My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.h 32KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #pragma once
  23. /**
  24. * planner.h
  25. *
  26. * Buffer movement commands and manage the acceleration profile plan
  27. *
  28. * Derived from Grbl
  29. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  30. */
  31. #include "../MarlinCore.h"
  32. #include "motion.h"
  33. #include "../gcode/queue.h"
  34. #if ENABLED(DELTA)
  35. #include "delta.h"
  36. #endif
  37. #if ABL_PLANAR
  38. #include "../libs/vector_3.h" // for matrix_3x3
  39. #endif
  40. #if ENABLED(FWRETRACT)
  41. #include "../feature/fwretract.h"
  42. #endif
  43. #if ENABLED(MIXING_EXTRUDER)
  44. #include "../feature/mixing.h"
  45. #endif
  46. #if HAS_CUTTER
  47. #include "../feature/spindle_laser.h"
  48. #endif
  49. // Feedrate for manual moves
  50. #ifdef MANUAL_FEEDRATE
  51. constexpr xyze_feedrate_t _mf = MANUAL_FEEDRATE,
  52. manual_feedrate_mm_s { _mf.x / 60.0f, _mf.y / 60.0f, _mf.z / 60.0f, _mf.e / 60.0f };
  53. #endif
  54. enum BlockFlagBit : char {
  55. // Recalculate trapezoids on entry junction. For optimization.
  56. BLOCK_BIT_RECALCULATE,
  57. // Nominal speed always reached.
  58. // i.e., The segment is long enough, so the nominal speed is reachable if accelerating
  59. // from a safe speed (in consideration of jerking from zero speed).
  60. BLOCK_BIT_NOMINAL_LENGTH,
  61. // The block is segment 2+ of a longer move
  62. BLOCK_BIT_CONTINUED,
  63. // Sync the stepper counts from the block
  64. BLOCK_BIT_SYNC_POSITION
  65. };
  66. enum BlockFlag : char {
  67. BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE),
  68. BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH),
  69. BLOCK_FLAG_CONTINUED = _BV(BLOCK_BIT_CONTINUED),
  70. BLOCK_FLAG_SYNC_POSITION = _BV(BLOCK_BIT_SYNC_POSITION)
  71. };
  72. /**
  73. * struct block_t
  74. *
  75. * A single entry in the planner buffer.
  76. * Tracks linear movement over multiple axes.
  77. *
  78. * The "nominal" values are as-specified by gcode, and
  79. * may never actually be reached due to acceleration limits.
  80. */
  81. typedef struct block_t {
  82. volatile uint8_t flag; // Block flags (See BlockFlag enum above) - Modified by ISR and main thread!
  83. // Fields used by the motion planner to manage acceleration
  84. float nominal_speed_sqr, // The nominal speed for this block in (mm/sec)^2
  85. entry_speed_sqr, // Entry speed at previous-current junction in (mm/sec)^2
  86. max_entry_speed_sqr, // Maximum allowable junction entry speed in (mm/sec)^2
  87. millimeters, // The total travel of this block in mm
  88. acceleration; // acceleration mm/sec^2
  89. union {
  90. abce_ulong_t steps; // Step count along each axis
  91. abce_long_t position; // New position to force when this sync block is executed
  92. };
  93. uint32_t step_event_count; // The number of step events required to complete this block
  94. #if EXTRUDERS > 1
  95. uint8_t extruder; // The extruder to move (if E move)
  96. #else
  97. static constexpr uint8_t extruder = 0;
  98. #endif
  99. #if ENABLED(MIXING_EXTRUDER)
  100. MIXER_BLOCK_FIELD; // Normalized color for the mixing steppers
  101. #endif
  102. // Settings for the trapezoid generator
  103. uint32_t accelerate_until, // The index of the step event on which to stop acceleration
  104. decelerate_after; // The index of the step event on which to start decelerating
  105. #if ENABLED(S_CURVE_ACCELERATION)
  106. uint32_t cruise_rate, // The actual cruise rate to use, between end of the acceleration phase and start of deceleration phase
  107. acceleration_time, // Acceleration time and deceleration time in STEP timer counts
  108. deceleration_time,
  109. acceleration_time_inverse, // Inverse of acceleration and deceleration periods, expressed as integer. Scale depends on CPU being used
  110. deceleration_time_inverse;
  111. #else
  112. uint32_t acceleration_rate; // The acceleration rate used for acceleration calculation
  113. #endif
  114. uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
  115. // Advance extrusion
  116. #if ENABLED(LIN_ADVANCE)
  117. bool use_advance_lead;
  118. uint16_t advance_speed, // STEP timer value for extruder speed offset ISR
  119. max_adv_steps, // max. advance steps to get cruising speed pressure (not always nominal_speed!)
