My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

G26_Mesh_Validation_Tool.cpp 36KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * Marlin Firmware -- G26 - Mesh Validation Tool
  24. */
  25. #include "MarlinConfig.h"
  26. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  27. #include "ubl.h"
  28. #include "Marlin.h"
  29. #include "planner.h"
  30. #include "stepper.h"
  31. #include "temperature.h"
  32. #include "ultralcd.h"
  33. #include "gcode.h"
  34. #define EXTRUSION_MULTIPLIER 1.0
  35. #define RETRACTION_MULTIPLIER 1.0
  36. #define NOZZLE 0.4
  37. #define FILAMENT 1.75
  38. #define LAYER_HEIGHT 0.2
  39. #define PRIME_LENGTH 10.0
  40. #define BED_TEMP 60.0
  41. #define HOTEND_TEMP 205.0
  42. #define OOZE_AMOUNT 0.3
  43. #define SIZE_OF_INTERSECTION_CIRCLES 5
  44. #define SIZE_OF_CROSSHAIRS 3
  45. #if SIZE_OF_CROSSHAIRS >= SIZE_OF_INTERSECTION_CIRCLES
  46. #error "SIZE_OF_CROSSHAIRS must be less than SIZE_OF_INTERSECTION_CIRCLES."
  47. #endif
  48. /**
  49. * G26 Mesh Validation Tool
  50. *
  51. * G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
  52. * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
  53. * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
  54. * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
  55. * the intersections of those lines (respectively).
  56. *
  57. * This action allows the user to immediately see where the Mesh is properly defined and where it needs to
  58. * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
  59. * the user can specify the X and Y position of interest with command parameters. This allows the user to
  60. * focus on a particular area of the Mesh where attention is needed.
  61. *
  62. * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
  63. *
  64. * C Current When searching for Mesh Intersection points to draw, use the current nozzle location
  65. * as the base for any distance comparison.
  66. *
  67. * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
  68. * command to see how well a Mesh as been adjusted to match a print surface. In order to do
  69. * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
  70. * alters the command's normal behaviour and disables the Unified Bed Leveling System even if
  71. * it is on.
  72. *
  73. * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
  74. *
  75. * F # Filament Used to specify the diameter of the filament being used. If not specified
  76. * 1.75mm filament is assumed. If you are not getting acceptable results by using the
  77. * 'correct' numbers, you can scale this number up or down a little bit to change the amount
  78. * of filament that is being extruded during the printing of the various lines on the bed.
  79. *
  80. * K Keep-On Keep the heaters turned on at the end of the command.
  81. *
  82. * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
  83. *
  84. * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
  85. * is over kill, but using this parameter will let you get the very first 'circle' perfect
  86. * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
  87. * Mesh calibrated. If not specified, a filament length of .3mm is assumed.
  88. *
  89. * P # Prime Prime the nozzle with specified length of filament. If this parameter is not
  90. * given, no prime action will take place. If the parameter specifies an amount, that much
  91. * will be purged before continuing. If no amount is specified the command will start
  92. * purging filament until the user provides an LCD Click and then it will continue with
  93. * printing the Mesh. You can carefully remove the spent filament with a needle nose
  94. * pliers while holding the LCD Click wheel in a depressed state. If you do not have
  95. * an LCD, you must specify a value if you use P.
  96. *
  97. * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
  98. * un-retraction is at 1.2mm These numbers will be scaled by the specified amount
  99. *
  100. * R # Repeat Prints the number of patterns given as a parameter, starting at the current location.
  101. * If a parameter isn't given, every point will be printed unless G26 is interrupted.
  102. * This works the same way that the UBL G29 P4 R parameter works.
  103. *
  104. * NOTE: If you do not have an LCD, you -must- specify R. This is to ensure that you are
  105. * aware that there's some risk associated with printing without the ability to abort in
  106. * cases where mesh point Z value may be inaccurate. As above, if you do not include a
  107. * parameter, every point will be printed.
  108. *
  109. * S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
  110. *
  111. * U # Random Randomize the order that the circles are drawn on the bed. The search for the closest
  112. * undrawn cicle is still done. But the distance to the location for each circle has a
  113. * random number of the size specified added to it. Specifying S50 will give an interesting
  114. * deviation from the normal behaviour on a 10 x 10 Mesh.
