My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

stepper.cpp 41KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355
  1. /**
  2. * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
  3. * Marlin Firmware
  4. *
  5. * Derived from Grbl
  6. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  7. *
  8. * Grbl is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * Grbl is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  20. */
  21. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  22. and Philipp Tiefenbacher. */
  23. #include "Marlin.h"
  24. #include "stepper.h"
  25. #include "planner.h"
  26. #include "temperature.h"
  27. #include "ultralcd.h"
  28. #include "language.h"
  29. #include "cardreader.h"
  30. #include "speed_lookuptable.h"
  31. #if HAS_DIGIPOTSS
  32. #include <SPI.h>
  33. #endif
  34. //===========================================================================
  35. //============================= public variables ============================
  36. //===========================================================================
  37. block_t* current_block; // A pointer to the block currently being traced
  38. //===========================================================================
  39. //============================= private variables ===========================
  40. //===========================================================================
  41. //static makes it impossible to be called from outside of this file by extern.!
  42. // Variables used by The Stepper Driver Interrupt
  43. static unsigned char out_bits = 0; // The next stepping-bits to be output
  44. static unsigned int cleaning_buffer_counter;
  45. #if ENABLED(Z_DUAL_ENDSTOPS)
  46. static bool performing_homing = false,
  47. locked_z_motor = false,
  48. locked_z2_motor = false;
  49. #endif
  50. // Counter variables for the Bresenham line tracer
  51. static long counter_x, counter_y, counter_z, counter_e;
  52. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  53. #if ENABLED(ADVANCE)
  54. static long advance_rate, advance, final_advance = 0;
  55. static long old_advance = 0;
  56. static long e_steps[4];
  57. #endif
  58. static long acceleration_time, deceleration_time;
  59. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  60. static unsigned short acc_step_rate; // needed for deceleration start point
  61. static uint8_t step_loops;
  62. static uint8_t step_loops_nominal;
  63. static unsigned short OCR1A_nominal;
  64. volatile long endstops_trigsteps[3] = { 0 };
  65. volatile long endstops_stepsTotal, endstops_stepsDone;
  66. static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
  67. #if DISABLED(Z_DUAL_ENDSTOPS)
  68. static byte
  69. #else
  70. static uint16_t
  71. #endif
  72. old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_MIN_PROBE, Z2_MIN, Z2_MAX
  73. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  74. bool abort_on_endstop_hit = false;
  75. #endif
  76. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  77. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  78. #endif
  79. static bool check_endstops = true;
  80. volatile long count_position[NUM_AXIS] = { 0 }; // Positions of stepper motors, in step units
  81. volatile signed char count_direction[NUM_AXIS] = { 1 };
  82. //===========================================================================
  83. //================================ functions ================================
  84. //===========================================================================
  85. #if ENABLED(DUAL_X_CARRIAGE)
  86. #define X_APPLY_DIR(v,ALWAYS) \
  87. if (extruder_duplication_enabled || ALWAYS) { \
  88. X_DIR_WRITE(v); \
  89. X2_DIR_WRITE(v); \
  90. } \
  91. else { \
  92. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  93. }
  94. #define X_APPLY_STEP(v,ALWAYS) \
  95. if (extruder_duplication_enabled || ALWAYS) { \
  96. X_STEP_WRITE(v); \
  97. X2_STEP_WRITE(v); \
  98. } \
  99. else { \
  100. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  101. }
  102. #else
  103. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  104. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  105. #endif
  106. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  107. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  108. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  109. #else
  110. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  111. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  112. #endif
  113. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  114. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  115. #if ENABLED(Z_DUAL_ENDSTOPS)
  116. #define Z_APPLY_STEP(v,Q) \
  117. if (performing_homing) { \
  118. if (Z_HOME_DIR > 0) {\
  119. if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  120. if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  121. } \
  122. else { \
  123. if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  124. if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  125. } \
  126. } \
  127. else { \
  128. Z_STEP_WRITE(v); \
  129. Z2_STEP_WRITE(v); \
  130. }
  131. #else
  132. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  133. #endif
  134. #else
  135. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  136. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  137. #endif
  138. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  139. // intRes = intIn1 * intIn2 >> 16
  140. // uses:
  141. // r26 to store 0
  142. // r27 to store the byte 1 of the 24 bit result
  143. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  144. asm volatile ( \