  120. final_adv_steps; // advance steps due to exit speed
  121. float e_D_ratio;
  122. #endif
  123. uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
  124. initial_rate, // The jerk-adjusted step rate at start of block
  125. final_rate, // The minimal rate at exit
  126. acceleration_steps_per_s2; // acceleration steps/sec^2
  127. #if HAS_CUTTER
  128. cutter_power_t cutter_power; // Power level for Spindle, Laser, etc.
  129. #endif
  130. #if FAN_COUNT > 0
  131. uint8_t fan_speed[FAN_COUNT];
  132. #endif
  133. #if ENABLED(BARICUDA)
  134. uint8_t valve_pressure, e_to_p_pressure;
  135. #endif
  136. #if HAS_SPI_LCD
  137. uint32_t segment_time_us;
  138. #endif
  139. #if ENABLED(POWER_LOSS_RECOVERY)
  140. uint32_t sdpos;
  141. #endif
  142. } block_t;
  143. #define HAS_POSITION_FLOAT ANY(LIN_ADVANCE, SCARA_FEEDRATE_SCALING, GRADIENT_MIX, LCD_SHOW_E_TOTAL)
  144. #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
  145. typedef struct {
  146. uint32_t max_acceleration_mm_per_s2[XYZE_N], // (mm/s^2) M201 XYZE
  147. min_segment_time_us; // (µs) M205 B
  148. float axis_steps_per_mm[XYZE_N]; // (steps) M92 XYZE - Steps per millimeter
  149. feedRate_t max_feedrate_mm_s[XYZE_N]; // (mm/s) M203 XYZE - Max speeds
  150. float acceleration, // (mm/s^2) M204 S - Normal acceleration. DEFAULT ACCELERATION for all printing moves.
  151. retract_acceleration, // (mm/s^2) M204 R - Retract acceleration. Filament pull-back and push-forward while standing still in the other axes
  152. travel_acceleration; // (mm/s^2) M204 T - Travel acceleration. DEFAULT ACCELERATION for all NON printing moves.
  153. feedRate_t min_feedrate_mm_s, // (mm/s) M205 S - Minimum linear feedrate
  154. min_travel_feedrate_mm_s; // (mm/s) M205 T - Minimum travel feedrate
  155. } planner_settings_t;
  156. #if DISABLED(SKEW_CORRECTION)
  157. #define XY_SKEW_FACTOR 0
  158. #define XZ_SKEW_FACTOR 0
  159. #define YZ_SKEW_FACTOR 0
  160. #endif
  161. typedef struct {
  162. #if ENABLED(SKEW_CORRECTION_GCODE)
  163. float xy;
  164. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  165. float xz, yz;
  166. #else
  167. const float xz = XZ_SKEW_FACTOR, yz = YZ_SKEW_FACTOR;
  168. #endif
  169. #else
  170. const float xy = XY_SKEW_FACTOR,
  171. xz = XZ_SKEW_FACTOR, yz = YZ_SKEW_FACTOR;
  172. #endif
  173. } skew_factor_t;
  174. class Planner {
  175. public:
  176. /**
  177. * The move buffer, calculated in stepper steps
  178. *
  179. * block_buffer is a ring buffer...
  180. *
  181. * head,tail : indexes for write,read
  182. * head==tail : the buffer is empty
  183. * head!=tail : blocks are in the buffer
  184. * head==(tail-1)%size : the buffer is full
  185. *
  186. * Writer of head is Planner::buffer_segment().