  115. *
  116. * X # X Coord. Specify the starting location of the drawing activity.
  117. *
  118. * Y # Y Coord. Specify the starting location of the drawing activity.
  119. */
  120. // External references
  121. extern float feedrate_mm_s; // must set before calling prepare_move_to_destination
  122. extern Planner planner;
  123. #if ENABLED(ULTRA_LCD)
  124. extern char lcd_status_message[];
  125. #endif
  126. extern float destination[XYZE];
  127. void set_destination_to_current();
  128. void prepare_move_to_destination();
  129. #if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
  130. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  131. inline void set_current_to_destination() { COPY(current_position, destination); }
  132. #else
  133. void sync_plan_position_e();
  134. void set_current_to_destination();
  135. #endif
  136. #if ENABLED(NEWPANEL)
  137. void lcd_setstatusPGM(const char* const message, const int8_t level);
  138. void chirp_at_user();
  139. #endif
  140. // Private functions
  141. static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16];
  142. float g26_e_axis_feedrate = 0.020,
  143. random_deviation = 0.0;
  144. static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
  145. // retracts/recovers won't result in a bad state.
  146. float valid_trig_angle(float);
  147. float unified_bed_leveling::g26_extrusion_multiplier,
  148. unified_bed_leveling::g26_retraction_multiplier,
  149. unified_bed_leveling::g26_nozzle,
  150. unified_bed_leveling::g26_filament_diameter,
  151. unified_bed_leveling::g26_layer_height,
  152. unified_bed_leveling::g26_prime_length,
  153. unified_bed_leveling::g26_x_pos,
  154. unified_bed_leveling::g26_y_pos,
  155. unified_bed_leveling::g26_ooze_amount;
  156. int16_t unified_bed_leveling::g26_bed_temp,
  157. unified_bed_leveling::g26_hotend_temp;
  158. int8_t unified_bed_leveling::g26_prime_flag;
  159. bool unified_bed_leveling::g26_continue_with_closest,
  160. unified_bed_leveling::g26_keep_heaters_on;
  161. int16_t unified_bed_leveling::g26_repeats;
  162. void unified_bed_leveling::G26_line_to_destination(const float &feed_rate) {
  163. const float save_feedrate = feedrate_mm_s;
  164. feedrate_mm_s = feed_rate; // use specified feed rate
  165. prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian or ubl.prepare_linear_move_to for UBL_DELTA
  166. feedrate_mm_s = save_feedrate; // restore global feed rate
  167. }
  168. #if ENABLED(NEWPANEL)
  169. /**
  170. * Detect ubl_lcd_clicked, debounce it, and return true for cancel
  171. */
  172. bool user_canceled() {
  173. if (!ubl_lcd_clicked()) return false;
  174. safe_delay(10); // Wait for click to settle
  175. #if ENABLED(ULTRA_LCD)
  176. lcd_setstatusPGM(PSTR("Mesh Validation Stopped."), 99);
  177. lcd_quick_feedback();
  178. #endif
  179. while (!ubl_lcd_clicked()) idle(); // Wait for button release
  180. // If the button is suddenly pressed again,
  181. // ask the user to resolve the issue
  182. lcd_setstatusPGM(PSTR("Release button"), 99); // will never appear...
  183. while (ubl_lcd_clicked()) idle(); // unless this loop happens
  184. lcd_reset_status();
  185. return true;
  186. }
  187. #endif
  188. /**
  189. * G26: Mesh Validation Pattern generation.
  190. *
  191. * Used to interactively edit UBL's Mesh by placing the
  192. * nozzle in a problem area and doing a G29 P4 R command.
  193. */
  194. void unified_bed_leveling::G26() {
  195. SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s).");
  196. float tmp, start_angle, end_angle;
  197. int i, xi, yi;
  198. mesh_index_pair location;
  199. // Don't allow Mesh Validation without homing first,
  200. // or if the parameter parsing did not go OK, abort
  201. if (axis_unhomed_error() || parse_G26_parameters()) return;
  202. if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
  203. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  204. stepper.synchronize();
  205. set_current_to_destination();
  206. }
  207. if (turn_on_heaters()) goto LEAVE;
  208. current_position[E_AXIS] = 0.0;
  209. sync_plan_position_e();
  210. if (g26_prime_flag && prime_nozzle()) goto LEAVE;
  211. /**
  212. * Bed is preheated
  213. *
  214. * Nozzle is at temperature
  215. *
  216. * Filament is primed!
