axis that has a hardware endstop on the other end. Or
  1208. * they can prevent axes from moving past endstops and grinding.
  1209. *
  1210. * To keep doing their job as the coordinate system changes,
  1211. * the software endstop positions must be refreshed to remain
  1212. * at the same positions relative to the machine.
  1213. */
  1214. static void update_software_endstops(AxisEnum axis) {
  1215. float offs = home_offset[axis] + position_shift[axis];
  1216. #if ENABLED(DUAL_X_CARRIAGE)
  1217. if (axis == X_AXIS) {
  1218. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1219. if (active_extruder != 0) {
  1220. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1221. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1222. return;
  1223. }
  1224. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1225. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1226. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1227. return;
  1228. }
  1229. }
  1230. else
  1231. #endif
  1232. {
  1233. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1234. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1235. }
  1236. }
  1237. /**
  1238. * Change the home offset for an axis, update the current
  1239. * position and the software endstops to retain the same
  1240. * relative distance to the new home.
  1241. *
  1242. * Since this changes the current_position, code should
  1243. * call sync_plan_position soon after this.
  1244. */
  1245. static void set_home_offset(AxisEnum axis, float v) {
  1246. current_position[axis] += v - home_offset[axis];
  1247. home_offset[axis] = v;
  1248. update_software_endstops(axis);
  1249. }
  1250. static void set_axis_is_at_home(AxisEnum axis) {
  1251. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1252. if (DEBUGGING(LEVELING)) {
  1253. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis);
  1254. SERIAL_ECHOLNPGM(")");
  1255. }
  1256. #endif
  1257. position_shift[axis] = 0;
  1258. #if ENABLED(DUAL_X_CARRIAGE)
  1259. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1260. if (active_extruder != 0)
  1261. current_position[X_AXIS] = x_home_pos(active_extruder);
  1262. else
  1263. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1264. update_software_endstops(X_AXIS);
  1265. return;
  1266. }
  1267. #endif
  1268. #if ENABLED(SCARA)
  1269. if (axis == X_AXIS || axis == Y_AXIS) {
  1270. float homeposition[3];
  1271. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1272. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1273. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1274. /**
  1275. * Works out real Homeposition angles using inverse kinematics,
  1276. * and calculates homing offset using forward kinematics
  1277. */
  1278. calculate_delta(homeposition);
  1279. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1280. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1281. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1282. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1283. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1284. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1285. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1286. calculate_SCARA_forward_Transform(delta);
  1287. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1288. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1289. current_position[axis] = delta[axis];
  1290. /**
  1291. * SCARA home positions are based on configuration since the actual
  1292. * limits are determined by the inverse kinematic transform.
  1293. */
  1294. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1295. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1296. }
  1297. else
  1298. #endif
  1299. {
  1300. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1301. update_software_endstops(axis);
  1302. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1303. if (axis == Z_AXIS) {
  1304. current_position[Z_AXIS] -= zprobe_zoffset;
  1305. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1306. if (DEBUGGING(LEVELING)) {
  1307. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1308. SERIAL_EOL;
  1309. }
  1310. #endif
  1311. }
  1312. #endif
  1313. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1314. if (DEBUGGING(LEVELING)) {
  1315. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1316. DEBUG_POS("", current_position);
  1317. }
  1318. #endif
  1319. }
  1320. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1321. if (DEBUGGING(LEVELING)) {
  1322. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1323. SERIAL_ECHOLNPGM(")");
  1324. }
  1325. #endif
  1326. }
  1327. /**
  1328. * Some planner shorthand inline functions
  1329. */
  1330. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1331. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1332. int hbd = homing_bump_divisor[axis];
  1333. if (hbd < 1) {
  1334. hbd = 10;
  1335. SERIAL_ECHO_START;
  1336. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1337. }
  1338. feedrate = homing_feedrate[axis] / hbd;
  1339. }
  1340. //
  1341. // line_to_current_position
  1342. // Move the planner to the current position from wherever it last moved
  1343. // (or from wherever it has been told it is located).
  1344. //
  1345. inline void line_to_current_position() {
  1346. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1347. }
  1348. inline void line_to_z(float zPosition) {
  1349. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1350. }
  1351. //
  1352. // line_to_destination
  1353. // Move the planner, not necessarily synced with current_position
  1354. //
  1355. inline void line_to_destination(float mm_m) {
  1356. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1357. }
  1358. inline void line_to_destination() { line_to_destination(feedrate); }
  1359. /**
  1360. * sync_plan_position
  1361. * Set planner / stepper positions to the cartesian current_position.
  1362. * The stepper code translates these coordinates into step units.
  1363. * Allows translation between steps and millimeters for cartesian & core robots
  1364. */
  1365. inline void sync_plan_position() {
  1366. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1367. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1368. #endif
  1369. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1370. }
  1371. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1372. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1373. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1374. //
  1375. // Prepare to do endstop or probe moves
  1376. // with custom feedrates.
  1377. //
  1378. // - Save current feedrates
  1379. // - Reset the rate multiplier
  1380. // - Reset the command timeout
  1381. // - Enable the endstops (for endstop moves)
  1382. //
  1383. static void setup_for_endstop_or_probe_move() {
  1384. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1385. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1386. #endif
  1387. saved_feedrate = feedrate;
  1388. saved_feedrate_multiplier = feedrate_multiplier;
  1389. feedrate_multiplier = 100;
  1390. refresh_cmd_timeout();
  1391. }
  1392. static void clean_up_after_endstop_or_probe_move() {
  1393. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1394. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1395. #endif
  1396. feedrate = saved_feedrate;
  1397. feedrate_multiplier = saved_feedrate_multiplier;
  1398. refresh_cmd_timeout();
  1399. }
  1400. #if HAS_BED_PROBE
  1401. #if ENABLED(DELTA)
  1402. /**
  1403. * Calculate delta, start a line, and set current_position to destination
  1404. */
  1405. void prepare_move_to_destination_raw() {
  1406. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1407. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1408. #endif
  1409. refresh_cmd_timeout();
  1410. calculate_delta(destination);
  1411. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1412. set_current_to_destination();
  1413. }
  1414. #endif
  1415. /**
  1416. * Plan a move to (X, Y, Z) and set the current_position
  1417. * The final current_position may not be the one that was requested
  1418. */
  1419. static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0) {
  1420. float old_feedrate = feedrate;
  1421. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1422. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1423. #endif
  1424. #if ENABLED(DELTA)
  1425. feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
  1426. destination[X_AXIS] = x;
  1427. destination[Y_AXIS] = y;
  1428. destination[Z_AXIS] = z;
  1429. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1430. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1431. else
  1432. prepare_move_to_destination(); // this will also set_current_to_destination
  1433. #else
  1434. // If Z needs to raise, do it before moving XY
  1435. if (current_position[Z_AXIS] < z) {
  1436. feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
  1437. current_position[Z_AXIS] = z;
  1438. line_to_current_position();
  1439. }
  1440. feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
  1441. current_position[X_AXIS] = x;
  1442. current_position[Y_AXIS] = y;
  1443. line_to_current_position();
  1444. // If Z needs to lower, do it after moving XY
  1445. if (current_position[Z_AXIS] > z) {
  1446. feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
  1447. current_position[Z_AXIS] = z;
  1448. line_to_current_position();
  1449. }
  1450. #endif
  1451. stepper.synchronize();
  1452. feedrate = old_feedrate;
  1453. }
  1454. inline void do_blocking_move_to_x(float x, float feed_rate = 0.0) {
  1455. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], feed_rate);
  1456. }
  1457. inline void do_blocking_move_to_z(float z, float feed_rate = 0.0) {
  1458. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, feed_rate);
  1459. }
  1460. /**
  1461. * Raise Z to a minimum height to make room for a probe to move
  1462. *
  1463. * zprobe_zoffset: Negative of the Z height where the probe engages
  1464. * z_raise: The probing raise distance
  1465. *
  1466. * The zprobe_zoffset is negative for a switch below the nozzle, so
  1467. * multiply by Z_HOME_DIR (-1) to move enough away from the bed.
  1468. */
  1469. inline void do_probe_raise(float z_raise) {
  1470. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1471. if (DEBUGGING(LEVELING)) {
  1472. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1473. SERIAL_ECHOLNPGM(")");
  1474. }
  1475. #endif
  1476. float z_dest = home_offset[Z_AXIS] + z_raise;
  1477. if ((Z_HOME_DIR) < 0 && zprobe_zoffset < 0)
  1478. z_dest -= zprobe_zoffset;
  1479. if (z_dest > current_position[Z_AXIS])
  1480. do_blocking_move_to_z(z_dest);
  1481. }
  1482. #endif //HAS_BED_PROBE
  1483. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE
  1484. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1485. const bool xx = x && !axis_homed[X_AXIS],
  1486. yy = y && !axis_homed[Y_AXIS],
  1487. zz = z && !axis_homed[Z_AXIS];
  1488. if (xx || yy || zz) {
  1489. SERIAL_ECHO_START;
  1490. SERIAL_ECHOPGM(MSG_HOME " ");
  1491. if (xx) SERIAL_ECHOPGM(MSG_X);
  1492. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1493. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1494. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1495. #if ENABLED(ULTRA_LCD)
  1496. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1497. strcat_P(message, PSTR(MSG_HOME " "));
  1498. if (xx) strcat_P(message, PSTR(MSG_X));
  1499. if (yy) strcat_P(message, PSTR(MSG_Y));
  1500. if (zz) strcat_P(message, PSTR(MSG_Z));
  1501. strcat_P(message, PSTR(" " MSG_FIRST));
  1502. lcd_setstatus(message);
  1503. #endif
  1504. return true;
  1505. }
  1506. return false;
  1507. }
  1508. #endif
  1509. #if ENABLED(Z_PROBE_SLED)
  1510. #ifndef SLED_DOCKING_OFFSET
  1511. #define SLED_DOCKING_OFFSET 0
  1512. #endif
  1513. /**
  1514. * Method to dock/undock a sled designed by Charles Bell.
  1515. *
  1516. * stow[in] If false, move to MAX_X and engage the solenoid
  1517. * If true, move to MAX_X and release the solenoid
  1518. */
  1519. static void dock_sled(bool stow) {
  1520. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1521. if (DEBUGGING(LEVELING)) {
  1522. SERIAL_ECHOPAIR("dock_sled(", stow);
  1523. SERIAL_ECHOLNPGM(")");
  1524. }
  1525. #endif
  1526. // Dock sled a bit closer to ensure proper capturing
  1527. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1528. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1529. }
  1530. #endif // Z_PROBE_SLED
  1531. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1532. void run_deploy_moves_script() {
  1533. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1534. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1535. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1536. #endif
  1537. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1538. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1539. #endif
  1540. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1541. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1542. #endif
  1543. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1544. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1545. #endif
  1546. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE);
  1547. #endif
  1548. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1549. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1550. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1551. #endif
  1552. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1553. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1554. #endif
  1555. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1556. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1557. #endif
  1558. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1559. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1560. #endif
  1561. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE);
  1562. #endif
  1563. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1564. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1565. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1566. #endif
  1567. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1568. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1569. #endif
  1570. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1571. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1572. #endif
  1573. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1574. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1575. #endif
  1576. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE);
  1577. #endif
  1578. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1579. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1580. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1581. #endif
  1582. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1583. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1584. #endif
  1585. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1586. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1587. #endif
  1588. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1589. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1590. #endif
  1591. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE);
  1592. #endif
  1593. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1594. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1595. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1596. #endif
  1597. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1598. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1599. #endif
  1600. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1601. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1602. #endif
  1603. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1604. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1605. #endif
  1606. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE);
  1607. #endif
  1608. }
  1609. void run_stow_moves_script() {
  1610. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1611. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1612. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1613. #endif
  1614. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1615. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1616. #endif
  1617. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1618. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1619. #endif
  1620. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1621. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1622. #endif
  1623. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE);
  1624. #endif
  1625. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1626. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1627. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1628. #endif
  1629. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1630. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1631. #endif
  1632. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1633. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1634. #endif
  1635. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1636. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1637. #endif
  1638. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE);
  1639. #endif
  1640. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1641. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1642. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1643. #endif
  1644. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1645. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1646. #endif
  1647. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1648. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1649. #endif
  1650. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1651. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1652. #endif
  1653. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE);
  1654. #endif
  1655. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1656. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1657. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1658. #endif
  1659. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1660. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1661. #endif
  1662. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1663. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1664. #endif
  1665. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1666. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1667. #endif
  1668. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE);
  1669. #endif
  1670. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1671. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1672. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1673. #endif
  1674. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1675. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1676. #endif
  1677. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1678. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1679. #endif
  1680. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1681. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1682. #endif
  1683. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE);
  1684. #endif
  1685. }
  1686. #endif
  1687. #if HAS_BED_PROBE
  1688. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1689. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1690. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1691. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1692. #else
  1693. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1694. #endif
  1695. #endif
  1696. #define DEPLOY_PROBE() set_probe_deployed( true )
  1697. #define STOW_PROBE() set_probe_deployed( false )
  1698. // returns false for ok and true for failure
  1699. static bool set_probe_deployed(bool deploy) {
  1700. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1701. if (DEBUGGING(LEVELING)) {
  1702. DEBUG_POS("set_probe_deployed", current_position);
  1703. SERIAL_ECHOPAIR("deploy: ", deploy);
  1704. }
  1705. #endif
  1706. if (endstops.z_probe_enabled == deploy) return false;
  1707. // Make room for probe
  1708. do_probe_raise(_Z_RAISE_PROBE_DEPLOY_STOW);
  1709. #if ENABLED(Z_PROBE_SLED)
  1710. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1711. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1712. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1713. #endif
  1714. float oldXpos = current_position[X_AXIS]; // save x position
  1715. float oldYpos = current_position[Y_AXIS]; // save y position
  1716. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1717. // If endstop is already false, the Z probe is deployed
  1718. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1719. // Would a goto be less ugly?
  1720. //while (!_TRIGGERED_WHEN_STOWED_TEST) { idle(); // would offer the opportunity
  1721. // for a triggered when stowed manual probe.
  1722. #endif
  1723. #if ENABLED(Z_PROBE_SLED)
  1724. dock_sled(!deploy);
  1725. #elif HAS_Z_SERVO_ENDSTOP
  1726. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[((deploy) ? 0 : 1)]);
  1727. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1728. if (!deploy) run_stow_moves_script();
  1729. else run_deploy_moves_script();
  1730. #else
  1731. // Nothing to be done. Just enable_z_probe below...
  1732. #endif
  1733. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1734. }; // opened before the probe specific actions
  1735. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) {
  1736. if (IsRunning()) {
  1737. SERIAL_ERROR_START;
  1738. SERIAL_ERRORLNPGM("Z-Probe failed");
  1739. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1740. }
  1741. stop();
  1742. return true;
  1743. }
  1744. #endif
  1745. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1746. endstops.enable_z_probe( deploy );
  1747. return false;
  1748. }
  1749. // Do a single Z probe and return with current_position[Z_AXIS]
  1750. // at the height where the probe triggered.
  1751. static float run_z_probe() {
  1752. float old_feedrate = feedrate;
  1753. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1754. refresh_cmd_timeout();
  1755. #if ENABLED(DELTA)
  1756. float start_z = current_position[Z_AXIS];
  1757. long start_steps = stepper.position(Z_AXIS);
  1758. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1759. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 1", current_position);
  1760. #endif
  1761. // move down slowly until you find the bed
  1762. feedrate = homing_feedrate[Z_AXIS] / 4;
  1763. destination[Z_AXIS] = -10;
  1764. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1765. stepper.synchronize();
  1766. endstops.hit_on_purpose(); // clear endstop hit flags
  1767. /**
  1768. * We have to let the planner know where we are right now as it
  1769. * is not where we said to go.
  1770. */
  1771. long stop_steps = stepper.position(Z_AXIS);
  1772. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
  1773. current_position[Z_AXIS] = mm;
  1774. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1775. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1776. #endif
  1777. #else // !DELTA
  1778. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1779. planner.bed_level_matrix.set_to_identity();
  1780. #endif
  1781. feedrate = homing_feedrate[Z_AXIS];
  1782. // Move down until the Z probe (or endstop?) is triggered
  1783. float zPosition = -(Z_MAX_LENGTH + 10);
  1784. line_to_z(zPosition);
  1785. stepper.synchronize();
  1786. // Tell the planner where we ended up - Get this from the stepper handler
  1787. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1788. planner.set_position_mm(
  1789. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1790. current_position[E_AXIS]
  1791. );
  1792. // move up the retract distance
  1793. zPosition += home_bump_mm(Z_AXIS);
  1794. line_to_z(zPosition);
  1795. stepper.synchronize();
  1796. endstops.hit_on_purpose(); // clear endstop hit flags
  1797. // move back down slowly to find bed
  1798. set_homing_bump_feedrate(Z_AXIS);
  1799. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1800. line_to_z(zPosition);
  1801. stepper.synchronize();
  1802. endstops.hit_on_purpose(); // clear endstop hit flags
  1803. // Get the current stepper position after bumping an endstop
  1804. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1805. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1806. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1807. #endif
  1808. #endif // !DELTA
  1809. SYNC_PLAN_POSITION_KINEMATIC();
  1810. feedrate = old_feedrate;
  1811. return current_position[Z_AXIS];
  1812. }
  1813. inline void do_blocking_move_to_xy(float x, float y, float feed_rate = 0.0) {
  1814. do_blocking_move_to(x, y, current_position[Z_AXIS], feed_rate);
  1815. }
  1816. //
  1817. // - Move to the given XY
  1818. // - Deploy the probe, if not already deployed
  1819. // - Probe the bed, get the Z position
  1820. // - Depending on the 'stow' flag
  1821. // - Stow the probe, or
  1822. // - Raise to the BETWEEN height
  1823. // - Return the probed Z position
  1824. //
  1825. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1826. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1827. if (DEBUGGING(LEVELING)) {
  1828. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1829. SERIAL_ECHOPAIR(", ", y);
  1830. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1831. SERIAL_ECHOLNPGM(")");
  1832. DEBUG_POS("", current_position);
  1833. }
  1834. #endif
  1835. float old_feedrate = feedrate;
  1836. // Ensure a minimum height before moving the probe
  1837. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1838. // Move to the XY where we shall probe
  1839. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1840. if (DEBUGGING(LEVELING)) {
  1841. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1842. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1843. SERIAL_ECHOLNPGM(")");
  1844. }
  1845. #endif
  1846. feedrate = XY_PROBE_FEEDRATE;
  1847. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1848. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1849. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1850. #endif
  1851. if (DEPLOY_PROBE()) return NAN;
  1852. float measured_z = run_z_probe();
  1853. if (stow) {
  1854. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1855. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1856. #endif
  1857. if (STOW_PROBE()) return NAN;
  1858. }
  1859. else {
  1860. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1861. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1862. #endif
  1863. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1864. }
  1865. if (verbose_level > 2) {
  1866. SERIAL_PROTOCOLPGM("Bed X: ");
  1867. SERIAL_PROTOCOL_F(x, 3);
  1868. SERIAL_PROTOCOLPGM(" Y: ");
  1869. SERIAL_PROTOCOL_F(y, 3);
  1870. SERIAL_PROTOCOLPGM(" Z: ");
  1871. SERIAL_PROTOCOL_F(measured_z, 3);
  1872. SERIAL_EOL;
  1873. }
  1874. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1875. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1876. #endif
  1877. feedrate = old_feedrate;
  1878. return measured_z;
  1879. }
  1880. #endif // HAS_BED_PROBE
  1881. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1882. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1883. #if DISABLED(DELTA)
  1884. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1885. //planner.bed_level_matrix.debug("bed level before");
  1886. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1887. planner.bed_level_matrix.set_to_identity();
  1888. if (DEBUGGING(LEVELING)) {
  1889. vector_3 uncorrected_position = planner.adjusted_position();
  1890. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1891. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1892. }
  1893. #endif
  1894. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1895. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1896. vector_3 corrected_position = planner.adjusted_position();
  1897. current_position[X_AXIS] = corrected_position.x;
  1898. current_position[Y_AXIS] = corrected_position.y;
  1899. current_position[Z_AXIS] = corrected_position.z;
  1900. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1901. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1902. #endif
  1903. SYNC_PLAN_POSITION_KINEMATIC();
  1904. }
  1905. #endif // !DELTA
  1906. #else // !AUTO_BED_LEVELING_GRID
  1907. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1908. planner.bed_level_matrix.set_to_identity();
  1909. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1910. if (DEBUGGING(LEVELING)) {
  1911. vector_3 uncorrected_position = planner.adjusted_position();
  1912. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1913. }
  1914. #endif
  1915. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1916. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1917. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1918. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1919. if (planeNormal.z < 0) {
  1920. planeNormal.x = -planeNormal.x;
  1921. planeNormal.y = -planeNormal.y;
  1922. planeNormal.z = -planeNormal.z;
  1923. }
  1924. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1925. vector_3 corrected_position = planner.adjusted_position();
  1926. current_position[X_AXIS] = corrected_position.x;
  1927. current_position[Y_AXIS] = corrected_position.y;
  1928. current_position[Z_AXIS] = corrected_position.z;
  1929. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1930. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1931. #endif
  1932. SYNC_PLAN_POSITION_KINEMATIC();
  1933. }
  1934. #endif // !AUTO_BED_LEVELING_GRID
  1935. #if ENABLED(DELTA)
  1936. /**
  1937. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1938. */
  1939. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1940. if (bed_level[x][y] != 0.0) {
  1941. return; // Don't overwrite good values.
  1942. }
  1943. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1944. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1945. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1946. float median = c; // Median is robust (ignores outliers).
  1947. if (a < b) {
  1948. if (b < c) median = b;
  1949. if (c < a) median = a;
  1950. }
  1951. else { // b <= a
  1952. if (c < b) median = b;
  1953. if (a < c) median = a;
  1954. }
  1955. bed_level[x][y] = median;
  1956. }
  1957. /**
  1958. * Fill in the unprobed points (corners of circular print surface)
  1959. * using linear extrapolation, away from the center.
  1960. */
  1961. static void extrapolate_unprobed_bed_level() {
  1962. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1963. for (int y = 0; y <= half; y++) {
  1964. for (int x = 0; x <= half; x++) {
  1965. if (x + y < 3) continue;
  1966. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1967. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1968. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1969. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1970. }
  1971. }
  1972. }
  1973. /**
  1974. * Print calibration results for plotting or manual frame adjustment.
  1975. */
  1976. static void print_bed_level() {
  1977. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1978. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1979. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1980. SERIAL_PROTOCOLCHAR(' ');
  1981. }
  1982. SERIAL_EOL;
  1983. }
  1984. }
  1985. /**
  1986. * Reset calibration results to zero.