  187. * Reader of tail is Stepper::isr(). Always consider tail busy / read-only
  188. */
  189. static block_t block_buffer[BLOCK_BUFFER_SIZE];
  190. static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
  191. block_buffer_nonbusy, // Index of the first non busy block
  192. block_buffer_planned, // Index of the optimally planned block
  193. block_buffer_tail; // Index of the busy block, if any
  194. static uint16_t cleaning_buffer_counter; // A counter to disable queuing of blocks
  195. static uint8_t delay_before_delivering; // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks
  196. #if ENABLED(DISTINCT_E_FACTORS)
  197. static uint8_t last_extruder; // Respond to extruder change
  198. #endif
  199. #if EXTRUDERS
  200. static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
  201. static float e_factor[EXTRUDERS]; // The flow percentage and volumetric multiplier combine to scale E movement
  202. #endif
  203. #if DISABLED(NO_VOLUMETRICS)
  204. static float filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
  205. volumetric_area_nominal, // Nominal cross-sectional area
  206. volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
  207. // May be auto-adjusted by a filament width sensor
  208. #endif
  209. static planner_settings_t settings;
  210. static uint32_t max_acceleration_steps_per_s2[XYZE_N]; // (steps/s^2) Derived from mm_per_s2
  211. static float steps_to_mm[XYZE_N]; // Millimeters per step
  212. #if DISABLED(CLASSIC_JERK)
  213. static float junction_deviation_mm; // (mm) M205 J
  214. #if ENABLED(LIN_ADVANCE)
  215. static float max_e_jerk // Calculated from junction_deviation_mm
  216. #if ENABLED(DISTINCT_E_FACTORS)
  217. [EXTRUDERS]
  218. #endif
  219. ;
  220. #endif
  221. #endif
  222. #if HAS_CLASSIC_JERK
  223. #if HAS_LINEAR_E_JERK
  224. static xyz_pos_t max_jerk; // (mm/s^2) M205 XYZ - The largest speed change requiring no acceleration.
  225. #else
  226. static xyze_pos_t max_jerk; // (mm/s^2) M205 XYZE - The largest speed change requiring no acceleration.
  227. #endif
  228. #endif
  229. #if HAS_LEVELING
  230. static bool leveling_active; // Flag that bed leveling is enabled
  231. #if ABL_PLANAR
  232. static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
  233. #endif
  234. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  235. static float z_fade_height, inverse_z_fade_height;
  236. #endif
  237. #else
  238. static constexpr bool leveling_active = false;
  239. #endif
  240. #if ENABLED(LIN_ADVANCE)
  241. static float extruder_advance_K[EXTRUDERS];
  242. #endif
  243. /**
  244. * The current position of the tool in absolute steps
  245. * Recalculated if any axis_steps_per_mm are changed by gcode
  246. */
  247. static xyze_long_t position;
  248. #if HAS_POSITION_FLOAT
  249. static xyze_pos_t position_float;
  250. #endif
  251. #if IS_KINEMATIC
  252. static xyze_pos_t position_cart;
  253. #endif
  254. static skew_factor_t skew_factor;
  255. #if ENABLED(SD_ABORT_ON_ENDSTOP_HIT)
  256. static bool abort_on_endstop_hit;
  257. #endif
  258. private:
  259. /**
  260. * Speed of previous path line segment
  261. */
  262. static xyze_float_t previous_speed;
  263. /**
  264. * Nominal speed of previous path line segment (mm/s)^2
  265. */
  266. static float previous_nominal_speed_sqr;
  267. /**
  268. * Limit where 64bit math is necessary for acceleration calculation
  269. */
  270. static uint32_t cutoff_long;
  271. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  272. static float last_fade_z;
  273. #endif
  274. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  275. /**
  276. * Counters to manage disabling inactive extruders
  277. */
  278. static uint8_t g_uc_extruder_last_move[EXTRUDERS];
  279. #endif // DISABLE_INACTIVE_EXTRUDER
  280. #ifdef XY_FREQUENCY_LIMIT
  281. // Used for the frequency limit
  282. #define MAX_FREQ_TIME_US (uint32_t)(1000000.0 / XY_FREQUENCY_LIMIT)
  283. // Old direction bits. Used for speed calculations
  284. static unsigned char old_direction_bits;
  285. // Segment times (in µs). Used for speed calculations
  286. static xy_ulong_t axis_segment_time_us[3];
  287. #endif
  288. #if HAS_SPI_LCD
  289. volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs
  290. #endif
  291. public:
  292. /**
  293. * Instance Methods
  294. */
  295. Planner();
  296. void init();
  297. /**
  298. * Static (class) Methods
  299. */
  300. static void reset_acceleration_rates();
  301. static void refresh_positioning();
  302. static void set_max_acceleration(const uint8_t axis, float targetValue);
  303. static void set_max_feedrate(const uint8_t axis, float targetValue);
  304. static void set_max_jerk(const AxisEnum axis, float targetValue);
  305. #if EXTRUDERS
  306. FORCE_INLINE static void refresh_e_factor(const uint8_t e) {
  307. e_factor[e] = (flow_percentage[e] * 0.01f
  308. #if DISABLED(NO_VOLUMETRICS)
  309. * volumetric_multiplier[e]
  310. #endif
  311. );
  312. }
  313. #endif
  314. // Manage fans, paste pressure, etc.