  217. *
  218. * It's "Show Time" !!!
  219. */
  220. ZERO(circle_flags);
  221. ZERO(horizontal_mesh_line_flags);
  222. ZERO(vertical_mesh_line_flags);
  223. // Move nozzle to the specified height for the first layer
  224. set_destination_to_current();
  225. destination[Z_AXIS] = g26_layer_height;
  226. move_to(destination, 0.0);
  227. move_to(destination, g26_ooze_amount);
  228. has_control_of_lcd_panel = true;
  229. //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
  230. /**
  231. * Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten
  232. * the CPU load and make the arc drawing faster and more smooth
  233. */
  234. float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
  235. for (i = 0; i <= 360 / 30; i++) {
  236. cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
  237. sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
  238. }
  239. do {
  240. location = g26_continue_with_closest
  241. ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
  242. : find_closest_circle_to_print(g26_x_pos, g26_y_pos); // Find the closest Mesh Intersection to where we are now.
  243. if (location.x_index >= 0 && location.y_index >= 0) {
  244. const float circle_x = mesh_index_to_xpos(location.x_index),
  245. circle_y = mesh_index_to_ypos(location.y_index);
  246. // If this mesh location is outside the printable_radius, skip it.
  247. if (!position_is_reachable_raw_xy(circle_x, circle_y)) continue;
  248. xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
  249. yi = location.y_index;
  250. if (g26_debug_flag) {
  251. SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi);
  252. SERIAL_ECHOPAIR(", yi=", yi);
  253. SERIAL_CHAR(')');
  254. SERIAL_EOL();
  255. }
  256. start_angle = 0.0; // assume it is going to be a full circle
  257. end_angle = 360.0;
  258. if (xi == 0) { // Check for bottom edge
  259. start_angle = -90.0;
  260. end_angle = 90.0;
  261. if (yi == 0) // it is an edge, check for the two left corners
  262. start_angle = 0.0;
  263. else if (yi == GRID_MAX_POINTS_Y - 1)
  264. end_angle = 0.0;
  265. }
  266. else if (xi == GRID_MAX_POINTS_X - 1) { // Check for top edge
  267. start_angle = 90.0;
  268. end_angle = 270.0;
  269. if (yi == 0) // it is an edge, check for the two right corners
  270. end_angle = 180.0;
  271. else if (yi == GRID_MAX_POINTS_Y - 1)
  272. start_angle = 180.0;
  273. }
  274. else if (yi == 0) {
  275. start_angle = 0.0; // only do the top side of the cirlce
  276. end_angle = 180.0;
  277. }
  278. else if (yi == GRID_MAX_POINTS_Y - 1) {
  279. start_angle = 180.0; // only do the bottom side of the cirlce
  280. end_angle = 360.0;
  281. }
  282. for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
  283. #if ENABLED(NEWPANEL)
  284. if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
  285. #endif
  286. int tmp_div_30 = tmp / 30.0;
  287. if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
  288. if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
  289. float x = circle_x + cos_table[tmp_div_30], // for speed, these are now a lookup table entry
  290. y = circle_y + sin_table[tmp_div_30],
  291. xe = circle_x + cos_table[tmp_div_30 + 1],
  292. ye = circle_y + sin_table[tmp_div_30 + 1];
  293. #if IS_KINEMATIC
  294. // Check to make sure this segment is entirely on the bed, skip if not.
