My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.cpp 33KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. //===========================================================================
  42. //=============================public variables ============================
  43. //===========================================================================
  44. unsigned long minsegmenttime;
  45. float max_feedrate[4]; // set the max speeds
  46. float axis_steps_per_unit[4];
  47. unsigned long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
  48. float minimumfeedrate;
  49. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  50. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  51. float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
  52. float max_z_jerk;
  53. float mintravelfeedrate;
  54. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  55. // The current position of the tool in absolute steps
  56. long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  57. static float previous_speed[4]; // Speed of previous path line segment
  58. static float previous_nominal_speed; // Nominal speed of previous path line segment
  59. #ifdef AUTOTEMP
  60. float autotemp_max=250;
  61. float autotemp_min=210;
  62. float autotemp_factor=0.1;
  63. bool autotemp_enabled=false;
  64. #endif
  65. //===========================================================================
  66. //=================semi-private variables, used in inline functions =====
  67. //===========================================================================
  68. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  69. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  70. volatile unsigned char block_buffer_tail; // Index of the block to process now
  71. //===========================================================================
  72. //=============================private variables ============================
  73. //===========================================================================
  74. #ifdef PREVENT_DANGEROUS_EXTRUDE
  75. bool allow_cold_extrude=false;
  76. #endif
  77. #ifdef XY_FREQUENCY_LIMIT
  78. // Used for the frequency limit
  79. static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
  80. static long x_segment_time[3]={0,0,0}; // Segment times (in us). Used for speed calculations
  81. static long y_segment_time[3]={0,0,0};
  82. #endif
  83. // Returns the index of the next block in the ring buffer
  84. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  85. static int8_t next_block_index(int8_t block_index) {
  86. block_index++;
  87. if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; }
  88. return(block_index);
  89. }
  90. // Returns the index of the previous block in the ring buffer
  91. static int8_t prev_block_index(int8_t block_index) {
  92. if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; }
  93. block_index--;
  94. return(block_index);
  95. }
  96. //===========================================================================
  97. //=============================functions ============================
  98. //===========================================================================
  99. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  100. // given acceleration:
  101. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  102. {
  103. if (acceleration!=0) {
  104. return((target_rate*target_rate-initial_rate*initial_rate)/
  105. (2.0*acceleration));
  106. }
  107. else {
  108. return 0.0; // acceleration was 0, set acceleration distance to 0
  109. }
  110. }
  111. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  112. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  113. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  114. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  115. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  116. {
  117. if (acceleration!=0) {
  118. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  119. (4.0*acceleration) );
  120. }
  121. else {
  122. return 0.0; // acceleration was 0, set intersection distance to 0
  123. }
  124. }
  125. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  126. void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
  127. unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
  128. unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
  129. // Limit minimal step rate (Otherwise the timer will overflow.)
  130. if(initial_rate <120) {initial_rate=120; }
  131. if(final_rate < 120) {final_rate=120; }
  132. long acceleration = block->acceleration_st;
  133. int32_t accelerate_steps =
  134. ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration));
  135. int32_t decelerate_steps =
  136. floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration));
  137. // Calculate the size of Plateau of Nominal Rate.
  138. int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
  139. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  140. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  141. // in order to reach the final_rate exactly at the end of this block.
  142. if (plateau_steps < 0) {
  143. accelerate_steps = ceil(
  144. intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
  145. accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
  146. accelerate_steps = min(accelerate_steps,block->step_event_count);
  147. plateau_steps = 0;
  148. }
  149. #ifdef ADVANCE
  150. volatile long initial_advance = block->advance*entry_factor*entry_factor;
  151. volatile long final_advance = block->advance*exit_factor*exit_factor;
  152. #endif // ADVANCE
  153. // block->accelerate_until = accelerate_steps;
  154. // block->decelerate_after = accelerate_steps+plateau_steps;
  155. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  156. if(block->busy == false) { // Don't update variables if block is busy.
  157. block->accelerate_until = accelerate_steps;
  158. block->decelerate_after = accelerate_steps+plateau_steps;
  159. block->initial_rate = initial_rate;
  160. block->final_rate = final_rate;
  161. #ifdef ADVANCE
  162. block->initial_advance = initial_advance;
  163. block->final_advance = final_advance;
  164. #endif //ADVANCE
  165. }
  166. CRITICAL_SECTION_END;
  167. }
  168. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  169. // acceleration within the allotted distance.
