My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

G26.cpp 31KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * Marlin Firmware -- G26 - Mesh Validation Tool
  24. */
  25. #include "../../inc/MarlinConfig.h"
  26. #if ENABLED(G26_MESH_VALIDATION)
  27. #define G26_OK false
  28. #define G26_ERR true
  29. #include "../../gcode/gcode.h"
  30. #include "../../feature/bedlevel/bedlevel.h"
  31. #include "../../MarlinCore.h"
  32. #include "../../module/planner.h"
  33. #include "../../module/stepper.h"
  34. #include "../../module/motion.h"
  35. #include "../../module/tool_change.h"
  36. #include "../../module/temperature.h"
  37. #include "../../lcd/ultralcd.h"
  38. #define EXTRUSION_MULTIPLIER 1.0
  39. #define PRIME_LENGTH 10.0
  40. #define OOZE_AMOUNT 0.3
  41. #define INTERSECTION_CIRCLE_RADIUS 5
  42. #define CROSSHAIRS_SIZE 3
  43. #ifndef G26_RETRACT_MULTIPLIER
  44. #define G26_RETRACT_MULTIPLIER 1.0 // x 1mm
  45. #endif
  46. #ifndef G26_XY_FEEDRATE
  47. #define G26_XY_FEEDRATE (PLANNER_XY_FEEDRATE() / 3.0)
  48. #endif
  49. #if CROSSHAIRS_SIZE >= INTERSECTION_CIRCLE_RADIUS
  50. #error "CROSSHAIRS_SIZE must be less than INTERSECTION_CIRCLE_RADIUS."
  51. #endif
  52. #define G26_OK false
  53. #define G26_ERR true
  54. #if ENABLED(ARC_SUPPORT)
  55. void plan_arc(const xyze_pos_t &cart, const ab_float_t &offset, const uint8_t clockwise);
  56. #endif
  57. /**
  58. * G26 Mesh Validation Tool
  59. *
  60. * G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
  61. * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
  62. * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
  63. * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
  64. * the intersections of those lines (respectively).
  65. *
  66. * This action allows the user to immediately see where the Mesh is properly defined and where it needs to
  67. * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
  68. * the user can specify the X and Y position of interest with command parameters. This allows the user to
  69. * focus on a particular area of the Mesh where attention is needed.
  70. *
  71. * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
  72. *
  73. * C Current When searching for Mesh Intersection points to draw, use the current nozzle location
  74. * as the base for any distance comparison.
  75. *
  76. * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
  77. * command to see how well a Mesh as been adjusted to match a print surface. In order to do
  78. * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
  79. * alters the command's normal behavior and disables the Unified Bed Leveling System even if
  80. * it is on.
  81. *
  82. * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
  83. *
  84. * F # Filament Used to specify the diameter of the filament being used. If not specified
  85. * 1.75mm filament is assumed. If you are not getting acceptable results by using the
  86. * 'correct' numbers, you can scale this number up or down a little bit to change the amount
  87. * of filament that is being extruded during the printing of the various lines on the bed.
  88. *
  89. * K Keep-On Keep the heaters turned on at the end of the command.
  90. *
  91. * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
  92. *
  93. * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
  94. * is over kill, but using this parameter will let you get the very first 'circle' perfect
  95. * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
  96. * Mesh calibrated. If not specified, a filament length of .3mm is assumed.
  97. *
  98. * P # Prime Prime the nozzle with specified length of filament. If this parameter is not
  99. * given, no prime action will take place. If the parameter specifies an amount, that much
  100. * will be purged before continuing. If no amount is specified the command will start
  101. * purging filament until the user provides an LCD Click and then it will continue with
  102. * printing the Mesh. You can carefully remove the spent filament with a needle nose
  103. * pliers while holding the LCD Click wheel in a depressed state. If you do not have
  104. * an LCD, you must specify a value if you use P.
  105. *
  106. * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
  107. * un-retraction is at 1.2mm These numbers will be scaled by the specified amount
  108. *
  109. * R # Repeat Prints the number of patterns given as a parameter, starting at the current location.
  110. * If a parameter isn't given, every point will be printed unless G26 is interrupted.