  145. "clr r26 \n\t" \
  146. "mul %A1, %B2 \n\t" \
  147. "movw %A0, r0 \n\t" \
  148. "mul %A1, %A2 \n\t" \
  149. "add %A0, r1 \n\t" \
  150. "adc %B0, r26 \n\t" \
  151. "lsr r0 \n\t" \
  152. "adc %A0, r26 \n\t" \
  153. "adc %B0, r26 \n\t" \
  154. "clr r1 \n\t" \
  155. : \
  156. "=&r" (intRes) \
  157. : \
  158. "d" (charIn1), \
  159. "d" (intIn2) \
  160. : \
  161. "r26" \
  162. )
  163. // intRes = longIn1 * longIn2 >> 24
  164. // uses:
  165. // r26 to store 0
  166. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  167. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  168. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  169. // B0 A0 are bits 24-39 and are the returned value
  170. // C1 B1 A1 is longIn1
  171. // D2 C2 B2 A2 is longIn2
  172. //
  173. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  174. asm volatile ( \
  175. "clr r26 \n\t" \
  176. "mul %A1, %B2 \n\t" \
  177. "mov r27, r1 \n\t" \
  178. "mul %B1, %C2 \n\t" \
  179. "movw %A0, r0 \n\t" \
  180. "mul %C1, %C2 \n\t" \
  181. "add %B0, r0 \n\t" \
  182. "mul %C1, %B2 \n\t" \
  183. "add %A0, r0 \n\t" \
  184. "adc %B0, r1 \n\t" \
  185. "mul %A1, %C2 \n\t" \
  186. "add r27, r0 \n\t" \
  187. "adc %A0, r1 \n\t" \
  188. "adc %B0, r26 \n\t" \
  189. "mul %B1, %B2 \n\t" \
  190. "add r27, r0 \n\t" \
  191. "adc %A0, r1 \n\t" \
  192. "adc %B0, r26 \n\t" \
  193. "mul %C1, %A2 \n\t" \
  194. "add r27, r0 \n\t" \
  195. "adc %A0, r1 \n\t" \
  196. "adc %B0, r26 \n\t" \
  197. "mul %B1, %A2 \n\t" \
  198. "add r27, r1 \n\t" \
  199. "adc %A0, r26 \n\t" \
  200. "adc %B0, r26 \n\t" \
  201. "lsr r27 \n\t" \
  202. "adc %A0, r26 \n\t" \
  203. "adc %B0, r26 \n\t" \
  204. "mul %D2, %A1 \n\t" \
  205. "add %A0, r0 \n\t" \
  206. "adc %B0, r1 \n\t" \
  207. "mul %D2, %B1 \n\t" \
  208. "add %B0, r0 \n\t" \
  209. "clr r1 \n\t" \
  210. : \
  211. "=&r" (intRes) \
  212. : \
  213. "d" (longIn1), \
  214. "d" (longIn2) \
  215. : \
  216. "r26" , "r27" \
  217. )
  218. // Some useful constants
  219. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  220. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  221. void endstops_hit_on_purpose() {
  222. endstop_hit_bits = 0;
  223. }
  224. void checkHitEndstops() {
  225. if (endstop_hit_bits) {
  226. SERIAL_ECHO_START;
  227. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  228. if (TEST(endstop_hit_bits, X_MIN)) {
  229. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  230. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  231. }
  232. if (TEST(endstop_hit_bits, Y_MIN)) {
  233. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  234. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  235. }
  236. if (TEST(endstop_hit_bits, Z_MIN)) {
  237. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  238. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  239. }
  240. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  241. if (TEST(endstop_hit_bits, Z_MIN_PROBE)) {
  242. SERIAL_ECHOPAIR(" Z_MIN_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  243. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
  244. }
  245. #endif
  246. SERIAL_EOL;
  247. endstops_hit_on_purpose();
  248. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
  249. if (abort_on_endstop_hit) {
  250. card.sdprinting = false;
  251. card.closefile();
  252. quickStop();
  253. disable_all_heaters(); // switch off all heaters.
  254. }
  255. #endif
  256. }
  257. }
  258. #if ENABLED(COREXY) || ENABLED(COREXZ)
  259. #if ENABLED(COREXY)
  260. #define CORE_AXIS_2 B_AXIS
  261. #else
  262. #define CORE_AXIS_2 C_AXIS
  263. #endif
  264. #endif
  265. void enable_endstops(bool check) { check_endstops = check; }
  266. // Check endstops - called from ISR!
  267. inline void update_endstops() {
  268. #if ENABLED(Z_DUAL_ENDSTOPS)
  269. uint16_t
  270. #else
  271. byte
  272. #endif
  273. current_endstop_bits = 0;
  274. #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
  275. #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
  276. #define _AXIS(AXIS) AXIS ##_AXIS
  277. #define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN))
  278. #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
  279. // SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
  280. #define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
  281. // COPY_BIT: copy the value of COPY_BIT to BIT in bits
  282. #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
  283. // TEST_ENDSTOP: test the old and the current status of an endstop
  284. #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
  285. #if ENABLED(COREXY) || ENABLED(COREXZ)
  286. #define _SET_TRIGSTEPS(AXIS) do { \
  287. float axis_pos = count_position[_AXIS(AXIS)]; \
  288. if (_AXIS(AXIS) == A_AXIS) \
  289. axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2; \
  290. else if (_AXIS(AXIS) == CORE_AXIS_2) \
  291. axis_pos = (count_position[A_AXIS] - axis_pos) / 2; \
  292. endstops_trigsteps[_AXIS(AXIS)] = axis_pos; \
  293. } while(0)
  294. #else
  295. #define _SET_TRIGSTEPS(AXIS) endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]
  296. #endif // COREXY || COREXZ
  297. #define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
  298. SET_ENDSTOP_BIT(AXIS, MINMAX); \
  299. if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && current_block->steps[_AXIS(AXIS)] > 0) { \
  300. _SET_TRIGSTEPS(AXIS); \
  301. _ENDSTOP_HIT(AXIS); \
  302. step_events_completed = current_block->step_event_count; \
  303. } \
  304. } while(0)
  305. #if ENABLED(COREXY) || ENABLED(COREXZ)
  306. // Head direction in -X axis for CoreXY and CoreXZ bots.