  1987. */
  1988. void reset_bed_level() {
  1989. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1990. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1991. #endif
  1992. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1993. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1994. bed_level[x][y] = 0.0;
  1995. }
  1996. }
  1997. }
  1998. #endif // DELTA
  1999. #endif // AUTO_BED_LEVELING_FEATURE
  2000. /**
  2001. * Home an individual axis
  2002. */
  2003. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2004. static void homeaxis(AxisEnum axis) {
  2005. #define HOMEAXIS_DO(LETTER) \
  2006. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  2007. if (!(axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0)) return;
  2008. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2009. if (DEBUGGING(LEVELING)) {
  2010. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  2011. SERIAL_ECHOLNPGM(")");
  2012. }
  2013. #endif
  2014. int axis_home_dir =
  2015. #if ENABLED(DUAL_X_CARRIAGE)
  2016. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2017. #endif
  2018. home_dir(axis);
  2019. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2020. #if HAS_BED_PROBE
  2021. if (axis == Z_AXIS && axis_home_dir < 0) {
  2022. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2023. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2024. #endif
  2025. if (DEPLOY_PROBE()) return;
  2026. }
  2027. #endif
  2028. // Set the axis position as setup for the move
  2029. current_position[axis] = 0;
  2030. sync_plan_position();
  2031. // Set a flag for Z motor locking
  2032. #if ENABLED(Z_DUAL_ENDSTOPS)
  2033. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2034. #endif
  2035. // Move towards the endstop until an endstop is triggered
  2036. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2037. feedrate = homing_feedrate[axis];
  2038. line_to_destination();
  2039. stepper.synchronize();
  2040. // Set the axis position as setup for the move
  2041. current_position[axis] = 0;
  2042. sync_plan_position();
  2043. // Move away from the endstop by the axis HOME_BUMP_MM
  2044. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  2045. line_to_destination();
  2046. stepper.synchronize();
  2047. // Slow down the feedrate for the next move
  2048. set_homing_bump_feedrate(axis);
  2049. // Move slowly towards the endstop until triggered
  2050. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  2051. line_to_destination();
  2052. stepper.synchronize();
  2053. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2054. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  2055. #endif
  2056. #if ENABLED(Z_DUAL_ENDSTOPS)
  2057. if (axis == Z_AXIS) {
  2058. float adj = fabs(z_endstop_adj);
  2059. bool lockZ1;
  2060. if (axis_home_dir > 0) {
  2061. adj = -adj;
  2062. lockZ1 = (z_endstop_adj > 0);
  2063. }
  2064. else
  2065. lockZ1 = (z_endstop_adj < 0);
  2066. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2067. sync_plan_position();
  2068. // Move to the adjusted endstop height
  2069. feedrate = homing_feedrate[axis];
  2070. destination[Z_AXIS] = adj;
  2071. line_to_destination();
  2072. stepper.synchronize();
  2073. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2074. stepper.set_homing_flag(false);
  2075. } // Z_AXIS
  2076. #endif
  2077. #if ENABLED(DELTA)
  2078. // retrace by the amount specified in endstop_adj
  2079. if (endstop_adj[axis] * axis_home_dir < 0) {
  2080. sync_plan_position();
  2081. destination[axis] = endstop_adj[axis];
  2082. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2083. if (DEBUGGING(LEVELING)) {
  2084. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2085. DEBUG_POS("", destination);
  2086. }
  2087. #endif
  2088. line_to_destination();
  2089. stepper.synchronize();
  2090. }
  2091. #endif
  2092. // Set the axis position to its home position (plus home offsets)
  2093. set_axis_is_at_home(axis);
  2094. SYNC_PLAN_POSITION_KINEMATIC();
  2095. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2096. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2097. #endif
  2098. destination[axis] = current_position[axis];
  2099. endstops.hit_on_purpose(); // clear endstop hit flags
  2100. axis_known_position[axis] = true;
  2101. axis_homed[axis] = true;
  2102. // Put away the Z probe
  2103. #if HAS_BED_PROBE
  2104. if (axis == Z_AXIS && axis_home_dir < 0) {
  2105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2106. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2107. #endif
  2108. if (STOW_PROBE()) return;
  2109. }
  2110. #endif
  2111. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2112. if (DEBUGGING(LEVELING)) {
  2113. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2114. SERIAL_ECHOLNPGM(")");
  2115. }
  2116. #endif
  2117. }
  2118. #if ENABLED(FWRETRACT)
  2119. void retract(bool retracting, bool swapping = false) {
  2120. if (retracting == retracted[active_extruder]) return;
  2121. float old_feedrate = feedrate;
  2122. set_destination_to_current();
  2123. if (retracting) {
  2124. feedrate = retract_feedrate_mm_s * 60;
  2125. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2126. sync_plan_position_e();
  2127. prepare_move_to_destination();
  2128. if (retract_zlift > 0.01) {
  2129. current_position[Z_AXIS] -= retract_zlift;
  2130. SYNC_PLAN_POSITION_KINEMATIC();
  2131. prepare_move_to_destination();
  2132. }
  2133. }
  2134. else {
  2135. if (retract_zlift > 0.01) {
  2136. current_position[Z_AXIS] += retract_zlift;
  2137. SYNC_PLAN_POSITION_KINEMATIC();
  2138. }
  2139. feedrate = retract_recover_feedrate * 60;
  2140. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2141. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2142. sync_plan_position_e();
  2143. prepare_move_to_destination();
  2144. }
  2145. feedrate = old_feedrate;
  2146. retracted[active_extruder] = retracting;
  2147. } // retract()
  2148. #endif // FWRETRACT
  2149. /**
  2150. * ***************************************************************************
  2151. * ***************************** G-CODE HANDLING *****************************
  2152. * ***************************************************************************
  2153. */
  2154. /**
  2155. * Set XYZE destination and feedrate from the current GCode command
  2156. *
  2157. * - Set destination from included axis codes
  2158. * - Set to current for missing axis codes
  2159. * - Set the feedrate, if included
  2160. */
  2161. void gcode_get_destination() {
  2162. for (int i = 0; i < NUM_AXIS; i++) {
  2163. if (code_seen(axis_codes[i]))
  2164. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2165. else
  2166. destination[i] = current_position[i];
  2167. }
  2168. if (code_seen('F') && code_value_linear_units() > 0.0)
  2169. feedrate = code_value_linear_units();
  2170. }
  2171. void unknown_command_error() {
  2172. SERIAL_ECHO_START;
  2173. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2174. SERIAL_ECHO(current_command);
  2175. SERIAL_ECHOLNPGM("\"");
  2176. }
  2177. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2178. /**
  2179. * Output a "busy" message at regular intervals
  2180. * while the machine is not accepting commands.
  2181. */
  2182. void host_keepalive() {
  2183. millis_t ms = millis();
  2184. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2185. if (PENDING(ms, next_busy_signal_ms)) return;
  2186. switch (busy_state) {
  2187. case IN_HANDLER:
  2188. case IN_PROCESS:
  2189. SERIAL_ECHO_START;
  2190. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2191. break;
  2192. case PAUSED_FOR_USER:
  2193. SERIAL_ECHO_START;
  2194. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2195. break;
  2196. case PAUSED_FOR_INPUT:
  2197. SERIAL_ECHO_START;
  2198. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2199. break;
  2200. default:
  2201. break;
  2202. }
  2203. }
  2204. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2205. }
  2206. #endif //HOST_KEEPALIVE_FEATURE
  2207. /**
  2208. * G0, G1: Coordinated movement of X Y Z E axes
  2209. */
  2210. inline void gcode_G0_G1() {
  2211. if (IsRunning()) {
  2212. gcode_get_destination(); // For X Y Z E F
  2213. #if ENABLED(FWRETRACT)
  2214. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2215. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2216. // Is this move an attempt to retract or recover?
  2217. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2218. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2219. sync_plan_position_e(); // AND from the planner
  2220. retract(!retracted[active_extruder]);
  2221. return;
  2222. }
  2223. }
  2224. #endif //FWRETRACT
  2225. prepare_move_to_destination();
  2226. }
  2227. }
  2228. /**
  2229. * G2: Clockwise Arc
  2230. * G3: Counterclockwise Arc
  2231. */
  2232. #if ENABLED(ARC_SUPPORT)
  2233. inline void gcode_G2_G3(bool clockwise) {
  2234. if (IsRunning()) {
  2235. #if ENABLED(SF_ARC_FIX)
  2236. bool relative_mode_backup = relative_mode;
  2237. relative_mode = true;
  2238. #endif
  2239. gcode_get_destination();
  2240. #if ENABLED(SF_ARC_FIX)
  2241. relative_mode = relative_mode_backup;
  2242. #endif
  2243. // Center of arc as offset from current_position
  2244. float arc_offset[2] = {
  2245. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2246. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2247. };
  2248. // Send an arc to the planner
  2249. plan_arc(destination, arc_offset, clockwise);
  2250. refresh_cmd_timeout();
  2251. }
  2252. }
  2253. #endif
  2254. /**
  2255. * G4: Dwell S<seconds> or P<milliseconds>
  2256. */
  2257. inline void gcode_G4() {
  2258. millis_t codenum = 0;
  2259. if (code_seen('P')) codenum = code_value_millis(); // milliseconds to wait
  2260. if (code_seen('S')) codenum = code_value_millis_from_seconds(); // seconds to wait
  2261. stepper.synchronize();
  2262. refresh_cmd_timeout();
  2263. codenum += previous_cmd_ms; // keep track of when we started waiting
  2264. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2265. while (PENDING(millis(), codenum)) idle();
  2266. }
  2267. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2268. /**
  2269. * Parameters interpreted according to:
  2270. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2271. * However I, J omission is not supported at this point; all
  2272. * parameters can be omitted and default to zero.
  2273. */
  2274. /**
  2275. * G5: Cubic B-spline
  2276. */
  2277. inline void gcode_G5() {
  2278. if (IsRunning()) {
  2279. gcode_get_destination();
  2280. float offset[] = {
  2281. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2282. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2283. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2284. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2285. };
  2286. plan_cubic_move(offset);
  2287. }
  2288. }
  2289. #endif // BEZIER_CURVE_SUPPORT
  2290. #if ENABLED(FWRETRACT)
  2291. /**
  2292. * G10 - Retract filament according to settings of M207
  2293. * G11 - Recover filament according to settings of M208
  2294. */
  2295. inline void gcode_G10_G11(bool doRetract=false) {
  2296. #if EXTRUDERS > 1
  2297. if (doRetract) {
  2298. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2299. }
  2300. #endif
  2301. retract(doRetract
  2302. #if EXTRUDERS > 1
  2303. , retracted_swap[active_extruder]
  2304. #endif
  2305. );
  2306. }
  2307. #endif //FWRETRACT
  2308. #if ENABLED(INCH_MODE_SUPPORT)
  2309. /**
  2310. * G20: Set input mode to inches
  2311. */
  2312. inline void gcode_G20() {
  2313. set_input_linear_units(LINEARUNIT_INCH);
  2314. }
  2315. /**
  2316. * G21: Set input mode to millimeters
  2317. */
  2318. inline void gcode_G21() {
  2319. set_input_linear_units(LINEARUNIT_MM);
  2320. }
  2321. #endif
  2322. #if ENABLED(QUICK_HOME)
  2323. static void quick_home_xy() {
  2324. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2325. #if ENABLED(DUAL_X_CARRIAGE)
  2326. int x_axis_home_dir = x_home_dir(active_extruder);
  2327. extruder_duplication_enabled = false;
  2328. #else
  2329. int x_axis_home_dir = home_dir(X_AXIS);
  2330. #endif
  2331. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2332. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2333. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2334. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2335. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2336. line_to_destination();
  2337. stepper.synchronize();
  2338. endstops.hit_on_purpose(); // clear endstop hit flags
  2339. destination[X_AXIS] = destination[Y_AXIS] = 0;
  2340. }
  2341. #endif // QUICK_HOME
  2342. /**
  2343. * G28: Home all axes according to settings
  2344. *
  2345. * Parameters
  2346. *
  2347. * None Home to all axes with no parameters.
  2348. * With QUICK_HOME enabled XY will home together, then Z.
  2349. *
  2350. * Cartesian parameters
  2351. *
  2352. * X Home to the X endstop
  2353. * Y Home to the Y endstop
  2354. * Z Home to the Z endstop
  2355. *
  2356. */
  2357. inline void gcode_G28() {
  2358. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2359. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28");
  2360. #endif
  2361. // Wait for planner moves to finish!
  2362. stepper.synchronize();
  2363. // For auto bed leveling, clear the level matrix
  2364. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2365. planner.bed_level_matrix.set_to_identity();
  2366. #if ENABLED(DELTA)
  2367. reset_bed_level();
  2368. #endif
  2369. #endif
  2370. /**
  2371. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2372. * on again when homing all axis
  2373. */
  2374. #if ENABLED(MESH_BED_LEVELING)
  2375. float pre_home_z = MESH_HOME_SEARCH_Z;
  2376. if (mbl.active()) {
  2377. // Save known Z position if already homed
  2378. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2379. pre_home_z = current_position[Z_AXIS];
  2380. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2381. }
  2382. mbl.set_active(false);
  2383. current_position[Z_AXIS] = pre_home_z;
  2384. }
  2385. #endif
  2386. setup_for_endstop_or_probe_move();
  2387. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2388. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2389. #endif
  2390. endstops.enable(true); // Enable endstops for next homing move
  2391. #if ENABLED(DELTA)
  2392. /**
  2393. * A delta can only safely home all axes at the same time
  2394. */
  2395. // Pretend the current position is 0,0,0
  2396. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2397. sync_plan_position();
  2398. // Move all carriages up together until the first endstop is hit.
  2399. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2400. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2401. line_to_destination();
  2402. stepper.synchronize();
  2403. endstops.hit_on_purpose(); // clear endstop hit flags
  2404. // Destination reached
  2405. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2406. // take care of back off and rehome now we are all at the top
  2407. HOMEAXIS(X);
  2408. HOMEAXIS(Y);
  2409. HOMEAXIS(Z);
  2410. SYNC_PLAN_POSITION_KINEMATIC();
  2411. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2412. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2413. #endif
  2414. #else // NOT DELTA
  2415. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2416. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2417. set_destination_to_current();
  2418. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2419. if (home_all_axis || homeZ) {
  2420. HOMEAXIS(Z);
  2421. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2422. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2423. #endif
  2424. }
  2425. #else
  2426. if (home_all_axis || homeX || homeY) {
  2427. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2428. float z_dest = home_offset[Z_AXIS] + MIN_Z_HEIGHT_FOR_HOMING;
  2429. if (z_dest > current_position[Z_AXIS]) {
  2430. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2431. if (DEBUGGING(LEVELING)) {
  2432. SERIAL_ECHOPAIR("Raise Z (before homing) to ", z_dest);
  2433. SERIAL_EOL;
  2434. }
  2435. #endif
  2436. feedrate = homing_feedrate[Z_AXIS];
  2437. line_to_z(z_dest);
  2438. stepper.synchronize();
  2439. destination[Z_AXIS] = current_position[Z_AXIS] = z_dest;
  2440. }
  2441. }
  2442. #endif
  2443. #if ENABLED(QUICK_HOME)
  2444. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2445. #endif
  2446. #if ENABLED(HOME_Y_BEFORE_X)
  2447. // Home Y
  2448. if (home_all_axis || homeY) {
  2449. HOMEAXIS(Y);
  2450. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2451. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2452. #endif
  2453. }
  2454. #endif
  2455. // Home X
  2456. if (home_all_axis || homeX) {
  2457. #if ENABLED(DUAL_X_CARRIAGE)
  2458. int tmp_extruder = active_extruder;
  2459. extruder_duplication_enabled = false;
  2460. active_extruder = !active_extruder;
  2461. HOMEAXIS(X);
  2462. inactive_extruder_x_pos = current_position[X_AXIS];
  2463. active_extruder = tmp_extruder;
  2464. HOMEAXIS(X);
  2465. // reset state used by the different modes
  2466. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2467. delayed_move_time = 0;
  2468. active_extruder_parked = true;
  2469. #else
  2470. HOMEAXIS(X);
  2471. #endif
  2472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2473. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2474. #endif
  2475. }
  2476. #if DISABLED(HOME_Y_BEFORE_X)
  2477. // Home Y
  2478. if (home_all_axis || homeY) {
  2479. HOMEAXIS(Y);
  2480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2481. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2482. #endif
  2483. }
  2484. #endif
  2485. // Home Z last if homing towards the bed
  2486. #if Z_HOME_DIR < 0
  2487. if (home_all_axis || homeZ) {
  2488. #if ENABLED(Z_SAFE_HOMING)
  2489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2490. if (DEBUGGING(LEVELING)) {
  2491. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2492. }
  2493. #endif
  2494. if (home_all_axis) {
  2495. /**
  2496. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2497. * No need to move Z any more as this height should already be safe
  2498. * enough to reach Z_SAFE_HOMING XY positions.
  2499. * Just make sure the planner is in sync.
  2500. */
  2501. SYNC_PLAN_POSITION_KINEMATIC();
  2502. /**
  2503. * Set the Z probe (or just the nozzle) destination to the safe
  2504. * homing point
  2505. */
  2506. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2507. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2508. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2509. feedrate = XY_PROBE_FEEDRATE;
  2510. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2511. if (DEBUGGING(LEVELING)) {
  2512. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2513. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2514. }
  2515. #endif
  2516. // Move in the XY plane
  2517. line_to_destination();
  2518. stepper.synchronize();
  2519. /**
  2520. * Update the current positions for XY, Z is still at least at
  2521. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2522. */
  2523. current_position[X_AXIS] = destination[X_AXIS];
  2524. current_position[Y_AXIS] = destination[Y_AXIS];
  2525. }
  2526. // Let's see if X and Y are homed
  2527. if (axis_unhomed_error(true, true, false)) return;
  2528. /**
  2529. * Make sure the Z probe is within the physical limits
  2530. * NOTE: This doesn't necessarily ensure the Z probe is also
  2531. * within the bed!
  2532. */
  2533. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2534. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2535. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2536. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2537. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2538. // Home the Z axis
  2539. HOMEAXIS(Z);
  2540. }
  2541. else {
  2542. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2543. SERIAL_ECHO_START;
  2544. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2545. }
  2546. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2547. if (DEBUGGING(LEVELING)) {
  2548. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2549. }
  2550. #endif
  2551. #else // !Z_SAFE_HOMING
  2552. HOMEAXIS(Z);
  2553. #endif // !Z_SAFE_HOMING
  2554. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2555. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2556. #endif
  2557. } // home_all_axis || homeZ
  2558. #endif // Z_HOME_DIR < 0
  2559. SYNC_PLAN_POSITION_KINEMATIC();
  2560. #endif // !DELTA (gcode_G28)
  2561. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2562. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.not_homing()");
  2563. #endif
  2564. endstops.not_homing();
  2565. endstops.hit_on_purpose(); // clear endstop hit flags
  2566. // Enable mesh leveling again
  2567. #if ENABLED(MESH_BED_LEVELING)
  2568. if (mbl.has_mesh()) {
  2569. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2570. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2571. #if Z_HOME_DIR > 0
  2572. + Z_MAX_POS
  2573. #endif
  2574. ;
  2575. SYNC_PLAN_POSITION_KINEMATIC();
  2576. mbl.set_active(true);
  2577. #if ENABLED(MESH_G28_REST_ORIGIN)
  2578. current_position[Z_AXIS] = 0.0;
  2579. set_destination_to_current();
  2580. feedrate = homing_feedrate[Z_AXIS];
  2581. line_to_destination();
  2582. stepper.synchronize();
  2583. #else
  2584. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2585. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2586. #if Z_HOME_DIR > 0
  2587. + Z_MAX_POS
  2588. #endif
  2589. ;
  2590. #endif
  2591. }
  2592. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2593. current_position[Z_AXIS] = pre_home_z;
  2594. SYNC_PLAN_POSITION_KINEMATIC();
  2595. mbl.set_active(true);
  2596. current_position[Z_AXIS] = pre_home_z -
  2597. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2598. }
  2599. }
  2600. #endif
  2601. clean_up_after_endstop_or_probe_move();
  2602. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2603. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2604. #endif
  2605. report_current_position();
  2606. }
  2607. #if HAS_PROBING_PROCEDURE
  2608. void out_of_range_error(const char* p_edge) {
  2609. SERIAL_PROTOCOLPGM("?Probe ");
  2610. serialprintPGM(p_edge);
  2611. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2612. }
  2613. #endif
  2614. #if ENABLED(MESH_BED_LEVELING)
  2615. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
  2616. inline void _mbl_goto_xy(float x, float y) {
  2617. float old_feedrate = feedrate;
  2618. feedrate = homing_feedrate[X_AXIS];
  2619. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2620. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2621. + Z_RAISE_BETWEEN_PROBINGS
  2622. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2623. + MIN_Z_HEIGHT_FOR_HOMING
  2624. #endif
  2625. ;
  2626. line_to_current_position();
  2627. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2628. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2629. line_to_current_position();
  2630. #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
  2631. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2632. line_to_current_position();
  2633. #endif
  2634. feedrate = old_feedrate;
  2635. stepper.synchronize();
  2636. }
  2637. /**
  2638. * G29: Mesh-based Z probe, probes a grid and produces a
  2639. * mesh to compensate for variable bed height
  2640. *
  2641. * Parameters With MESH_BED_LEVELING:
  2642. *
  2643. * S0 Produce a mesh report
  2644. * S1 Start probing mesh points
  2645. * S2 Probe the next mesh point
  2646. * S3 Xn Yn Zn.nn Manually modify a single point
  2647. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2648. * S5 Reset and disable mesh
  2649. *
  2650. * The S0 report the points as below
  2651. *
  2652. * +----> X-axis 1-n
  2653. * |
  2654. * |
  2655. * v Y-axis 1-n
  2656. *
  2657. */
  2658. inline void gcode_G29() {
  2659. static int probe_point = -1;
  2660. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2661. if (state < 0 || state > 5) {
  2662. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2663. return;
  2664. }
  2665. int8_t px, py;
  2666. switch (state) {
  2667. case MeshReport:
  2668. if (mbl.has_mesh()) {
  2669. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? "On" : "Off");
  2670. SERIAL_PROTOCOLPAIR("\nNum X,Y: ", MESH_NUM_X_POINTS);
  2671. SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2672. SERIAL_PROTOCOLPAIR("\nZ search height: ", MESH_HOME_SEARCH_Z);
  2673. SERIAL_PROTOCOLPGM("\nZ offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2674. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2675. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2676. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2677. SERIAL_PROTOCOLPGM(" ");
  2678. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2679. }
  2680. SERIAL_EOL;
  2681. }
  2682. }
  2683. else
  2684. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2685. break;
  2686. case MeshStart:
  2687. mbl.reset();
  2688. probe_point = 0;
  2689. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2690. break;
  2691. case MeshNext:
  2692. if (probe_point < 0) {
  2693. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2694. return;
  2695. }
  2696. // For each G29 S2...