  111. * This works the same way that the UBL G29 P4 R parameter works.
  112. *
  113. * NOTE: If you do not have an LCD, you -must- specify R. This is to ensure that you are
  114. * aware that there's some risk associated with printing without the ability to abort in
  115. * cases where mesh point Z value may be inaccurate. As above, if you do not include a
  116. * parameter, every point will be printed.
  117. *
  118. * S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
  119. *
  120. * U # Random Randomize the order that the circles are drawn on the bed. The search for the closest
  121. * un-drawn circle is still done. But the distance to the location for each circle has a
  122. * random number of the specified size added to it. Specifying S50 will give an interesting
  123. * deviation from the normal behavior on a 10 x 10 Mesh.
  124. *
  125. * X # X Coord. Specify the starting location of the drawing activity.
  126. *
  127. * Y # Y Coord. Specify the starting location of the drawing activity.
  128. */
  129. // External references
  130. // Private functions
  131. static MeshFlags circle_flags, horizontal_mesh_line_flags, vertical_mesh_line_flags;
  132. float g26_e_axis_feedrate = 0.025,
  133. random_deviation = 0.0;
  134. static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
  135. // retracts/recovers won't result in a bad state.
  136. float g26_extrusion_multiplier,
  137. g26_retraction_multiplier,
  138. g26_layer_height,
  139. g26_prime_length;
  140. xy_pos_t g26_xy_pos; // = { 0, 0 }
  141. int16_t g26_bed_temp,
  142. g26_hotend_temp;
  143. int8_t g26_prime_flag;
  144. #if HAS_LCD_MENU
  145. /**
  146. * If the LCD is clicked, cancel, wait for release, return true
  147. */
  148. bool user_canceled() {
  149. if (!ui.button_pressed()) return false; // Return if the button isn't pressed
  150. ui.set_status_P(GET_TEXT(MSG_G26_CANCELED), 99);
  151. #if HAS_LCD_MENU
  152. ui.quick_feedback();
  153. #endif
  154. ui.wait_for_release();
  155. return true;
  156. }
  157. #endif
  158. mesh_index_pair find_closest_circle_to_print(const xy_pos_t &pos) {
  159. float closest = 99999.99;
  160. mesh_index_pair out_point;
  161. out_point.pos = -1;
  162. GRID_LOOP(i, j) {
  163. if (!circle_flags.marked(i, j)) {
  164. // We found a circle that needs to be printed
  165. const xy_pos_t m = { _GET_MESH_X(i), _GET_MESH_Y(j) };
  166. // Get the distance to this intersection
  167. float f = (pos - m).magnitude();
  168. // It is possible that we are being called with the values
  169. // to let us find the closest circle to the start position.
  170. // But if this is not the case, add a small weighting to the
  171. // distance calculation to help it choose a better place to continue.
  172. f += (g26_xy_pos - m).magnitude() / 15.0f;
  173. // Add the specified amount of Random Noise to our search
  174. if (random_deviation > 1.0) f += random(0.0, random_deviation);
  175. if (f < closest) {
  176. closest = f; // Found a closer un-printed location
  177. out_point.pos.set(i, j); // Save its data
  178. out_point.distance = closest;
  179. }
  180. }
  181. }
  182. circle_flags.mark(out_point); // Mark this location as done.
  183. return out_point;
  184. }
  185. void move_to(const float &rx, const float &ry, const float &z, const float &e_delta) {
  186. static float last_z = -999.99;
  187. const xy_pos_t dest = { rx, ry };
  188. const bool has_xy_component = dest != current_position; // Check if X or Y is involved in the movement.
  189. destination = current_position;
  190. if (z != last_z) {
  191. last_z = destination.z = z;
  192. const feedRate_t feed_value = planner.settings.max_feedrate_mm_s[Z_AXIS] * 0.5f; // Use half of the Z_AXIS max feed rate
  193. prepare_internal_move_to_destination(feed_value);
  194. destination = current_position;
  195. }
  196. // If X or Y is involved do a 'normal' move. Otherwise retract/recover/hop.