  170. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  171. return sqrt(target_velocity*target_velocity-2*acceleration*distance);
  172. }
  173. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  174. // This method will calculate the junction jerk as the euclidean distance between the nominal
  175. // velocities of the respective blocks.
  176. //inline float junction_jerk(block_t *before, block_t *after) {
  177. // return sqrt(
  178. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  179. //}
  180. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  181. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  182. if(!current) { return; }
  183. if (next) {
  184. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  185. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  186. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  187. if (current->entry_speed != current->max_entry_speed) {
  188. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  189. // for max allowable speed if block is decelerating and nominal length is false.
  190. if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
  191. current->entry_speed = min( current->max_entry_speed,
  192. max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
  193. } else {
  194. current->entry_speed = current->max_entry_speed;
  195. }
  196. current->recalculate_flag = true;
  197. }
  198. } // Skip last block. Already initialized and set for recalculation.
  199. }
  200. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  201. // implements the reverse pass.
  202. void planner_reverse_pass() {
  203. uint8_t block_index = block_buffer_head;
  204. if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
  205. block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
  206. block_t *block[3] = { NULL, NULL, NULL };
  207. while(block_index != block_buffer_tail) {
  208. block_index = prev_block_index(block_index);
  209. block[2]= block[1];
  210. block[1]= block[0];
  211. block[0] = &block_buffer[block_index];
  212. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  213. }
  214. }
  215. }
  216. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  217. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  218. if(!previous) { return; }
  219. // If the previous block is an acceleration block, but it is not long enough to complete the
  220. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  221. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  222. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  223. if (!previous->nominal_length_flag) {
  224. if (previous->entry_speed < current->entry_speed) {
  225. double entry_speed = min( current->entry_speed,
  226. max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
  227. // Check for junction speed change
  228. if (current->entry_speed != entry_speed) {
  229. current->entry_speed = entry_speed;
  230. current->recalculate_flag = true;
  231. }
  232. }
  233. }
  234. }
  235. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  236. // implements the forward pass.
  237. void planner_forward_pass() {
  238. uint8_t block_index = block_buffer_tail;
  239. block_t *block[3] = { NULL, NULL, NULL };
  240. while(block_index != block_buffer_head) {
  241. block[0] = block[1];
  242. block[1] = block[2];
  243. block[2] = &block_buffer[block_index];
  244. planner_forward_pass_kernel(block[0],block[1],block[2]);
  245. block_index = next_block_index(block_index);
  246. }
  247. planner_forward_pass_kernel(block[1], block[2], NULL);
  248. }
  249. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  250. // entry_factor for each junction. Must be called by planner_recalculate() after
  251. // updating the blocks.
  252. void planner_recalculate_trapezoids() {
  253. int8_t block_index = block_buffer_tail;
  254. block_t *current;
  255. block_t *next = NULL;
  256. while(block_index != block_buffer_head) {
  257. current = next;
  258. next = &block_buffer[block_index];
  259. if (current) {
  260. // Recalculate if current block entry or exit junction speed has changed.
  261. if (current->recalculate_flag || next->recalculate_flag) {
  262. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  263. calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
  264. next->entry_speed/current->nominal_speed);
  265. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  266. }
  267. }
  268. block_index = next_block_index( block_index );
  269. }
  270. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  271. if(next != NULL) {
  272. calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
  273. MINIMUM_PLANNER_SPEED/next->nominal_speed);
  274. next->recalculate_flag = false;
  275. }
  276. }
  277. // Recalculates the motion plan according to the following algorithm:
  278. //
  279. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  280. // so that:
  281. // a. The junction jerk is within the set limit
  282. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  283. // acceleration.
  284. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  285. // a. The speed increase within one block would require faster accelleration than the one, true
  286. // constant acceleration.
  287. //
  288. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  289. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  290. // the set limit. Finally it will:
  291. //
  292. // 3. Recalculate trapezoids for all blocks.