  315. static void check_axes_activity();
  316. // Update multipliers based on new diameter measurements
  317. static void calculate_volumetric_multipliers();
  318. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  319. void apply_filament_width_sensor(const int8_t encoded_ratio);
  320. static inline float volumetric_percent(const bool vol) {
  321. return 100.0f * (vol
  322. ? volumetric_area_nominal / volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
  323. : volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
  324. );
  325. }
  326. #endif
  327. #if DISABLED(NO_VOLUMETRICS)
  328. FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
  329. filament_size[e] = v;
  330. // make sure all extruders have some sane value for the filament size
  331. LOOP_L_N(i, COUNT(filament_size))
  332. if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  333. }
  334. #endif
  335. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  336. /**
  337. * Get the Z leveling fade factor based on the given Z height,
  338. * re-calculating only when needed.
  339. *
  340. * Returns 1.0 if planner.z_fade_height is 0.0.
  341. * Returns 0.0 if Z is past the specified 'Fade Height'.
  342. */
  343. static inline float fade_scaling_factor_for_z(const float &rz) {
  344. static float z_fade_factor = 1;
  345. if (!z_fade_height) return 1;
  346. if (rz >= z_fade_height) return 0;
  347. if (last_fade_z != rz) {
  348. last_fade_z = rz;
  349. z_fade_factor = 1 - rz * inverse_z_fade_height;
  350. }
  351. return z_fade_factor;
  352. }
  353. FORCE_INLINE static void force_fade_recalc() { last_fade_z = -999.999f; }
  354. FORCE_INLINE static void set_z_fade_height(const float &zfh) {
  355. z_fade_height = zfh > 0 ? zfh : 0;
  356. inverse_z_fade_height = RECIPROCAL(z_fade_height);
  357. force_fade_recalc();
  358. }
  359. FORCE_INLINE static bool leveling_active_at_z(const float &rz) {
  360. return !z_fade_height || rz < z_fade_height;
  361. }
  362. #else
  363. FORCE_INLINE static float fade_scaling_factor_for_z(const float&) { return 1; }
  364. FORCE_INLINE static bool leveling_active_at_z(const float&) { return true; }
  365. #endif
  366. #if ENABLED(SKEW_CORRECTION)
  367. FORCE_INLINE static void skew(float &cx, float &cy, const float &cz) {
  368. if (WITHIN(cx, X_MIN_POS + 1, X_MAX_POS) && WITHIN(cy, Y_MIN_POS + 1, Y_MAX_POS)) {
  369. const float sx = cx - cy * skew_factor.xy - cz * (skew_factor.xz - (skew_factor.xy * skew_factor.yz)),
  370. sy = cy - cz * skew_factor.yz;
  371. if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
  372. cx = sx; cy = sy;
  373. }
  374. }
  375. }
  376. FORCE_INLINE static void skew(xyz_pos_t &raw) { skew(raw.x, raw.y, raw.z); }
  377. FORCE_INLINE static void unskew(float &cx, float &cy, const float &cz) {
  378. if (WITHIN(cx, X_MIN_POS, X_MAX_POS) && WITHIN(cy, Y_MIN_POS, Y_MAX_POS)) {
  379. const float sx = cx + cy * skew_factor.xy + cz * skew_factor.xz,
  380. sy = cy + cz * skew_factor.yz;
  381. if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
  382. cx = sx; cy = sy;
  383. }
  384. }
  385. }
  386. FORCE_INLINE static void unskew(xyz_pos_t &raw) { unskew(raw.x, raw.y, raw.z); }
  387. #endif // SKEW_CORRECTION
  388. #if HAS_LEVELING
  389. /**
  390. * Apply leveling to transform a cartesian position
  391. * as it will be given to the planner and steppers.