  197. destination = dest;
  198. destination.e += e_delta;
  199. const feedRate_t feed_value = has_xy_component ? feedRate_t(G26_XY_FEEDRATE) : planner.settings.max_feedrate_mm_s[E_AXIS] * 0.666f;
  200. prepare_internal_move_to_destination(feed_value);
  201. destination = current_position;
  202. }
  203. FORCE_INLINE void move_to(const xyz_pos_t &where, const float &de) { move_to(where.x, where.y, where.z, de); }
  204. void retract_filament(const xyz_pos_t &where) {
  205. if (!g26_retracted) { // Only retract if we are not already retracted!
  206. g26_retracted = true;
  207. move_to(where, -1.0f * g26_retraction_multiplier);
  208. }
  209. }
  210. // TODO: Parameterize the Z lift with a define
  211. void retract_lift_move(const xyz_pos_t &s) {
  212. retract_filament(destination);
  213. move_to(current_position.x, current_position.y, current_position.z + 0.5f, 0.0); // Z lift to minimize scraping
  214. move_to(s.x, s.y, s.z + 0.5f, 0.0); // Get to the starting point with no extrusion while lifted
  215. }
  216. void recover_filament(const xyz_pos_t &where) {
  217. if (g26_retracted) { // Only un-retract if we are retracted.
  218. move_to(where, 1.2f * g26_retraction_multiplier);
  219. g26_retracted = false;
  220. }
  221. }
  222. /**
  223. * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
  224. * to the other. But there are really three sets of coordinates involved. The first coordinate
  225. * is the present location of the nozzle. We don't necessarily want to print from this location.
  226. * We first need to move the nozzle to the start of line segment where we want to print. Once
  227. * there, we can use the two coordinates supplied to draw the line.
  228. *
  229. * Note: Although we assume the first set of coordinates is the start of the line and the second
  230. * set of coordinates is the end of the line, it does not always work out that way. This function
  231. * optimizes the movement to minimize the travel distance before it can start printing. This saves
  232. * a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does
  233. * cause a lot of very little short retracement of th nozzle when it draws the very first line
  234. * segment of a 'circle'. The time this requires is very short and is easily saved by the other
  235. * cases where the optimization comes into play.
  236. */
  237. void print_line_from_here_to_there(const xyz_pos_t &s, const xyz_pos_t &e) {
  238. // Distances to the start / end of the line
  239. xy_float_t svec = current_position - s, evec = current_position - e;
  240. const float dist_start = HYPOT2(svec.x, svec.y),
  241. dist_end = HYPOT2(evec.x, evec.y),
  242. line_length = HYPOT(e.x - s.x, e.y - s.y);
  243. // If the end point of the line is closer to the nozzle, flip the direction,
  244. // moving from the end to the start. On very small lines the optimization isn't worth it.
  245. if (dist_end < dist_start && (INTERSECTION_CIRCLE_RADIUS) < ABS(line_length))
  246. return print_line_from_here_to_there(e, s);
  247. // Decide whether to retract & lift
  248. if (dist_start > 2.0) retract_lift_move(s);
  249. move_to(s, 0.0); // Get to the starting point with no extrusion / un-Z lift
  250. const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier;
  251. recover_filament(destination);
  252. move_to(e, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
  253. }
  254. inline bool look_for_lines_to_connect() {
  255. xyz_pos_t s, e;
  256. s.z = e.z = g26_layer_height;
  257. GRID_LOOP(i, j) {
  258. #if HAS_LCD_MENU
  259. if (user_canceled()) return true;
  260. #endif
  261. if (i < (GRID_MAX_POINTS_X)) { // Can't connect to anything farther to the right than GRID_MAX_POINTS_X.
  262. // Already a half circle at the edge of the bed.