  293. void planner_recalculate() {
  294. planner_reverse_pass();
  295. planner_forward_pass();
  296. planner_recalculate_trapezoids();
  297. }
  298. void plan_init() {
  299. block_buffer_head = 0;
  300. block_buffer_tail = 0;
  301. memset(position, 0, sizeof(position)); // clear position
  302. previous_speed[0] = 0.0;
  303. previous_speed[1] = 0.0;
  304. previous_speed[2] = 0.0;
  305. previous_speed[3] = 0.0;
  306. previous_nominal_speed = 0.0;
  307. }
  308. #ifdef AUTOTEMP
  309. void getHighESpeed()
  310. {
  311. static float oldt=0;
  312. if(!autotemp_enabled)
  313. return;
  314. if(degTargetHotend0()+2<autotemp_min) //probably temperature set to zero.
  315. return; //do nothing
  316. float high=0;
  317. uint8_t block_index = block_buffer_tail;
  318. while(block_index != block_buffer_head) {
  319. float se=block_buffer[block_index].steps_e/float(block_buffer[block_index].step_event_count)*block_buffer[block_index].nominal_rate;
  320. //se; units steps/sec;
  321. if(se>high)
  322. {
  323. high=se;
  324. }
  325. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  326. }
  327. float g=autotemp_min+high*autotemp_factor;
  328. float t=g;
  329. if(t<autotemp_min)
  330. t=autotemp_min;
  331. if(t>autotemp_max)
  332. t=autotemp_max;
  333. if(oldt>t)
  334. {
  335. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  336. }
  337. oldt=t;
  338. setTargetHotend0(t);
  339. // SERIAL_ECHO_START;
  340. // SERIAL_ECHOPAIR("highe",high);
  341. // SERIAL_ECHOPAIR(" t",t);
  342. // SERIAL_ECHOLN("");
  343. }
  344. #endif
  345. void check_axes_activity() {
  346. unsigned char x_active = 0;
  347. unsigned char y_active = 0;
  348. unsigned char z_active = 0;
  349. unsigned char e_active = 0;
  350. block_t *block;
  351. if(block_buffer_tail != block_buffer_head) {
  352. uint8_t block_index = block_buffer_tail;
  353. while(block_index != block_buffer_head) {
  354. block = &block_buffer[block_index];
  355. if(block->steps_x != 0) x_active++;
  356. if(block->steps_y != 0) y_active++;
  357. if(block->steps_z != 0) z_active++;
  358. if(block->steps_e != 0) e_active++;
  359. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  360. }
  361. }
  362. if((DISABLE_X) && (x_active == 0)) disable_x();
  363. if((DISABLE_Y) && (y_active == 0)) disable_y();
  364. if((DISABLE_Z) && (z_active == 0)) disable_z();
  365. if((DISABLE_E) && (e_active == 0)) { disable_e0();disable_e1();disable_e2(); }
  366. }
  367. float junction_deviation = 0.1;
  368. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  369. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  370. // calculation the caller must also provide the physical length of the line in millimeters.
  371. void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
  372. {
  373. // Calculate the buffer head after we push this byte
  374. int next_buffer_head = next_block_index(block_buffer_head);
  375. // If the buffer is full: good! That means we are well ahead of the robot.
  376. // Rest here until there is room in the buffer.
  377. while(block_buffer_tail == next_buffer_head) {
  378. manage_heater();
  379. manage_inactivity(1);
  380. LCD_STATUS;
  381. }
  382. // The target position of the tool in absolute steps
  383. // Calculate target position in absolute steps
  384. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  385. long target[4];
  386. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  387. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  388. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  389. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  390. #ifdef PREVENT_DANGEROUS_EXTRUDE
  391. if(target[E_AXIS]!=position[E_AXIS])
  392. if(degHotend(active_extruder)<EXTRUDE_MINTEMP && !allow_cold_extrude)
  393. {
  394. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  395. SERIAL_ECHO_START;
  396. SERIAL_ECHOLNPGM(" cold extrusion prevented");
  397. }
  398. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  399. {
  400. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  401. SERIAL_ECHO_START;
  402. SERIAL_ECHOLNPGM(" too long extrusion prevented");
  403. }
  404. #endif
  405. // Prepare to set up new block
  406. block_t *block = &block_buffer[block_buffer_head];
  407. // Mark block as not busy (Not executed by the stepper interrupt)
  408. block->busy = false;
  409. // Number of steps for each axis
  410. block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
  411. block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  412. block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  413. block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  414. block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
  415. // Bail if this is a zero-length block
  416. if (block->step_event_count <=dropsegments) { return; };
  417. // Compute direction bits for this block
  418. block->direction_bits = 0;
  419. if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); }
  420. if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); }
  421. if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); }
  422. if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); }
  423. block->active_extruder = extruder;
  424. //enable active axes
  425. if(block->steps_x != 0) enable_x();
  426. if(block->steps_y != 0) enable_y();
  427. #ifndef Z_LATE_ENABLE
  428. if(block->steps_z != 0) enable_z();
  429. #endif
  430. // Enable all
  431. if(block->steps_e != 0) { enable_e0();enable_e1();enable_e2(); }
  432. float delta_mm[4];
  433. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  434. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  435. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  436. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