  2697. if (probe_point == 0) {
  2698. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2699. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2700. #if Z_HOME_DIR > 0
  2701. + Z_MAX_POS
  2702. #endif
  2703. ;
  2704. SYNC_PLAN_POSITION_KINEMATIC();
  2705. }
  2706. else {
  2707. // For G29 S2 after adjusting Z.
  2708. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2709. }
  2710. // If there's another point to sample, move there with optional lift.
  2711. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2712. mbl.zigzag(probe_point, px, py);
  2713. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2714. probe_point++;
  2715. }
  2716. else {
  2717. // One last "return to the bed" (as originally coded) at completion
  2718. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2719. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2720. + Z_RAISE_BETWEEN_PROBINGS
  2721. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2722. + MIN_Z_HEIGHT_FOR_HOMING
  2723. #endif
  2724. ;
  2725. line_to_current_position();
  2726. stepper.synchronize();
  2727. // After recording the last point, activate the mbl and home
  2728. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2729. probe_point = -1;
  2730. mbl.set_has_mesh(true);
  2731. enqueue_and_echo_commands_P(PSTR("G28"));
  2732. }
  2733. break;
  2734. case MeshSet:
  2735. if (code_seen('X')) {
  2736. px = code_value_int() - 1;
  2737. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2738. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2739. return;
  2740. }
  2741. }
  2742. else {
  2743. SERIAL_PROTOCOLLNPGM("X not entered.");
  2744. return;
  2745. }
  2746. if (code_seen('Y')) {
  2747. py = code_value_int() - 1;
  2748. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2749. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2750. return;
  2751. }
  2752. }
  2753. else {
  2754. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2755. return;
  2756. }
  2757. if (code_seen('Z')) {
  2758. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2759. }
  2760. else {
  2761. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2762. return;
  2763. }
  2764. break;
  2765. case MeshSetZOffset:
  2766. if (code_seen('Z')) {
  2767. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2768. }
  2769. else {
  2770. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2771. return;
  2772. }
  2773. break;
  2774. case MeshReset:
  2775. if (mbl.active()) {
  2776. current_position[Z_AXIS] +=
  2777. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2778. mbl.reset();
  2779. SYNC_PLAN_POSITION_KINEMATIC();
  2780. }
  2781. else
  2782. mbl.reset();
  2783. } // switch(state)
  2784. report_current_position();
  2785. }
  2786. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2787. /**
  2788. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2789. * Will fail if the printer has not been homed with G28.
  2790. *
  2791. * Enhanced G29 Auto Bed Leveling Probe Routine
  2792. *
  2793. * Parameters With AUTO_BED_LEVELING_GRID:
  2794. *
  2795. * P Set the size of the grid that will be probed (P x P points).
  2796. * Not supported by non-linear delta printer bed leveling.
  2797. * Example: "G29 P4"
  2798. *
  2799. * S Set the XY travel speed between probe points (in units/min)
  2800. *
  2801. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2802. * or clean the rotation Matrix. Useful to check the topology
  2803. * after a first run of G29.
  2804. *
  2805. * V Set the verbose level (0-4). Example: "G29 V3"
  2806. *
  2807. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2808. * This is useful for manual bed leveling and finding flaws in the bed (to
  2809. * assist with part placement).
  2810. * Not supported by non-linear delta printer bed leveling.
  2811. *
  2812. * F Set the Front limit of the probing grid
  2813. * B Set the Back limit of the probing grid
  2814. * L Set the Left limit of the probing grid
  2815. * R Set the Right limit of the probing grid
  2816. *
  2817. * Global Parameters:
  2818. *
  2819. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2820. * Include "E" to engage/disengage the Z probe for each sample.
  2821. * There's no extra effect if you have a fixed Z probe.
  2822. * Usage: "G29 E" or "G29 e"
  2823. *
  2824. */
  2825. inline void gcode_G29() {
  2826. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2827. if (DEBUGGING(LEVELING)) {
  2828. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2829. DEBUG_POS("", current_position);
  2830. }
  2831. #endif
  2832. // Don't allow auto-leveling without homing first
  2833. if (axis_unhomed_error(true, true, true)) return;
  2834. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2835. if (verbose_level < 0 || verbose_level > 4) {
  2836. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2837. return;
  2838. }
  2839. bool dryrun = code_seen('D');
  2840. bool stow_probe_after_each = code_seen('E');
  2841. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2842. #if DISABLED(DELTA)
  2843. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2844. #endif
  2845. if (verbose_level > 0) {
  2846. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2847. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2848. }
  2849. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2850. #if DISABLED(DELTA)
  2851. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2852. if (auto_bed_leveling_grid_points < 2) {
  2853. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2854. return;
  2855. }
  2856. #endif
  2857. xy_probe_speed = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
  2858. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2859. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2860. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2861. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2862. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2863. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2864. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2865. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2866. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2867. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2868. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2869. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2870. if (left_out || right_out || front_out || back_out) {
  2871. if (left_out) {
  2872. out_of_range_error(PSTR("(L)eft"));
  2873. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2874. }
  2875. if (right_out) {
  2876. out_of_range_error(PSTR("(R)ight"));
  2877. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2878. }
  2879. if (front_out) {
  2880. out_of_range_error(PSTR("(F)ront"));
  2881. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2882. }
  2883. if (back_out) {
  2884. out_of_range_error(PSTR("(B)ack"));
  2885. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2886. }
  2887. return;
  2888. }
  2889. #endif // AUTO_BED_LEVELING_GRID
  2890. if (!dryrun) {
  2891. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2892. if (DEBUGGING(LEVELING)) {
  2893. vector_3 corrected_position = planner.adjusted_position();
  2894. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2895. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2896. }
  2897. #endif
  2898. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2899. planner.bed_level_matrix.set_to_identity();
  2900. #if ENABLED(DELTA)
  2901. reset_bed_level();
  2902. #else //!DELTA
  2903. //vector_3 corrected_position = planner.adjusted_position();
  2904. //corrected_position.debug("position before G29");
  2905. vector_3 uncorrected_position = planner.adjusted_position();
  2906. //uncorrected_position.debug("position during G29");
  2907. current_position[X_AXIS] = uncorrected_position.x;
  2908. current_position[Y_AXIS] = uncorrected_position.y;
  2909. current_position[Z_AXIS] = uncorrected_position.z;
  2910. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2911. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2912. #endif
  2913. SYNC_PLAN_POSITION_KINEMATIC();
  2914. #endif // !DELTA
  2915. }
  2916. stepper.synchronize();
  2917. setup_for_endstop_or_probe_move();
  2918. // Deploy the probe. Probe will raise if needed.
  2919. if (DEPLOY_PROBE()) return;
  2920. bed_leveling_in_progress = true;
  2921. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2922. // probe at the points of a lattice grid
  2923. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2924. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2925. #if ENABLED(DELTA)
  2926. delta_grid_spacing[0] = xGridSpacing;
  2927. delta_grid_spacing[1] = yGridSpacing;
  2928. float zoffset = zprobe_zoffset;
  2929. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  2930. #else // !DELTA
  2931. /**
  2932. * solve the plane equation ax + by + d = z
  2933. * A is the matrix with rows [x y 1] for all the probed points
  2934. * B is the vector of the Z positions
  2935. * the normal vector to the plane is formed by the coefficients of the
  2936. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2937. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2938. */
  2939. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2940. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2941. eqnBVector[abl2], // "B" vector of Z points
  2942. mean = 0.0;
  2943. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2944. #endif // !DELTA
  2945. int probePointCounter = 0;
  2946. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2947. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2948. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2949. int xStart, xStop, xInc;
  2950. if (zig) {
  2951. xStart = 0;
  2952. xStop = auto_bed_leveling_grid_points;
  2953. xInc = 1;
  2954. }
  2955. else {
  2956. xStart = auto_bed_leveling_grid_points - 1;
  2957. xStop = -1;
  2958. xInc = -1;
  2959. }
  2960. zig = !zig;
  2961. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2962. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2963. #if ENABLED(DELTA)
  2964. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2965. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2966. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2967. #endif //DELTA
  2968. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  2969. #if DISABLED(DELTA)
  2970. mean += measured_z;
  2971. eqnBVector[probePointCounter] = measured_z;
  2972. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2973. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2974. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2975. indexIntoAB[xCount][yCount] = probePointCounter;
  2976. #else
  2977. bed_level[xCount][yCount] = measured_z + zoffset;
  2978. #endif
  2979. probePointCounter++;
  2980. idle();
  2981. } //xProbe
  2982. } //yProbe
  2983. #else // !AUTO_BED_LEVELING_GRID
  2984. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2985. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  2986. #endif
  2987. // Probe at 3 arbitrary points
  2988. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  2989. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  2990. stow_probe_after_each, verbose_level),
  2991. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  2992. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  2993. stow_probe_after_each, verbose_level),
  2994. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  2995. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  2996. stow_probe_after_each, verbose_level);
  2997. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2998. #endif // !AUTO_BED_LEVELING_GRID
  2999. // Raise to _Z_RAISE_PROBE_DEPLOY_STOW. Stow the probe.
  3000. if (STOW_PROBE()) return;
  3001. // Restore state after probing
  3002. clean_up_after_endstop_or_probe_move();
  3003. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3004. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3005. #endif
  3006. // Calculate leveling, print reports, correct the position
  3007. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3008. #if ENABLED(DELTA)
  3009. if (!dryrun) extrapolate_unprobed_bed_level();
  3010. print_bed_level();
  3011. #else // !DELTA
  3012. // solve lsq problem
  3013. double plane_equation_coefficients[3];
  3014. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3015. mean /= abl2;
  3016. if (verbose_level) {
  3017. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3018. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3019. SERIAL_PROTOCOLPGM(" b: ");
  3020. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3021. SERIAL_PROTOCOLPGM(" d: ");
  3022. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3023. SERIAL_EOL;
  3024. if (verbose_level > 2) {
  3025. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3026. SERIAL_PROTOCOL_F(mean, 8);
  3027. SERIAL_EOL;
  3028. }
  3029. }
  3030. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3031. // Show the Topography map if enabled
  3032. if (do_topography_map) {
  3033. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3034. " +--- BACK --+\n"
  3035. " | |\n"
  3036. " L | (+) | R\n"
  3037. " E | | I\n"
  3038. " F | (-) N (+) | G\n"
  3039. " T | | H\n"
  3040. " | (-) | T\n"
  3041. " | |\n"
  3042. " O-- FRONT --+\n"
  3043. " (0,0)");
  3044. float min_diff = 999;
  3045. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3046. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3047. int ind = indexIntoAB[xx][yy];
  3048. float diff = eqnBVector[ind] - mean;
  3049. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3050. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3051. z_tmp = 0;
  3052. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3053. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3054. if (diff >= 0.0)
  3055. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3056. else
  3057. SERIAL_PROTOCOLCHAR(' ');
  3058. SERIAL_PROTOCOL_F(diff, 5);
  3059. } // xx
  3060. SERIAL_EOL;
  3061. } // yy
  3062. SERIAL_EOL;
  3063. if (verbose_level > 3) {
  3064. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3065. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3066. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3067. int ind = indexIntoAB[xx][yy];
  3068. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3069. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3070. z_tmp = 0;
  3071. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3072. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3073. if (diff >= 0.0)
  3074. SERIAL_PROTOCOLPGM(" +");
  3075. // Include + for column alignment
  3076. else
  3077. SERIAL_PROTOCOLCHAR(' ');
  3078. SERIAL_PROTOCOL_F(diff, 5);
  3079. } // xx
  3080. SERIAL_EOL;
  3081. } // yy
  3082. SERIAL_EOL;
  3083. }
  3084. } //do_topography_map
  3085. #endif //!DELTA
  3086. #endif // AUTO_BED_LEVELING_GRID
  3087. #if DISABLED(DELTA)
  3088. if (verbose_level > 0)
  3089. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3090. if (!dryrun) {
  3091. /**
  3092. * Correct the Z height difference from Z probe position and nozzle tip position.
  3093. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3094. * from the nozzle. When the bed is uneven, this height must be corrected.
  3095. */
  3096. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3097. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3098. z_tmp = current_position[Z_AXIS],
  3099. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3100. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3101. if (DEBUGGING(LEVELING)) {
  3102. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3103. SERIAL_ECHOPAIR(" ... z_tmp = ", z_tmp);
  3104. SERIAL_EOL;
  3105. }
  3106. #endif
  3107. // Apply the correction sending the Z probe offset
  3108. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3109. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3110. if (DEBUGGING(LEVELING)) {
  3111. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3112. SERIAL_EOL;
  3113. }
  3114. #endif
  3115. // Adjust the current Z and send it to the planner.
  3116. current_position[Z_AXIS] += z_tmp - stepper_z;
  3117. SYNC_PLAN_POSITION_KINEMATIC();
  3118. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3119. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3120. #endif
  3121. }
  3122. #endif // !DELTA
  3123. #ifdef Z_PROBE_END_SCRIPT
  3124. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3125. if (DEBUGGING(LEVELING)) {
  3126. SERIAL_ECHOPGM("Z Probe End Script: ");
  3127. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3128. }
  3129. #endif
  3130. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3131. stepper.synchronize();
  3132. #endif
  3133. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3134. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3135. #endif
  3136. bed_leveling_in_progress = false;
  3137. report_current_position();
  3138. KEEPALIVE_STATE(IN_HANDLER);
  3139. }
  3140. #endif //AUTO_BED_LEVELING_FEATURE
  3141. #if HAS_BED_PROBE
  3142. /**
  3143. * G30: Do a single Z probe at the current XY
  3144. */
  3145. inline void gcode_G30() {
  3146. setup_for_endstop_or_probe_move();
  3147. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3148. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3149. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3150. true, 1);
  3151. SERIAL_PROTOCOLPGM("Bed X: ");
  3152. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3153. SERIAL_PROTOCOLPGM(" Y: ");
  3154. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3155. SERIAL_PROTOCOLPGM(" Z: ");
  3156. SERIAL_PROTOCOL(measured_z + 0.0001);
  3157. SERIAL_EOL;
  3158. clean_up_after_endstop_or_probe_move();
  3159. report_current_position();
  3160. }
  3161. #if ENABLED(Z_PROBE_SLED)
  3162. /**
  3163. * G31: Deploy the Z probe
  3164. */
  3165. inline void gcode_G31() { DEPLOY_PROBE(); }
  3166. /**
  3167. * G32: Stow the Z probe
  3168. */
  3169. inline void gcode_G32() { STOW_PROBE(); }
  3170. #endif // Z_PROBE_SLED
  3171. #endif // HAS_BED_PROBE
  3172. /**
  3173. * G92: Set current position to given X Y Z E
  3174. */
  3175. inline void gcode_G92() {
  3176. bool didE = code_seen('E');
  3177. if (!didE) stepper.synchronize();
  3178. bool didXYZ = false;
  3179. for (int i = 0; i < NUM_AXIS; i++) {
  3180. if (code_seen(axis_codes[i])) {
  3181. float p = current_position[i],
  3182. v = code_value_axis_units(i);
  3183. current_position[i] = v;
  3184. if (i != E_AXIS) {
  3185. position_shift[i] += v - p; // Offset the coordinate space
  3186. update_software_endstops((AxisEnum)i);
  3187. didXYZ = true;
  3188. }
  3189. }
  3190. }
  3191. if (didXYZ)
  3192. SYNC_PLAN_POSITION_KINEMATIC();
  3193. else if (didE)
  3194. sync_plan_position_e();
  3195. }
  3196. #if ENABLED(ULTIPANEL)
  3197. /**
  3198. * M0: Unconditional stop - Wait for user button press on LCD
  3199. * M1: Conditional stop - Wait for user button press on LCD
  3200. */
  3201. inline void gcode_M0_M1() {
  3202. char* args = current_command_args;
  3203. millis_t codenum = 0;
  3204. bool hasP = false, hasS = false;
  3205. if (code_seen('P')) {
  3206. codenum = code_value_millis(); // milliseconds to wait
  3207. hasP = codenum > 0;
  3208. }
  3209. if (code_seen('S')) {
  3210. codenum = code_value_millis_from_seconds(); // seconds to wait
  3211. hasS = codenum > 0;
  3212. }
  3213. if (!hasP && !hasS && *args != '\0')
  3214. lcd_setstatus(args, true);
  3215. else {
  3216. LCD_MESSAGEPGM(MSG_USERWAIT);
  3217. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3218. dontExpireStatus();
  3219. #endif
  3220. }
  3221. lcd_ignore_click();
  3222. stepper.synchronize();
  3223. refresh_cmd_timeout();
  3224. if (codenum > 0) {
  3225. codenum += previous_cmd_ms; // wait until this time for a click
  3226. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3227. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3228. KEEPALIVE_STATE(IN_HANDLER);
  3229. lcd_ignore_click(false);
  3230. }
  3231. else {
  3232. if (!lcd_detected()) return;
  3233. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3234. while (!lcd_clicked()) idle();
  3235. KEEPALIVE_STATE(IN_HANDLER);
  3236. }
  3237. if (IS_SD_PRINTING)
  3238. LCD_MESSAGEPGM(MSG_RESUMING);
  3239. else
  3240. LCD_MESSAGEPGM(WELCOME_MSG);
  3241. }
  3242. #endif // ULTIPANEL
  3243. /**
  3244. * M17: Enable power on all stepper motors
  3245. */
  3246. inline void gcode_M17() {
  3247. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3248. enable_all_steppers();
  3249. }
  3250. #if ENABLED(SDSUPPORT)
  3251. /**
  3252. * M20: List SD card to serial output
  3253. */
  3254. inline void gcode_M20() {
  3255. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3256. card.ls();
  3257. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3258. }
  3259. /**
  3260. * M21: Init SD Card
  3261. */
  3262. inline void gcode_M21() {
  3263. card.initsd();
  3264. }
  3265. /**
  3266. * M22: Release SD Card
  3267. */
  3268. inline void gcode_M22() {
  3269. card.release();
  3270. }
  3271. /**
  3272. * M23: Open a file
  3273. */
  3274. inline void gcode_M23() {
  3275. card.openFile(current_command_args, true);
  3276. }
  3277. /**
  3278. * M24: Start SD Print
  3279. */
  3280. inline void gcode_M24() {
  3281. card.startFileprint();
  3282. print_job_timer.start();
  3283. }
  3284. /**
  3285. * M25: Pause SD Print
  3286. */
  3287. inline void gcode_M25() {
  3288. card.pauseSDPrint();
  3289. }
  3290. /**
  3291. * M26: Set SD Card file index
  3292. */
  3293. inline void gcode_M26() {
  3294. if (card.cardOK && code_seen('S'))
  3295. card.setIndex(code_value_long());
  3296. }
  3297. /**
  3298. * M27: Get SD Card status
  3299. */
  3300. inline void gcode_M27() {
  3301. card.getStatus();
  3302. }
  3303. /**
  3304. * M28: Start SD Write
  3305. */
  3306. inline void gcode_M28() {
  3307. card.openFile(current_command_args, false);
  3308. }
  3309. /**
  3310. * M29: Stop SD Write
  3311. * Processed in write to file routine above
  3312. */
  3313. inline void gcode_M29() {
  3314. // card.saving = false;
  3315. }
  3316. /**
  3317. * M30 <filename>: Delete SD Card file
  3318. */
  3319. inline void gcode_M30() {
  3320. if (card.cardOK) {
  3321. card.closefile();
  3322. card.removeFile(current_command_args);
  3323. }
  3324. }
  3325. #endif //SDSUPPORT
  3326. /**
  3327. * M31: Get the time since the start of SD Print (or last M109)
  3328. */
  3329. inline void gcode_M31() {
  3330. millis_t t = print_job_timer.duration();
  3331. int min = t / 60, sec = t % 60;
  3332. char time[30];
  3333. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3334. SERIAL_ECHO_START;
  3335. SERIAL_ECHOLN(time);
  3336. lcd_setstatus(time);
  3337. thermalManager.autotempShutdown();
  3338. }
  3339. #if ENABLED(SDSUPPORT)
  3340. /**
  3341. * M32: Select file and start SD Print
  3342. */
  3343. inline void gcode_M32() {
  3344. if (card.sdprinting)
  3345. stepper.synchronize();
  3346. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3347. if (!namestartpos)
  3348. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3349. else
  3350. namestartpos++; //to skip the '!'
  3351. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3352. if (card.cardOK) {
  3353. card.openFile(namestartpos, true, call_procedure);
  3354. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3355. card.setIndex(code_value_long());
  3356. card.startFileprint();
  3357. // Procedure calls count as normal print time.
  3358. if (!call_procedure) print_job_timer.start();
  3359. }
  3360. }
  3361. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3362. /**
  3363. * M33: Get the long full path of a file or folder
  3364. *
  3365. * Parameters:
  3366. * <dospath> Case-insensitive DOS-style path to a file or folder
  3367. *
  3368. * Example:
  3369. * M33 miscel~1/armchair/armcha~1.gco
  3370. *
  3371. * Output:
  3372. * /Miscellaneous/Armchair/Armchair.gcode
  3373. */
  3374. inline void gcode_M33() {
  3375. card.printLongPath(current_command_args);
  3376. }
  3377. #endif
  3378. /**
  3379. * M928: Start SD Write
  3380. */
  3381. inline void gcode_M928() {
  3382. card.openLogFile(current_command_args);
  3383. }
  3384. #endif // SDSUPPORT
  3385. /**
  3386. * M42: Change pin status via GCode
  3387. *
  3388. * P<pin> Pin number (LED if omitted)
  3389. * S<byte> Pin status from 0 - 255
  3390. */
  3391. inline void gcode_M42() {
  3392. if (!code_seen('S')) return;
  3393. int pin_status = code_value_int();
  3394. if (pin_status < 0 || pin_status > 255) return;
  3395. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3396. if (pin_number < 0) return;
  3397. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3398. if (pin_number == sensitive_pins[i]) return;
  3399. pinMode(pin_number, OUTPUT);
  3400. digitalWrite(pin_number, pin_status);
  3401. analogWrite(pin_number, pin_status);
  3402. #if FAN_COUNT > 0
  3403. switch (pin_number) {
  3404. #if HAS_FAN0
  3405. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3406. #endif
  3407. #if HAS_FAN1
  3408. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3409. #endif
  3410. #if HAS_FAN2
  3411. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3412. #endif
  3413. }
  3414. #endif
  3415. }
  3416. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3417. /**
  3418. * M48: Z probe repeatability measurement function.