  307. // If Delta1 == -Delta2, the movement is only in Y or Z axis
  308. if ((current_block->steps[A_AXIS] != current_block->steps[CORE_AXIS_2]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, CORE_AXIS_2))) {
  309. if (TEST(out_bits, X_HEAD))
  310. #else
  311. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
  312. #endif
  313. { // -direction
  314. #if ENABLED(DUAL_X_CARRIAGE)
  315. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  316. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  317. #endif
  318. {
  319. #if HAS_X_MIN
  320. UPDATE_ENDSTOP(X, MIN);
  321. #endif
  322. }
  323. }
  324. else { // +direction
  325. #if ENABLED(DUAL_X_CARRIAGE)
  326. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  327. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  328. #endif
  329. {
  330. #if HAS_X_MAX
  331. UPDATE_ENDSTOP(X, MAX);
  332. #endif
  333. }
  334. }
  335. #if ENABLED(COREXY) || ENABLED(COREXZ)
  336. }
  337. #endif
  338. #if ENABLED(COREXY)
  339. // Head direction in -Y axis for CoreXY bots.
  340. // If DeltaX == DeltaY, the movement is only in X axis
  341. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  342. if (TEST(out_bits, Y_HEAD))
  343. #else
  344. if (TEST(out_bits, Y_AXIS)) // -direction
  345. #endif
  346. { // -direction
  347. #if HAS_Y_MIN
  348. UPDATE_ENDSTOP(Y, MIN);
  349. #endif
  350. }
  351. else { // +direction
  352. #if HAS_Y_MAX
  353. UPDATE_ENDSTOP(Y, MAX);
  354. #endif
  355. }
  356. #if ENABLED(COREXY)
  357. }
  358. #endif
  359. #if ENABLED(COREXZ)
  360. // Head direction in -Z axis for CoreXZ bots.
  361. // If DeltaX == DeltaZ, the movement is only in X axis
  362. if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
  363. if (TEST(out_bits, Z_HEAD))
  364. #else
  365. if (TEST(out_bits, Z_AXIS))
  366. #endif
  367. { // z -direction
  368. #if HAS_Z_MIN
  369. #if ENABLED(Z_DUAL_ENDSTOPS)
  370. SET_ENDSTOP_BIT(Z, MIN);
  371. #if HAS_Z2_MIN
  372. SET_ENDSTOP_BIT(Z2, MIN);
  373. #else
  374. COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
  375. #endif
  376. byte z_test = TEST_ENDSTOP(Z_MIN) | (TEST_ENDSTOP(Z2_MIN) << 1); // bit 0 for Z, bit 1 for Z2
  377. if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
  378. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  379. SBI(endstop_hit_bits, Z_MIN);
  380. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  381. step_events_completed = current_block->step_event_count;
  382. }
  383. #else // !Z_DUAL_ENDSTOPS
  384. UPDATE_ENDSTOP(Z, MIN);
  385. #endif // !Z_DUAL_ENDSTOPS
  386. #endif // Z_MIN_PIN
  387. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  388. UPDATE_ENDSTOP(Z, MIN_PROBE);
  389. if (TEST_ENDSTOP(Z_MIN_PROBE)) {
  390. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  391. SBI(endstop_hit_bits, Z_MIN_PROBE);
  392. }
  393. #endif
  394. }
  395. else { // z +direction
  396. #if HAS_Z_MAX
  397. #if ENABLED(Z_DUAL_ENDSTOPS)
  398. SET_ENDSTOP_BIT(Z, MAX);
  399. #if HAS_Z2_MAX
  400. SET_ENDSTOP_BIT(Z2, MAX);
  401. #else
  402. COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
  403. #endif
  404. byte z_test = TEST_ENDSTOP(Z_MAX) | (TEST_ENDSTOP(Z2_MAX) << 1); // bit 0 for Z, bit 1 for Z2
  405. if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
  406. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  407. SBI(endstop_hit_bits, Z_MIN);
  408. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  409. step_events_completed = current_block->step_event_count;
  410. }
  411. #else // !Z_DUAL_ENDSTOPS
  412. UPDATE_ENDSTOP(Z, MAX);
  413. #endif // !Z_DUAL_ENDSTOPS
  414. #endif // Z_MAX_PIN
  415. }
  416. #if ENABLED(COREXZ)
  417. }
  418. #endif
  419. old_endstop_bits = current_endstop_bits;
  420. }
  421. // __________________________
  422. // /| |\ _________________ ^
  423. // / | | \ /| |\ |
  424. // / | | \ / | | \ s
  425. // / | | | | | \ p
  426. // / | | | | | \ e
  427. // +-----+------------------------+---+--+---------------+----+ e
  428. // | BLOCK 1 | BLOCK 2 | d
  429. //
  430. // time ----->
  431. //
  432. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  433. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  434. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  435. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  436. void st_wake_up() {
  437. // TCNT1 = 0;
  438. ENABLE_STEPPER_DRIVER_INTERRUPT();
  439. }
  440. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  441. unsigned short timer;
  442. NOMORE(step_rate, MAX_STEP_FREQUENCY);
  443. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  444. step_rate = (step_rate >> 2) & 0x3fff;
  445. step_loops = 4;
  446. }
  447. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  448. step_rate = (step_rate >> 1) & 0x7fff;
  449. step_loops = 2;
  450. }
  451. else {
  452. step_loops = 1;
  453. }
  454. NOLESS(step_rate, F_CPU / 500000);