  437. if ( block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0 ) {
  438. block->millimeters = abs(delta_mm[E_AXIS]);
  439. } else {
  440. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  441. }
  442. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  443. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  444. float inverse_second = feed_rate * inverse_millimeters;
  445. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  446. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  447. if (block->steps_e == 0) {
  448. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  449. }
  450. else {
  451. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  452. }
  453. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  454. int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  455. #ifdef SLOWDOWN
  456. if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
  457. #endif
  458. /*
  459. // segment time im micro seconds
  460. long segment_time = lround(1000000.0/inverse_second);
  461. if ((blockcount>0) && (blockcount < (BLOCK_BUFFER_SIZE - 4))) {
  462. if (segment_time<minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  463. segment_time=segment_time+lround(2*(minsegmenttime-segment_time)/blockcount);
  464. }
  465. }
  466. else {
  467. if (segment_time<minsegmenttime) segment_time=minsegmenttime;
  468. }
  469. // END OF SLOW DOWN SECTION
  470. */
  471. // Calculate speed in mm/sec for each axis
  472. float current_speed[4];
  473. for(int i=0; i < 4; i++) {
  474. current_speed[i] = delta_mm[i] * inverse_second;
  475. }
  476. // Limit speed per axis
  477. float speed_factor = 1.0; //factor <=1 do decrease speed
  478. for(int i=0; i < 4; i++) {
  479. if(abs(current_speed[i]) > max_feedrate[i])
  480. speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
  481. }
  482. // Max segement time in us.
  483. #ifdef XY_FREQUENCY_LIMIT
  484. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  485. // Check and limit the xy direction change frequency
  486. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  487. old_direction_bits = block->direction_bits;
  488. if((direction_change & (1<<X_AXIS)) == 0) {
  489. x_segment_time[0] += segment_time;
  490. }
  491. else {
  492. x_segment_time[2] = x_segment_time[1];
  493. x_segment_time[1] = x_segment_time[0];
  494. x_segment_time[0] = segment_time;
  495. }
  496. if((direction_change & (1<<Y_AXIS)) == 0) {
  497. y_segment_time[0] += segment_time;
  498. }
  499. else {
  500. y_segment_time[2] = y_segment_time[1];
  501. y_segment_time[1] = y_segment_time[0];
  502. y_segment_time[0] = segment_time;
  503. }
  504. long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
  505. long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
  506. long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
  507. if(min_xy_segment_time < MAX_FREQ_TIME) speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
  508. #endif
  509. // Correct the speed
  510. if( speed_factor < 1.0) {
  511. // Serial.print("speed factor : "); Serial.println(speed_factor);
  512. for(int i=0; i < 4; i++) {
  513. if(abs(current_speed[i]) > max_feedrate[i])
  514. speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
  515. /*
  516. if(speed_factor < 0.1) {
  517. Serial.print("speed factor : "); Serial.println(speed_factor);
  518. Serial.print("current_speed"); Serial.print(i); Serial.print(" : "); Serial.println(current_speed[i]);
  519. }
  520. */
  521. }
  522. for(unsigned char i=0; i < 4; i++) {
  523. current_speed[i] *= speed_factor;
  524. }
  525. block->nominal_speed *= speed_factor;
  526. block->nominal_rate *= speed_factor;
  527. }
  528. // Compute and limit the acceleration rate for the trapezoid generator.
  529. float steps_per_mm = block->step_event_count/block->millimeters;
  530. if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
  531. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  532. }
  533. else {
  534. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  535. // Limit acceleration per axis
  536. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  537. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  538. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  539. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  540. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  541. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  542. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  543. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  544. }
  545. block->acceleration = block->acceleration_st / steps_per_mm;
  546. block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
  547. #if 0 // Use old jerk for now
  548. // Compute path unit vector
  549. double unit_vec[3];
  550. unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
  551. unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
  552. unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
  553. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  554. // Let a circle be tangent to both previous and current path line segments, where the junction
  555. // deviation is defined as the distance from the junction to the closest edge of the circle,
  556. // colinear with the circle center. The circular segment joining the two paths represents the
  557. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  558. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  559. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  560. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  561. // nonlinearities of both the junction angle and junction velocity.