  263. if (circle_flags.marked(i, j) && circle_flags.marked(i + 1, j)) { // Test whether a leftward line can be done
  264. if (!horizontal_mesh_line_flags.marked(i, j)) {
  265. // Two circles need a horizontal line to connect them
  266. s.x = _GET_MESH_X( i ) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // right edge
  267. e.x = _GET_MESH_X(i + 1) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // left edge
  268. LIMIT(s.x, X_MIN_POS + 1, X_MAX_POS - 1);
  269. s.y = e.y = constrain(_GET_MESH_Y(j), Y_MIN_POS + 1, Y_MAX_POS - 1);
  270. LIMIT(e.x, X_MIN_POS + 1, X_MAX_POS - 1);
  271. if (position_is_reachable(s.x, s.y) && position_is_reachable(e.x, e.y))
  272. print_line_from_here_to_there(s, e);
  273. horizontal_mesh_line_flags.mark(i, j); // Mark done, even if skipped
  274. }
  275. }
  276. if (j < (GRID_MAX_POINTS_Y)) { // Can't connect to anything further back than GRID_MAX_POINTS_Y.
  277. // Already a half circle at the edge of the bed.
  278. if (circle_flags.marked(i, j) && circle_flags.marked(i, j + 1)) { // Test whether a downward line can be done
  279. if (!vertical_mesh_line_flags.marked(i, j)) {
  280. // Two circles that need a vertical line to connect them
  281. s.y = _GET_MESH_Y( j ) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // top edge
  282. e.y = _GET_MESH_Y(j + 1) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // bottom edge
  283. s.x = e.x = constrain(_GET_MESH_X(i), X_MIN_POS + 1, X_MAX_POS - 1);
  284. LIMIT(s.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  285. LIMIT(e.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  286. if (position_is_reachable(s.x, s.y) && position_is_reachable(e.x, e.y))
  287. print_line_from_here_to_there(s, e);
  288. vertical_mesh_line_flags.mark(i, j); // Mark done, even if skipped
  289. }
  290. }
  291. }
  292. }
  293. }
  294. return false;
  295. }
  296. /**
  297. * Turn on the bed and nozzle heat and
  298. * wait for them to get up to temperature.
  299. */
  300. inline bool turn_on_heaters() {
  301. SERIAL_ECHOLNPGM("Waiting for heatup.");
  302. #if HAS_HEATED_BED
  303. if (g26_bed_temp > 25) {
  304. #if HAS_SPI_LCD
  305. ui.set_status_P(GET_TEXT(MSG_G26_HEATING_BED), 99);
  306. ui.quick_feedback();
  307. #if HAS_LCD_MENU
  308. ui.capture();
  309. #endif
  310. #endif
  311. thermalManager.setTargetBed(g26_bed_temp);
  312. // Wait for the temperature to stabilize
  313. if (!thermalManager.wait_for_bed(true
  314. #if G26_CLICK_CAN_CANCEL
  315. , true
  316. #endif
  317. )
  318. ) return G26_ERR;
  319. }
  320. #endif // HAS_HEATED_BED
  321. // Start heating the active nozzle
  322. #if HAS_SPI_LCD
  323. ui.set_status_P(GET_TEXT(MSG_G26_HEATING_NOZZLE), 99);
  324. ui.quick_feedback();
  325. #endif
  326. thermalManager.setTargetHotend(g26_hotend_temp, active_extruder);
  327. // Wait for the temperature to stabilize
  328. if (!thermalManager.wait_for_hotend(active_extruder, true
  329. #if G26_CLICK_CAN_CANCEL
  330. , true
  331. #endif
  332. )
  333. ) return G26_ERR;
  334. #if HAS_SPI_LCD
  335. ui.reset_status();
  336. ui.quick_feedback();
  337. #endif
  338. return G26_OK;
  339. }
  340. /**
  341. * Prime the nozzle if needed. Return true on error.
