My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ubl.h 14KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #pragma once
  23. //#define UBL_DEVEL_DEBUGGING
  24. #include "../../../module/motion.h"
  25. #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
  26. #include "../../../core/debug_out.h"
  27. #define UBL_VERSION "1.01"
  28. #define UBL_OK false
  29. #define UBL_ERR true
  30. enum MeshPointType : char { INVALID, REAL, SET_IN_BITMAP };
  31. // External references
  32. struct mesh_index_pair;
  33. #define MESH_X_DIST (float(MESH_MAX_X - (MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1))
  34. #define MESH_Y_DIST (float(MESH_MAX_Y - (MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1))
  35. class unified_bed_leveling {
  36. private:
  37. static int g29_verbose_level,
  38. g29_phase_value,
  39. g29_repetition_cnt,
  40. g29_storage_slot,
  41. g29_map_type;
  42. static bool g29_c_flag;
  43. static float g29_card_thickness,
  44. g29_constant;
  45. static xy_pos_t g29_pos;
  46. static xy_bool_t xy_seen;
  47. #if HAS_BED_PROBE
  48. static int g29_grid_size;
  49. #endif
  50. #if ENABLED(NEWPANEL)
  51. static void move_z_with_encoder(const float &multiplier);
  52. static float measure_point_with_encoder();
  53. static float measure_business_card_thickness(float in_height);
  54. static void manually_probe_remaining_mesh(const xy_pos_t&, const float&, const float&, const bool) _O0;
  55. static void fine_tune_mesh(const xy_pos_t &pos, const bool do_ubl_mesh_map) _O0;
  56. #endif
  57. static bool g29_parameter_parsing() _O0;
  58. static void shift_mesh_height();
  59. static void probe_entire_mesh(const xy_pos_t &near, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) _O0;
  60. static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
  61. static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
  62. static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
  63. static inline bool smart_fill_one(const xy_uint8_t &pos, const xy_uint8_t &dir) {
  64. return smart_fill_one(pos.x, pos.y, dir.x, dir.y);
  65. }
  66. static void smart_fill_mesh();
  67. #if ENABLED(UBL_DEVEL_DEBUGGING)
  68. static void g29_what_command();
  69. static void g29_eeprom_dump();
  70. static void g29_compare_current_mesh_to_stored_mesh();
  71. #endif
  72. public:
  73. static void echo_name();
  74. static void report_current_mesh();
  75. static void report_state();
  76. static void save_ubl_active_state_and_disable();
  77. static void restore_ubl_active_state_and_leave();
  78. static void display_map(const int) _O0;
  79. static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const xy_pos_t&, const bool=false, MeshFlags *done_flags=nullptr) _O0;
  80. static mesh_index_pair find_furthest_invalid_mesh_point() _O0;
  81. static void reset();
  82. static void invalidate();
  83. static void set_all_mesh_points_to_value(const float value);
  84. static void adjust_mesh_to_mean(const bool cflag, const float value);
  85. static bool sanity_check();
  86. static void G29() _O0; // O0 for no optimization
  87. static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
  88. static int8_t storage_slot;
  89. static bed_mesh_t z_values;
  90. static const float _mesh_index_to_xpos[GRID_MAX_POINTS_X],
  91. _mesh_index_to_ypos[GRID_MAX_POINTS_Y];
  92. #if HAS_LCD_MENU
  93. static bool lcd_map_control;
  94. #endif
  95. static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
  96. unified_bed_leveling();
  97. FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
  98. static int8_t cell_index_x(const float &x) {
  99. const int8_t cx = (x - (MESH_MIN_X)) * RECIPROCAL(MESH_X_DIST);
  100. return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX
  101. } // position. But with this defined this way, it is possible
  102. // to extrapolate off of this point even further out. Probably
  103. // that is OK because something else should be keeping that from
  104. // happening and should not be worried about at this level.
  105. static int8_t cell_index_y(const float &y) {
  106. const int8_t cy = (y - (MESH_MIN_Y)) * RECIPROCAL(MESH_Y_DIST);
  107. return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX
  108. } // position. But with this defined this way, it is possible
  109. // to extrapolate off of this point even further out. Probably
  110. // that is OK because something else should be keeping that from
  111. // happening and should not be worried about at this level.