  295. if (!position_is_reachable_raw_xy(x, y) || !position_is_reachable_raw_xy(xe, ye)) continue;
  296. #else // not, we need to skip
  297. x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
  298. y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  299. xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
  300. ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
  301. #endif
  302. //if (g26_debug_flag) {
  303. // char ccc, *cptr, seg_msg[50], seg_num[10];
  304. // strcpy(seg_msg, " segment: ");
  305. // strcpy(seg_num, " \n");
  306. // cptr = (char*) "01234567890ABCDEF????????";
  307. // ccc = cptr[tmp_div_30];
  308. // seg_num[1] = ccc;
  309. // strcat(seg_msg, seg_num);
  310. // debug_current_and_destination(seg_msg);
  311. //}
  312. print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), g26_layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), g26_layer_height);
  313. }
  314. if (look_for_lines_to_connect())
  315. goto LEAVE;
  316. }
  317. } while (--g26_repeats && location.x_index >= 0 && location.y_index >= 0);
  318. LEAVE:
  319. lcd_setstatusPGM(PSTR("Leaving G26"), -1);
  320. retract_filament(destination);
  321. destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
  322. //debug_current_and_destination(PSTR("ready to do Z-Raise."));
  323. move_to(destination, 0); // Raise the nozzle
  324. //debug_current_and_destination(PSTR("done doing Z-Raise."));
  325. destination[X_AXIS] = g26_x_pos; // Move back to the starting position
  326. destination[Y_AXIS] = g26_y_pos;
  327. //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
  328. move_to(destination, 0); // Move back to the starting position
  329. //debug_current_and_destination(PSTR("done doing X/Y move."));
  330. has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
  331. if (!g26_keep_heaters_on) {
  332. #if HAS_TEMP_BED
  333. thermalManager.setTargetBed(0);
  334. #endif
  335. thermalManager.setTargetHotend(0, 0);
  336. }
  337. }
  338. float valid_trig_angle(float d) {
  339. while (d > 360.0) d -= 360.0;
  340. while (d < 0.0) d += 360.0;
  341. return d;
  342. }
  343. mesh_index_pair unified_bed_leveling::find_closest_circle_to_print(const float &X, const float &Y) {
  344. float closest = 99999.99;
  345. mesh_index_pair return_val;
  346. return_val.x_index = return_val.y_index = -1;
  347. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  348. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  349. if (!is_bit_set(circle_flags, i, j)) {
  350. const float mx = mesh_index_to_xpos(i), // We found a circle that needs to be printed
  351. my = mesh_index_to_ypos(j);
  352. // Get the distance to this intersection
  353. float f = HYPOT(X - mx, Y - my);
  354. // It is possible that we are being called with the values
  355. // to let us find the closest circle to the start position.
  356. // But if this is not the case, add a small weighting to the
  357. // distance calculation to help it choose a better place to continue.
  358. f += HYPOT(g26_x_pos - mx, g26_y_pos - my) / 15.0;
  359. // Add in the specified amount of Random Noise to our search
  360. if (random_deviation > 1.0)
  361. f += random(0.0, random_deviation);
  362. if (f < closest) {
  363. closest = f; // We found a closer location that is still
  364. return_val.x_index = i; // un-printed --- save the data for it
  365. return_val.y_index = j;
  366. return_val.distance = closest;
  367. }
  368. }
  369. }
  370. }
  371. bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
  372. return return_val;
  373. }
  374. bool unified_bed_leveling::look_for_lines_to_connect() {
  375. float sx, sy, ex, ey;
  376. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  377. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  378. #if ENABLED(NEWPANEL)
  379. if (user_canceled()) return true; // Check if the user wants to stop the Mesh Validation
  380. #endif
  381. if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
  382. // This is already a half circle because we are at the edge of the bed.
  383. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
  384. if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
  385. //
  386. // We found two circles that need a horizontal line to connect them
  387. // Print it!
  388. //
  389. sx = mesh_index_to_xpos( i ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
  390. ex = mesh_index_to_xpos(i + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
  391. sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
  392. sy = ey = constrain(mesh_index_to_ypos(j), Y_MIN_POS + 1, Y_MAX_POS - 1);
  393. ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
  394. if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
  395. if (g26_debug_flag) {
  396. SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
  397. SERIAL_ECHOPAIR(", sy=", sy);
  398. SERIAL_ECHOPAIR(") -> (ex=", ex);
  399. SERIAL_ECHOPAIR(", ey=", ey);
  400. SERIAL_CHAR(')');
  401. SERIAL_EOL();
  402. //debug_current_and_destination(PSTR("Connecting horizontal line."));
  403. }
  404. print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height);
  405. }
  406. bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it
  407. }
  408. }
  409. if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y.
  410. // This is already a half circle because we are at the edge of the bed.
  411. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
  412. if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
  413. //
  414. // We found two circles that need a vertical line to connect them
  415. // Print it!