  455. step_rate -= F_CPU / 500000; // Correct for minimal speed
  456. if (step_rate >= (8 * 256)) { // higher step rate
  457. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
  458. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  459. unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
  460. MultiU16X8toH16(timer, tmp_step_rate, gain);
  461. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  462. }
  463. else { // lower step rates
  464. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  465. table_address += ((step_rate) >> 1) & 0xfffc;
  466. timer = (unsigned short)pgm_read_word_near(table_address);
  467. timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
  468. }
  469. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  470. return timer;
  471. }
  472. /**
  473. * Set the stepper direction of each axis
  474. *
  475. * X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY
  476. * X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ
  477. */
  478. void set_stepper_direction() {
  479. if (TEST(out_bits, X_AXIS)) { // A_AXIS
  480. X_APPLY_DIR(INVERT_X_DIR, 0);
  481. count_direction[X_AXIS] = -1;
  482. }
  483. else {
  484. X_APPLY_DIR(!INVERT_X_DIR, 0);
  485. count_direction[X_AXIS] = 1;
  486. }
  487. if (TEST(out_bits, Y_AXIS)) { // B_AXIS
  488. Y_APPLY_DIR(INVERT_Y_DIR, 0);
  489. count_direction[Y_AXIS] = -1;
  490. }
  491. else {
  492. Y_APPLY_DIR(!INVERT_Y_DIR, 0);
  493. count_direction[Y_AXIS] = 1;
  494. }
  495. if (TEST(out_bits, Z_AXIS)) { // C_AXIS
  496. Z_APPLY_DIR(INVERT_Z_DIR, 0);
  497. count_direction[Z_AXIS] = -1;
  498. }
  499. else {
  500. Z_APPLY_DIR(!INVERT_Z_DIR, 0);
  501. count_direction[Z_AXIS] = 1;
  502. }
  503. #if DISABLED(ADVANCE)
  504. if (TEST(out_bits, E_AXIS)) {
  505. REV_E_DIR();
  506. count_direction[E_AXIS] = -1;
  507. }
  508. else {
  509. NORM_E_DIR();
  510. count_direction[E_AXIS] = 1;
  511. }
  512. #endif //!ADVANCE
  513. }
  514. // Initializes the trapezoid generator from the current block. Called whenever a new
  515. // block begins.
  516. FORCE_INLINE void trapezoid_generator_reset() {
  517. if (current_block->direction_bits != out_bits) {
  518. out_bits = current_block->direction_bits;
  519. set_stepper_direction();
  520. }
  521. #if ENABLED(ADVANCE)
  522. advance = current_block->initial_advance;
  523. final_advance = current_block->final_advance;
  524. // Do E steps + advance steps
  525. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  526. old_advance = advance >>8;
  527. #endif
  528. deceleration_time = 0;
  529. // step_rate to timer interval
  530. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  531. // make a note of the number of step loops required at nominal speed
  532. step_loops_nominal = step_loops;
  533. acc_step_rate = current_block->initial_rate;
  534. acceleration_time = calc_timer(acc_step_rate);
  535. OCR1A = acceleration_time;
  536. // SERIAL_ECHO_START;
  537. // SERIAL_ECHOPGM("advance :");
  538. // SERIAL_ECHO(current_block->advance/256.0);
  539. // SERIAL_ECHOPGM("advance rate :");
  540. // SERIAL_ECHO(current_block->advance_rate/256.0);
  541. // SERIAL_ECHOPGM("initial advance :");
  542. // SERIAL_ECHO(current_block->initial_advance/256.0);
  543. // SERIAL_ECHOPGM("final advance :");
  544. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  545. }
  546. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  547. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  548. ISR(TIMER1_COMPA_vect) {
  549. if (cleaning_buffer_counter) {
  550. current_block = NULL;
  551. plan_discard_current_block();
  552. #ifdef SD_FINISHED_RELEASECOMMAND
  553. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  554. #endif
  555. cleaning_buffer_counter--;
  556. OCR1A = 200;
  557. return;
  558. }
  559. // If there is no current block, attempt to pop one from the buffer
  560. if (!current_block) {
  561. // Anything in the buffer?
  562. current_block = plan_get_current_block();
  563. if (current_block) {
  564. current_block->busy = true;
  565. trapezoid_generator_reset();
  566. counter_x = -(current_block->step_event_count >> 1);
  567. counter_y = counter_z = counter_e = counter_x;
  568. step_events_completed = 0;
  569. #if ENABLED(Z_LATE_ENABLE)
  570. if (current_block->steps[Z_AXIS] > 0) {
  571. enable_z();
  572. OCR1A = 2000; //1ms wait
  573. return;
  574. }
  575. #endif
  576. // #if ENABLED(ADVANCE)
  577. // e_steps[current_block->active_extruder] = 0;
  578. // #endif
  579. }
  580. else {
  581. OCR1A = 2000; // 1kHz.
  582. }
  583. }
  584. if (current_block != NULL) {
  585. // Update endstops state, if enabled
  586. if (check_endstops) update_endstops();
  587. // Take multiple steps per interrupt (For high speed moves)
  588. for (int8_t i = 0; i < step_loops; i++) {
  589. #ifndef USBCON
  590. customizedSerial.checkRx(); // Check for serial chars.