  112. static inline xy_int8_t cell_indexes(const float &x, const float &y) {
  113. return { cell_index_x(x), cell_index_y(y) };
  114. }
  115. static inline xy_int8_t cell_indexes(const xy_pos_t &xy) { return cell_indexes(xy.x, xy.y); }
  116. static int8_t closest_x_index(const float &x) {
  117. const int8_t px = (x - (MESH_MIN_X) + (MESH_X_DIST) * 0.5) * RECIPROCAL(MESH_X_DIST);
  118. return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
  119. }
  120. static int8_t closest_y_index(const float &y) {
  121. const int8_t py = (y - (MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * RECIPROCAL(MESH_Y_DIST);
  122. return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
  123. }
  124. static inline xy_int8_t closest_indexes(const xy_pos_t &xy) {
  125. return { closest_x_index(xy.x), closest_y_index(xy.y) };
  126. }
  127. /**
  128. * z2 --|
  129. * z0 | |
  130. * | | + (z2-z1)
  131. * z1 | | |
  132. * ---+-------------+--------+-- --|
  133. * a1 a0 a2
  134. * |<---delta_a---------->|
  135. *
  136. * calc_z0 is the basis for all the Mesh Based correction. It is used to
  137. * find the expected Z Height at a position between two known Z-Height locations.
  138. *
  139. * It is fairly expensive with its 4 floating point additions and 2 floating point
  140. * multiplications.
  141. */
  142. FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
  143. return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
  144. }
  145. /**
  146. * z_correction_for_x_on_horizontal_mesh_line is an optimization for
  147. * the case where the printer is making a vertical line that only crosses horizontal mesh lines.
  148. */
  149. static inline float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) {
  150. if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
  151. if (DEBUGGING(LEVELING)) {
  152. if (WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1)) DEBUG_ECHOPGM("yi"); else DEBUG_ECHOPGM("x1_i");
  153. DEBUG_ECHOLNPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(rx0=", rx0, ",x1_i=", x1_i, ",yi=", yi, ")");
  154. }
  155. // The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN.
  156. return (
  157. #ifdef UBL_Z_RAISE_WHEN_OFF_MESH
  158. UBL_Z_RAISE_WHEN_OFF_MESH
  159. #else
  160. NAN
  161. #endif
  162. );
  163. }
  164. const float xratio = (rx0 - mesh_index_to_xpos(x1_i)) * RECIPROCAL(MESH_X_DIST),
  165. z1 = z_values[x1_i][yi];
  166. return z1 + xratio * (z_values[_MIN(x1_i, GRID_MAX_POINTS_X - 2) + 1][yi] - z1); // Don't allow x1_i+1 to be past the end of the array
  167. // If it is, it is clamped to the last element of the
  168. // z_values[][] array and no correction is applied.
  169. }
  170. //
  171. // See comments above for z_correction_for_x_on_horizontal_mesh_line
  172. //
  173. static inline float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) {
  174. if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) {
  175. if (DEBUGGING(LEVELING)) {
  176. if (WITHIN(xi, 0, GRID_MAX_POINTS_X - 1)) DEBUG_ECHOPGM("y1_i"); else DEBUG_ECHOPGM("xi");
  177. DEBUG_ECHOLNPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ry0=", ry0, ", xi=", xi, ", y1_i=", y1_i, ")");
  178. }
  179. // The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN.
  180. return (
  181. #ifdef UBL_Z_RAISE_WHEN_OFF_MESH
  182. UBL_Z_RAISE_WHEN_OFF_MESH
  183. #else
  184. NAN
  185. #endif
  186. );
  187. }
  188. const float yratio = (ry0 - mesh_index_to_ypos(y1_i)) * RECIPROCAL(MESH_Y_DIST),
  189. z1 = z_values[xi][y1_i];
  190. return z1 + yratio * (z_values[xi][_MIN(y1_i, GRID_MAX_POINTS_Y - 2) + 1] - z1); // Don't allow y1_i+1 to be past the end of the array
  191. // If it is, it is clamped to the last element of the
  192. // z_values[][] array and no correction is applied.