  342. */
  343. inline bool prime_nozzle() {
  344. const feedRate_t fr_slow_e = planner.settings.max_feedrate_mm_s[E_AXIS] / 15.0f;
  345. #if HAS_LCD_MENU && DISABLED(TOUCH_BUTTONS) // ui.button_pressed issue with touchscreen
  346. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  347. float Total_Prime = 0.0;
  348. #endif
  349. if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged
  350. ui.capture();
  351. ui.set_status_P(GET_TEXT(MSG_G26_MANUAL_PRIME), 99);
  352. ui.chirp();
  353. destination = current_position;
  354. recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
  355. while (!ui.button_pressed()) {
  356. ui.chirp();
  357. destination.e += 0.25;
  358. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  359. Total_Prime += 0.25;
  360. if (Total_Prime >= EXTRUDE_MAXLENGTH) {
  361. ui.release();
  362. return G26_ERR;
  363. }
  364. #endif
  365. prepare_internal_move_to_destination(fr_slow_e);
  366. destination = current_position;
  367. planner.synchronize(); // Without this synchronize, the purge is more consistent,
  368. // but because the planner has a buffer, we won't be able
  369. // to stop as quickly. So we put up with the less smooth
  370. // action to give the user a more responsive 'Stop'.
  371. }
  372. ui.wait_for_release();
  373. ui.set_status_P(GET_TEXT(MSG_G26_PRIME_DONE), 99);
  374. ui.quick_feedback();
  375. ui.release();
  376. }
  377. else
  378. #endif
  379. {
  380. #if HAS_SPI_LCD
  381. ui.set_status_P(GET_TEXT(MSG_G26_FIXED_LENGTH), 99);
  382. ui.quick_feedback();
  383. #endif
  384. destination = current_position;
  385. destination.e += g26_prime_length;
  386. prepare_internal_move_to_destination(fr_slow_e);
  387. destination.e -= g26_prime_length;
  388. retract_filament(destination);
  389. }
  390. return G26_OK;
  391. }
  392. /**
  393. * G26: Mesh Validation Pattern generation.
  394. *
  395. * Used to interactively edit the mesh by placing the
  396. * nozzle in a problem area and doing a G29 P4 R command.
  397. *
  398. * Parameters:
  399. *
  400. * B Bed Temperature
  401. * C Continue from the Closest mesh point
  402. * D Disable leveling before starting
  403. * F Filament diameter
  404. * H Hotend Temperature
  405. * K Keep heaters on when completed
  406. * L Layer Height
  407. * O Ooze extrusion length
  408. * P Prime length
  409. * Q Retraction multiplier
  410. * R Repetitions (number of grid points)
  411. * S Nozzle Size (diameter) in mm
  412. * T Tool index to change to, if included
  413. * U Random deviation (50 if no value given)
  414. * X X position
  415. * Y Y position
  416. */
  417. void GcodeSuite::G26() {
  418. SERIAL_ECHOLNPGM("G26 starting...");
  419. // Don't allow Mesh Validation without homing first,
  420. // or if the parameter parsing did not go OK, abort
  421. if (axis_unhomed_error()) return;
  422. // Change the tool first, if specified
  423. if (parser.seenval('T')) tool_change(parser.value_int());
  424. g26_extrusion_multiplier = EXTRUSION_MULTIPLIER;
  425. g26_retraction_multiplier = G26_RETRACT_MULTIPLIER;
  426. g26_layer_height = MESH_TEST_LAYER_HEIGHT;
  427. g26_prime_length = PRIME_LENGTH;
  428. g26_bed_temp = MESH_TEST_BED_TEMP;
  429. g26_hotend_temp = MESH_TEST_HOTEND_TEMP;
  430. g26_prime_flag = 0;
  431. float g26_nozzle = MESH_TEST_NOZZLE_SIZE,
  432. g26_filament_diameter = DEFAULT_NOMINAL_FILAMENT_DIA,
  433. g26_ooze_amount = parser.linearval('O', OOZE_AMOUNT);
  434. bool g26_continue_with_closest = parser.boolval('C'),
  435. g26_keep_heaters_on = parser.boolval('K');
  436. #if HAS_HEATED_BED
  437. if (parser.seenval('B')) {
  438. g26_bed_temp = parser.value_celsius();
  439. if (g26_bed_temp && !WITHIN(g26_bed_temp, 40, (BED_MAXTEMP - 10))) {
  440. SERIAL_ECHOLNPAIR("?Specified bed temperature not plausible (40-", int(BED_MAXTEMP - 10), "C).");
  441. return;
  442. }
  443. }
  444. #endif