  392. */
  393. static void apply_leveling(xyz_pos_t &raw);
  394. static void unapply_leveling(xyz_pos_t &raw);
  395. FORCE_INLINE static void force_unapply_leveling(xyz_pos_t &raw) {
  396. leveling_active = true;
  397. unapply_leveling(raw);
  398. leveling_active = false;
  399. }
  400. #endif
  401. #if ENABLED(FWRETRACT)
  402. static void apply_retract(float &rz, float &e);
  403. FORCE_INLINE static void apply_retract(xyze_pos_t &raw) { apply_retract(raw.z, raw.e); }
  404. static void unapply_retract(float &rz, float &e);
  405. FORCE_INLINE static void unapply_retract(xyze_pos_t &raw) { unapply_retract(raw.z, raw.e); }
  406. #endif
  407. #if HAS_POSITION_MODIFIERS
  408. FORCE_INLINE static void apply_modifiers(xyze_pos_t &pos
  409. #if HAS_LEVELING
  410. , bool leveling =
  411. #if PLANNER_LEVELING
  412. true
  413. #else
  414. false
  415. #endif
  416. #endif
  417. ) {
  418. #if ENABLED(SKEW_CORRECTION)
  419. skew(pos);
  420. #endif
  421. #if HAS_LEVELING
  422. if (leveling) apply_leveling(pos);
  423. #endif
  424. #if ENABLED(FWRETRACT)
  425. apply_retract(pos);
  426. #endif
  427. }
  428. FORCE_INLINE static void unapply_modifiers(xyze_pos_t &pos
  429. #if HAS_LEVELING
  430. , bool leveling =
  431. #if PLANNER_LEVELING
  432. true
  433. #else
  434. false
  435. #endif
  436. #endif
  437. ) {
  438. #if ENABLED(FWRETRACT)
  439. unapply_retract(pos);
  440. #endif
  441. #if HAS_LEVELING
  442. if (leveling) unapply_leveling(pos);
  443. #endif
  444. #if ENABLED(SKEW_CORRECTION)
  445. unskew(pos);
  446. #endif
  447. }
  448. #endif // HAS_POSITION_MODIFIERS
  449. // Number of moves currently in the planner including the busy block, if any
  450. FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail); }
  451. // Number of nonbusy moves currently in the planner
  452. FORCE_INLINE static uint8_t nonbusy_movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_nonbusy); }
  453. // Remove all blocks from the buffer
  454. FORCE_INLINE static void clear_block_buffer() { block_buffer_nonbusy = block_buffer_planned = block_buffer_head = block_buffer_tail = 0; }
  455. // Check if movement queue is full
  456. FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); }
  457. // Get count of movement slots free
  458. FORCE_INLINE static uint8_t moves_free() { return BLOCK_BUFFER_SIZE - 1 - movesplanned(); }
  459. /**
  460. * Planner::get_next_free_block
  461. *
  462. * - Get the next head indices (passed by reference)
  463. * - Wait for the number of spaces to open up in the planner
  464. * - Return the first head block
  465. */
  466. FORCE_INLINE static block_t* get_next_free_block(uint8_t &next_buffer_head, const uint8_t count=1) {
  467. // Wait until there are enough slots free
  468. while (moves_free() < count) { idle(); }
  469. // Return the first available block
  470. next_buffer_head = next_block_index(block_buffer_head);
  471. return &block_buffer[block_buffer_head];
  472. }
  473. /**
  474. * Planner::_buffer_steps
  475. *
  476. * Add a new linear movement to the buffer (in terms of steps).