  3419. *
  3420. * Usage:
  3421. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3422. * P = Number of sampled points (4-50, default 10)
  3423. * X = Sample X position
  3424. * Y = Sample Y position
  3425. * V = Verbose level (0-4, default=1)
  3426. * E = Engage Z probe for each reading
  3427. * L = Number of legs of movement before probe
  3428. * S = Schizoid (Or Star if you prefer)
  3429. *
  3430. * This function assumes the bed has been homed. Specifically, that a G28 command
  3431. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3432. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3433. * regenerated.
  3434. */
  3435. inline void gcode_M48() {
  3436. if (axis_unhomed_error(true, true, true)) return;
  3437. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3438. if (verbose_level < 0 || verbose_level > 4) {
  3439. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3440. return;
  3441. }
  3442. if (verbose_level > 0)
  3443. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3444. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3445. if (n_samples < 4 || n_samples > 50) {
  3446. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3447. return;
  3448. }
  3449. float X_current = current_position[X_AXIS],
  3450. Y_current = current_position[Y_AXIS];
  3451. bool stow_probe_after_each = code_seen('E');
  3452. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3453. #if DISABLED(DELTA)
  3454. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3455. out_of_range_error(PSTR("X"));
  3456. return;
  3457. }
  3458. #endif
  3459. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3460. #if DISABLED(DELTA)
  3461. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3462. out_of_range_error(PSTR("Y"));
  3463. return;
  3464. }
  3465. #else
  3466. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3467. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3468. return;
  3469. }
  3470. #endif
  3471. bool seen_L = code_seen('L');
  3472. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3473. if (n_legs > 15) {
  3474. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3475. return;
  3476. }
  3477. if (n_legs == 1) n_legs = 2;
  3478. bool schizoid_flag = code_seen('S');
  3479. if (schizoid_flag && !seen_L) n_legs = 7;
  3480. /**
  3481. * Now get everything to the specified probe point So we can safely do a
  3482. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3483. * we don't want to use that as a starting point for each probe.
  3484. */
  3485. if (verbose_level > 2)
  3486. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3487. #if ENABLED(DELTA)
  3488. // we don't do bed level correction in M48 because we want the raw data when we probe
  3489. reset_bed_level();
  3490. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3491. // we don't do bed level correction in M48 because we want the raw data when we probe
  3492. planner.bed_level_matrix.set_to_identity();
  3493. #endif
  3494. setup_for_endstop_or_probe_move();
  3495. // Move to the first point, deploy, and probe
  3496. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3497. randomSeed(millis());
  3498. double mean = 0, sigma = 0, sample_set[n_samples];
  3499. for (uint8_t n = 0; n < n_samples; n++) {
  3500. if (n_legs) {
  3501. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3502. float angle = random(0.0, 360.0),
  3503. radius = random(
  3504. #if ENABLED(DELTA)
  3505. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3506. #else
  3507. 5, X_MAX_LENGTH / 8
  3508. #endif
  3509. );
  3510. if (verbose_level > 3) {
  3511. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3512. SERIAL_ECHOPAIR(" angle: ", angle);
  3513. SERIAL_ECHOPGM(" Direction: ");
  3514. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3515. SERIAL_ECHOLNPGM("Clockwise");
  3516. }
  3517. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3518. double delta_angle;
  3519. if (schizoid_flag)
  3520. // The points of a 5 point star are 72 degrees apart. We need to
  3521. // skip a point and go to the next one on the star.
  3522. delta_angle = dir * 2.0 * 72.0;
  3523. else
  3524. // If we do this line, we are just trying to move further
  3525. // around the circle.
  3526. delta_angle = dir * (float) random(25, 45);
  3527. angle += delta_angle;
  3528. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3529. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3530. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3531. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3532. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3533. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3534. #if DISABLED(DELTA)
  3535. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3536. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3537. #else
  3538. // If we have gone out too far, we can do a simple fix and scale the numbers
  3539. // back in closer to the origin.
  3540. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3541. X_current /= 1.25;
  3542. Y_current /= 1.25;
  3543. if (verbose_level > 3) {
  3544. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3545. SERIAL_ECHOPAIR(", ", Y_current);
  3546. SERIAL_EOL;
  3547. }
  3548. }
  3549. #endif
  3550. if (verbose_level > 3) {
  3551. SERIAL_PROTOCOLPGM("Going to:");
  3552. SERIAL_ECHOPAIR(" X", X_current);
  3553. SERIAL_ECHOPAIR(" Y", Y_current);
  3554. SERIAL_ECHOPAIR(" Z", current_position[Z_AXIS]);
  3555. SERIAL_EOL;
  3556. }
  3557. do_blocking_move_to_xy(X_current, Y_current);
  3558. } // n_legs loop
  3559. } // n_legs
  3560. // Probe a single point
  3561. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3562. /**
  3563. * Get the current mean for the data points we have so far
  3564. */
  3565. double sum = 0.0;
  3566. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3567. mean = sum / (n + 1);
  3568. /**
  3569. * Now, use that mean to calculate the standard deviation for the
  3570. * data points we have so far
  3571. */
  3572. sum = 0.0;
  3573. for (uint8_t j = 0; j <= n; j++) {
  3574. float ss = sample_set[j] - mean;
  3575. sum += ss * ss;
  3576. }
  3577. sigma = sqrt(sum / (n + 1));
  3578. if (verbose_level > 0) {
  3579. if (verbose_level > 1) {
  3580. SERIAL_PROTOCOL(n + 1);
  3581. SERIAL_PROTOCOLPGM(" of ");
  3582. SERIAL_PROTOCOL((int)n_samples);
  3583. SERIAL_PROTOCOLPGM(" z: ");
  3584. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3585. if (verbose_level > 2) {
  3586. SERIAL_PROTOCOLPGM(" mean: ");
  3587. SERIAL_PROTOCOL_F(mean, 6);
  3588. SERIAL_PROTOCOLPGM(" sigma: ");
  3589. SERIAL_PROTOCOL_F(sigma, 6);
  3590. }
  3591. }
  3592. SERIAL_EOL;
  3593. }
  3594. } // End of probe loop
  3595. if (STOW_PROBE()) return;
  3596. if (verbose_level > 0) {
  3597. SERIAL_PROTOCOLPGM("Mean: ");
  3598. SERIAL_PROTOCOL_F(mean, 6);
  3599. SERIAL_EOL;
  3600. }
  3601. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3602. SERIAL_PROTOCOL_F(sigma, 6);
  3603. SERIAL_EOL; SERIAL_EOL;
  3604. clean_up_after_endstop_or_probe_move();
  3605. report_current_position();
  3606. }
  3607. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3608. /**
  3609. * M75: Start print timer
  3610. */
  3611. inline void gcode_M75() { print_job_timer.start(); }
  3612. /**
  3613. * M76: Pause print timer
  3614. */
  3615. inline void gcode_M76() { print_job_timer.pause(); }
  3616. /**
  3617. * M77: Stop print timer
  3618. */
  3619. inline void gcode_M77() { print_job_timer.stop(); }
  3620. #if ENABLED(PRINTCOUNTER)
  3621. /*+
  3622. * M78: Show print statistics
  3623. */
  3624. inline void gcode_M78() {
  3625. // "M78 S78" will reset the statistics
  3626. if (code_seen('S') && code_value_int() == 78)
  3627. print_job_timer.initStats();
  3628. else print_job_timer.showStats();
  3629. }
  3630. #endif
  3631. /**
  3632. * M104: Set hot end temperature
  3633. */
  3634. inline void gcode_M104() {
  3635. if (get_target_extruder_from_command(104)) return;
  3636. if (DEBUGGING(DRYRUN)) return;
  3637. #if ENABLED(SINGLENOZZLE)
  3638. if (target_extruder != active_extruder) return;
  3639. #endif
  3640. if (code_seen('S')) {
  3641. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3642. #if ENABLED(DUAL_X_CARRIAGE)
  3643. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3644. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3645. #endif
  3646. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3647. /**
  3648. * Stop the timer at the end of print, starting is managed by
  3649. * 'heat and wait' M109.
  3650. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3651. * stand by mode, for instance in a dual extruder setup, without affecting
  3652. * the running print timer.
  3653. */
  3654. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3655. print_job_timer.stop();
  3656. LCD_MESSAGEPGM(WELCOME_MSG);
  3657. }
  3658. #endif
  3659. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3660. }
  3661. }
  3662. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3663. void print_heaterstates() {
  3664. #if HAS_TEMP_HOTEND
  3665. SERIAL_PROTOCOLPGM(" T:");
  3666. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3667. SERIAL_PROTOCOLPGM(" /");
  3668. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3669. #endif
  3670. #if HAS_TEMP_BED
  3671. SERIAL_PROTOCOLPGM(" B:");
  3672. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3673. SERIAL_PROTOCOLPGM(" /");
  3674. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3675. #endif
  3676. #if HOTENDS > 1
  3677. HOTEND_LOOP() {
  3678. SERIAL_PROTOCOLPGM(" T");
  3679. SERIAL_PROTOCOL(e);
  3680. SERIAL_PROTOCOLCHAR(':');
  3681. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3682. SERIAL_PROTOCOLPGM(" /");
  3683. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3684. }
  3685. #endif
  3686. #if HAS_TEMP_BED
  3687. SERIAL_PROTOCOLPGM(" B@:");
  3688. #ifdef BED_WATTS
  3689. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3690. SERIAL_PROTOCOLCHAR('W');
  3691. #else
  3692. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3693. #endif
  3694. #endif
  3695. SERIAL_PROTOCOLPGM(" @:");
  3696. #ifdef EXTRUDER_WATTS
  3697. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3698. SERIAL_PROTOCOLCHAR('W');
  3699. #else
  3700. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3701. #endif
  3702. #if HOTENDS > 1
  3703. HOTEND_LOOP() {
  3704. SERIAL_PROTOCOLPGM(" @");
  3705. SERIAL_PROTOCOL(e);
  3706. SERIAL_PROTOCOLCHAR(':');
  3707. #ifdef EXTRUDER_WATTS
  3708. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3709. SERIAL_PROTOCOLCHAR('W');
  3710. #else
  3711. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3712. #endif
  3713. }
  3714. #endif
  3715. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3716. #if HAS_TEMP_BED
  3717. SERIAL_PROTOCOLPGM(" ADC B:");
  3718. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3719. SERIAL_PROTOCOLPGM("C->");
  3720. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3721. #endif
  3722. HOTEND_LOOP() {
  3723. SERIAL_PROTOCOLPGM(" T");
  3724. SERIAL_PROTOCOL(e);
  3725. SERIAL_PROTOCOLCHAR(':');
  3726. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3727. SERIAL_PROTOCOLPGM("C->");
  3728. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(e) / OVERSAMPLENR, 0);
  3729. }
  3730. #endif
  3731. }
  3732. #endif
  3733. /**
  3734. * M105: Read hot end and bed temperature
  3735. */
  3736. inline void gcode_M105() {
  3737. if (get_target_extruder_from_command(105)) return;
  3738. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3739. SERIAL_PROTOCOLPGM(MSG_OK);
  3740. print_heaterstates();
  3741. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3742. SERIAL_ERROR_START;
  3743. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3744. #endif
  3745. SERIAL_EOL;
  3746. }
  3747. #if FAN_COUNT > 0
  3748. /**
  3749. * M106: Set Fan Speed
  3750. *
  3751. * S<int> Speed between 0-255
  3752. * P<index> Fan index, if more than one fan
  3753. */
  3754. inline void gcode_M106() {
  3755. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3756. p = code_seen('P') ? code_value_ushort() : 0;
  3757. NOMORE(s, 255);
  3758. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3759. }
  3760. /**
  3761. * M107: Fan Off
  3762. */
  3763. inline void gcode_M107() {
  3764. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3765. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3766. }
  3767. #endif // FAN_COUNT > 0
  3768. #if DISABLED(EMERGENCY_PARSER)
  3769. /**
  3770. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3771. */
  3772. inline void gcode_M108() { wait_for_heatup = false; }
  3773. /**
  3774. * M112: Emergency Stop
  3775. */
  3776. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3777. /**
  3778. * M410: Quickstop - Abort all planned moves
  3779. *
  3780. * This will stop the carriages mid-move, so most likely they
  3781. * will be out of sync with the stepper position after this.
  3782. */
  3783. inline void gcode_M410() { quickstop_stepper(); }
  3784. #endif
  3785. /**
  3786. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3787. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3788. */
  3789. inline void gcode_M109() {
  3790. if (get_target_extruder_from_command(109)) return;
  3791. if (DEBUGGING(DRYRUN)) return;
  3792. #if ENABLED(SINGLENOZZLE)
  3793. if (target_extruder != active_extruder) return;
  3794. #endif
  3795. bool no_wait_for_cooling = code_seen('S');
  3796. if (no_wait_for_cooling || code_seen('R')) {
  3797. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3798. #if ENABLED(DUAL_X_CARRIAGE)
  3799. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3800. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3801. #endif
  3802. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3803. /**
  3804. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3805. * stand by mode, for instance in a dual extruder setup, without affecting
  3806. * the running print timer.
  3807. */
  3808. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3809. print_job_timer.stop();
  3810. LCD_MESSAGEPGM(WELCOME_MSG);
  3811. }
  3812. /**
  3813. * We do not check if the timer is already running because this check will
  3814. * be done for us inside the Stopwatch::start() method thus a running timer
  3815. * will not restart.
  3816. */
  3817. else print_job_timer.start();
  3818. #endif
  3819. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3820. }
  3821. #if ENABLED(AUTOTEMP)
  3822. planner.autotemp_M109();
  3823. #endif
  3824. #if TEMP_RESIDENCY_TIME > 0
  3825. millis_t residency_start_ms = 0;
  3826. // Loop until the temperature has stabilized
  3827. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3828. #else
  3829. // Loop until the temperature is very close target
  3830. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3831. #endif //TEMP_RESIDENCY_TIME > 0
  3832. float theTarget = -1.0, old_temp = 9999.0;
  3833. bool wants_to_cool = false;
  3834. wait_for_heatup = true;
  3835. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3836. KEEPALIVE_STATE(NOT_BUSY);
  3837. do {
  3838. // Target temperature might be changed during the loop
  3839. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3840. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3841. theTarget = thermalManager.degTargetHotend(target_extruder);
  3842. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3843. if (no_wait_for_cooling && wants_to_cool) break;
  3844. }
  3845. now = millis();
  3846. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3847. next_temp_ms = now + 1000UL;
  3848. print_heaterstates();
  3849. #if TEMP_RESIDENCY_TIME > 0
  3850. SERIAL_PROTOCOLPGM(" W:");
  3851. if (residency_start_ms) {
  3852. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3853. SERIAL_PROTOCOLLN(rem);
  3854. }
  3855. else {
  3856. SERIAL_PROTOCOLLNPGM("?");
  3857. }
  3858. #else
  3859. SERIAL_EOL;
  3860. #endif
  3861. }
  3862. idle();
  3863. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3864. float temp = thermalManager.degHotend(target_extruder);
  3865. #if TEMP_RESIDENCY_TIME > 0
  3866. float temp_diff = fabs(theTarget - temp);
  3867. if (!residency_start_ms) {
  3868. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3869. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3870. }
  3871. else if (temp_diff > TEMP_HYSTERESIS) {
  3872. // Restart the timer whenever the temperature falls outside the hysteresis.
  3873. residency_start_ms = now;
  3874. }
  3875. #endif //TEMP_RESIDENCY_TIME > 0
  3876. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3877. if (wants_to_cool) {
  3878. if (temp < (EXTRUDE_MINTEMP) / 2) break; // always break at (default) 85°
  3879. // break after 20 seconds if cooling stalls
  3880. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3881. if (old_temp - temp < 1.0) break;
  3882. next_cool_check_ms = now + 20000;
  3883. old_temp = temp;
  3884. }
  3885. }
  3886. } while (wait_for_heatup && TEMP_CONDITIONS);
  3887. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3888. KEEPALIVE_STATE(IN_HANDLER);
  3889. }
  3890. #if HAS_TEMP_BED
  3891. /**
  3892. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3893. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3894. */
  3895. inline void gcode_M190() {
  3896. if (DEBUGGING(DRYRUN)) return;
  3897. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3898. bool no_wait_for_cooling = code_seen('S');
  3899. if (no_wait_for_cooling || code_seen('R')) {
  3900. thermalManager.setTargetBed(code_value_temp_abs());
  3901. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3902. if (code_value_temp_abs() > BED_MINTEMP) {
  3903. /**
  3904. * We start the timer when 'heating and waiting' command arrives, LCD
  3905. * functions never wait. Cooling down managed by extruders.
  3906. *
  3907. * We do not check if the timer is already running because this check will
  3908. * be done for us inside the Stopwatch::start() method thus a running timer
  3909. * will not restart.
  3910. */
  3911. print_job_timer.start();
  3912. }
  3913. #endif
  3914. }
  3915. #if TEMP_BED_RESIDENCY_TIME > 0
  3916. millis_t residency_start_ms = 0;
  3917. // Loop until the temperature has stabilized
  3918. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3919. #else
  3920. // Loop until the temperature is very close target
  3921. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3922. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3923. float theTarget = -1.0, old_temp = 9999.0;
  3924. bool wants_to_cool = false;
  3925. wait_for_heatup = true;
  3926. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3927. KEEPALIVE_STATE(NOT_BUSY);
  3928. do {
  3929. // Target temperature might be changed during the loop
  3930. if (theTarget != thermalManager.degTargetBed()) {
  3931. wants_to_cool = thermalManager.isCoolingBed();
  3932. theTarget = thermalManager.degTargetBed();
  3933. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3934. if (no_wait_for_cooling && wants_to_cool) break;
  3935. }
  3936. now = millis();
  3937. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3938. next_temp_ms = now + 1000UL;
  3939. print_heaterstates();
  3940. #if TEMP_BED_RESIDENCY_TIME > 0
  3941. SERIAL_PROTOCOLPGM(" W:");
  3942. if (residency_start_ms) {
  3943. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3944. SERIAL_PROTOCOLLN(rem);
  3945. }
  3946. else {
  3947. SERIAL_PROTOCOLLNPGM("?");
  3948. }
  3949. #else
  3950. SERIAL_EOL;
  3951. #endif
  3952. }
  3953. idle();
  3954. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3955. float temp = thermalManager.degBed();
  3956. #if TEMP_BED_RESIDENCY_TIME > 0
  3957. float temp_diff = fabs(theTarget - temp);
  3958. if (!residency_start_ms) {
  3959. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3960. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  3961. }
  3962. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3963. // Restart the timer whenever the temperature falls outside the hysteresis.
  3964. residency_start_ms = now;
  3965. }
  3966. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3967. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3968. if (wants_to_cool) {
  3969. if (temp < 30.0) break; // always break at 30°
  3970. // break after 20 seconds if cooling stalls
  3971. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3972. if (old_temp - temp < 1.0) break;
  3973. next_cool_check_ms = now + 20000;
  3974. old_temp = temp;
  3975. }
  3976. }
  3977. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  3978. LCD_MESSAGEPGM(MSG_BED_DONE);
  3979. KEEPALIVE_STATE(IN_HANDLER);
  3980. }
  3981. #endif // HAS_TEMP_BED
  3982. /**
  3983. * M110: Set Current Line Number
  3984. */
  3985. inline void gcode_M110() {
  3986. if (code_seen('N')) gcode_N = code_value_long();
  3987. }
  3988. /**
  3989. * M111: Set the debug level
  3990. */
  3991. inline void gcode_M111() {
  3992. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  3993. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3994. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3995. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3996. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3997. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3998. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3999. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4000. #endif
  4001. const static char* const debug_strings[] PROGMEM = {
  4002. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4003. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4004. str_debug_32
  4005. #endif
  4006. };
  4007. SERIAL_ECHO_START;
  4008. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4009. if (marlin_debug_flags) {
  4010. uint8_t comma = 0;
  4011. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4012. if (TEST(marlin_debug_flags, i)) {
  4013. if (comma++) SERIAL_CHAR(',');
  4014. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4015. }
  4016. }
  4017. }
  4018. else {
  4019. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4020. }
  4021. SERIAL_EOL;
  4022. }
  4023. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4024. /**
  4025. * M113: Get or set Host Keepalive interval (0 to disable)
  4026. *
  4027. * S<seconds> Optional. Set the keepalive interval.
  4028. */
  4029. inline void gcode_M113() {
  4030. if (code_seen('S')) {
  4031. host_keepalive_interval = code_value_byte();
  4032. NOMORE(host_keepalive_interval, 60);
  4033. }
  4034. else {
  4035. SERIAL_ECHO_START;
  4036. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4037. SERIAL_EOL;
  4038. }
  4039. }
  4040. #endif
  4041. #if ENABLED(BARICUDA)
  4042. #if HAS_HEATER_1
  4043. /**
  4044. * M126: Heater 1 valve open
  4045. */
  4046. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4047. /**
  4048. * M127: Heater 1 valve close
  4049. */
  4050. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4051. #endif
  4052. #if HAS_HEATER_2
  4053. /**
  4054. * M128: Heater 2 valve open
  4055. */
  4056. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4057. /**
  4058. * M129: Heater 2 valve close
  4059. */
  4060. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4061. #endif
  4062. #endif //BARICUDA
  4063. /**
  4064. * M140: Set bed temperature
  4065. */
  4066. inline void gcode_M140() {
  4067. if (DEBUGGING(DRYRUN)) return;
  4068. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4069. }
  4070. #if ENABLED(ULTIPANEL)
  4071. /**
  4072. * M145: Set the heatup state for a material in the LCD menu
  4073. * S<material> (0=PLA, 1=ABS)
  4074. * H<hotend temp>
  4075. * B<bed temp>
  4076. * F<fan speed>
  4077. */
  4078. inline void gcode_M145() {
  4079. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4080. if (material < 0 || material > 1) {
  4081. SERIAL_ERROR_START;
  4082. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4083. }
  4084. else {
  4085. int v;
  4086. switch (material) {
  4087. case 0:
  4088. if (code_seen('H')) {
  4089. v = code_value_int();
  4090. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4091. }
  4092. if (code_seen('F')) {
  4093. v = code_value_int();
  4094. plaPreheatFanSpeed = constrain(v, 0, 255);
  4095. }
  4096. #if TEMP_SENSOR_BED != 0
  4097. if (code_seen('B')) {
  4098. v = code_value_int();
  4099. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4100. }
  4101. #endif
  4102. break;
  4103. case 1:
  4104. if (code_seen('H')) {
  4105. v = code_value_int();
  4106. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4107. }
  4108. if (code_seen('F')) {
  4109. v = code_value_int();
  4110. absPreheatFanSpeed = constrain(v, 0, 255);
  4111. }
  4112. #if TEMP_SENSOR_BED != 0
  4113. if (code_seen('B')) {
  4114. v = code_value_int();
  4115. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4116. }
  4117. #endif
  4118. break;
  4119. }
  4120. }
  4121. }
  4122. #endif
  4123. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4124. /**
  4125. * M149: Set temperature units
  4126. */
  4127. inline void gcode_M149() {
  4128. if (code_seen('C')) {
  4129. set_input_temp_units(TEMPUNIT_C);
  4130. } else if (code_seen('K')) {
  4131. set_input_temp_units(TEMPUNIT_K);
  4132. } else if (code_seen('F')) {
  4133. set_input_temp_units(TEMPUNIT_F);
  4134. }
  4135. }
  4136. #endif
  4137. #if HAS_POWER_SWITCH
  4138. /**
  4139. * M80: Turn on Power Supply
  4140. */
  4141. inline void gcode_M80() {
  4142. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4143. /**
  4144. * If you have a switch on suicide pin, this is useful
  4145. * if you want to start another print with suicide feature after
  4146. * a print without suicide...