  416. //
  417. sy = mesh_index_to_ypos( j ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
  418. ey = mesh_index_to_ypos(j + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
  419. sx = ex = constrain(mesh_index_to_xpos(i), X_MIN_POS + 1, X_MAX_POS - 1);
  420. sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
  421. ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
  422. if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
  423. if (g26_debug_flag) {
  424. SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
  425. SERIAL_ECHOPAIR(", sy=", sy);
  426. SERIAL_ECHOPAIR(") -> (ex=", ex);
  427. SERIAL_ECHOPAIR(", ey=", ey);
  428. SERIAL_CHAR(')');
  429. SERIAL_EOL();
  430. debug_current_and_destination(PSTR("Connecting vertical line."));
  431. }
  432. print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height);
  433. }
  434. bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped
  435. }
  436. }
  437. }
  438. }
  439. }
  440. }
  441. return false;
  442. }
  443. void unified_bed_leveling::move_to(const float &x, const float &y, const float &z, const float &e_delta) {
  444. float feed_value;
  445. static float last_z = -999.99;
  446. bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
  447. if (z != last_z) {
  448. last_z = z;
  449. feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
  450. destination[X_AXIS] = current_position[X_AXIS];
  451. destination[Y_AXIS] = current_position[Y_AXIS];
  452. destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
  453. destination[E_AXIS] = current_position[E_AXIS];
  454. G26_line_to_destination(feed_value);
  455. stepper.synchronize();
  456. set_destination_to_current();
  457. }
  458. // Check if X or Y is involved in the movement.
  459. // Yes: a 'normal' movement. No: a retract() or recover()
  460. feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
  461. if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
  462. destination[X_AXIS] = x;
  463. destination[Y_AXIS] = y;
  464. destination[E_AXIS] += e_delta;
  465. G26_line_to_destination(feed_value);
  466. stepper.synchronize();
  467. set_destination_to_current();
  468. }
  469. void unified_bed_leveling::retract_filament(const float where[XYZE]) {
  470. if (!g26_retracted) { // Only retract if we are not already retracted!
  471. g26_retracted = true;
  472. move_to(where, -1.0 * g26_retraction_multiplier);
  473. }
  474. }
  475. void unified_bed_leveling::recover_filament(const float where[XYZE]) {
  476. if (g26_retracted) { // Only un-retract if we are retracted.
  477. move_to(where, 1.2 * g26_retraction_multiplier);
  478. g26_retracted = false;
  479. }
  480. }
  481. /**
  482. * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
  483. * to the other. But there are really three sets of coordinates involved. The first coordinate
  484. * is the present location of the nozzle. We don't necessarily want to print from this location.
  485. * We first need to move the nozzle to the start of line segment where we want to print. Once
  486. * there, we can use the two coordinates supplied to draw the line.
  487. *
  488. * Note: Although we assume the first set of coordinates is the start of the line and the second
  489. * set of coordinates is the end of the line, it does not always work out that way. This function
  490. * optimizes the movement to minimize the travel distance before it can start printing. This saves
  491. * a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does
  492. * cause a lot of very little short retracement of th nozzle when it draws the very first line
  493. * segment of a 'circle'. The time this requires is very short and is easily saved by the other
  494. * cases where the optimization comes into play.
  495. */
  496. void unified_bed_leveling::print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
  497. const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
  498. dy_s = current_position[Y_AXIS] - sy,
  499. dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
  500. // to save computation time
  501. dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment
  502. dy_e = current_position[Y_AXIS] - ey,
  503. dist_end = HYPOT2(dx_e, dy_e),
  504. line_length = HYPOT(ex - sx, ey - sy);
  505. // If the end point of the line is closer to the nozzle, flip the direction,
  506. // moving from the end to the start. On very small lines the optimization isn't worth it.
  507. if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < FABS(line_length)) {
  508. return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
  509. }
  510. // Decide whether to retract & bump
  511. if (dist_start > 2.0) {
  512. retract_filament(destination);
  513. //todo: parameterize the bump height with a define
  514. move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping
  515. move_to(sx, sy, sz + 0.500, 0.0); // Get to the starting point with no extrusion while bumped
  516. }
  517. move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump
  518. const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier;
  519. recover_filament(destination);
  520. move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
  521. }
  522. /**
  523. * This function used to be inline code in G26. But there are so many
  524. * parameters it made sense to turn them into static globals and get
  525. * this code out of sight of the main routine.