  477. *
  478. * target - target position in steps units
  479. * fr_mm_s - (target) speed of the move
  480. * extruder - target extruder
  481. * millimeters - the length of the movement, if known
  482. *
  483. * Returns true if movement was buffered, false otherwise
  484. */
  485. static bool _buffer_steps(const xyze_long_t &target
  486. #if HAS_POSITION_FLOAT
  487. , const xyze_pos_t &target_float
  488. #endif
  489. #if IS_KINEMATIC && DISABLED(CLASSIC_JERK)
  490. , const xyze_float_t &delta_mm_cart
  491. #endif
  492. , feedRate_t fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  493. );
  494. /**
  495. * Planner::_populate_block
  496. *
  497. * Fills a new linear movement in the block (in terms of steps).
  498. *
  499. * target - target position in steps units
  500. * fr_mm_s - (target) speed of the move
  501. * extruder - target extruder
  502. * millimeters - the length of the movement, if known
  503. *
  504. * Returns true is movement is acceptable, false otherwise
  505. */
  506. static bool _populate_block(block_t * const block, bool split_move,
  507. const xyze_long_t &target
  508. #if HAS_POSITION_FLOAT
  509. , const xyze_pos_t &target_float
  510. #endif
  511. #if IS_KINEMATIC && DISABLED(CLASSIC_JERK)
  512. , const xyze_float_t &delta_mm_cart
  513. #endif
  514. , feedRate_t fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  515. );
  516. /**
  517. * Planner::buffer_sync_block
  518. * Add a block to the buffer that just updates the position
  519. */
  520. static void buffer_sync_block();
  521. #if IS_KINEMATIC
  522. private:
  523. // Allow do_homing_move to access internal functions, such as buffer_segment.
  524. friend void do_homing_move(const AxisEnum, const float, const feedRate_t);
  525. #endif
  526. /**
  527. * Planner::buffer_segment
  528. *
  529. * Add a new linear movement to the buffer in axis units.
  530. *
  531. * Leveling and kinematics should be applied ahead of calling this.
  532. *
  533. * a,b,c,e - target positions in mm and/or degrees
  534. * fr_mm_s - (target) speed of the move
  535. * extruder - target extruder
  536. * millimeters - the length of the movement, if known
  537. */
  538. static bool buffer_segment(const float &a, const float &b, const float &c, const float &e
  539. #if IS_KINEMATIC && DISABLED(CLASSIC_JERK)
  540. , const xyze_float_t &delta_mm_cart
  541. #endif
  542. , const feedRate_t &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  543. );
  544. FORCE_INLINE static bool buffer_segment(abce_pos_t &abce
  545. #if IS_KINEMATIC && DISABLED(CLASSIC_JERK)
  546. , const xyze_float_t &delta_mm_cart
  547. #endif
  548. , const feedRate_t &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  549. ) {
  550. return buffer_segment(abce.a, abce.b, abce.c, abce.e
  551. #if IS_KINEMATIC && DISABLED(CLASSIC_JERK)
  552. , delta_mm_cart
  553. #endif
  554. , fr_mm_s, extruder, millimeters);
  555. }
  556. public:
  557. /**
  558. * Add a new linear movement to the buffer.
  559. * The target is cartesian. It's translated to
  560. * delta/scara if needed.
  561. *
  562. * rx,ry,rz,e - target position in mm or degrees
  563. * fr_mm_s - (target) speed of the move (mm/s)
  564. * extruder - target extruder
  565. * millimeters - the length of the movement, if known
  566. * inv_duration - the reciprocal if the duration of the movement, if known (kinematic only if feeedrate scaling is enabled)
  567. */
  568. static bool buffer_line(const float &rx, const float &ry, const float &rz, const float &e, const feedRate_t &fr_mm_s, const uint8_t extruder, const float millimeters=0.0
  569. #if ENABLED(SCARA_FEEDRATE_SCALING)
  570. , const float &inv_duration=0.0
  571. #endif
  572. );
  573. FORCE_INLINE static bool buffer_line(const xyze_pos_t &cart, const feedRate_t &fr_mm_s, const uint8_t extruder, const float millimeters=0.0
  574. #if ENABLED(SCARA_FEEDRATE_SCALING)
  575. , const float &inv_duration=0.0
  576. #endif
  577. ) {
  578. return buffer_line(cart.x, cart.y, cart.z, cart.e, fr_mm_s, extruder, millimeters
  579. #if ENABLED(SCARA_FEEDRATE_SCALING)
  580. , inv_duration
  581. #endif
  582. );
  583. }
  584. /**
  585. * Set the planner.position and individual stepper positions.