  4147. */
  4148. #if HAS_SUICIDE
  4149. OUT_WRITE(SUICIDE_PIN, HIGH);
  4150. #endif
  4151. #if ENABLED(ULTIPANEL)
  4152. powersupply = true;
  4153. LCD_MESSAGEPGM(WELCOME_MSG);
  4154. lcd_update();
  4155. #endif
  4156. }
  4157. #endif // HAS_POWER_SWITCH
  4158. /**
  4159. * M81: Turn off Power, including Power Supply, if there is one.
  4160. *
  4161. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4162. */
  4163. inline void gcode_M81() {
  4164. thermalManager.disable_all_heaters();
  4165. stepper.finish_and_disable();
  4166. #if FAN_COUNT > 0
  4167. #if FAN_COUNT > 1
  4168. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4169. #else
  4170. fanSpeeds[0] = 0;
  4171. #endif
  4172. #endif
  4173. delay(1000); // Wait 1 second before switching off
  4174. #if HAS_SUICIDE
  4175. stepper.synchronize();
  4176. suicide();
  4177. #elif HAS_POWER_SWITCH
  4178. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4179. #endif
  4180. #if ENABLED(ULTIPANEL)
  4181. #if HAS_POWER_SWITCH
  4182. powersupply = false;
  4183. #endif
  4184. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4185. lcd_update();
  4186. #endif
  4187. }
  4188. /**
  4189. * M82: Set E codes absolute (default)
  4190. */
  4191. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4192. /**
  4193. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4194. */
  4195. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4196. /**
  4197. * M18, M84: Disable all stepper motors
  4198. */
  4199. inline void gcode_M18_M84() {
  4200. if (code_seen('S')) {
  4201. stepper_inactive_time = code_value_millis_from_seconds();
  4202. }
  4203. else {
  4204. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4205. if (all_axis) {
  4206. stepper.finish_and_disable();
  4207. }
  4208. else {
  4209. stepper.synchronize();
  4210. if (code_seen('X')) disable_x();
  4211. if (code_seen('Y')) disable_y();
  4212. if (code_seen('Z')) disable_z();
  4213. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4214. if (code_seen('E')) {
  4215. disable_e0();
  4216. disable_e1();
  4217. disable_e2();
  4218. disable_e3();
  4219. }
  4220. #endif
  4221. }
  4222. }
  4223. }
  4224. /**
  4225. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4226. */
  4227. inline void gcode_M85() {
  4228. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4229. }
  4230. /**
  4231. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4232. * (Follows the same syntax as G92)
  4233. */
  4234. inline void gcode_M92() {
  4235. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4236. if (code_seen(axis_codes[i])) {
  4237. if (i == E_AXIS) {
  4238. float value = code_value_per_axis_unit(i);
  4239. if (value < 20.0) {
  4240. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4241. planner.max_e_jerk *= factor;
  4242. planner.max_feedrate[i] *= factor;
  4243. planner.max_acceleration_steps_per_s2[i] *= factor;
  4244. }
  4245. planner.axis_steps_per_mm[i] = value;
  4246. }
  4247. else {
  4248. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4249. }
  4250. }
  4251. }
  4252. }
  4253. /**
  4254. * Output the current position to serial
  4255. */
  4256. static void report_current_position() {
  4257. SERIAL_PROTOCOLPGM("X:");
  4258. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4259. SERIAL_PROTOCOLPGM(" Y:");
  4260. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4261. SERIAL_PROTOCOLPGM(" Z:");
  4262. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4263. SERIAL_PROTOCOLPGM(" E:");
  4264. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4265. stepper.report_positions();
  4266. #if ENABLED(SCARA)
  4267. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4268. SERIAL_PROTOCOL(delta[X_AXIS]);
  4269. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4270. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4271. SERIAL_EOL;
  4272. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4273. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4274. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4275. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4276. SERIAL_EOL;
  4277. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4278. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4279. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4280. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4281. SERIAL_EOL; SERIAL_EOL;
  4282. #endif
  4283. }
  4284. /**
  4285. * M114: Output current position to serial port
  4286. */
  4287. inline void gcode_M114() { report_current_position(); }
  4288. /**
  4289. * M115: Capabilities string
  4290. */
  4291. inline void gcode_M115() {
  4292. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4293. }
  4294. /**
  4295. * M117: Set LCD Status Message
  4296. */
  4297. inline void gcode_M117() {
  4298. lcd_setstatus(current_command_args);
  4299. }
  4300. /**
  4301. * M119: Output endstop states to serial output
  4302. */
  4303. inline void gcode_M119() { endstops.M119(); }
  4304. /**
  4305. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4306. */
  4307. inline void gcode_M120() { endstops.enable_globally(true); }
  4308. /**
  4309. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4310. */
  4311. inline void gcode_M121() { endstops.enable_globally(false); }
  4312. #if ENABLED(BLINKM)
  4313. /**
  4314. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4315. */
  4316. inline void gcode_M150() {
  4317. SendColors(
  4318. code_seen('R') ? code_value_byte() : 0,
  4319. code_seen('U') ? code_value_byte() : 0,
  4320. code_seen('B') ? code_value_byte() : 0
  4321. );
  4322. }
  4323. #endif // BLINKM
  4324. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4325. /**
  4326. * M155: Send data to a I2C slave device
  4327. *
  4328. * This is a PoC, the formating and arguments for the GCODE will
  4329. * change to be more compatible, the current proposal is:
  4330. *
  4331. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4332. *
  4333. * M155 B<byte-1 value in base 10>
  4334. * M155 B<byte-2 value in base 10>
  4335. * M155 B<byte-3 value in base 10>
  4336. *
  4337. * M155 S1 ; Send the buffered data and reset the buffer
  4338. * M155 R1 ; Reset the buffer without sending data
  4339. *
  4340. */
  4341. inline void gcode_M155() {
  4342. // Set the target address
  4343. if (code_seen('A'))
  4344. i2c.address(code_value_byte());
  4345. // Add a new byte to the buffer
  4346. else if (code_seen('B'))
  4347. i2c.addbyte(code_value_int());
  4348. // Flush the buffer to the bus
  4349. else if (code_seen('S')) i2c.send();
  4350. // Reset and rewind the buffer
  4351. else if (code_seen('R')) i2c.reset();
  4352. }
  4353. /**
  4354. * M156: Request X bytes from I2C slave device
  4355. *
  4356. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4357. */
  4358. inline void gcode_M156() {
  4359. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4360. int bytes = code_seen('B') ? code_value_int() : 1;
  4361. if (addr && bytes > 0 && bytes <= 32) {
  4362. i2c.address(addr);
  4363. i2c.reqbytes(bytes);
  4364. }
  4365. else {
  4366. SERIAL_ERROR_START;
  4367. SERIAL_ERRORLN("Bad i2c request");
  4368. }
  4369. }
  4370. #endif //EXPERIMENTAL_I2CBUS
  4371. /**
  4372. * M200: Set filament diameter and set E axis units to cubic units
  4373. *
  4374. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4375. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4376. */
  4377. inline void gcode_M200() {
  4378. if (get_target_extruder_from_command(200)) return;
  4379. if (code_seen('D')) {
  4380. // setting any extruder filament size disables volumetric on the assumption that
  4381. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4382. // for all extruders
  4383. volumetric_enabled = (code_value_linear_units() != 0.0);
  4384. if (volumetric_enabled) {
  4385. filament_size[target_extruder] = code_value_linear_units();
  4386. // make sure all extruders have some sane value for the filament size
  4387. for (int i = 0; i < EXTRUDERS; i++)
  4388. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4389. }
  4390. }
  4391. else {
  4392. //reserved for setting filament diameter via UFID or filament measuring device
  4393. return;
  4394. }
  4395. calculate_volumetric_multipliers();
  4396. }
  4397. /**
  4398. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4399. */
  4400. inline void gcode_M201() {
  4401. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4402. if (code_seen(axis_codes[i])) {
  4403. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4404. }
  4405. }
  4406. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4407. planner.reset_acceleration_rates();
  4408. }
  4409. #if 0 // Not used for Sprinter/grbl gen6
  4410. inline void gcode_M202() {
  4411. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4412. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4413. }
  4414. }
  4415. #endif
  4416. /**
  4417. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4418. */
  4419. inline void gcode_M203() {
  4420. for (int8_t i = 0; i < NUM_AXIS; i++)
  4421. if (code_seen(axis_codes[i]))
  4422. planner.max_feedrate[i] = code_value_axis_units(i);
  4423. }
  4424. /**
  4425. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4426. *
  4427. * P = Printing moves
  4428. * R = Retract only (no X, Y, Z) moves
  4429. * T = Travel (non printing) moves
  4430. *
  4431. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4432. */
  4433. inline void gcode_M204() {
  4434. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4435. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4436. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4437. SERIAL_EOL;
  4438. }
  4439. if (code_seen('P')) {
  4440. planner.acceleration = code_value_linear_units();
  4441. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4442. SERIAL_EOL;
  4443. }
  4444. if (code_seen('R')) {
  4445. planner.retract_acceleration = code_value_linear_units();
  4446. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4447. SERIAL_EOL;
  4448. }
  4449. if (code_seen('T')) {
  4450. planner.travel_acceleration = code_value_linear_units();
  4451. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4452. SERIAL_EOL;
  4453. }
  4454. }
  4455. /**
  4456. * M205: Set Advanced Settings
  4457. *
  4458. * S = Min Feed Rate (units/s)
  4459. * T = Min Travel Feed Rate (units/s)
  4460. * B = Min Segment Time (µs)
  4461. * X = Max XY Jerk (units/sec^2)
  4462. * Z = Max Z Jerk (units/sec^2)
  4463. * E = Max E Jerk (units/sec^2)
  4464. */
  4465. inline void gcode_M205() {
  4466. if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
  4467. if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
  4468. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4469. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4470. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4471. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4472. }
  4473. /**
  4474. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4475. */
  4476. inline void gcode_M206() {
  4477. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4478. if (code_seen(axis_codes[i]))
  4479. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4480. #if ENABLED(SCARA)
  4481. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4482. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4483. #endif
  4484. SYNC_PLAN_POSITION_KINEMATIC();
  4485. report_current_position();
  4486. }
  4487. #if ENABLED(DELTA)
  4488. /**
  4489. * M665: Set delta configurations
  4490. *
  4491. * L = diagonal rod
  4492. * R = delta radius
  4493. * S = segments per second
  4494. * A = Alpha (Tower 1) diagonal rod trim
  4495. * B = Beta (Tower 2) diagonal rod trim
  4496. * C = Gamma (Tower 3) diagonal rod trim
  4497. */
  4498. inline void gcode_M665() {
  4499. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4500. if (code_seen('R')) delta_radius = code_value_linear_units();
  4501. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4502. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4503. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4504. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4505. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4506. }
  4507. /**
  4508. * M666: Set delta endstop adjustment
  4509. */
  4510. inline void gcode_M666() {
  4511. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4512. if (DEBUGGING(LEVELING)) {
  4513. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4514. }
  4515. #endif
  4516. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4517. if (code_seen(axis_codes[i])) {
  4518. endstop_adj[i] = code_value_axis_units(i);
  4519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4520. if (DEBUGGING(LEVELING)) {
  4521. SERIAL_ECHOPGM("endstop_adj[");
  4522. SERIAL_ECHO(axis_codes[i]);
  4523. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4524. SERIAL_EOL;
  4525. }
  4526. #endif
  4527. }
  4528. }
  4529. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4530. if (DEBUGGING(LEVELING)) {
  4531. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4532. }
  4533. #endif
  4534. }
  4535. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4536. /**
  4537. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4538. */
  4539. inline void gcode_M666() {
  4540. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4541. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4542. SERIAL_EOL;
  4543. }
  4544. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4545. #if ENABLED(FWRETRACT)
  4546. /**
  4547. * M207: Set firmware retraction values
  4548. *
  4549. * S[+units] retract_length
  4550. * W[+units] retract_length_swap (multi-extruder)
  4551. * F[units/min] retract_feedrate_mm_s
  4552. * Z[units] retract_zlift
  4553. */
  4554. inline void gcode_M207() {
  4555. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4556. if (code_seen('F')) retract_feedrate_mm_s = code_value_axis_units(E_AXIS) / 60;
  4557. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4558. #if EXTRUDERS > 1
  4559. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4560. #endif
  4561. }
  4562. /**
  4563. * M208: Set firmware un-retraction values
  4564. *
  4565. * S[+units] retract_recover_length (in addition to M207 S*)
  4566. * W[+units] retract_recover_length_swap (multi-extruder)
  4567. * F[units/min] retract_recover_feedrate
  4568. */
  4569. inline void gcode_M208() {
  4570. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4571. if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
  4572. #if EXTRUDERS > 1
  4573. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4574. #endif
  4575. }
  4576. /**
  4577. * M209: Enable automatic retract (M209 S1)
  4578. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4579. */
  4580. inline void gcode_M209() {
  4581. if (code_seen('S')) {
  4582. int t = code_value_int();
  4583. switch (t) {
  4584. case 0:
  4585. autoretract_enabled = false;
  4586. break;
  4587. case 1:
  4588. autoretract_enabled = true;
  4589. break;
  4590. default:
  4591. unknown_command_error();
  4592. return;
  4593. }
  4594. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4595. }
  4596. }
  4597. #endif // FWRETRACT
  4598. #if HOTENDS > 1
  4599. /**
  4600. * M218 - set hotend offset (in linear units)
  4601. *
  4602. * T<tool>
  4603. * X<xoffset>
  4604. * Y<yoffset>
  4605. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4606. */
  4607. inline void gcode_M218() {
  4608. if (get_target_extruder_from_command(218)) return;
  4609. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4610. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4611. #if ENABLED(DUAL_X_CARRIAGE)
  4612. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4613. #endif
  4614. SERIAL_ECHO_START;
  4615. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4616. HOTEND_LOOP() {
  4617. SERIAL_CHAR(' ');
  4618. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4619. SERIAL_CHAR(',');
  4620. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4621. #if ENABLED(DUAL_X_CARRIAGE)
  4622. SERIAL_CHAR(',');
  4623. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4624. #endif
  4625. }
  4626. SERIAL_EOL;
  4627. }
  4628. #endif // HOTENDS > 1
  4629. /**
  4630. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4631. */
  4632. inline void gcode_M220() {
  4633. if (code_seen('S')) feedrate_multiplier = code_value_int();
  4634. }
  4635. /**
  4636. * M221: Set extrusion percentage (M221 T0 S95)
  4637. */
  4638. inline void gcode_M221() {
  4639. if (get_target_extruder_from_command(221)) return;
  4640. if (code_seen('S'))
  4641. extruder_multiplier[target_extruder] = code_value_int();
  4642. }
  4643. /**
  4644. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4645. */
  4646. inline void gcode_M226() {
  4647. if (code_seen('P')) {
  4648. int pin_number = code_value_int();
  4649. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4650. if (pin_state >= -1 && pin_state <= 1) {
  4651. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4652. if (sensitive_pins[i] == pin_number) {
  4653. pin_number = -1;
  4654. break;
  4655. }
  4656. }
  4657. if (pin_number > -1) {
  4658. int target = LOW;
  4659. stepper.synchronize();
  4660. pinMode(pin_number, INPUT);
  4661. switch (pin_state) {
  4662. case 1:
  4663. target = HIGH;
  4664. break;
  4665. case 0:
  4666. target = LOW;
  4667. break;
  4668. case -1:
  4669. target = !digitalRead(pin_number);
  4670. break;
  4671. }
  4672. while (digitalRead(pin_number) != target) idle();
  4673. } // pin_number > -1
  4674. } // pin_state -1 0 1
  4675. } // code_seen('P')
  4676. }
  4677. #if HAS_SERVOS
  4678. /**
  4679. * M280: Get or set servo position. P<index> [S<angle>]
  4680. */
  4681. inline void gcode_M280() {
  4682. if (!code_seen('P')) return;
  4683. int servo_index = code_value_int();
  4684. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4685. if (code_seen('S'))
  4686. MOVE_SERVO(servo_index, code_value_int());
  4687. else {
  4688. SERIAL_ECHO_START;
  4689. SERIAL_ECHOPGM(" Servo ");
  4690. SERIAL_ECHO(servo_index);
  4691. SERIAL_ECHOPGM(": ");
  4692. SERIAL_ECHOLN(servo[servo_index].read());
  4693. }
  4694. }
  4695. else {
  4696. SERIAL_ERROR_START;
  4697. SERIAL_ERROR("Servo ");
  4698. SERIAL_ERROR(servo_index);
  4699. SERIAL_ERRORLN(" out of range");
  4700. }
  4701. }
  4702. #endif // HAS_SERVOS
  4703. #if HAS_BUZZER
  4704. /**
  4705. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4706. */
  4707. inline void gcode_M300() {
  4708. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4709. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4710. // Limits the tone duration to 0-5 seconds.
  4711. NOMORE(duration, 5000);
  4712. buzzer.tone(duration, frequency);
  4713. }
  4714. #endif // HAS_BUZZER
  4715. #if ENABLED(PIDTEMP)
  4716. /**
  4717. * M301: Set PID parameters P I D (and optionally C, L)
  4718. *
  4719. * P[float] Kp term
  4720. * I[float] Ki term (unscaled)
  4721. * D[float] Kd term (unscaled)
  4722. *
  4723. * With PID_ADD_EXTRUSION_RATE:
  4724. *
  4725. * C[float] Kc term
  4726. * L[float] LPQ length
  4727. */
  4728. inline void gcode_M301() {
  4729. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4730. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4731. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4732. if (e < HOTENDS) { // catch bad input value
  4733. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4734. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4735. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4736. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4737. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4738. if (code_seen('L')) lpq_len = code_value_float();
  4739. NOMORE(lpq_len, LPQ_MAX_LEN);
  4740. #endif
  4741. thermalManager.updatePID();
  4742. SERIAL_ECHO_START;
  4743. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4744. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4745. SERIAL_ECHO(e);
  4746. #endif // PID_PARAMS_PER_HOTEND
  4747. SERIAL_ECHOPGM(" p:");
  4748. SERIAL_ECHO(PID_PARAM(Kp, e));
  4749. SERIAL_ECHOPGM(" i:");
  4750. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4751. SERIAL_ECHOPGM(" d:");
  4752. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4753. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4754. SERIAL_ECHOPGM(" c:");
  4755. //Kc does not have scaling applied above, or in resetting defaults
  4756. SERIAL_ECHO(PID_PARAM(Kc, e));
  4757. #endif
  4758. SERIAL_EOL;
  4759. }
  4760. else {
  4761. SERIAL_ERROR_START;
  4762. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4763. }
  4764. }
  4765. #endif // PIDTEMP
  4766. #if ENABLED(PIDTEMPBED)
  4767. inline void gcode_M304() {
  4768. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4769. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4770. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4771. thermalManager.updatePID();
  4772. SERIAL_ECHO_START;
  4773. SERIAL_ECHOPGM(" p:");
  4774. SERIAL_ECHO(thermalManager.bedKp);
  4775. SERIAL_ECHOPGM(" i:");
  4776. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4777. SERIAL_ECHOPGM(" d:");
  4778. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4779. }
  4780. #endif // PIDTEMPBED
  4781. #if defined(CHDK) || HAS_PHOTOGRAPH
  4782. /**
  4783. * M240: Trigger a camera by emulating a Canon RC-1
  4784. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4785. */
  4786. inline void gcode_M240() {
  4787. #ifdef CHDK
  4788. OUT_WRITE(CHDK, HIGH);
  4789. chdkHigh = millis();
  4790. chdkActive = true;
  4791. #elif HAS_PHOTOGRAPH
  4792. const uint8_t NUM_PULSES = 16;
  4793. const float PULSE_LENGTH = 0.01524;
  4794. for (int i = 0; i < NUM_PULSES; i++) {
  4795. WRITE(PHOTOGRAPH_PIN, HIGH);
  4796. _delay_ms(PULSE_LENGTH);
  4797. WRITE(PHOTOGRAPH_PIN, LOW);
  4798. _delay_ms(PULSE_LENGTH);
  4799. }
  4800. delay(7.33);
  4801. for (int i = 0; i < NUM_PULSES; i++) {
  4802. WRITE(PHOTOGRAPH_PIN, HIGH);
  4803. _delay_ms(PULSE_LENGTH);
  4804. WRITE(PHOTOGRAPH_PIN, LOW);
  4805. _delay_ms(PULSE_LENGTH);
  4806. }
  4807. #endif // !CHDK && HAS_PHOTOGRAPH
  4808. }
  4809. #endif // CHDK || PHOTOGRAPH_PIN
  4810. #if HAS_LCD_CONTRAST
  4811. /**
  4812. * M250: Read and optionally set the LCD contrast
  4813. */
  4814. inline void gcode_M250() {
  4815. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4816. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4817. SERIAL_PROTOCOL(lcd_contrast);
  4818. SERIAL_EOL;
  4819. }
  4820. #endif // HAS_LCD_CONTRAST
  4821. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4822. /**
  4823. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4824. */
  4825. inline void gcode_M302() {
  4826. thermalManager.extrude_min_temp = code_seen('S') ? code_value_temp_abs() : 0;
  4827. }
  4828. #endif // PREVENT_DANGEROUS_EXTRUDE
  4829. /**
  4830. * M303: PID relay autotune
  4831. *
  4832. * S<temperature> sets the target temperature. (default 150C)
  4833. * E<extruder> (-1 for the bed) (default 0)
  4834. * C<cycles>
  4835. * U<bool> with a non-zero value will apply the result to current settings
  4836. */
  4837. inline void gcode_M303() {
  4838. #if HAS_PID_HEATING
  4839. int e = code_seen('E') ? code_value_int() : 0;
  4840. int c = code_seen('C') ? code_value_int() : 5;
  4841. bool u = code_seen('U') && code_value_bool();
  4842. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4843. if (e >= 0 && e < HOTENDS)
  4844. target_extruder = e;
  4845. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4846. thermalManager.PID_autotune(temp, e, c, u);
  4847. KEEPALIVE_STATE(IN_HANDLER);
  4848. #else
  4849. SERIAL_ERROR_START;
  4850. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4851. #endif
  4852. }
  4853. #if ENABLED(SCARA)
  4854. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4855. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4856. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  4857. if (IsRunning()) {
  4858. //gcode_get_destination(); // For X Y Z E F
  4859. delta[X_AXIS] = delta_x;
  4860. delta[Y_AXIS] = delta_y;
  4861. calculate_SCARA_forward_Transform(delta);
  4862. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4863. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4864. prepare_move_to_destination();
  4865. //ok_to_send();
  4866. return true;
  4867. }
  4868. return false;
  4869. }
  4870. /**
  4871. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4872. */
  4873. inline bool gcode_M360() {
  4874. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4875. return SCARA_move_to_cal(0, 120);
  4876. }
  4877. /**
  4878. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4879. */
  4880. inline bool gcode_M361() {
  4881. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  4882. return SCARA_move_to_cal(90, 130);
  4883. }
  4884. /**
  4885. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4886. */
  4887. inline bool gcode_M362() {
  4888. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  4889. return SCARA_move_to_cal(60, 180);
  4890. }
  4891. /**
  4892. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4893. */
  4894. inline bool gcode_M363() {
  4895. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  4896. return SCARA_move_to_cal(50, 90);
  4897. }
  4898. /**
  4899. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4900. */
  4901. inline bool gcode_M364() {
  4902. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  4903. return SCARA_move_to_cal(45, 135);
  4904. }
  4905. /**
  4906. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4907. */
  4908. inline void gcode_M365() {
  4909. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4910. if (code_seen(axis_codes[i]))
  4911. axis_scaling[i] = code_value_float();
  4912. }
  4913. #endif // SCARA
  4914. #if ENABLED(EXT_SOLENOID)
  4915. void enable_solenoid(uint8_t num) {
  4916. switch (num) {
  4917. case 0:
  4918. OUT_WRITE(SOL0_PIN, HIGH);
  4919. break;
  4920. #if HAS_SOLENOID_1
  4921. case 1:
  4922. OUT_WRITE(SOL1_PIN, HIGH);
  4923. break;
  4924. #endif
  4925. #if HAS_SOLENOID_2
  4926. case 2:
  4927. OUT_WRITE(SOL2_PIN, HIGH);
  4928. break;
  4929. #endif
  4930. #if HAS_SOLENOID_3
  4931. case 3:
  4932. OUT_WRITE(SOL3_PIN, HIGH);
  4933. break;
  4934. #endif
  4935. default:
  4936. SERIAL_ECHO_START;
  4937. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4938. break;
  4939. }
  4940. }
  4941. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4942. void disable_all_solenoids() {
  4943. OUT_WRITE(SOL0_PIN, LOW);
  4944. OUT_WRITE(SOL1_PIN, LOW);
  4945. OUT_WRITE(SOL2_PIN, LOW);
  4946. OUT_WRITE(SOL3_PIN, LOW);
  4947. }
  4948. /**
  4949. * M380: Enable solenoid on the active extruder
  4950. */
  4951. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4952. /**
  4953. * M381: Disable all solenoids
  4954. */
  4955. inline void gcode_M381() { disable_all_solenoids(); }
  4956. #endif // EXT_SOLENOID
  4957. /**
  4958. * M400: Finish all moves
  4959. */
  4960. inline void gcode_M400() { stepper.synchronize(); }
  4961. #if HAS_BED_PROBE
  4962. /**
  4963. * M401: Engage Z Servo endstop if available
  4964. */
  4965. inline void gcode_M401() { DEPLOY_PROBE(); }
  4966. /**
  4967. * M402: Retract Z Servo endstop if enabled
  4968. */
  4969. inline void gcode_M402() { STOW_PROBE(); }
  4970. #endif // HAS_BED_PROBE
  4971. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4972. /**
  4973. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  4974. */
  4975. inline void gcode_M404() {
  4976. if (code_seen('W')) {
  4977. filament_width_nominal = code_value_linear_units();
  4978. }
  4979. else {
  4980. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4981. SERIAL_PROTOCOLLN(filament_width_nominal);
  4982. }
  4983. }
  4984. /**
  4985. * M405: Turn on filament sensor for control
  4986. */
  4987. inline void gcode_M405() {
  4988. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  4989. // everything else, it uses code_value_int() instead of code_value_linear_units().