  591. #endif
  592. #if ENABLED(ADVANCE)
  593. counter_e += current_block->steps[E_AXIS];
  594. if (counter_e > 0) {
  595. counter_e -= current_block->step_event_count;
  596. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  597. }
  598. #endif //ADVANCE
  599. #define _COUNTER(axis) counter_## axis
  600. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  601. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  602. #define STEP_ADD(axis, AXIS) \
  603. _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
  604. if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  605. STEP_ADD(x,X);
  606. STEP_ADD(y,Y);
  607. STEP_ADD(z,Z);
  608. #if DISABLED(ADVANCE)
  609. STEP_ADD(e,E);
  610. #endif
  611. #define STEP_IF_COUNTER(axis, AXIS) \
  612. if (_COUNTER(axis) > 0) { \
  613. _COUNTER(axis) -= current_block->step_event_count; \
  614. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  615. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  616. }
  617. STEP_IF_COUNTER(x, X);
  618. STEP_IF_COUNTER(y, Y);
  619. STEP_IF_COUNTER(z, Z);
  620. #if DISABLED(ADVANCE)
  621. STEP_IF_COUNTER(e, E);
  622. #endif
  623. step_events_completed++;
  624. if (step_events_completed >= current_block->step_event_count) break;
  625. }
  626. // Calculate new timer value
  627. unsigned short timer;
  628. unsigned short step_rate;
  629. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  630. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  631. acc_step_rate += current_block->initial_rate;
  632. // upper limit
  633. NOMORE(acc_step_rate, current_block->nominal_rate);
  634. // step_rate to timer interval
  635. timer = calc_timer(acc_step_rate);
  636. OCR1A = timer;
  637. acceleration_time += timer;
  638. #if ENABLED(ADVANCE)
  639. advance += advance_rate * step_loops;
  640. //NOLESS(advance, current_block->advance);
  641. // Do E steps + advance steps
  642. e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance);
  643. old_advance = advance >> 8;
  644. #endif //ADVANCE
  645. }
  646. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  647. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  648. if (step_rate <= acc_step_rate) { // Still decelerating?
  649. step_rate = acc_step_rate - step_rate;
  650. NOLESS(step_rate, current_block->final_rate);
  651. }
  652. else
  653. step_rate = current_block->final_rate;
  654. // step_rate to timer interval
  655. timer = calc_timer(step_rate);
  656. OCR1A = timer;
  657. deceleration_time += timer;
  658. #if ENABLED(ADVANCE)
  659. advance -= advance_rate * step_loops;
  660. NOLESS(advance, final_advance);
  661. // Do E steps + advance steps
  662. uint32_t advance_whole = advance >> 8;
  663. e_steps[current_block->active_extruder] += advance_whole - old_advance;
  664. old_advance = advance_whole;
  665. #endif //ADVANCE
  666. }
  667. else {
  668. OCR1A = OCR1A_nominal;
  669. // ensure we're running at the correct step rate, even if we just came off an acceleration
  670. step_loops = step_loops_nominal;
  671. }
  672. OCR1A = (OCR1A < (TCNT1 + 16)) ? (TCNT1 + 16) : OCR1A;
  673. // If current block is finished, reset pointer
  674. if (step_events_completed >= current_block->step_event_count) {
  675. current_block = NULL;
  676. plan_discard_current_block();
  677. }
  678. }
  679. }
  680. #if ENABLED(ADVANCE)
  681. unsigned char old_OCR0A;
  682. // Timer interrupt for E. e_steps is set in the main routine;
  683. // Timer 0 is shared with millies
  684. ISR(TIMER0_COMPA_vect) {
  685. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  686. OCR0A = old_OCR0A;
  687. // Set E direction (Depends on E direction + advance)
  688. for (unsigned char i = 0; i < 4; i++) {
  689. if (e_steps[0] != 0) {
  690. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  691. if (e_steps[0] < 0) {
  692. E0_DIR_WRITE(INVERT_E0_DIR);
  693. e_steps[0]++;
  694. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  695. }
  696. else if (e_steps[0] > 0) {
  697. E0_DIR_WRITE(!INVERT_E0_DIR);
  698. e_steps[0]--;
  699. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  700. }
  701. }
  702. #if EXTRUDERS > 1
  703. if (e_steps[1] != 0) {
  704. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  705. if (e_steps[1] < 0) {
  706. E1_DIR_WRITE(INVERT_E1_DIR);
  707. e_steps[1]++;
  708. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  709. }
  710. else if (e_steps[1] > 0) {
  711. E1_DIR_WRITE(!INVERT_E1_DIR);
  712. e_steps[1]--;