  586. * Used by G92, G28, G29, and other procedures.
  587. *
  588. * The supplied position is in the cartesian coordinate space and is
  589. * translated in to machine space as needed. Modifiers such as leveling
  590. * and skew are also applied.
  591. *
  592. * Multiplies by axis_steps_per_mm[] and does necessary conversion
  593. * for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
  594. *
  595. * Clears previous speed values.
  596. */
  597. static void set_position_mm(const float &rx, const float &ry, const float &rz, const float &e);
  598. FORCE_INLINE static void set_position_mm(const xyze_pos_t &cart) { set_position_mm(cart.x, cart.y, cart.z, cart.e); }
  599. static void set_e_position_mm(const float &e);
  600. /**
  601. * Set the planner.position and individual stepper positions.
  602. *
  603. * The supplied position is in machine space, and no additional
  604. * conversions are applied.
  605. */
  606. static void set_machine_position_mm(const float &a, const float &b, const float &c, const float &e);
  607. FORCE_INLINE static void set_machine_position_mm(const abce_pos_t &abce) { set_machine_position_mm(abce.a, abce.b, abce.c, abce.e); }
  608. /**
  609. * Get an axis position according to stepper position(s)
  610. * For CORE machines apply translation from ABC to XYZ.
  611. */
  612. static float get_axis_position_mm(const AxisEnum axis);
  613. static inline abce_pos_t get_axis_positions_mm() {
  614. const abce_pos_t out = {
  615. get_axis_position_mm(A_AXIS),
  616. get_axis_position_mm(B_AXIS),
  617. get_axis_position_mm(C_AXIS),
  618. get_axis_position_mm(E_AXIS)
  619. };
  620. return out;
  621. }
  622. // SCARA AB axes are in degrees, not mm
  623. #if IS_SCARA
  624. FORCE_INLINE static float get_axis_position_degrees(const AxisEnum axis) { return get_axis_position_mm(axis); }
  625. #endif
  626. // Called to force a quick stop of the machine (for example, when
  627. // a Full Shutdown is required, or when endstops are hit)
  628. static void quick_stop();
  629. // Called when an endstop is triggered. Causes the machine to stop inmediately
  630. static void endstop_triggered(const AxisEnum axis);
  631. // Triggered position of an axis in mm (not core-savvy)
  632. static float triggered_position_mm(const AxisEnum axis);
  633. // Block until all buffered steps are executed / cleaned
  634. static void synchronize();
  635. // Wait for moves to finish and disable all steppers
  636. static void finish_and_disable();
  637. // Periodic tick to handle cleaning timeouts
  638. // Called from the Temperature ISR at ~1kHz
  639. static void tick() {
  640. if (cleaning_buffer_counter) {
  641. --cleaning_buffer_counter;
  642. #if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND)
  643. if (!cleaning_buffer_counter) queue.inject_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  644. #endif
  645. }
  646. }
  647. /**
  648. * Does the buffer have any blocks queued?
  649. */
  650. FORCE_INLINE static bool has_blocks_queued() { return (block_buffer_head != block_buffer_tail); }
  651. /**
  652. * Get the current block for processing
  653. * and mark the block as busy.
  654. * Return nullptr if the buffer is empty
  655. * or if there is a first-block delay.
  656. *
  657. * WARNING: Called from Stepper ISR context!
  658. */
  659. static block_t* get_current_block();
  660. /**
  661. * "Discard" the block and "release" the memory.
  662. * Called when the current block is no longer needed.