  526. */
  527. bool unified_bed_leveling::parse_G26_parameters() {
  528. g26_extrusion_multiplier = EXTRUSION_MULTIPLIER;
  529. g26_retraction_multiplier = RETRACTION_MULTIPLIER;
  530. g26_nozzle = NOZZLE;
  531. g26_filament_diameter = FILAMENT;
  532. g26_layer_height = LAYER_HEIGHT;
  533. g26_prime_length = PRIME_LENGTH;
  534. g26_bed_temp = BED_TEMP;
  535. g26_hotend_temp = HOTEND_TEMP;
  536. g26_prime_flag = 0;
  537. g26_ooze_amount = parser.linearval('O', OOZE_AMOUNT);
  538. g26_keep_heaters_on = parser.boolval('K');
  539. g26_continue_with_closest = parser.boolval('C');
  540. if (parser.seenval('B')) {
  541. g26_bed_temp = parser.value_celsius();
  542. if (!WITHIN(g26_bed_temp, 15, 140)) {
  543. SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
  544. return UBL_ERR;
  545. }
  546. }
  547. if (parser.seenval('L')) {
  548. g26_layer_height = parser.value_linear_units();
  549. if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
  550. SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
  551. return UBL_ERR;
  552. }
  553. }
  554. if (parser.seen('Q')) {
  555. if (parser.has_value()) {
  556. g26_retraction_multiplier = parser.value_float();
  557. if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
  558. SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
  559. return UBL_ERR;
  560. }
  561. }
  562. else {
  563. SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
  564. return UBL_ERR;
  565. }
  566. }
  567. if (parser.seenval('S')) {
  568. g26_nozzle = parser.value_float();
  569. if (!WITHIN(g26_nozzle, 0.1, 1.0)) {
  570. SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
  571. return UBL_ERR;
  572. }
  573. }
  574. if (parser.seen('P')) {
  575. if (!parser.has_value()) {
  576. #if ENABLED(NEWPANEL)
  577. g26_prime_flag = -1;
  578. #else
  579. SERIAL_PROTOCOLLNPGM("?Prime length must be specified when not using an LCD.");
  580. return UBL_ERR;
  581. #endif
  582. }
  583. else {
  584. g26_prime_flag++;
  585. g26_prime_length = parser.value_linear_units();
  586. if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
  587. SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
  588. return UBL_ERR;
  589. }
  590. }
  591. }
  592. if (parser.seenval('F')) {
  593. g26_filament_diameter = parser.value_linear_units();
  594. if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
  595. SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
  596. return UBL_ERR;
  597. }
  598. }
  599. g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
  600. // scale up or down the length needed to get the
  601. // same volume of filament
  602. g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size
  603. if (parser.seenval('H')) {
  604. g26_hotend_temp = parser.value_celsius();
  605. if (!WITHIN(g26_hotend_temp, 165, 280)) {
  606. SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
  607. return UBL_ERR;
  608. }
  609. }
  610. if (parser.seen('U')) {
  611. randomSeed(millis());
  612. // This setting will persist for the next G26
  613. random_deviation = parser.has_value() ? parser.value_float() : 50.0;
  614. }
  615. #if ENABLED(NEWPANEL)
  616. g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1);
  617. #else
  618. if (!parser.seen('R')) {
  619. SERIAL_PROTOCOLLNPGM("?(R)epeat must be specified when not using an LCD.");
  620. return UBL_ERR;
  621. }
  622. else
  623. g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
  624. #endif
  625. if (g26_repeats < 1) {
  626. SERIAL_PROTOCOLLNPGM("?(R)epeat value not plausible; must be at least 1.");
  627. return UBL_ERR;
  628. }
  629. g26_x_pos = parser.linearval('X', current_position[X_AXIS]);
  630. g26_y_pos = parser.linearval('Y', current_position[Y_AXIS]);
  631. if (!position_is_reachable_xy(g26_x_pos, g26_y_pos)) {
  632. SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds.");
  633. return UBL_ERR;
  634. }
  635. /**
  636. * Wait until all parameters are verified before altering the state!