  713. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  714. }
  715. }
  716. #endif
  717. #if EXTRUDERS > 2
  718. if (e_steps[2] != 0) {
  719. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  720. if (e_steps[2] < 0) {
  721. E2_DIR_WRITE(INVERT_E2_DIR);
  722. e_steps[2]++;
  723. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  724. }
  725. else if (e_steps[2] > 0) {
  726. E2_DIR_WRITE(!INVERT_E2_DIR);
  727. e_steps[2]--;
  728. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  729. }
  730. }
  731. #endif
  732. #if EXTRUDERS > 3
  733. if (e_steps[3] != 0) {
  734. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  735. if (e_steps[3] < 0) {
  736. E3_DIR_WRITE(INVERT_E3_DIR);
  737. e_steps[3]++;
  738. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  739. }
  740. else if (e_steps[3] > 0) {
  741. E3_DIR_WRITE(!INVERT_E3_DIR);
  742. e_steps[3]--;
  743. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  744. }
  745. }
  746. #endif
  747. }
  748. }
  749. #endif // ADVANCE
  750. void st_init() {
  751. digipot_init(); //Initialize Digipot Motor Current
  752. microstep_init(); //Initialize Microstepping Pins
  753. // initialise TMC Steppers
  754. #if ENABLED(HAVE_TMCDRIVER)
  755. tmc_init();
  756. #endif
  757. // initialise L6470 Steppers
  758. #if ENABLED(HAVE_L6470DRIVER)
  759. L6470_init();
  760. #endif
  761. // Initialize Dir Pins
  762. #if HAS_X_DIR
  763. X_DIR_INIT;
  764. #endif
  765. #if HAS_X2_DIR
  766. X2_DIR_INIT;
  767. #endif
  768. #if HAS_Y_DIR
  769. Y_DIR_INIT;
  770. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  771. Y2_DIR_INIT;
  772. #endif
  773. #endif
  774. #if HAS_Z_DIR
  775. Z_DIR_INIT;
  776. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  777. Z2_DIR_INIT;
  778. #endif
  779. #endif
  780. #if HAS_E0_DIR
  781. E0_DIR_INIT;
  782. #endif
  783. #if HAS_E1_DIR
  784. E1_DIR_INIT;
  785. #endif
  786. #if HAS_E2_DIR
  787. E2_DIR_INIT;
  788. #endif
  789. #if HAS_E3_DIR
  790. E3_DIR_INIT;
  791. #endif
  792. //Initialize Enable Pins - steppers default to disabled.
  793. #if HAS_X_ENABLE
  794. X_ENABLE_INIT;
  795. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  796. #endif
  797. #if HAS_X2_ENABLE
  798. X2_ENABLE_INIT;
  799. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  800. #endif
  801. #if HAS_Y_ENABLE
  802. Y_ENABLE_INIT;
  803. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  804. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  805. Y2_ENABLE_INIT;
  806. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  807. #endif
  808. #endif
  809. #if HAS_Z_ENABLE
  810. Z_ENABLE_INIT;
  811. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  812. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  813. Z2_ENABLE_INIT;
  814. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  815. #endif
  816. #endif
  817. #if HAS_E0_ENABLE
  818. E0_ENABLE_INIT;
  819. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  820. #endif
  821. #if HAS_E1_ENABLE
  822. E1_ENABLE_INIT;
  823. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  824. #endif
  825. #if HAS_E2_ENABLE
  826. E2_ENABLE_INIT;
  827. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  828. #endif
  829. #if HAS_E3_ENABLE
  830. E3_ENABLE_INIT;
  831. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  832. #endif
  833. //endstops and pullups
  834. #if HAS_X_MIN
  835. SET_INPUT(X_MIN_PIN);
  836. #if ENABLED(ENDSTOPPULLUP_XMIN)
  837. WRITE(X_MIN_PIN,HIGH);
  838. #endif
  839. #endif
  840. #if HAS_Y_MIN
  841. SET_INPUT(Y_MIN_PIN);
  842. #if ENABLED(ENDSTOPPULLUP_YMIN)
  843. WRITE(Y_MIN_PIN,HIGH);
  844. #endif
  845. #endif
  846. #if HAS_Z_MIN
  847. SET_INPUT(Z_MIN_PIN);
  848. #if ENABLED(ENDSTOPPULLUP_ZMIN)
  849. WRITE(Z_MIN_PIN,HIGH);
  850. #endif
  851. #endif
  852. #if HAS_Z2_MIN
  853. SET_INPUT(Z2_MIN_PIN);
  854. #if ENABLED(ENDSTOPPULLUP_ZMIN)
  855. WRITE(Z2_MIN_PIN,HIGH);
  856. #endif
  857. #endif
  858. #if HAS_X_MAX
  859. SET_INPUT(X_MAX_PIN);
  860. #if ENABLED(ENDSTOPPULLUP_XMAX)
  861. WRITE(X_MAX_PIN,HIGH);
  862. #endif
  863. #endif
  864. #if HAS_Y_MAX
  865. SET_INPUT(Y_MAX_PIN);
  866. #if ENABLED(ENDSTOPPULLUP_YMAX)
  867. WRITE(Y_MAX_PIN,HIGH);
  868. #endif
  869. #endif
  870. #if HAS_Z_MAX
  871. SET_INPUT(Z_MAX_PIN);
  872. #if ENABLED(ENDSTOPPULLUP_ZMAX)
  873. WRITE(Z_MAX_PIN,HIGH);
  874. #endif
  875. #endif
  876. #if HAS_Z2_MAX
  877. SET_INPUT(Z2_MAX_PIN);
  878. #if ENABLED(ENDSTOPPULLUP_ZMAX)
  879. WRITE(Z2_MAX_PIN,HIGH);