  445. if (parser.seenval('L')) {
  446. g26_layer_height = parser.value_linear_units();
  447. if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
  448. SERIAL_ECHOLNPGM("?Specified layer height not plausible.");
  449. return;
  450. }
  451. }
  452. if (parser.seen('Q')) {
  453. if (parser.has_value()) {
  454. g26_retraction_multiplier = parser.value_float();
  455. if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
  456. SERIAL_ECHOLNPGM("?Specified Retraction Multiplier not plausible.");
  457. return;
  458. }
  459. }
  460. else {
  461. SERIAL_ECHOLNPGM("?Retraction Multiplier must be specified.");
  462. return;
  463. }
  464. }
  465. if (parser.seenval('S')) {
  466. g26_nozzle = parser.value_float();
  467. if (!WITHIN(g26_nozzle, 0.1, 2.0)) {
  468. SERIAL_ECHOLNPGM("?Specified nozzle size not plausible.");
  469. return;
  470. }
  471. }
  472. if (parser.seen('P')) {
  473. if (!parser.has_value()) {
  474. #if HAS_LCD_MENU
  475. g26_prime_flag = -1;
  476. #else
  477. SERIAL_ECHOLNPGM("?Prime length must be specified when not using an LCD.");
  478. return;
  479. #endif
  480. }
  481. else {
  482. g26_prime_flag++;
  483. g26_prime_length = parser.value_linear_units();
  484. if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
  485. SERIAL_ECHOLNPGM("?Specified prime length not plausible.");
  486. return;
  487. }
  488. }
  489. }
  490. if (parser.seenval('F')) {
  491. g26_filament_diameter = parser.value_linear_units();
  492. if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
  493. SERIAL_ECHOLNPGM("?Specified filament size not plausible.");
  494. return;
  495. }
  496. }
  497. g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
  498. // scale up or down the length needed to get the
  499. // same volume of filament
  500. g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size
  501. if (parser.seenval('H')) {
  502. g26_hotend_temp = parser.value_celsius();
  503. if (!WITHIN(g26_hotend_temp, 165, (HEATER_0_MAXTEMP - 15))) {
  504. SERIAL_ECHOLNPGM("?Specified nozzle temperature not plausible.");
  505. return;
  506. }
  507. }
  508. if (parser.seen('U')) {
  509. randomSeed(millis());
  510. // This setting will persist for the next G26
  511. random_deviation = parser.has_value() ? parser.value_float() : 50.0;
  512. }
  513. int16_t g26_repeats;
  514. #if HAS_LCD_MENU
  515. g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1);
  516. #else
  517. if (!parser.seen('R')) {
  518. SERIAL_ECHOLNPGM("?(R)epeat must be specified when not using an LCD.");
  519. return;
  520. }
  521. else
  522. g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
  523. #endif
  524. if (g26_repeats < 1) {
  525. SERIAL_ECHOLNPGM("?(R)epeat value not plausible; must be at least 1.");
  526. return;
  527. }
  528. g26_xy_pos.set(parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : current_position.x,
  529. parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : current_position.y);
  530. if (!position_is_reachable(g26_xy_pos)) {
  531. SERIAL_ECHOLNPGM("?Specified X,Y coordinate out of bounds.");
  532. return;
  533. }
  534. /**
  535. * Wait until all parameters are verified before altering the state!
  536. */
  537. set_bed_leveling_enabled(!parser.seen('D'));
  538. if (current_position.z < Z_CLEARANCE_BETWEEN_PROBES)
  539. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  540. #if DISABLED(NO_VOLUMETRICS)
  541. bool volumetric_was_enabled = parser.volumetric_enabled;
  542. parser.volumetric_enabled = false;
  543. planner.calculate_volumetric_multipliers();
  544. #endif
  545. if (turn_on_heaters() != G26_OK) goto LEAVE;
  546. current_position.e = 0.0;
  547. sync_plan_position_e();
  548. if (g26_prime_flag && prime_nozzle() != G26_OK) goto LEAVE;
  549. /**
  550. * Bed is preheated
  551. *
  552. * Nozzle is at temperature
  553. *
  554. * Filament is primed!
  555. *
  556. * It's "Show Time" !!!