  663. */
  664. FORCE_INLINE static void discard_current_block() {
  665. if (has_blocks_queued())
  666. block_buffer_tail = next_block_index(block_buffer_tail);
  667. }
  668. #if HAS_SPI_LCD
  669. static uint16_t block_buffer_runtime();
  670. static void clear_block_buffer_runtime();
  671. #endif
  672. #if ENABLED(AUTOTEMP)
  673. static float autotemp_min, autotemp_max, autotemp_factor;
  674. static bool autotemp_enabled;
  675. static void getHighESpeed();
  676. static void autotemp_M104_M109();
  677. #endif
  678. #if HAS_LINEAR_E_JERK
  679. FORCE_INLINE static void recalculate_max_e_jerk() {
  680. #define GET_MAX_E_JERK(N) SQRT(SQRT(0.5) * junction_deviation_mm * (N) * RECIPROCAL(1.0 - SQRT(0.5)))
  681. #if ENABLED(DISTINCT_E_FACTORS)
  682. LOOP_L_N(i, EXTRUDERS)
  683. max_e_jerk[i] = GET_MAX_E_JERK(settings.max_acceleration_mm_per_s2[E_AXIS_N(i)]);
  684. #else
  685. max_e_jerk = GET_MAX_E_JERK(settings.max_acceleration_mm_per_s2[E_AXIS]);
  686. #endif
  687. }
  688. #endif
  689. private:
  690. /**
  691. * Get the index of the next / previous block in the ring buffer
  692. */
  693. static constexpr uint8_t next_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index + 1); }
  694. static constexpr uint8_t prev_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index - 1); }
  695. /**
  696. * Calculate the distance (not time) it takes to accelerate
  697. * from initial_rate to target_rate using the given acceleration:
  698. */
  699. static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
  700. if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
  701. return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
  702. }
  703. /**
  704. * Return the point at which you must start braking (at the rate of -'accel') if
  705. * you start at 'initial_rate', accelerate (until reaching the point), and want to end at
  706. * 'final_rate' after traveling 'distance'.
  707. *
  708. * This is used to compute the intersection point between acceleration and deceleration
  709. * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
  710. */
  711. static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
  712. if (accel == 0) return 0; // accel was 0, set intersection distance to 0
  713. return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
  714. }
  715. /**
  716. * Calculate the maximum allowable speed squared at this point, in order
  717. * to reach 'target_velocity_sqr' using 'acceleration' within a given
  718. * 'distance'.
  719. */
  720. static float max_allowable_speed_sqr(const float &accel, const float &target_velocity_sqr, const float &distance) {
  721. return target_velocity_sqr - 2 * accel * distance;
  722. }
  723. #if ENABLED(S_CURVE_ACCELERATION)
  724. /**
  725. * Calculate the speed reached given initial speed, acceleration and distance
  726. */
  727. static float final_speed(const float &initial_velocity, const float &accel, const float &distance) {
  728. return SQRT(sq(initial_velocity) + 2 * accel * distance);
  729. }
  730. #endif
  731. static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
  732. static void reverse_pass_kernel(block_t* const current, const block_t * const next);
  733. static void forward_pass_kernel(const block_t * const previous, block_t* const current, uint8_t block_index);
  734. static void reverse_pass();
  735. static void forward_pass();
  736. static void recalculate_trapezoids();
  737. static void recalculate();
  738. #if DISABLED(CLASSIC_JERK)
  739. FORCE_INLINE static void normalize_junction_vector(xyze_float_t &vector) {
  740. float magnitude_sq = 0;
  741. LOOP_XYZE(idx) if (vector[idx]) magnitude_sq += sq(vector[idx]);
  742. vector *= RSQRT(magnitude_sq);
  743. }
  744. FORCE_INLINE static float limit_value_by_axis_maximum(const float &max_value, xyze_float_t &unit_vec) {
  745. float limit_value = max_value;
  746. LOOP_XYZE(idx) if (unit_vec[idx]) // Avoid divide by zero
  747. NOMORE(limit_value, ABS(settings.max_acceleration_mm_per_s2[idx] / unit_vec[idx]));
  748. return limit_value;
  749. }
  750. #endif // !CLASSIC_JERK
  751. };
  752. #define PLANNER_XY_FEEDRATE() (_MIN(planner.settings.max_feedrate_mm_s[X_AXIS], planner.settings.max_feedrate_mm_s[Y_AXIS]))
  753. extern Planner planner;