  880. #endif
  881. #endif
  882. #if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
  883. SET_INPUT(Z_MIN_PROBE_PIN);
  884. #if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
  885. WRITE(Z_MIN_PROBE_PIN,HIGH);
  886. #endif
  887. #endif
  888. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  889. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  890. #define _DISABLE(axis) disable_## axis()
  891. #define AXIS_INIT(axis, AXIS, PIN) \
  892. _STEP_INIT(AXIS); \
  893. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  894. _DISABLE(axis)
  895. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  896. // Initialize Step Pins
  897. #if HAS_X_STEP
  898. AXIS_INIT(x, X, X);
  899. #endif
  900. #if HAS_X2_STEP
  901. AXIS_INIT(x, X2, X);
  902. #endif
  903. #if HAS_Y_STEP
  904. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  905. Y2_STEP_INIT;
  906. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  907. #endif
  908. AXIS_INIT(y, Y, Y);
  909. #endif
  910. #if HAS_Z_STEP
  911. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  912. Z2_STEP_INIT;
  913. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  914. #endif
  915. AXIS_INIT(z, Z, Z);
  916. #endif
  917. #if HAS_E0_STEP
  918. E_AXIS_INIT(0);
  919. #endif
  920. #if HAS_E1_STEP
  921. E_AXIS_INIT(1);
  922. #endif
  923. #if HAS_E2_STEP
  924. E_AXIS_INIT(2);
  925. #endif
  926. #if HAS_E3_STEP
  927. E_AXIS_INIT(3);
  928. #endif
  929. // waveform generation = 0100 = CTC
  930. CBI(TCCR1B, WGM13);
  931. SBI(TCCR1B, WGM12);
  932. CBI(TCCR1A, WGM11);
  933. CBI(TCCR1A, WGM10);
  934. // output mode = 00 (disconnected)
  935. TCCR1A &= ~(3 << COM1A0);
  936. TCCR1A &= ~(3 << COM1B0);
  937. // Set the timer pre-scaler
  938. // Generally we use a divider of 8, resulting in a 2MHz timer
  939. // frequency on a 16MHz MCU. If you are going to change this, be
  940. // sure to regenerate speed_lookuptable.h with
  941. // create_speed_lookuptable.py
  942. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  943. OCR1A = 0x4000;
  944. TCNT1 = 0;
  945. ENABLE_STEPPER_DRIVER_INTERRUPT();
  946. #if ENABLED(ADVANCE)
  947. #if defined(TCCR0A) && defined(WGM01)
  948. CBI(TCCR0A, WGM01);
  949. CBI(TCCR0A, WGM00);
  950. #endif
  951. e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
  952. SBI(TIMSK0, OCIE0A);
  953. #endif //ADVANCE
  954. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  955. sei();
  956. set_stepper_direction(); // Init directions to out_bits = 0
  957. }
  958. /**
  959. * Block until all buffered steps are executed
  960. */
  961. void st_synchronize() { while (blocks_queued()) idle(); }
  962. void st_set_position(const long& x, const long& y, const long& z, const long& e) {
  963. CRITICAL_SECTION_START;
  964. count_position[X_AXIS] = x;
  965. count_position[Y_AXIS] = y;
  966. count_position[Z_AXIS] = z;
  967. count_position[E_AXIS] = e;
  968. CRITICAL_SECTION_END;
  969. }
  970. void st_set_e_position(const long& e) {
  971. CRITICAL_SECTION_START;
  972. count_position[E_AXIS] = e;
  973. CRITICAL_SECTION_END;
  974. }
  975. long st_get_position(uint8_t axis) {
  976. CRITICAL_SECTION_START;
  977. long count_pos = count_position[axis];
  978. CRITICAL_SECTION_END;
  979. return count_pos;
  980. }
  981. float st_get_axis_position_mm(AxisEnum axis) {
  982. float axis_pos;
  983. #if ENABLED(COREXY) | ENABLED(COREXZ)
  984. if (axis == X_AXIS || axis == CORE_AXIS_2) {
  985. CRITICAL_SECTION_START;
  986. long pos1 = count_position[A_AXIS],
  987. pos2 = count_position[CORE_AXIS_2];
  988. CRITICAL_SECTION_END;
  989. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  990. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  991. axis_pos = (pos1 + ((axis == X_AXIS) ? pos2 : -pos2)) / 2.0f;
  992. }
  993. else
  994. axis_pos = st_get_position(axis);
  995. #else
  996. axis_pos = st_get_position(axis);
  997. #endif
  998. return axis_pos / axis_steps_per_unit[axis];
  999. }
  1000. void finishAndDisableSteppers() {
  1001. st_synchronize();
  1002. disable_all_steppers();
  1003. }
  1004. void quickStop() {
  1005. cleaning_buffer_counter = 5000;
  1006. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1007. while (blocks_queued()) plan_discard_current_block();
  1008. current_block = NULL;
  1009. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1010. }
  1011. #if ENABLED(BABYSTEPPING)
  1012. // MUST ONLY BE CALLED BY AN ISR,
  1013. // No other ISR should ever interrupt this!
