My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 155KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  52. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  53. //Implemented Codes
  54. //-------------------
  55. // G0 -> G1
  56. // G1 - Coordinated Movement X Y Z E
  57. // G2 - CW ARC
  58. // G3 - CCW ARC
  59. // G4 - Dwell S<seconds> or P<milliseconds>
  60. // G10 - retract filament according to settings of M207
  61. // G11 - retract recover filament according to settings of M208
  62. // G28 - Home all Axis
  63. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  64. // G30 - Single Z Probe, probes bed at current XY location.
  65. // G31 - Dock sled (Z_PROBE_SLED only)
  66. // G32 - Undock sled (Z_PROBE_SLED only)
  67. // G90 - Use Absolute Coordinates
  68. // G91 - Use Relative Coordinates
  69. // G92 - Set current position to coordinates given
  70. // M Codes
  71. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  72. // M1 - Same as M0
  73. // M17 - Enable/Power all stepper motors
  74. // M18 - Disable all stepper motors; same as M84
  75. // M20 - List SD card
  76. // M21 - Init SD card
  77. // M22 - Release SD card
  78. // M23 - Select SD file (M23 filename.g)
  79. // M24 - Start/resume SD print
  80. // M25 - Pause SD print
  81. // M26 - Set SD position in bytes (M26 S12345)
  82. // M27 - Report SD print status
  83. // M28 - Start SD write (M28 filename.g)
  84. // M29 - Stop SD write
  85. // M30 - Delete file from SD (M30 filename.g)
  86. // M31 - Output time since last M109 or SD card start to serial
  87. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  88. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  89. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  90. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  91. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  92. // M80 - Turn on Power Supply
  93. // M81 - Turn off Power Supply
  94. // M82 - Set E codes absolute (default)
  95. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  96. // M84 - Disable steppers until next move,
  97. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  98. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  99. // M92 - Set axis_steps_per_unit - same syntax as G92
  100. // M104 - Set extruder target temp
  101. // M105 - Read current temp
  102. // M106 - Fan on
  103. // M107 - Fan off
  104. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  105. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  106. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  107. // M112 - Emergency stop
  108. // M114 - Output current position to serial port
  109. // M115 - Capabilities string
  110. // M117 - display message
  111. // M119 - Output Endstop status to serial port
  112. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  113. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  114. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  115. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  116. // M140 - Set bed target temp
  117. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  118. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  119. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  120. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  121. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  122. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  123. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  124. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  125. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  126. // M206 - Set additional homing offset
  127. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  128. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  129. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  130. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  131. // M220 S<factor in percent>- set speed factor override percentage
  132. // M221 S<factor in percent>- set extrude factor override percentage
  133. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  134. // M240 - Trigger a camera to take a photograph
  135. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  136. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  137. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  138. // M301 - Set PID parameters P I and D
  139. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  140. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  141. // M304 - Set bed PID parameters P I and D
  142. // M400 - Finish all moves
  143. // M401 - Lower z-probe if present
  144. // M402 - Raise z-probe if present
  145. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  146. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  147. // M406 - Turn off Filament Sensor extrusion control
  148. // M407 - Displays measured filament diameter
  149. // M500 - Store parameters in EEPROM
  150. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  151. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  152. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  153. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  154. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  155. // M665 - Set delta configurations
  156. // M666 - Set delta endstop adjustment
  157. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  158. // M907 - Set digital trimpot motor current using axis codes.
  159. // M908 - Control digital trimpot directly.
  160. // M350 - Set microstepping mode.
  161. // M351 - Toggle MS1 MS2 pins directly.
  162. // ************ SCARA Specific - This can change to suit future G-code regulations
  163. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  164. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  165. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  166. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  167. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  168. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  169. //************* SCARA End ***************
  170. // M928 - Start SD logging (M928 filename.g) - ended by M29
  171. // M999 - Restart after being stopped by error
  172. #ifdef SDSUPPORT
  173. CardReader card;
  174. #endif
  175. float homing_feedrate[] = HOMING_FEEDRATE;
  176. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  177. int feedmultiply = 100; //100->1 200->2
  178. int saved_feedmultiply;
  179. int extrudemultiply = 100; //100->1 200->2
  180. int extruder_multiply[EXTRUDERS] = { 100
  181. #if EXTRUDERS > 1
  182. , 100
  183. #if EXTRUDERS > 2
  184. , 100
  185. #if EXTRUDERS > 3
  186. , 100
  187. #endif
  188. #endif
  189. #endif
  190. };
  191. bool volumetric_enabled = false;
  192. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  193. #if EXTRUDERS > 1
  194. , DEFAULT_NOMINAL_FILAMENT_DIA
  195. #if EXTRUDERS > 2
  196. , DEFAULT_NOMINAL_FILAMENT_DIA
  197. #if EXTRUDERS > 3
  198. , DEFAULT_NOMINAL_FILAMENT_DIA
  199. #endif
  200. #endif
  201. #endif
  202. };
  203. float volumetric_multiplier[EXTRUDERS] = {1.0
  204. #if EXTRUDERS > 1
  205. , 1.0
  206. #if EXTRUDERS > 2
  207. , 1.0
  208. #if EXTRUDERS > 3
  209. , 1.0
  210. #endif
  211. #endif
  212. #endif
  213. };
  214. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  215. float add_homing[3] = { 0, 0, 0 };
  216. #ifdef DELTA
  217. float endstop_adj[3] = { 0, 0, 0 };
  218. #endif
  219. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  220. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  221. bool axis_known_position[3] = { false, false, false };
  222. float zprobe_zoffset;
  223. // Extruder offset
  224. #if EXTRUDERS > 1
  225. #ifndef DUAL_X_CARRIAGE
  226. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  227. #else
  228. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  229. #endif
  230. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  231. #if defined(EXTRUDER_OFFSET_X)
  232. EXTRUDER_OFFSET_X
  233. #else
  234. 0
  235. #endif
  236. ,
  237. #if defined(EXTRUDER_OFFSET_Y)
  238. EXTRUDER_OFFSET_Y
  239. #else
  240. 0
  241. #endif
  242. };
  243. #endif
  244. uint8_t active_extruder = 0;
  245. int fanSpeed = 0;
  246. #ifdef SERVO_ENDSTOPS
  247. int servo_endstops[] = SERVO_ENDSTOPS;
  248. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  249. #endif
  250. #ifdef BARICUDA
  251. int ValvePressure = 0;
  252. int EtoPPressure = 0;
  253. #endif
  254. #ifdef FWRETRACT
  255. bool autoretract_enabled = false;
  256. bool retracted[EXTRUDERS] = { false
  257. #if EXTRUDERS > 1
  258. , false
  259. #if EXTRUDERS > 2
  260. , false
  261. #if EXTRUDERS > 3
  262. , false
  263. #endif
  264. #endif
  265. #endif
  266. };
  267. bool retracted_swap[EXTRUDERS] = { false
  268. #if EXTRUDERS > 1
  269. , false
  270. #if EXTRUDERS > 2
  271. , false
  272. #if EXTRUDERS > 3
  273. , false
  274. #endif
  275. #endif
  276. #endif
  277. };
  278. float retract_length = RETRACT_LENGTH;
  279. float retract_length_swap = RETRACT_LENGTH_SWAP;
  280. float retract_feedrate = RETRACT_FEEDRATE;
  281. float retract_zlift = RETRACT_ZLIFT;
  282. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  283. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  284. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  285. #endif // FWRETRACT
  286. #ifdef ULTIPANEL
  287. bool powersupply =
  288. #ifdef PS_DEFAULT_OFF
  289. false
  290. #else
  291. true
  292. #endif
  293. ;
  294. #endif
  295. #ifdef DELTA
  296. float delta[3] = { 0, 0, 0 };
  297. #define SIN_60 0.8660254037844386
  298. #define COS_60 0.5
  299. // these are the default values, can be overriden with M665
  300. float delta_radius = DELTA_RADIUS;
  301. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  302. float delta_tower1_y = -COS_60 * delta_radius;
  303. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  304. float delta_tower2_y = -COS_60 * delta_radius;
  305. float delta_tower3_x = 0; // back middle tower
  306. float delta_tower3_y = delta_radius;
  307. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  308. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  309. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  310. #endif
  311. #ifdef SCARA
  312. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  313. #endif
  314. bool cancel_heatup = false;
  315. #ifdef FILAMENT_SENSOR
  316. //Variables for Filament Sensor input
  317. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  318. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  319. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  320. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  321. int delay_index1=0; //index into ring buffer
  322. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  323. float delay_dist=0; //delay distance counter
  324. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  325. #endif
  326. const char errormagic[] PROGMEM = "Error:";
  327. const char echomagic[] PROGMEM = "echo:";
  328. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  329. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  330. #ifndef DELTA
  331. static float delta[3] = { 0, 0, 0 };
  332. #endif
  333. static float offset[3] = { 0, 0, 0 };
  334. static bool home_all_axis = true;
  335. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  336. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  337. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  338. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  339. static bool fromsd[BUFSIZE];
  340. static int bufindr = 0;
  341. static int bufindw = 0;
  342. static int buflen = 0;
  343. static char serial_char;
  344. static int serial_count = 0;
  345. static boolean comment_mode = false;
  346. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  347. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  348. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  349. // Inactivity shutdown
  350. static unsigned long previous_millis_cmd = 0;
  351. static unsigned long max_inactive_time = 0;
  352. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  353. unsigned long starttime = 0; ///< Print job start time
  354. unsigned long stoptime = 0; ///< Print job stop time
  355. static uint8_t tmp_extruder;
  356. bool Stopped = false;
  357. #if NUM_SERVOS > 0
  358. Servo servos[NUM_SERVOS];
  359. #endif
  360. bool CooldownNoWait = true;
  361. bool target_direction;
  362. #ifdef CHDK
  363. unsigned long chdkHigh = 0;
  364. boolean chdkActive = false;
  365. #endif
  366. //===========================================================================
  367. //=============================Routines======================================
  368. //===========================================================================
  369. void get_arc_coordinates();
  370. bool setTargetedHotend(int code);
  371. void serial_echopair_P(const char *s_P, float v)
  372. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  373. void serial_echopair_P(const char *s_P, double v)
  374. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  375. void serial_echopair_P(const char *s_P, unsigned long v)
  376. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  377. #ifdef SDSUPPORT
  378. #include "SdFatUtil.h"
  379. int freeMemory() { return SdFatUtil::FreeRam(); }
  380. #else
  381. extern "C" {
  382. extern unsigned int __bss_end;
  383. extern unsigned int __heap_start;
  384. extern void *__brkval;
  385. int freeMemory() {
  386. int free_memory;
  387. if ((int)__brkval == 0)
  388. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  389. else
  390. free_memory = ((int)&free_memory) - ((int)__brkval);
  391. return free_memory;
  392. }
  393. }
  394. #endif //!SDSUPPORT
  395. //Injects the next command from the pending sequence of commands, when possible
  396. //Return false if and only if no command was pending
  397. static bool drain_queued_commands_P()
  398. {
  399. char cmd[30];
  400. if(!queued_commands_P)
  401. return false;
  402. // Get the next 30 chars from the sequence of gcodes to run
  403. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  404. cmd[sizeof(cmd)-1]= 0;
  405. // Look for the end of line, or the end of sequence
  406. size_t i= 0;
  407. char c;
  408. while( (c= cmd[i]) && c!='\n' )
  409. ++i; // look for the end of this gcode command
  410. cmd[i]= 0;
  411. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  412. {
  413. if(c)
  414. queued_commands_P+= i+1; // move to next command
  415. else
  416. queued_commands_P= NULL; // will have no more commands in the sequence
  417. }
  418. return true;
  419. }
  420. //Record one or many commands to run from program memory.
  421. //Aborts the current queue, if any.
  422. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  423. void enquecommands_P(const char* pgcode)
  424. {
  425. queued_commands_P= pgcode;
  426. drain_queued_commands_P(); // first command exectuted asap (when possible)
  427. }
  428. //adds a single command to the main command buffer, from RAM
  429. //that is really done in a non-safe way.
  430. //needs overworking someday
  431. //Returns false if it failed to do so
  432. bool enquecommand(const char *cmd)
  433. {
  434. if(*cmd==';')
  435. return false;
  436. if(buflen >= BUFSIZE)
  437. return false;
  438. //this is dangerous if a mixing of serial and this happens
  439. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  440. SERIAL_ECHO_START;
  441. SERIAL_ECHOPGM(MSG_Enqueing);
  442. SERIAL_ECHO(cmdbuffer[bufindw]);
  443. SERIAL_ECHOLNPGM("\"");
  444. bufindw= (bufindw + 1)%BUFSIZE;
  445. buflen += 1;
  446. return true;
  447. }
  448. void setup_killpin()
  449. {
  450. #if defined(KILL_PIN) && KILL_PIN > -1
  451. SET_INPUT(KILL_PIN);
  452. WRITE(KILL_PIN,HIGH);
  453. #endif
  454. }
  455. // Set home pin
  456. void setup_homepin(void)
  457. {
  458. #if defined(HOME_PIN) && HOME_PIN > -1
  459. SET_INPUT(HOME_PIN);
  460. WRITE(HOME_PIN,HIGH);
  461. #endif
  462. }
  463. void setup_photpin()
  464. {
  465. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  466. SET_OUTPUT(PHOTOGRAPH_PIN);
  467. WRITE(PHOTOGRAPH_PIN, LOW);
  468. #endif
  469. }
  470. void setup_powerhold()
  471. {
  472. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  473. SET_OUTPUT(SUICIDE_PIN);
  474. WRITE(SUICIDE_PIN, HIGH);
  475. #endif
  476. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  477. SET_OUTPUT(PS_ON_PIN);
  478. #if defined(PS_DEFAULT_OFF)
  479. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  480. #else
  481. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  482. #endif
  483. #endif
  484. }
  485. void suicide()
  486. {
  487. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  488. SET_OUTPUT(SUICIDE_PIN);
  489. WRITE(SUICIDE_PIN, LOW);
  490. #endif
  491. }
  492. void servo_init()
  493. {
  494. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  495. servos[0].attach(SERVO0_PIN);
  496. #endif
  497. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  498. servos[1].attach(SERVO1_PIN);
  499. #endif
  500. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  501. servos[2].attach(SERVO2_PIN);
  502. #endif
  503. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  504. servos[3].attach(SERVO3_PIN);
  505. #endif
  506. #if (NUM_SERVOS >= 5)
  507. #error "TODO: enter initalisation code for more servos"
  508. #endif
  509. // Set position of Servo Endstops that are defined
  510. #ifdef SERVO_ENDSTOPS
  511. for(int8_t i = 0; i < 3; i++)
  512. {
  513. if(servo_endstops[i] > -1) {
  514. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  515. }
  516. }
  517. #endif
  518. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  519. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  520. servos[servo_endstops[Z_AXIS]].detach();
  521. #endif
  522. }
  523. void setup()
  524. {
  525. setup_killpin();
  526. setup_powerhold();
  527. MYSERIAL.begin(BAUDRATE);
  528. SERIAL_PROTOCOLLNPGM("start");
  529. SERIAL_ECHO_START;
  530. // Check startup - does nothing if bootloader sets MCUSR to 0
  531. byte mcu = MCUSR;
  532. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  533. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  534. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  535. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  536. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  537. MCUSR=0;
  538. SERIAL_ECHOPGM(MSG_MARLIN);
  539. SERIAL_ECHOLNPGM(STRING_VERSION);
  540. #ifdef STRING_VERSION_CONFIG_H
  541. #ifdef STRING_CONFIG_H_AUTHOR
  542. SERIAL_ECHO_START;
  543. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  544. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  545. SERIAL_ECHOPGM(MSG_AUTHOR);
  546. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  547. SERIAL_ECHOPGM("Compiled: ");
  548. SERIAL_ECHOLNPGM(__DATE__);
  549. #endif // STRING_CONFIG_H_AUTHOR
  550. #endif // STRING_VERSION_CONFIG_H
  551. SERIAL_ECHO_START;
  552. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  553. SERIAL_ECHO(freeMemory());
  554. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  555. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  556. for(int8_t i = 0; i < BUFSIZE; i++)
  557. {
  558. fromsd[i] = false;
  559. }
  560. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  561. Config_RetrieveSettings();
  562. tp_init(); // Initialize temperature loop
  563. plan_init(); // Initialize planner;
  564. watchdog_init();
  565. st_init(); // Initialize stepper, this enables interrupts!
  566. setup_photpin();
  567. servo_init();
  568. lcd_init();
  569. _delay_ms(1000); // wait 1sec to display the splash screen
  570. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  571. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  572. #endif
  573. #ifdef DIGIPOT_I2C
  574. digipot_i2c_init();
  575. #endif
  576. #ifdef Z_PROBE_SLED
  577. pinMode(SERVO0_PIN, OUTPUT);
  578. digitalWrite(SERVO0_PIN, LOW); // turn it off
  579. #endif // Z_PROBE_SLED
  580. setup_homepin();
  581. #ifdef STAT_LED_RED
  582. pinMode(STAT_LED_RED, OUTPUT);
  583. digitalWrite(STAT_LED_RED, LOW); // turn it off
  584. #endif
  585. #ifdef STAT_LED_BLUE
  586. pinMode(STAT_LED_BLUE, OUTPUT);
  587. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  588. #endif
  589. }
  590. void loop()
  591. {
  592. if(buflen < (BUFSIZE-1))
  593. get_command();
  594. #ifdef SDSUPPORT
  595. card.checkautostart(false);
  596. #endif
  597. if(buflen)
  598. {
  599. #ifdef SDSUPPORT
  600. if(card.saving)
  601. {
  602. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  603. {
  604. card.write_command(cmdbuffer[bufindr]);
  605. if(card.logging)
  606. {
  607. process_commands();
  608. }
  609. else
  610. {
  611. SERIAL_PROTOCOLLNPGM(MSG_OK);
  612. }
  613. }
  614. else
  615. {
  616. card.closefile();
  617. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  618. }
  619. }
  620. else
  621. {
  622. process_commands();
  623. }
  624. #else
  625. process_commands();
  626. #endif //SDSUPPORT
  627. buflen = (buflen-1);
  628. bufindr = (bufindr + 1)%BUFSIZE;
  629. }
  630. //check heater every n milliseconds
  631. manage_heater();
  632. manage_inactivity();
  633. checkHitEndstops();
  634. lcd_update();
  635. }
  636. void get_command()
  637. {
  638. if(drain_queued_commands_P()) // priority is given to non-serial commands
  639. return;
  640. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  641. serial_char = MYSERIAL.read();
  642. if(serial_char == '\n' ||
  643. serial_char == '\r' ||
  644. (serial_char == ':' && comment_mode == false) ||
  645. serial_count >= (MAX_CMD_SIZE - 1) )
  646. {
  647. if(!serial_count) { //if empty line
  648. comment_mode = false; //for new command
  649. return;
  650. }
  651. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  652. if(!comment_mode){
  653. comment_mode = false; //for new command
  654. fromsd[bufindw] = false;
  655. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  656. {
  657. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  658. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  659. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  660. SERIAL_ERROR_START;
  661. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  662. SERIAL_ERRORLN(gcode_LastN);
  663. //Serial.println(gcode_N);
  664. FlushSerialRequestResend();
  665. serial_count = 0;
  666. return;
  667. }
  668. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  669. {
  670. byte checksum = 0;
  671. byte count = 0;
  672. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  673. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  674. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  675. SERIAL_ERROR_START;
  676. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  677. SERIAL_ERRORLN(gcode_LastN);
  678. FlushSerialRequestResend();
  679. serial_count = 0;
  680. return;
  681. }
  682. //if no errors, continue parsing
  683. }
  684. else
  685. {
  686. SERIAL_ERROR_START;
  687. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  688. SERIAL_ERRORLN(gcode_LastN);
  689. FlushSerialRequestResend();
  690. serial_count = 0;
  691. return;
  692. }
  693. gcode_LastN = gcode_N;
  694. //if no errors, continue parsing
  695. }
  696. else // if we don't receive 'N' but still see '*'
  697. {
  698. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  699. {
  700. SERIAL_ERROR_START;
  701. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  702. SERIAL_ERRORLN(gcode_LastN);
  703. serial_count = 0;
  704. return;
  705. }
  706. }
  707. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  708. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  709. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  710. case 0:
  711. case 1:
  712. case 2:
  713. case 3:
  714. if (Stopped == true) {
  715. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  716. LCD_MESSAGEPGM(MSG_STOPPED);
  717. }
  718. break;
  719. default:
  720. break;
  721. }
  722. }
  723. //If command was e-stop process now
  724. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  725. kill();
  726. bufindw = (bufindw + 1)%BUFSIZE;
  727. buflen += 1;
  728. }
  729. serial_count = 0; //clear buffer
  730. }
  731. else
  732. {
  733. if(serial_char == ';') comment_mode = true;
  734. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  735. }
  736. }
  737. #ifdef SDSUPPORT
  738. if(!card.sdprinting || serial_count!=0){
  739. return;
  740. }
  741. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  742. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  743. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  744. static bool stop_buffering=false;
  745. if(buflen==0) stop_buffering=false;
  746. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  747. int16_t n=card.get();
  748. serial_char = (char)n;
  749. if(serial_char == '\n' ||
  750. serial_char == '\r' ||
  751. (serial_char == '#' && comment_mode == false) ||
  752. (serial_char == ':' && comment_mode == false) ||
  753. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  754. {
  755. if(card.eof()){
  756. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  757. stoptime=millis();
  758. char time[30];
  759. unsigned long t=(stoptime-starttime)/1000;
  760. int hours, minutes;
  761. minutes=(t/60)%60;
  762. hours=t/60/60;
  763. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  764. SERIAL_ECHO_START;
  765. SERIAL_ECHOLN(time);
  766. lcd_setstatus(time);
  767. card.printingHasFinished();
  768. card.checkautostart(true);
  769. }
  770. if(serial_char=='#')
  771. stop_buffering=true;
  772. if(!serial_count)
  773. {
  774. comment_mode = false; //for new command
  775. return; //if empty line
  776. }
  777. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  778. // if(!comment_mode){
  779. fromsd[bufindw] = true;
  780. buflen += 1;
  781. bufindw = (bufindw + 1)%BUFSIZE;
  782. // }
  783. comment_mode = false; //for new command
  784. serial_count = 0; //clear buffer
  785. }
  786. else
  787. {
  788. if(serial_char == ';') comment_mode = true;
  789. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  790. }
  791. }
  792. #endif //SDSUPPORT
  793. }
  794. float code_value()
  795. {
  796. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  797. }
  798. long code_value_long()
  799. {
  800. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  801. }
  802. bool code_seen(char code)
  803. {
  804. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  805. return (strchr_pointer != NULL); //Return True if a character was found
  806. }
  807. #define DEFINE_PGM_READ_ANY(type, reader) \
  808. static inline type pgm_read_any(const type *p) \
  809. { return pgm_read_##reader##_near(p); }
  810. DEFINE_PGM_READ_ANY(float, float);
  811. DEFINE_PGM_READ_ANY(signed char, byte);
  812. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  813. static const PROGMEM type array##_P[3] = \
  814. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  815. static inline type array(int axis) \
  816. { return pgm_read_any(&array##_P[axis]); }
  817. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  818. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  819. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  820. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  821. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  822. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  823. #ifdef DUAL_X_CARRIAGE
  824. #if EXTRUDERS == 1 || defined(COREXY) \
  825. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  826. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  827. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  828. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  829. #endif
  830. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  831. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  832. #endif
  833. #define DXC_FULL_CONTROL_MODE 0
  834. #define DXC_AUTO_PARK_MODE 1
  835. #define DXC_DUPLICATION_MODE 2
  836. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  837. static float x_home_pos(int extruder) {
  838. if (extruder == 0)
  839. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  840. else
  841. // In dual carriage mode the extruder offset provides an override of the
  842. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  843. // This allow soft recalibration of the second extruder offset position without firmware reflash
  844. // (through the M218 command).
  845. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  846. }
  847. static int x_home_dir(int extruder) {
  848. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  849. }
  850. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  851. static bool active_extruder_parked = false; // used in mode 1 & 2
  852. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  853. static unsigned long delayed_move_time = 0; // used in mode 1
  854. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  855. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  856. bool extruder_duplication_enabled = false; // used in mode 2
  857. #endif //DUAL_X_CARRIAGE
  858. static void axis_is_at_home(int axis) {
  859. #ifdef DUAL_X_CARRIAGE
  860. if (axis == X_AXIS) {
  861. if (active_extruder != 0) {
  862. current_position[X_AXIS] = x_home_pos(active_extruder);
  863. min_pos[X_AXIS] = X2_MIN_POS;
  864. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  865. return;
  866. }
  867. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  868. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  869. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  870. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  871. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  872. return;
  873. }
  874. }
  875. #endif
  876. #ifdef SCARA
  877. float homeposition[3];
  878. char i;
  879. if (axis < 2)
  880. {
  881. for (i=0; i<3; i++)
  882. {
  883. homeposition[i] = base_home_pos(i);
  884. }
  885. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  886. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  887. // Works out real Homeposition angles using inverse kinematics,
  888. // and calculates homing offset using forward kinematics
  889. calculate_delta(homeposition);
  890. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  891. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  892. for (i=0; i<2; i++)
  893. {
  894. delta[i] -= add_homing[i];
  895. }
  896. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  897. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  898. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  899. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  900. calculate_SCARA_forward_Transform(delta);
  901. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  902. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  903. current_position[axis] = delta[axis];
  904. // SCARA home positions are based on configuration since the actual limits are determined by the
  905. // inverse kinematic transform.
  906. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  907. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  908. }
  909. else
  910. {
  911. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  912. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  913. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  914. }
  915. #else
  916. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  917. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  918. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  919. #endif
  920. }
  921. #ifdef ENABLE_AUTO_BED_LEVELING
  922. #ifdef AUTO_BED_LEVELING_GRID
  923. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  924. {
  925. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  926. planeNormal.debug("planeNormal");
  927. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  928. //bedLevel.debug("bedLevel");
  929. //plan_bed_level_matrix.debug("bed level before");
  930. //vector_3 uncorrected_position = plan_get_position_mm();
  931. //uncorrected_position.debug("position before");
  932. vector_3 corrected_position = plan_get_position();
  933. // corrected_position.debug("position after");
  934. current_position[X_AXIS] = corrected_position.x;
  935. current_position[Y_AXIS] = corrected_position.y;
  936. current_position[Z_AXIS] = corrected_position.z;
  937. // put the bed at 0 so we don't go below it.
  938. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  939. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  940. }
  941. #else // not AUTO_BED_LEVELING_GRID
  942. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  943. plan_bed_level_matrix.set_to_identity();
  944. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  945. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  946. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  947. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  948. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  949. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  950. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  951. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  952. vector_3 corrected_position = plan_get_position();
  953. current_position[X_AXIS] = corrected_position.x;
  954. current_position[Y_AXIS] = corrected_position.y;
  955. current_position[Z_AXIS] = corrected_position.z;
  956. // put the bed at 0 so we don't go below it.
  957. current_position[Z_AXIS] = zprobe_zoffset;
  958. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  959. }
  960. #endif // AUTO_BED_LEVELING_GRID
  961. static void run_z_probe() {
  962. plan_bed_level_matrix.set_to_identity();
  963. feedrate = homing_feedrate[Z_AXIS];
  964. // move down until you find the bed
  965. float zPosition = -10;
  966. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  967. st_synchronize();
  968. // we have to let the planner know where we are right now as it is not where we said to go.
  969. zPosition = st_get_position_mm(Z_AXIS);
  970. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  971. // move up the retract distance
  972. zPosition += home_retract_mm(Z_AXIS);
  973. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  974. st_synchronize();
  975. // move back down slowly to find bed
  976. feedrate = homing_feedrate[Z_AXIS]/4;
  977. zPosition -= home_retract_mm(Z_AXIS) * 2;
  978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  979. st_synchronize();
  980. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  981. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  982. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  983. }
  984. static void do_blocking_move_to(float x, float y, float z) {
  985. float oldFeedRate = feedrate;
  986. feedrate = homing_feedrate[Z_AXIS];
  987. current_position[Z_AXIS] = z;
  988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  989. st_synchronize();
  990. feedrate = XY_TRAVEL_SPEED;
  991. current_position[X_AXIS] = x;
  992. current_position[Y_AXIS] = y;
  993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  994. st_synchronize();
  995. feedrate = oldFeedRate;
  996. }
  997. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  998. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  999. }
  1000. static void setup_for_endstop_move() {
  1001. saved_feedrate = feedrate;
  1002. saved_feedmultiply = feedmultiply;
  1003. feedmultiply = 100;
  1004. previous_millis_cmd = millis();
  1005. enable_endstops(true);
  1006. }
  1007. static void clean_up_after_endstop_move() {
  1008. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1009. enable_endstops(false);
  1010. #endif
  1011. feedrate = saved_feedrate;
  1012. feedmultiply = saved_feedmultiply;
  1013. previous_millis_cmd = millis();
  1014. }
  1015. static void engage_z_probe() {
  1016. // Engage Z Servo endstop if enabled
  1017. #ifdef SERVO_ENDSTOPS
  1018. if (servo_endstops[Z_AXIS] > -1) {
  1019. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1020. servos[servo_endstops[Z_AXIS]].attach(0);
  1021. #endif
  1022. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1023. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1024. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1025. servos[servo_endstops[Z_AXIS]].detach();
  1026. #endif
  1027. }
  1028. #endif
  1029. }
  1030. static void retract_z_probe() {
  1031. // Retract Z Servo endstop if enabled
  1032. #ifdef SERVO_ENDSTOPS
  1033. if (servo_endstops[Z_AXIS] > -1) {
  1034. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1035. servos[servo_endstops[Z_AXIS]].attach(0);
  1036. #endif
  1037. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1038. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1039. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1040. servos[servo_endstops[Z_AXIS]].detach();
  1041. #endif
  1042. }
  1043. #endif
  1044. }
  1045. /// Probe bed height at position (x,y), returns the measured z value
  1046. static float probe_pt(float x, float y, float z_before, int retract_action=0) {
  1047. // move to right place
  1048. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1049. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1050. #ifndef Z_PROBE_SLED
  1051. if ((retract_action==0) || (retract_action==1))
  1052. engage_z_probe(); // Engage Z Servo endstop if available
  1053. #endif // Z_PROBE_SLED
  1054. run_z_probe();
  1055. float measured_z = current_position[Z_AXIS];
  1056. #ifndef Z_PROBE_SLED
  1057. if ((retract_action==0) || (retract_action==3))
  1058. retract_z_probe();
  1059. #endif // Z_PROBE_SLED
  1060. SERIAL_PROTOCOLPGM(MSG_BED);
  1061. SERIAL_PROTOCOLPGM(" x: ");
  1062. SERIAL_PROTOCOL(x);
  1063. SERIAL_PROTOCOLPGM(" y: ");
  1064. SERIAL_PROTOCOL(y);
  1065. SERIAL_PROTOCOLPGM(" z: ");
  1066. SERIAL_PROTOCOL(measured_z);
  1067. SERIAL_PROTOCOLPGM("\n");
  1068. return measured_z;
  1069. }
  1070. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1071. static void homeaxis(int axis) {
  1072. #define HOMEAXIS_DO(LETTER) \
  1073. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1074. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1075. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1076. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1077. 0) {
  1078. int axis_home_dir = home_dir(axis);
  1079. #ifdef DUAL_X_CARRIAGE
  1080. if (axis == X_AXIS)
  1081. axis_home_dir = x_home_dir(active_extruder);
  1082. #endif
  1083. current_position[axis] = 0;
  1084. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1085. #ifndef Z_PROBE_SLED
  1086. // Engage Servo endstop if enabled
  1087. #ifdef SERVO_ENDSTOPS
  1088. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1089. if (axis==Z_AXIS) {
  1090. engage_z_probe();
  1091. }
  1092. else
  1093. #endif
  1094. if (servo_endstops[axis] > -1) {
  1095. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1096. }
  1097. #endif
  1098. #endif // Z_PROBE_SLED
  1099. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1100. feedrate = homing_feedrate[axis];
  1101. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1102. st_synchronize();
  1103. current_position[axis] = 0;
  1104. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1105. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1106. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1107. st_synchronize();
  1108. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1109. #ifdef DELTA
  1110. feedrate = homing_feedrate[axis]/10;
  1111. #else
  1112. feedrate = homing_feedrate[axis]/2 ;
  1113. #endif
  1114. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1115. st_synchronize();
  1116. #ifdef DELTA
  1117. // retrace by the amount specified in endstop_adj
  1118. if (endstop_adj[axis] * axis_home_dir < 0) {
  1119. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1120. destination[axis] = endstop_adj[axis];
  1121. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1122. st_synchronize();
  1123. }
  1124. #endif
  1125. axis_is_at_home(axis);
  1126. destination[axis] = current_position[axis];
  1127. feedrate = 0.0;
  1128. endstops_hit_on_purpose();
  1129. axis_known_position[axis] = true;
  1130. // Retract Servo endstop if enabled
  1131. #ifdef SERVO_ENDSTOPS
  1132. if (servo_endstops[axis] > -1) {
  1133. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1134. }
  1135. #endif
  1136. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1137. #ifndef Z_PROBE_SLED
  1138. if (axis==Z_AXIS) retract_z_probe();
  1139. #endif
  1140. #endif
  1141. }
  1142. }
  1143. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1144. void refresh_cmd_timeout(void)
  1145. {
  1146. previous_millis_cmd = millis();
  1147. }
  1148. #ifdef FWRETRACT
  1149. void retract(bool retracting, bool swapretract = false) {
  1150. if(retracting && !retracted[active_extruder]) {
  1151. destination[X_AXIS]=current_position[X_AXIS];
  1152. destination[Y_AXIS]=current_position[Y_AXIS];
  1153. destination[Z_AXIS]=current_position[Z_AXIS];
  1154. destination[E_AXIS]=current_position[E_AXIS];
  1155. if (swapretract) {
  1156. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1157. } else {
  1158. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1159. }
  1160. plan_set_e_position(current_position[E_AXIS]);
  1161. float oldFeedrate = feedrate;
  1162. feedrate=retract_feedrate*60;
  1163. retracted[active_extruder]=true;
  1164. prepare_move();
  1165. if(retract_zlift > 0.01) {
  1166. current_position[Z_AXIS]-=retract_zlift;
  1167. #ifdef DELTA
  1168. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1169. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1170. #else
  1171. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1172. #endif
  1173. prepare_move();
  1174. }
  1175. feedrate = oldFeedrate;
  1176. } else if(!retracting && retracted[active_extruder]) {
  1177. destination[X_AXIS]=current_position[X_AXIS];
  1178. destination[Y_AXIS]=current_position[Y_AXIS];
  1179. destination[Z_AXIS]=current_position[Z_AXIS];
  1180. destination[E_AXIS]=current_position[E_AXIS];
  1181. if(retract_zlift > 0.01) {
  1182. current_position[Z_AXIS]+=retract_zlift;
  1183. #ifdef DELTA
  1184. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1185. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1186. #else
  1187. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1188. #endif
  1189. //prepare_move();
  1190. }
  1191. if (swapretract) {
  1192. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1193. } else {
  1194. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1195. }
  1196. plan_set_e_position(current_position[E_AXIS]);
  1197. float oldFeedrate = feedrate;
  1198. feedrate=retract_recover_feedrate*60;
  1199. retracted[active_extruder]=false;
  1200. prepare_move();
  1201. feedrate = oldFeedrate;
  1202. }
  1203. } //retract
  1204. #endif //FWRETRACT
  1205. #ifdef Z_PROBE_SLED
  1206. //
  1207. // Method to dock/undock a sled designed by Charles Bell.
  1208. //
  1209. // dock[in] If true, move to MAX_X and engage the electromagnet
  1210. // offset[in] The additional distance to move to adjust docking location
  1211. //
  1212. static void dock_sled(bool dock, int offset=0) {
  1213. int z_loc;
  1214. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1215. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1216. SERIAL_ECHO_START;
  1217. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1218. return;
  1219. }
  1220. if (dock) {
  1221. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1222. current_position[Y_AXIS],
  1223. current_position[Z_AXIS]);
  1224. // turn off magnet
  1225. digitalWrite(SERVO0_PIN, LOW);
  1226. } else {
  1227. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1228. z_loc = Z_RAISE_BEFORE_PROBING;
  1229. else
  1230. z_loc = current_position[Z_AXIS];
  1231. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1232. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1233. // turn on magnet
  1234. digitalWrite(SERVO0_PIN, HIGH);
  1235. }
  1236. }
  1237. #endif
  1238. void process_commands()
  1239. {
  1240. unsigned long codenum; //throw away variable
  1241. char *starpos = NULL;
  1242. #ifdef ENABLE_AUTO_BED_LEVELING
  1243. float x_tmp, y_tmp, z_tmp, real_z;
  1244. #endif
  1245. if(code_seen('G'))
  1246. {
  1247. switch((int)code_value())
  1248. {
  1249. case 0: // G0 -> G1
  1250. case 1: // G1
  1251. if(Stopped == false) {
  1252. get_coordinates(); // For X Y Z E F
  1253. #ifdef FWRETRACT
  1254. if(autoretract_enabled)
  1255. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1256. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1257. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1258. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1259. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1260. retract(!retracted);
  1261. return;
  1262. }
  1263. }
  1264. #endif //FWRETRACT
  1265. prepare_move();
  1266. //ClearToSend();
  1267. }
  1268. break;
  1269. #ifndef SCARA //disable arc support
  1270. case 2: // G2 - CW ARC
  1271. if(Stopped == false) {
  1272. get_arc_coordinates();
  1273. prepare_arc_move(true);
  1274. }
  1275. break;
  1276. case 3: // G3 - CCW ARC
  1277. if(Stopped == false) {
  1278. get_arc_coordinates();
  1279. prepare_arc_move(false);
  1280. }
  1281. break;
  1282. #endif
  1283. case 4: // G4 dwell
  1284. LCD_MESSAGEPGM(MSG_DWELL);
  1285. codenum = 0;
  1286. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1287. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1288. st_synchronize();
  1289. codenum += millis(); // keep track of when we started waiting
  1290. previous_millis_cmd = millis();
  1291. while(millis() < codenum) {
  1292. manage_heater();
  1293. manage_inactivity();
  1294. lcd_update();
  1295. }
  1296. break;
  1297. #ifdef FWRETRACT
  1298. case 10: // G10 retract
  1299. #if EXTRUDERS > 1
  1300. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1301. retract(true,retracted_swap[active_extruder]);
  1302. #else
  1303. retract(true);
  1304. #endif
  1305. break;
  1306. case 11: // G11 retract_recover
  1307. #if EXTRUDERS > 1
  1308. retract(false,retracted_swap[active_extruder]);
  1309. #else
  1310. retract(false);
  1311. #endif
  1312. break;
  1313. #endif //FWRETRACT
  1314. case 28: //G28 Home all Axis one at a time
  1315. #ifdef ENABLE_AUTO_BED_LEVELING
  1316. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1317. #endif //ENABLE_AUTO_BED_LEVELING
  1318. saved_feedrate = feedrate;
  1319. saved_feedmultiply = feedmultiply;
  1320. feedmultiply = 100;
  1321. previous_millis_cmd = millis();
  1322. enable_endstops(true);
  1323. for(int8_t i=0; i < NUM_AXIS; i++) {
  1324. destination[i] = current_position[i];
  1325. }
  1326. feedrate = 0.0;
  1327. #ifdef DELTA
  1328. // A delta can only safely home all axis at the same time
  1329. // all axis have to home at the same time
  1330. // Move all carriages up together until the first endstop is hit.
  1331. current_position[X_AXIS] = 0;
  1332. current_position[Y_AXIS] = 0;
  1333. current_position[Z_AXIS] = 0;
  1334. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1335. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1336. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1337. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1338. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1339. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1340. st_synchronize();
  1341. endstops_hit_on_purpose();
  1342. current_position[X_AXIS] = destination[X_AXIS];
  1343. current_position[Y_AXIS] = destination[Y_AXIS];
  1344. current_position[Z_AXIS] = destination[Z_AXIS];
  1345. // take care of back off and rehome now we are all at the top
  1346. HOMEAXIS(X);
  1347. HOMEAXIS(Y);
  1348. HOMEAXIS(Z);
  1349. calculate_delta(current_position);
  1350. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1351. #else // NOT DELTA
  1352. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1353. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1354. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1355. HOMEAXIS(Z);
  1356. }
  1357. #endif
  1358. #ifdef QUICK_HOME
  1359. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1360. {
  1361. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1362. #ifndef DUAL_X_CARRIAGE
  1363. int x_axis_home_dir = home_dir(X_AXIS);
  1364. #else
  1365. int x_axis_home_dir = x_home_dir(active_extruder);
  1366. extruder_duplication_enabled = false;
  1367. #endif
  1368. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1369. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1370. feedrate = homing_feedrate[X_AXIS];
  1371. if(homing_feedrate[Y_AXIS]<feedrate)
  1372. feedrate = homing_feedrate[Y_AXIS];
  1373. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1374. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1375. } else {
  1376. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1377. }
  1378. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1379. st_synchronize();
  1380. axis_is_at_home(X_AXIS);
  1381. axis_is_at_home(Y_AXIS);
  1382. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1383. destination[X_AXIS] = current_position[X_AXIS];
  1384. destination[Y_AXIS] = current_position[Y_AXIS];
  1385. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1386. feedrate = 0.0;
  1387. st_synchronize();
  1388. endstops_hit_on_purpose();
  1389. current_position[X_AXIS] = destination[X_AXIS];
  1390. current_position[Y_AXIS] = destination[Y_AXIS];
  1391. #ifndef SCARA
  1392. current_position[Z_AXIS] = destination[Z_AXIS];
  1393. #endif
  1394. }
  1395. #endif
  1396. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1397. {
  1398. #ifdef DUAL_X_CARRIAGE
  1399. int tmp_extruder = active_extruder;
  1400. extruder_duplication_enabled = false;
  1401. active_extruder = !active_extruder;
  1402. HOMEAXIS(X);
  1403. inactive_extruder_x_pos = current_position[X_AXIS];
  1404. active_extruder = tmp_extruder;
  1405. HOMEAXIS(X);
  1406. // reset state used by the different modes
  1407. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1408. delayed_move_time = 0;
  1409. active_extruder_parked = true;
  1410. #else
  1411. HOMEAXIS(X);
  1412. #endif
  1413. }
  1414. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1415. HOMEAXIS(Y);
  1416. }
  1417. if(code_seen(axis_codes[X_AXIS]))
  1418. {
  1419. if(code_value_long() != 0) {
  1420. #ifdef SCARA
  1421. current_position[X_AXIS]=code_value();
  1422. #else
  1423. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1424. #endif
  1425. }
  1426. }
  1427. if(code_seen(axis_codes[Y_AXIS])) {
  1428. if(code_value_long() != 0) {
  1429. #ifdef SCARA
  1430. current_position[Y_AXIS]=code_value();
  1431. #else
  1432. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1433. #endif
  1434. }
  1435. }
  1436. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1437. #ifndef Z_SAFE_HOMING
  1438. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1439. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1440. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1441. feedrate = max_feedrate[Z_AXIS];
  1442. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1443. st_synchronize();
  1444. #endif
  1445. HOMEAXIS(Z);
  1446. }
  1447. #else // Z Safe mode activated.
  1448. if(home_all_axis) {
  1449. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1450. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1451. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1452. feedrate = XY_TRAVEL_SPEED/60;
  1453. current_position[Z_AXIS] = 0;
  1454. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1455. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1456. st_synchronize();
  1457. current_position[X_AXIS] = destination[X_AXIS];
  1458. current_position[Y_AXIS] = destination[Y_AXIS];
  1459. HOMEAXIS(Z);
  1460. }
  1461. // Let's see if X and Y are homed and probe is inside bed area.
  1462. if(code_seen(axis_codes[Z_AXIS])) {
  1463. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1464. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1465. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1466. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1467. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1468. current_position[Z_AXIS] = 0;
  1469. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1470. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1471. feedrate = max_feedrate[Z_AXIS];
  1472. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1473. st_synchronize();
  1474. HOMEAXIS(Z);
  1475. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1476. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1477. SERIAL_ECHO_START;
  1478. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1479. } else {
  1480. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1481. SERIAL_ECHO_START;
  1482. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1483. }
  1484. }
  1485. #endif
  1486. #endif
  1487. if(code_seen(axis_codes[Z_AXIS])) {
  1488. if(code_value_long() != 0) {
  1489. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1490. }
  1491. }
  1492. #ifdef ENABLE_AUTO_BED_LEVELING
  1493. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1494. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1495. }
  1496. #endif
  1497. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1498. #endif // else DELTA
  1499. #ifdef SCARA
  1500. calculate_delta(current_position);
  1501. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1502. #endif // SCARA
  1503. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1504. enable_endstops(false);
  1505. #endif
  1506. feedrate = saved_feedrate;
  1507. feedmultiply = saved_feedmultiply;
  1508. previous_millis_cmd = millis();
  1509. endstops_hit_on_purpose();
  1510. break;
  1511. #ifdef ENABLE_AUTO_BED_LEVELING
  1512. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1513. {
  1514. #if Z_MIN_PIN == -1
  1515. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1516. #endif
  1517. // Prevent user from running a G29 without first homing in X and Y
  1518. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1519. {
  1520. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1521. SERIAL_ECHO_START;
  1522. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1523. break; // abort G29, since we don't know where we are
  1524. }
  1525. #ifdef Z_PROBE_SLED
  1526. dock_sled(false);
  1527. #endif // Z_PROBE_SLED
  1528. st_synchronize();
  1529. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1530. //vector_3 corrected_position = plan_get_position_mm();
  1531. //corrected_position.debug("position before G29");
  1532. plan_bed_level_matrix.set_to_identity();
  1533. vector_3 uncorrected_position = plan_get_position();
  1534. //uncorrected_position.debug("position durring G29");
  1535. current_position[X_AXIS] = uncorrected_position.x;
  1536. current_position[Y_AXIS] = uncorrected_position.y;
  1537. current_position[Z_AXIS] = uncorrected_position.z;
  1538. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1539. setup_for_endstop_move();
  1540. feedrate = homing_feedrate[Z_AXIS];
  1541. #ifdef AUTO_BED_LEVELING_GRID
  1542. // probe at the points of a lattice grid
  1543. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1544. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1545. // solve the plane equation ax + by + d = z
  1546. // A is the matrix with rows [x y 1] for all the probed points
  1547. // B is the vector of the Z positions
  1548. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1549. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1550. // "A" matrix of the linear system of equations
  1551. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1552. // "B" vector of Z points
  1553. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1554. int probePointCounter = 0;
  1555. bool zig = true;
  1556. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1557. {
  1558. int xProbe, xInc;
  1559. if (zig)
  1560. {
  1561. xProbe = LEFT_PROBE_BED_POSITION;
  1562. //xEnd = RIGHT_PROBE_BED_POSITION;
  1563. xInc = xGridSpacing;
  1564. zig = false;
  1565. } else // zag
  1566. {
  1567. xProbe = RIGHT_PROBE_BED_POSITION;
  1568. //xEnd = LEFT_PROBE_BED_POSITION;
  1569. xInc = -xGridSpacing;
  1570. zig = true;
  1571. }
  1572. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1573. {
  1574. float z_before;
  1575. if (probePointCounter == 0)
  1576. {
  1577. // raise before probing
  1578. z_before = Z_RAISE_BEFORE_PROBING;
  1579. } else
  1580. {
  1581. // raise extruder
  1582. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1583. }
  1584. float measured_z;
  1585. //Enhanced G29 - Do not retract servo between probes
  1586. if (code_seen('E') || code_seen('e') )
  1587. {
  1588. if ((yProbe==FRONT_PROBE_BED_POSITION) && (xCount==0))
  1589. {
  1590. measured_z = probe_pt(xProbe, yProbe, z_before,1);
  1591. } else if ((yProbe==FRONT_PROBE_BED_POSITION + (yGridSpacing * (AUTO_BED_LEVELING_GRID_POINTS-1))) && (xCount == AUTO_BED_LEVELING_GRID_POINTS-1))
  1592. {
  1593. measured_z = probe_pt(xProbe, yProbe, z_before,3);
  1594. } else {
  1595. measured_z = probe_pt(xProbe, yProbe, z_before,2);
  1596. }
  1597. } else {
  1598. measured_z = probe_pt(xProbe, yProbe, z_before);
  1599. }
  1600. eqnBVector[probePointCounter] = measured_z;
  1601. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1602. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1603. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1604. probePointCounter++;
  1605. xProbe += xInc;
  1606. }
  1607. }
  1608. clean_up_after_endstop_move();
  1609. // solve lsq problem
  1610. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1611. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1612. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1613. SERIAL_PROTOCOLPGM(" b: ");
  1614. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1615. SERIAL_PROTOCOLPGM(" d: ");
  1616. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1617. set_bed_level_equation_lsq(plane_equation_coefficients);
  1618. free(plane_equation_coefficients);
  1619. #else // AUTO_BED_LEVELING_GRID not defined
  1620. // Probe at 3 arbitrary points
  1621. // Enhanced G29
  1622. float z_at_pt_1,z_at_pt_2,z_at_pt_3;
  1623. if (code_seen('E') || code_seen('e') )
  1624. {
  1625. // probe 1
  1626. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING,1);
  1627. // probe 2
  1628. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,2);
  1629. // probe 3
  1630. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,3);
  1631. }
  1632. else
  1633. {
  1634. // probe 1
  1635. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1636. // probe 2
  1637. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1638. // probe 3
  1639. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1640. }
  1641. clean_up_after_endstop_move();
  1642. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1643. #endif // AUTO_BED_LEVELING_GRID
  1644. st_synchronize();
  1645. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1646. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1647. // When the bed is uneven, this height must be corrected.
  1648. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1649. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1650. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1651. z_tmp = current_position[Z_AXIS];
  1652. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1653. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1654. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1655. #ifdef Z_PROBE_SLED
  1656. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1657. #endif // Z_PROBE_SLED
  1658. }
  1659. break;
  1660. #ifndef Z_PROBE_SLED
  1661. case 30: // G30 Single Z Probe
  1662. {
  1663. engage_z_probe(); // Engage Z Servo endstop if available
  1664. st_synchronize();
  1665. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1666. setup_for_endstop_move();
  1667. feedrate = homing_feedrate[Z_AXIS];
  1668. run_z_probe();
  1669. SERIAL_PROTOCOLPGM(MSG_BED);
  1670. SERIAL_PROTOCOLPGM(" X: ");
  1671. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1672. SERIAL_PROTOCOLPGM(" Y: ");
  1673. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1674. SERIAL_PROTOCOLPGM(" Z: ");
  1675. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1676. SERIAL_PROTOCOLPGM("\n");
  1677. clean_up_after_endstop_move();
  1678. retract_z_probe(); // Retract Z Servo endstop if available
  1679. }
  1680. break;
  1681. #else
  1682. case 31: // dock the sled
  1683. dock_sled(true);
  1684. break;
  1685. case 32: // undock the sled
  1686. dock_sled(false);
  1687. break;
  1688. #endif // Z_PROBE_SLED
  1689. #endif // ENABLE_AUTO_BED_LEVELING
  1690. case 90: // G90
  1691. relative_mode = false;
  1692. break;
  1693. case 91: // G91
  1694. relative_mode = true;
  1695. break;
  1696. case 92: // G92
  1697. if(!code_seen(axis_codes[E_AXIS]))
  1698. st_synchronize();
  1699. for(int8_t i=0; i < NUM_AXIS; i++) {
  1700. if(code_seen(axis_codes[i])) {
  1701. if(i == E_AXIS) {
  1702. current_position[i] = code_value();
  1703. plan_set_e_position(current_position[E_AXIS]);
  1704. }
  1705. else {
  1706. #ifdef SCARA
  1707. if (i == X_AXIS || i == Y_AXIS) {
  1708. current_position[i] = code_value();
  1709. }
  1710. else {
  1711. current_position[i] = code_value()+add_homing[i];
  1712. }
  1713. #else
  1714. current_position[i] = code_value()+add_homing[i];
  1715. #endif
  1716. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1717. }
  1718. }
  1719. }
  1720. break;
  1721. }
  1722. }
  1723. else if(code_seen('M'))
  1724. {
  1725. switch( (int)code_value() )
  1726. {
  1727. #ifdef ULTIPANEL
  1728. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1729. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1730. {
  1731. char *src = strchr_pointer + 2;
  1732. codenum = 0;
  1733. bool hasP = false, hasS = false;
  1734. if (code_seen('P')) {
  1735. codenum = code_value(); // milliseconds to wait
  1736. hasP = codenum > 0;
  1737. }
  1738. if (code_seen('S')) {
  1739. codenum = code_value() * 1000; // seconds to wait
  1740. hasS = codenum > 0;
  1741. }
  1742. starpos = strchr(src, '*');
  1743. if (starpos != NULL) *(starpos) = '\0';
  1744. while (*src == ' ') ++src;
  1745. if (!hasP && !hasS && *src != '\0') {
  1746. lcd_setstatus(src);
  1747. } else {
  1748. LCD_MESSAGEPGM(MSG_USERWAIT);
  1749. }
  1750. lcd_ignore_click();
  1751. st_synchronize();
  1752. previous_millis_cmd = millis();
  1753. if (codenum > 0){
  1754. codenum += millis(); // keep track of when we started waiting
  1755. while(millis() < codenum && !lcd_clicked()){
  1756. manage_heater();
  1757. manage_inactivity();
  1758. lcd_update();
  1759. }
  1760. lcd_ignore_click(false);
  1761. }else{
  1762. if (!lcd_detected())
  1763. break;
  1764. while(!lcd_clicked()){
  1765. manage_heater();
  1766. manage_inactivity();
  1767. lcd_update();
  1768. }
  1769. }
  1770. if (IS_SD_PRINTING)
  1771. LCD_MESSAGEPGM(MSG_RESUMING);
  1772. else
  1773. LCD_MESSAGEPGM(WELCOME_MSG);
  1774. }
  1775. break;
  1776. #endif
  1777. case 17:
  1778. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1779. enable_x();
  1780. enable_y();
  1781. enable_z();
  1782. enable_e0();
  1783. enable_e1();
  1784. enable_e2();
  1785. break;
  1786. #ifdef SDSUPPORT
  1787. case 20: // M20 - list SD card
  1788. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1789. card.ls();
  1790. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1791. break;
  1792. case 21: // M21 - init SD card
  1793. card.initsd();
  1794. break;
  1795. case 22: //M22 - release SD card
  1796. card.release();
  1797. break;
  1798. case 23: //M23 - Select file
  1799. starpos = (strchr(strchr_pointer + 4,'*'));
  1800. if(starpos!=NULL)
  1801. *(starpos)='\0';
  1802. card.openFile(strchr_pointer + 4,true);
  1803. break;
  1804. case 24: //M24 - Start SD print
  1805. card.startFileprint();
  1806. starttime=millis();
  1807. break;
  1808. case 25: //M25 - Pause SD print
  1809. card.pauseSDPrint();
  1810. break;
  1811. case 26: //M26 - Set SD index
  1812. if(card.cardOK && code_seen('S')) {
  1813. card.setIndex(code_value_long());
  1814. }
  1815. break;
  1816. case 27: //M27 - Get SD status
  1817. card.getStatus();
  1818. break;
  1819. case 28: //M28 - Start SD write
  1820. starpos = (strchr(strchr_pointer + 4,'*'));
  1821. if(starpos != NULL){
  1822. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1823. strchr_pointer = strchr(npos,' ') + 1;
  1824. *(starpos) = '\0';
  1825. }
  1826. card.openFile(strchr_pointer+4,false);
  1827. break;
  1828. case 29: //M29 - Stop SD write
  1829. //processed in write to file routine above
  1830. //card,saving = false;
  1831. break;
  1832. case 30: //M30 <filename> Delete File
  1833. if (card.cardOK){
  1834. card.closefile();
  1835. starpos = (strchr(strchr_pointer + 4,'*'));
  1836. if(starpos != NULL){
  1837. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1838. strchr_pointer = strchr(npos,' ') + 1;
  1839. *(starpos) = '\0';
  1840. }
  1841. card.removeFile(strchr_pointer + 4);
  1842. }
  1843. break;
  1844. case 32: //M32 - Select file and start SD print
  1845. {
  1846. if(card.sdprinting) {
  1847. st_synchronize();
  1848. }
  1849. starpos = (strchr(strchr_pointer + 4,'*'));
  1850. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1851. if(namestartpos==NULL)
  1852. {
  1853. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1854. }
  1855. else
  1856. namestartpos++; //to skip the '!'
  1857. if(starpos!=NULL)
  1858. *(starpos)='\0';
  1859. bool call_procedure=(code_seen('P'));
  1860. if(strchr_pointer>namestartpos)
  1861. call_procedure=false; //false alert, 'P' found within filename
  1862. if( card.cardOK )
  1863. {
  1864. card.openFile(namestartpos,true,!call_procedure);
  1865. if(code_seen('S'))
  1866. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1867. card.setIndex(code_value_long());
  1868. card.startFileprint();
  1869. if(!call_procedure)
  1870. starttime=millis(); //procedure calls count as normal print time.
  1871. }
  1872. } break;
  1873. case 928: //M928 - Start SD write
  1874. starpos = (strchr(strchr_pointer + 5,'*'));
  1875. if(starpos != NULL){
  1876. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1877. strchr_pointer = strchr(npos,' ') + 1;
  1878. *(starpos) = '\0';
  1879. }
  1880. card.openLogFile(strchr_pointer+5);
  1881. break;
  1882. #endif //SDSUPPORT
  1883. case 31: //M31 take time since the start of the SD print or an M109 command
  1884. {
  1885. stoptime=millis();
  1886. char time[30];
  1887. unsigned long t=(stoptime-starttime)/1000;
  1888. int sec,min;
  1889. min=t/60;
  1890. sec=t%60;
  1891. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1892. SERIAL_ECHO_START;
  1893. SERIAL_ECHOLN(time);
  1894. lcd_setstatus(time);
  1895. autotempShutdown();
  1896. }
  1897. break;
  1898. case 42: //M42 -Change pin status via gcode
  1899. if (code_seen('S'))
  1900. {
  1901. int pin_status = code_value();
  1902. int pin_number = LED_PIN;
  1903. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1904. pin_number = code_value();
  1905. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1906. {
  1907. if (sensitive_pins[i] == pin_number)
  1908. {
  1909. pin_number = -1;
  1910. break;
  1911. }
  1912. }
  1913. #if defined(FAN_PIN) && FAN_PIN > -1
  1914. if (pin_number == FAN_PIN)
  1915. fanSpeed = pin_status;
  1916. #endif
  1917. if (pin_number > -1)
  1918. {
  1919. pinMode(pin_number, OUTPUT);
  1920. digitalWrite(pin_number, pin_status);
  1921. analogWrite(pin_number, pin_status);
  1922. }
  1923. }
  1924. break;
  1925. // M48 Z-Probe repeatability measurement function.
  1926. //
  1927. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  1928. //
  1929. // This function assumes the bed has been homed. Specificaly, that a G28 command
  1930. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  1931. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  1932. // regenerated.
  1933. //
  1934. // The number of samples will default to 10 if not specified. You can use upper or lower case
  1935. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  1936. // N for its communication protocol and will get horribly confused if you send it a capital N.
  1937. //
  1938. #ifdef ENABLE_AUTO_BED_LEVELING
  1939. #ifdef Z_PROBE_REPEATABILITY_TEST
  1940. case 48: // M48 Z-Probe repeatability
  1941. {
  1942. #if Z_MIN_PIN == -1
  1943. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  1944. #endif
  1945. double sum=0.0;
  1946. double mean=0.0;
  1947. double sigma=0.0;
  1948. double sample_set[50];
  1949. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  1950. double X_current, Y_current, Z_current;
  1951. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  1952. if (code_seen('V') || code_seen('v')) {
  1953. verbose_level = code_value();
  1954. if (verbose_level<0 || verbose_level>4 ) {
  1955. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  1956. goto Sigma_Exit;
  1957. }
  1958. }
  1959. if (verbose_level > 0) {
  1960. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  1961. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  1962. }
  1963. if (code_seen('n')) {
  1964. n_samples = code_value();
  1965. if (n_samples<4 || n_samples>50 ) {
  1966. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  1967. goto Sigma_Exit;
  1968. }
  1969. }
  1970. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  1971. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  1972. Z_current = st_get_position_mm(Z_AXIS);
  1973. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1974. ext_position = st_get_position_mm(E_AXIS);
  1975. if (code_seen('E') || code_seen('e') )
  1976. engage_probe_for_each_reading++;
  1977. if (code_seen('X') || code_seen('x') ) {
  1978. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  1979. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  1980. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  1981. goto Sigma_Exit;
  1982. }
  1983. }
  1984. if (code_seen('Y') || code_seen('y') ) {
  1985. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1986. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  1987. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  1988. goto Sigma_Exit;
  1989. }
  1990. }
  1991. if (code_seen('L') || code_seen('l') ) {
  1992. n_legs = code_value();
  1993. if ( n_legs==1 )
  1994. n_legs = 2;
  1995. if ( n_legs<0 || n_legs>15 ) {
  1996. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  1997. goto Sigma_Exit;
  1998. }
  1999. }
  2000. //
  2001. // Do all the preliminary setup work. First raise the probe.
  2002. //
  2003. st_synchronize();
  2004. plan_bed_level_matrix.set_to_identity();
  2005. plan_buffer_line( X_current, Y_current, Z_start_location,
  2006. ext_position,
  2007. homing_feedrate[Z_AXIS]/60,
  2008. active_extruder);
  2009. st_synchronize();
  2010. //
  2011. // Now get everything to the specified probe point So we can safely do a probe to
  2012. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2013. // use that as a starting point for each probe.
  2014. //
  2015. if (verbose_level > 2)
  2016. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2017. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2018. ext_position,
  2019. homing_feedrate[X_AXIS]/60,
  2020. active_extruder);
  2021. st_synchronize();
  2022. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2023. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2024. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2025. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2026. //
  2027. // OK, do the inital probe to get us close to the bed.
  2028. // Then retrace the right amount and use that in subsequent probes
  2029. //
  2030. engage_z_probe();
  2031. setup_for_endstop_move();
  2032. run_z_probe();
  2033. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2034. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2035. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2036. ext_position,
  2037. homing_feedrate[X_AXIS]/60,
  2038. active_extruder);
  2039. st_synchronize();
  2040. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2041. if (engage_probe_for_each_reading)
  2042. retract_z_probe();
  2043. for( n=0; n<n_samples; n++) {
  2044. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2045. if ( n_legs) {
  2046. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2047. int rotational_direction, l;
  2048. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2049. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2050. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2051. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2052. //SERIAL_ECHOPAIR(" theta: ",theta);
  2053. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2054. //SERIAL_PROTOCOLLNPGM("");
  2055. for( l=0; l<n_legs-1; l++) {
  2056. if (rotational_direction==1)
  2057. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2058. else
  2059. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2060. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2061. if ( radius<0.0 )
  2062. radius = -radius;
  2063. X_current = X_probe_location + cos(theta) * radius;
  2064. Y_current = Y_probe_location + sin(theta) * radius;
  2065. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2066. X_current = X_MIN_POS;
  2067. if ( X_current>X_MAX_POS)
  2068. X_current = X_MAX_POS;
  2069. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2070. Y_current = Y_MIN_POS;
  2071. if ( Y_current>Y_MAX_POS)
  2072. Y_current = Y_MAX_POS;
  2073. if (verbose_level>3 ) {
  2074. SERIAL_ECHOPAIR("x: ", X_current);
  2075. SERIAL_ECHOPAIR("y: ", Y_current);
  2076. SERIAL_PROTOCOLLNPGM("");
  2077. }
  2078. do_blocking_move_to( X_current, Y_current, Z_current );
  2079. }
  2080. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2081. }
  2082. if (engage_probe_for_each_reading) {
  2083. engage_z_probe();
  2084. delay(1000);
  2085. }
  2086. setup_for_endstop_move();
  2087. run_z_probe();
  2088. sample_set[n] = current_position[Z_AXIS];
  2089. //
  2090. // Get the current mean for the data points we have so far
  2091. //
  2092. sum=0.0;
  2093. for( j=0; j<=n; j++) {
  2094. sum = sum + sample_set[j];
  2095. }
  2096. mean = sum / (double (n+1));
  2097. //
  2098. // Now, use that mean to calculate the standard deviation for the
  2099. // data points we have so far
  2100. //
  2101. sum=0.0;
  2102. for( j=0; j<=n; j++) {
  2103. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2104. }
  2105. sigma = sqrt( sum / (double (n+1)) );
  2106. if (verbose_level > 1) {
  2107. SERIAL_PROTOCOL(n+1);
  2108. SERIAL_PROTOCOL(" of ");
  2109. SERIAL_PROTOCOL(n_samples);
  2110. SERIAL_PROTOCOLPGM(" z: ");
  2111. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2112. }
  2113. if (verbose_level > 2) {
  2114. SERIAL_PROTOCOL(" mean: ");
  2115. SERIAL_PROTOCOL_F(mean,6);
  2116. SERIAL_PROTOCOL(" sigma: ");
  2117. SERIAL_PROTOCOL_F(sigma,6);
  2118. }
  2119. if (verbose_level > 0)
  2120. SERIAL_PROTOCOLPGM("\n");
  2121. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2122. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2123. st_synchronize();
  2124. if (engage_probe_for_each_reading) {
  2125. retract_z_probe();
  2126. delay(1000);
  2127. }
  2128. }
  2129. retract_z_probe();
  2130. delay(1000);
  2131. clean_up_after_endstop_move();
  2132. // enable_endstops(true);
  2133. if (verbose_level > 0) {
  2134. SERIAL_PROTOCOLPGM("Mean: ");
  2135. SERIAL_PROTOCOL_F(mean, 6);
  2136. SERIAL_PROTOCOLPGM("\n");
  2137. }
  2138. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2139. SERIAL_PROTOCOL_F(sigma, 6);
  2140. SERIAL_PROTOCOLPGM("\n\n");
  2141. Sigma_Exit:
  2142. break;
  2143. }
  2144. #endif // Z_PROBE_REPEATABILITY_TEST
  2145. #endif // ENABLE_AUTO_BED_LEVELING
  2146. case 104: // M104
  2147. if(setTargetedHotend(104)){
  2148. break;
  2149. }
  2150. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2151. #ifdef DUAL_X_CARRIAGE
  2152. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2153. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2154. #endif
  2155. setWatch();
  2156. break;
  2157. case 112: // M112 -Emergency Stop
  2158. kill();
  2159. break;
  2160. case 140: // M140 set bed temp
  2161. if (code_seen('S')) setTargetBed(code_value());
  2162. break;
  2163. case 105 : // M105
  2164. if(setTargetedHotend(105)){
  2165. break;
  2166. }
  2167. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2168. SERIAL_PROTOCOLPGM("ok T:");
  2169. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2170. SERIAL_PROTOCOLPGM(" /");
  2171. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2172. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2173. SERIAL_PROTOCOLPGM(" B:");
  2174. SERIAL_PROTOCOL_F(degBed(),1);
  2175. SERIAL_PROTOCOLPGM(" /");
  2176. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2177. #endif //TEMP_BED_PIN
  2178. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2179. SERIAL_PROTOCOLPGM(" T");
  2180. SERIAL_PROTOCOL(cur_extruder);
  2181. SERIAL_PROTOCOLPGM(":");
  2182. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2183. SERIAL_PROTOCOLPGM(" /");
  2184. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2185. }
  2186. #else
  2187. SERIAL_ERROR_START;
  2188. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2189. #endif
  2190. SERIAL_PROTOCOLPGM(" @:");
  2191. #ifdef EXTRUDER_WATTS
  2192. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2193. SERIAL_PROTOCOLPGM("W");
  2194. #else
  2195. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2196. #endif
  2197. SERIAL_PROTOCOLPGM(" B@:");
  2198. #ifdef BED_WATTS
  2199. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2200. SERIAL_PROTOCOLPGM("W");
  2201. #else
  2202. SERIAL_PROTOCOL(getHeaterPower(-1));
  2203. #endif
  2204. #ifdef SHOW_TEMP_ADC_VALUES
  2205. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2206. SERIAL_PROTOCOLPGM(" ADC B:");
  2207. SERIAL_PROTOCOL_F(degBed(),1);
  2208. SERIAL_PROTOCOLPGM("C->");
  2209. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2210. #endif
  2211. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2212. SERIAL_PROTOCOLPGM(" T");
  2213. SERIAL_PROTOCOL(cur_extruder);
  2214. SERIAL_PROTOCOLPGM(":");
  2215. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2216. SERIAL_PROTOCOLPGM("C->");
  2217. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2218. }
  2219. #endif
  2220. SERIAL_PROTOCOLLN("");
  2221. return;
  2222. break;
  2223. case 109:
  2224. {// M109 - Wait for extruder heater to reach target.
  2225. if(setTargetedHotend(109)){
  2226. break;
  2227. }
  2228. LCD_MESSAGEPGM(MSG_HEATING);
  2229. #ifdef AUTOTEMP
  2230. autotemp_enabled=false;
  2231. #endif
  2232. if (code_seen('S')) {
  2233. setTargetHotend(code_value(), tmp_extruder);
  2234. #ifdef DUAL_X_CARRIAGE
  2235. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2236. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2237. #endif
  2238. CooldownNoWait = true;
  2239. } else if (code_seen('R')) {
  2240. setTargetHotend(code_value(), tmp_extruder);
  2241. #ifdef DUAL_X_CARRIAGE
  2242. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2243. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2244. #endif
  2245. CooldownNoWait = false;
  2246. }
  2247. #ifdef AUTOTEMP
  2248. if (code_seen('S')) autotemp_min=code_value();
  2249. if (code_seen('B')) autotemp_max=code_value();
  2250. if (code_seen('F'))
  2251. {
  2252. autotemp_factor=code_value();
  2253. autotemp_enabled=true;
  2254. }
  2255. #endif
  2256. setWatch();
  2257. codenum = millis();
  2258. /* See if we are heating up or cooling down */
  2259. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2260. cancel_heatup = false;
  2261. #ifdef TEMP_RESIDENCY_TIME
  2262. long residencyStart;
  2263. residencyStart = -1;
  2264. /* continue to loop until we have reached the target temp
  2265. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2266. while((!cancel_heatup)&&((residencyStart == -1) ||
  2267. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2268. #else
  2269. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2270. #endif //TEMP_RESIDENCY_TIME
  2271. if( (millis() - codenum) > 1000UL )
  2272. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2273. SERIAL_PROTOCOLPGM("T:");
  2274. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2275. SERIAL_PROTOCOLPGM(" E:");
  2276. SERIAL_PROTOCOL((int)tmp_extruder);
  2277. #ifdef TEMP_RESIDENCY_TIME
  2278. SERIAL_PROTOCOLPGM(" W:");
  2279. if(residencyStart > -1)
  2280. {
  2281. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2282. SERIAL_PROTOCOLLN( codenum );
  2283. }
  2284. else
  2285. {
  2286. SERIAL_PROTOCOLLN( "?" );
  2287. }
  2288. #else
  2289. SERIAL_PROTOCOLLN("");
  2290. #endif
  2291. codenum = millis();
  2292. }
  2293. manage_heater();
  2294. manage_inactivity();
  2295. lcd_update();
  2296. #ifdef TEMP_RESIDENCY_TIME
  2297. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2298. or when current temp falls outside the hysteresis after target temp was reached */
  2299. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2300. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2301. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2302. {
  2303. residencyStart = millis();
  2304. }
  2305. #endif //TEMP_RESIDENCY_TIME
  2306. }
  2307. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2308. starttime=millis();
  2309. previous_millis_cmd = millis();
  2310. }
  2311. break;
  2312. case 190: // M190 - Wait for bed heater to reach target.
  2313. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2314. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2315. if (code_seen('S')) {
  2316. setTargetBed(code_value());
  2317. CooldownNoWait = true;
  2318. } else if (code_seen('R')) {
  2319. setTargetBed(code_value());
  2320. CooldownNoWait = false;
  2321. }
  2322. codenum = millis();
  2323. cancel_heatup = false;
  2324. target_direction = isHeatingBed(); // true if heating, false if cooling
  2325. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2326. {
  2327. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2328. {
  2329. float tt=degHotend(active_extruder);
  2330. SERIAL_PROTOCOLPGM("T:");
  2331. SERIAL_PROTOCOL(tt);
  2332. SERIAL_PROTOCOLPGM(" E:");
  2333. SERIAL_PROTOCOL((int)active_extruder);
  2334. SERIAL_PROTOCOLPGM(" B:");
  2335. SERIAL_PROTOCOL_F(degBed(),1);
  2336. SERIAL_PROTOCOLLN("");
  2337. codenum = millis();
  2338. }
  2339. manage_heater();
  2340. manage_inactivity();
  2341. lcd_update();
  2342. }
  2343. LCD_MESSAGEPGM(MSG_BED_DONE);
  2344. previous_millis_cmd = millis();
  2345. #endif
  2346. break;
  2347. #if defined(FAN_PIN) && FAN_PIN > -1
  2348. case 106: //M106 Fan On
  2349. if (code_seen('S')){
  2350. fanSpeed=constrain(code_value(),0,255);
  2351. }
  2352. else {
  2353. fanSpeed=255;
  2354. }
  2355. break;
  2356. case 107: //M107 Fan Off
  2357. fanSpeed = 0;
  2358. break;
  2359. #endif //FAN_PIN
  2360. #ifdef BARICUDA
  2361. // PWM for HEATER_1_PIN
  2362. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2363. case 126: //M126 valve open
  2364. if (code_seen('S')){
  2365. ValvePressure=constrain(code_value(),0,255);
  2366. }
  2367. else {
  2368. ValvePressure=255;
  2369. }
  2370. break;
  2371. case 127: //M127 valve closed
  2372. ValvePressure = 0;
  2373. break;
  2374. #endif //HEATER_1_PIN
  2375. // PWM for HEATER_2_PIN
  2376. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2377. case 128: //M128 valve open
  2378. if (code_seen('S')){
  2379. EtoPPressure=constrain(code_value(),0,255);
  2380. }
  2381. else {
  2382. EtoPPressure=255;
  2383. }
  2384. break;
  2385. case 129: //M129 valve closed
  2386. EtoPPressure = 0;
  2387. break;
  2388. #endif //HEATER_2_PIN
  2389. #endif
  2390. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2391. case 80: // M80 - Turn on Power Supply
  2392. SET_OUTPUT(PS_ON_PIN); //GND
  2393. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2394. // If you have a switch on suicide pin, this is useful
  2395. // if you want to start another print with suicide feature after
  2396. // a print without suicide...
  2397. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2398. SET_OUTPUT(SUICIDE_PIN);
  2399. WRITE(SUICIDE_PIN, HIGH);
  2400. #endif
  2401. #ifdef ULTIPANEL
  2402. powersupply = true;
  2403. LCD_MESSAGEPGM(WELCOME_MSG);
  2404. lcd_update();
  2405. #endif
  2406. break;
  2407. #endif
  2408. case 81: // M81 - Turn off Power Supply
  2409. disable_heater();
  2410. st_synchronize();
  2411. disable_e0();
  2412. disable_e1();
  2413. disable_e2();
  2414. finishAndDisableSteppers();
  2415. fanSpeed = 0;
  2416. delay(1000); // Wait a little before to switch off
  2417. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2418. st_synchronize();
  2419. suicide();
  2420. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2421. SET_OUTPUT(PS_ON_PIN);
  2422. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2423. #endif
  2424. #ifdef ULTIPANEL
  2425. powersupply = false;
  2426. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2427. lcd_update();
  2428. #endif
  2429. break;
  2430. case 82:
  2431. axis_relative_modes[3] = false;
  2432. break;
  2433. case 83:
  2434. axis_relative_modes[3] = true;
  2435. break;
  2436. case 18: //compatibility
  2437. case 84: // M84
  2438. if(code_seen('S')){
  2439. stepper_inactive_time = code_value() * 1000;
  2440. }
  2441. else
  2442. {
  2443. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2444. if(all_axis)
  2445. {
  2446. st_synchronize();
  2447. disable_e0();
  2448. disable_e1();
  2449. disable_e2();
  2450. finishAndDisableSteppers();
  2451. }
  2452. else
  2453. {
  2454. st_synchronize();
  2455. if(code_seen('X')) disable_x();
  2456. if(code_seen('Y')) disable_y();
  2457. if(code_seen('Z')) disable_z();
  2458. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2459. if(code_seen('E')) {
  2460. disable_e0();
  2461. disable_e1();
  2462. disable_e2();
  2463. }
  2464. #endif
  2465. }
  2466. }
  2467. break;
  2468. case 85: // M85
  2469. if(code_seen('S')) {
  2470. max_inactive_time = code_value() * 1000;
  2471. }
  2472. break;
  2473. case 92: // M92
  2474. for(int8_t i=0; i < NUM_AXIS; i++)
  2475. {
  2476. if(code_seen(axis_codes[i]))
  2477. {
  2478. if(i == 3) { // E
  2479. float value = code_value();
  2480. if(value < 20.0) {
  2481. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2482. max_e_jerk *= factor;
  2483. max_feedrate[i] *= factor;
  2484. axis_steps_per_sqr_second[i] *= factor;
  2485. }
  2486. axis_steps_per_unit[i] = value;
  2487. }
  2488. else {
  2489. axis_steps_per_unit[i] = code_value();
  2490. }
  2491. }
  2492. }
  2493. break;
  2494. case 115: // M115
  2495. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2496. break;
  2497. case 117: // M117 display message
  2498. starpos = (strchr(strchr_pointer + 5,'*'));
  2499. if(starpos!=NULL)
  2500. *(starpos)='\0';
  2501. lcd_setstatus(strchr_pointer + 5);
  2502. break;
  2503. case 114: // M114
  2504. SERIAL_PROTOCOLPGM("X:");
  2505. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2506. SERIAL_PROTOCOLPGM(" Y:");
  2507. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2508. SERIAL_PROTOCOLPGM(" Z:");
  2509. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2510. SERIAL_PROTOCOLPGM(" E:");
  2511. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2512. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2513. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2514. SERIAL_PROTOCOLPGM(" Y:");
  2515. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2516. SERIAL_PROTOCOLPGM(" Z:");
  2517. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2518. SERIAL_PROTOCOLLN("");
  2519. #ifdef SCARA
  2520. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2521. SERIAL_PROTOCOL(delta[X_AXIS]);
  2522. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2523. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2524. SERIAL_PROTOCOLLN("");
  2525. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2526. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2527. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2528. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2529. SERIAL_PROTOCOLLN("");
  2530. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2531. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2532. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2533. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2534. SERIAL_PROTOCOLLN("");
  2535. SERIAL_PROTOCOLLN("");
  2536. #endif
  2537. break;
  2538. case 120: // M120
  2539. enable_endstops(false) ;
  2540. break;
  2541. case 121: // M121
  2542. enable_endstops(true) ;
  2543. break;
  2544. case 119: // M119
  2545. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2546. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2547. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2548. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2549. #endif
  2550. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2551. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2552. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2553. #endif
  2554. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2555. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2556. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2557. #endif
  2558. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2559. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2560. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2561. #endif
  2562. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2563. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2564. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2565. #endif
  2566. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2567. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2568. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2569. #endif
  2570. break;
  2571. //TODO: update for all axis, use for loop
  2572. #ifdef BLINKM
  2573. case 150: // M150
  2574. {
  2575. byte red;
  2576. byte grn;
  2577. byte blu;
  2578. if(code_seen('R')) red = code_value();
  2579. if(code_seen('U')) grn = code_value();
  2580. if(code_seen('B')) blu = code_value();
  2581. SendColors(red,grn,blu);
  2582. }
  2583. break;
  2584. #endif //BLINKM
  2585. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2586. {
  2587. tmp_extruder = active_extruder;
  2588. if(code_seen('T')) {
  2589. tmp_extruder = code_value();
  2590. if(tmp_extruder >= EXTRUDERS) {
  2591. SERIAL_ECHO_START;
  2592. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2593. break;
  2594. }
  2595. }
  2596. float area = .0;
  2597. if(code_seen('D')) {
  2598. float diameter = code_value();
  2599. // setting any extruder filament size disables volumetric on the assumption that
  2600. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2601. // for all extruders
  2602. volumetric_enabled = (diameter != 0.0);
  2603. if (volumetric_enabled) {
  2604. filament_size[tmp_extruder] = diameter;
  2605. // make sure all extruders have some sane value for the filament size
  2606. for (int i=0; i<EXTRUDERS; i++)
  2607. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2608. }
  2609. } else {
  2610. //reserved for setting filament diameter via UFID or filament measuring device
  2611. break;
  2612. }
  2613. calculate_volumetric_multipliers();
  2614. }
  2615. break;
  2616. case 201: // M201
  2617. for(int8_t i=0; i < NUM_AXIS; i++)
  2618. {
  2619. if(code_seen(axis_codes[i]))
  2620. {
  2621. max_acceleration_units_per_sq_second[i] = code_value();
  2622. }
  2623. }
  2624. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2625. reset_acceleration_rates();
  2626. break;
  2627. #if 0 // Not used for Sprinter/grbl gen6
  2628. case 202: // M202
  2629. for(int8_t i=0; i < NUM_AXIS; i++) {
  2630. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2631. }
  2632. break;
  2633. #endif
  2634. case 203: // M203 max feedrate mm/sec
  2635. for(int8_t i=0; i < NUM_AXIS; i++) {
  2636. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2637. }
  2638. break;
  2639. case 204: // M204 acclereration S normal moves T filmanent only moves
  2640. {
  2641. if(code_seen('S')) acceleration = code_value() ;
  2642. if(code_seen('T')) retract_acceleration = code_value() ;
  2643. }
  2644. break;
  2645. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2646. {
  2647. if(code_seen('S')) minimumfeedrate = code_value();
  2648. if(code_seen('T')) mintravelfeedrate = code_value();
  2649. if(code_seen('B')) minsegmenttime = code_value() ;
  2650. if(code_seen('X')) max_xy_jerk = code_value() ;
  2651. if(code_seen('Z')) max_z_jerk = code_value() ;
  2652. if(code_seen('E')) max_e_jerk = code_value() ;
  2653. }
  2654. break;
  2655. case 206: // M206 additional homing offset
  2656. for(int8_t i=0; i < 3; i++)
  2657. {
  2658. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2659. }
  2660. #ifdef SCARA
  2661. if(code_seen('T')) // Theta
  2662. {
  2663. add_homing[X_AXIS] = code_value() ;
  2664. }
  2665. if(code_seen('P')) // Psi
  2666. {
  2667. add_homing[Y_AXIS] = code_value() ;
  2668. }
  2669. #endif
  2670. break;
  2671. #ifdef DELTA
  2672. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2673. if(code_seen('L')) {
  2674. delta_diagonal_rod= code_value();
  2675. }
  2676. if(code_seen('R')) {
  2677. delta_radius= code_value();
  2678. }
  2679. if(code_seen('S')) {
  2680. delta_segments_per_second= code_value();
  2681. }
  2682. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2683. break;
  2684. case 666: // M666 set delta endstop adjustemnt
  2685. for(int8_t i=0; i < 3; i++)
  2686. {
  2687. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2688. }
  2689. break;
  2690. #endif
  2691. #ifdef FWRETRACT
  2692. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2693. {
  2694. if(code_seen('S'))
  2695. {
  2696. retract_length = code_value() ;
  2697. }
  2698. if(code_seen('F'))
  2699. {
  2700. retract_feedrate = code_value()/60 ;
  2701. }
  2702. if(code_seen('Z'))
  2703. {
  2704. retract_zlift = code_value() ;
  2705. }
  2706. }break;
  2707. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2708. {
  2709. if(code_seen('S'))
  2710. {
  2711. retract_recover_length = code_value() ;
  2712. }
  2713. if(code_seen('F'))
  2714. {
  2715. retract_recover_feedrate = code_value()/60 ;
  2716. }
  2717. }break;
  2718. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2719. {
  2720. if(code_seen('S'))
  2721. {
  2722. int t= code_value() ;
  2723. switch(t)
  2724. {
  2725. case 0:
  2726. case 1:
  2727. {
  2728. autoretract_enabled = (t == 1);
  2729. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  2730. }break;
  2731. default:
  2732. SERIAL_ECHO_START;
  2733. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2734. SERIAL_ECHO(cmdbuffer[bufindr]);
  2735. SERIAL_ECHOLNPGM("\"");
  2736. }
  2737. }
  2738. }break;
  2739. #endif // FWRETRACT
  2740. #if EXTRUDERS > 1
  2741. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2742. {
  2743. if(setTargetedHotend(218)){
  2744. break;
  2745. }
  2746. if(code_seen('X'))
  2747. {
  2748. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2749. }
  2750. if(code_seen('Y'))
  2751. {
  2752. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2753. }
  2754. #ifdef DUAL_X_CARRIAGE
  2755. if(code_seen('Z'))
  2756. {
  2757. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2758. }
  2759. #endif
  2760. SERIAL_ECHO_START;
  2761. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2762. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2763. {
  2764. SERIAL_ECHO(" ");
  2765. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2766. SERIAL_ECHO(",");
  2767. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2768. #ifdef DUAL_X_CARRIAGE
  2769. SERIAL_ECHO(",");
  2770. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2771. #endif
  2772. }
  2773. SERIAL_ECHOLN("");
  2774. }break;
  2775. #endif
  2776. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2777. {
  2778. if(code_seen('S'))
  2779. {
  2780. feedmultiply = code_value() ;
  2781. }
  2782. }
  2783. break;
  2784. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2785. {
  2786. if(code_seen('S'))
  2787. {
  2788. int tmp_code = code_value();
  2789. if (code_seen('T'))
  2790. {
  2791. if(setTargetedHotend(221)){
  2792. break;
  2793. }
  2794. extruder_multiply[tmp_extruder] = tmp_code;
  2795. }
  2796. else
  2797. {
  2798. extrudemultiply = tmp_code ;
  2799. }
  2800. }
  2801. }
  2802. break;
  2803. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2804. {
  2805. if(code_seen('P')){
  2806. int pin_number = code_value(); // pin number
  2807. int pin_state = -1; // required pin state - default is inverted
  2808. if(code_seen('S')) pin_state = code_value(); // required pin state
  2809. if(pin_state >= -1 && pin_state <= 1){
  2810. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2811. {
  2812. if (sensitive_pins[i] == pin_number)
  2813. {
  2814. pin_number = -1;
  2815. break;
  2816. }
  2817. }
  2818. if (pin_number > -1)
  2819. {
  2820. int target = LOW;
  2821. st_synchronize();
  2822. pinMode(pin_number, INPUT);
  2823. switch(pin_state){
  2824. case 1:
  2825. target = HIGH;
  2826. break;
  2827. case 0:
  2828. target = LOW;
  2829. break;
  2830. case -1:
  2831. target = !digitalRead(pin_number);
  2832. break;
  2833. }
  2834. while(digitalRead(pin_number) != target){
  2835. manage_heater();
  2836. manage_inactivity();
  2837. lcd_update();
  2838. }
  2839. }
  2840. }
  2841. }
  2842. }
  2843. break;
  2844. #if NUM_SERVOS > 0
  2845. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2846. {
  2847. int servo_index = -1;
  2848. int servo_position = 0;
  2849. if (code_seen('P'))
  2850. servo_index = code_value();
  2851. if (code_seen('S')) {
  2852. servo_position = code_value();
  2853. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2854. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2855. servos[servo_index].attach(0);
  2856. #endif
  2857. servos[servo_index].write(servo_position);
  2858. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2859. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2860. servos[servo_index].detach();
  2861. #endif
  2862. }
  2863. else {
  2864. SERIAL_ECHO_START;
  2865. SERIAL_ECHO("Servo ");
  2866. SERIAL_ECHO(servo_index);
  2867. SERIAL_ECHOLN(" out of range");
  2868. }
  2869. }
  2870. else if (servo_index >= 0) {
  2871. SERIAL_PROTOCOL(MSG_OK);
  2872. SERIAL_PROTOCOL(" Servo ");
  2873. SERIAL_PROTOCOL(servo_index);
  2874. SERIAL_PROTOCOL(": ");
  2875. SERIAL_PROTOCOL(servos[servo_index].read());
  2876. SERIAL_PROTOCOLLN("");
  2877. }
  2878. }
  2879. break;
  2880. #endif // NUM_SERVOS > 0
  2881. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2882. case 300: // M300
  2883. {
  2884. int beepS = code_seen('S') ? code_value() : 110;
  2885. int beepP = code_seen('P') ? code_value() : 1000;
  2886. if (beepS > 0)
  2887. {
  2888. #if BEEPER > 0
  2889. tone(BEEPER, beepS);
  2890. delay(beepP);
  2891. noTone(BEEPER);
  2892. #elif defined(ULTRALCD)
  2893. lcd_buzz(beepS, beepP);
  2894. #elif defined(LCD_USE_I2C_BUZZER)
  2895. lcd_buzz(beepP, beepS);
  2896. #endif
  2897. }
  2898. else
  2899. {
  2900. delay(beepP);
  2901. }
  2902. }
  2903. break;
  2904. #endif // M300
  2905. #ifdef PIDTEMP
  2906. case 301: // M301
  2907. {
  2908. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  2909. // default behaviour (omitting E parameter) is to update for extruder 0 only
  2910. int e = 0; // extruder being updated
  2911. if (code_seen('E'))
  2912. {
  2913. e = (int)code_value();
  2914. }
  2915. if (e < EXTRUDERS) // catch bad input value
  2916. {
  2917. if (code_seen('P')) PID_PARAM(Kp,e) = code_value();
  2918. if (code_seen('I')) PID_PARAM(Ki,e) = scalePID_i(code_value());
  2919. if (code_seen('D')) PID_PARAM(Kd,e) = scalePID_d(code_value());
  2920. #ifdef PID_ADD_EXTRUSION_RATE
  2921. if (code_seen('C')) PID_PARAM(Kc,e) = code_value();
  2922. #endif
  2923. updatePID();
  2924. SERIAL_PROTOCOL(MSG_OK);
  2925. #ifdef PID_PARAMS_PER_EXTRUDER
  2926. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  2927. SERIAL_PROTOCOL(e);
  2928. #endif // PID_PARAMS_PER_EXTRUDER
  2929. SERIAL_PROTOCOL(" p:");
  2930. SERIAL_PROTOCOL(PID_PARAM(Kp,e));
  2931. SERIAL_PROTOCOL(" i:");
  2932. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki,e)));
  2933. SERIAL_PROTOCOL(" d:");
  2934. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd,e)));
  2935. #ifdef PID_ADD_EXTRUSION_RATE
  2936. SERIAL_PROTOCOL(" c:");
  2937. //Kc does not have scaling applied above, or in resetting defaults
  2938. SERIAL_PROTOCOL(PID_PARAM(Kc,e));
  2939. #endif
  2940. SERIAL_PROTOCOLLN("");
  2941. }
  2942. else
  2943. {
  2944. SERIAL_ECHO_START;
  2945. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2946. }
  2947. }
  2948. break;
  2949. #endif //PIDTEMP
  2950. #ifdef PIDTEMPBED
  2951. case 304: // M304
  2952. {
  2953. if(code_seen('P')) bedKp = code_value();
  2954. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2955. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2956. updatePID();
  2957. SERIAL_PROTOCOL(MSG_OK);
  2958. SERIAL_PROTOCOL(" p:");
  2959. SERIAL_PROTOCOL(bedKp);
  2960. SERIAL_PROTOCOL(" i:");
  2961. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2962. SERIAL_PROTOCOL(" d:");
  2963. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2964. SERIAL_PROTOCOLLN("");
  2965. }
  2966. break;
  2967. #endif //PIDTEMP
  2968. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2969. {
  2970. #ifdef CHDK
  2971. SET_OUTPUT(CHDK);
  2972. WRITE(CHDK, HIGH);
  2973. chdkHigh = millis();
  2974. chdkActive = true;
  2975. #else
  2976. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2977. const uint8_t NUM_PULSES=16;
  2978. const float PULSE_LENGTH=0.01524;
  2979. for(int i=0; i < NUM_PULSES; i++) {
  2980. WRITE(PHOTOGRAPH_PIN, HIGH);
  2981. _delay_ms(PULSE_LENGTH);
  2982. WRITE(PHOTOGRAPH_PIN, LOW);
  2983. _delay_ms(PULSE_LENGTH);
  2984. }
  2985. delay(7.33);
  2986. for(int i=0; i < NUM_PULSES; i++) {
  2987. WRITE(PHOTOGRAPH_PIN, HIGH);
  2988. _delay_ms(PULSE_LENGTH);
  2989. WRITE(PHOTOGRAPH_PIN, LOW);
  2990. _delay_ms(PULSE_LENGTH);
  2991. }
  2992. #endif
  2993. #endif //chdk end if
  2994. }
  2995. break;
  2996. #ifdef DOGLCD
  2997. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2998. {
  2999. if (code_seen('C')) {
  3000. lcd_setcontrast( ((int)code_value())&63 );
  3001. }
  3002. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3003. SERIAL_PROTOCOL(lcd_contrast);
  3004. SERIAL_PROTOCOLLN("");
  3005. }
  3006. break;
  3007. #endif
  3008. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3009. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3010. {
  3011. float temp = .0;
  3012. if (code_seen('S')) temp=code_value();
  3013. set_extrude_min_temp(temp);
  3014. }
  3015. break;
  3016. #endif
  3017. case 303: // M303 PID autotune
  3018. {
  3019. float temp = 150.0;
  3020. int e=0;
  3021. int c=5;
  3022. if (code_seen('E')) e=code_value();
  3023. if (e<0)
  3024. temp=70;
  3025. if (code_seen('S')) temp=code_value();
  3026. if (code_seen('C')) c=code_value();
  3027. PID_autotune(temp, e, c);
  3028. }
  3029. break;
  3030. #ifdef SCARA
  3031. case 360: // M360 SCARA Theta pos1
  3032. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3033. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3034. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3035. if(Stopped == false) {
  3036. //get_coordinates(); // For X Y Z E F
  3037. delta[X_AXIS] = 0;
  3038. delta[Y_AXIS] = 120;
  3039. calculate_SCARA_forward_Transform(delta);
  3040. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3041. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3042. prepare_move();
  3043. //ClearToSend();
  3044. return;
  3045. }
  3046. break;
  3047. case 361: // SCARA Theta pos2
  3048. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3049. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3050. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3051. if(Stopped == false) {
  3052. //get_coordinates(); // For X Y Z E F
  3053. delta[X_AXIS] = 90;
  3054. delta[Y_AXIS] = 130;
  3055. calculate_SCARA_forward_Transform(delta);
  3056. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3057. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3058. prepare_move();
  3059. //ClearToSend();
  3060. return;
  3061. }
  3062. break;
  3063. case 362: // SCARA Psi pos1
  3064. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3065. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3066. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3067. if(Stopped == false) {
  3068. //get_coordinates(); // For X Y Z E F
  3069. delta[X_AXIS] = 60;
  3070. delta[Y_AXIS] = 180;
  3071. calculate_SCARA_forward_Transform(delta);
  3072. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3073. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3074. prepare_move();
  3075. //ClearToSend();
  3076. return;
  3077. }
  3078. break;
  3079. case 363: // SCARA Psi pos2
  3080. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3081. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3082. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3083. if(Stopped == false) {
  3084. //get_coordinates(); // For X Y Z E F
  3085. delta[X_AXIS] = 50;
  3086. delta[Y_AXIS] = 90;
  3087. calculate_SCARA_forward_Transform(delta);
  3088. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3089. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3090. prepare_move();
  3091. //ClearToSend();
  3092. return;
  3093. }
  3094. break;
  3095. case 364: // SCARA Psi pos3 (90 deg to Theta)
  3096. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3097. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3098. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3099. if(Stopped == false) {
  3100. //get_coordinates(); // For X Y Z E F
  3101. delta[X_AXIS] = 45;
  3102. delta[Y_AXIS] = 135;
  3103. calculate_SCARA_forward_Transform(delta);
  3104. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3105. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3106. prepare_move();
  3107. //ClearToSend();
  3108. return;
  3109. }
  3110. break;
  3111. case 365: // M364 Set SCARA scaling for X Y Z
  3112. for(int8_t i=0; i < 3; i++)
  3113. {
  3114. if(code_seen(axis_codes[i]))
  3115. {
  3116. axis_scaling[i] = code_value();
  3117. }
  3118. }
  3119. break;
  3120. #endif
  3121. case 400: // M400 finish all moves
  3122. {
  3123. st_synchronize();
  3124. }
  3125. break;
  3126. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3127. case 401:
  3128. {
  3129. engage_z_probe(); // Engage Z Servo endstop if available
  3130. }
  3131. break;
  3132. case 402:
  3133. {
  3134. retract_z_probe(); // Retract Z Servo endstop if enabled
  3135. }
  3136. break;
  3137. #endif
  3138. #ifdef FILAMENT_SENSOR
  3139. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3140. {
  3141. #if (FILWIDTH_PIN > -1)
  3142. if(code_seen('N')) filament_width_nominal=code_value();
  3143. else{
  3144. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3145. SERIAL_PROTOCOLLN(filament_width_nominal);
  3146. }
  3147. #endif
  3148. }
  3149. break;
  3150. case 405: //M405 Turn on filament sensor for control
  3151. {
  3152. if(code_seen('D')) meas_delay_cm=code_value();
  3153. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3154. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3155. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3156. {
  3157. int temp_ratio = widthFil_to_size_ratio();
  3158. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3159. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3160. }
  3161. delay_index1=0;
  3162. delay_index2=0;
  3163. }
  3164. filament_sensor = true ;
  3165. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3166. //SERIAL_PROTOCOL(filament_width_meas);
  3167. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3168. //SERIAL_PROTOCOL(extrudemultiply);
  3169. }
  3170. break;
  3171. case 406: //M406 Turn off filament sensor for control
  3172. {
  3173. filament_sensor = false ;
  3174. }
  3175. break;
  3176. case 407: //M407 Display measured filament diameter
  3177. {
  3178. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3179. SERIAL_PROTOCOLLN(filament_width_meas);
  3180. }
  3181. break;
  3182. #endif
  3183. case 500: // M500 Store settings in EEPROM
  3184. {
  3185. Config_StoreSettings();
  3186. }
  3187. break;
  3188. case 501: // M501 Read settings from EEPROM
  3189. {
  3190. Config_RetrieveSettings();
  3191. }
  3192. break;
  3193. case 502: // M502 Revert to default settings
  3194. {
  3195. Config_ResetDefault();
  3196. }
  3197. break;
  3198. case 503: // M503 print settings currently in memory
  3199. {
  3200. Config_PrintSettings(code_seen('S') && code_value == 0);
  3201. }
  3202. break;
  3203. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3204. case 540:
  3205. {
  3206. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3207. }
  3208. break;
  3209. #endif
  3210. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3211. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3212. {
  3213. float value;
  3214. if (code_seen('Z'))
  3215. {
  3216. value = code_value();
  3217. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3218. {
  3219. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3220. SERIAL_ECHO_START;
  3221. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3222. SERIAL_PROTOCOLLN("");
  3223. }
  3224. else
  3225. {
  3226. SERIAL_ECHO_START;
  3227. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3228. SERIAL_ECHOPGM(MSG_Z_MIN);
  3229. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3230. SERIAL_ECHOPGM(MSG_Z_MAX);
  3231. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3232. SERIAL_PROTOCOLLN("");
  3233. }
  3234. }
  3235. else
  3236. {
  3237. SERIAL_ECHO_START;
  3238. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3239. SERIAL_ECHO(-zprobe_zoffset);
  3240. SERIAL_PROTOCOLLN("");
  3241. }
  3242. break;
  3243. }
  3244. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3245. #ifdef FILAMENTCHANGEENABLE
  3246. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3247. {
  3248. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate/60;
  3249. for (int i=0; i<NUM_AXIS; i++)
  3250. target[i] = lastpos[i] = current_position[i];
  3251. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3252. #ifdef DELTA
  3253. #define RUNPLAN calculate_delta(target); BASICPLAN
  3254. #else
  3255. #define RUNPLAN BASICPLAN
  3256. #endif
  3257. //retract by E
  3258. if(code_seen('E'))
  3259. {
  3260. target[E_AXIS]+= code_value();
  3261. }
  3262. else
  3263. {
  3264. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3265. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3266. #endif
  3267. }
  3268. RUNPLAN;
  3269. //lift Z
  3270. if(code_seen('Z'))
  3271. {
  3272. target[Z_AXIS]+= code_value();
  3273. }
  3274. else
  3275. {
  3276. #ifdef FILAMENTCHANGE_ZADD
  3277. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3278. #endif
  3279. }
  3280. RUNPLAN;
  3281. //move xy
  3282. if(code_seen('X'))
  3283. {
  3284. target[X_AXIS]= code_value();
  3285. }
  3286. else
  3287. {
  3288. #ifdef FILAMENTCHANGE_XPOS
  3289. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3290. #endif
  3291. }
  3292. if(code_seen('Y'))
  3293. {
  3294. target[Y_AXIS]= code_value();
  3295. }
  3296. else
  3297. {
  3298. #ifdef FILAMENTCHANGE_YPOS
  3299. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3300. #endif
  3301. }
  3302. RUNPLAN;
  3303. if(code_seen('L'))
  3304. {
  3305. target[E_AXIS]+= code_value();
  3306. }
  3307. else
  3308. {
  3309. #ifdef FILAMENTCHANGE_FINALRETRACT
  3310. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3311. #endif
  3312. }
  3313. RUNPLAN;
  3314. //finish moves
  3315. st_synchronize();
  3316. //disable extruder steppers so filament can be removed
  3317. disable_e0();
  3318. disable_e1();
  3319. disable_e2();
  3320. delay(100);
  3321. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3322. uint8_t cnt=0;
  3323. while(!lcd_clicked()){
  3324. cnt++;
  3325. manage_heater();
  3326. manage_inactivity(true);
  3327. lcd_update();
  3328. if(cnt==0)
  3329. {
  3330. #if BEEPER > 0
  3331. SET_OUTPUT(BEEPER);
  3332. WRITE(BEEPER,HIGH);
  3333. delay(3);
  3334. WRITE(BEEPER,LOW);
  3335. delay(3);
  3336. #else
  3337. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3338. lcd_buzz(1000/6,100);
  3339. #else
  3340. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3341. #endif
  3342. #endif
  3343. }
  3344. }
  3345. //return to normal
  3346. if(code_seen('L'))
  3347. {
  3348. target[E_AXIS]+= -code_value();
  3349. }
  3350. else
  3351. {
  3352. #ifdef FILAMENTCHANGE_FINALRETRACT
  3353. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  3354. #endif
  3355. }
  3356. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3357. plan_set_e_position(current_position[E_AXIS]);
  3358. RUNPLAN; //should do nothing
  3359. //reset LCD alert message
  3360. lcd_reset_alert_level();
  3361. #ifdef DELTA
  3362. calculate_delta(lastpos);
  3363. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3364. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3365. #else
  3366. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3367. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3368. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3369. #endif
  3370. }
  3371. break;
  3372. #endif //FILAMENTCHANGEENABLE
  3373. #ifdef DUAL_X_CARRIAGE
  3374. case 605: // Set dual x-carriage movement mode:
  3375. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3376. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3377. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3378. // millimeters x-offset and an optional differential hotend temperature of
  3379. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3380. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3381. //
  3382. // Note: the X axis should be homed after changing dual x-carriage mode.