  562. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  563. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  564. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  565. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  566. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  567. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  568. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  569. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  570. // Skip and use default max junction speed for 0 degree acute junction.
  571. if (cos_theta < 0.95) {
  572. vmax_junction = min(previous_nominal_speed,block->nominal_speed);
  573. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  574. if (cos_theta > -0.95) {
  575. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  576. double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
  577. vmax_junction = min(vmax_junction,
  578. sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
  579. }
  580. }
  581. }
  582. #endif
  583. // Start with a safe speed
  584. float vmax_junction = max_xy_jerk/2;
  585. if(abs(current_speed[Z_AXIS]) > max_z_jerk/2)
  586. vmax_junction = max_z_jerk/2;
  587. vmax_junction = min(vmax_junction, block->nominal_speed);
  588. if ((moves_queued > 1) && (previous_nominal_speed > 0.0)) {
  589. float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
  590. if((previous_speed[X_AXIS] != 0.0) || (previous_speed[Y_AXIS] != 0.0)) {
  591. vmax_junction = block->nominal_speed;
  592. }
  593. if (jerk > max_xy_jerk) {
  594. vmax_junction *= (max_xy_jerk/jerk);
  595. }
  596. if(abs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
  597. vmax_junction *= (max_z_jerk/abs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]));
  598. }
  599. }
  600. block->max_entry_speed = vmax_junction;
  601. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  602. double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
  603. block->entry_speed = min(vmax_junction, v_allowable);
  604. // Initialize planner efficiency flags
  605. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  606. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  607. // the current block and next block junction speeds are guaranteed to always be at their maximum
  608. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  609. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  610. // the reverse and forward planners, the corresponding block junction speed will always be at the
  611. // the maximum junction speed and may always be ignored for any speed reduction checks.
  612. if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
  613. else { block->nominal_length_flag = false; }
  614. block->recalculate_flag = true; // Always calculate trapezoid for new block
  615. // Update previous path unit_vector and nominal speed
  616. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  617. previous_nominal_speed = block->nominal_speed;
  618. #ifdef ADVANCE
  619. // Calculate advance rate
  620. if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
  621. block->advance_rate = 0;
  622. block->advance = 0;
  623. }
  624. else {
  625. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  626. float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
  627. (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
  628. block->advance = advance;
  629. if(acc_dist == 0) {
  630. block->advance_rate = 0;
  631. }
  632. else {
  633. block->advance_rate = advance / (float)acc_dist;
  634. }
  635. }
  636. /*
  637. SERIAL_ECHO_START;
  638. SERIAL_ECHOPGM("advance :");
  639. SERIAL_ECHO(block->advance/256.0);
  640. SERIAL_ECHOPGM("advance rate :");
  641. SERIAL_ECHOLN(block->advance_rate/256.0);
  642. */
  643. #endif // ADVANCE
  644. calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
  645. MINIMUM_PLANNER_SPEED/block->nominal_speed);
  646. // Move buffer head
  647. block_buffer_head = next_buffer_head;
  648. // Update position
  649. memcpy(position, target, sizeof(target)); // position[] = target[]
  650. planner_recalculate();
  651. #ifdef AUTOTEMP
  652. getHighESpeed();
  653. #endif
  654. st_wake_up();
  655. }
  656. void plan_set_position(const float &x, const float &y, const float &z, const float &e)
  657. {
  658. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  659. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  660. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  661. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  662. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  663. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  664. previous_speed[0] = 0.0;
  665. previous_speed[1] = 0.0;
  666. previous_speed[2] = 0.0;
  667. previous_speed[3] = 0.0;
  668. }
  669. void plan_set_e_position(const float &e)
  670. {
  671. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  672. st_set_e_position(position[E_AXIS]);
  673. }
  674. uint8_t movesplanned()
  675. {
  676. return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  677. }
  678. void allow_cold_extrudes(bool allow)
  679. {
  680. #ifdef PREVENT_DANGEROUS_EXTRUDE
  681. allow_cold_extrude=allow;
  682. #endif
  683. }