  1014. void babystep(const uint8_t axis, const bool direction) {
  1015. #define _ENABLE(axis) enable_## axis()
  1016. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  1017. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1018. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1019. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  1020. _ENABLE(axis); \
  1021. uint8_t old_pin = _READ_DIR(AXIS); \
  1022. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1023. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1024. delayMicroseconds(2); \
  1025. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1026. _APPLY_DIR(AXIS, old_pin); \
  1027. }
  1028. switch (axis) {
  1029. case X_AXIS:
  1030. BABYSTEP_AXIS(x, X, false);
  1031. break;
  1032. case Y_AXIS:
  1033. BABYSTEP_AXIS(y, Y, false);
  1034. break;
  1035. case Z_AXIS: {
  1036. #if DISABLED(DELTA)
  1037. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1038. #else // DELTA
  1039. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1040. enable_x();
  1041. enable_y();
  1042. enable_z();
  1043. uint8_t old_x_dir_pin = X_DIR_READ,
  1044. old_y_dir_pin = Y_DIR_READ,
  1045. old_z_dir_pin = Z_DIR_READ;
  1046. //setup new step
  1047. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1048. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1049. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1050. //perform step
  1051. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1052. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1053. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1054. delayMicroseconds(2);
  1055. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1056. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1057. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1058. //get old pin state back.
  1059. X_DIR_WRITE(old_x_dir_pin);
  1060. Y_DIR_WRITE(old_y_dir_pin);
  1061. Z_DIR_WRITE(old_z_dir_pin);
  1062. #endif
  1063. } break;
  1064. default: break;
  1065. }
  1066. }
  1067. #endif //BABYSTEPPING
  1068. // From Arduino DigitalPotControl example
  1069. void digitalPotWrite(int address, int value) {
  1070. #if HAS_DIGIPOTSS
  1071. digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  1072. SPI.transfer(address); // send in the address and value via SPI:
  1073. SPI.transfer(value);
  1074. digitalWrite(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  1075. //delay(10);
  1076. #else
  1077. UNUSED(address);
  1078. UNUSED(value);
  1079. #endif
  1080. }
  1081. // Initialize Digipot Motor Current
  1082. void digipot_init() {
  1083. #if HAS_DIGIPOTSS
  1084. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1085. SPI.begin();
  1086. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1087. for (int i = 0; i < COUNT(digipot_motor_current); i++) {
  1088. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1089. digipot_current(i, digipot_motor_current[i]);
  1090. }
  1091. #endif
  1092. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1093. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1094. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1095. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1096. digipot_current(0, motor_current_setting[0]);
  1097. digipot_current(1, motor_current_setting[1]);
  1098. digipot_current(2, motor_current_setting[2]);
  1099. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1100. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1101. #endif
  1102. }
  1103. void digipot_current(uint8_t driver, int current) {
  1104. #if HAS_DIGIPOTSS
  1105. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1106. digitalPotWrite(digipot_ch[driver], current);
  1107. #elif defined(MOTOR_CURRENT_PWM_XY_PIN)
  1108. switch (driver) {
  1109. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1110. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1111. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1112. }
  1113. #else
  1114. UNUSED(driver);
  1115. UNUSED(current);
  1116. #endif
  1117. }
  1118. void microstep_init() {
  1119. #if HAS_MICROSTEPS_E1
  1120. pinMode(E1_MS1_PIN, OUTPUT);
  1121. pinMode(E1_MS2_PIN, OUTPUT);
  1122. #endif
  1123. #if HAS_MICROSTEPS
  1124. pinMode(X_MS1_PIN, OUTPUT);
  1125. pinMode(X_MS2_PIN, OUTPUT);
  1126. pinMode(Y_MS1_PIN, OUTPUT);
  1127. pinMode(Y_MS2_PIN, OUTPUT);
  1128. pinMode(Z_MS1_PIN, OUTPUT);
  1129. pinMode(Z_MS2_PIN, OUTPUT);
  1130. pinMode(E0_MS1_PIN, OUTPUT);
  1131. pinMode(E0_MS2_PIN, OUTPUT);
  1132. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1133. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1134. microstep_mode(i, microstep_modes[i]);
  1135. #endif
  1136. }
  1137. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1138. if (ms1 >= 0) switch (driver) {
  1139. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1140. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1141. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1142. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1143. #if HAS_MICROSTEPS_E1
  1144. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1145. #endif
  1146. }
  1147. if (ms2 >= 0) switch (driver) {
  1148. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1149. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1150. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1151. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1152. #if PIN_EXISTS(E1_MS2)
  1153. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1154. #endif
  1155. }
  1156. }
  1157. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1158. switch (stepping_mode) {
  1159. case 1: microstep_ms(driver, MICROSTEP1); break;
  1160. case 2: microstep_ms(driver, MICROSTEP2); break;
  1161. case 4: microstep_ms(driver, MICROSTEP4); break;
  1162. case 8: microstep_ms(driver, MICROSTEP8); break;
  1163. case 16: microstep_ms(driver, MICROSTEP16); break;
  1164. }
  1165. }
  1166. void microstep_readings() {
  1167. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1168. SERIAL_PROTOCOLPGM("X: ");
  1169. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1170. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1171. SERIAL_PROTOCOLPGM("Y: ");
  1172. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1173. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1174. SERIAL_PROTOCOLPGM("Z: ");
  1175. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1176. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1177. SERIAL_PROTOCOLPGM("E0: ");
  1178. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1179. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1180. #if HAS_MICROSTEPS_E1
  1181. SERIAL_PROTOCOLPGM("E1: ");
  1182. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1183. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1184. #endif
  1185. }
  1186. #if ENABLED(Z_DUAL_ENDSTOPS)
  1187. void In_Homing_Process(bool state) { performing_homing = state; }
  1188. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1189. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1190. #endif