  193. }
  194. /**
  195. * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
  196. * does a linear interpolation along both of the bounding X-Mesh-Lines to find the
  197. * Z-Height at both ends. Then it does a linear interpolation of these heights based
  198. * on the Y position within the cell.
  199. */
  200. static float get_z_correction(const float &rx0, const float &ry0) {
  201. const int8_t cx = cell_index_x(rx0), cy = cell_index_y(ry0); // return values are clamped
  202. /**
  203. * Check if the requested location is off the mesh. If so, and
  204. * UBL_Z_RAISE_WHEN_OFF_MESH is specified, that value is returned.
  205. */
  206. #ifdef UBL_Z_RAISE_WHEN_OFF_MESH
  207. if (!WITHIN(rx0, MESH_MIN_X, MESH_MAX_X) || !WITHIN(ry0, MESH_MIN_Y, MESH_MAX_Y))
  208. return UBL_Z_RAISE_WHEN_OFF_MESH;
  209. #endif
  210. const float z1 = calc_z0(rx0,
  211. mesh_index_to_xpos(cx), z_values[cx][cy],
  212. mesh_index_to_xpos(cx + 1), z_values[_MIN(cx, GRID_MAX_POINTS_X - 2) + 1][cy]);
  213. const float z2 = calc_z0(rx0,
  214. mesh_index_to_xpos(cx), z_values[cx][_MIN(cy, GRID_MAX_POINTS_Y - 2) + 1],
  215. mesh_index_to_xpos(cx + 1), z_values[_MIN(cx, GRID_MAX_POINTS_X - 2) + 1][_MIN(cy, GRID_MAX_POINTS_Y - 2) + 1]);
  216. float z0 = calc_z0(ry0,
  217. mesh_index_to_ypos(cy), z1,
  218. mesh_index_to_ypos(cy + 1), z2);
  219. if (DEBUGGING(MESH_ADJUST)) {
  220. DEBUG_ECHOPAIR(" raw get_z_correction(", rx0);
  221. DEBUG_CHAR(','); DEBUG_ECHO(ry0);
  222. DEBUG_ECHOPAIR_F(") = ", z0, 6);
  223. DEBUG_ECHOLNPAIR_F(" >>>---> ", z0, 6);
  224. }
  225. if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
  226. z0 = 0.0; // in ubl.z_values[][] and propagate through the
  227. // calculations. If our correction is NAN, we throw it out
  228. // because part of the Mesh is undefined and we don't have the
  229. // information we need to complete the height correction.
  230. if (DEBUGGING(MESH_ADJUST)) {
  231. DEBUG_ECHOPAIR("??? Yikes! NAN in get_z_correction(", rx0);
  232. DEBUG_CHAR(',');
  233. DEBUG_ECHO(ry0);
  234. DEBUG_CHAR(')');
  235. DEBUG_EOL();
  236. }
  237. }
  238. return z0;
  239. }
  240. static inline float get_z_correction(const xy_pos_t &pos) { return get_z_correction(pos.x, pos.y); }
  241. static inline float mesh_index_to_xpos(const uint8_t i) {
  242. return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : MESH_MIN_X + i * (MESH_X_DIST);
  243. }
  244. static inline float mesh_index_to_ypos(const uint8_t i) {
  245. return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : MESH_MIN_Y + i * (MESH_Y_DIST);
  246. }
  247. #if UBL_SEGMENTED
  248. static bool line_to_destination_segmented(const feedRate_t &scaled_fr_mm_s);
  249. #else
  250. static void line_to_destination_cartesian(const feedRate_t &scaled_fr_mm_s, const uint8_t e);
  251. #endif
  252. static inline bool mesh_is_valid() {
  253. GRID_LOOP(x, y) if (isnan(z_values[x][y])) return false;
  254. return true;
  255. }
  256. }; // class unified_bed_leveling
  257. extern unified_bed_leveling ubl;
  258. #define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
  259. #define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
  260. #define Z_VALUES_ARR ubl.z_values
  261. // Prevent debugging propagating to other files
  262. #include "../../../core/debug_out.h"