  637. */
  638. set_bed_leveling_enabled(!parser.seen('D'));
  639. return UBL_OK;
  640. }
  641. #if ENABLED(NEWPANEL)
  642. bool unified_bed_leveling::exit_from_g26() {
  643. lcd_setstatusPGM(PSTR("Leaving G26"), -1);
  644. while (ubl_lcd_clicked()) idle();
  645. return UBL_ERR;
  646. }
  647. #endif
  648. /**
  649. * Turn on the bed and nozzle heat and
  650. * wait for them to get up to temperature.
  651. */
  652. bool unified_bed_leveling::turn_on_heaters() {
  653. millis_t next = millis() + 5000UL;
  654. #if HAS_TEMP_BED
  655. #if ENABLED(ULTRA_LCD)
  656. if (g26_bed_temp > 25) {
  657. lcd_setstatusPGM(PSTR("G26 Heating Bed."), 99);
  658. lcd_quick_feedback();
  659. #endif
  660. has_control_of_lcd_panel = true;
  661. thermalManager.setTargetBed(g26_bed_temp);
  662. while (abs(thermalManager.degBed() - g26_bed_temp) > 3) {
  663. #if ENABLED(NEWPANEL)
  664. if (ubl_lcd_clicked()) return exit_from_g26();
  665. #endif
  666. if (ELAPSED(millis(), next)) {
  667. next = millis() + 5000UL;
  668. print_heaterstates();
  669. SERIAL_EOL();
  670. }
  671. idle();
  672. }
  673. #if ENABLED(ULTRA_LCD)
  674. }
  675. lcd_setstatusPGM(PSTR("G26 Heating Nozzle."), 99);
  676. lcd_quick_feedback();
  677. #endif
  678. #endif
  679. // Start heating the nozzle and wait for it to reach temperature.
  680. thermalManager.setTargetHotend(g26_hotend_temp, 0);
  681. while (abs(thermalManager.degHotend(0) - g26_hotend_temp) > 3) {
  682. #if ENABLED(NEWPANEL)
  683. if (ubl_lcd_clicked()) return exit_from_g26();
  684. #endif
  685. if (ELAPSED(millis(), next)) {
  686. next = millis() + 5000UL;
  687. print_heaterstates();
  688. SERIAL_EOL();
  689. }
  690. idle();
  691. }
  692. #if ENABLED(ULTRA_LCD)
  693. lcd_reset_status();
  694. lcd_quick_feedback();
  695. #endif
  696. return UBL_OK;
  697. }
  698. /**
  699. * Prime the nozzle if needed. Return true on error.
  700. */
  701. bool unified_bed_leveling::prime_nozzle() {
  702. #if ENABLED(NEWPANEL)
  703. float Total_Prime = 0.0;
  704. if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged
  705. has_control_of_lcd_panel = true;
  706. lcd_setstatusPGM(PSTR("User-Controlled Prime"), 99);
  707. chirp_at_user();
  708. set_destination_to_current();
  709. recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
  710. while (!ubl_lcd_clicked()) {
  711. chirp_at_user();
  712. destination[E_AXIS] += 0.25;
  713. #ifdef PREVENT_LENGTHY_EXTRUDE
  714. Total_Prime += 0.25;
  715. if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
  716. #endif
  717. G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
  718. stepper.synchronize(); // Without this synchronize, the purge is more consistent,
  719. // but because the planner has a buffer, we won't be able
  720. // to stop as quickly. So we put up with the less smooth
  721. // action to give the user a more responsive 'Stop'.
  722. set_destination_to_current();
  723. idle();
  724. }
  725. while (ubl_lcd_clicked()) idle(); // Debounce Encoder Wheel
  726. #if ENABLED(ULTRA_LCD)
  727. strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatusPGM() without having it continue;
  728. // So... We cheat to get a message up.
  729. lcd_setstatusPGM(PSTR("Done Priming"), 99);
  730. lcd_quick_feedback();
  731. #endif
  732. has_control_of_lcd_panel = false;
  733. }
  734. else {
  735. #else
  736. {
  737. #endif
  738. #if ENABLED(ULTRA_LCD)
  739. lcd_setstatusPGM(PSTR("Fixed Length Prime."), 99);
  740. lcd_quick_feedback();
  741. #endif
  742. set_destination_to_current();
  743. destination[E_AXIS] += g26_prime_length;
  744. G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
  745. stepper.synchronize();
  746. set_destination_to_current();
  747. retract_filament(destination);
  748. }
  749. return UBL_OK;
  750. }
  751. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION