My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 254KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #include "buzzer.h"
  57. #if ENABLED(USE_WATCHDOG)
  58. #include "watchdog.h"
  59. #endif
  60. #if ENABLED(BLINKM)
  61. #include "blinkm.h"
  62. #include "Wire.h"
  63. #endif
  64. #if HAS_SERVOS
  65. #include "servo.h"
  66. #endif
  67. #if HAS_DIGIPOTSS
  68. #include <SPI.h>
  69. #endif
  70. #if ENABLED(DAC_STEPPER_CURRENT)
  71. #include "stepper_dac.h"
  72. #endif
  73. #if ENABLED(EXPERIMENTAL_I2CBUS)
  74. #include "twibus.h"
  75. #endif
  76. /**
  77. * Look here for descriptions of G-codes:
  78. * - http://linuxcnc.org/handbook/gcode/g-code.html
  79. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  80. *
  81. * Help us document these G-codes online:
  82. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  83. * - http://reprap.org/wiki/G-code
  84. *
  85. * -----------------
  86. * Implemented Codes
  87. * -----------------
  88. *
  89. * "G" Codes
  90. *
  91. * G0 -> G1
  92. * G1 - Coordinated Movement X Y Z E
  93. * G2 - CW ARC
  94. * G3 - CCW ARC
  95. * G4 - Dwell S<seconds> or P<milliseconds>
  96. * G5 - Cubic B-spline with
  97. * G10 - retract filament according to settings of M207
  98. * G11 - retract recover filament according to settings of M208
  99. * G28 - Home one or more axes
  100. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  101. * G30 - Single Z probe, probes bed at current XY location.
  102. * G31 - Dock sled (Z_PROBE_SLED only)
  103. * G32 - Undock sled (Z_PROBE_SLED only)
  104. * G90 - Use Absolute Coordinates
  105. * G91 - Use Relative Coordinates
  106. * G92 - Set current position to coordinates given
  107. *
  108. * "M" Codes
  109. *
  110. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  111. * M1 - Same as M0
  112. * M17 - Enable/Power all stepper motors
  113. * M18 - Disable all stepper motors; same as M84
  114. * M20 - List SD card
  115. * M21 - Init SD card
  116. * M22 - Release SD card
  117. * M23 - Select SD file (M23 filename.g)
  118. * M24 - Start/resume SD print
  119. * M25 - Pause SD print
  120. * M26 - Set SD position in bytes (M26 S12345)
  121. * M27 - Report SD print status
  122. * M28 - Start SD write (M28 filename.g)
  123. * M29 - Stop SD write
  124. * M30 - Delete file from SD (M30 filename.g)
  125. * M31 - Output time since last M109 or SD card start to serial
  126. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  127. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  128. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  129. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  130. * M33 - Get the longname version of a path
  131. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  132. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  133. * M75 - Start the print job timer
  134. * M76 - Pause the print job timer
  135. * M77 - Stop the print job timer
  136. * M78 - Show statistical information about the print jobs
  137. * M80 - Turn on Power Supply
  138. * M81 - Turn off Power Supply
  139. * M82 - Set E codes absolute (default)
  140. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  141. * M84 - Disable steppers until next move,
  142. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  143. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  144. * M92 - Set planner.axis_steps_per_unit - same syntax as G92
  145. * M104 - Set extruder target temp
  146. * M105 - Read current temp
  147. * M106 - Fan on
  148. * M107 - Fan off
  149. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  150. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  151. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  152. * M110 - Set the current line number
  153. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  154. * M112 - Emergency stop
  155. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  156. * M114 - Output current position to serial port
  157. * M115 - Capabilities string
  158. * M117 - Display a message on the controller screen
  159. * M119 - Output Endstop status to serial port
  160. * M120 - Enable endstop detection
  161. * M121 - Disable endstop detection
  162. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  163. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  164. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  165. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  166. * M140 - Set bed target temp
  167. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  168. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  169. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  170. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  171. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  172. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  173. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  174. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  175. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  176. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  177. * M206 - Set additional homing offset
  178. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  179. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  180. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  181. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  182. * M220 - Set speed factor override percentage: S<factor in percent>
  183. * M221 - Set extrude factor override percentage: S<factor in percent>
  184. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  185. * M240 - Trigger a camera to take a photograph
  186. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  187. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  188. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  189. * M301 - Set PID parameters P I and D
  190. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  191. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  192. * M304 - Set bed PID parameters P I and D
  193. * M380 - Activate solenoid on active extruder
  194. * M381 - Disable all solenoids
  195. * M400 - Finish all moves
  196. * M401 - Lower Z probe if present
  197. * M402 - Raise Z probe if present
  198. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  199. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  200. * M406 - Turn off Filament Sensor extrusion control
  201. * M407 - Display measured filament diameter
  202. * M410 - Quickstop. Abort all the planned moves
  203. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  204. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  205. * M428 - Set the home_offset logically based on the current_position
  206. * M500 - Store parameters in EEPROM
  207. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  208. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  209. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  210. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  211. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  212. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  213. * M666 - Set delta endstop adjustment
  214. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  215. * M907 - Set digital trimpot motor current using axis codes.
  216. * M908 - Control digital trimpot directly.
  217. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  218. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  219. * M350 - Set microstepping mode.
  220. * M351 - Toggle MS1 MS2 pins directly.
  221. *
  222. * ************ SCARA Specific - This can change to suit future G-code regulations
  223. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  224. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  225. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  226. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  227. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  228. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  229. * ************* SCARA End ***************
  230. *
  231. * ************ Custom codes - This can change to suit future G-code regulations
  232. * M100 - Watch Free Memory (For Debugging Only)
  233. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  234. * M928 - Start SD logging (M928 filename.g) - ended by M29
  235. * M999 - Restart after being stopped by error
  236. *
  237. * "T" Codes
  238. *
  239. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  240. *
  241. */
  242. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  243. void gcode_M100();
  244. #endif
  245. #if ENABLED(SDSUPPORT)
  246. CardReader card;
  247. #endif
  248. #if ENABLED(EXPERIMENTAL_I2CBUS)
  249. TWIBus i2c;
  250. #endif
  251. bool Running = true;
  252. uint8_t marlin_debug_flags = DEBUG_NONE;
  253. static float feedrate = 1500.0, saved_feedrate;
  254. float current_position[NUM_AXIS] = { 0.0 };
  255. static float destination[NUM_AXIS] = { 0.0 };
  256. bool axis_known_position[3] = { false };
  257. bool axis_homed[3] = { false };
  258. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  259. static char* current_command, *current_command_args;
  260. static int cmd_queue_index_r = 0;
  261. static int cmd_queue_index_w = 0;
  262. static int commands_in_queue = 0;
  263. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  264. const float homing_feedrate[] = HOMING_FEEDRATE;
  265. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  266. int feedrate_multiplier = 100; //100->1 200->2
  267. int saved_feedrate_multiplier;
  268. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  271. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  272. // The distance that XYZ has been offset by G92. Reset by G28.
  273. float position_shift[3] = { 0 };
  274. // This offset is added to the configured home position.
  275. // Set by M206, M428, or menu item. Saved to EEPROM.
  276. float home_offset[3] = { 0 };
  277. // Software Endstops. Default to configured limits.
  278. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  279. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  280. #if FAN_COUNT > 0
  281. int fanSpeeds[FAN_COUNT] = { 0 };
  282. #endif
  283. // The active extruder (tool). Set with T<extruder> command.
  284. uint8_t active_extruder = 0;
  285. // Relative Mode. Enable with G91, disable with G90.
  286. static bool relative_mode = false;
  287. bool cancel_heatup = false;
  288. const char errormagic[] PROGMEM = "Error:";
  289. const char echomagic[] PROGMEM = "echo:";
  290. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  291. static int serial_count = 0;
  292. // GCode parameter pointer used by code_seen(), code_value(), etc.
  293. static char* seen_pointer;
  294. // Next Immediate GCode Command pointer. NULL if none.
  295. const char* queued_commands_P = NULL;
  296. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  297. // Inactivity shutdown
  298. millis_t previous_cmd_ms = 0;
  299. static millis_t max_inactive_time = 0;
  300. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  301. // Print Job Timer
  302. #if ENABLED(PRINTCOUNTER)
  303. PrintCounter print_job_timer = PrintCounter();
  304. #else
  305. Stopwatch print_job_timer = Stopwatch();
  306. #endif
  307. static uint8_t target_extruder;
  308. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  309. int xy_travel_speed = XY_TRAVEL_SPEED;
  310. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  311. bool bed_leveling_in_progress = false;
  312. #endif
  313. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  314. float z_endstop_adj = 0;
  315. #endif
  316. // Extruder offsets
  317. #if EXTRUDERS > 1
  318. #ifndef EXTRUDER_OFFSET_X
  319. #define EXTRUDER_OFFSET_X { 0 } // X offsets for each extruder
  320. #endif
  321. #ifndef EXTRUDER_OFFSET_Y
  322. #define EXTRUDER_OFFSET_Y { 0 } // Y offsets for each extruder
  323. #endif
  324. float extruder_offset[][EXTRUDERS] = {
  325. EXTRUDER_OFFSET_X,
  326. EXTRUDER_OFFSET_Y
  327. #if ENABLED(DUAL_X_CARRIAGE)
  328. , { 0 } // Z offsets for each extruder
  329. #endif
  330. };
  331. #endif
  332. #if HAS_SERVO_ENDSTOPS
  333. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  334. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  335. #endif
  336. #if ENABLED(BARICUDA)
  337. int baricuda_valve_pressure = 0;
  338. int baricuda_e_to_p_pressure = 0;
  339. #endif
  340. #if ENABLED(FWRETRACT)
  341. bool autoretract_enabled = false;
  342. bool retracted[EXTRUDERS] = { false };
  343. bool retracted_swap[EXTRUDERS] = { false };
  344. float retract_length = RETRACT_LENGTH;
  345. float retract_length_swap = RETRACT_LENGTH_SWAP;
  346. float retract_feedrate = RETRACT_FEEDRATE;
  347. float retract_zlift = RETRACT_ZLIFT;
  348. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  349. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  350. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  351. #endif // FWRETRACT
  352. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  353. bool powersupply =
  354. #if ENABLED(PS_DEFAULT_OFF)
  355. false
  356. #else
  357. true
  358. #endif
  359. ;
  360. #endif
  361. #if ENABLED(DELTA)
  362. #define TOWER_1 X_AXIS
  363. #define TOWER_2 Y_AXIS
  364. #define TOWER_3 Z_AXIS
  365. float delta[3] = { 0 };
  366. #define SIN_60 0.8660254037844386
  367. #define COS_60 0.5
  368. float endstop_adj[3] = { 0 };
  369. // these are the default values, can be overriden with M665
  370. float delta_radius = DELTA_RADIUS;
  371. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  372. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  373. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  374. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  375. float delta_tower3_x = 0; // back middle tower
  376. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  377. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  378. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  379. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  380. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  381. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  382. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  383. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  384. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  385. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  386. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  387. int delta_grid_spacing[2] = { 0, 0 };
  388. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  389. #endif
  390. #else
  391. static bool home_all_axis = true;
  392. #endif
  393. #if ENABLED(SCARA)
  394. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  395. static float delta[3] = { 0 };
  396. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  397. #endif
  398. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  399. //Variables for Filament Sensor input
  400. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  401. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  402. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  403. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  404. int filwidth_delay_index1 = 0; //index into ring buffer
  405. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  406. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  407. #endif
  408. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  409. static bool filament_ran_out = false;
  410. #endif
  411. static bool send_ok[BUFSIZE];
  412. #if HAS_SERVOS
  413. Servo servo[NUM_SERVOS];
  414. #endif
  415. #ifdef CHDK
  416. millis_t chdkHigh = 0;
  417. boolean chdkActive = false;
  418. #endif
  419. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  420. int lpq_len = 20;
  421. #endif
  422. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  423. // States for managing Marlin and host communication
  424. // Marlin sends messages if blocked or busy
  425. enum MarlinBusyState {
  426. NOT_BUSY, // Not in a handler
  427. IN_HANDLER, // Processing a GCode
  428. IN_PROCESS, // Known to be blocking command input (as in G29)
  429. PAUSED_FOR_USER, // Blocking pending any input
  430. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  431. };
  432. static MarlinBusyState busy_state = NOT_BUSY;
  433. static millis_t next_busy_signal_ms = 0;
  434. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  435. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  436. #else
  437. #define host_keepalive() ;
  438. #define KEEPALIVE_STATE(n) ;
  439. #endif // HOST_KEEPALIVE_FEATURE
  440. /**
  441. * ***************************************************************************
  442. * ******************************** FUNCTIONS ********************************
  443. * ***************************************************************************
  444. */
  445. void stop();
  446. void get_available_commands();
  447. void process_next_command();
  448. #if ENABLED(ARC_SUPPORT)
  449. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  450. #endif
  451. #if ENABLED(BEZIER_CURVE_SUPPORT)
  452. void plan_cubic_move(const float offset[4]);
  453. #endif
  454. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  455. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  456. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  457. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  458. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  459. static void report_current_position();
  460. #if ENABLED(DEBUG_LEVELING_FEATURE)
  461. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  462. SERIAL_ECHO(prefix);
  463. SERIAL_ECHOPAIR(": (", x);
  464. SERIAL_ECHOPAIR(", ", y);
  465. SERIAL_ECHOPAIR(", ", z);
  466. SERIAL_ECHOLNPGM(")");
  467. }
  468. void print_xyz(const char* prefix, const float xyz[]) {
  469. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  470. }
  471. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  472. void print_xyz(const char* prefix, const vector_3 &xyz) {
  473. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  474. }
  475. #endif
  476. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  477. #endif
  478. #if ENABLED(DELTA) || ENABLED(SCARA)
  479. inline void sync_plan_position_delta() {
  480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  481. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  482. #endif
  483. calculate_delta(current_position);
  484. planner.set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  485. }
  486. #endif
  487. #if ENABLED(SDSUPPORT)
  488. #include "SdFatUtil.h"
  489. int freeMemory() { return SdFatUtil::FreeRam(); }
  490. #else
  491. extern "C" {
  492. extern unsigned int __bss_end;
  493. extern unsigned int __heap_start;
  494. extern void* __brkval;
  495. int freeMemory() {
  496. int free_memory;
  497. if ((int)__brkval == 0)
  498. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  499. else
  500. free_memory = ((int)&free_memory) - ((int)__brkval);
  501. return free_memory;
  502. }
  503. }
  504. #endif //!SDSUPPORT
  505. #if ENABLED(DIGIPOT_I2C)
  506. extern void digipot_i2c_set_current(int channel, float current);
  507. extern void digipot_i2c_init();
  508. #endif
  509. /**
  510. * Inject the next "immediate" command, when possible.
  511. * Return true if any immediate commands remain to inject.
  512. */
  513. static bool drain_queued_commands_P() {
  514. if (queued_commands_P != NULL) {
  515. size_t i = 0;
  516. char c, cmd[30];
  517. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  518. cmd[sizeof(cmd) - 1] = '\0';
  519. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  520. cmd[i] = '\0';
  521. if (enqueue_and_echo_command(cmd)) { // success?
  522. if (c) // newline char?
  523. queued_commands_P += i + 1; // advance to the next command
  524. else
  525. queued_commands_P = NULL; // nul char? no more commands
  526. }
  527. }
  528. return (queued_commands_P != NULL); // return whether any more remain
  529. }
  530. /**
  531. * Record one or many commands to run from program memory.
  532. * Aborts the current queue, if any.
  533. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  534. */
  535. void enqueue_and_echo_commands_P(const char* pgcode) {
  536. queued_commands_P = pgcode;
  537. drain_queued_commands_P(); // first command executed asap (when possible)
  538. }
  539. /**
  540. * Once a new command is in the ring buffer, call this to commit it
  541. */
  542. inline void _commit_command(bool say_ok) {
  543. send_ok[cmd_queue_index_w] = say_ok;
  544. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  545. commands_in_queue++;
  546. }
  547. /**
  548. * Copy a command directly into the main command buffer, from RAM.
  549. * Returns true if successfully adds the command
  550. */
  551. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  552. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  553. strcpy(command_queue[cmd_queue_index_w], cmd);
  554. _commit_command(say_ok);
  555. return true;
  556. }
  557. void enqueue_and_echo_command_now(const char* cmd) {
  558. while (!enqueue_and_echo_command(cmd)) idle();
  559. }
  560. /**
  561. * Enqueue with Serial Echo
  562. */
  563. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  564. if (_enqueuecommand(cmd, say_ok)) {
  565. SERIAL_ECHO_START;
  566. SERIAL_ECHOPGM(MSG_Enqueueing);
  567. SERIAL_ECHO(cmd);
  568. SERIAL_ECHOLNPGM("\"");
  569. return true;
  570. }
  571. return false;
  572. }
  573. void setup_killpin() {
  574. #if HAS_KILL
  575. SET_INPUT(KILL_PIN);
  576. WRITE(KILL_PIN, HIGH);
  577. #endif
  578. }
  579. void setup_filrunoutpin() {
  580. #if HAS_FILRUNOUT
  581. pinMode(FILRUNOUT_PIN, INPUT);
  582. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  583. WRITE(FILRUNOUT_PIN, HIGH);
  584. #endif
  585. #endif
  586. }
  587. // Set home pin
  588. void setup_homepin(void) {
  589. #if HAS_HOME
  590. SET_INPUT(HOME_PIN);
  591. WRITE(HOME_PIN, HIGH);
  592. #endif
  593. }
  594. void setup_photpin() {
  595. #if HAS_PHOTOGRAPH
  596. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  597. #endif
  598. }
  599. void setup_powerhold() {
  600. #if HAS_SUICIDE
  601. OUT_WRITE(SUICIDE_PIN, HIGH);
  602. #endif
  603. #if HAS_POWER_SWITCH
  604. #if ENABLED(PS_DEFAULT_OFF)
  605. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  606. #else
  607. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  608. #endif
  609. #endif
  610. }
  611. void suicide() {
  612. #if HAS_SUICIDE
  613. OUT_WRITE(SUICIDE_PIN, LOW);
  614. #endif
  615. }
  616. void servo_init() {
  617. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  618. servo[0].attach(SERVO0_PIN);
  619. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  620. #endif
  621. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  622. servo[1].attach(SERVO1_PIN);
  623. servo[1].detach();
  624. #endif
  625. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  626. servo[2].attach(SERVO2_PIN);
  627. servo[2].detach();
  628. #endif
  629. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  630. servo[3].attach(SERVO3_PIN);
  631. servo[3].detach();
  632. #endif
  633. #if HAS_SERVO_ENDSTOPS
  634. endstops.enable_z_probe(false);
  635. /**
  636. * Set position of all defined Servo Endstops
  637. *
  638. * ** UNSAFE! - NEEDS UPDATE! **
  639. *
  640. * The servo might be deployed and positioned too low to stow
  641. * when starting up the machine or rebooting the board.
  642. * There's no way to know where the nozzle is positioned until
  643. * homing has been done - no homing with z-probe without init!
  644. *
  645. */
  646. for (int i = 0; i < 3; i++)
  647. if (servo_endstop_id[i] >= 0)
  648. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  649. #endif // HAS_SERVO_ENDSTOPS
  650. }
  651. /**
  652. * Stepper Reset (RigidBoard, et.al.)
  653. */
  654. #if HAS_STEPPER_RESET
  655. void disableStepperDrivers() {
  656. pinMode(STEPPER_RESET_PIN, OUTPUT);
  657. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  658. }
  659. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  660. #endif
  661. /**
  662. * Marlin entry-point: Set up before the program loop
  663. * - Set up the kill pin, filament runout, power hold
  664. * - Start the serial port
  665. * - Print startup messages and diagnostics
  666. * - Get EEPROM or default settings
  667. * - Initialize managers for:
  668. * • temperature
  669. * • planner
  670. * • watchdog
  671. * • stepper
  672. * • photo pin
  673. * • servos
  674. * • LCD controller
  675. * • Digipot I2C
  676. * • Z probe sled
  677. * • status LEDs
  678. */
  679. void setup() {
  680. #ifdef DISABLE_JTAG
  681. // Disable JTAG on AT90USB chips to free up pins for IO
  682. MCUCR = 0x80;
  683. MCUCR = 0x80;
  684. #endif
  685. setup_killpin();
  686. setup_filrunoutpin();
  687. setup_powerhold();
  688. #if HAS_STEPPER_RESET
  689. disableStepperDrivers();
  690. #endif
  691. MYSERIAL.begin(BAUDRATE);
  692. SERIAL_PROTOCOLLNPGM("start");
  693. SERIAL_ECHO_START;
  694. // Check startup - does nothing if bootloader sets MCUSR to 0
  695. byte mcu = MCUSR;
  696. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  697. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  698. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  699. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  700. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  701. MCUSR = 0;
  702. SERIAL_ECHOPGM(MSG_MARLIN);
  703. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  704. #ifdef STRING_DISTRIBUTION_DATE
  705. #ifdef STRING_CONFIG_H_AUTHOR
  706. SERIAL_ECHO_START;
  707. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  708. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  709. SERIAL_ECHOPGM(MSG_AUTHOR);
  710. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  711. SERIAL_ECHOPGM("Compiled: ");
  712. SERIAL_ECHOLNPGM(__DATE__);
  713. #endif // STRING_CONFIG_H_AUTHOR
  714. #endif // STRING_DISTRIBUTION_DATE
  715. SERIAL_ECHO_START;
  716. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  717. SERIAL_ECHO(freeMemory());
  718. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  719. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  720. // Send "ok" after commands by default
  721. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  722. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  723. Config_RetrieveSettings();
  724. lcd_init();
  725. thermalManager.init(); // Initialize temperature loop
  726. #if ENABLED(DELTA) || ENABLED(SCARA)
  727. // Vital to init kinematic equivalent for X0 Y0 Z0
  728. sync_plan_position_delta();
  729. #endif
  730. #if ENABLED(USE_WATCHDOG)
  731. watchdog_init();
  732. #endif
  733. stepper.init(); // Initialize stepper, this enables interrupts!
  734. setup_photpin();
  735. servo_init();
  736. #if HAS_CONTROLLERFAN
  737. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  738. #endif
  739. #if HAS_STEPPER_RESET
  740. enableStepperDrivers();
  741. #endif
  742. #if ENABLED(DIGIPOT_I2C)
  743. digipot_i2c_init();
  744. #endif
  745. #if ENABLED(Z_PROBE_SLED)
  746. pinMode(SLED_PIN, OUTPUT);
  747. digitalWrite(SLED_PIN, LOW); // turn it off
  748. #endif // Z_PROBE_SLED
  749. setup_homepin();
  750. #ifdef STAT_LED_RED
  751. pinMode(STAT_LED_RED, OUTPUT);
  752. digitalWrite(STAT_LED_RED, LOW); // turn it off
  753. #endif
  754. #ifdef STAT_LED_BLUE
  755. pinMode(STAT_LED_BLUE, OUTPUT);
  756. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  757. #endif
  758. }
  759. /**
  760. * The main Marlin program loop
  761. *
  762. * - Save or log commands to SD
  763. * - Process available commands (if not saving)
  764. * - Call heater manager
  765. * - Call inactivity manager
  766. * - Call endstop manager
  767. * - Call LCD update
  768. */
  769. void loop() {
  770. if (commands_in_queue < BUFSIZE) get_available_commands();
  771. #if ENABLED(SDSUPPORT)
  772. card.checkautostart(false);
  773. #endif
  774. if (commands_in_queue) {
  775. #if ENABLED(SDSUPPORT)
  776. if (card.saving) {
  777. char* command = command_queue[cmd_queue_index_r];
  778. if (strstr_P(command, PSTR("M29"))) {
  779. // M29 closes the file
  780. card.closefile();
  781. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  782. ok_to_send();
  783. }
  784. else {
  785. // Write the string from the read buffer to SD
  786. card.write_command(command);
  787. if (card.logging)
  788. process_next_command(); // The card is saving because it's logging
  789. else
  790. ok_to_send();
  791. }
  792. }
  793. else
  794. process_next_command();
  795. #else
  796. process_next_command();
  797. #endif // SDSUPPORT
  798. commands_in_queue--;
  799. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  800. }
  801. endstops.report_state();
  802. idle();
  803. }
  804. void gcode_line_error(const char* err, bool doFlush = true) {
  805. SERIAL_ERROR_START;
  806. serialprintPGM(err);
  807. SERIAL_ERRORLN(gcode_LastN);
  808. //Serial.println(gcode_N);
  809. if (doFlush) FlushSerialRequestResend();
  810. serial_count = 0;
  811. }
  812. inline void get_serial_commands() {
  813. static char serial_line_buffer[MAX_CMD_SIZE];
  814. static boolean serial_comment_mode = false;
  815. // If the command buffer is empty for too long,
  816. // send "wait" to indicate Marlin is still waiting.
  817. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  818. static millis_t last_command_time = 0;
  819. millis_t ms = millis();
  820. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  821. SERIAL_ECHOLNPGM(MSG_WAIT);
  822. last_command_time = ms;
  823. }
  824. #endif
  825. /**
  826. * Loop while serial characters are incoming and the queue is not full
  827. */
  828. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  829. char serial_char = MYSERIAL.read();
  830. /**
  831. * If the character ends the line
  832. */
  833. if (serial_char == '\n' || serial_char == '\r') {
  834. serial_comment_mode = false; // end of line == end of comment
  835. if (!serial_count) continue; // skip empty lines
  836. serial_line_buffer[serial_count] = 0; // terminate string
  837. serial_count = 0; //reset buffer
  838. char* command = serial_line_buffer;
  839. while (*command == ' ') command++; // skip any leading spaces
  840. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  841. char* apos = strchr(command, '*');
  842. if (npos) {
  843. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  844. if (M110) {
  845. char* n2pos = strchr(command + 4, 'N');
  846. if (n2pos) npos = n2pos;
  847. }
  848. gcode_N = strtol(npos + 1, NULL, 10);
  849. if (gcode_N != gcode_LastN + 1 && !M110) {
  850. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  851. return;
  852. }
  853. if (apos) {
  854. byte checksum = 0, count = 0;
  855. while (command[count] != '*') checksum ^= command[count++];
  856. if (strtol(apos + 1, NULL, 10) != checksum) {
  857. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  858. return;
  859. }
  860. // if no errors, continue parsing
  861. }
  862. else {
  863. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  864. return;
  865. }
  866. gcode_LastN = gcode_N;
  867. // if no errors, continue parsing
  868. }
  869. else if (apos) { // No '*' without 'N'
  870. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  871. return;
  872. }
  873. // Movement commands alert when stopped
  874. if (IsStopped()) {
  875. char* gpos = strchr(command, 'G');
  876. if (gpos) {
  877. int codenum = strtol(gpos + 1, NULL, 10);
  878. switch (codenum) {
  879. case 0:
  880. case 1:
  881. case 2:
  882. case 3:
  883. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  884. LCD_MESSAGEPGM(MSG_STOPPED);
  885. break;
  886. }
  887. }
  888. }
  889. // If command was e-stop process now
  890. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  891. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  892. last_command_time = ms;
  893. #endif
  894. // Add the command to the queue
  895. _enqueuecommand(serial_line_buffer, true);
  896. }
  897. else if (serial_count >= MAX_CMD_SIZE - 1) {
  898. // Keep fetching, but ignore normal characters beyond the max length
  899. // The command will be injected when EOL is reached
  900. }
  901. else if (serial_char == '\\') { // Handle escapes
  902. if (MYSERIAL.available() > 0) {
  903. // if we have one more character, copy it over
  904. serial_char = MYSERIAL.read();
  905. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  906. }
  907. // otherwise do nothing
  908. }
  909. else { // it's not a newline, carriage return or escape char
  910. if (serial_char == ';') serial_comment_mode = true;
  911. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  912. }
  913. } // queue has space, serial has data
  914. }
  915. #if ENABLED(SDSUPPORT)
  916. inline void get_sdcard_commands() {
  917. static bool stop_buffering = false,
  918. sd_comment_mode = false;
  919. if (!card.sdprinting) return;
  920. /**
  921. * '#' stops reading from SD to the buffer prematurely, so procedural
  922. * macro calls are possible. If it occurs, stop_buffering is triggered
  923. * and the buffer is run dry; this character _can_ occur in serial com
  924. * due to checksums, however, no checksums are used in SD printing.
  925. */
  926. if (commands_in_queue == 0) stop_buffering = false;
  927. uint16_t sd_count = 0;
  928. bool card_eof = card.eof();
  929. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  930. int16_t n = card.get();
  931. char sd_char = (char)n;
  932. card_eof = card.eof();
  933. if (card_eof || n == -1
  934. || sd_char == '\n' || sd_char == '\r'
  935. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  936. ) {
  937. if (card_eof) {
  938. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  939. print_job_timer.stop();
  940. char time[30];
  941. millis_t t = print_job_timer.duration();
  942. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  943. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  944. SERIAL_ECHO_START;
  945. SERIAL_ECHOLN(time);
  946. lcd_setstatus(time, true);
  947. card.printingHasFinished();
  948. card.checkautostart(true);
  949. }
  950. if (sd_char == '#') stop_buffering = true;
  951. sd_comment_mode = false; //for new command
  952. if (!sd_count) continue; //skip empty lines
  953. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  954. sd_count = 0; //clear buffer
  955. _commit_command(false);
  956. }
  957. else if (sd_count >= MAX_CMD_SIZE - 1) {
  958. /**
  959. * Keep fetching, but ignore normal characters beyond the max length
  960. * The command will be injected when EOL is reached
  961. */
  962. }
  963. else {
  964. if (sd_char == ';') sd_comment_mode = true;
  965. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  966. }
  967. }
  968. }
  969. #endif // SDSUPPORT
  970. /**
  971. * Add to the circular command queue the next command from:
  972. * - The command-injection queue (queued_commands_P)
  973. * - The active serial input (usually USB)
  974. * - The SD card file being actively printed
  975. */
  976. void get_available_commands() {
  977. // if any immediate commands remain, don't get other commands yet
  978. if (drain_queued_commands_P()) return;
  979. get_serial_commands();
  980. #if ENABLED(SDSUPPORT)
  981. get_sdcard_commands();
  982. #endif
  983. }
  984. bool code_has_value() {
  985. int i = 1;
  986. char c = seen_pointer[i];
  987. while (c == ' ') c = seen_pointer[++i];
  988. if (c == '-' || c == '+') c = seen_pointer[++i];
  989. if (c == '.') c = seen_pointer[++i];
  990. return NUMERIC(c);
  991. }
  992. float code_value() {
  993. float ret;
  994. char* e = strchr(seen_pointer, 'E');
  995. if (e) {
  996. *e = 0;
  997. ret = strtod(seen_pointer + 1, NULL);
  998. *e = 'E';
  999. }
  1000. else
  1001. ret = strtod(seen_pointer + 1, NULL);
  1002. return ret;
  1003. }
  1004. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1005. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  1006. bool code_seen(char code) {
  1007. seen_pointer = strchr(current_command_args, code);
  1008. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1009. }
  1010. /**
  1011. * Set target_extruder from the T parameter or the active_extruder
  1012. *
  1013. * Returns TRUE if the target is invalid
  1014. */
  1015. bool get_target_extruder_from_command(int code) {
  1016. if (code_seen('T')) {
  1017. short t = code_value_short();
  1018. if (t >= EXTRUDERS) {
  1019. SERIAL_ECHO_START;
  1020. SERIAL_CHAR('M');
  1021. SERIAL_ECHO(code);
  1022. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t);
  1023. SERIAL_EOL;
  1024. return true;
  1025. }
  1026. target_extruder = t;
  1027. }
  1028. else
  1029. target_extruder = active_extruder;
  1030. return false;
  1031. }
  1032. #define DEFINE_PGM_READ_ANY(type, reader) \
  1033. static inline type pgm_read_any(const type *p) \
  1034. { return pgm_read_##reader##_near(p); }
  1035. DEFINE_PGM_READ_ANY(float, float);
  1036. DEFINE_PGM_READ_ANY(signed char, byte);
  1037. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1038. static const PROGMEM type array##_P[3] = \
  1039. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1040. static inline type array(int axis) \
  1041. { return pgm_read_any(&array##_P[axis]); }
  1042. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1043. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1044. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1045. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1046. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1047. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1048. #if ENABLED(DUAL_X_CARRIAGE)
  1049. #define DXC_FULL_CONTROL_MODE 0
  1050. #define DXC_AUTO_PARK_MODE 1
  1051. #define DXC_DUPLICATION_MODE 2
  1052. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1053. static float x_home_pos(int extruder) {
  1054. if (extruder == 0)
  1055. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1056. else
  1057. /**
  1058. * In dual carriage mode the extruder offset provides an override of the
  1059. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1060. * This allow soft recalibration of the second extruder offset position
  1061. * without firmware reflash (through the M218 command).
  1062. */
  1063. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  1064. }
  1065. static int x_home_dir(int extruder) {
  1066. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1067. }
  1068. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1069. static bool active_extruder_parked = false; // used in mode 1 & 2
  1070. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1071. static millis_t delayed_move_time = 0; // used in mode 1
  1072. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1073. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1074. bool extruder_duplication_enabled = false; // used in mode 2
  1075. #endif //DUAL_X_CARRIAGE
  1076. /**
  1077. * Software endstops can be used to monitor the open end of
  1078. * an axis that has a hardware endstop on the other end. Or
  1079. * they can prevent axes from moving past endstops and grinding.
  1080. *
  1081. * To keep doing their job as the coordinate system changes,
  1082. * the software endstop positions must be refreshed to remain
  1083. * at the same positions relative to the machine.
  1084. */
  1085. static void update_software_endstops(AxisEnum axis) {
  1086. float offs = home_offset[axis] + position_shift[axis];
  1087. #if ENABLED(DUAL_X_CARRIAGE)
  1088. if (axis == X_AXIS) {
  1089. float dual_max_x = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1090. if (active_extruder != 0) {
  1091. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1092. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1093. return;
  1094. }
  1095. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1096. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1097. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1098. return;
  1099. }
  1100. }
  1101. else
  1102. #endif
  1103. {
  1104. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1105. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1106. }
  1107. }
  1108. /**
  1109. * Change the home offset for an axis, update the current
  1110. * position and the software endstops to retain the same
  1111. * relative distance to the new home.
  1112. *
  1113. * Since this changes the current_position, code should
  1114. * call sync_plan_position soon after this.
  1115. */
  1116. static void set_home_offset(AxisEnum axis, float v) {
  1117. current_position[axis] += v - home_offset[axis];
  1118. home_offset[axis] = v;
  1119. update_software_endstops(axis);
  1120. }
  1121. static void set_axis_is_at_home(AxisEnum axis) {
  1122. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1123. if (DEBUGGING(LEVELING)) {
  1124. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1125. SERIAL_ECHOLNPGM(") >>>");
  1126. }
  1127. #endif
  1128. position_shift[axis] = 0;
  1129. #if ENABLED(DUAL_X_CARRIAGE)
  1130. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1131. if (active_extruder != 0)
  1132. current_position[X_AXIS] = x_home_pos(active_extruder);
  1133. else
  1134. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1135. update_software_endstops(X_AXIS);
  1136. return;
  1137. }
  1138. #endif
  1139. #if ENABLED(SCARA)
  1140. if (axis == X_AXIS || axis == Y_AXIS) {
  1141. float homeposition[3];
  1142. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1143. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1144. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1145. /**
  1146. * Works out real Homeposition angles using inverse kinematics,
  1147. * and calculates homing offset using forward kinematics
  1148. */
  1149. calculate_delta(homeposition);
  1150. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1151. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1152. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1153. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1154. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1155. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1156. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1157. calculate_SCARA_forward_Transform(delta);
  1158. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1159. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1160. current_position[axis] = delta[axis];
  1161. /**
  1162. * SCARA home positions are based on configuration since the actual
  1163. * limits are determined by the inverse kinematic transform.
  1164. */
  1165. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1166. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1167. }
  1168. else
  1169. #endif
  1170. {
  1171. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1172. update_software_endstops(axis);
  1173. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1174. if (axis == Z_AXIS) {
  1175. current_position[Z_AXIS] -= zprobe_zoffset;
  1176. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1177. if (DEBUGGING(LEVELING)) {
  1178. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1179. SERIAL_EOL;
  1180. }
  1181. #endif
  1182. }
  1183. #endif
  1184. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1185. if (DEBUGGING(LEVELING)) {
  1186. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1187. DEBUG_POS("", current_position);
  1188. }
  1189. #endif
  1190. }
  1191. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1192. if (DEBUGGING(LEVELING)) {
  1193. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1194. SERIAL_ECHOLNPGM(")");
  1195. }
  1196. #endif
  1197. }
  1198. /**
  1199. * Some planner shorthand inline functions
  1200. */
  1201. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1202. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1203. int hbd = homing_bump_divisor[axis];
  1204. if (hbd < 1) {
  1205. hbd = 10;
  1206. SERIAL_ECHO_START;
  1207. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1208. }
  1209. feedrate = homing_feedrate[axis] / hbd;
  1210. }
  1211. //
  1212. // line_to_current_position
  1213. // Move the planner to the current position from wherever it last moved
  1214. // (or from wherever it has been told it is located).
  1215. //
  1216. inline void line_to_current_position() {
  1217. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1218. }
  1219. inline void line_to_z(float zPosition) {
  1220. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1221. }
  1222. //
  1223. // line_to_destination
  1224. // Move the planner, not necessarily synced with current_position
  1225. //
  1226. inline void line_to_destination(float mm_m) {
  1227. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1228. }
  1229. inline void line_to_destination() {
  1230. line_to_destination(feedrate);
  1231. }
  1232. /**
  1233. * sync_plan_position
  1234. * Set planner / stepper positions to the cartesian current_position.
  1235. * The stepper code translates these coordinates into step units.
  1236. * Allows translation between steps and units (mm) for cartesian & core robots
  1237. */
  1238. inline void sync_plan_position() {
  1239. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1240. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1241. #endif
  1242. planner.set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1243. }
  1244. inline void sync_plan_position_e() { planner.set_e_position(current_position[E_AXIS]); }
  1245. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1246. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1247. static void setup_for_endstop_move() {
  1248. saved_feedrate = feedrate;
  1249. saved_feedrate_multiplier = feedrate_multiplier;
  1250. feedrate_multiplier = 100;
  1251. refresh_cmd_timeout();
  1252. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1253. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > endstops.enable()");
  1254. #endif
  1255. endstops.enable();
  1256. }
  1257. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1258. #if ENABLED(DELTA)
  1259. /**
  1260. * Calculate delta, start a line, and set current_position to destination
  1261. */
  1262. void prepare_move_raw() {
  1263. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1264. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1265. #endif
  1266. refresh_cmd_timeout();
  1267. calculate_delta(destination);
  1268. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1269. set_current_to_destination();
  1270. }
  1271. #endif
  1272. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1273. #if DISABLED(DELTA)
  1274. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1275. //planner.bed_level_matrix.debug("bed level before");
  1276. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1277. planner.bed_level_matrix.set_to_identity();
  1278. if (DEBUGGING(LEVELING)) {
  1279. vector_3 uncorrected_position = planner.adjusted_position();
  1280. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1281. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1282. }
  1283. #endif
  1284. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1285. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1286. vector_3 corrected_position = planner.adjusted_position();
  1287. current_position[X_AXIS] = corrected_position.x;
  1288. current_position[Y_AXIS] = corrected_position.y;
  1289. current_position[Z_AXIS] = corrected_position.z;
  1290. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1291. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1292. #endif
  1293. sync_plan_position();
  1294. }
  1295. #endif // !DELTA
  1296. #else // !AUTO_BED_LEVELING_GRID
  1297. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1298. planner.bed_level_matrix.set_to_identity();
  1299. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1300. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1301. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1302. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1303. if (planeNormal.z < 0) {
  1304. planeNormal.x = -planeNormal.x;
  1305. planeNormal.y = -planeNormal.y;
  1306. planeNormal.z = -planeNormal.z;
  1307. }
  1308. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1309. vector_3 corrected_position = planner.adjusted_position();
  1310. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1311. if (DEBUGGING(LEVELING)) {
  1312. vector_3 uncorrected_position = corrected_position;
  1313. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1314. }
  1315. #endif
  1316. current_position[X_AXIS] = corrected_position.x;
  1317. current_position[Y_AXIS] = corrected_position.y;
  1318. current_position[Z_AXIS] = corrected_position.z;
  1319. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1320. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1321. #endif
  1322. sync_plan_position();
  1323. }
  1324. #endif // !AUTO_BED_LEVELING_GRID
  1325. static void run_z_probe() {
  1326. /**
  1327. * To prevent stepper_inactive_time from running out and
  1328. * EXTRUDER_RUNOUT_PREVENT from extruding
  1329. */
  1330. refresh_cmd_timeout();
  1331. #if ENABLED(DELTA)
  1332. float start_z = current_position[Z_AXIS];
  1333. long start_steps = stepper.position(Z_AXIS);
  1334. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1335. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1336. #endif
  1337. // move down slowly until you find the bed
  1338. feedrate = homing_feedrate[Z_AXIS] / 4;
  1339. destination[Z_AXIS] = -10;
  1340. prepare_move_raw(); // this will also set_current_to_destination
  1341. stepper.synchronize();
  1342. endstops.hit_on_purpose(); // clear endstop hit flags
  1343. /**
  1344. * We have to let the planner know where we are right now as it
  1345. * is not where we said to go.
  1346. */
  1347. long stop_steps = stepper.position(Z_AXIS);
  1348. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_unit[Z_AXIS];
  1349. current_position[Z_AXIS] = mm;
  1350. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1351. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1352. #endif
  1353. sync_plan_position_delta();
  1354. #else // !DELTA
  1355. planner.bed_level_matrix.set_to_identity();
  1356. feedrate = homing_feedrate[Z_AXIS];
  1357. // Move down until the Z probe (or endstop?) is triggered
  1358. float zPosition = -(Z_MAX_LENGTH + 10);
  1359. line_to_z(zPosition);
  1360. stepper.synchronize();
  1361. // Tell the planner where we ended up - Get this from the stepper handler
  1362. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1363. planner.set_position(
  1364. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1365. current_position[E_AXIS]
  1366. );
  1367. // move up the retract distance
  1368. zPosition += home_bump_mm(Z_AXIS);
  1369. line_to_z(zPosition);
  1370. stepper.synchronize();
  1371. endstops.hit_on_purpose(); // clear endstop hit flags
  1372. // move back down slowly to find bed
  1373. set_homing_bump_feedrate(Z_AXIS);
  1374. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1375. line_to_z(zPosition);
  1376. stepper.synchronize();
  1377. endstops.hit_on_purpose(); // clear endstop hit flags
  1378. // Get the current stepper position after bumping an endstop
  1379. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1380. sync_plan_position();
  1381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1382. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1383. #endif
  1384. #endif // !DELTA
  1385. }
  1386. /**
  1387. * Plan a move to (X, Y, Z) and set the current_position
  1388. * The final current_position may not be the one that was requested
  1389. */
  1390. static void do_blocking_move_to(float x, float y, float z) {
  1391. float oldFeedRate = feedrate;
  1392. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1393. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1394. #endif
  1395. #if ENABLED(DELTA)
  1396. feedrate = XY_TRAVEL_SPEED;
  1397. destination[X_AXIS] = x;
  1398. destination[Y_AXIS] = y;
  1399. destination[Z_AXIS] = z;
  1400. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1401. prepare_move_raw(); // this will also set_current_to_destination
  1402. else
  1403. prepare_move(); // this will also set_current_to_destination
  1404. stepper.synchronize();
  1405. #else
  1406. feedrate = homing_feedrate[Z_AXIS];
  1407. current_position[Z_AXIS] = z;
  1408. line_to_current_position();
  1409. stepper.synchronize();
  1410. feedrate = xy_travel_speed;
  1411. current_position[X_AXIS] = x;
  1412. current_position[Y_AXIS] = y;
  1413. line_to_current_position();
  1414. stepper.synchronize();
  1415. #endif
  1416. feedrate = oldFeedRate;
  1417. }
  1418. inline void do_blocking_move_to_xy(float x, float y) {
  1419. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1420. }
  1421. inline void do_blocking_move_to_x(float x) {
  1422. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1423. }
  1424. inline void do_blocking_move_to_z(float z) {
  1425. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1426. }
  1427. inline void raise_z_after_probing() {
  1428. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1429. }
  1430. static void clean_up_after_endstop_move() {
  1431. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1432. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops.not_homing()");
  1433. #endif
  1434. endstops.not_homing();
  1435. feedrate = saved_feedrate;
  1436. feedrate_multiplier = saved_feedrate_multiplier;
  1437. refresh_cmd_timeout();
  1438. }
  1439. #if HAS_BED_PROBE
  1440. static void deploy_z_probe() {
  1441. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1442. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1443. #endif
  1444. if (endstops.z_probe_enabled) return;
  1445. #if HAS_SERVO_ENDSTOPS
  1446. // Engage Z Servo endstop if enabled
  1447. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1448. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1449. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1450. // If endstop is already false, the Z probe is deployed
  1451. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1452. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1453. if (z_probe_endstop)
  1454. #else
  1455. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1456. if (z_min_endstop)
  1457. #endif
  1458. {
  1459. // Move to the start position to initiate deployment
  1460. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1461. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1462. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1463. prepare_move_raw(); // this will also set_current_to_destination
  1464. // Move to engage deployment
  1465. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1466. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1467. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1468. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1469. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1470. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1471. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1472. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1473. prepare_move_raw();
  1474. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1475. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1476. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1477. // Move to trigger deployment
  1478. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1479. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1480. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1481. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1482. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1483. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1484. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1485. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1486. prepare_move_raw();
  1487. #endif
  1488. }
  1489. // Partially Home X,Y for safety
  1490. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1491. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1492. prepare_move_raw(); // this will also set_current_to_destination
  1493. stepper.synchronize();
  1494. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1495. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1496. if (z_probe_endstop)
  1497. #else
  1498. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1499. if (z_min_endstop)
  1500. #endif
  1501. {
  1502. if (IsRunning()) {
  1503. SERIAL_ERROR_START;
  1504. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1505. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1506. }
  1507. stop();
  1508. }
  1509. #endif // Z_PROBE_ALLEN_KEY
  1510. #if ENABLED(FIX_MOUNTED_PROBE)
  1511. // Noting to be done. Just set endstops.z_probe_enabled
  1512. #endif
  1513. endstops.enable_z_probe();
  1514. }
  1515. static void stow_z_probe(bool doRaise = true) {
  1516. #if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0))
  1517. UNUSED(doRaise);
  1518. #endif
  1519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1520. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1521. #endif
  1522. if (!endstops.z_probe_enabled) return;
  1523. #if HAS_SERVO_ENDSTOPS
  1524. // Retract Z Servo endstop if enabled
  1525. if (servo_endstop_id[Z_AXIS] >= 0) {
  1526. #if Z_RAISE_AFTER_PROBING > 0
  1527. if (doRaise) {
  1528. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1529. if (DEBUGGING(LEVELING)) {
  1530. SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
  1531. SERIAL_EOL;
  1532. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1533. SERIAL_EOL;
  1534. }
  1535. #endif
  1536. raise_z_after_probing(); // this also updates current_position
  1537. stepper.synchronize();
  1538. }
  1539. #endif
  1540. // Change the Z servo angle
  1541. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1542. }
  1543. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1544. // Move up for safety
  1545. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1546. #if Z_RAISE_AFTER_PROBING > 0
  1547. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1548. prepare_move_raw(); // this will also set_current_to_destination
  1549. #endif
  1550. // Move to the start position to initiate retraction
  1551. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1552. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1553. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1554. prepare_move_raw();
  1555. // Move the nozzle down to push the Z probe into retracted position
  1556. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1557. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1558. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1559. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1560. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1561. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1562. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1563. prepare_move_raw();
  1564. // Move up for safety
  1565. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1566. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1567. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1568. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1569. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1570. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1571. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1572. prepare_move_raw();
  1573. // Home XY for safety
  1574. feedrate = homing_feedrate[X_AXIS] / 2;
  1575. destination[X_AXIS] = 0;
  1576. destination[Y_AXIS] = 0;
  1577. prepare_move_raw(); // this will also set_current_to_destination
  1578. stepper.synchronize();
  1579. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1580. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1581. if (!z_probe_endstop)
  1582. #else
  1583. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1584. if (!z_min_endstop)
  1585. #endif
  1586. {
  1587. if (IsRunning()) {
  1588. SERIAL_ERROR_START;
  1589. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1590. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1591. }
  1592. stop();
  1593. }
  1594. #endif // Z_PROBE_ALLEN_KEY
  1595. #if ENABLED(FIX_MOUNTED_PROBE)
  1596. // Nothing to do here. Just clear endstops.z_probe_enabled
  1597. #endif
  1598. endstops.enable_z_probe(false);
  1599. }
  1600. #endif // HAS_BED_PROBE
  1601. enum ProbeAction {
  1602. ProbeStay = 0,
  1603. ProbeDeploy = _BV(0),
  1604. ProbeStow = _BV(1),
  1605. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1606. };
  1607. // Probe bed height at position (x,y), returns the measured z value
  1608. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1609. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1610. if (DEBUGGING(LEVELING)) {
  1611. SERIAL_ECHOLNPGM("probe_pt >>>");
  1612. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1613. SERIAL_EOL;
  1614. DEBUG_POS("", current_position);
  1615. }
  1616. #endif
  1617. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1618. if (DEBUGGING(LEVELING)) {
  1619. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1620. SERIAL_EOL;
  1621. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1622. SERIAL_EOL;
  1623. }
  1624. #endif
  1625. // Move Z up to the z_before height, then move the Z probe to the given XY
  1626. do_blocking_move_to_z(z_before); // this also updates current_position
  1627. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1628. if (DEBUGGING(LEVELING)) {
  1629. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1630. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1631. SERIAL_EOL;
  1632. }
  1633. #endif
  1634. // this also updates current_position
  1635. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1636. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1637. if (probe_action & ProbeDeploy) {
  1638. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1639. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1640. #endif
  1641. deploy_z_probe();
  1642. }
  1643. #endif
  1644. run_z_probe();
  1645. float measured_z = current_position[Z_AXIS];
  1646. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1647. if (probe_action & ProbeStow) {
  1648. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1649. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1650. #endif
  1651. stow_z_probe();
  1652. }
  1653. #endif
  1654. if (verbose_level > 2) {
  1655. SERIAL_PROTOCOLPGM("Bed X: ");
  1656. SERIAL_PROTOCOL_F(x, 3);
  1657. SERIAL_PROTOCOLPGM(" Y: ");
  1658. SERIAL_PROTOCOL_F(y, 3);
  1659. SERIAL_PROTOCOLPGM(" Z: ");
  1660. SERIAL_PROTOCOL_F(measured_z, 3);
  1661. SERIAL_EOL;
  1662. }
  1663. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1664. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1665. #endif
  1666. return measured_z;
  1667. }
  1668. #if ENABLED(DELTA)
  1669. /**
  1670. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1671. */
  1672. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1673. if (bed_level[x][y] != 0.0) {
  1674. return; // Don't overwrite good values.
  1675. }
  1676. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1677. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1678. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1679. float median = c; // Median is robust (ignores outliers).
  1680. if (a < b) {
  1681. if (b < c) median = b;
  1682. if (c < a) median = a;
  1683. }
  1684. else { // b <= a
  1685. if (c < b) median = b;
  1686. if (a < c) median = a;
  1687. }
  1688. bed_level[x][y] = median;
  1689. }
  1690. /**
  1691. * Fill in the unprobed points (corners of circular print surface)
  1692. * using linear extrapolation, away from the center.
  1693. */
  1694. static void extrapolate_unprobed_bed_level() {
  1695. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1696. for (int y = 0; y <= half; y++) {
  1697. for (int x = 0; x <= half; x++) {
  1698. if (x + y < 3) continue;
  1699. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1700. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1701. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1702. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1703. }
  1704. }
  1705. }
  1706. /**
  1707. * Print calibration results for plotting or manual frame adjustment.
  1708. */
  1709. static void print_bed_level() {
  1710. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1711. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1712. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1713. SERIAL_PROTOCOLCHAR(' ');
  1714. }
  1715. SERIAL_EOL;
  1716. }
  1717. }
  1718. /**
  1719. * Reset calibration results to zero.
  1720. */
  1721. void reset_bed_level() {
  1722. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1723. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1724. #endif
  1725. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1726. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1727. bed_level[x][y] = 0.0;
  1728. }
  1729. }
  1730. }
  1731. #endif // DELTA
  1732. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1733. void raise_z_for_servo() {
  1734. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1735. /**
  1736. * The zprobe_zoffset is negative any switch below the nozzle, so
  1737. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1738. */
  1739. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1740. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1741. }
  1742. #endif
  1743. #endif // AUTO_BED_LEVELING_FEATURE
  1744. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1745. static void axis_unhomed_error(bool xyz=false) {
  1746. if (xyz) {
  1747. LCD_MESSAGEPGM(MSG_XYZ_UNHOMED);
  1748. SERIAL_ECHO_START;
  1749. SERIAL_ECHOLNPGM(MSG_XYZ_UNHOMED);
  1750. }
  1751. else {
  1752. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1753. SERIAL_ECHO_START;
  1754. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1755. }
  1756. }
  1757. #endif
  1758. #if ENABLED(Z_PROBE_SLED)
  1759. #ifndef SLED_DOCKING_OFFSET
  1760. #define SLED_DOCKING_OFFSET 0
  1761. #endif
  1762. /**
  1763. * Method to dock/undock a sled designed by Charles Bell.
  1764. *
  1765. * dock[in] If true, move to MAX_X and engage the electromagnet
  1766. * offset[in] The additional distance to move to adjust docking location
  1767. */
  1768. static void dock_sled(bool dock, int offset = 0) {
  1769. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1770. if (DEBUGGING(LEVELING)) {
  1771. SERIAL_ECHOPAIR("dock_sled(", dock);
  1772. SERIAL_ECHOLNPGM(")");
  1773. }
  1774. #endif
  1775. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  1776. axis_unhomed_error(true);
  1777. return;
  1778. }
  1779. if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
  1780. float oldXpos = current_position[X_AXIS]; // save x position
  1781. if (dock) {
  1782. #if Z_RAISE_AFTER_PROBING > 0
  1783. raise_z_after_probing(); // raise Z
  1784. #endif
  1785. // Dock sled a bit closer to ensure proper capturing
  1786. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1787. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1788. }
  1789. else {
  1790. float z_loc = current_position[Z_AXIS];
  1791. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1792. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1793. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1794. }
  1795. do_blocking_move_to_x(oldXpos); // return to position before docking
  1796. endstops.enable_z_probe(!dock); // logically disable docked probe
  1797. }
  1798. #endif // Z_PROBE_SLED
  1799. /**
  1800. * Home an individual axis
  1801. */
  1802. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1803. static void homeaxis(AxisEnum axis) {
  1804. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1805. if (DEBUGGING(LEVELING)) {
  1806. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1807. SERIAL_ECHOLNPGM(")");
  1808. }
  1809. #endif
  1810. #define HOMEAXIS_DO(LETTER) \
  1811. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1812. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1813. int axis_home_dir =
  1814. #if ENABLED(DUAL_X_CARRIAGE)
  1815. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1816. #endif
  1817. home_dir(axis);
  1818. // Set the axis position as setup for the move
  1819. current_position[axis] = 0;
  1820. sync_plan_position();
  1821. #if ENABLED(Z_PROBE_SLED)
  1822. #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
  1823. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1824. #define _Z_DEPLOY (dock_sled(false))
  1825. #define _Z_STOW (dock_sled(true))
  1826. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1827. #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
  1828. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1829. #define _Z_DEPLOY (deploy_z_probe())
  1830. #define _Z_STOW (stow_z_probe())
  1831. #elif HAS_SERVO_ENDSTOPS
  1832. #define _Z_SERVO_TEST true // servo.move X, Y, Z
  1833. #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
  1834. #endif
  1835. if (axis == Z_AXIS) {
  1836. // If there's a Z probe that needs deployment...
  1837. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1838. // ...and homing Z towards the bed? Deploy it.
  1839. if (axis_home_dir < 0) _Z_DEPLOY;
  1840. #endif
  1841. }
  1842. #if HAS_SERVO_ENDSTOPS
  1843. // Engage an X or Y Servo endstop if enabled
  1844. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1845. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1846. if (_Z_PROBE_SUBTEST) endstops.z_probe_enabled = true;
  1847. }
  1848. #endif
  1849. // Set a flag for Z motor locking
  1850. #if ENABLED(Z_DUAL_ENDSTOPS)
  1851. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1852. #endif
  1853. // Move towards the endstop until an endstop is triggered
  1854. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1855. feedrate = homing_feedrate[axis];
  1856. line_to_destination();
  1857. stepper.synchronize();
  1858. // Set the axis position as setup for the move
  1859. current_position[axis] = 0;
  1860. sync_plan_position();
  1861. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1862. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1863. #endif
  1864. endstops.enable(false); // Disable endstops while moving away
  1865. // Move away from the endstop by the axis HOME_BUMP_MM
  1866. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1867. line_to_destination();
  1868. stepper.synchronize();
  1869. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1870. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  1871. #endif
  1872. endstops.enable(true); // Enable endstops for next homing move
  1873. // Slow down the feedrate for the next move
  1874. set_homing_bump_feedrate(axis);
  1875. // Move slowly towards the endstop until triggered
  1876. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1877. line_to_destination();
  1878. stepper.synchronize();
  1879. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1880. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1881. #endif
  1882. #if ENABLED(Z_DUAL_ENDSTOPS)
  1883. if (axis == Z_AXIS) {
  1884. float adj = fabs(z_endstop_adj);
  1885. bool lockZ1;
  1886. if (axis_home_dir > 0) {
  1887. adj = -adj;
  1888. lockZ1 = (z_endstop_adj > 0);
  1889. }
  1890. else
  1891. lockZ1 = (z_endstop_adj < 0);
  1892. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1893. sync_plan_position();
  1894. // Move to the adjusted endstop height
  1895. feedrate = homing_feedrate[axis];
  1896. destination[Z_AXIS] = adj;
  1897. line_to_destination();
  1898. stepper.synchronize();
  1899. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1900. stepper.set_homing_flag(false);
  1901. } // Z_AXIS
  1902. #endif
  1903. #if ENABLED(DELTA)
  1904. // retrace by the amount specified in endstop_adj
  1905. if (endstop_adj[axis] * axis_home_dir < 0) {
  1906. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1907. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1908. #endif
  1909. endstops.enable(false); // Disable endstops while moving away
  1910. sync_plan_position();
  1911. destination[axis] = endstop_adj[axis];
  1912. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1913. if (DEBUGGING(LEVELING)) {
  1914. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1915. DEBUG_POS("", destination);
  1916. }
  1917. #endif
  1918. line_to_destination();
  1919. stepper.synchronize();
  1920. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1921. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  1922. #endif
  1923. endstops.enable(true); // Enable endstops for next homing move
  1924. }
  1925. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1926. else {
  1927. if (DEBUGGING(LEVELING)) {
  1928. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1929. SERIAL_EOL;
  1930. }
  1931. }
  1932. #endif
  1933. #endif
  1934. // Set the axis position to its home position (plus home offsets)
  1935. set_axis_is_at_home(axis);
  1936. sync_plan_position();
  1937. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1938. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1939. #endif
  1940. destination[axis] = current_position[axis];
  1941. feedrate = 0.0;
  1942. endstops.hit_on_purpose(); // clear endstop hit flags
  1943. axis_known_position[axis] = true;
  1944. axis_homed[axis] = true;
  1945. // Put away the Z probe
  1946. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1947. if (axis == Z_AXIS && axis_home_dir < 0) {
  1948. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1949. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1950. #endif
  1951. _Z_STOW;
  1952. }
  1953. #endif
  1954. // Retract Servo endstop if enabled
  1955. #if HAS_SERVO_ENDSTOPS
  1956. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1957. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1958. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1959. #endif
  1960. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1961. if (_Z_PROBE_SUBTEST) endstops.enable_z_probe(false);
  1962. }
  1963. #endif
  1964. }
  1965. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1966. if (DEBUGGING(LEVELING)) {
  1967. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  1968. SERIAL_ECHOLNPGM(")");
  1969. }
  1970. #endif
  1971. }
  1972. #if ENABLED(FWRETRACT)
  1973. void retract(bool retracting, bool swapping = false) {
  1974. if (retracting == retracted[active_extruder]) return;
  1975. float oldFeedrate = feedrate;
  1976. set_destination_to_current();
  1977. if (retracting) {
  1978. feedrate = retract_feedrate * 60;
  1979. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1980. sync_plan_position_e();
  1981. prepare_move();
  1982. if (retract_zlift > 0.01) {
  1983. current_position[Z_AXIS] -= retract_zlift;
  1984. #if ENABLED(DELTA)
  1985. sync_plan_position_delta();
  1986. #else
  1987. sync_plan_position();
  1988. #endif
  1989. prepare_move();
  1990. }
  1991. }
  1992. else {
  1993. if (retract_zlift > 0.01) {
  1994. current_position[Z_AXIS] += retract_zlift;
  1995. #if ENABLED(DELTA)
  1996. sync_plan_position_delta();
  1997. #else
  1998. sync_plan_position();
  1999. #endif
  2000. }
  2001. feedrate = retract_recover_feedrate * 60;
  2002. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2003. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2004. sync_plan_position_e();
  2005. prepare_move();
  2006. }
  2007. feedrate = oldFeedrate;
  2008. retracted[active_extruder] = retracting;
  2009. } // retract()
  2010. #endif // FWRETRACT
  2011. /**
  2012. * ***************************************************************************
  2013. * ***************************** G-CODE HANDLING *****************************
  2014. * ***************************************************************************
  2015. */
  2016. /**
  2017. * Set XYZE destination and feedrate from the current GCode command
  2018. *
  2019. * - Set destination from included axis codes
  2020. * - Set to current for missing axis codes
  2021. * - Set the feedrate, if included
  2022. */
  2023. void gcode_get_destination() {
  2024. for (int i = 0; i < NUM_AXIS; i++) {
  2025. if (code_seen(axis_codes[i]))
  2026. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2027. else
  2028. destination[i] = current_position[i];
  2029. }
  2030. if (code_seen('F')) {
  2031. float next_feedrate = code_value();
  2032. if (next_feedrate > 0.0) feedrate = next_feedrate;
  2033. }
  2034. }
  2035. void unknown_command_error() {
  2036. SERIAL_ECHO_START;
  2037. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2038. SERIAL_ECHO(current_command);
  2039. SERIAL_ECHOPGM("\"\n");
  2040. }
  2041. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2042. /**
  2043. * Output a "busy" message at regular intervals
  2044. * while the machine is not accepting commands.
  2045. */
  2046. void host_keepalive() {
  2047. millis_t ms = millis();
  2048. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2049. if (PENDING(ms, next_busy_signal_ms)) return;
  2050. switch (busy_state) {
  2051. case IN_HANDLER:
  2052. case IN_PROCESS:
  2053. SERIAL_ECHO_START;
  2054. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2055. break;
  2056. case PAUSED_FOR_USER:
  2057. SERIAL_ECHO_START;
  2058. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2059. break;
  2060. case PAUSED_FOR_INPUT:
  2061. SERIAL_ECHO_START;
  2062. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2063. break;
  2064. default:
  2065. break;
  2066. }
  2067. }
  2068. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2069. }
  2070. #endif //HOST_KEEPALIVE_FEATURE
  2071. /**
  2072. * G0, G1: Coordinated movement of X Y Z E axes
  2073. */
  2074. inline void gcode_G0_G1() {
  2075. if (IsRunning()) {
  2076. gcode_get_destination(); // For X Y Z E F
  2077. #if ENABLED(FWRETRACT)
  2078. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2079. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2080. // Is this move an attempt to retract or recover?
  2081. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2082. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2083. sync_plan_position_e(); // AND from the planner
  2084. retract(!retracted[active_extruder]);
  2085. return;
  2086. }
  2087. }
  2088. #endif //FWRETRACT
  2089. prepare_move();
  2090. }
  2091. }
  2092. /**
  2093. * G2: Clockwise Arc
  2094. * G3: Counterclockwise Arc
  2095. */
  2096. #if ENABLED(ARC_SUPPORT)
  2097. inline void gcode_G2_G3(bool clockwise) {
  2098. if (IsRunning()) {
  2099. #if ENABLED(SF_ARC_FIX)
  2100. bool relative_mode_backup = relative_mode;
  2101. relative_mode = true;
  2102. #endif
  2103. gcode_get_destination();
  2104. #if ENABLED(SF_ARC_FIX)
  2105. relative_mode = relative_mode_backup;
  2106. #endif
  2107. // Center of arc as offset from current_position
  2108. float arc_offset[2] = {
  2109. code_seen('I') ? code_value() : 0,
  2110. code_seen('J') ? code_value() : 0
  2111. };
  2112. // Send an arc to the planner
  2113. plan_arc(destination, arc_offset, clockwise);
  2114. refresh_cmd_timeout();
  2115. }
  2116. }
  2117. #endif
  2118. /**
  2119. * G4: Dwell S<seconds> or P<milliseconds>
  2120. */
  2121. inline void gcode_G4() {
  2122. millis_t codenum = 0;
  2123. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  2124. if (code_seen('S')) codenum = code_value() * 1000UL; // seconds to wait
  2125. stepper.synchronize();
  2126. refresh_cmd_timeout();
  2127. codenum += previous_cmd_ms; // keep track of when we started waiting
  2128. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2129. while (PENDING(millis(), codenum)) idle();
  2130. }
  2131. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2132. /**
  2133. * Parameters interpreted according to:
  2134. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2135. * However I, J omission is not supported at this point; all
  2136. * parameters can be omitted and default to zero.
  2137. */
  2138. /**
  2139. * G5: Cubic B-spline
  2140. */
  2141. inline void gcode_G5() {
  2142. if (IsRunning()) {
  2143. #ifdef SF_ARC_FIX
  2144. bool relative_mode_backup = relative_mode;
  2145. relative_mode = true;
  2146. #endif
  2147. gcode_get_destination();
  2148. #ifdef SF_ARC_FIX
  2149. relative_mode = relative_mode_backup;
  2150. #endif
  2151. float offset[] = {
  2152. code_seen('I') ? code_value() : 0.0,
  2153. code_seen('J') ? code_value() : 0.0,
  2154. code_seen('P') ? code_value() : 0.0,
  2155. code_seen('Q') ? code_value() : 0.0
  2156. };
  2157. plan_cubic_move(offset);
  2158. }
  2159. }
  2160. #endif // BEZIER_CURVE_SUPPORT
  2161. #if ENABLED(FWRETRACT)
  2162. /**
  2163. * G10 - Retract filament according to settings of M207
  2164. * G11 - Recover filament according to settings of M208
  2165. */
  2166. inline void gcode_G10_G11(bool doRetract=false) {
  2167. #if EXTRUDERS > 1
  2168. if (doRetract) {
  2169. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  2170. }
  2171. #endif
  2172. retract(doRetract
  2173. #if EXTRUDERS > 1
  2174. , retracted_swap[active_extruder]
  2175. #endif
  2176. );
  2177. }
  2178. #endif //FWRETRACT
  2179. /**
  2180. * G28: Home all axes according to settings
  2181. *
  2182. * Parameters
  2183. *
  2184. * None Home to all axes with no parameters.
  2185. * With QUICK_HOME enabled XY will home together, then Z.
  2186. *
  2187. * Cartesian parameters
  2188. *
  2189. * X Home to the X endstop
  2190. * Y Home to the Y endstop
  2191. * Z Home to the Z endstop
  2192. *
  2193. */
  2194. inline void gcode_G28() {
  2195. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2196. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2197. #endif
  2198. // Wait for planner moves to finish!
  2199. stepper.synchronize();
  2200. // For auto bed leveling, clear the level matrix
  2201. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2202. planner.bed_level_matrix.set_to_identity();
  2203. #if ENABLED(DELTA)
  2204. reset_bed_level();
  2205. #endif
  2206. #endif
  2207. /**
  2208. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2209. * on again when homing all axis
  2210. */
  2211. #if ENABLED(MESH_BED_LEVELING)
  2212. uint8_t mbl_was_active = mbl.active;
  2213. mbl.active = false;
  2214. #endif
  2215. setup_for_endstop_move();
  2216. /**
  2217. * Directly after a reset this is all 0. Later we get a hint if we have
  2218. * to raise z or not.
  2219. */
  2220. set_destination_to_current();
  2221. feedrate = 0.0;
  2222. #if ENABLED(DELTA)
  2223. /**
  2224. * A delta can only safely home all axis at the same time
  2225. * all axis have to home at the same time
  2226. */
  2227. // Pretend the current position is 0,0,0
  2228. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2229. sync_plan_position();
  2230. // Move all carriages up together until the first endstop is hit.
  2231. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2232. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2233. line_to_destination();
  2234. stepper.synchronize();
  2235. endstops.hit_on_purpose(); // clear endstop hit flags
  2236. // Destination reached
  2237. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2238. // take care of back off and rehome now we are all at the top
  2239. HOMEAXIS(X);
  2240. HOMEAXIS(Y);
  2241. HOMEAXIS(Z);
  2242. sync_plan_position_delta();
  2243. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2244. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2245. #endif
  2246. #else // NOT DELTA
  2247. bool homeX = code_seen(axis_codes[X_AXIS]),
  2248. homeY = code_seen(axis_codes[Y_AXIS]),
  2249. homeZ = code_seen(axis_codes[Z_AXIS]);
  2250. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2251. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2252. if (home_all_axis || homeZ) {
  2253. HOMEAXIS(Z);
  2254. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2255. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2256. #endif
  2257. }
  2258. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2259. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2260. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2261. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2262. feedrate = planner.max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2263. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2264. if (DEBUGGING(LEVELING)) {
  2265. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2266. SERIAL_EOL;
  2267. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2268. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2269. }
  2270. #endif
  2271. line_to_destination();
  2272. stepper.synchronize();
  2273. /**
  2274. * Update the current Z position even if it currently not real from
  2275. * Z-home otherwise each call to line_to_destination() will want to
  2276. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2277. */
  2278. current_position[Z_AXIS] = destination[Z_AXIS];
  2279. }
  2280. #endif
  2281. #if ENABLED(QUICK_HOME)
  2282. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2283. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2284. #if ENABLED(DUAL_X_CARRIAGE)
  2285. int x_axis_home_dir = x_home_dir(active_extruder);
  2286. extruder_duplication_enabled = false;
  2287. #else
  2288. int x_axis_home_dir = home_dir(X_AXIS);
  2289. #endif
  2290. sync_plan_position();
  2291. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2292. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2293. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2294. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2295. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2296. line_to_destination();
  2297. stepper.synchronize();
  2298. set_axis_is_at_home(X_AXIS);
  2299. set_axis_is_at_home(Y_AXIS);
  2300. sync_plan_position();
  2301. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2302. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2303. #endif
  2304. destination[X_AXIS] = current_position[X_AXIS];
  2305. destination[Y_AXIS] = current_position[Y_AXIS];
  2306. line_to_destination();
  2307. feedrate = 0.0;
  2308. stepper.synchronize();
  2309. endstops.hit_on_purpose(); // clear endstop hit flags
  2310. current_position[X_AXIS] = destination[X_AXIS];
  2311. current_position[Y_AXIS] = destination[Y_AXIS];
  2312. #if DISABLED(SCARA)
  2313. current_position[Z_AXIS] = destination[Z_AXIS];
  2314. #endif
  2315. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2316. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2317. #endif
  2318. }
  2319. #endif // QUICK_HOME
  2320. #if ENABLED(HOME_Y_BEFORE_X)
  2321. // Home Y
  2322. if (home_all_axis || homeY) HOMEAXIS(Y);
  2323. #endif
  2324. // Home X
  2325. if (home_all_axis || homeX) {
  2326. #if ENABLED(DUAL_X_CARRIAGE)
  2327. int tmp_extruder = active_extruder;
  2328. extruder_duplication_enabled = false;
  2329. active_extruder = !active_extruder;
  2330. HOMEAXIS(X);
  2331. inactive_extruder_x_pos = current_position[X_AXIS];
  2332. active_extruder = tmp_extruder;
  2333. HOMEAXIS(X);
  2334. // reset state used by the different modes
  2335. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2336. delayed_move_time = 0;
  2337. active_extruder_parked = true;
  2338. #else
  2339. HOMEAXIS(X);
  2340. #endif
  2341. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2342. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2343. #endif
  2344. }
  2345. #if DISABLED(HOME_Y_BEFORE_X)
  2346. // Home Y
  2347. if (home_all_axis || homeY) {
  2348. HOMEAXIS(Y);
  2349. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2350. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2351. #endif
  2352. }
  2353. #endif
  2354. // Home Z last if homing towards the bed
  2355. #if Z_HOME_DIR < 0
  2356. if (home_all_axis || homeZ) {
  2357. #if ENABLED(Z_SAFE_HOMING)
  2358. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2359. if (DEBUGGING(LEVELING)) {
  2360. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2361. }
  2362. #endif
  2363. if (home_all_axis) {
  2364. /**
  2365. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2366. * No need to move Z any more as this height should already be safe
  2367. * enough to reach Z_SAFE_HOMING XY positions.
  2368. * Just make sure the planner is in sync.
  2369. */
  2370. sync_plan_position();
  2371. /**
  2372. * Set the Z probe (or just the nozzle) destination to the safe
  2373. * homing point
  2374. */
  2375. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2376. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2377. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2378. feedrate = XY_TRAVEL_SPEED;
  2379. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2380. if (DEBUGGING(LEVELING)) {
  2381. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2382. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2383. }
  2384. #endif
  2385. // Move in the XY plane
  2386. line_to_destination();
  2387. stepper.synchronize();
  2388. /**
  2389. * Update the current positions for XY, Z is still at least at
  2390. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2391. */
  2392. current_position[X_AXIS] = destination[X_AXIS];
  2393. current_position[Y_AXIS] = destination[Y_AXIS];
  2394. // Home the Z axis
  2395. HOMEAXIS(Z);
  2396. }
  2397. else if (homeZ) { // Don't need to Home Z twice
  2398. // Let's see if X and Y are homed
  2399. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2400. /**
  2401. * Make sure the Z probe is within the physical limits
  2402. * NOTE: This doesn't necessarily ensure the Z probe is also
  2403. * within the bed!
  2404. */
  2405. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2406. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2407. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2408. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2409. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2410. // Home the Z axis
  2411. HOMEAXIS(Z);
  2412. }
  2413. else {
  2414. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2415. SERIAL_ECHO_START;
  2416. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2417. }
  2418. }
  2419. else {
  2420. axis_unhomed_error();
  2421. }
  2422. } // !home_all_axes && homeZ
  2423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2424. if (DEBUGGING(LEVELING)) {
  2425. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2426. }
  2427. #endif
  2428. #else // !Z_SAFE_HOMING
  2429. HOMEAXIS(Z);
  2430. #endif // !Z_SAFE_HOMING
  2431. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2432. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2433. #endif
  2434. } // home_all_axis || homeZ
  2435. #endif // Z_HOME_DIR < 0
  2436. sync_plan_position();
  2437. #endif // else DELTA
  2438. #if ENABLED(SCARA)
  2439. sync_plan_position_delta();
  2440. #endif
  2441. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2442. endstops.enable(false);
  2443. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2444. if (DEBUGGING(LEVELING)) {
  2445. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING endstops.enable(false)");
  2446. }
  2447. #endif
  2448. #endif
  2449. // For mesh leveling move back to Z=0
  2450. #if ENABLED(MESH_BED_LEVELING)
  2451. if (mbl_was_active && home_all_axis) {
  2452. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2453. sync_plan_position();
  2454. mbl.active = 1;
  2455. current_position[Z_AXIS] = 0.0;
  2456. set_destination_to_current();
  2457. feedrate = homing_feedrate[Z_AXIS];
  2458. line_to_destination();
  2459. stepper.synchronize();
  2460. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2461. if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
  2462. #endif
  2463. }
  2464. #endif
  2465. feedrate = saved_feedrate;
  2466. feedrate_multiplier = saved_feedrate_multiplier;
  2467. refresh_cmd_timeout();
  2468. endstops.hit_on_purpose(); // clear endstop hit flags
  2469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2470. if (DEBUGGING(LEVELING)) {
  2471. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2472. }
  2473. #endif
  2474. report_current_position();
  2475. }
  2476. #if ENABLED(MESH_BED_LEVELING)
  2477. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2478. inline void _mbl_goto_xy(float x, float y) {
  2479. saved_feedrate = feedrate;
  2480. feedrate = homing_feedrate[X_AXIS];
  2481. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2482. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2483. + MIN_Z_HEIGHT_FOR_HOMING
  2484. #endif
  2485. ;
  2486. line_to_current_position();
  2487. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2488. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2489. line_to_current_position();
  2490. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2491. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2492. line_to_current_position();
  2493. #endif
  2494. feedrate = saved_feedrate;
  2495. stepper.synchronize();
  2496. }
  2497. /**
  2498. * G29: Mesh-based Z probe, probes a grid and produces a
  2499. * mesh to compensate for variable bed height
  2500. *
  2501. * Parameters With MESH_BED_LEVELING:
  2502. *
  2503. * S0 Produce a mesh report
  2504. * S1 Start probing mesh points
  2505. * S2 Probe the next mesh point
  2506. * S3 Xn Yn Zn.nn Manually modify a single point
  2507. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2508. *
  2509. * The S0 report the points as below
  2510. *
  2511. * +----> X-axis 1-n
  2512. * |
  2513. * |
  2514. * v Y-axis 1-n
  2515. *
  2516. */
  2517. inline void gcode_G29() {
  2518. static int probe_point = -1;
  2519. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2520. if (state < 0 || state > 4) {
  2521. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2522. return;
  2523. }
  2524. int8_t ix, iy;
  2525. float z;
  2526. switch (state) {
  2527. case MeshReport:
  2528. if (mbl.active) {
  2529. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2530. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2531. SERIAL_PROTOCOLCHAR(',');
  2532. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2533. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2534. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2535. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2536. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2537. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2538. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2539. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2540. SERIAL_PROTOCOLPGM(" ");
  2541. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2542. }
  2543. SERIAL_EOL;
  2544. }
  2545. }
  2546. else
  2547. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2548. break;
  2549. case MeshStart:
  2550. mbl.reset();
  2551. probe_point = 0;
  2552. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2553. break;
  2554. case MeshNext:
  2555. if (probe_point < 0) {
  2556. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2557. return;
  2558. }
  2559. // For each G29 S2...
  2560. if (probe_point == 0) {
  2561. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2562. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2563. sync_plan_position();
  2564. }
  2565. else {
  2566. // For G29 S2 after adjusting Z.
  2567. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2568. }
  2569. // If there's another point to sample, move there with optional lift.
  2570. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2571. mbl.zigzag(probe_point, ix, iy);
  2572. _mbl_goto_xy(mbl.get_x(ix), mbl.get_y(iy));
  2573. probe_point++;
  2574. }
  2575. else {
  2576. // One last "return to the bed" (as originally coded) at completion
  2577. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2578. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2579. + MIN_Z_HEIGHT_FOR_HOMING
  2580. #endif
  2581. ;
  2582. line_to_current_position();
  2583. stepper.synchronize();
  2584. // After recording the last point, activate the mbl and home
  2585. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2586. probe_point = -1;
  2587. mbl.active = true;
  2588. enqueue_and_echo_commands_P(PSTR("G28"));
  2589. }
  2590. break;
  2591. case MeshSet:
  2592. if (code_seen('X')) {
  2593. ix = code_value_long() - 1;
  2594. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2595. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2596. return;
  2597. }
  2598. }
  2599. else {
  2600. SERIAL_PROTOCOLPGM("X not entered.\n");
  2601. return;
  2602. }
  2603. if (code_seen('Y')) {
  2604. iy = code_value_long() - 1;
  2605. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2606. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2607. return;
  2608. }
  2609. }
  2610. else {
  2611. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2612. return;
  2613. }
  2614. if (code_seen('Z')) {
  2615. z = code_value();
  2616. }
  2617. else {
  2618. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2619. return;
  2620. }
  2621. mbl.z_values[iy][ix] = z;
  2622. break;
  2623. case MeshSetZOffset:
  2624. if (code_seen('Z')) {
  2625. z = code_value();
  2626. }
  2627. else {
  2628. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2629. return;
  2630. }
  2631. mbl.z_offset = z;
  2632. } // switch(state)
  2633. report_current_position();
  2634. }
  2635. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2636. void out_of_range_error(const char* p_edge) {
  2637. SERIAL_PROTOCOLPGM("?Probe ");
  2638. serialprintPGM(p_edge);
  2639. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2640. }
  2641. /**
  2642. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2643. * Will fail if the printer has not been homed with G28.
  2644. *
  2645. * Enhanced G29 Auto Bed Leveling Probe Routine
  2646. *
  2647. * Parameters With AUTO_BED_LEVELING_GRID:
  2648. *
  2649. * P Set the size of the grid that will be probed (P x P points).
  2650. * Not supported by non-linear delta printer bed leveling.
  2651. * Example: "G29 P4"
  2652. *
  2653. * S Set the XY travel speed between probe points (in mm/min)
  2654. *
  2655. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2656. * or clean the rotation Matrix. Useful to check the topology
  2657. * after a first run of G29.
  2658. *
  2659. * V Set the verbose level (0-4). Example: "G29 V3"
  2660. *
  2661. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2662. * This is useful for manual bed leveling and finding flaws in the bed (to
  2663. * assist with part placement).
  2664. * Not supported by non-linear delta printer bed leveling.
  2665. *
  2666. * F Set the Front limit of the probing grid
  2667. * B Set the Back limit of the probing grid
  2668. * L Set the Left limit of the probing grid
  2669. * R Set the Right limit of the probing grid
  2670. *
  2671. * Global Parameters:
  2672. *
  2673. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2674. * Include "E" to engage/disengage the Z probe for each sample.
  2675. * There's no extra effect if you have a fixed Z probe.
  2676. * Usage: "G29 E" or "G29 e"
  2677. *
  2678. */
  2679. inline void gcode_G29() {
  2680. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2681. if (DEBUGGING(LEVELING)) {
  2682. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2683. DEBUG_POS("", current_position);
  2684. }
  2685. #endif
  2686. // Don't allow auto-leveling without homing first
  2687. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  2688. axis_unhomed_error(true);
  2689. return;
  2690. }
  2691. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2692. if (verbose_level < 0 || verbose_level > 4) {
  2693. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2694. return;
  2695. }
  2696. bool dryrun = code_seen('D'),
  2697. deploy_probe_for_each_reading = code_seen('E');
  2698. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2699. #if DISABLED(DELTA)
  2700. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2701. #endif
  2702. if (verbose_level > 0) {
  2703. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2704. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2705. }
  2706. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2707. #if DISABLED(DELTA)
  2708. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2709. if (auto_bed_leveling_grid_points < 2) {
  2710. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2711. return;
  2712. }
  2713. #endif
  2714. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2715. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2716. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2717. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2718. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2719. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2720. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2721. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2722. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2723. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2724. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2725. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2726. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2727. if (left_out || right_out || front_out || back_out) {
  2728. if (left_out) {
  2729. out_of_range_error(PSTR("(L)eft"));
  2730. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2731. }
  2732. if (right_out) {
  2733. out_of_range_error(PSTR("(R)ight"));
  2734. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2735. }
  2736. if (front_out) {
  2737. out_of_range_error(PSTR("(F)ront"));
  2738. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2739. }
  2740. if (back_out) {
  2741. out_of_range_error(PSTR("(B)ack"));
  2742. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2743. }
  2744. return;
  2745. }
  2746. #endif // AUTO_BED_LEVELING_GRID
  2747. if (!dryrun) {
  2748. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2749. if (DEBUGGING(LEVELING)) {
  2750. vector_3 corrected_position = planner.adjusted_position();
  2751. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2752. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2753. }
  2754. #endif
  2755. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2756. planner.bed_level_matrix.set_to_identity();
  2757. #if ENABLED(DELTA)
  2758. reset_bed_level();
  2759. #else //!DELTA
  2760. //vector_3 corrected_position = planner.adjusted_position();
  2761. //corrected_position.debug("position before G29");
  2762. vector_3 uncorrected_position = planner.adjusted_position();
  2763. //uncorrected_position.debug("position during G29");
  2764. current_position[X_AXIS] = uncorrected_position.x;
  2765. current_position[Y_AXIS] = uncorrected_position.y;
  2766. current_position[Z_AXIS] = uncorrected_position.z;
  2767. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2768. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2769. #endif
  2770. sync_plan_position();
  2771. #endif // !DELTA
  2772. }
  2773. #if ENABLED(Z_PROBE_SLED)
  2774. dock_sled(false); // engage (un-dock) the Z probe
  2775. #elif ENABLED(FIX_MOUNTED_PROBE) || ENABLED(MECHANICAL_PROBE) || ENABLED(Z_PROBE_ALLEN_KEY) || (ENABLED(DELTA) && SERVO_LEVELING)
  2776. deploy_z_probe();
  2777. #endif
  2778. stepper.synchronize();
  2779. setup_for_endstop_move();
  2780. feedrate = homing_feedrate[Z_AXIS];
  2781. bed_leveling_in_progress = true;
  2782. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2783. // probe at the points of a lattice grid
  2784. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2785. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2786. #if ENABLED(DELTA)
  2787. delta_grid_spacing[0] = xGridSpacing;
  2788. delta_grid_spacing[1] = yGridSpacing;
  2789. float zoffset = zprobe_zoffset;
  2790. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value();
  2791. #else // !DELTA
  2792. /**
  2793. * solve the plane equation ax + by + d = z
  2794. * A is the matrix with rows [x y 1] for all the probed points
  2795. * B is the vector of the Z positions
  2796. * the normal vector to the plane is formed by the coefficients of the
  2797. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2798. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2799. */
  2800. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2801. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2802. eqnBVector[abl2], // "B" vector of Z points
  2803. mean = 0.0;
  2804. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2805. #endif // !DELTA
  2806. int probePointCounter = 0;
  2807. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2808. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2809. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2810. int xStart, xStop, xInc;
  2811. if (zig) {
  2812. xStart = 0;
  2813. xStop = auto_bed_leveling_grid_points;
  2814. xInc = 1;
  2815. }
  2816. else {
  2817. xStart = auto_bed_leveling_grid_points - 1;
  2818. xStop = -1;
  2819. xInc = -1;
  2820. }
  2821. zig = !zig;
  2822. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2823. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2824. // raise extruder
  2825. float measured_z,
  2826. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
  2827. if (probePointCounter) {
  2828. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2829. if (DEBUGGING(LEVELING)) {
  2830. SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2831. SERIAL_EOL;
  2832. }
  2833. #endif
  2834. }
  2835. else {
  2836. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2837. if (DEBUGGING(LEVELING)) {
  2838. SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS]);
  2839. SERIAL_EOL;
  2840. }
  2841. #endif
  2842. }
  2843. #if ENABLED(DELTA)
  2844. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2845. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2846. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2847. #endif //DELTA
  2848. ProbeAction act;
  2849. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2850. act = ProbeDeployAndStow;
  2851. else if (yCount == 0 && xCount == xStart)
  2852. act = ProbeDeploy;
  2853. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2854. act = ProbeStow;
  2855. else
  2856. act = ProbeStay;
  2857. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2858. #if DISABLED(DELTA)
  2859. mean += measured_z;
  2860. eqnBVector[probePointCounter] = measured_z;
  2861. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2862. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2863. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2864. indexIntoAB[xCount][yCount] = probePointCounter;
  2865. #else
  2866. bed_level[xCount][yCount] = measured_z + zoffset;
  2867. #endif
  2868. probePointCounter++;
  2869. idle();
  2870. } //xProbe
  2871. } //yProbe
  2872. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2873. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2874. #endif
  2875. clean_up_after_endstop_move();
  2876. #if ENABLED(DELTA)
  2877. if (!dryrun) extrapolate_unprobed_bed_level();
  2878. print_bed_level();
  2879. #else // !DELTA
  2880. // solve lsq problem
  2881. double plane_equation_coefficients[3];
  2882. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2883. mean /= abl2;
  2884. if (verbose_level) {
  2885. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2886. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2887. SERIAL_PROTOCOLPGM(" b: ");
  2888. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2889. SERIAL_PROTOCOLPGM(" d: ");
  2890. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2891. SERIAL_EOL;
  2892. if (verbose_level > 2) {
  2893. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2894. SERIAL_PROTOCOL_F(mean, 8);
  2895. SERIAL_EOL;
  2896. }
  2897. }
  2898. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2899. // Show the Topography map if enabled
  2900. if (do_topography_map) {
  2901. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2902. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2903. SERIAL_PROTOCOLPGM(" | |\n");
  2904. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2905. SERIAL_PROTOCOLPGM(" E | | I\n");
  2906. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2907. SERIAL_PROTOCOLPGM(" T | | H\n");
  2908. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2909. SERIAL_PROTOCOLPGM(" | |\n");
  2910. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2911. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2912. float min_diff = 999;
  2913. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2914. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2915. int ind = indexIntoAB[xx][yy];
  2916. float diff = eqnBVector[ind] - mean;
  2917. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2918. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2919. z_tmp = 0;
  2920. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2921. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2922. if (diff >= 0.0)
  2923. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2924. else
  2925. SERIAL_PROTOCOLCHAR(' ');
  2926. SERIAL_PROTOCOL_F(diff, 5);
  2927. } // xx
  2928. SERIAL_EOL;
  2929. } // yy
  2930. SERIAL_EOL;
  2931. if (verbose_level > 3) {
  2932. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2933. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2934. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2935. int ind = indexIntoAB[xx][yy];
  2936. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2937. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2938. z_tmp = 0;
  2939. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2940. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2941. if (diff >= 0.0)
  2942. SERIAL_PROTOCOLPGM(" +");
  2943. // Include + for column alignment
  2944. else
  2945. SERIAL_PROTOCOLCHAR(' ');
  2946. SERIAL_PROTOCOL_F(diff, 5);
  2947. } // xx
  2948. SERIAL_EOL;
  2949. } // yy
  2950. SERIAL_EOL;
  2951. }
  2952. } //do_topography_map
  2953. #endif //!DELTA
  2954. #else // !AUTO_BED_LEVELING_GRID
  2955. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2956. if (DEBUGGING(LEVELING)) {
  2957. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2958. }
  2959. #endif
  2960. // Actions for each probe
  2961. ProbeAction p1, p2, p3;
  2962. if (deploy_probe_for_each_reading)
  2963. p1 = p2 = p3 = ProbeDeployAndStow;
  2964. else
  2965. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2966. // Probe at 3 arbitrary points
  2967. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  2968. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  2969. Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
  2970. p1, verbose_level),
  2971. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  2972. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  2973. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2974. p2, verbose_level),
  2975. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  2976. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  2977. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2978. p3, verbose_level);
  2979. clean_up_after_endstop_move();
  2980. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2981. #endif // !AUTO_BED_LEVELING_GRID
  2982. #if ENABLED(DELTA)
  2983. // Allen Key Probe for Delta
  2984. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  2985. stow_z_probe();
  2986. #elif Z_RAISE_AFTER_PROBING > 0
  2987. raise_z_after_probing(); // for non Allen Key probes, such as simple mechanical probe
  2988. #endif
  2989. #else // !DELTA
  2990. if (verbose_level > 0)
  2991. planner.bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2992. if (!dryrun) {
  2993. /**
  2994. * Correct the Z height difference from Z probe position and nozzle tip position.
  2995. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2996. * from the nozzle. When the bed is uneven, this height must be corrected.
  2997. */
  2998. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2999. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3000. z_tmp = current_position[Z_AXIS],
  3001. real_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3002. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3003. if (DEBUGGING(LEVELING)) {
  3004. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  3005. SERIAL_EOL;
  3006. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  3007. SERIAL_EOL;
  3008. }
  3009. #endif
  3010. // Apply the correction sending the Z probe offset
  3011. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3012. /*
  3013. * Get the current Z position and send it to the planner.
  3014. *
  3015. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  3016. * (most recent planner.set_position/sync_plan_position)
  3017. *
  3018. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  3019. * (set by default, M851, EEPROM, or Menu)
  3020. *
  3021. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  3022. * after the last probe
  3023. *
  3024. * >> Should home_offset[Z_AXIS] be included?
  3025. *
  3026. *
  3027. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  3028. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  3029. * not actually "homing" Z... then perhaps it should not be included
  3030. * here. The purpose of home_offset[] is to adjust for inaccurate
  3031. * endstops, not for reasonably accurate probes. If it were added
  3032. * here, it could be seen as a compensating factor for the Z probe.
  3033. */
  3034. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3035. if (DEBUGGING(LEVELING)) {
  3036. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3037. SERIAL_EOL;
  3038. }
  3039. #endif
  3040. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  3041. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  3042. + Z_RAISE_AFTER_PROBING
  3043. #endif
  3044. ;
  3045. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  3046. sync_plan_position();
  3047. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3048. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3049. #endif
  3050. }
  3051. // Sled assembly for Cartesian bots
  3052. #if ENABLED(Z_PROBE_SLED)
  3053. dock_sled(true); // dock the sled
  3054. #elif Z_RAISE_AFTER_PROBING > 0
  3055. // Raise Z axis for non-delta and non servo based probes
  3056. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  3057. raise_z_after_probing();
  3058. #endif
  3059. #endif
  3060. #endif // !DELTA
  3061. #if ENABLED(MECHANICAL_PROBE)
  3062. stow_z_probe();
  3063. #endif
  3064. #ifdef Z_PROBE_END_SCRIPT
  3065. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3066. if (DEBUGGING(LEVELING)) {
  3067. SERIAL_ECHO("Z Probe End Script: ");
  3068. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3069. }
  3070. #endif
  3071. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3072. #if HAS_BED_PROBE
  3073. endstops.enable_z_probe(false);
  3074. #endif
  3075. stepper.synchronize();
  3076. #endif
  3077. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3078. if (DEBUGGING(LEVELING)) {
  3079. SERIAL_ECHOLNPGM("<<< gcode_G29");
  3080. }
  3081. #endif
  3082. bed_leveling_in_progress = false;
  3083. report_current_position();
  3084. KEEPALIVE_STATE(IN_HANDLER);
  3085. }
  3086. #if DISABLED(Z_PROBE_SLED) // could be avoided
  3087. /**
  3088. * G30: Do a single Z probe at the current XY
  3089. */
  3090. inline void gcode_G30() {
  3091. #if HAS_SERVO_ENDSTOPS
  3092. raise_z_for_servo();
  3093. #endif
  3094. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3095. stepper.synchronize();
  3096. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3097. setup_for_endstop_move(); // Too late. Must be done before deploying.
  3098. feedrate = homing_feedrate[Z_AXIS];
  3099. run_z_probe();
  3100. SERIAL_PROTOCOLPGM("Bed X: ");
  3101. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3102. SERIAL_PROTOCOLPGM(" Y: ");
  3103. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3104. SERIAL_PROTOCOLPGM(" Z: ");
  3105. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  3106. SERIAL_EOL;
  3107. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  3108. #if HAS_SERVO_ENDSTOPS
  3109. raise_z_for_servo();
  3110. #endif
  3111. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3112. report_current_position();
  3113. }
  3114. #endif //!Z_PROBE_SLED
  3115. #endif //AUTO_BED_LEVELING_FEATURE
  3116. /**
  3117. * G92: Set current position to given X Y Z E
  3118. */
  3119. inline void gcode_G92() {
  3120. bool didE = code_seen(axis_codes[E_AXIS]);
  3121. if (!didE) stepper.synchronize();
  3122. bool didXYZ = false;
  3123. for (int i = 0; i < NUM_AXIS; i++) {
  3124. if (code_seen(axis_codes[i])) {
  3125. float p = current_position[i],
  3126. v = code_value();
  3127. current_position[i] = v;
  3128. if (i != E_AXIS) {
  3129. position_shift[i] += v - p; // Offset the coordinate space
  3130. update_software_endstops((AxisEnum)i);
  3131. didXYZ = true;
  3132. }
  3133. }
  3134. }
  3135. if (didXYZ) {
  3136. #if ENABLED(DELTA) || ENABLED(SCARA)
  3137. sync_plan_position_delta();
  3138. #else
  3139. sync_plan_position();
  3140. #endif
  3141. }
  3142. else if (didE) {
  3143. sync_plan_position_e();
  3144. }
  3145. }
  3146. #if ENABLED(ULTIPANEL)
  3147. /**
  3148. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3149. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3150. */
  3151. inline void gcode_M0_M1() {
  3152. char* args = current_command_args;
  3153. uint8_t test_value = 12;
  3154. SERIAL_ECHOPAIR("TEST", test_value);
  3155. millis_t codenum = 0;
  3156. bool hasP = false, hasS = false;
  3157. if (code_seen('P')) {
  3158. codenum = code_value_short(); // milliseconds to wait
  3159. hasP = codenum > 0;
  3160. }
  3161. if (code_seen('S')) {
  3162. codenum = code_value() * 1000UL; // seconds to wait
  3163. hasS = codenum > 0;
  3164. }
  3165. if (!hasP && !hasS && *args != '\0')
  3166. lcd_setstatus(args, true);
  3167. else {
  3168. LCD_MESSAGEPGM(MSG_USERWAIT);
  3169. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3170. dontExpireStatus();
  3171. #endif
  3172. }
  3173. lcd_ignore_click();
  3174. stepper.synchronize();
  3175. refresh_cmd_timeout();
  3176. if (codenum > 0) {
  3177. codenum += previous_cmd_ms; // wait until this time for a click
  3178. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3179. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3180. KEEPALIVE_STATE(IN_HANDLER);
  3181. lcd_ignore_click(false);
  3182. }
  3183. else {
  3184. if (!lcd_detected()) return;
  3185. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3186. while (!lcd_clicked()) idle();
  3187. KEEPALIVE_STATE(IN_HANDLER);
  3188. }
  3189. if (IS_SD_PRINTING)
  3190. LCD_MESSAGEPGM(MSG_RESUMING);
  3191. else
  3192. LCD_MESSAGEPGM(WELCOME_MSG);
  3193. }
  3194. #endif // ULTIPANEL
  3195. /**
  3196. * M17: Enable power on all stepper motors
  3197. */
  3198. inline void gcode_M17() {
  3199. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3200. enable_all_steppers();
  3201. }
  3202. #if ENABLED(SDSUPPORT)
  3203. /**
  3204. * M20: List SD card to serial output
  3205. */
  3206. inline void gcode_M20() {
  3207. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3208. card.ls();
  3209. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3210. }
  3211. /**
  3212. * M21: Init SD Card
  3213. */
  3214. inline void gcode_M21() {
  3215. card.initsd();
  3216. }
  3217. /**
  3218. * M22: Release SD Card
  3219. */
  3220. inline void gcode_M22() {
  3221. card.release();
  3222. }
  3223. /**
  3224. * M23: Open a file
  3225. */
  3226. inline void gcode_M23() {
  3227. card.openFile(current_command_args, true);
  3228. }
  3229. /**
  3230. * M24: Start SD Print
  3231. */
  3232. inline void gcode_M24() {
  3233. card.startFileprint();
  3234. print_job_timer.start();
  3235. }
  3236. /**
  3237. * M25: Pause SD Print
  3238. */
  3239. inline void gcode_M25() {
  3240. card.pauseSDPrint();
  3241. }
  3242. /**
  3243. * M26: Set SD Card file index
  3244. */
  3245. inline void gcode_M26() {
  3246. if (card.cardOK && code_seen('S'))
  3247. card.setIndex(code_value_long());
  3248. }
  3249. /**
  3250. * M27: Get SD Card status
  3251. */
  3252. inline void gcode_M27() {
  3253. card.getStatus();
  3254. }
  3255. /**
  3256. * M28: Start SD Write
  3257. */
  3258. inline void gcode_M28() {
  3259. card.openFile(current_command_args, false);
  3260. }
  3261. /**
  3262. * M29: Stop SD Write
  3263. * Processed in write to file routine above
  3264. */
  3265. inline void gcode_M29() {
  3266. // card.saving = false;
  3267. }
  3268. /**
  3269. * M30 <filename>: Delete SD Card file
  3270. */
  3271. inline void gcode_M30() {
  3272. if (card.cardOK) {
  3273. card.closefile();
  3274. card.removeFile(current_command_args);
  3275. }
  3276. }
  3277. #endif //SDSUPPORT
  3278. /**
  3279. * M31: Get the time since the start of SD Print (or last M109)
  3280. */
  3281. inline void gcode_M31() {
  3282. millis_t t = print_job_timer.duration();
  3283. int min = t / 60, sec = t % 60;
  3284. char time[30];
  3285. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3286. SERIAL_ECHO_START;
  3287. SERIAL_ECHOLN(time);
  3288. lcd_setstatus(time);
  3289. thermalManager.autotempShutdown();
  3290. }
  3291. #if ENABLED(SDSUPPORT)
  3292. /**
  3293. * M32: Select file and start SD Print
  3294. */
  3295. inline void gcode_M32() {
  3296. if (card.sdprinting)
  3297. stepper.synchronize();
  3298. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3299. if (!namestartpos)
  3300. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3301. else
  3302. namestartpos++; //to skip the '!'
  3303. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3304. if (card.cardOK) {
  3305. card.openFile(namestartpos, true, call_procedure);
  3306. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3307. card.setIndex(code_value_long());
  3308. card.startFileprint();
  3309. // Procedure calls count as normal print time.
  3310. if (!call_procedure) print_job_timer.start();
  3311. }
  3312. }
  3313. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3314. /**
  3315. * M33: Get the long full path of a file or folder
  3316. *
  3317. * Parameters:
  3318. * <dospath> Case-insensitive DOS-style path to a file or folder
  3319. *
  3320. * Example:
  3321. * M33 miscel~1/armchair/armcha~1.gco
  3322. *
  3323. * Output:
  3324. * /Miscellaneous/Armchair/Armchair.gcode
  3325. */
  3326. inline void gcode_M33() {
  3327. card.printLongPath(current_command_args);
  3328. }
  3329. #endif
  3330. /**
  3331. * M928: Start SD Write
  3332. */
  3333. inline void gcode_M928() {
  3334. card.openLogFile(current_command_args);
  3335. }
  3336. #endif // SDSUPPORT
  3337. /**
  3338. * M42: Change pin status via GCode
  3339. *
  3340. * P<pin> Pin number (LED if omitted)
  3341. * S<byte> Pin status from 0 - 255
  3342. */
  3343. inline void gcode_M42() {
  3344. if (code_seen('S')) {
  3345. int pin_status = code_value_short();
  3346. if (pin_status < 0 || pin_status > 255) return;
  3347. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3348. if (pin_number < 0) return;
  3349. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3350. if (pin_number == sensitive_pins[i]) return;
  3351. pinMode(pin_number, OUTPUT);
  3352. digitalWrite(pin_number, pin_status);
  3353. analogWrite(pin_number, pin_status);
  3354. #if FAN_COUNT > 0
  3355. switch (pin_number) {
  3356. #if HAS_FAN0
  3357. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3358. #endif
  3359. #if HAS_FAN1
  3360. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3361. #endif
  3362. #if HAS_FAN2
  3363. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3364. #endif
  3365. }
  3366. #endif
  3367. } // code_seen('S')
  3368. }
  3369. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3370. /**
  3371. * This is redundant since the SanityCheck.h already checks for a valid
  3372. * Z_MIN_PROBE_PIN, but here for clarity.
  3373. */
  3374. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3375. #if !HAS_Z_MIN_PROBE_PIN
  3376. #error "You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation."
  3377. #endif
  3378. #elif !HAS_Z_MIN
  3379. #error "You must define Z_MIN_PIN to enable Z probe repeatability calculation."
  3380. #endif
  3381. /**
  3382. * M48: Z probe repeatability measurement function.
  3383. *
  3384. * Usage:
  3385. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3386. * P = Number of sampled points (4-50, default 10)
  3387. * X = Sample X position
  3388. * Y = Sample Y position
  3389. * V = Verbose level (0-4, default=1)
  3390. * E = Engage Z probe for each reading
  3391. * L = Number of legs of movement before probe
  3392. * S = Schizoid (Or Star if you prefer)
  3393. *
  3394. * This function assumes the bed has been homed. Specifically, that a G28 command
  3395. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3396. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3397. * regenerated.
  3398. */
  3399. inline void gcode_M48() {
  3400. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3401. axis_unhomed_error(true);
  3402. return;
  3403. }
  3404. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3405. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3406. if (code_seen('V')) {
  3407. verbose_level = code_value_short();
  3408. if (verbose_level < 0 || verbose_level > 4) {
  3409. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3410. return;
  3411. }
  3412. }
  3413. if (verbose_level > 0)
  3414. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3415. if (code_seen('P')) {
  3416. n_samples = code_value_short();
  3417. if (n_samples < 4 || n_samples > 50) {
  3418. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3419. return;
  3420. }
  3421. }
  3422. float X_current = current_position[X_AXIS],
  3423. Y_current = current_position[Y_AXIS],
  3424. Z_current = current_position[Z_AXIS],
  3425. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3426. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3427. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3428. bool deploy_probe_for_each_reading = code_seen('E');
  3429. if (code_seen('X')) {
  3430. X_probe_location = code_value();
  3431. #if DISABLED(DELTA)
  3432. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3433. out_of_range_error(PSTR("X"));
  3434. return;
  3435. }
  3436. #endif
  3437. }
  3438. if (code_seen('Y')) {
  3439. Y_probe_location = code_value();
  3440. #if DISABLED(DELTA)
  3441. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3442. out_of_range_error(PSTR("Y"));
  3443. return;
  3444. }
  3445. #endif
  3446. }
  3447. #if ENABLED(DELTA)
  3448. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3449. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3450. return;
  3451. }
  3452. #endif
  3453. bool seen_L = code_seen('L');
  3454. if (seen_L) {
  3455. n_legs = code_value_short();
  3456. if (n_legs < 0 || n_legs > 15) {
  3457. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3458. return;
  3459. }
  3460. if (n_legs == 1) n_legs = 2;
  3461. }
  3462. if (code_seen('S')) {
  3463. schizoid_flag++;
  3464. if (!seen_L) n_legs = 7;
  3465. }
  3466. /**
  3467. * Now get everything to the specified probe point So we can safely do a
  3468. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3469. * we don't want to use that as a starting point for each probe.
  3470. */
  3471. if (verbose_level > 2)
  3472. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3473. #if ENABLED(DELTA)
  3474. // we don't do bed level correction in M48 because we want the raw data when we probe
  3475. reset_bed_level();
  3476. #else
  3477. // we don't do bed level correction in M48 because we want the raw data when we probe
  3478. planner.bed_level_matrix.set_to_identity();
  3479. #endif
  3480. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3481. do_blocking_move_to_z(Z_start_location);
  3482. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3483. /**
  3484. * OK, do the initial probe to get us close to the bed.
  3485. * Then retrace the right amount and use that in subsequent probes
  3486. */
  3487. setup_for_endstop_move();
  3488. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3489. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3490. verbose_level);
  3491. raise_z_after_probing();
  3492. for (uint8_t n = 0; n < n_samples; n++) {
  3493. randomSeed(millis());
  3494. delay(500);
  3495. if (n_legs) {
  3496. float radius, angle = random(0.0, 360.0);
  3497. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3498. radius = random(
  3499. #if ENABLED(DELTA)
  3500. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3501. #else
  3502. 5, X_MAX_LENGTH / 8
  3503. #endif
  3504. );
  3505. if (verbose_level > 3) {
  3506. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3507. SERIAL_ECHOPAIR(" angle: ", angle);
  3508. delay(100);
  3509. if (dir > 0)
  3510. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3511. else
  3512. SERIAL_ECHO(" Direction: Clockwise \n");
  3513. delay(100);
  3514. }
  3515. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3516. double delta_angle;
  3517. if (schizoid_flag)
  3518. // The points of a 5 point star are 72 degrees apart. We need to
  3519. // skip a point and go to the next one on the star.
  3520. delta_angle = dir * 2.0 * 72.0;
  3521. else
  3522. // If we do this line, we are just trying to move further
  3523. // around the circle.
  3524. delta_angle = dir * (float) random(25, 45);
  3525. angle += delta_angle;
  3526. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3527. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3528. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3529. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3530. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3531. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3532. #if DISABLED(DELTA)
  3533. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3534. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3535. #else
  3536. // If we have gone out too far, we can do a simple fix and scale the numbers
  3537. // back in closer to the origin.
  3538. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3539. X_current /= 1.25;
  3540. Y_current /= 1.25;
  3541. if (verbose_level > 3) {
  3542. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3543. SERIAL_ECHOPAIR(", ", Y_current);
  3544. SERIAL_EOL;
  3545. delay(50);
  3546. }
  3547. }
  3548. #endif
  3549. if (verbose_level > 3) {
  3550. SERIAL_PROTOCOL("Going to:");
  3551. SERIAL_ECHOPAIR("x: ", X_current);
  3552. SERIAL_ECHOPAIR("y: ", Y_current);
  3553. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3554. SERIAL_EOL;
  3555. delay(55);
  3556. }
  3557. do_blocking_move_to_xy(X_current, Y_current);
  3558. } // n_legs loop
  3559. } // n_legs
  3560. /**
  3561. * We don't really have to do this move, but if we don't we can see a
  3562. * funny shift in the Z Height because the user might not have the
  3563. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3564. * height. This gets us back to the probe location at the same height that
  3565. * we have been running around the circle at.
  3566. */
  3567. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3568. if (deploy_probe_for_each_reading)
  3569. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3570. else {
  3571. if (n == n_samples - 1)
  3572. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3573. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3574. }
  3575. /**
  3576. * Get the current mean for the data points we have so far
  3577. */
  3578. sum = 0.0;
  3579. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3580. mean = sum / (n + 1);
  3581. /**
  3582. * Now, use that mean to calculate the standard deviation for the
  3583. * data points we have so far
  3584. */
  3585. sum = 0.0;
  3586. for (uint8_t j = 0; j <= n; j++) {
  3587. float ss = sample_set[j] - mean;
  3588. sum += ss * ss;
  3589. }
  3590. sigma = sqrt(sum / (n + 1));
  3591. if (verbose_level > 1) {
  3592. SERIAL_PROTOCOL(n + 1);
  3593. SERIAL_PROTOCOLPGM(" of ");
  3594. SERIAL_PROTOCOL((int)n_samples);
  3595. SERIAL_PROTOCOLPGM(" z: ");
  3596. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3597. delay(50);
  3598. if (verbose_level > 2) {
  3599. SERIAL_PROTOCOLPGM(" mean: ");
  3600. SERIAL_PROTOCOL_F(mean, 6);
  3601. SERIAL_PROTOCOLPGM(" sigma: ");
  3602. SERIAL_PROTOCOL_F(sigma, 6);
  3603. }
  3604. }
  3605. if (verbose_level > 0) SERIAL_EOL;
  3606. delay(50);
  3607. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3608. } // End of probe loop code
  3609. // raise_z_after_probing();
  3610. if (verbose_level > 0) {
  3611. SERIAL_PROTOCOLPGM("Mean: ");
  3612. SERIAL_PROTOCOL_F(mean, 6);
  3613. SERIAL_EOL;
  3614. delay(25);
  3615. }
  3616. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3617. SERIAL_PROTOCOL_F(sigma, 6);
  3618. SERIAL_EOL; SERIAL_EOL;
  3619. delay(25);
  3620. clean_up_after_endstop_move();
  3621. report_current_position();
  3622. }
  3623. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3624. /**
  3625. * M75: Start print timer
  3626. */
  3627. inline void gcode_M75() { print_job_timer.start(); }
  3628. /**
  3629. * M76: Pause print timer
  3630. */
  3631. inline void gcode_M76() { print_job_timer.pause(); }
  3632. /**
  3633. * M77: Stop print timer
  3634. */
  3635. inline void gcode_M77() { print_job_timer.stop(); }
  3636. #if ENABLED(PRINTCOUNTER)
  3637. /*+
  3638. * M78: Show print statistics
  3639. */
  3640. inline void gcode_M78() {
  3641. // "M78 S78" will reset the statistics
  3642. if (code_seen('S') && code_value_short() == 78)
  3643. print_job_timer.initStats();
  3644. else print_job_timer.showStats();
  3645. }
  3646. #endif
  3647. /**
  3648. * M104: Set hot end temperature
  3649. */
  3650. inline void gcode_M104() {
  3651. if (get_target_extruder_from_command(104)) return;
  3652. if (DEBUGGING(DRYRUN)) return;
  3653. if (code_seen('S')) {
  3654. float temp = code_value();
  3655. thermalManager.setTargetHotend(temp, target_extruder);
  3656. #if ENABLED(DUAL_X_CARRIAGE)
  3657. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3658. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3659. #endif
  3660. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3661. /**
  3662. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3663. * stand by mode, for instance in a dual extruder setup, without affecting
  3664. * the running print timer.
  3665. */
  3666. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3667. print_job_timer.stop();
  3668. LCD_MESSAGEPGM(WELCOME_MSG);
  3669. }
  3670. /**
  3671. * We do not check if the timer is already running because this check will
  3672. * be done for us inside the Stopwatch::start() method thus a running timer
  3673. * will not restart.
  3674. */
  3675. else print_job_timer.start();
  3676. #endif
  3677. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3678. }
  3679. }
  3680. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3681. void print_heaterstates() {
  3682. #if HAS_TEMP_HOTEND
  3683. SERIAL_PROTOCOLPGM(" T:");
  3684. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3685. SERIAL_PROTOCOLPGM(" /");
  3686. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3687. #endif
  3688. #if HAS_TEMP_BED
  3689. SERIAL_PROTOCOLPGM(" B:");
  3690. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3691. SERIAL_PROTOCOLPGM(" /");
  3692. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3693. #endif
  3694. #if EXTRUDERS > 1
  3695. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3696. SERIAL_PROTOCOLPGM(" T");
  3697. SERIAL_PROTOCOL(e);
  3698. SERIAL_PROTOCOLCHAR(':');
  3699. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3700. SERIAL_PROTOCOLPGM(" /");
  3701. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3702. }
  3703. #endif
  3704. #if HAS_TEMP_BED
  3705. SERIAL_PROTOCOLPGM(" B@:");
  3706. #ifdef BED_WATTS
  3707. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3708. SERIAL_PROTOCOLCHAR('W');
  3709. #else
  3710. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3711. #endif
  3712. #endif
  3713. SERIAL_PROTOCOLPGM(" @:");
  3714. #ifdef EXTRUDER_WATTS
  3715. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3716. SERIAL_PROTOCOLCHAR('W');
  3717. #else
  3718. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3719. #endif
  3720. #if EXTRUDERS > 1
  3721. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3722. SERIAL_PROTOCOLPGM(" @");
  3723. SERIAL_PROTOCOL(e);
  3724. SERIAL_PROTOCOLCHAR(':');
  3725. #ifdef EXTRUDER_WATTS
  3726. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3727. SERIAL_PROTOCOLCHAR('W');
  3728. #else
  3729. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3730. #endif
  3731. }
  3732. #endif
  3733. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3734. #if HAS_TEMP_BED
  3735. SERIAL_PROTOCOLPGM(" ADC B:");
  3736. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3737. SERIAL_PROTOCOLPGM("C->");
  3738. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3739. #endif
  3740. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3741. SERIAL_PROTOCOLPGM(" T");
  3742. SERIAL_PROTOCOL(cur_extruder);
  3743. SERIAL_PROTOCOLCHAR(':');
  3744. SERIAL_PROTOCOL_F(thermalManager.degHotend(cur_extruder), 1);
  3745. SERIAL_PROTOCOLPGM("C->");
  3746. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3747. }
  3748. #endif
  3749. }
  3750. #endif
  3751. /**
  3752. * M105: Read hot end and bed temperature
  3753. */
  3754. inline void gcode_M105() {
  3755. if (get_target_extruder_from_command(105)) return;
  3756. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3757. SERIAL_PROTOCOLPGM(MSG_OK);
  3758. print_heaterstates();
  3759. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3760. SERIAL_ERROR_START;
  3761. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3762. #endif
  3763. SERIAL_EOL;
  3764. }
  3765. #if FAN_COUNT > 0
  3766. /**
  3767. * M106: Set Fan Speed
  3768. *
  3769. * S<int> Speed between 0-255
  3770. * P<index> Fan index, if more than one fan
  3771. */
  3772. inline void gcode_M106() {
  3773. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3774. p = code_seen('P') ? code_value_short() : 0;
  3775. NOMORE(s, 255);
  3776. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3777. }
  3778. /**
  3779. * M107: Fan Off
  3780. */
  3781. inline void gcode_M107() {
  3782. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3783. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3784. }
  3785. #endif // FAN_COUNT > 0
  3786. /**
  3787. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3788. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3789. */
  3790. inline void gcode_M109() {
  3791. if (get_target_extruder_from_command(109)) return;
  3792. if (DEBUGGING(DRYRUN)) return;
  3793. bool no_wait_for_cooling = code_seen('S');
  3794. if (no_wait_for_cooling || code_seen('R')) {
  3795. float temp = code_value();
  3796. thermalManager.setTargetHotend(temp, target_extruder);
  3797. #if ENABLED(DUAL_X_CARRIAGE)
  3798. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3799. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3800. #endif
  3801. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3802. /**
  3803. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3804. * stand by mode, for instance in a dual extruder setup, without affecting
  3805. * the running print timer.
  3806. */
  3807. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3808. print_job_timer.stop();
  3809. LCD_MESSAGEPGM(WELCOME_MSG);
  3810. }
  3811. /**
  3812. * We do not check if the timer is already running because this check will
  3813. * be done for us inside the Stopwatch::start() method thus a running timer
  3814. * will not restart.
  3815. */
  3816. else print_job_timer.start();
  3817. #endif
  3818. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3819. }
  3820. #if ENABLED(AUTOTEMP)
  3821. planner.autotemp_M109();
  3822. #endif
  3823. #if TEMP_RESIDENCY_TIME > 0
  3824. millis_t residency_start_ms = 0;
  3825. // Loop until the temperature has stabilized
  3826. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3827. #else
  3828. // Loop until the temperature is very close target
  3829. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3830. #endif //TEMP_RESIDENCY_TIME > 0
  3831. float theTarget = -1;
  3832. bool wants_to_cool;
  3833. cancel_heatup = false;
  3834. millis_t now, next_temp_ms = 0;
  3835. KEEPALIVE_STATE(NOT_BUSY);
  3836. do {
  3837. now = millis();
  3838. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3839. next_temp_ms = now + 1000UL;
  3840. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3841. print_heaterstates();
  3842. #endif
  3843. #if TEMP_RESIDENCY_TIME > 0
  3844. SERIAL_PROTOCOLPGM(" W:");
  3845. if (residency_start_ms) {
  3846. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3847. SERIAL_PROTOCOLLN(rem);
  3848. }
  3849. else {
  3850. SERIAL_PROTOCOLLNPGM("?");
  3851. }
  3852. #else
  3853. SERIAL_EOL;
  3854. #endif
  3855. }
  3856. // Target temperature might be changed during the loop
  3857. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3858. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3859. theTarget = thermalManager.degTargetHotend(target_extruder);
  3860. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3861. if (no_wait_for_cooling && wants_to_cool) break;
  3862. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3863. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3864. if (wants_to_cool && theTarget < (EXTRUDE_MINTEMP)/2) break;
  3865. }
  3866. idle();
  3867. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3868. #if TEMP_RESIDENCY_TIME > 0
  3869. float temp_diff = fabs(theTarget - thermalManager.degHotend(target_extruder));
  3870. if (!residency_start_ms) {
  3871. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3872. if (temp_diff < TEMP_WINDOW) residency_start_ms = millis();
  3873. }
  3874. else if (temp_diff > TEMP_HYSTERESIS) {
  3875. // Restart the timer whenever the temperature falls outside the hysteresis.
  3876. residency_start_ms = millis();
  3877. }
  3878. #endif //TEMP_RESIDENCY_TIME > 0
  3879. } while (!cancel_heatup && TEMP_CONDITIONS);
  3880. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3881. KEEPALIVE_STATE(IN_HANDLER);
  3882. }
  3883. #if HAS_TEMP_BED
  3884. /**
  3885. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3886. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3887. */
  3888. inline void gcode_M190() {
  3889. if (DEBUGGING(DRYRUN)) return;
  3890. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3891. bool no_wait_for_cooling = code_seen('S');
  3892. if (no_wait_for_cooling || code_seen('R')) thermalManager.setTargetBed(code_value());
  3893. #if TEMP_BED_RESIDENCY_TIME > 0
  3894. millis_t residency_start_ms = 0;
  3895. // Loop until the temperature has stabilized
  3896. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3897. #else
  3898. // Loop until the temperature is very close target
  3899. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3900. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3901. float theTarget = -1;
  3902. bool wants_to_cool;
  3903. cancel_heatup = false;
  3904. millis_t now, next_temp_ms = 0;
  3905. KEEPALIVE_STATE(NOT_BUSY);
  3906. do {
  3907. now = millis();
  3908. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3909. next_temp_ms = now + 1000UL;
  3910. print_heaterstates();
  3911. #if TEMP_BED_RESIDENCY_TIME > 0
  3912. SERIAL_PROTOCOLPGM(" W:");
  3913. if (residency_start_ms) {
  3914. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3915. SERIAL_PROTOCOLLN(rem);
  3916. }
  3917. else {
  3918. SERIAL_PROTOCOLLNPGM("?");
  3919. }
  3920. #else
  3921. SERIAL_EOL;
  3922. #endif
  3923. }
  3924. // Target temperature might be changed during the loop
  3925. if (theTarget != thermalManager.degTargetBed()) {
  3926. wants_to_cool = thermalManager.isCoolingBed();
  3927. theTarget = thermalManager.degTargetBed();
  3928. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3929. if (no_wait_for_cooling && wants_to_cool) break;
  3930. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3931. // Simply don't wait to cool a bed under 30C
  3932. if (wants_to_cool && theTarget < 30) break;
  3933. }
  3934. idle();
  3935. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3936. #if TEMP_BED_RESIDENCY_TIME > 0
  3937. float temp_diff = fabs(theTarget - thermalManager.degBed());
  3938. if (!residency_start_ms) {
  3939. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3940. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = millis();
  3941. }
  3942. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3943. // Restart the timer whenever the temperature falls outside the hysteresis.
  3944. residency_start_ms = millis();
  3945. }
  3946. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3947. } while (!cancel_heatup && TEMP_BED_CONDITIONS);
  3948. LCD_MESSAGEPGM(MSG_BED_DONE);
  3949. KEEPALIVE_STATE(IN_HANDLER);
  3950. }
  3951. #endif // HAS_TEMP_BED
  3952. /**
  3953. * M110: Set Current Line Number
  3954. */
  3955. inline void gcode_M110() {
  3956. if (code_seen('N')) gcode_N = code_value_long();
  3957. }
  3958. /**
  3959. * M111: Set the debug level
  3960. */
  3961. inline void gcode_M111() {
  3962. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3963. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3964. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3965. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3966. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3967. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3968. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3969. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3970. #endif
  3971. const static char* const debug_strings[] PROGMEM = {
  3972. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3973. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3974. str_debug_32
  3975. #endif
  3976. };
  3977. SERIAL_ECHO_START;
  3978. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3979. if (marlin_debug_flags) {
  3980. uint8_t comma = 0;
  3981. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3982. if (TEST(marlin_debug_flags, i)) {
  3983. if (comma++) SERIAL_CHAR(',');
  3984. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3985. }
  3986. }
  3987. }
  3988. else {
  3989. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3990. }
  3991. SERIAL_EOL;
  3992. }
  3993. /**
  3994. * M112: Emergency Stop
  3995. */
  3996. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3997. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  3998. /**
  3999. * M113: Get or set Host Keepalive interval (0 to disable)
  4000. *
  4001. * S<seconds> Optional. Set the keepalive interval.
  4002. */
  4003. inline void gcode_M113() {
  4004. if (code_seen('S')) {
  4005. host_keepalive_interval = (uint8_t)code_value_short();
  4006. NOMORE(host_keepalive_interval, 60);
  4007. }
  4008. else {
  4009. SERIAL_ECHO_START;
  4010. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4011. SERIAL_EOL;
  4012. }
  4013. }
  4014. #endif
  4015. #if ENABLED(BARICUDA)
  4016. #if HAS_HEATER_1
  4017. /**
  4018. * M126: Heater 1 valve open
  4019. */
  4020. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  4021. /**
  4022. * M127: Heater 1 valve close
  4023. */
  4024. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4025. #endif
  4026. #if HAS_HEATER_2
  4027. /**
  4028. * M128: Heater 2 valve open
  4029. */
  4030. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  4031. /**
  4032. * M129: Heater 2 valve close
  4033. */
  4034. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4035. #endif
  4036. #endif //BARICUDA
  4037. /**
  4038. * M140: Set bed temperature
  4039. */
  4040. inline void gcode_M140() {
  4041. if (DEBUGGING(DRYRUN)) return;
  4042. if (code_seen('S')) thermalManager.setTargetBed(code_value());
  4043. }
  4044. #if ENABLED(ULTIPANEL)
  4045. /**
  4046. * M145: Set the heatup state for a material in the LCD menu
  4047. * S<material> (0=PLA, 1=ABS)
  4048. * H<hotend temp>
  4049. * B<bed temp>
  4050. * F<fan speed>
  4051. */
  4052. inline void gcode_M145() {
  4053. int8_t material = code_seen('S') ? code_value_short() : 0;
  4054. if (material < 0 || material > 1) {
  4055. SERIAL_ERROR_START;
  4056. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4057. }
  4058. else {
  4059. int v;
  4060. switch (material) {
  4061. case 0:
  4062. if (code_seen('H')) {
  4063. v = code_value_short();
  4064. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4065. }
  4066. if (code_seen('F')) {
  4067. v = code_value_short();
  4068. plaPreheatFanSpeed = constrain(v, 0, 255);
  4069. }
  4070. #if TEMP_SENSOR_BED != 0
  4071. if (code_seen('B')) {
  4072. v = code_value_short();
  4073. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4074. }
  4075. #endif
  4076. break;
  4077. case 1:
  4078. if (code_seen('H')) {
  4079. v = code_value_short();
  4080. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4081. }
  4082. if (code_seen('F')) {
  4083. v = code_value_short();
  4084. absPreheatFanSpeed = constrain(v, 0, 255);
  4085. }
  4086. #if TEMP_SENSOR_BED != 0
  4087. if (code_seen('B')) {
  4088. v = code_value_short();
  4089. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4090. }
  4091. #endif
  4092. break;
  4093. }
  4094. }
  4095. }
  4096. #endif
  4097. #if HAS_POWER_SWITCH
  4098. /**
  4099. * M80: Turn on Power Supply
  4100. */
  4101. inline void gcode_M80() {
  4102. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4103. /**
  4104. * If you have a switch on suicide pin, this is useful
  4105. * if you want to start another print with suicide feature after
  4106. * a print without suicide...
  4107. */
  4108. #if HAS_SUICIDE
  4109. OUT_WRITE(SUICIDE_PIN, HIGH);
  4110. #endif
  4111. #if ENABLED(ULTIPANEL)
  4112. powersupply = true;
  4113. LCD_MESSAGEPGM(WELCOME_MSG);
  4114. lcd_update();
  4115. #endif
  4116. }
  4117. #endif // HAS_POWER_SWITCH
  4118. /**
  4119. * M81: Turn off Power, including Power Supply, if there is one.
  4120. *
  4121. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4122. */
  4123. inline void gcode_M81() {
  4124. thermalManager.disable_all_heaters();
  4125. stepper.finish_and_disable();
  4126. #if FAN_COUNT > 0
  4127. #if FAN_COUNT > 1
  4128. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4129. #else
  4130. fanSpeeds[0] = 0;
  4131. #endif
  4132. #endif
  4133. delay(1000); // Wait 1 second before switching off
  4134. #if HAS_SUICIDE
  4135. stepper.synchronize();
  4136. suicide();
  4137. #elif HAS_POWER_SWITCH
  4138. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4139. #endif
  4140. #if ENABLED(ULTIPANEL)
  4141. #if HAS_POWER_SWITCH
  4142. powersupply = false;
  4143. #endif
  4144. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4145. lcd_update();
  4146. #endif
  4147. }
  4148. /**
  4149. * M82: Set E codes absolute (default)
  4150. */
  4151. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4152. /**
  4153. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4154. */
  4155. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4156. /**
  4157. * M18, M84: Disable all stepper motors
  4158. */
  4159. inline void gcode_M18_M84() {
  4160. if (code_seen('S')) {
  4161. stepper_inactive_time = code_value() * 1000UL;
  4162. }
  4163. else {
  4164. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  4165. if (all_axis) {
  4166. stepper.finish_and_disable();
  4167. }
  4168. else {
  4169. stepper.synchronize();
  4170. if (code_seen('X')) disable_x();
  4171. if (code_seen('Y')) disable_y();
  4172. if (code_seen('Z')) disable_z();
  4173. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4174. if (code_seen('E')) {
  4175. disable_e0();
  4176. disable_e1();
  4177. disable_e2();
  4178. disable_e3();
  4179. }
  4180. #endif
  4181. }
  4182. }
  4183. }
  4184. /**
  4185. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4186. */
  4187. inline void gcode_M85() {
  4188. if (code_seen('S')) max_inactive_time = code_value() * 1000UL;
  4189. }
  4190. /**
  4191. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4192. * (Follows the same syntax as G92)
  4193. */
  4194. inline void gcode_M92() {
  4195. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4196. if (code_seen(axis_codes[i])) {
  4197. if (i == E_AXIS) {
  4198. float value = code_value();
  4199. if (value < 20.0) {
  4200. float factor = planner.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4201. planner.max_e_jerk *= factor;
  4202. planner.max_feedrate[i] *= factor;
  4203. planner.axis_steps_per_sqr_second[i] *= factor;
  4204. }
  4205. planner.axis_steps_per_unit[i] = value;
  4206. }
  4207. else {
  4208. planner.axis_steps_per_unit[i] = code_value();
  4209. }
  4210. }
  4211. }
  4212. }
  4213. /**
  4214. * Output the current position to serial
  4215. */
  4216. static void report_current_position() {
  4217. SERIAL_PROTOCOLPGM("X:");
  4218. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4219. SERIAL_PROTOCOLPGM(" Y:");
  4220. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4221. SERIAL_PROTOCOLPGM(" Z:");
  4222. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4223. SERIAL_PROTOCOLPGM(" E:");
  4224. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4225. stepper.report_positions();
  4226. #if ENABLED(SCARA)
  4227. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4228. SERIAL_PROTOCOL(delta[X_AXIS]);
  4229. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4230. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4231. SERIAL_EOL;
  4232. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4233. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4234. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4235. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4236. SERIAL_EOL;
  4237. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4238. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_unit[X_AXIS]);
  4239. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4240. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_unit[Y_AXIS]);
  4241. SERIAL_EOL; SERIAL_EOL;
  4242. #endif
  4243. }
  4244. /**
  4245. * M114: Output current position to serial port
  4246. */
  4247. inline void gcode_M114() { report_current_position(); }
  4248. /**
  4249. * M115: Capabilities string
  4250. */
  4251. inline void gcode_M115() {
  4252. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4253. }
  4254. /**
  4255. * M117: Set LCD Status Message
  4256. */
  4257. inline void gcode_M117() {
  4258. lcd_setstatus(current_command_args);
  4259. }
  4260. /**
  4261. * M119: Output endstop states to serial output
  4262. */
  4263. inline void gcode_M119() { endstops.M119(); }
  4264. /**
  4265. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4266. */
  4267. inline void gcode_M120() { endstops.enable_globally(true); }
  4268. /**
  4269. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4270. */
  4271. inline void gcode_M121() { endstops.enable_globally(false); }
  4272. #if ENABLED(BLINKM)
  4273. /**
  4274. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4275. */
  4276. inline void gcode_M150() {
  4277. SendColors(
  4278. code_seen('R') ? (byte)code_value_short() : 0,
  4279. code_seen('U') ? (byte)code_value_short() : 0,
  4280. code_seen('B') ? (byte)code_value_short() : 0
  4281. );
  4282. }
  4283. #endif // BLINKM
  4284. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4285. /**
  4286. * M155: Send data to a I2C slave device
  4287. *
  4288. * This is a PoC, the formating and arguments for the GCODE will
  4289. * change to be more compatible, the current proposal is:
  4290. *
  4291. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4292. *
  4293. * M155 B<byte-1 value in base 10>
  4294. * M155 B<byte-2 value in base 10>
  4295. * M155 B<byte-3 value in base 10>
  4296. *
  4297. * M155 S1 ; Send the buffered data and reset the buffer
  4298. * M155 R1 ; Reset the buffer without sending data
  4299. *
  4300. */
  4301. inline void gcode_M155() {
  4302. // Set the target address
  4303. if (code_seen('A'))
  4304. i2c.address((uint8_t) code_value_short());
  4305. // Add a new byte to the buffer
  4306. else if (code_seen('B'))
  4307. i2c.addbyte((int) code_value_short());
  4308. // Flush the buffer to the bus
  4309. else if (code_seen('S')) i2c.send();
  4310. // Reset and rewind the buffer
  4311. else if (code_seen('R')) i2c.reset();
  4312. }
  4313. /**
  4314. * M156: Request X bytes from I2C slave device
  4315. *
  4316. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4317. */
  4318. inline void gcode_M156() {
  4319. uint8_t addr = code_seen('A') ? code_value_short() : 0;
  4320. int bytes = code_seen('B') ? code_value_short() : 1;
  4321. if (addr && bytes > 0 && bytes <= 32) {
  4322. i2c.address(addr);
  4323. i2c.reqbytes(bytes);
  4324. }
  4325. else {
  4326. SERIAL_ERROR_START;
  4327. SERIAL_ERRORLN("Bad i2c request");
  4328. }
  4329. }
  4330. #endif //EXPERIMENTAL_I2CBUS
  4331. /**
  4332. * M200: Set filament diameter and set E axis units to cubic millimeters
  4333. *
  4334. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4335. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  4336. */
  4337. inline void gcode_M200() {
  4338. if (get_target_extruder_from_command(200)) return;
  4339. if (code_seen('D')) {
  4340. float diameter = code_value();
  4341. // setting any extruder filament size disables volumetric on the assumption that
  4342. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4343. // for all extruders
  4344. volumetric_enabled = (diameter != 0.0);
  4345. if (volumetric_enabled) {
  4346. filament_size[target_extruder] = diameter;
  4347. // make sure all extruders have some sane value for the filament size
  4348. for (int i = 0; i < EXTRUDERS; i++)
  4349. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4350. }
  4351. }
  4352. else {
  4353. //reserved for setting filament diameter via UFID or filament measuring device
  4354. return;
  4355. }
  4356. calculate_volumetric_multipliers();
  4357. }
  4358. /**
  4359. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4360. */
  4361. inline void gcode_M201() {
  4362. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4363. if (code_seen(axis_codes[i])) {
  4364. planner.max_acceleration_units_per_sq_second[i] = code_value();
  4365. }
  4366. }
  4367. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4368. planner.reset_acceleration_rates();
  4369. }
  4370. #if 0 // Not used for Sprinter/grbl gen6
  4371. inline void gcode_M202() {
  4372. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4373. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * planner.axis_steps_per_unit[i];
  4374. }
  4375. }
  4376. #endif
  4377. /**
  4378. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4379. */
  4380. inline void gcode_M203() {
  4381. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4382. if (code_seen(axis_codes[i])) {
  4383. planner.max_feedrate[i] = code_value();
  4384. }
  4385. }
  4386. }
  4387. /**
  4388. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4389. *
  4390. * P = Printing moves
  4391. * R = Retract only (no X, Y, Z) moves
  4392. * T = Travel (non printing) moves
  4393. *
  4394. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4395. */
  4396. inline void gcode_M204() {
  4397. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4398. planner.travel_acceleration = planner.acceleration = code_value();
  4399. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4400. SERIAL_EOL;
  4401. }
  4402. if (code_seen('P')) {
  4403. planner.acceleration = code_value();
  4404. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4405. SERIAL_EOL;
  4406. }
  4407. if (code_seen('R')) {
  4408. planner.retract_acceleration = code_value();
  4409. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4410. SERIAL_EOL;
  4411. }
  4412. if (code_seen('T')) {
  4413. planner.travel_acceleration = code_value();
  4414. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4415. SERIAL_EOL;
  4416. }
  4417. }
  4418. /**
  4419. * M205: Set Advanced Settings
  4420. *
  4421. * S = Min Feed Rate (mm/s)
  4422. * T = Min Travel Feed Rate (mm/s)
  4423. * B = Min Segment Time (µs)
  4424. * X = Max XY Jerk (mm/s/s)
  4425. * Z = Max Z Jerk (mm/s/s)
  4426. * E = Max E Jerk (mm/s/s)
  4427. */
  4428. inline void gcode_M205() {
  4429. if (code_seen('S')) planner.min_feedrate = code_value();
  4430. if (code_seen('T')) planner.min_travel_feedrate = code_value();
  4431. if (code_seen('B')) planner.min_segment_time = code_value();
  4432. if (code_seen('X')) planner.max_xy_jerk = code_value();
  4433. if (code_seen('Z')) planner.max_z_jerk = code_value();
  4434. if (code_seen('E')) planner.max_e_jerk = code_value();
  4435. }
  4436. /**
  4437. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4438. */
  4439. inline void gcode_M206() {
  4440. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4441. if (code_seen(axis_codes[i]))
  4442. set_home_offset((AxisEnum)i, code_value());
  4443. #if ENABLED(SCARA)
  4444. if (code_seen('T')) set_home_offset(X_AXIS, code_value()); // Theta
  4445. if (code_seen('P')) set_home_offset(Y_AXIS, code_value()); // Psi
  4446. #endif
  4447. sync_plan_position();
  4448. report_current_position();
  4449. }
  4450. #if ENABLED(DELTA)
  4451. /**
  4452. * M665: Set delta configurations
  4453. *
  4454. * L = diagonal rod
  4455. * R = delta radius
  4456. * S = segments per second
  4457. * A = Alpha (Tower 1) diagonal rod trim
  4458. * B = Beta (Tower 2) diagonal rod trim
  4459. * C = Gamma (Tower 3) diagonal rod trim
  4460. */
  4461. inline void gcode_M665() {
  4462. if (code_seen('L')) delta_diagonal_rod = code_value();
  4463. if (code_seen('R')) delta_radius = code_value();
  4464. if (code_seen('S')) delta_segments_per_second = code_value();
  4465. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4466. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4467. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4468. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4469. }
  4470. /**
  4471. * M666: Set delta endstop adjustment
  4472. */
  4473. inline void gcode_M666() {
  4474. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4475. if (DEBUGGING(LEVELING)) {
  4476. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4477. }
  4478. #endif
  4479. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4480. if (code_seen(axis_codes[i])) {
  4481. endstop_adj[i] = code_value();
  4482. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4483. if (DEBUGGING(LEVELING)) {
  4484. SERIAL_ECHOPGM("endstop_adj[");
  4485. SERIAL_ECHO(axis_codes[i]);
  4486. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4487. SERIAL_EOL;
  4488. }
  4489. #endif
  4490. }
  4491. }
  4492. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4493. if (DEBUGGING(LEVELING)) {
  4494. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4495. }
  4496. #endif
  4497. }
  4498. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4499. /**
  4500. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4501. */
  4502. inline void gcode_M666() {
  4503. if (code_seen('Z')) z_endstop_adj = code_value();
  4504. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4505. SERIAL_EOL;
  4506. }
  4507. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4508. #if ENABLED(FWRETRACT)
  4509. /**
  4510. * M207: Set firmware retraction values
  4511. *
  4512. * S[+mm] retract_length
  4513. * W[+mm] retract_length_swap (multi-extruder)
  4514. * F[mm/min] retract_feedrate
  4515. * Z[mm] retract_zlift
  4516. */
  4517. inline void gcode_M207() {
  4518. if (code_seen('S')) retract_length = code_value();
  4519. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4520. if (code_seen('Z')) retract_zlift = code_value();
  4521. #if EXTRUDERS > 1
  4522. if (code_seen('W')) retract_length_swap = code_value();
  4523. #endif
  4524. }
  4525. /**
  4526. * M208: Set firmware un-retraction values
  4527. *
  4528. * S[+mm] retract_recover_length (in addition to M207 S*)
  4529. * W[+mm] retract_recover_length_swap (multi-extruder)
  4530. * F[mm/min] retract_recover_feedrate
  4531. */
  4532. inline void gcode_M208() {
  4533. if (code_seen('S')) retract_recover_length = code_value();
  4534. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4535. #if EXTRUDERS > 1
  4536. if (code_seen('W')) retract_recover_length_swap = code_value();
  4537. #endif
  4538. }
  4539. /**
  4540. * M209: Enable automatic retract (M209 S1)
  4541. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4542. */
  4543. inline void gcode_M209() {
  4544. if (code_seen('S')) {
  4545. int t = code_value_short();
  4546. switch (t) {
  4547. case 0:
  4548. autoretract_enabled = false;
  4549. break;
  4550. case 1:
  4551. autoretract_enabled = true;
  4552. break;
  4553. default:
  4554. unknown_command_error();
  4555. return;
  4556. }
  4557. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4558. }
  4559. }
  4560. #endif // FWRETRACT
  4561. #if EXTRUDERS > 1
  4562. /**
  4563. * M218 - set hotend offset (in mm)
  4564. *
  4565. * T<tool>
  4566. * X<xoffset>
  4567. * Y<yoffset>
  4568. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4569. */
  4570. inline void gcode_M218() {
  4571. if (get_target_extruder_from_command(218)) return;
  4572. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4573. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4574. #if ENABLED(DUAL_X_CARRIAGE)
  4575. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4576. #endif
  4577. SERIAL_ECHO_START;
  4578. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4579. for (int e = 0; e < EXTRUDERS; e++) {
  4580. SERIAL_CHAR(' ');
  4581. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4582. SERIAL_CHAR(',');
  4583. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4584. #if ENABLED(DUAL_X_CARRIAGE)
  4585. SERIAL_CHAR(',');
  4586. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4587. #endif
  4588. }
  4589. SERIAL_EOL;
  4590. }
  4591. #endif // EXTRUDERS > 1
  4592. /**
  4593. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4594. */
  4595. inline void gcode_M220() {
  4596. if (code_seen('S')) feedrate_multiplier = code_value();
  4597. }
  4598. /**
  4599. * M221: Set extrusion percentage (M221 T0 S95)
  4600. */
  4601. inline void gcode_M221() {
  4602. if (code_seen('S')) {
  4603. int sval = code_value();
  4604. if (get_target_extruder_from_command(221)) return;
  4605. extruder_multiplier[target_extruder] = sval;
  4606. }
  4607. }
  4608. /**
  4609. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4610. */
  4611. inline void gcode_M226() {
  4612. if (code_seen('P')) {
  4613. int pin_number = code_value();
  4614. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4615. if (pin_state >= -1 && pin_state <= 1) {
  4616. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4617. if (sensitive_pins[i] == pin_number) {
  4618. pin_number = -1;
  4619. break;
  4620. }
  4621. }
  4622. if (pin_number > -1) {
  4623. int target = LOW;
  4624. stepper.synchronize();
  4625. pinMode(pin_number, INPUT);
  4626. switch (pin_state) {
  4627. case 1:
  4628. target = HIGH;
  4629. break;
  4630. case 0:
  4631. target = LOW;
  4632. break;
  4633. case -1:
  4634. target = !digitalRead(pin_number);
  4635. break;
  4636. }
  4637. while (digitalRead(pin_number) != target) idle();
  4638. } // pin_number > -1
  4639. } // pin_state -1 0 1
  4640. } // code_seen('P')
  4641. }
  4642. #if HAS_SERVOS
  4643. /**
  4644. * M280: Get or set servo position. P<index> S<angle>
  4645. */
  4646. inline void gcode_M280() {
  4647. int servo_index = code_seen('P') ? code_value_short() : -1;
  4648. int servo_position = 0;
  4649. if (code_seen('S')) {
  4650. servo_position = code_value_short();
  4651. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4652. servo[servo_index].move(servo_position);
  4653. else {
  4654. SERIAL_ERROR_START;
  4655. SERIAL_ERROR("Servo ");
  4656. SERIAL_ERROR(servo_index);
  4657. SERIAL_ERRORLN(" out of range");
  4658. }
  4659. }
  4660. else if (servo_index >= 0) {
  4661. SERIAL_ECHO_START;
  4662. SERIAL_ECHO(" Servo ");
  4663. SERIAL_ECHO(servo_index);
  4664. SERIAL_ECHO(": ");
  4665. SERIAL_ECHOLN(servo[servo_index].read());
  4666. }
  4667. }
  4668. #endif // HAS_SERVOS
  4669. #if HAS_BUZZER
  4670. /**
  4671. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4672. */
  4673. inline void gcode_M300() {
  4674. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4675. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4676. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4677. buzz(beepP, beepS);
  4678. }
  4679. #endif // HAS_BUZZER
  4680. #if ENABLED(PIDTEMP)
  4681. /**
  4682. * M301: Set PID parameters P I D (and optionally C, L)
  4683. *
  4684. * P[float] Kp term
  4685. * I[float] Ki term (unscaled)
  4686. * D[float] Kd term (unscaled)
  4687. *
  4688. * With PID_ADD_EXTRUSION_RATE:
  4689. *
  4690. * C[float] Kc term
  4691. * L[float] LPQ length
  4692. */
  4693. inline void gcode_M301() {
  4694. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4695. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4696. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4697. if (e < EXTRUDERS) { // catch bad input value
  4698. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4699. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4700. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4701. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4702. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4703. if (code_seen('L')) lpq_len = code_value();
  4704. NOMORE(lpq_len, LPQ_MAX_LEN);
  4705. #endif
  4706. thermalManager.updatePID();
  4707. SERIAL_ECHO_START;
  4708. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4709. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4710. SERIAL_ECHO(e);
  4711. #endif // PID_PARAMS_PER_EXTRUDER
  4712. SERIAL_ECHO(" p:");
  4713. SERIAL_ECHO(PID_PARAM(Kp, e));
  4714. SERIAL_ECHO(" i:");
  4715. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4716. SERIAL_ECHO(" d:");
  4717. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4718. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4719. SERIAL_ECHO(" c:");
  4720. //Kc does not have scaling applied above, or in resetting defaults
  4721. SERIAL_ECHO(PID_PARAM(Kc, e));
  4722. #endif
  4723. SERIAL_EOL;
  4724. }
  4725. else {
  4726. SERIAL_ERROR_START;
  4727. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4728. }
  4729. }
  4730. #endif // PIDTEMP
  4731. #if ENABLED(PIDTEMPBED)
  4732. inline void gcode_M304() {
  4733. if (code_seen('P')) thermalManager.bedKp = code_value();
  4734. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value());
  4735. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value());
  4736. thermalManager.updatePID();
  4737. SERIAL_ECHO_START;
  4738. SERIAL_ECHO(" p:");
  4739. SERIAL_ECHO(thermalManager.bedKp);
  4740. SERIAL_ECHO(" i:");
  4741. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4742. SERIAL_ECHO(" d:");
  4743. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4744. }
  4745. #endif // PIDTEMPBED
  4746. #if defined(CHDK) || HAS_PHOTOGRAPH
  4747. /**
  4748. * M240: Trigger a camera by emulating a Canon RC-1
  4749. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4750. */
  4751. inline void gcode_M240() {
  4752. #ifdef CHDK
  4753. OUT_WRITE(CHDK, HIGH);
  4754. chdkHigh = millis();
  4755. chdkActive = true;
  4756. #elif HAS_PHOTOGRAPH
  4757. const uint8_t NUM_PULSES = 16;
  4758. const float PULSE_LENGTH = 0.01524;
  4759. for (int i = 0; i < NUM_PULSES; i++) {
  4760. WRITE(PHOTOGRAPH_PIN, HIGH);
  4761. _delay_ms(PULSE_LENGTH);
  4762. WRITE(PHOTOGRAPH_PIN, LOW);
  4763. _delay_ms(PULSE_LENGTH);
  4764. }
  4765. delay(7.33);
  4766. for (int i = 0; i < NUM_PULSES; i++) {
  4767. WRITE(PHOTOGRAPH_PIN, HIGH);
  4768. _delay_ms(PULSE_LENGTH);
  4769. WRITE(PHOTOGRAPH_PIN, LOW);
  4770. _delay_ms(PULSE_LENGTH);
  4771. }
  4772. #endif // !CHDK && HAS_PHOTOGRAPH
  4773. }
  4774. #endif // CHDK || PHOTOGRAPH_PIN
  4775. #if ENABLED(HAS_LCD_CONTRAST)
  4776. /**
  4777. * M250: Read and optionally set the LCD contrast
  4778. */
  4779. inline void gcode_M250() {
  4780. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4781. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4782. SERIAL_PROTOCOL(lcd_contrast);
  4783. SERIAL_EOL;
  4784. }
  4785. #endif // HAS_LCD_CONTRAST
  4786. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4787. /**
  4788. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4789. */
  4790. inline void gcode_M302() {
  4791. thermalManager.extrude_min_temp = code_seen('S') ? code_value() : 0;
  4792. }
  4793. #endif // PREVENT_DANGEROUS_EXTRUDE
  4794. /**
  4795. * M303: PID relay autotune
  4796. *
  4797. * S<temperature> sets the target temperature. (default 150C)
  4798. * E<extruder> (-1 for the bed) (default 0)
  4799. * C<cycles>
  4800. * U<bool> with a non-zero value will apply the result to current settings
  4801. */
  4802. inline void gcode_M303() {
  4803. #if HAS_PID_HEATING
  4804. int e = code_seen('E') ? code_value_short() : 0;
  4805. int c = code_seen('C') ? code_value_short() : 5;
  4806. bool u = code_seen('U') && code_value_short() != 0;
  4807. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4808. if (e >= 0 && e < EXTRUDERS)
  4809. target_extruder = e;
  4810. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4811. thermalManager.PID_autotune(temp, e, c, u);
  4812. KEEPALIVE_STATE(IN_HANDLER);
  4813. #else
  4814. SERIAL_ERROR_START;
  4815. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4816. #endif
  4817. }
  4818. #if ENABLED(SCARA)
  4819. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4820. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4821. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4822. if (IsRunning()) {
  4823. //gcode_get_destination(); // For X Y Z E F
  4824. delta[X_AXIS] = delta_x;
  4825. delta[Y_AXIS] = delta_y;
  4826. calculate_SCARA_forward_Transform(delta);
  4827. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4828. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4829. prepare_move();
  4830. //ok_to_send();
  4831. return true;
  4832. }
  4833. return false;
  4834. }
  4835. /**
  4836. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4837. */
  4838. inline bool gcode_M360() {
  4839. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4840. return SCARA_move_to_cal(0, 120);
  4841. }
  4842. /**
  4843. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4844. */
  4845. inline bool gcode_M361() {
  4846. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4847. return SCARA_move_to_cal(90, 130);
  4848. }
  4849. /**
  4850. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4851. */
  4852. inline bool gcode_M362() {
  4853. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4854. return SCARA_move_to_cal(60, 180);
  4855. }
  4856. /**
  4857. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4858. */
  4859. inline bool gcode_M363() {
  4860. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4861. return SCARA_move_to_cal(50, 90);
  4862. }
  4863. /**
  4864. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4865. */
  4866. inline bool gcode_M364() {
  4867. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4868. return SCARA_move_to_cal(45, 135);
  4869. }
  4870. /**
  4871. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4872. */
  4873. inline void gcode_M365() {
  4874. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4875. if (code_seen(axis_codes[i])) {
  4876. axis_scaling[i] = code_value();
  4877. }
  4878. }
  4879. }
  4880. #endif // SCARA
  4881. #if ENABLED(EXT_SOLENOID)
  4882. void enable_solenoid(uint8_t num) {
  4883. switch (num) {
  4884. case 0:
  4885. OUT_WRITE(SOL0_PIN, HIGH);
  4886. break;
  4887. #if HAS_SOLENOID_1
  4888. case 1:
  4889. OUT_WRITE(SOL1_PIN, HIGH);
  4890. break;
  4891. #endif
  4892. #if HAS_SOLENOID_2
  4893. case 2:
  4894. OUT_WRITE(SOL2_PIN, HIGH);
  4895. break;
  4896. #endif
  4897. #if HAS_SOLENOID_3
  4898. case 3:
  4899. OUT_WRITE(SOL3_PIN, HIGH);
  4900. break;
  4901. #endif
  4902. default:
  4903. SERIAL_ECHO_START;
  4904. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4905. break;
  4906. }
  4907. }
  4908. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4909. void disable_all_solenoids() {
  4910. OUT_WRITE(SOL0_PIN, LOW);
  4911. OUT_WRITE(SOL1_PIN, LOW);
  4912. OUT_WRITE(SOL2_PIN, LOW);
  4913. OUT_WRITE(SOL3_PIN, LOW);
  4914. }
  4915. /**
  4916. * M380: Enable solenoid on the active extruder
  4917. */
  4918. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4919. /**
  4920. * M381: Disable all solenoids
  4921. */
  4922. inline void gcode_M381() { disable_all_solenoids(); }
  4923. #endif // EXT_SOLENOID
  4924. /**
  4925. * M400: Finish all moves
  4926. */
  4927. inline void gcode_M400() { stepper.synchronize(); }
  4928. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4929. /**
  4930. * M401: Engage Z Servo endstop if available
  4931. */
  4932. inline void gcode_M401() {
  4933. #if HAS_SERVO_ENDSTOPS
  4934. raise_z_for_servo();
  4935. #endif
  4936. deploy_z_probe();
  4937. }
  4938. /**
  4939. * M402: Retract Z Servo endstop if enabled
  4940. */
  4941. inline void gcode_M402() {
  4942. #if HAS_SERVO_ENDSTOPS
  4943. raise_z_for_servo();
  4944. #endif
  4945. stow_z_probe(false);
  4946. }
  4947. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4948. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4949. /**
  4950. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4951. */
  4952. inline void gcode_M404() {
  4953. if (code_seen('W')) {
  4954. filament_width_nominal = code_value();
  4955. }
  4956. else {
  4957. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4958. SERIAL_PROTOCOLLN(filament_width_nominal);
  4959. }
  4960. }
  4961. /**
  4962. * M405: Turn on filament sensor for control
  4963. */
  4964. inline void gcode_M405() {
  4965. if (code_seen('D')) meas_delay_cm = code_value();
  4966. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4967. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4968. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  4969. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4970. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4971. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4972. }
  4973. filament_sensor = true;
  4974. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4975. //SERIAL_PROTOCOL(filament_width_meas);
  4976. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4977. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4978. }
  4979. /**
  4980. * M406: Turn off filament sensor for control
  4981. */
  4982. inline void gcode_M406() { filament_sensor = false; }
  4983. /**
  4984. * M407: Get measured filament diameter on serial output
  4985. */
  4986. inline void gcode_M407() {
  4987. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4988. SERIAL_PROTOCOLLN(filament_width_meas);
  4989. }
  4990. #endif // FILAMENT_WIDTH_SENSOR
  4991. /**
  4992. * M410: Quickstop - Abort all planned moves
  4993. *
  4994. * This will stop the carriages mid-move, so most likely they
  4995. * will be out of sync with the stepper position after this.
  4996. */
  4997. inline void gcode_M410() { stepper.quick_stop(); }
  4998. #if ENABLED(MESH_BED_LEVELING)
  4999. /**
  5000. * M420: Enable/Disable Mesh Bed Leveling
  5001. */
  5002. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  5003. /**
  5004. * M421: Set a single Mesh Bed Leveling Z coordinate
  5005. */
  5006. inline void gcode_M421() {
  5007. float x = 0, y = 0, z = 0;
  5008. bool err = false, hasX, hasY, hasZ;
  5009. if ((hasX = code_seen('X'))) x = code_value();
  5010. if ((hasY = code_seen('Y'))) y = code_value();
  5011. if ((hasZ = code_seen('Z'))) z = code_value();
  5012. if (hasX && hasY && hasZ) {
  5013. int8_t ix = mbl.select_x_index(x),
  5014. iy = mbl.select_y_index(y);
  5015. if (ix >= 0 && iy >= 0)
  5016. mbl.set_z(ix, iy, z);
  5017. else {
  5018. SERIAL_ERROR_START;
  5019. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5020. }
  5021. }
  5022. else {
  5023. SERIAL_ERROR_START;
  5024. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  5025. }
  5026. }
  5027. #endif
  5028. /**
  5029. * M428: Set home_offset based on the distance between the
  5030. * current_position and the nearest "reference point."
  5031. * If an axis is past center its endstop position
  5032. * is the reference-point. Otherwise it uses 0. This allows
  5033. * the Z offset to be set near the bed when using a max endstop.
  5034. *
  5035. * M428 can't be used more than 2cm away from 0 or an endstop.
  5036. *
  5037. * Use M206 to set these values directly.
  5038. */
  5039. inline void gcode_M428() {
  5040. bool err = false;
  5041. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5042. if (axis_homed[i]) {
  5043. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5044. diff = current_position[i] - base;
  5045. if (diff > -20 && diff < 20) {
  5046. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5047. }
  5048. else {
  5049. SERIAL_ERROR_START;
  5050. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5051. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5052. #if HAS_BUZZER
  5053. buzz(200, 40);
  5054. #endif
  5055. err = true;
  5056. break;
  5057. }
  5058. }
  5059. }
  5060. if (!err) {
  5061. sync_plan_position();
  5062. report_current_position();
  5063. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5064. #if HAS_BUZZER
  5065. buzz(200, 659);
  5066. buzz(200, 698);
  5067. #endif
  5068. }
  5069. }
  5070. /**
  5071. * M500: Store settings in EEPROM
  5072. */
  5073. inline void gcode_M500() {
  5074. Config_StoreSettings();
  5075. }
  5076. /**
  5077. * M501: Read settings from EEPROM
  5078. */
  5079. inline void gcode_M501() {
  5080. Config_RetrieveSettings();
  5081. }
  5082. /**
  5083. * M502: Revert to default settings
  5084. */
  5085. inline void gcode_M502() {
  5086. Config_ResetDefault();
  5087. }
  5088. /**
  5089. * M503: print settings currently in memory
  5090. */
  5091. inline void gcode_M503() {
  5092. Config_PrintSettings(code_seen('S') && code_value() == 0);
  5093. }
  5094. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5095. /**
  5096. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5097. */
  5098. inline void gcode_M540() {
  5099. if (code_seen('S')) stepper.abort_on_endstop_hit = (code_value() > 0);
  5100. }
  5101. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5102. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5103. inline void gcode_SET_Z_PROBE_OFFSET() {
  5104. SERIAL_ECHO_START;
  5105. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5106. SERIAL_CHAR(' ');
  5107. if (code_seen('Z')) {
  5108. float value = code_value();
  5109. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5110. zprobe_zoffset = value;
  5111. SERIAL_ECHO(zprobe_zoffset);
  5112. }
  5113. else {
  5114. SERIAL_ECHOPGM(MSG_Z_MIN);
  5115. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5116. SERIAL_ECHOPGM(MSG_Z_MAX);
  5117. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5118. }
  5119. }
  5120. else {
  5121. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5122. }
  5123. SERIAL_EOL;
  5124. }
  5125. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5126. #if ENABLED(FILAMENTCHANGEENABLE)
  5127. /**
  5128. * M600: Pause for filament change
  5129. *
  5130. * E[distance] - Retract the filament this far (negative value)
  5131. * Z[distance] - Move the Z axis by this distance
  5132. * X[position] - Move to this X position, with Y
  5133. * Y[position] - Move to this Y position, with X
  5134. * L[distance] - Retract distance for removal (manual reload)
  5135. *
  5136. * Default values are used for omitted arguments.
  5137. *
  5138. */
  5139. inline void gcode_M600() {
  5140. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5141. SERIAL_ERROR_START;
  5142. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5143. return;
  5144. }
  5145. float lastpos[NUM_AXIS];
  5146. #if ENABLED(DELTA)
  5147. float fr60 = feedrate / 60;
  5148. #endif
  5149. for (int i = 0; i < NUM_AXIS; i++)
  5150. lastpos[i] = destination[i] = current_position[i];
  5151. #if ENABLED(DELTA)
  5152. #define RUNPLAN calculate_delta(destination); \
  5153. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5154. #else
  5155. #define RUNPLAN line_to_destination();
  5156. #endif
  5157. //retract by E
  5158. if (code_seen('E')) destination[E_AXIS] += code_value();
  5159. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5160. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  5161. #endif
  5162. RUNPLAN;
  5163. //lift Z
  5164. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  5165. #ifdef FILAMENTCHANGE_ZADD
  5166. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5167. #endif
  5168. RUNPLAN;
  5169. //move xy
  5170. if (code_seen('X')) destination[X_AXIS] = code_value();
  5171. #ifdef FILAMENTCHANGE_XPOS
  5172. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5173. #endif
  5174. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  5175. #ifdef FILAMENTCHANGE_YPOS
  5176. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5177. #endif
  5178. RUNPLAN;
  5179. if (code_seen('L')) destination[E_AXIS] += code_value();
  5180. #ifdef FILAMENTCHANGE_FINALRETRACT
  5181. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5182. #endif
  5183. RUNPLAN;
  5184. //finish moves
  5185. stepper.synchronize();
  5186. //disable extruder steppers so filament can be removed
  5187. disable_e0();
  5188. disable_e1();
  5189. disable_e2();
  5190. disable_e3();
  5191. delay(100);
  5192. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5193. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5194. millis_t next_tick = 0;
  5195. #endif
  5196. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5197. while (!lcd_clicked()) {
  5198. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5199. millis_t ms = millis();
  5200. if (ELAPSED(ms, next_tick)) {
  5201. lcd_quick_feedback();
  5202. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5203. }
  5204. idle(true);
  5205. #else
  5206. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5207. destination[E_AXIS] = current_position[E_AXIS];
  5208. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5209. stepper.synchronize();
  5210. #endif
  5211. } // while(!lcd_clicked)
  5212. KEEPALIVE_STATE(IN_HANDLER);
  5213. lcd_quick_feedback(); // click sound feedback
  5214. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5215. current_position[E_AXIS] = 0;
  5216. stepper.synchronize();
  5217. #endif
  5218. //return to normal
  5219. if (code_seen('L')) destination[E_AXIS] -= code_value();
  5220. #ifdef FILAMENTCHANGE_FINALRETRACT
  5221. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5222. #endif
  5223. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5224. sync_plan_position_e();
  5225. RUNPLAN; //should do nothing
  5226. lcd_reset_alert_level();
  5227. #if ENABLED(DELTA)
  5228. // Move XYZ to starting position, then E
  5229. calculate_delta(lastpos);
  5230. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5231. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5232. #else
  5233. // Move XY to starting position, then Z, then E
  5234. destination[X_AXIS] = lastpos[X_AXIS];
  5235. destination[Y_AXIS] = lastpos[Y_AXIS];
  5236. line_to_destination();
  5237. destination[Z_AXIS] = lastpos[Z_AXIS];
  5238. line_to_destination();
  5239. destination[E_AXIS] = lastpos[E_AXIS];
  5240. line_to_destination();
  5241. #endif
  5242. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5243. filament_ran_out = false;
  5244. #endif
  5245. }
  5246. #endif // FILAMENTCHANGEENABLE
  5247. #if ENABLED(DUAL_X_CARRIAGE)
  5248. /**
  5249. * M605: Set dual x-carriage movement mode
  5250. *
  5251. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5252. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5253. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5254. * millimeters x-offset and an optional differential hotend temperature of
  5255. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5256. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5257. *
  5258. * Note: the X axis should be homed after changing dual x-carriage mode.
  5259. */
  5260. inline void gcode_M605() {
  5261. stepper.synchronize();
  5262. if (code_seen('S')) dual_x_carriage_mode = code_value();
  5263. switch (dual_x_carriage_mode) {
  5264. case DXC_DUPLICATION_MODE:
  5265. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  5266. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  5267. SERIAL_ECHO_START;
  5268. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5269. SERIAL_CHAR(' ');
  5270. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  5271. SERIAL_CHAR(',');
  5272. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  5273. SERIAL_CHAR(' ');
  5274. SERIAL_ECHO(duplicate_extruder_x_offset);
  5275. SERIAL_CHAR(',');
  5276. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  5277. break;
  5278. case DXC_FULL_CONTROL_MODE:
  5279. case DXC_AUTO_PARK_MODE:
  5280. break;
  5281. default:
  5282. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5283. break;
  5284. }
  5285. active_extruder_parked = false;
  5286. extruder_duplication_enabled = false;
  5287. delayed_move_time = 0;
  5288. }
  5289. #endif // DUAL_X_CARRIAGE
  5290. /**
  5291. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5292. */
  5293. inline void gcode_M907() {
  5294. #if HAS_DIGIPOTSS
  5295. for (int i = 0; i < NUM_AXIS; i++)
  5296. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value());
  5297. if (code_seen('B')) stepper.digipot_current(4, code_value());
  5298. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value());
  5299. #endif
  5300. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5301. if (code_seen('X')) stepper.digipot_current(0, code_value());
  5302. #endif
  5303. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5304. if (code_seen('Z')) stepper.digipot_current(1, code_value());
  5305. #endif
  5306. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5307. if (code_seen('E')) stepper.digipot_current(2, code_value());
  5308. #endif
  5309. #if ENABLED(DIGIPOT_I2C)
  5310. // this one uses actual amps in floating point
  5311. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5312. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5313. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  5314. #endif
  5315. #if ENABLED(DAC_STEPPER_CURRENT)
  5316. if (code_seen('S')) {
  5317. float dac_percent = code_value();
  5318. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5319. }
  5320. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  5321. #endif
  5322. }
  5323. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5324. /**
  5325. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5326. */
  5327. inline void gcode_M908() {
  5328. #if HAS_DIGIPOTSS
  5329. stepper.digitalPotWrite(
  5330. code_seen('P') ? code_value() : 0,
  5331. code_seen('S') ? code_value() : 0
  5332. );
  5333. #endif
  5334. #ifdef DAC_STEPPER_CURRENT
  5335. dac_current_raw(
  5336. code_seen('P') ? code_value_long() : -1,
  5337. code_seen('S') ? code_value_short() : 0
  5338. );
  5339. #endif
  5340. }
  5341. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5342. inline void gcode_M909() { dac_print_values(); }
  5343. inline void gcode_M910() { dac_commit_eeprom(); }
  5344. #endif
  5345. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5346. #if HAS_MICROSTEPS
  5347. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5348. inline void gcode_M350() {
  5349. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value());
  5350. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, (uint8_t)code_value());
  5351. if (code_seen('B')) stepper.microstep_mode(4, code_value());
  5352. stepper.microstep_readings();
  5353. }
  5354. /**
  5355. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5356. * S# determines MS1 or MS2, X# sets the pin high/low.
  5357. */
  5358. inline void gcode_M351() {
  5359. if (code_seen('S')) switch (code_value_short()) {
  5360. case 1:
  5361. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value(), -1);
  5362. if (code_seen('B')) stepper.microstep_ms(4, code_value(), -1);
  5363. break;
  5364. case 2:
  5365. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value());
  5366. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value());
  5367. break;
  5368. }
  5369. stepper.microstep_readings();
  5370. }
  5371. #endif // HAS_MICROSTEPS
  5372. /**
  5373. * M999: Restart after being stopped
  5374. */
  5375. inline void gcode_M999() {
  5376. Running = true;
  5377. lcd_reset_alert_level();
  5378. // gcode_LastN = Stopped_gcode_LastN;
  5379. FlushSerialRequestResend();
  5380. }
  5381. /**
  5382. * T0-T3: Switch tool, usually switching extruders
  5383. *
  5384. * F[mm/min] Set the movement feedrate
  5385. */
  5386. inline void gcode_T(uint8_t tmp_extruder) {
  5387. if (tmp_extruder >= EXTRUDERS) {
  5388. SERIAL_ECHO_START;
  5389. SERIAL_CHAR('T');
  5390. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5391. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5392. return;
  5393. }
  5394. float stored_feedrate = feedrate;
  5395. if (code_seen('F')) {
  5396. float next_feedrate = code_value();
  5397. if (next_feedrate > 0.0) stored_feedrate = feedrate = next_feedrate;
  5398. }
  5399. else {
  5400. #ifdef XY_TRAVEL_SPEED
  5401. feedrate = XY_TRAVEL_SPEED;
  5402. #else
  5403. feedrate = min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]);
  5404. #endif
  5405. }
  5406. #if EXTRUDERS > 1
  5407. if (tmp_extruder != active_extruder) {
  5408. // Save current position to return to after applying extruder offset
  5409. set_destination_to_current();
  5410. #if ENABLED(DUAL_X_CARRIAGE)
  5411. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5412. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5413. // Park old head: 1) raise 2) move to park position 3) lower
  5414. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5415. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5416. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5417. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5418. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5419. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5420. stepper.synchronize();
  5421. }
  5422. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5423. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5424. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5425. active_extruder = tmp_extruder;
  5426. // This function resets the max/min values - the current position may be overwritten below.
  5427. set_axis_is_at_home(X_AXIS);
  5428. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5429. current_position[X_AXIS] = inactive_extruder_x_pos;
  5430. inactive_extruder_x_pos = destination[X_AXIS];
  5431. }
  5432. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5433. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5434. if (active_extruder_parked)
  5435. current_position[X_AXIS] = inactive_extruder_x_pos;
  5436. else
  5437. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5438. inactive_extruder_x_pos = destination[X_AXIS];
  5439. extruder_duplication_enabled = false;
  5440. }
  5441. else {
  5442. // record raised toolhead position for use by unpark
  5443. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5444. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5445. active_extruder_parked = true;
  5446. delayed_move_time = 0;
  5447. }
  5448. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5449. #else // !DUAL_X_CARRIAGE
  5450. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5451. // Offset extruder, make sure to apply the bed level rotation matrix
  5452. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5453. extruder_offset[Y_AXIS][tmp_extruder],
  5454. 0),
  5455. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5456. extruder_offset[Y_AXIS][active_extruder],
  5457. 0),
  5458. offset_vec = tmp_offset_vec - act_offset_vec;
  5459. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5460. if (DEBUGGING(LEVELING)) {
  5461. SERIAL_ECHOLNPGM(">>> gcode_T");
  5462. tmp_offset_vec.debug("tmp_offset_vec");
  5463. act_offset_vec.debug("act_offset_vec");
  5464. offset_vec.debug("offset_vec (BEFORE)");
  5465. DEBUG_POS("BEFORE rotation", current_position);
  5466. }
  5467. #endif
  5468. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5469. current_position[X_AXIS] += offset_vec.x;
  5470. current_position[Y_AXIS] += offset_vec.y;
  5471. current_position[Z_AXIS] += offset_vec.z;
  5472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5473. if (DEBUGGING(LEVELING)) {
  5474. offset_vec.debug("offset_vec (AFTER)");
  5475. DEBUG_POS("AFTER rotation", current_position);
  5476. SERIAL_ECHOLNPGM("<<< gcode_T");
  5477. }
  5478. #endif
  5479. #else // !AUTO_BED_LEVELING_FEATURE
  5480. // Offset extruder (only by XY)
  5481. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5482. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5483. #endif // !AUTO_BED_LEVELING_FEATURE
  5484. // Set the new active extruder and position
  5485. active_extruder = tmp_extruder;
  5486. #endif // !DUAL_X_CARRIAGE
  5487. #if ENABLED(DELTA)
  5488. sync_plan_position_delta();
  5489. #else
  5490. sync_plan_position();
  5491. #endif
  5492. // Move to the old position
  5493. if (IsRunning()) prepare_move();
  5494. } // (tmp_extruder != active_extruder)
  5495. #if ENABLED(EXT_SOLENOID)
  5496. stepper.synchronize();
  5497. disable_all_solenoids();
  5498. enable_solenoid_on_active_extruder();
  5499. #endif // EXT_SOLENOID
  5500. #endif // EXTRUDERS > 1
  5501. feedrate = stored_feedrate;
  5502. SERIAL_ECHO_START;
  5503. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5504. SERIAL_PROTOCOLLN((int)active_extruder);
  5505. }
  5506. /**
  5507. * Process a single command and dispatch it to its handler
  5508. * This is called from the main loop()
  5509. */
  5510. void process_next_command() {
  5511. current_command = command_queue[cmd_queue_index_r];
  5512. if (DEBUGGING(ECHO)) {
  5513. SERIAL_ECHO_START;
  5514. SERIAL_ECHOLN(current_command);
  5515. }
  5516. // Sanitize the current command:
  5517. // - Skip leading spaces
  5518. // - Bypass N[-0-9][0-9]*[ ]*
  5519. // - Overwrite * with nul to mark the end
  5520. while (*current_command == ' ') ++current_command;
  5521. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5522. current_command += 2; // skip N[-0-9]
  5523. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5524. while (*current_command == ' ') ++current_command; // skip [ ]*
  5525. }
  5526. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5527. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5528. char *cmd_ptr = current_command;
  5529. // Get the command code, which must be G, M, or T
  5530. char command_code = *cmd_ptr++;
  5531. // Skip spaces to get the numeric part
  5532. while (*cmd_ptr == ' ') cmd_ptr++;
  5533. uint16_t codenum = 0; // define ahead of goto
  5534. // Bail early if there's no code
  5535. bool code_is_good = NUMERIC(*cmd_ptr);
  5536. if (!code_is_good) goto ExitUnknownCommand;
  5537. // Get and skip the code number
  5538. do {
  5539. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5540. cmd_ptr++;
  5541. } while (NUMERIC(*cmd_ptr));
  5542. // Skip all spaces to get to the first argument, or nul
  5543. while (*cmd_ptr == ' ') cmd_ptr++;
  5544. // The command's arguments (if any) start here, for sure!
  5545. current_command_args = cmd_ptr;
  5546. KEEPALIVE_STATE(IN_HANDLER);
  5547. // Handle a known G, M, or T
  5548. switch (command_code) {
  5549. case 'G': switch (codenum) {
  5550. // G0, G1
  5551. case 0:
  5552. case 1:
  5553. gcode_G0_G1();
  5554. break;
  5555. // G2, G3
  5556. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5557. case 2: // G2 - CW ARC
  5558. case 3: // G3 - CCW ARC
  5559. gcode_G2_G3(codenum == 2);
  5560. break;
  5561. #endif
  5562. // G4 Dwell
  5563. case 4:
  5564. gcode_G4();
  5565. break;
  5566. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5567. // G5
  5568. case 5: // G5 - Cubic B_spline
  5569. gcode_G5();
  5570. break;
  5571. #endif // BEZIER_CURVE_SUPPORT
  5572. #if ENABLED(FWRETRACT)
  5573. case 10: // G10: retract
  5574. case 11: // G11: retract_recover
  5575. gcode_G10_G11(codenum == 10);
  5576. break;
  5577. #endif // FWRETRACT
  5578. case 28: // G28: Home all axes, one at a time
  5579. gcode_G28();
  5580. break;
  5581. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5582. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5583. gcode_G29();
  5584. break;
  5585. #endif
  5586. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5587. #if DISABLED(Z_PROBE_SLED)
  5588. case 30: // G30 Single Z probe
  5589. gcode_G30();
  5590. break;
  5591. #else // Z_PROBE_SLED
  5592. case 31: // G31: dock the sled
  5593. case 32: // G32: undock the sled
  5594. dock_sled(codenum == 31);
  5595. break;
  5596. #endif // Z_PROBE_SLED
  5597. #endif // AUTO_BED_LEVELING_FEATURE
  5598. case 90: // G90
  5599. relative_mode = false;
  5600. break;
  5601. case 91: // G91
  5602. relative_mode = true;
  5603. break;
  5604. case 92: // G92
  5605. gcode_G92();
  5606. break;
  5607. }
  5608. break;
  5609. case 'M': switch (codenum) {
  5610. #if ENABLED(ULTIPANEL)
  5611. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5612. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5613. gcode_M0_M1();
  5614. break;
  5615. #endif // ULTIPANEL
  5616. case 17:
  5617. gcode_M17();
  5618. break;
  5619. #if ENABLED(SDSUPPORT)
  5620. case 20: // M20 - list SD card
  5621. gcode_M20(); break;
  5622. case 21: // M21 - init SD card
  5623. gcode_M21(); break;
  5624. case 22: //M22 - release SD card
  5625. gcode_M22(); break;
  5626. case 23: //M23 - Select file
  5627. gcode_M23(); break;
  5628. case 24: //M24 - Start SD print
  5629. gcode_M24(); break;
  5630. case 25: //M25 - Pause SD print
  5631. gcode_M25(); break;
  5632. case 26: //M26 - Set SD index
  5633. gcode_M26(); break;
  5634. case 27: //M27 - Get SD status
  5635. gcode_M27(); break;
  5636. case 28: //M28 - Start SD write
  5637. gcode_M28(); break;
  5638. case 29: //M29 - Stop SD write
  5639. gcode_M29(); break;
  5640. case 30: //M30 <filename> Delete File
  5641. gcode_M30(); break;
  5642. case 32: //M32 - Select file and start SD print
  5643. gcode_M32(); break;
  5644. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5645. case 33: //M33 - Get the long full path to a file or folder
  5646. gcode_M33(); break;
  5647. #endif // LONG_FILENAME_HOST_SUPPORT
  5648. case 928: //M928 - Start SD write
  5649. gcode_M928(); break;
  5650. #endif //SDSUPPORT
  5651. case 31: //M31 take time since the start of the SD print or an M109 command
  5652. gcode_M31();
  5653. break;
  5654. case 42: //M42 -Change pin status via gcode
  5655. gcode_M42();
  5656. break;
  5657. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5658. case 48: // M48 Z probe repeatability
  5659. gcode_M48();
  5660. break;
  5661. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5662. case 75: // Start print timer
  5663. gcode_M75();
  5664. break;
  5665. case 76: // Pause print timer
  5666. gcode_M76();
  5667. break;
  5668. case 77: // Stop print timer
  5669. gcode_M77();
  5670. break;
  5671. #if ENABLED(PRINTCOUNTER)
  5672. case 78: // Show print statistics
  5673. gcode_M78();
  5674. break;
  5675. #endif
  5676. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5677. case 100:
  5678. gcode_M100();
  5679. break;
  5680. #endif
  5681. case 104: // M104
  5682. gcode_M104();
  5683. break;
  5684. case 110: // M110: Set Current Line Number
  5685. gcode_M110();
  5686. break;
  5687. case 111: // M111: Set debug level
  5688. gcode_M111();
  5689. break;
  5690. case 112: // M112: Emergency Stop
  5691. gcode_M112();
  5692. break;
  5693. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5694. case 113: // M113: Set Host Keepalive interval
  5695. gcode_M113();
  5696. break;
  5697. #endif
  5698. case 140: // M140: Set bed temp
  5699. gcode_M140();
  5700. break;
  5701. case 105: // M105: Read current temperature
  5702. gcode_M105();
  5703. KEEPALIVE_STATE(NOT_BUSY);
  5704. return; // "ok" already printed
  5705. case 109: // M109: Wait for temperature
  5706. gcode_M109();
  5707. break;
  5708. #if HAS_TEMP_BED
  5709. case 190: // M190: Wait for bed heater to reach target
  5710. gcode_M190();
  5711. break;
  5712. #endif // HAS_TEMP_BED
  5713. #if FAN_COUNT > 0
  5714. case 106: // M106: Fan On
  5715. gcode_M106();
  5716. break;
  5717. case 107: // M107: Fan Off
  5718. gcode_M107();
  5719. break;
  5720. #endif // FAN_COUNT > 0
  5721. #if ENABLED(BARICUDA)
  5722. // PWM for HEATER_1_PIN
  5723. #if HAS_HEATER_1
  5724. case 126: // M126: valve open
  5725. gcode_M126();
  5726. break;
  5727. case 127: // M127: valve closed
  5728. gcode_M127();
  5729. break;
  5730. #endif // HAS_HEATER_1
  5731. // PWM for HEATER_2_PIN
  5732. #if HAS_HEATER_2
  5733. case 128: // M128: valve open
  5734. gcode_M128();
  5735. break;
  5736. case 129: // M129: valve closed
  5737. gcode_M129();
  5738. break;
  5739. #endif // HAS_HEATER_2
  5740. #endif // BARICUDA
  5741. #if HAS_POWER_SWITCH
  5742. case 80: // M80: Turn on Power Supply
  5743. gcode_M80();
  5744. break;
  5745. #endif // HAS_POWER_SWITCH
  5746. case 81: // M81: Turn off Power, including Power Supply, if possible
  5747. gcode_M81();
  5748. break;
  5749. case 82:
  5750. gcode_M82();
  5751. break;
  5752. case 83:
  5753. gcode_M83();
  5754. break;
  5755. case 18: // (for compatibility)
  5756. case 84: // M84
  5757. gcode_M18_M84();
  5758. break;
  5759. case 85: // M85
  5760. gcode_M85();
  5761. break;
  5762. case 92: // M92: Set the steps-per-unit for one or more axes
  5763. gcode_M92();
  5764. break;
  5765. case 115: // M115: Report capabilities
  5766. gcode_M115();
  5767. break;
  5768. case 117: // M117: Set LCD message text, if possible
  5769. gcode_M117();
  5770. break;
  5771. case 114: // M114: Report current position
  5772. gcode_M114();
  5773. break;
  5774. case 120: // M120: Enable endstops
  5775. gcode_M120();
  5776. break;
  5777. case 121: // M121: Disable endstops
  5778. gcode_M121();
  5779. break;
  5780. case 119: // M119: Report endstop states
  5781. gcode_M119();
  5782. break;
  5783. #if ENABLED(ULTIPANEL)
  5784. case 145: // M145: Set material heatup parameters
  5785. gcode_M145();
  5786. break;
  5787. #endif
  5788. #if ENABLED(BLINKM)
  5789. case 150: // M150
  5790. gcode_M150();
  5791. break;
  5792. #endif //BLINKM
  5793. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5794. case 155:
  5795. gcode_M155();
  5796. break;
  5797. case 156:
  5798. gcode_M156();
  5799. break;
  5800. #endif //EXPERIMENTAL_I2CBUS
  5801. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5802. gcode_M200();
  5803. break;
  5804. case 201: // M201
  5805. gcode_M201();
  5806. break;
  5807. #if 0 // Not used for Sprinter/grbl gen6
  5808. case 202: // M202
  5809. gcode_M202();
  5810. break;
  5811. #endif
  5812. case 203: // M203 max feedrate mm/sec
  5813. gcode_M203();
  5814. break;
  5815. case 204: // M204 acclereration S normal moves T filmanent only moves
  5816. gcode_M204();
  5817. break;
  5818. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5819. gcode_M205();
  5820. break;
  5821. case 206: // M206 additional homing offset
  5822. gcode_M206();
  5823. break;
  5824. #if ENABLED(DELTA)
  5825. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5826. gcode_M665();
  5827. break;
  5828. #endif
  5829. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5830. case 666: // M666 set delta / dual endstop adjustment
  5831. gcode_M666();
  5832. break;
  5833. #endif
  5834. #if ENABLED(FWRETRACT)
  5835. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5836. gcode_M207();
  5837. break;
  5838. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5839. gcode_M208();
  5840. break;
  5841. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5842. gcode_M209();
  5843. break;
  5844. #endif // FWRETRACT
  5845. #if EXTRUDERS > 1
  5846. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5847. gcode_M218();
  5848. break;
  5849. #endif
  5850. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5851. gcode_M220();
  5852. break;
  5853. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5854. gcode_M221();
  5855. break;
  5856. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5857. gcode_M226();
  5858. break;
  5859. #if HAS_SERVOS
  5860. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5861. gcode_M280();
  5862. break;
  5863. #endif // HAS_SERVOS
  5864. #if HAS_BUZZER
  5865. case 300: // M300 - Play beep tone
  5866. gcode_M300();
  5867. break;
  5868. #endif // HAS_BUZZER
  5869. #if ENABLED(PIDTEMP)
  5870. case 301: // M301
  5871. gcode_M301();
  5872. break;
  5873. #endif // PIDTEMP
  5874. #if ENABLED(PIDTEMPBED)
  5875. case 304: // M304
  5876. gcode_M304();
  5877. break;
  5878. #endif // PIDTEMPBED
  5879. #if defined(CHDK) || HAS_PHOTOGRAPH
  5880. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5881. gcode_M240();
  5882. break;
  5883. #endif // CHDK || PHOTOGRAPH_PIN
  5884. #if ENABLED(HAS_LCD_CONTRAST)
  5885. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5886. gcode_M250();
  5887. break;
  5888. #endif // HAS_LCD_CONTRAST
  5889. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5890. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5891. gcode_M302();
  5892. break;
  5893. #endif // PREVENT_DANGEROUS_EXTRUDE
  5894. case 303: // M303 PID autotune
  5895. gcode_M303();
  5896. break;
  5897. #if ENABLED(SCARA)
  5898. case 360: // M360 SCARA Theta pos1
  5899. if (gcode_M360()) return;
  5900. break;
  5901. case 361: // M361 SCARA Theta pos2
  5902. if (gcode_M361()) return;
  5903. break;
  5904. case 362: // M362 SCARA Psi pos1
  5905. if (gcode_M362()) return;
  5906. break;
  5907. case 363: // M363 SCARA Psi pos2
  5908. if (gcode_M363()) return;
  5909. break;
  5910. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5911. if (gcode_M364()) return;
  5912. break;
  5913. case 365: // M365 Set SCARA scaling for X Y Z
  5914. gcode_M365();
  5915. break;
  5916. #endif // SCARA
  5917. case 400: // M400 finish all moves
  5918. gcode_M400();
  5919. break;
  5920. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5921. case 401:
  5922. gcode_M401();
  5923. break;
  5924. case 402:
  5925. gcode_M402();
  5926. break;
  5927. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5928. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5929. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5930. gcode_M404();
  5931. break;
  5932. case 405: //M405 Turn on filament sensor for control
  5933. gcode_M405();
  5934. break;
  5935. case 406: //M406 Turn off filament sensor for control
  5936. gcode_M406();
  5937. break;
  5938. case 407: //M407 Display measured filament diameter
  5939. gcode_M407();
  5940. break;
  5941. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5942. case 410: // M410 quickstop - Abort all the planned moves.
  5943. gcode_M410();
  5944. break;
  5945. #if ENABLED(MESH_BED_LEVELING)
  5946. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5947. gcode_M420();
  5948. break;
  5949. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5950. gcode_M421();
  5951. break;
  5952. #endif
  5953. case 428: // M428 Apply current_position to home_offset
  5954. gcode_M428();
  5955. break;
  5956. case 500: // M500 Store settings in EEPROM
  5957. gcode_M500();
  5958. break;
  5959. case 501: // M501 Read settings from EEPROM
  5960. gcode_M501();
  5961. break;
  5962. case 502: // M502 Revert to default settings
  5963. gcode_M502();
  5964. break;
  5965. case 503: // M503 print settings currently in memory
  5966. gcode_M503();
  5967. break;
  5968. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5969. case 540:
  5970. gcode_M540();
  5971. break;
  5972. #endif
  5973. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5974. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5975. gcode_SET_Z_PROBE_OFFSET();
  5976. break;
  5977. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5978. #if ENABLED(FILAMENTCHANGEENABLE)
  5979. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5980. gcode_M600();
  5981. break;
  5982. #endif // FILAMENTCHANGEENABLE
  5983. #if ENABLED(DUAL_X_CARRIAGE)
  5984. case 605:
  5985. gcode_M605();
  5986. break;
  5987. #endif // DUAL_X_CARRIAGE
  5988. case 907: // M907 Set digital trimpot motor current using axis codes.
  5989. gcode_M907();
  5990. break;
  5991. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5992. case 908: // M908 Control digital trimpot directly.