  4990. if (code_seen('D')) meas_delay_cm = code_value_int();
  4991. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4992. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4993. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  4994. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4995. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4996. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4997. }
  4998. filament_sensor = true;
  4999. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5000. //SERIAL_PROTOCOL(filament_width_meas);
  5001. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5002. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5003. }
  5004. /**
  5005. * M406: Turn off filament sensor for control
  5006. */
  5007. inline void gcode_M406() { filament_sensor = false; }
  5008. /**
  5009. * M407: Get measured filament diameter on serial output
  5010. */
  5011. inline void gcode_M407() {
  5012. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5013. SERIAL_PROTOCOLLN(filament_width_meas);
  5014. }
  5015. #endif // FILAMENT_WIDTH_SENSOR
  5016. void quickstop_stepper() {
  5017. stepper.quick_stop();
  5018. #if DISABLED(DELTA) && DISABLED(SCARA)
  5019. stepper.synchronize();
  5020. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5021. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5022. current_position[X_AXIS] = pos.x;
  5023. current_position[Y_AXIS] = pos.y;
  5024. current_position[Z_AXIS] = pos.z;
  5025. #else
  5026. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5027. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5028. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5029. #endif
  5030. sync_plan_position(); // ...re-apply to planner position
  5031. #endif
  5032. }
  5033. #if ENABLED(MESH_BED_LEVELING)
  5034. /**
  5035. * M420: Enable/Disable Mesh Bed Leveling
  5036. */
  5037. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5038. /**
  5039. * M421: Set a single Mesh Bed Leveling Z coordinate
  5040. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5041. */
  5042. inline void gcode_M421() {
  5043. int8_t px, py;
  5044. float z = 0;
  5045. bool hasX, hasY, hasZ, hasI, hasJ;
  5046. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5047. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5048. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5049. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5050. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5051. if (hasX && hasY && hasZ) {
  5052. if (px >= 0 && py >= 0)
  5053. mbl.set_z(px, py, z);
  5054. else {
  5055. SERIAL_ERROR_START;
  5056. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5057. }
  5058. }
  5059. else if (hasI && hasJ && hasZ) {
  5060. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5061. mbl.set_z(px, py, z);
  5062. else {
  5063. SERIAL_ERROR_START;
  5064. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5065. }
  5066. }
  5067. else {
  5068. SERIAL_ERROR_START;
  5069. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5070. }
  5071. }
  5072. #endif
  5073. /**
  5074. * M428: Set home_offset based on the distance between the
  5075. * current_position and the nearest "reference point."
  5076. * If an axis is past center its endstop position
  5077. * is the reference-point. Otherwise it uses 0. This allows
  5078. * the Z offset to be set near the bed when using a max endstop.
  5079. *
  5080. * M428 can't be used more than 2cm away from 0 or an endstop.
  5081. *
  5082. * Use M206 to set these values directly.
  5083. */
  5084. inline void gcode_M428() {
  5085. bool err = false;
  5086. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5087. if (axis_homed[i]) {
  5088. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5089. diff = current_position[i] - base;
  5090. if (diff > -20 && diff < 20) {
  5091. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5092. }
  5093. else {
  5094. SERIAL_ERROR_START;
  5095. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5096. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5097. #if HAS_BUZZER
  5098. buzzer.tone(200, 40);
  5099. #endif
  5100. err = true;
  5101. break;
  5102. }
  5103. }
  5104. }
  5105. if (!err) {
  5106. SYNC_PLAN_POSITION_KINEMATIC();
  5107. report_current_position();
  5108. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5109. #if HAS_BUZZER
  5110. buzzer.tone(200, 659);
  5111. buzzer.tone(200, 698);
  5112. #endif
  5113. }
  5114. }
  5115. /**
  5116. * M500: Store settings in EEPROM
  5117. */
  5118. inline void gcode_M500() {
  5119. Config_StoreSettings();
  5120. }
  5121. /**
  5122. * M501: Read settings from EEPROM
  5123. */
  5124. inline void gcode_M501() {
  5125. Config_RetrieveSettings();
  5126. }
  5127. /**
  5128. * M502: Revert to default settings
  5129. */
  5130. inline void gcode_M502() {
  5131. Config_ResetDefault();
  5132. }
  5133. /**
  5134. * M503: print settings currently in memory
  5135. */
  5136. inline void gcode_M503() {
  5137. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5138. }
  5139. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5140. /**
  5141. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5142. */
  5143. inline void gcode_M540() {
  5144. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5145. }
  5146. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5147. #if HAS_BED_PROBE
  5148. inline void gcode_M851() {
  5149. SERIAL_ECHO_START;
  5150. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5151. SERIAL_CHAR(' ');
  5152. if (code_seen('Z')) {
  5153. float value = code_value_axis_units(Z_AXIS);
  5154. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5155. zprobe_zoffset = value;
  5156. SERIAL_ECHO(zprobe_zoffset);
  5157. }
  5158. else {
  5159. SERIAL_ECHOPGM(MSG_Z_MIN);
  5160. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5161. SERIAL_CHAR(' ');
  5162. SERIAL_ECHOPGM(MSG_Z_MAX);
  5163. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5164. }
  5165. }
  5166. else {
  5167. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5168. }
  5169. SERIAL_EOL;
  5170. }
  5171. #endif // HAS_BED_PROBE
  5172. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5173. /**
  5174. * M600: Pause for filament change
  5175. *
  5176. * E[distance] - Retract the filament this far (negative value)
  5177. * Z[distance] - Move the Z axis by this distance
  5178. * X[position] - Move to this X position, with Y
  5179. * Y[position] - Move to this Y position, with X
  5180. * L[distance] - Retract distance for removal (manual reload)
  5181. *
  5182. * Default values are used for omitted arguments.
  5183. *
  5184. */
  5185. inline void gcode_M600() {
  5186. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5187. SERIAL_ERROR_START;
  5188. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5189. return;
  5190. }
  5191. // Show initial message and wait for synchronize steppers
  5192. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5193. stepper.synchronize();
  5194. float lastpos[NUM_AXIS];
  5195. // Save current position of all axes
  5196. for (uint8_t i = 0; i < NUM_AXIS; i++)
  5197. lastpos[i] = destination[i] = current_position[i];
  5198. // Define runplan for move axes
  5199. #if ENABLED(DELTA)
  5200. #define RUNPLAN(RATE) calculate_delta(destination); \
  5201. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE, active_extruder);
  5202. #else
  5203. #define RUNPLAN(RATE) line_to_destination(RATE * 60);
  5204. #endif
  5205. KEEPALIVE_STATE(IN_HANDLER);
  5206. // Initial retract before move to filament change position
  5207. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5208. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5209. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5210. #endif
  5211. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5212. // Lift Z axis
  5213. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5214. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5215. FILAMENT_CHANGE_Z_ADD
  5216. #else
  5217. 0
  5218. #endif
  5219. ;
  5220. if (z_lift > 0) {
  5221. destination[Z_AXIS] += z_lift;
  5222. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5223. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5224. }
  5225. // Move XY axes to filament exchange position
  5226. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5227. #ifdef FILAMENT_CHANGE_X_POS
  5228. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5229. #endif
  5230. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5231. #ifdef FILAMENT_CHANGE_Y_POS
  5232. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5233. #endif
  5234. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5235. stepper.synchronize();
  5236. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5237. // Unload filament
  5238. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5239. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5240. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5241. #endif
  5242. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5243. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5244. stepper.synchronize();
  5245. disable_e0();
  5246. disable_e1();
  5247. disable_e2();
  5248. disable_e3();
  5249. delay(100);
  5250. millis_t next_tick = 0;
  5251. // Wait for filament insert by user and press button
  5252. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5253. while (!lcd_clicked()) {
  5254. #if HAS_BUZZER
  5255. millis_t ms = millis();
  5256. if (ms >= next_tick) {
  5257. buzzer.tone(300, 2000);
  5258. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5259. }
  5260. #endif
  5261. idle(true);
  5262. }
  5263. delay(100);
  5264. while (lcd_clicked()) idle(true);
  5265. delay(100);
  5266. // Show load message
  5267. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5268. // Load filament
  5269. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5270. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5271. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5272. #endif
  5273. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5274. stepper.synchronize();
  5275. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5276. do {
  5277. // Extrude filament to get into hotend
  5278. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5279. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5280. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5281. stepper.synchronize();
  5282. // Ask user if more filament should be extruded
  5283. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5284. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5285. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5286. KEEPALIVE_STATE(IN_HANDLER);
  5287. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5288. #endif
  5289. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5290. KEEPALIVE_STATE(IN_HANDLER);
  5291. // Set extruder to saved position
  5292. current_position[E_AXIS] = lastpos[E_AXIS];
  5293. destination[E_AXIS] = lastpos[E_AXIS];
  5294. planner.set_e_position_mm(current_position[E_AXIS]);
  5295. #if ENABLED(DELTA)
  5296. // Move XYZ to starting position, then E
  5297. calculate_delta(lastpos);
  5298. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5299. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5300. #else
  5301. // Move XY to starting position, then Z, then E
  5302. destination[X_AXIS] = lastpos[X_AXIS];
  5303. destination[Y_AXIS] = lastpos[Y_AXIS];
  5304. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5305. destination[Z_AXIS] = lastpos[Z_AXIS];
  5306. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5307. #endif
  5308. stepper.synchronize();
  5309. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5310. filament_ran_out = false;
  5311. #endif
  5312. // Show status screen
  5313. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5314. }
  5315. #endif // FILAMENT_CHANGE_FEATURE
  5316. #if ENABLED(DUAL_X_CARRIAGE)
  5317. /**
  5318. * M605: Set dual x-carriage movement mode
  5319. *
  5320. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5321. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5322. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5323. * units x-offset and an optional differential hotend temperature of
  5324. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5325. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5326. *
  5327. * Note: the X axis should be homed after changing dual x-carriage mode.
  5328. */
  5329. inline void gcode_M605() {
  5330. stepper.synchronize();
  5331. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5332. switch (dual_x_carriage_mode) {
  5333. case DXC_DUPLICATION_MODE:
  5334. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5335. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5336. SERIAL_ECHO_START;
  5337. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5338. SERIAL_CHAR(' ');
  5339. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5340. SERIAL_CHAR(',');
  5341. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5342. SERIAL_CHAR(' ');
  5343. SERIAL_ECHO(duplicate_extruder_x_offset);
  5344. SERIAL_CHAR(',');
  5345. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5346. break;
  5347. case DXC_FULL_CONTROL_MODE:
  5348. case DXC_AUTO_PARK_MODE:
  5349. break;
  5350. default:
  5351. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5352. break;
  5353. }
  5354. active_extruder_parked = false;
  5355. extruder_duplication_enabled = false;
  5356. delayed_move_time = 0;
  5357. }
  5358. #endif // DUAL_X_CARRIAGE
  5359. #if ENABLED(LIN_ADVANCE)
  5360. /**
  5361. * M905: Set advance factor
  5362. */
  5363. inline void gcode_M905() {
  5364. stepper.synchronize();
  5365. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5366. }
  5367. #endif
  5368. /**
  5369. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5370. */
  5371. inline void gcode_M907() {
  5372. #if HAS_DIGIPOTSS
  5373. for (int i = 0; i < NUM_AXIS; i++)
  5374. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5375. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5376. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5377. #endif
  5378. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5379. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5380. #endif
  5381. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5382. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5383. #endif
  5384. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5385. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5386. #endif
  5387. #if ENABLED(DIGIPOT_I2C)
  5388. // this one uses actual amps in floating point
  5389. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5390. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5391. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5392. #endif
  5393. #if ENABLED(DAC_STEPPER_CURRENT)
  5394. if (code_seen('S')) {
  5395. float dac_percent = code_value_float();
  5396. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5397. }
  5398. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5399. #endif
  5400. }
  5401. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5402. /**
  5403. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5404. */
  5405. inline void gcode_M908() {
  5406. #if HAS_DIGIPOTSS
  5407. stepper.digitalPotWrite(
  5408. code_seen('P') ? code_value_int() : 0,
  5409. code_seen('S') ? code_value_int() : 0
  5410. );
  5411. #endif
  5412. #ifdef DAC_STEPPER_CURRENT
  5413. dac_current_raw(
  5414. code_seen('P') ? code_value_byte() : -1,
  5415. code_seen('S') ? code_value_ushort() : 0
  5416. );
  5417. #endif
  5418. }
  5419. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5420. inline void gcode_M909() { dac_print_values(); }
  5421. inline void gcode_M910() { dac_commit_eeprom(); }
  5422. #endif
  5423. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5424. #if HAS_MICROSTEPS
  5425. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5426. inline void gcode_M350() {
  5427. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5428. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5429. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5430. stepper.microstep_readings();
  5431. }
  5432. /**
  5433. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5434. * S# determines MS1 or MS2, X# sets the pin high/low.
  5435. */
  5436. inline void gcode_M351() {
  5437. if (code_seen('S')) switch (code_value_byte()) {
  5438. case 1:
  5439. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5440. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5441. break;
  5442. case 2:
  5443. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5444. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5445. break;
  5446. }
  5447. stepper.microstep_readings();
  5448. }
  5449. #endif // HAS_MICROSTEPS
  5450. /**
  5451. * M999: Restart after being stopped
  5452. *
  5453. * Default behaviour is to flush the serial buffer and request
  5454. * a resend to the host starting on the last N line received.
  5455. *
  5456. * Sending "M999 S1" will resume printing without flushing the
  5457. * existing command buffer.
  5458. *
  5459. */
  5460. inline void gcode_M999() {
  5461. Running = true;
  5462. lcd_reset_alert_level();
  5463. if (code_seen('S') && code_value_bool()) return;
  5464. // gcode_LastN = Stopped_gcode_LastN;
  5465. FlushSerialRequestResend();
  5466. }
  5467. /**
  5468. * T0-T3: Switch tool, usually switching extruders
  5469. *
  5470. * F[units/min] Set the movement feedrate
  5471. * S1 Don't move the tool in XY after change
  5472. */
  5473. inline void gcode_T(uint8_t tmp_extruder) {
  5474. if (tmp_extruder >= EXTRUDERS) {
  5475. SERIAL_ECHO_START;
  5476. SERIAL_CHAR('T');
  5477. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5478. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5479. return;
  5480. }
  5481. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5482. if (DEBUGGING(LEVELING)) {
  5483. SERIAL_ECHOLNPGM(">>> gcode_T");
  5484. DEBUG_POS("BEFORE", current_position);
  5485. }
  5486. #endif
  5487. #if HOTENDS > 1
  5488. float old_feedrate = feedrate;
  5489. if (code_seen('F')) {
  5490. float next_feedrate = code_value_axis_units(X_AXIS);
  5491. if (next_feedrate > 0.0) old_feedrate = feedrate = next_feedrate;
  5492. }
  5493. else
  5494. feedrate = XY_PROBE_FEEDRATE;
  5495. if (tmp_extruder != active_extruder) {
  5496. bool no_move = code_seen('S') && code_value_bool();
  5497. // Save current position to return to after applying extruder offset
  5498. if (!no_move) set_destination_to_current();
  5499. #if ENABLED(DUAL_X_CARRIAGE)
  5500. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5501. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5502. // Park old head: 1) raise 2) move to park position 3) lower
  5503. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5504. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5505. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5506. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5507. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5508. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5509. stepper.synchronize();
  5510. }
  5511. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5512. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5513. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5514. active_extruder = tmp_extruder;
  5515. // This function resets the max/min values - the current position may be overwritten below.
  5516. set_axis_is_at_home(X_AXIS);
  5517. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5518. current_position[X_AXIS] = inactive_extruder_x_pos;
  5519. inactive_extruder_x_pos = destination[X_AXIS];
  5520. }
  5521. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5522. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5523. if (active_extruder_parked)
  5524. current_position[X_AXIS] = inactive_extruder_x_pos;
  5525. else
  5526. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5527. inactive_extruder_x_pos = destination[X_AXIS];
  5528. extruder_duplication_enabled = false;
  5529. }
  5530. else {
  5531. // record raised toolhead position for use by unpark
  5532. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5533. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5534. active_extruder_parked = true;
  5535. delayed_move_time = 0;
  5536. }
  5537. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5538. #else // !DUAL_X_CARRIAGE
  5539. //
  5540. // Set current_position to the position of the new nozzle.
  5541. // Offsets are based on linear distance, so we need to get
  5542. // the resulting position in coordinate space.
  5543. //
  5544. // - With grid or 3-point leveling, offset XYZ by a tilted vector
  5545. // - With mesh leveling, update Z for the new position
  5546. // - Otherwise, just use the raw linear distance
  5547. //
  5548. // Software endstops are altered here too. Consider a case where:
  5549. // E0 at X=0 ... E1 at X=10
  5550. // When we switch to E1 now X=10, but E1 can't move left.
  5551. // To express this we apply the change in XY to the software endstops.
  5552. // E1 can move farther right than E0, so the right limit is extended.
  5553. //
  5554. // Note that we don't adjust the Z software endstops. Why not?
  5555. // Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5556. // because the bed is 1mm lower at the new position. As long as
  5557. // the first nozzle is out of the way, the carriage should be
  5558. // allowed to move 1mm lower. This technically "breaks" the
  5559. // Z software endstop. But this is technically correct (and
  5560. // there is no viable alternative).
  5561. //
  5562. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5563. // Offset extruder, make sure to apply the bed level rotation matrix
  5564. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5565. hotend_offset[Y_AXIS][tmp_extruder],
  5566. 0),
  5567. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5568. hotend_offset[Y_AXIS][active_extruder],
  5569. 0),
  5570. offset_vec = tmp_offset_vec - act_offset_vec;
  5571. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5572. if (DEBUGGING(LEVELING)) {
  5573. tmp_offset_vec.debug("tmp_offset_vec");
  5574. act_offset_vec.debug("act_offset_vec");
  5575. offset_vec.debug("offset_vec (BEFORE)");
  5576. }
  5577. #endif
  5578. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5579. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5580. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5581. #endif
  5582. // Adjustments to the current position
  5583. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5584. current_position[Z_AXIS] += offset_vec.z;
  5585. #else // !AUTO_BED_LEVELING_FEATURE
  5586. float xydiff[2] = {
  5587. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5588. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5589. };
  5590. #if ENABLED(MESH_BED_LEVELING)
  5591. if (mbl.active()) {
  5592. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5593. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5594. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5595. }
  5596. #endif // MESH_BED_LEVELING
  5597. #endif // !AUTO_BED_LEVELING_FEATURE
  5598. // The newly-selected extruder XY is actually at...