  557. */
  558. circle_flags.reset();
  559. horizontal_mesh_line_flags.reset();
  560. vertical_mesh_line_flags.reset();
  561. // Move nozzle to the specified height for the first layer
  562. destination = current_position;
  563. destination.z = g26_layer_height;
  564. move_to(destination, 0.0);
  565. move_to(destination, g26_ooze_amount);
  566. #if HAS_LCD_MENU
  567. ui.capture();
  568. #endif
  569. #if DISABLED(ARC_SUPPORT)
  570. /**
  571. * Pre-generate radius offset values at 30 degree intervals to reduce CPU load.
  572. */
  573. #define A_INT 30
  574. #define _ANGS (360 / A_INT)
  575. #define A_CNT (_ANGS / 2)
  576. #define _IND(A) ((A + _ANGS * 8) % _ANGS)
  577. #define _COS(A) (trig_table[_IND(A) % A_CNT] * (_IND(A) >= A_CNT ? -1 : 1))
  578. #define _SIN(A) (-_COS((A + A_CNT / 2) % _ANGS))
  579. #if A_CNT & 1
  580. #error "A_CNT must be a positive value. Please change A_INT."
  581. #endif
  582. float trig_table[A_CNT];
  583. LOOP_L_N(i, A_CNT)
  584. trig_table[i] = INTERSECTION_CIRCLE_RADIUS * cos(RADIANS(i * A_INT));
  585. #endif // !ARC_SUPPORT
  586. mesh_index_pair location;
  587. do {
  588. // Find the nearest confluence
  589. location = find_closest_circle_to_print(g26_continue_with_closest ? xy_pos_t(current_position) : g26_xy_pos);
  590. if (location.valid()) {
  591. const xy_pos_t circle = _GET_MESH_POS(location.pos);
  592. // If this mesh location is outside the printable radius, skip it.
  593. if (!position_is_reachable(circle)) continue;
  594. // Determine where to start and end the circle,
  595. // which is always drawn counter-clockwise.
  596. const xy_int8_t st = location;
  597. const bool f = st.y == 0,
  598. r = st.x >= GRID_MAX_POINTS_X - 1,
  599. b = st.y >= GRID_MAX_POINTS_Y - 1;
  600. #if ENABLED(ARC_SUPPORT)
  601. #define ARC_LENGTH(quarters) (INTERSECTION_CIRCLE_RADIUS * M_PI * (quarters) / 2)
  602. #define INTERSECTION_CIRCLE_DIAM ((INTERSECTION_CIRCLE_RADIUS) * 2)
  603. xy_float_t e = { circle.x + INTERSECTION_CIRCLE_RADIUS, circle.y };
  604. xyz_float_t s = e;
  605. // Figure out where to start and end the arc - we always print counterclockwise
  606. float arc_length = ARC_LENGTH(4);
  607. if (st.x == 0) { // left edge
  608. if (!f) { s.x = circle.x; s.y -= INTERSECTION_CIRCLE_RADIUS; }
  609. if (!b) { e.x = circle.x; e.y += INTERSECTION_CIRCLE_RADIUS; }
  610. arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
  611. }
  612. else if (r) { // right edge
  613. if (b) s.set(circle.x - (INTERSECTION_CIRCLE_RADIUS), circle.y);
  614. else s.set(circle.x, circle.y + INTERSECTION_CIRCLE_RADIUS);
  615. if (f) e.set(circle.x - (INTERSECTION_CIRCLE_RADIUS), circle.y);
  616. else e.set(circle.x, circle.y - (INTERSECTION_CIRCLE_RADIUS));
  617. arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
  618. }
  619. else if (f) {
  620. e.x -= INTERSECTION_CIRCLE_DIAM;
  621. arc_length = ARC_LENGTH(2);
  622. }
  623. else if (b) {
  624. s.x -= INTERSECTION_CIRCLE_DIAM;
  625. arc_length = ARC_LENGTH(2);
  626. }
  627. const ab_float_t arc_offset = circle - s;
  628. const xy_float_t dist = current_position - s; // Distance from the start of the actual circle
  629. const float dist_start = HYPOT2(dist.x, dist.y);
  630. const xyze_pos_t endpoint = {
  631. e.x, e.y, g26_layer_height,
  632. current_position.e + (arc_length * g26_e_axis_feedrate * g26_extrusion_multiplier)
  633. };
  634. if (dist_start > 2.0) {
  635. s.z = g26_layer_height + 0.5f;
  636. retract_lift_move(s);
  637. }
  638. s.z = g26_layer_height;
  639. move_to(s, 0.0); // Get to the starting point with no extrusion / un-Z lift
  640. recover_filament(destination);
  641. const feedRate_t old_feedrate = feedrate_mm_s;
  642. feedrate_mm_s = PLANNER_XY_FEEDRATE() * 0.1f;
  643. plan_arc(endpoint, arc_offset, false); // Draw a counter-clockwise arc
  644. feedrate_mm_s = old_feedrate;
  645. destination = current_position;
  646. #if HAS_LCD_MENU
  647. if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
  648. #endif
  649. #else // !ARC_SUPPORT
  650. int8_t start_ind = -2, end_ind = 9; // Assume a full circle (from 5:00 to 5:00)
  651. if (st.x == 0) { // Left edge? Just right half.
  652. start_ind = f ? 0 : -3; // 03:00 to 12:00 for front-left
  653. end_ind = b ? 0 : 2; // 06:00 to 03:00 for back-left
  654. }
  655. else if (r) { // Right edge? Just left half.
  656. start_ind = b ? 6 : 3; // 12:00 to 09:00 for front-right
  657. end_ind = f ? 5 : 8; // 09:00 to 06:00 for back-right
  658. }
  659. else if (f) { // Front edge? Just back half.
  660. start_ind = 0; // 03:00
  661. end_ind = 5; // 09:00
  662. }
  663. else if (b) { // Back edge? Just front half.
  664. start_ind = 6; // 09:00
  665. end_ind = 11; // 03:00
  666. }
  667. for (int8_t ind = start_ind; ind <= end_ind; ind++) {
  668. #if HAS_LCD_MENU
  669. if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
  670. #endif
  671. xyz_float_t p = { circle.x + _COS(ind ), circle.y + _SIN(ind ), g26_layer_height },
  672. q = { circle.x + _COS(ind + 1), circle.y + _SIN(ind + 1), g26_layer_height };
  673. #if IS_KINEMATIC
  674. // Check to make sure this segment is entirely on the bed, skip if not.
  675. if (!position_is_reachable(p) || !position_is_reachable(q)) continue;
  676. #else
  677. LIMIT(p.x, X_MIN_POS + 1, X_MAX_POS - 1); // Prevent hitting the endstops
  678. LIMIT(p.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  679. LIMIT(q.x, X_MIN_POS + 1, X_MAX_POS - 1);
  680. LIMIT(q.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  681. #endif
  682. print_line_from_here_to_there(p, q);
  683. SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
  684. }
  685. #endif // !ARC_SUPPORT
  686. if (look_for_lines_to_connect()) goto LEAVE;
  687. }
  688. SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
  689. } while (--g26_repeats && location.valid());
  690. LEAVE:
  691. ui.set_status_P(GET_TEXT(MSG_G26_LEAVING), -1);
  692. retract_filament(destination);
  693. destination.z = Z_CLEARANCE_BETWEEN_PROBES;
  694. move_to(destination, 0); // Raise the nozzle
  695. destination = g26_xy_pos; // Move back to the starting XY position
  696. move_to(destination, 0); // Move back to the starting position
  697. #if DISABLED(NO_VOLUMETRICS)
  698. parser.volumetric_enabled = volumetric_was_enabled;
  699. planner.calculate_volumetric_multipliers();
  700. #endif
  701. #if HAS_LCD_MENU
  702. ui.release(); // Give back control of the LCD
  703. #endif
  704. if (!g26_keep_heaters_on) {
  705. #if HAS_HEATED_BED
  706. thermalManager.setTargetBed(0);
  707. #endif
  708. thermalManager.setTargetHotend(active_extruder, 0);
  709. }
  710. }
  711. #endif // G26_MESH_VALIDATION