  5993. gcode_M908();
  5994. break;
  5995. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5996. case 909: // M909 Print digipot/DAC current value
  5997. gcode_M909();
  5998. break;
  5999. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6000. gcode_M910();
  6001. break;
  6002. #endif
  6003. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6004. #if HAS_MICROSTEPS
  6005. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6006. gcode_M350();
  6007. break;
  6008. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6009. gcode_M351();
  6010. break;
  6011. #endif // HAS_MICROSTEPS
  6012. case 999: // M999: Restart after being Stopped
  6013. gcode_M999();
  6014. break;
  6015. }
  6016. break;
  6017. case 'T':
  6018. gcode_T(codenum);
  6019. break;
  6020. default: code_is_good = false;
  6021. }
  6022. KEEPALIVE_STATE(NOT_BUSY);
  6023. ExitUnknownCommand:
  6024. // Still unknown command? Throw an error
  6025. if (!code_is_good) unknown_command_error();
  6026. ok_to_send();
  6027. }
  6028. void FlushSerialRequestResend() {
  6029. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6030. MYSERIAL.flush();
  6031. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6032. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6033. ok_to_send();
  6034. }
  6035. void ok_to_send() {
  6036. refresh_cmd_timeout();
  6037. if (!send_ok[cmd_queue_index_r]) return;
  6038. SERIAL_PROTOCOLPGM(MSG_OK);
  6039. #if ENABLED(ADVANCED_OK)
  6040. char* p = command_queue[cmd_queue_index_r];
  6041. if (*p == 'N') {
  6042. SERIAL_PROTOCOL(' ');
  6043. SERIAL_ECHO(*p++);
  6044. while (NUMERIC_SIGNED(*p))
  6045. SERIAL_ECHO(*p++);
  6046. }
  6047. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6048. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6049. #endif
  6050. SERIAL_EOL;
  6051. }
  6052. void clamp_to_software_endstops(float target[3]) {
  6053. if (min_software_endstops) {
  6054. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6055. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6056. float negative_z_offset = 0;
  6057. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6058. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  6059. if (home_offset[Z_AXIS] < 0) {
  6060. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6061. if (DEBUGGING(LEVELING)) {
  6062. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  6063. SERIAL_EOL;
  6064. }
  6065. #endif
  6066. negative_z_offset += home_offset[Z_AXIS];
  6067. }
  6068. #endif
  6069. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS] + negative_z_offset);
  6070. }
  6071. if (max_software_endstops) {
  6072. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6073. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6074. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6075. }
  6076. }
  6077. #if ENABLED(DELTA)
  6078. void recalc_delta_settings(float radius, float diagonal_rod) {
  6079. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6080. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6081. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6082. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6083. delta_tower3_x = 0.0; // back middle tower
  6084. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6085. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6086. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6087. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6088. }
  6089. void calculate_delta(float cartesian[3]) {
  6090. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6091. - sq(delta_tower1_x - cartesian[X_AXIS])
  6092. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6093. ) + cartesian[Z_AXIS];
  6094. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6095. - sq(delta_tower2_x - cartesian[X_AXIS])
  6096. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6097. ) + cartesian[Z_AXIS];
  6098. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6099. - sq(delta_tower3_x - cartesian[X_AXIS])
  6100. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6101. ) + cartesian[Z_AXIS];
  6102. /**
  6103. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6104. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6105. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6106. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6107. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6108. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6109. */
  6110. }
  6111. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6112. // Adjust print surface height by linear interpolation over the bed_level array.
  6113. void adjust_delta(float cartesian[3]) {
  6114. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6115. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6116. float h1 = 0.001 - half, h2 = half - 0.001,
  6117. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6118. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6119. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6120. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6121. z1 = bed_level[floor_x + half][floor_y + half],
  6122. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6123. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6124. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6125. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6126. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6127. offset = (1 - ratio_x) * left + ratio_x * right;
  6128. delta[X_AXIS] += offset;
  6129. delta[Y_AXIS] += offset;
  6130. delta[Z_AXIS] += offset;
  6131. /**
  6132. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6133. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6134. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6135. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6136. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6137. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6138. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6139. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6140. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6141. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6142. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6143. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6144. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6145. */
  6146. }
  6147. #endif // AUTO_BED_LEVELING_FEATURE
  6148. #endif // DELTA
  6149. #if ENABLED(MESH_BED_LEVELING)
  6150. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6151. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6152. if (!mbl.active) {
  6153. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6154. set_current_to_destination();
  6155. return;
  6156. }
  6157. int pix = mbl.select_x_index(current_position[X_AXIS] - home_offset[X_AXIS]);
  6158. int piy = mbl.select_y_index(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  6159. int ix = mbl.select_x_index(x - home_offset[X_AXIS]);
  6160. int iy = mbl.select_y_index(y - home_offset[Y_AXIS]);
  6161. pix = min(pix, MESH_NUM_X_POINTS - 2);
  6162. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  6163. ix = min(ix, MESH_NUM_X_POINTS - 2);
  6164. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  6165. if (pix == ix && piy == iy) {
  6166. // Start and end on same mesh square
  6167. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6168. set_current_to_destination();
  6169. return;
  6170. }
  6171. float nx, ny, nz, ne, normalized_dist;
  6172. if (ix > pix && TEST(x_splits, ix)) {
  6173. nx = mbl.get_x(ix) + home_offset[X_AXIS];
  6174. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6175. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6176. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6177. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6178. CBI(x_splits, ix);
  6179. }
  6180. else if (ix < pix && TEST(x_splits, pix)) {
  6181. nx = mbl.get_x(pix) + home_offset[X_AXIS];
  6182. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6183. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6184. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6185. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6186. CBI(x_splits, pix);
  6187. }
  6188. else if (iy > piy && TEST(y_splits, iy)) {
  6189. ny = mbl.get_y(iy) + home_offset[Y_AXIS];
  6190. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6191. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6192. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6193. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6194. CBI(y_splits, iy);
  6195. }
  6196. else if (iy < piy && TEST(y_splits, piy)) {
  6197. ny = mbl.get_y(piy) + home_offset[Y_AXIS];
  6198. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6199. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6200. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6201. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6202. CBI(y_splits, piy);
  6203. }
  6204. else {
  6205. // Already split on a border
  6206. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6207. set_current_to_destination();
  6208. return;
  6209. }
  6210. // Do the split and look for more borders
  6211. destination[X_AXIS] = nx;
  6212. destination[Y_AXIS] = ny;
  6213. destination[Z_AXIS] = nz;
  6214. destination[E_AXIS] = ne;
  6215. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6216. destination[X_AXIS] = x;
  6217. destination[Y_AXIS] = y;
  6218. destination[Z_AXIS] = z;
  6219. destination[E_AXIS] = e;
  6220. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6221. }
  6222. #endif // MESH_BED_LEVELING
  6223. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6224. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6225. if (DEBUGGING(DRYRUN)) return;
  6226. float de = dest_e - curr_e;
  6227. if (de) {
  6228. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6229. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6230. SERIAL_ECHO_START;
  6231. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6232. }
  6233. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6234. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6235. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6236. SERIAL_ECHO_START;
  6237. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6238. }
  6239. #endif
  6240. }
  6241. }
  6242. #endif // PREVENT_DANGEROUS_EXTRUDE
  6243. #if ENABLED(DELTA) || ENABLED(SCARA)
  6244. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  6245. float difference[NUM_AXIS];
  6246. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6247. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6248. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6249. if (cartesian_mm < 0.000001) return false;
  6250. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6251. float seconds = cartesian_mm / _feedrate;
  6252. int steps = max(1, int(delta_segments_per_second * seconds));
  6253. float inv_steps = 1.0/steps;
  6254. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6255. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6256. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6257. for (int s = 1; s <= steps; s++) {
  6258. float fraction = float(s) * inv_steps;
  6259. for (int8_t i = 0; i < NUM_AXIS; i++)
  6260. target[i] = current_position[i] + difference[i] * fraction;
  6261. calculate_delta(target);
  6262. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6263. if (!bed_leveling_in_progress) adjust_delta(target);
  6264. #endif
  6265. //DEBUG_POS("prepare_move_delta", target);
  6266. //DEBUG_POS("prepare_move_delta", delta);
  6267. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6268. }
  6269. return true;
  6270. }
  6271. #endif // DELTA || SCARA
  6272. #if ENABLED(SCARA)
  6273. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  6274. #endif
  6275. #if ENABLED(DUAL_X_CARRIAGE)
  6276. inline bool prepare_move_dual_x_carriage() {
  6277. if (active_extruder_parked) {
  6278. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6279. // move duplicate extruder into correct duplication position.
  6280. planner.set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6281. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6282. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6283. sync_plan_position();
  6284. stepper.synchronize();
  6285. extruder_duplication_enabled = true;
  6286. active_extruder_parked = false;
  6287. }
  6288. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6289. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6290. // This is a travel move (with no extrusion)
  6291. // Skip it, but keep track of the current position
  6292. // (so it can be used as the start of the next non-travel move)
  6293. if (delayed_move_time != 0xFFFFFFFFUL) {
  6294. set_current_to_destination();
  6295. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6296. delayed_move_time = millis();
  6297. return false;
  6298. }
  6299. }
  6300. delayed_move_time = 0;
  6301. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6302. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6303. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]), active_extruder);
  6304. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6305. active_extruder_parked = false;
  6306. }
  6307. }
  6308. return true;
  6309. }
  6310. #endif // DUAL_X_CARRIAGE
  6311. #if DISABLED(DELTA) && DISABLED(SCARA)
  6312. inline bool prepare_move_cartesian() {
  6313. // Do not use feedrate_multiplier for E or Z only moves
  6314. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6315. line_to_destination();
  6316. }
  6317. else {
  6318. #if ENABLED(MESH_BED_LEVELING)
  6319. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6320. return false;
  6321. #else
  6322. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6323. #endif
  6324. }
  6325. return true;
  6326. }
  6327. #endif // !DELTA && !SCARA
  6328. /**
  6329. * Prepare a single move and get ready for the next one
  6330. *
  6331. * (This may call planner.buffer_line several times to put
  6332. * smaller moves into the planner for DELTA or SCARA.)
  6333. */
  6334. void prepare_move() {
  6335. clamp_to_software_endstops(destination);
  6336. refresh_cmd_timeout();
  6337. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6338. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6339. #endif
  6340. #if ENABLED(SCARA)
  6341. if (!prepare_move_scara(destination)) return;
  6342. #elif ENABLED(DELTA)
  6343. if (!prepare_move_delta(destination)) return;
  6344. #else
  6345. #if ENABLED(DUAL_X_CARRIAGE)
  6346. if (!prepare_move_dual_x_carriage()) return;
  6347. #endif
  6348. if (!prepare_move_cartesian()) return;
  6349. #endif
  6350. set_current_to_destination();
  6351. }
  6352. #if ENABLED(ARC_SUPPORT)
  6353. /**
  6354. * Plan an arc in 2 dimensions
  6355. *
  6356. * The arc is approximated by generating many small linear segments.
  6357. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6358. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6359. * larger segments will tend to be more efficient. Your slicer should have
  6360. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6361. */
  6362. void plan_arc(
  6363. float target[NUM_AXIS], // Destination position
  6364. float* offset, // Center of rotation relative to current_position
  6365. uint8_t clockwise // Clockwise?
  6366. ) {
  6367. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6368. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6369. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6370. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6371. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6372. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6373. r_Y = -offset[Y_AXIS],
  6374. rt_X = target[X_AXIS] - center_X,
  6375. rt_Y = target[Y_AXIS] - center_Y;
  6376. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6377. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6378. if (angular_travel < 0) angular_travel += RADIANS(360);
  6379. if (clockwise) angular_travel -= RADIANS(360);
  6380. // Make a circle if the angular rotation is 0
  6381. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6382. angular_travel += RADIANS(360);
  6383. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6384. if (mm_of_travel < 0.001) return;
  6385. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6386. if (segments == 0) segments = 1;
  6387. float theta_per_segment = angular_travel / segments;
  6388. float linear_per_segment = linear_travel / segments;
  6389. float extruder_per_segment = extruder_travel / segments;
  6390. /**
  6391. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6392. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6393. * r_T = [cos(phi) -sin(phi);
  6394. * sin(phi) cos(phi] * r ;
  6395. *
  6396. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6397. * defined from the circle center to the initial position. Each line segment is formed by successive
  6398. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6399. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6400. * all double numbers are single precision on the Arduino. (True double precision will not have
  6401. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6402. * tool precision in some cases. Therefore, arc path correction is implemented.
  6403. *
  6404. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6405. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6406. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6407. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6408. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6409. * issue for CNC machines with the single precision Arduino calculations.
  6410. *
  6411. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6412. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6413. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6414. * This is important when there are successive arc motions.
  6415. */
  6416. // Vector rotation matrix values
  6417. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6418. float sin_T = theta_per_segment;
  6419. float arc_target[NUM_AXIS];
  6420. float sin_Ti, cos_Ti, r_new_Y;
  6421. uint16_t i;
  6422. int8_t count = 0;
  6423. // Initialize the linear axis
  6424. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6425. // Initialize the extruder axis
  6426. arc_target[E_AXIS] = current_position[E_AXIS];
  6427. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6428. millis_t previous_ms = millis();
  6429. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6430. millis_t now = millis();
  6431. if (now - previous_ms > 200UL) {
  6432. previous_ms = now;
  6433. idle();
  6434. }
  6435. if (++count < N_ARC_CORRECTION) {
  6436. // Apply vector rotation matrix to previous r_X / 1
  6437. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6438. r_X = r_X * cos_T - r_Y * sin_T;
  6439. r_Y = r_new_Y;
  6440. }
  6441. else {
  6442. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6443. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6444. // To reduce stuttering, the sin and cos could be computed at different times.
  6445. // For now, compute both at the same time.
  6446. cos_Ti = cos(i * theta_per_segment);
  6447. sin_Ti = sin(i * theta_per_segment);
  6448. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6449. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6450. count = 0;
  6451. }
  6452. // Update arc_target location
  6453. arc_target[X_AXIS] = center_X + r_X;
  6454. arc_target[Y_AXIS] = center_Y + r_Y;
  6455. arc_target[Z_AXIS] += linear_per_segment;
  6456. arc_target[E_AXIS] += extruder_per_segment;
  6457. clamp_to_software_endstops(arc_target);
  6458. #if ENABLED(DELTA) || ENABLED(SCARA)
  6459. calculate_delta(arc_target);
  6460. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6461. adjust_delta(arc_target);
  6462. #endif
  6463. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6464. #else
  6465. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6466. #endif
  6467. }
  6468. // Ensure last segment arrives at target location.
  6469. #if ENABLED(DELTA) || ENABLED(SCARA)
  6470. calculate_delta(target);
  6471. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6472. adjust_delta(target);
  6473. #endif
  6474. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6475. #else
  6476. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6477. #endif
  6478. // As far as the parser is concerned, the position is now == target. In reality the
  6479. // motion control system might still be processing the action and the real tool position
  6480. // in any intermediate location.
  6481. set_current_to_destination();
  6482. }
  6483. #endif
  6484. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6485. void plan_cubic_move(const float offset[4]) {
  6486. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6487. // As far as the parser is concerned, the position is now == target. In reality the
  6488. // motion control system might still be processing the action and the real tool position
  6489. // in any intermediate location.
  6490. set_current_to_destination();
  6491. }
  6492. #endif // BEZIER_CURVE_SUPPORT
  6493. #if HAS_CONTROLLERFAN
  6494. void controllerFan() {
  6495. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6496. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6497. millis_t ms = millis();
  6498. if (ELAPSED(ms, nextMotorCheck)) {
  6499. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6500. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6501. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6502. #if EXTRUDERS > 1
  6503. || E1_ENABLE_READ == E_ENABLE_ON
  6504. #if HAS_X2_ENABLE
  6505. || X2_ENABLE_READ == X_ENABLE_ON
  6506. #endif
  6507. #if EXTRUDERS > 2
  6508. || E2_ENABLE_READ == E_ENABLE_ON
  6509. #if EXTRUDERS > 3
  6510. || E3_ENABLE_READ == E_ENABLE_ON
  6511. #endif
  6512. #endif
  6513. #endif
  6514. ) {
  6515. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6516. }
  6517. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6518. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6519. // allows digital or PWM fan output to be used (see M42 handling)
  6520. digitalWrite(CONTROLLERFAN_PIN, speed);
  6521. analogWrite(CONTROLLERFAN_PIN, speed);
  6522. }
  6523. }
  6524. #endif // HAS_CONTROLLERFAN
  6525. #if ENABLED(SCARA)
  6526. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6527. // Perform forward kinematics, and place results in delta[3]
  6528. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6529. float x_sin, x_cos, y_sin, y_cos;
  6530. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6531. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6532. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6533. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6534. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6535. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6536. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6537. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6538. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6539. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6540. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6541. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6542. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6543. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6544. }
  6545. void calculate_delta(float cartesian[3]) {
  6546. //reverse kinematics.
  6547. // Perform reversed kinematics, and place results in delta[3]
  6548. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6549. float SCARA_pos[2];
  6550. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6551. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6552. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6553. #if (Linkage_1 == Linkage_2)
  6554. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6555. #else
  6556. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6557. #endif
  6558. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6559. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6560. SCARA_K2 = Linkage_2 * SCARA_S2;
  6561. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6562. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6563. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6564. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6565. delta[Z_AXIS] = cartesian[Z_AXIS];
  6566. /**
  6567. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6568. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6569. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6570. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6571. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6572. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6573. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6574. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6575. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6576. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6577. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6578. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6579. SERIAL_EOL;
  6580. */
  6581. }
  6582. #endif // SCARA
  6583. #if ENABLED(TEMP_STAT_LEDS)
  6584. static bool red_led = false;
  6585. static millis_t next_status_led_update_ms = 0;
  6586. void handle_status_leds(void) {
  6587. float max_temp = 0.0;
  6588. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6589. next_status_led_update_ms += 500; // Update every 0.5s
  6590. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6591. max_temp = max(max(max_temp, thermalManager.degHotend(cur_extruder)), thermalManager.degTargetHotend(cur_extruder));
  6592. #if HAS_TEMP_BED
  6593. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6594. #endif
  6595. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6596. if (new_led != red_led) {
  6597. red_led = new_led;
  6598. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6599. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6600. }
  6601. }
  6602. }
  6603. #endif
  6604. void enable_all_steppers() {
  6605. enable_x();
  6606. enable_y();
  6607. enable_z();
  6608. enable_e0();
  6609. enable_e1();
  6610. enable_e2();
  6611. enable_e3();
  6612. }
  6613. void disable_all_steppers() {
  6614. disable_x();
  6615. disable_y();
  6616. disable_z();
  6617. disable_e0();
  6618. disable_e1();
  6619. disable_e2();
  6620. disable_e3();
  6621. }
  6622. /**
  6623. * Standard idle routine keeps the machine alive
  6624. */
  6625. void idle(
  6626. #if ENABLED(FILAMENTCHANGEENABLE)
  6627. bool no_stepper_sleep/*=false*/
  6628. #endif
  6629. ) {
  6630. thermalManager.manage_heater();
  6631. manage_inactivity(
  6632. #if ENABLED(FILAMENTCHANGEENABLE)
  6633. no_stepper_sleep
  6634. #endif
  6635. );
  6636. host_keepalive();
  6637. lcd_update();
  6638. #if ENABLED(PRINTCOUNTER)
  6639. print_job_timer.tick();
  6640. #endif
  6641. }
  6642. /**
  6643. * Manage several activities:
  6644. * - Check for Filament Runout
  6645. * - Keep the command buffer full
  6646. * - Check for maximum inactive time between commands
  6647. * - Check for maximum inactive time between stepper commands
  6648. * - Check if pin CHDK needs to go LOW
  6649. * - Check for KILL button held down
  6650. * - Check for HOME button held down
  6651. * - Check if cooling fan needs to be switched on
  6652. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6653. */
  6654. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6655. #if HAS_FILRUNOUT
  6656. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6657. handle_filament_runout();
  6658. #endif
  6659. if (commands_in_queue < BUFSIZE) get_available_commands();
  6660. millis_t ms = millis();
  6661. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6662. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6663. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6664. #if ENABLED(DISABLE_INACTIVE_X)
  6665. disable_x();
  6666. #endif
  6667. #if ENABLED(DISABLE_INACTIVE_Y)
  6668. disable_y();
  6669. #endif
  6670. #if ENABLED(DISABLE_INACTIVE_Z)
  6671. disable_z();
  6672. #endif
  6673. #if ENABLED(DISABLE_INACTIVE_E)
  6674. disable_e0();
  6675. disable_e1();
  6676. disable_e2();
  6677. disable_e3();
  6678. #endif
  6679. }
  6680. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6681. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6682. chdkActive = false;
  6683. WRITE(CHDK, LOW);
  6684. }
  6685. #endif
  6686. #if HAS_KILL
  6687. // Check if the kill button was pressed and wait just in case it was an accidental
  6688. // key kill key press
  6689. // -------------------------------------------------------------------------------
  6690. static int killCount = 0; // make the inactivity button a bit less responsive
  6691. const int KILL_DELAY = 750;
  6692. if (!READ(KILL_PIN))
  6693. killCount++;
  6694. else if (killCount > 0)
  6695. killCount--;
  6696. // Exceeded threshold and we can confirm that it was not accidental
  6697. // KILL the machine
  6698. // ----------------------------------------------------------------
  6699. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6700. #endif
  6701. #if HAS_HOME
  6702. // Check to see if we have to home, use poor man's debouncer
  6703. // ---------------------------------------------------------
  6704. static int homeDebounceCount = 0; // poor man's debouncing count
  6705. const int HOME_DEBOUNCE_DELAY = 2500;
  6706. if (!READ(HOME_PIN)) {
  6707. if (!homeDebounceCount) {
  6708. enqueue_and_echo_commands_P(PSTR("G28"));
  6709. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6710. }
  6711. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6712. homeDebounceCount++;
  6713. else
  6714. homeDebounceCount = 0;
  6715. }
  6716. #endif
  6717. #if HAS_CONTROLLERFAN
  6718. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6719. #endif
  6720. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6721. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6722. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6723. bool oldstatus;
  6724. switch (active_extruder) {
  6725. case 0:
  6726. oldstatus = E0_ENABLE_READ;
  6727. enable_e0();
  6728. break;
  6729. #if EXTRUDERS > 1
  6730. case 1:
  6731. oldstatus = E1_ENABLE_READ;
  6732. enable_e1();
  6733. break;
  6734. #if EXTRUDERS > 2
  6735. case 2:
  6736. oldstatus = E2_ENABLE_READ;
  6737. enable_e2();
  6738. break;
  6739. #if EXTRUDERS > 3
  6740. case 3:
  6741. oldstatus = E3_ENABLE_READ;
  6742. enable_e3();
  6743. break;
  6744. #endif
  6745. #endif
  6746. #endif
  6747. }
  6748. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6749. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6750. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_unit[E_AXIS],
  6751. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_unit[E_AXIS], active_extruder);
  6752. current_position[E_AXIS] = oldepos;
  6753. destination[E_AXIS] = oldedes;
  6754. planner.set_e_position(oldepos);
  6755. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6756. stepper.synchronize();
  6757. switch (active_extruder) {
  6758. case 0:
  6759. E0_ENABLE_WRITE(oldstatus);
  6760. break;
  6761. #if EXTRUDERS > 1
  6762. case 1:
  6763. E1_ENABLE_WRITE(oldstatus);
  6764. break;
  6765. #if EXTRUDERS > 2
  6766. case 2:
  6767. E2_ENABLE_WRITE(oldstatus);
  6768. break;
  6769. #if EXTRUDERS > 3
  6770. case 3:
  6771. E3_ENABLE_WRITE(oldstatus);
  6772. break;
  6773. #endif
  6774. #endif
  6775. #endif
  6776. }
  6777. }
  6778. #endif
  6779. #if ENABLED(DUAL_X_CARRIAGE)
  6780. // handle delayed move timeout
  6781. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6782. // travel moves have been received so enact them
  6783. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6784. set_destination_to_current();
  6785. prepare_move();
  6786. }
  6787. #endif
  6788. #if ENABLED(TEMP_STAT_LEDS)
  6789. handle_status_leds();
  6790. #endif
  6791. planner.check_axes_activity();
  6792. }
  6793. void kill(const char* lcd_msg) {
  6794. #if ENABLED(ULTRA_LCD)
  6795. lcd_setalertstatuspgm(lcd_msg);
  6796. #else
  6797. UNUSED(lcd_msg);
  6798. #endif
  6799. cli(); // Stop interrupts
  6800. thermalManager.disable_all_heaters();
  6801. disable_all_steppers();
  6802. #if HAS_POWER_SWITCH
  6803. pinMode(PS_ON_PIN, INPUT);
  6804. #endif
  6805. SERIAL_ERROR_START;
  6806. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6807. // FMC small patch to update the LCD before ending
  6808. sei(); // enable interrupts
  6809. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6810. cli(); // disable interrupts
  6811. suicide();
  6812. while (1) {
  6813. #if ENABLED(USE_WATCHDOG)
  6814. watchdog_reset();
  6815. #endif
  6816. } // Wait for reset
  6817. }
  6818. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6819. void handle_filament_runout() {
  6820. if (!filament_ran_out) {
  6821. filament_ran_out = true;
  6822. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6823. stepper.synchronize();
  6824. }
  6825. }
  6826. #endif // FILAMENT_RUNOUT_SENSOR
  6827. #if ENABLED(FAST_PWM_FAN)
  6828. void setPwmFrequency(uint8_t pin, int val) {
  6829. val &= 0x07;
  6830. switch (digitalPinToTimer(pin)) {
  6831. #if defined(TCCR0A)
  6832. case TIMER0A:
  6833. case TIMER0B:
  6834. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6835. // TCCR0B |= val;
  6836. break;
  6837. #endif
  6838. #if defined(TCCR1A)
  6839. case TIMER1A:
  6840. case TIMER1B:
  6841. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6842. // TCCR1B |= val;
  6843. break;
  6844. #endif
  6845. #if defined(TCCR2)
  6846. case TIMER2:
  6847. case TIMER2:
  6848. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6849. TCCR2 |= val;
  6850. break;
  6851. #endif
  6852. #if defined(TCCR2A)
  6853. case TIMER2A:
  6854. case TIMER2B:
  6855. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6856. TCCR2B |= val;
  6857. break;
  6858. #endif
  6859. #if defined(TCCR3A)
  6860. case TIMER3A:
  6861. case TIMER3B:
  6862. case TIMER3C:
  6863. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6864. TCCR3B |= val;
  6865. break;
  6866. #endif
  6867. #if defined(TCCR4A)
  6868. case TIMER4A:
  6869. case TIMER4B:
  6870. case TIMER4C:
  6871. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6872. TCCR4B |= val;
  6873. break;
  6874. #endif
  6875. #if defined(TCCR5A)
  6876. case TIMER5A:
  6877. case TIMER5B:
  6878. case TIMER5C:
  6879. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6880. TCCR5B |= val;
  6881. break;
  6882. #endif
  6883. }
  6884. }
  6885. #endif // FAST_PWM_FAN
  6886. void stop() {
  6887. thermalManager.disable_all_heaters();
  6888. if (IsRunning()) {
  6889. Running = false;
  6890. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6891. SERIAL_ERROR_START;
  6892. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6893. LCD_MESSAGEPGM(MSG_STOPPED);
  6894. }
  6895. }
  6896. float calculate_volumetric_multiplier(float diameter) {
  6897. if (!volumetric_enabled || diameter == 0) return 1.0;
  6898. float d2 = diameter * 0.5;
  6899. return 1.0 / (M_PI * d2 * d2);
  6900. }
  6901. void calculate_volumetric_multipliers() {
  6902. for (int i = 0; i < EXTRUDERS; i++)
  6903. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6904. }