  5599. current_position[X_AXIS] += xydiff[X_AXIS];
  5600. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5601. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5602. position_shift[i] += xydiff[i];
  5603. update_software_endstops((AxisEnum)i);
  5604. }
  5605. // Set the new active extruder
  5606. active_extruder = tmp_extruder;
  5607. #endif // !DUAL_X_CARRIAGE
  5608. // Tell the planner the new "current position"
  5609. SYNC_PLAN_POSITION_KINEMATIC();
  5610. // Move to the "old position" (move the extruder into place)
  5611. if (!no_move && IsRunning()) prepare_move_to_destination();
  5612. } // (tmp_extruder != active_extruder)
  5613. #if ENABLED(EXT_SOLENOID)
  5614. stepper.synchronize();
  5615. disable_all_solenoids();
  5616. enable_solenoid_on_active_extruder();
  5617. #endif // EXT_SOLENOID
  5618. feedrate = old_feedrate;
  5619. #else // !HOTENDS > 1
  5620. // Set the new active extruder
  5621. active_extruder = tmp_extruder;
  5622. #endif
  5623. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5624. if (DEBUGGING(LEVELING)) {
  5625. DEBUG_POS("AFTER", current_position);
  5626. SERIAL_ECHOLNPGM("<<< gcode_T");
  5627. }
  5628. #endif
  5629. SERIAL_ECHO_START;
  5630. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5631. SERIAL_PROTOCOLLN((int)active_extruder);
  5632. }
  5633. /**
  5634. * Process a single command and dispatch it to its handler
  5635. * This is called from the main loop()
  5636. */
  5637. void process_next_command() {
  5638. current_command = command_queue[cmd_queue_index_r];
  5639. if (DEBUGGING(ECHO)) {
  5640. SERIAL_ECHO_START;
  5641. SERIAL_ECHOLN(current_command);
  5642. }
  5643. // Sanitize the current command:
  5644. // - Skip leading spaces
  5645. // - Bypass N[-0-9][0-9]*[ ]*
  5646. // - Overwrite * with nul to mark the end
  5647. while (*current_command == ' ') ++current_command;
  5648. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5649. current_command += 2; // skip N[-0-9]
  5650. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5651. while (*current_command == ' ') ++current_command; // skip [ ]*
  5652. }
  5653. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5654. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5655. char *cmd_ptr = current_command;
  5656. // Get the command code, which must be G, M, or T
  5657. char command_code = *cmd_ptr++;
  5658. // Skip spaces to get the numeric part
  5659. while (*cmd_ptr == ' ') cmd_ptr++;
  5660. uint16_t codenum = 0; // define ahead of goto
  5661. // Bail early if there's no code
  5662. bool code_is_good = NUMERIC(*cmd_ptr);
  5663. if (!code_is_good) goto ExitUnknownCommand;
  5664. // Get and skip the code number
  5665. do {
  5666. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5667. cmd_ptr++;
  5668. } while (NUMERIC(*cmd_ptr));
  5669. // Skip all spaces to get to the first argument, or nul
  5670. while (*cmd_ptr == ' ') cmd_ptr++;
  5671. // The command's arguments (if any) start here, for sure!
  5672. current_command_args = cmd_ptr;
  5673. KEEPALIVE_STATE(IN_HANDLER);
  5674. // Handle a known G, M, or T
  5675. switch (command_code) {
  5676. case 'G': switch (codenum) {
  5677. // G0, G1
  5678. case 0:
  5679. case 1:
  5680. gcode_G0_G1();
  5681. break;
  5682. // G2, G3
  5683. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5684. case 2: // G2 - CW ARC
  5685. case 3: // G3 - CCW ARC
  5686. gcode_G2_G3(codenum == 2);
  5687. break;
  5688. #endif
  5689. // G4 Dwell
  5690. case 4:
  5691. gcode_G4();
  5692. break;
  5693. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5694. // G5
  5695. case 5: // G5 - Cubic B_spline
  5696. gcode_G5();
  5697. break;
  5698. #endif // BEZIER_CURVE_SUPPORT
  5699. #if ENABLED(FWRETRACT)
  5700. case 10: // G10: retract
  5701. case 11: // G11: retract_recover
  5702. gcode_G10_G11(codenum == 10);
  5703. break;
  5704. #endif // FWRETRACT
  5705. #if ENABLED(INCH_MODE_SUPPORT)
  5706. case 20: //G20: Inch Mode
  5707. gcode_G20();
  5708. break;
  5709. case 21: //G21: MM Mode
  5710. gcode_G21();
  5711. break;
  5712. #endif
  5713. case 28: // G28: Home all axes, one at a time
  5714. gcode_G28();
  5715. break;
  5716. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5717. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5718. gcode_G29();
  5719. break;
  5720. #endif
  5721. #if HAS_BED_PROBE
  5722. case 30: // G30 Single Z probe
  5723. gcode_G30();
  5724. break;
  5725. #if ENABLED(Z_PROBE_SLED)
  5726. case 31: // G31: dock the sled
  5727. gcode_G31();
  5728. break;
  5729. case 32: // G32: undock the sled
  5730. gcode_G32();
  5731. break;
  5732. #endif // Z_PROBE_SLED
  5733. #endif // HAS_BED_PROBE
  5734. case 90: // G90
  5735. relative_mode = false;
  5736. break;
  5737. case 91: // G91
  5738. relative_mode = true;
  5739. break;
  5740. case 92: // G92
  5741. gcode_G92();
  5742. break;
  5743. }
  5744. break;
  5745. case 'M': switch (codenum) {
  5746. #if ENABLED(ULTIPANEL)
  5747. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5748. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5749. gcode_M0_M1();
  5750. break;
  5751. #endif // ULTIPANEL
  5752. case 17:
  5753. gcode_M17();
  5754. break;
  5755. #if ENABLED(SDSUPPORT)
  5756. case 20: // M20 - list SD card
  5757. gcode_M20(); break;
  5758. case 21: // M21 - init SD card
  5759. gcode_M21(); break;
  5760. case 22: //M22 - release SD card
  5761. gcode_M22(); break;
  5762. case 23: //M23 - Select file
  5763. gcode_M23(); break;
  5764. case 24: //M24 - Start SD print
  5765. gcode_M24(); break;
  5766. case 25: //M25 - Pause SD print
  5767. gcode_M25(); break;
  5768. case 26: //M26 - Set SD index
  5769. gcode_M26(); break;
  5770. case 27: //M27 - Get SD status
  5771. gcode_M27(); break;
  5772. case 28: //M28 - Start SD write
  5773. gcode_M28(); break;
  5774. case 29: //M29 - Stop SD write
  5775. gcode_M29(); break;
  5776. case 30: //M30 <filename> Delete File
  5777. gcode_M30(); break;
  5778. case 32: //M32 - Select file and start SD print
  5779. gcode_M32(); break;
  5780. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5781. case 33: //M33 - Get the long full path to a file or folder
  5782. gcode_M33(); break;
  5783. #endif // LONG_FILENAME_HOST_SUPPORT
  5784. case 928: //M928 - Start SD write
  5785. gcode_M928(); break;
  5786. #endif //SDSUPPORT
  5787. case 31: //M31 take time since the start of the SD print or an M109 command
  5788. gcode_M31();
  5789. break;
  5790. case 42: //M42 -Change pin status via gcode
  5791. gcode_M42();
  5792. break;
  5793. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5794. case 48: // M48 Z probe repeatability
  5795. gcode_M48();
  5796. break;
  5797. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5798. case 75: // Start print timer
  5799. gcode_M75();
  5800. break;
  5801. case 76: // Pause print timer
  5802. gcode_M76();
  5803. break;
  5804. case 77: // Stop print timer
  5805. gcode_M77();
  5806. break;
  5807. #if ENABLED(PRINTCOUNTER)
  5808. case 78: // Show print statistics
  5809. gcode_M78();
  5810. break;
  5811. #endif
  5812. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5813. case 100:
  5814. gcode_M100();
  5815. break;
  5816. #endif
  5817. case 104: // M104
  5818. gcode_M104();
  5819. break;
  5820. case 110: // M110: Set Current Line Number
  5821. gcode_M110();
  5822. break;
  5823. case 111: // M111: Set debug level
  5824. gcode_M111();
  5825. break;
  5826. #if DISABLED(EMERGENCY_PARSER)
  5827. case 108: // M108: Cancel Waiting
  5828. gcode_M108();
  5829. break;
  5830. case 112: // M112: Emergency Stop
  5831. gcode_M112();
  5832. break;
  5833. case 410: // M410 quickstop - Abort all the planned moves.
  5834. gcode_M410();
  5835. break;
  5836. #endif
  5837. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5838. case 113: // M113: Set Host Keepalive interval
  5839. gcode_M113();
  5840. break;
  5841. #endif
  5842. case 140: // M140: Set bed temp
  5843. gcode_M140();
  5844. break;
  5845. case 105: // M105: Read current temperature
  5846. gcode_M105();
  5847. KEEPALIVE_STATE(NOT_BUSY);
  5848. return; // "ok" already printed
  5849. case 109: // M109: Wait for temperature
  5850. gcode_M109();
  5851. break;
  5852. #if HAS_TEMP_BED
  5853. case 190: // M190: Wait for bed heater to reach target
  5854. gcode_M190();
  5855. break;
  5856. #endif // HAS_TEMP_BED
  5857. #if FAN_COUNT > 0
  5858. case 106: // M106: Fan On
  5859. gcode_M106();
  5860. break;
  5861. case 107: // M107: Fan Off
  5862. gcode_M107();
  5863. break;
  5864. #endif // FAN_COUNT > 0
  5865. #if ENABLED(BARICUDA)
  5866. // PWM for HEATER_1_PIN
  5867. #if HAS_HEATER_1
  5868. case 126: // M126: valve open
  5869. gcode_M126();
  5870. break;
  5871. case 127: // M127: valve closed
  5872. gcode_M127();
  5873. break;
  5874. #endif // HAS_HEATER_1
  5875. // PWM for HEATER_2_PIN
  5876. #if HAS_HEATER_2
  5877. case 128: // M128: valve open
  5878. gcode_M128();
  5879. break;
  5880. case 129: // M129: valve closed
  5881. gcode_M129();
  5882. break;
  5883. #endif // HAS_HEATER_2
  5884. #endif // BARICUDA
  5885. #if HAS_POWER_SWITCH
  5886. case 80: // M80: Turn on Power Supply
  5887. gcode_M80();
  5888. break;
  5889. #endif // HAS_POWER_SWITCH
  5890. case 81: // M81: Turn off Power, including Power Supply, if possible
  5891. gcode_M81();
  5892. break;
  5893. case 82:
  5894. gcode_M82();
  5895. break;
  5896. case 83:
  5897. gcode_M83();
  5898. break;
  5899. case 18: // (for compatibility)
  5900. case 84: // M84
  5901. gcode_M18_M84();
  5902. break;
  5903. case 85: // M85
  5904. gcode_M85();
  5905. break;
  5906. case 92: // M92: Set the steps-per-unit for one or more axes
  5907. gcode_M92();
  5908. break;
  5909. case 115: // M115: Report capabilities
  5910. gcode_M115();
  5911. break;
  5912. case 117: // M117: Set LCD message text, if possible
  5913. gcode_M117();
  5914. break;
  5915. case 114: // M114: Report current position
  5916. gcode_M114();
  5917. break;
  5918. case 120: // M120: Enable endstops
  5919. gcode_M120();
  5920. break;
  5921. case 121: // M121: Disable endstops
  5922. gcode_M121();
  5923. break;
  5924. case 119: // M119: Report endstop states
  5925. gcode_M119();
  5926. break;
  5927. #if ENABLED(ULTIPANEL)
  5928. case 145: // M145: Set material heatup parameters
  5929. gcode_M145();
  5930. break;
  5931. #endif
  5932. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5933. case 149:
  5934. gcode_M149();
  5935. break;
  5936. #endif
  5937. #if ENABLED(BLINKM)
  5938. case 150: // M150
  5939. gcode_M150();
  5940. break;
  5941. #endif //BLINKM
  5942. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5943. case 155:
  5944. gcode_M155();
  5945. break;
  5946. case 156:
  5947. gcode_M156();
  5948. break;
  5949. #endif //EXPERIMENTAL_I2CBUS
  5950. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  5951. gcode_M200();
  5952. break;
  5953. case 201: // M201
  5954. gcode_M201();
  5955. break;
  5956. #if 0 // Not used for Sprinter/grbl gen6
  5957. case 202: // M202
  5958. gcode_M202();
  5959. break;
  5960. #endif
  5961. case 203: // M203 max feedrate units/sec
  5962. gcode_M203();
  5963. break;
  5964. case 204: // M204 acclereration S normal moves T filmanent only moves
  5965. gcode_M204();
  5966. break;
  5967. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5968. gcode_M205();
  5969. break;
  5970. case 206: // M206 additional homing offset
  5971. gcode_M206();
  5972. break;
  5973. #if ENABLED(DELTA)
  5974. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5975. gcode_M665();
  5976. break;
  5977. #endif
  5978. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5979. case 666: // M666 set delta / dual endstop adjustment
  5980. gcode_M666();
  5981. break;
  5982. #endif
  5983. #if ENABLED(FWRETRACT)
  5984. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  5985. gcode_M207();
  5986. break;
  5987. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  5988. gcode_M208();
  5989. break;
  5990. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  5991. gcode_M209();
  5992. break;
  5993. #endif // FWRETRACT
  5994. #if HOTENDS > 1
  5995. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  5996. gcode_M218();
  5997. break;
  5998. #endif
  5999. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6000. gcode_M220();
  6001. break;
  6002. case 221: // M221 - Set Flow Percentage: S<percent>
  6003. gcode_M221();
  6004. break;
  6005. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6006. gcode_M226();
  6007. break;
  6008. #if HAS_SERVOS
  6009. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6010. gcode_M280();
  6011. break;
  6012. #endif // HAS_SERVOS
  6013. #if HAS_BUZZER
  6014. case 300: // M300 - Play beep tone
  6015. gcode_M300();
  6016. break;
  6017. #endif // HAS_BUZZER
  6018. #if ENABLED(PIDTEMP)
  6019. case 301: // M301
  6020. gcode_M301();
  6021. break;
  6022. #endif // PIDTEMP
  6023. #if ENABLED(PIDTEMPBED)
  6024. case 304: // M304
  6025. gcode_M304();
  6026. break;
  6027. #endif // PIDTEMPBED
  6028. #if defined(CHDK) || HAS_PHOTOGRAPH
  6029. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6030. gcode_M240();
  6031. break;
  6032. #endif // CHDK || PHOTOGRAPH_PIN
  6033. #if HAS_LCD_CONTRAST
  6034. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6035. gcode_M250();
  6036. break;
  6037. #endif // HAS_LCD_CONTRAST
  6038. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6039. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6040. gcode_M302();
  6041. break;
  6042. #endif // PREVENT_DANGEROUS_EXTRUDE
  6043. case 303: // M303 PID autotune
  6044. gcode_M303();
  6045. break;
  6046. #if ENABLED(SCARA)
  6047. case 360: // M360 SCARA Theta pos1
  6048. if (gcode_M360()) return;
  6049. break;
  6050. case 361: // M361 SCARA Theta pos2
  6051. if (gcode_M361()) return;
  6052. break;
  6053. case 362: // M362 SCARA Psi pos1
  6054. if (gcode_M362()) return;
  6055. break;
  6056. case 363: // M363 SCARA Psi pos2
  6057. if (gcode_M363()) return;
  6058. break;
  6059. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6060. if (gcode_M364()) return;
  6061. break;
  6062. case 365: // M365 Set SCARA scaling for X Y Z
  6063. gcode_M365();
  6064. break;
  6065. #endif // SCARA
  6066. case 400: // M400 finish all moves
  6067. gcode_M400();
  6068. break;
  6069. #if HAS_BED_PROBE
  6070. case 401:
  6071. gcode_M401();
  6072. break;
  6073. case 402:
  6074. gcode_M402();
  6075. break;
  6076. #endif // HAS_BED_PROBE
  6077. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6078. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6079. gcode_M404();
  6080. break;
  6081. case 405: //M405 Turn on filament sensor for control
  6082. gcode_M405();
  6083. break;
  6084. case 406: //M406 Turn off filament sensor for control
  6085. gcode_M406();
  6086. break;
  6087. case 407: //M407 Display measured filament diameter
  6088. gcode_M407();
  6089. break;
  6090. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6091. #if ENABLED(MESH_BED_LEVELING)
  6092. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6093. gcode_M420();
  6094. break;
  6095. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6096. gcode_M421();
  6097. break;
  6098. #endif
  6099. case 428: // M428 Apply current_position to home_offset
  6100. gcode_M428();
  6101. break;
  6102. case 500: // M500 Store settings in EEPROM
  6103. gcode_M500();
  6104. break;
  6105. case 501: // M501 Read settings from EEPROM
  6106. gcode_M501();
  6107. break;
  6108. case 502: // M502 Revert to default settings
  6109. gcode_M502();
  6110. break;
  6111. case 503: // M503 print settings currently in memory
  6112. gcode_M503();
  6113. break;
  6114. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6115. case 540:
  6116. gcode_M540();
  6117. break;
  6118. #endif
  6119. #if HAS_BED_PROBE
  6120. case 851:
  6121. gcode_M851();
  6122. break;
  6123. #endif // HAS_BED_PROBE
  6124. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6125. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6126. gcode_M600();
  6127. break;
  6128. #endif // FILAMENT_CHANGE_FEATURE
  6129. #if ENABLED(DUAL_X_CARRIAGE)
  6130. case 605:
  6131. gcode_M605();
  6132. break;
  6133. #endif // DUAL_X_CARRIAGE
  6134. #if ENABLED(LIN_ADVANCE)
  6135. case 905: // M905 Set advance factor.
  6136. gcode_M905();
  6137. break;
  6138. #endif
  6139. case 907: // M907 Set digital trimpot motor current using axis codes.
  6140. gcode_M907();
  6141. break;
  6142. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6143. case 908: // M908 Control digital trimpot directly.
  6144. gcode_M908();
  6145. break;
  6146. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6147. case 909: // M909 Print digipot/DAC current value
  6148. gcode_M909();
  6149. break;
  6150. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6151. gcode_M910();
  6152. break;
  6153. #endif
  6154. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6155. #if HAS_MICROSTEPS
  6156. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6157. gcode_M350();
  6158. break;
  6159. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6160. gcode_M351();
  6161. break;
  6162. #endif // HAS_MICROSTEPS
  6163. case 999: // M999: Restart after being Stopped
  6164. gcode_M999();
  6165. break;
  6166. }
  6167. break;
  6168. case 'T':
  6169. gcode_T(codenum);
  6170. break;
  6171. default: code_is_good = false;
  6172. }
  6173. KEEPALIVE_STATE(NOT_BUSY);
  6174. ExitUnknownCommand:
  6175. // Still unknown command? Throw an error
  6176. if (!code_is_good) unknown_command_error();
  6177. ok_to_send();
  6178. }
  6179. void FlushSerialRequestResend() {
  6180. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6181. MYSERIAL.flush();
  6182. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6183. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6184. ok_to_send();
  6185. }
  6186. void ok_to_send() {
  6187. refresh_cmd_timeout();
  6188. if (!send_ok[cmd_queue_index_r]) return;
  6189. SERIAL_PROTOCOLPGM(MSG_OK);
  6190. #if ENABLED(ADVANCED_OK)
  6191. char* p = command_queue[cmd_queue_index_r];
  6192. if (*p == 'N') {
  6193. SERIAL_PROTOCOL(' ');
  6194. SERIAL_ECHO(*p++);
  6195. while (NUMERIC_SIGNED(*p))
  6196. SERIAL_ECHO(*p++);
  6197. }
  6198. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6199. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6200. #endif
  6201. SERIAL_EOL;
  6202. }
  6203. void clamp_to_software_endstops(float target[3]) {
  6204. if (min_software_endstops) {
  6205. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6206. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6207. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6208. }
  6209. if (max_software_endstops) {
  6210. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6211. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6212. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6213. }
  6214. }
  6215. #if ENABLED(DELTA)
  6216. void recalc_delta_settings(float radius, float diagonal_rod) {
  6217. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6218. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6219. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6220. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6221. delta_tower3_x = 0.0; // back middle tower
  6222. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6223. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6224. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6225. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6226. }
  6227. void calculate_delta(float cartesian[3]) {
  6228. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6229. - sq(delta_tower1_x - cartesian[X_AXIS])
  6230. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6231. ) + cartesian[Z_AXIS];
  6232. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6233. - sq(delta_tower2_x - cartesian[X_AXIS])
  6234. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6235. ) + cartesian[Z_AXIS];
  6236. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6237. - sq(delta_tower3_x - cartesian[X_AXIS])
  6238. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6239. ) + cartesian[Z_AXIS];
  6240. /**
  6241. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6242. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6243. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6244. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6245. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6246. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6247. */
  6248. }
  6249. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6250. // Adjust print surface height by linear interpolation over the bed_level array.
  6251. void adjust_delta(float cartesian[3]) {
  6252. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6253. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6254. float h1 = 0.001 - half, h2 = half - 0.001,
  6255. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6256. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6257. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6258. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6259. z1 = bed_level[floor_x + half][floor_y + half],
  6260. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6261. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6262. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6263. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6264. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6265. offset = (1 - ratio_x) * left + ratio_x * right;
  6266. delta[X_AXIS] += offset;
  6267. delta[Y_AXIS] += offset;
  6268. delta[Z_AXIS] += offset;
  6269. /**
  6270. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6271. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6272. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6273. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6274. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6275. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6276. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6277. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6278. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6279. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6280. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6281. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6282. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6283. */
  6284. }
  6285. #endif // AUTO_BED_LEVELING_FEATURE
  6286. #endif // DELTA
  6287. #if ENABLED(MESH_BED_LEVELING)
  6288. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6289. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6290. if (!mbl.active()) {
  6291. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6292. set_current_to_destination();
  6293. return;
  6294. }
  6295. int pcx = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6296. pcy = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6297. cx = mbl.cell_index_x(RAW_POSITION(x, X_AXIS)),
  6298. cy = mbl.cell_index_y(RAW_POSITION(y, Y_AXIS));
  6299. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6300. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6301. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6302. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6303. if (pcx == cx && pcy == cy) {
  6304. // Start and end on same mesh square
  6305. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6306. set_current_to_destination();
  6307. return;
  6308. }
  6309. float nx, ny, nz, ne, normalized_dist;
  6310. if (cx > pcx && TEST(x_splits, cx)) {
  6311. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6312. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6313. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6314. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6315. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6316. CBI(x_splits, cx);
  6317. }
  6318. else if (cx < pcx && TEST(x_splits, pcx)) {
  6319. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6320. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6321. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6322. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6323. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6324. CBI(x_splits, pcx);
  6325. }
  6326. else if (cy > pcy && TEST(y_splits, cy)) {
  6327. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6328. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6329. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6330. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6331. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6332. CBI(y_splits, cy);
  6333. }
  6334. else if (cy < pcy && TEST(y_splits, pcy)) {
  6335. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6336. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6337. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6338. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6339. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6340. CBI(y_splits, pcy);
  6341. }
  6342. else {
  6343. // Already split on a border
  6344. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6345. set_current_to_destination();
  6346. return;
  6347. }
  6348. // Do the split and look for more borders
  6349. destination[X_AXIS] = nx;
  6350. destination[Y_AXIS] = ny;
  6351. destination[Z_AXIS] = nz;
  6352. destination[E_AXIS] = ne;
  6353. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6354. destination[X_AXIS] = x;
  6355. destination[Y_AXIS] = y;
  6356. destination[Z_AXIS] = z;
  6357. destination[E_AXIS] = e;
  6358. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6359. }
  6360. #endif // MESH_BED_LEVELING
  6361. #if ENABLED(DELTA) || ENABLED(SCARA)
  6362. inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
  6363. float difference[NUM_AXIS];
  6364. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6365. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6366. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6367. if (cartesian_mm < 0.000001) return false;
  6368. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6369. float seconds = cartesian_mm / _feedrate;
  6370. int steps = max(1, int(delta_segments_per_second * seconds));
  6371. float inv_steps = 1.0/steps;
  6372. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6373. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6374. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6375. for (int s = 1; s <= steps; s++) {
  6376. float fraction = float(s) * inv_steps;
  6377. for (int8_t i = 0; i < NUM_AXIS; i++)
  6378. target[i] = current_position[i] + difference[i] * fraction;
  6379. calculate_delta(target);
  6380. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6381. if (!bed_leveling_in_progress) adjust_delta(target);
  6382. #endif
  6383. //DEBUG_POS("prepare_delta_move_to", target);
  6384. //DEBUG_POS("prepare_delta_move_to", delta);
  6385. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6386. }
  6387. return true;
  6388. }
  6389. #endif // DELTA || SCARA
  6390. #if ENABLED(SCARA)
  6391. inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
  6392. #endif
  6393. #if ENABLED(DUAL_X_CARRIAGE)
  6394. inline bool prepare_move_to_destination_dualx() {
  6395. if (active_extruder_parked) {
  6396. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6397. // move duplicate extruder into correct duplication position.
  6398. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6399. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6400. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6401. SYNC_PLAN_POSITION_KINEMATIC();
  6402. stepper.synchronize();
  6403. extruder_duplication_enabled = true;
  6404. active_extruder_parked = false;
  6405. }
  6406. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6407. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6408. // This is a travel move (with no extrusion)
  6409. // Skip it, but keep track of the current position
  6410. // (so it can be used as the start of the next non-travel move)
  6411. if (delayed_move_time != 0xFFFFFFFFUL) {
  6412. set_current_to_destination();
  6413. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6414. delayed_move_time = millis();
  6415. return false;
  6416. }
  6417. }
  6418. delayed_move_time = 0;
  6419. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6420. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6421. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6422. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6423. active_extruder_parked = false;
  6424. }
  6425. }
  6426. return true;
  6427. }
  6428. #endif // DUAL_X_CARRIAGE
  6429. #if DISABLED(DELTA) && DISABLED(SCARA)
  6430. inline bool prepare_move_to_destination_cartesian() {
  6431. // Do not use feedrate_multiplier for E or Z only moves
  6432. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6433. line_to_destination();
  6434. }
  6435. else {
  6436. #if ENABLED(MESH_BED_LEVELING)
  6437. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6438. return false;
  6439. #else
  6440. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6441. #endif
  6442. }
  6443. return true;
  6444. }
  6445. #endif // !DELTA && !SCARA
  6446. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6447. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6448. if (DEBUGGING(DRYRUN)) return;
  6449. float de = dest_e - curr_e;
  6450. if (de) {
  6451. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6452. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6453. SERIAL_ECHO_START;
  6454. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6455. }
  6456. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6457. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6458. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6459. SERIAL_ECHO_START;
  6460. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6461. }
  6462. #endif
  6463. }
  6464. }
  6465. #endif // PREVENT_DANGEROUS_EXTRUDE
  6466. /**
  6467. * Prepare a single move and get ready for the next one
  6468. *
  6469. * (This may call planner.buffer_line several times to put
  6470. * smaller moves into the planner for DELTA or SCARA.)
  6471. */
  6472. void prepare_move_to_destination() {
  6473. clamp_to_software_endstops(destination);
  6474. refresh_cmd_timeout();
  6475. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6476. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6477. #endif
  6478. #if ENABLED(SCARA)
  6479. if (!prepare_scara_move_to(destination)) return;
  6480. #elif ENABLED(DELTA)
  6481. if (!prepare_delta_move_to(destination)) return;
  6482. #else
  6483. #if ENABLED(DUAL_X_CARRIAGE)
  6484. if (!prepare_move_to_destination_dualx()) return;
  6485. #endif
  6486. if (!prepare_move_to_destination_cartesian()) return;
  6487. #endif
  6488. set_current_to_destination();
  6489. }
  6490. #if ENABLED(ARC_SUPPORT)
  6491. /**
  6492. * Plan an arc in 2 dimensions
  6493. *
  6494. * The arc is approximated by generating many small linear segments.
  6495. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6496. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6497. * larger segments will tend to be more efficient. Your slicer should have
  6498. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6499. */
  6500. void plan_arc(
  6501. float target[NUM_AXIS], // Destination position
  6502. float* offset, // Center of rotation relative to current_position
  6503. uint8_t clockwise // Clockwise?
  6504. ) {
  6505. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6506. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6507. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6508. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6509. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6510. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6511. r_Y = -offset[Y_AXIS],
  6512. rt_X = target[X_AXIS] - center_X,
  6513. rt_Y = target[Y_AXIS] - center_Y;
  6514. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6515. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6516. if (angular_travel < 0) angular_travel += RADIANS(360);
  6517. if (clockwise) angular_travel -= RADIANS(360);
  6518. // Make a circle if the angular rotation is 0
  6519. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6520. angular_travel += RADIANS(360);
  6521. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6522. if (mm_of_travel < 0.001) return;
  6523. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6524. if (segments == 0) segments = 1;
  6525. float theta_per_segment = angular_travel / segments;
  6526. float linear_per_segment = linear_travel / segments;
  6527. float extruder_per_segment = extruder_travel / segments;
  6528. /**
  6529. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6530. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6531. * r_T = [cos(phi) -sin(phi);
  6532. * sin(phi) cos(phi] * r ;
  6533. *
  6534. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6535. * defined from the circle center to the initial position. Each line segment is formed by successive
  6536. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6537. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6538. * all double numbers are single precision on the Arduino. (True double precision will not have
  6539. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6540. * tool precision in some cases. Therefore, arc path correction is implemented.
  6541. *
  6542. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6543. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6544. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6545. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6546. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6547. * issue for CNC machines with the single precision Arduino calculations.
  6548. *
  6549. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6550. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6551. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6552. * This is important when there are successive arc motions.
  6553. */
  6554. // Vector rotation matrix values
  6555. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6556. float sin_T = theta_per_segment;
  6557. float arc_target[NUM_AXIS];
  6558. float sin_Ti, cos_Ti, r_new_Y;
  6559. uint16_t i;
  6560. int8_t count = 0;
  6561. // Initialize the linear axis
  6562. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6563. // Initialize the extruder axis
  6564. arc_target[E_AXIS] = current_position[E_AXIS];
  6565. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6566. millis_t next_idle_ms = millis() + 200UL;
  6567. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6568. thermalManager.manage_heater();
  6569. millis_t now = millis();
  6570. if (ELAPSED(now, next_idle_ms)) {
  6571. next_idle_ms = now + 200UL;
  6572. idle();
  6573. }
  6574. if (++count < N_ARC_CORRECTION) {
  6575. // Apply vector rotation matrix to previous r_X / 1
  6576. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6577. r_X = r_X * cos_T - r_Y * sin_T;
  6578. r_Y = r_new_Y;
  6579. }
  6580. else {
  6581. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6582. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6583. // To reduce stuttering, the sin and cos could be computed at different times.
  6584. // For now, compute both at the same time.
  6585. cos_Ti = cos(i * theta_per_segment);
  6586. sin_Ti = sin(i * theta_per_segment);
  6587. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6588. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6589. count = 0;
  6590. }
  6591. // Update arc_target location
  6592. arc_target[X_AXIS] = center_X + r_X;
  6593. arc_target[Y_AXIS] = center_Y + r_Y;
  6594. arc_target[Z_AXIS] += linear_per_segment;
  6595. arc_target[E_AXIS] += extruder_per_segment;
  6596. clamp_to_software_endstops(arc_target);
  6597. #if ENABLED(DELTA) || ENABLED(SCARA)
  6598. calculate_delta(arc_target);
  6599. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6600. adjust_delta(arc_target);
  6601. #endif
  6602. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6603. #else
  6604. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6605. #endif
  6606. }
  6607. // Ensure last segment arrives at target location.
  6608. #if ENABLED(DELTA) || ENABLED(SCARA)
  6609. calculate_delta(target);
  6610. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6611. adjust_delta(target);
  6612. #endif
  6613. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6614. #else
  6615. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6616. #endif
  6617. // As far as the parser is concerned, the position is now == target. In reality the
  6618. // motion control system might still be processing the action and the real tool position
  6619. // in any intermediate location.
  6620. set_current_to_destination();
  6621. }
  6622. #endif
  6623. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6624. void plan_cubic_move(const float offset[4]) {
  6625. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6626. // As far as the parser is concerned, the position is now == target. In reality the
  6627. // motion control system might still be processing the action and the real tool position
  6628. // in any intermediate location.
  6629. set_current_to_destination();
  6630. }
  6631. #endif // BEZIER_CURVE_SUPPORT
  6632. #if HAS_CONTROLLERFAN
  6633. void controllerFan() {
  6634. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6635. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6636. millis_t ms = millis();
  6637. if (ELAPSED(ms, nextMotorCheck)) {
  6638. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6639. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6640. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6641. #if EXTRUDERS > 1
  6642. || E1_ENABLE_READ == E_ENABLE_ON
  6643. #if HAS_X2_ENABLE
  6644. || X2_ENABLE_READ == X_ENABLE_ON
  6645. #endif
  6646. #if EXTRUDERS > 2
  6647. || E2_ENABLE_READ == E_ENABLE_ON
  6648. #if EXTRUDERS > 3
  6649. || E3_ENABLE_READ == E_ENABLE_ON
  6650. #endif
  6651. #endif
  6652. #endif
  6653. ) {
  6654. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6655. }
  6656. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6657. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6658. // allows digital or PWM fan output to be used (see M42 handling)
  6659. digitalWrite(CONTROLLERFAN_PIN, speed);
  6660. analogWrite(CONTROLLERFAN_PIN, speed);
  6661. }
  6662. }
  6663. #endif // HAS_CONTROLLERFAN
  6664. #if ENABLED(SCARA)
  6665. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6666. // Perform forward kinematics, and place results in delta[3]
  6667. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6668. float x_sin, x_cos, y_sin, y_cos;
  6669. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6670. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6671. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6672. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6673. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6674. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6675. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6676. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6677. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6678. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6679. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6680. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6681. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6682. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6683. }
  6684. void calculate_delta(float cartesian[3]) {
  6685. //reverse kinematics.
  6686. // Perform reversed kinematics, and place results in delta[3]
  6687. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6688. float SCARA_pos[2];
  6689. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6690. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6691. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6692. #if (Linkage_1 == Linkage_2)
  6693. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6694. #else
  6695. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6696. #endif
  6697. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6698. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6699. SCARA_K2 = Linkage_2 * SCARA_S2;
  6700. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6701. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6702. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6703. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6704. delta[Z_AXIS] = cartesian[Z_AXIS];
  6705. /**
  6706. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6707. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6708. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6709. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6710. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6711. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6712. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6713. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6714. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6715. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6716. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6717. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6718. SERIAL_EOL;
  6719. */
  6720. }
  6721. #endif // SCARA
  6722. #if ENABLED(TEMP_STAT_LEDS)
  6723. static bool red_led = false;
  6724. static millis_t next_status_led_update_ms = 0;
  6725. void handle_status_leds(void) {
  6726. float max_temp = 0.0;
  6727. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6728. next_status_led_update_ms += 500; // Update every 0.5s
  6729. HOTEND_LOOP() {
  6730. max_temp = max(max(max_temp, thermalManager.degHotend(e)), thermalManager.degTargetHotend(e));
  6731. }
  6732. #if HAS_TEMP_BED
  6733. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6734. #endif
  6735. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6736. if (new_led != red_led) {
  6737. red_led = new_led;
  6738. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6739. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6740. }
  6741. }
  6742. }
  6743. #endif
  6744. void enable_all_steppers() {
  6745. enable_x();
  6746. enable_y();
  6747. enable_z();
  6748. enable_e0();
  6749. enable_e1();
  6750. enable_e2();
  6751. enable_e3();
  6752. }
  6753. void disable_all_steppers() {
  6754. disable_x();
  6755. disable_y();
  6756. disable_z();
  6757. disable_e0();
  6758. disable_e1();
  6759. disable_e2();
  6760. disable_e3();
  6761. }
  6762. /**
  6763. * Standard idle routine keeps the machine alive
  6764. */
  6765. void idle(
  6766. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6767. bool no_stepper_sleep/*=false*/
  6768. #endif
  6769. ) {
  6770. lcd_update();
  6771. host_keepalive();
  6772. manage_inactivity(
  6773. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6774. no_stepper_sleep
  6775. #endif
  6776. );
  6777. thermalManager.manage_heater();
  6778. #if ENABLED(PRINTCOUNTER)
  6779. print_job_timer.tick();
  6780. #endif
  6781. #if HAS_BUZZER
  6782. buzzer.tick();
  6783. #endif
  6784. }
  6785. /**
  6786. * Manage several activities:
  6787. * - Check for Filament Runout
  6788. * - Keep the command buffer full
  6789. * - Check for maximum inactive time between commands
  6790. * - Check for maximum inactive time between stepper commands
  6791. * - Check if pin CHDK needs to go LOW
  6792. * - Check for KILL button held down
  6793. * - Check for HOME button held down
  6794. * - Check if cooling fan needs to be switched on
  6795. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6796. */
  6797. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6798. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6799. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6800. handle_filament_runout();
  6801. #endif
  6802. if (commands_in_queue < BUFSIZE) get_available_commands();
  6803. millis_t ms = millis();
  6804. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6805. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6806. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6807. #if ENABLED(DISABLE_INACTIVE_X)
  6808. disable_x();
  6809. #endif
  6810. #if ENABLED(DISABLE_INACTIVE_Y)
  6811. disable_y();
  6812. #endif
  6813. #if ENABLED(DISABLE_INACTIVE_Z)
  6814. disable_z();
  6815. #endif
  6816. #if ENABLED(DISABLE_INACTIVE_E)
  6817. disable_e0();
  6818. disable_e1();
  6819. disable_e2();
  6820. disable_e3();
  6821. #endif
  6822. }
  6823. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6824. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6825. chdkActive = false;
  6826. WRITE(CHDK, LOW);
  6827. }
  6828. #endif
  6829. #if HAS_KILL
  6830. // Check if the kill button was pressed and wait just in case it was an accidental
  6831. // key kill key press
  6832. // -------------------------------------------------------------------------------
  6833. static int killCount = 0; // make the inactivity button a bit less responsive
  6834. const int KILL_DELAY = 750;
  6835. if (!READ(KILL_PIN))
  6836. killCount++;
  6837. else if (killCount > 0)
  6838. killCount--;
  6839. // Exceeded threshold and we can confirm that it was not accidental
  6840. // KILL the machine
  6841. // ----------------------------------------------------------------
  6842. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6843. #endif
  6844. #if HAS_HOME
  6845. // Check to see if we have to home, use poor man's debouncer
  6846. // ---------------------------------------------------------
  6847. static int homeDebounceCount = 0; // poor man's debouncing count
  6848. const int HOME_DEBOUNCE_DELAY = 2500;
  6849. if (!READ(HOME_PIN)) {
  6850. if (!homeDebounceCount) {
  6851. enqueue_and_echo_commands_P(PSTR("G28"));
  6852. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6853. }
  6854. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6855. homeDebounceCount++;
  6856. else
  6857. homeDebounceCount = 0;
  6858. }
  6859. #endif
  6860. #if HAS_CONTROLLERFAN
  6861. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6862. #endif
  6863. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6864. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6865. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6866. bool oldstatus;
  6867. switch (active_extruder) {
  6868. case 0:
  6869. oldstatus = E0_ENABLE_READ;
  6870. enable_e0();
  6871. break;
  6872. #if EXTRUDERS > 1
  6873. case 1:
  6874. oldstatus = E1_ENABLE_READ;
  6875. enable_e1();
  6876. break;
  6877. #if EXTRUDERS > 2
  6878. case 2:
  6879. oldstatus = E2_ENABLE_READ;
  6880. enable_e2();
  6881. break;
  6882. #if EXTRUDERS > 3
  6883. case 3:
  6884. oldstatus = E3_ENABLE_READ;
  6885. enable_e3();
  6886. break;
  6887. #endif
  6888. #endif
  6889. #endif
  6890. }
  6891. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6892. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6893. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  6894. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  6895. current_position[E_AXIS] = oldepos;
  6896. destination[E_AXIS] = oldedes;
  6897. planner.set_e_position_mm(oldepos);
  6898. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6899. stepper.synchronize();
  6900. switch (active_extruder) {
  6901. case 0:
  6902. E0_ENABLE_WRITE(oldstatus);
  6903. break;
  6904. #if EXTRUDERS > 1
  6905. case 1:
  6906. E1_ENABLE_WRITE(oldstatus);
  6907. break;
  6908. #if EXTRUDERS > 2
  6909. case 2:
  6910. E2_ENABLE_WRITE(oldstatus);
  6911. break;
  6912. #if EXTRUDERS > 3
  6913. case 3:
  6914. E3_ENABLE_WRITE(oldstatus);
  6915. break;
  6916. #endif
  6917. #endif
  6918. #endif
  6919. }
  6920. }
  6921. #endif
  6922. #if ENABLED(DUAL_X_CARRIAGE)
  6923. // handle delayed move timeout
  6924. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6925. // travel moves have been received so enact them
  6926. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6927. set_destination_to_current();
  6928. prepare_move_to_destination();
  6929. }
  6930. #endif
  6931. #if ENABLED(TEMP_STAT_LEDS)
  6932. handle_status_leds();
  6933. #endif
  6934. planner.check_axes_activity();
  6935. }
  6936. void kill(const char* lcd_msg) {
  6937. SERIAL_ERROR_START;
  6938. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6939. #if ENABLED(ULTRA_LCD)
  6940. kill_screen(lcd_msg);
  6941. #else
  6942. UNUSED(lcd_msg);
  6943. #endif
  6944. for (int i = 5; i--;) delay(100); // Wait a short time
  6945. cli(); // Stop interrupts
  6946. thermalManager.disable_all_heaters();
  6947. disable_all_steppers();
  6948. #if HAS_POWER_SWITCH
  6949. pinMode(PS_ON_PIN, INPUT);
  6950. #endif
  6951. suicide();
  6952. while (1) {
  6953. #if ENABLED(USE_WATCHDOG)
  6954. watchdog_reset();
  6955. #endif
  6956. } // Wait for reset
  6957. }
  6958. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6959. void handle_filament_runout() {
  6960. if (!filament_ran_out) {
  6961. filament_ran_out = true;
  6962. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6963. stepper.synchronize();
  6964. }
  6965. }
  6966. #endif // FILAMENT_RUNOUT_SENSOR
  6967. #if ENABLED(FAST_PWM_FAN)
  6968. void setPwmFrequency(uint8_t pin, int val) {
  6969. val &= 0x07;
  6970. switch (digitalPinToTimer(pin)) {
  6971. #if defined(TCCR0A)
  6972. case TIMER0A:
  6973. case TIMER0B:
  6974. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6975. // TCCR0B |= val;
  6976. break;
  6977. #endif
  6978. #if defined(TCCR1A)
  6979. case TIMER1A:
  6980. case TIMER1B:
  6981. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6982. // TCCR1B |= val;
  6983. break;
  6984. #endif
  6985. #if defined(TCCR2)
  6986. case TIMER2:
  6987. case TIMER2:
  6988. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6989. TCCR2 |= val;
  6990. break;
  6991. #endif
  6992. #if defined(TCCR2A)
  6993. case TIMER2A:
  6994. case TIMER2B:
  6995. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6996. TCCR2B |= val;
  6997. break;
  6998. #endif
  6999. #if defined(TCCR3A)
  7000. case TIMER3A:
  7001. case TIMER3B:
  7002. case TIMER3C:
  7003. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7004. TCCR3B |= val;
  7005. break;
  7006. #endif
  7007. #if defined(TCCR4A)
  7008. case TIMER4A:
  7009. case TIMER4B:
  7010. case TIMER4C:
  7011. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7012. TCCR4B |= val;
  7013. break;
  7014. #endif
  7015. #if defined(TCCR5A)
  7016. case TIMER5A:
  7017. case TIMER5B:
  7018. case TIMER5C:
  7019. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7020. TCCR5B |= val;
  7021. break;
  7022. #endif
  7023. }
  7024. }
  7025. #endif // FAST_PWM_FAN
  7026. void stop() {
  7027. thermalManager.disable_all_heaters();
  7028. if (IsRunning()) {
  7029. Running = false;
  7030. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7031. SERIAL_ERROR_START;
  7032. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7033. LCD_MESSAGEPGM(MSG_STOPPED);
  7034. }
  7035. }
  7036. float calculate_volumetric_multiplier(float diameter) {
  7037. if (!volumetric_enabled || diameter == 0) return 1.0;
  7038. float d2 = diameter * 0.5;
  7039. return 1.0 / (M_PI * d2 * d2);
  7040. }
  7041. void calculate_volumetric_multipliers() {
  7042. for (int i = 0; i < EXTRUDERS; i++)
  7043. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7044. }