  3383. {
  3384. st_synchronize();
  3385. if (code_seen('S'))
  3386. dual_x_carriage_mode = code_value();
  3387. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3388. {
  3389. if (code_seen('X'))
  3390. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3391. if (code_seen('R'))
  3392. duplicate_extruder_temp_offset = code_value();
  3393. SERIAL_ECHO_START;
  3394. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3395. SERIAL_ECHO(" ");
  3396. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3397. SERIAL_ECHO(",");
  3398. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3399. SERIAL_ECHO(" ");
  3400. SERIAL_ECHO(duplicate_extruder_x_offset);
  3401. SERIAL_ECHO(",");
  3402. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3403. }
  3404. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3405. {
  3406. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3407. }
  3408. active_extruder_parked = false;
  3409. extruder_duplication_enabled = false;
  3410. delayed_move_time = 0;
  3411. }
  3412. break;
  3413. #endif //DUAL_X_CARRIAGE
  3414. case 907: // M907 Set digital trimpot motor current using axis codes.
  3415. {
  3416. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3417. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3418. if(code_seen('B')) digipot_current(4,code_value());
  3419. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3420. #endif
  3421. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3422. if(code_seen('X')) digipot_current(0, code_value());
  3423. #endif
  3424. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3425. if(code_seen('Z')) digipot_current(1, code_value());
  3426. #endif
  3427. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3428. if(code_seen('E')) digipot_current(2, code_value());
  3429. #endif
  3430. #ifdef DIGIPOT_I2C
  3431. // this one uses actual amps in floating point
  3432. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3433. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3434. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3435. #endif
  3436. }
  3437. break;
  3438. case 908: // M908 Control digital trimpot directly.
  3439. {
  3440. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3441. uint8_t channel,current;
  3442. if(code_seen('P')) channel=code_value();
  3443. if(code_seen('S')) current=code_value();
  3444. digitalPotWrite(channel, current);
  3445. #endif
  3446. }
  3447. break;
  3448. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3449. {
  3450. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3451. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3452. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3453. if(code_seen('B')) microstep_mode(4,code_value());
  3454. microstep_readings();
  3455. #endif
  3456. }
  3457. break;
  3458. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3459. {
  3460. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3461. if(code_seen('S')) switch((int)code_value())
  3462. {
  3463. case 1:
  3464. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3465. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3466. break;
  3467. case 2:
  3468. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3469. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3470. break;
  3471. }
  3472. microstep_readings();
  3473. #endif
  3474. }
  3475. break;
  3476. case 999: // M999: Restart after being stopped
  3477. Stopped = false;
  3478. lcd_reset_alert_level();
  3479. gcode_LastN = Stopped_gcode_LastN;
  3480. FlushSerialRequestResend();
  3481. break;
  3482. }
  3483. }
  3484. else if(code_seen('T'))
  3485. {
  3486. tmp_extruder = code_value();
  3487. if(tmp_extruder >= EXTRUDERS) {
  3488. SERIAL_ECHO_START;
  3489. SERIAL_ECHO("T");
  3490. SERIAL_ECHO(tmp_extruder);
  3491. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3492. }
  3493. else {
  3494. boolean make_move = false;
  3495. if(code_seen('F')) {
  3496. make_move = true;
  3497. next_feedrate = code_value();
  3498. if(next_feedrate > 0.0) {
  3499. feedrate = next_feedrate;
  3500. }
  3501. }
  3502. #if EXTRUDERS > 1
  3503. if(tmp_extruder != active_extruder) {
  3504. // Save current position to return to after applying extruder offset
  3505. memcpy(destination, current_position, sizeof(destination));
  3506. #ifdef DUAL_X_CARRIAGE
  3507. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3508. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3509. {
  3510. // Park old head: 1) raise 2) move to park position 3) lower
  3511. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3512. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3513. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3514. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3515. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3516. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3517. st_synchronize();
  3518. }
  3519. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3520. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3521. extruder_offset[Y_AXIS][active_extruder] +
  3522. extruder_offset[Y_AXIS][tmp_extruder];
  3523. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3524. extruder_offset[Z_AXIS][active_extruder] +
  3525. extruder_offset[Z_AXIS][tmp_extruder];
  3526. active_extruder = tmp_extruder;
  3527. // This function resets the max/min values - the current position may be overwritten below.
  3528. axis_is_at_home(X_AXIS);
  3529. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3530. {
  3531. current_position[X_AXIS] = inactive_extruder_x_pos;
  3532. inactive_extruder_x_pos = destination[X_AXIS];
  3533. }
  3534. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3535. {
  3536. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3537. if (active_extruder == 0 || active_extruder_parked)
  3538. current_position[X_AXIS] = inactive_extruder_x_pos;
  3539. else
  3540. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3541. inactive_extruder_x_pos = destination[X_AXIS];
  3542. extruder_duplication_enabled = false;
  3543. }
  3544. else
  3545. {
  3546. // record raised toolhead position for use by unpark
  3547. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3548. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3549. active_extruder_parked = true;
  3550. delayed_move_time = 0;
  3551. }
  3552. #else
  3553. // Offset extruder (only by XY)
  3554. int i;
  3555. for(i = 0; i < 2; i++) {
  3556. current_position[i] = current_position[i] -
  3557. extruder_offset[i][active_extruder] +
  3558. extruder_offset[i][tmp_extruder];
  3559. }
  3560. // Set the new active extruder and position
  3561. active_extruder = tmp_extruder;
  3562. #endif //else DUAL_X_CARRIAGE
  3563. #ifdef DELTA
  3564. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3565. //sent position to plan_set_position();
  3566. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3567. #else
  3568. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3569. #endif
  3570. // Move to the old position if 'F' was in the parameters
  3571. if(make_move && Stopped == false) {
  3572. prepare_move();
  3573. }
  3574. }
  3575. #endif
  3576. SERIAL_ECHO_START;
  3577. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3578. SERIAL_PROTOCOLLN((int)active_extruder);
  3579. }
  3580. }
  3581. else
  3582. {
  3583. SERIAL_ECHO_START;
  3584. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3585. SERIAL_ECHO(cmdbuffer[bufindr]);
  3586. SERIAL_ECHOLNPGM("\"");
  3587. }
  3588. ClearToSend();
  3589. }
  3590. void FlushSerialRequestResend()
  3591. {
  3592. //char cmdbuffer[bufindr][100]="Resend:";
  3593. MYSERIAL.flush();
  3594. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3595. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3596. ClearToSend();
  3597. }
  3598. void ClearToSend()
  3599. {
  3600. previous_millis_cmd = millis();
  3601. #ifdef SDSUPPORT
  3602. if(fromsd[bufindr])
  3603. return;
  3604. #endif //SDSUPPORT
  3605. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3606. }
  3607. void get_coordinates()
  3608. {
  3609. bool seen[4]={false,false,false,false};
  3610. for(int8_t i=0; i < NUM_AXIS; i++) {
  3611. if(code_seen(axis_codes[i]))
  3612. {
  3613. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3614. seen[i]=true;
  3615. }
  3616. else destination[i] = current_position[i]; //Are these else lines really needed?
  3617. }
  3618. if(code_seen('F')) {
  3619. next_feedrate = code_value();
  3620. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3621. }
  3622. }
  3623. void get_arc_coordinates()
  3624. {
  3625. #ifdef SF_ARC_FIX
  3626. bool relative_mode_backup = relative_mode;
  3627. relative_mode = true;
  3628. #endif
  3629. get_coordinates();
  3630. #ifdef SF_ARC_FIX
  3631. relative_mode=relative_mode_backup;
  3632. #endif
  3633. if(code_seen('I')) {
  3634. offset[0] = code_value();
  3635. }
  3636. else {
  3637. offset[0] = 0.0;
  3638. }
  3639. if(code_seen('J')) {
  3640. offset[1] = code_value();
  3641. }
  3642. else {
  3643. offset[1] = 0.0;
  3644. }
  3645. }
  3646. void clamp_to_software_endstops(float target[3])
  3647. {
  3648. if (min_software_endstops) {
  3649. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3650. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3651. float negative_z_offset = 0;
  3652. #ifdef ENABLE_AUTO_BED_LEVELING
  3653. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  3654. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  3655. #endif
  3656. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  3657. }
  3658. if (max_software_endstops) {
  3659. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3660. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3661. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3662. }
  3663. }
  3664. #ifdef DELTA
  3665. void recalc_delta_settings(float radius, float diagonal_rod)
  3666. {
  3667. delta_tower1_x= -SIN_60*radius; // front left tower
  3668. delta_tower1_y= -COS_60*radius;
  3669. delta_tower2_x= SIN_60*radius; // front right tower
  3670. delta_tower2_y= -COS_60*radius;
  3671. delta_tower3_x= 0.0; // back middle tower
  3672. delta_tower3_y= radius;
  3673. delta_diagonal_rod_2= sq(diagonal_rod);
  3674. }
  3675. void calculate_delta(float cartesian[3])
  3676. {
  3677. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3678. - sq(delta_tower1_x-cartesian[X_AXIS])
  3679. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3680. ) + cartesian[Z_AXIS];
  3681. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3682. - sq(delta_tower2_x-cartesian[X_AXIS])
  3683. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3684. ) + cartesian[Z_AXIS];
  3685. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3686. - sq(delta_tower3_x-cartesian[X_AXIS])
  3687. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3688. ) + cartesian[Z_AXIS];
  3689. /*
  3690. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3691. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3692. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3693. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3694. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3695. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3696. */
  3697. }
  3698. #endif
  3699. void prepare_move()
  3700. {
  3701. clamp_to_software_endstops(destination);
  3702. previous_millis_cmd = millis();
  3703. #ifdef SCARA //for now same as delta-code
  3704. float difference[NUM_AXIS];
  3705. for (int8_t i=0; i < NUM_AXIS; i++) {
  3706. difference[i] = destination[i] - current_position[i];
  3707. }
  3708. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3709. sq(difference[Y_AXIS]) +
  3710. sq(difference[Z_AXIS]));
  3711. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3712. if (cartesian_mm < 0.000001) { return; }
  3713. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3714. int steps = max(1, int(scara_segments_per_second * seconds));
  3715. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3716. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3717. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3718. for (int s = 1; s <= steps; s++) {
  3719. float fraction = float(s) / float(steps);
  3720. for(int8_t i=0; i < NUM_AXIS; i++) {
  3721. destination[i] = current_position[i] + difference[i] * fraction;
  3722. }
  3723. calculate_delta(destination);
  3724. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  3725. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  3726. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  3727. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3728. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3729. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3730. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3731. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3732. active_extruder);
  3733. }
  3734. #endif // SCARA
  3735. #ifdef DELTA
  3736. float difference[NUM_AXIS];
  3737. for (int8_t i=0; i < NUM_AXIS; i++) {
  3738. difference[i] = destination[i] - current_position[i];
  3739. }
  3740. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3741. sq(difference[Y_AXIS]) +
  3742. sq(difference[Z_AXIS]));
  3743. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3744. if (cartesian_mm < 0.000001) { return; }
  3745. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3746. int steps = max(1, int(delta_segments_per_second * seconds));
  3747. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3748. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3749. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3750. for (int s = 1; s <= steps; s++) {
  3751. float fraction = float(s) / float(steps);
  3752. for(int8_t i=0; i < NUM_AXIS; i++) {
  3753. destination[i] = current_position[i] + difference[i] * fraction;
  3754. }
  3755. calculate_delta(destination);
  3756. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3757. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3758. active_extruder);
  3759. }
  3760. #endif // DELTA
  3761. #ifdef DUAL_X_CARRIAGE
  3762. if (active_extruder_parked)
  3763. {
  3764. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3765. {
  3766. // move duplicate extruder into correct duplication position.
  3767. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3768. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3769. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3770. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3771. st_synchronize();
  3772. extruder_duplication_enabled = true;
  3773. active_extruder_parked = false;
  3774. }
  3775. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3776. {
  3777. if (current_position[E_AXIS] == destination[E_AXIS])
  3778. {
  3779. // this is a travel move - skit it but keep track of current position (so that it can later
  3780. // be used as start of first non-travel move)
  3781. if (delayed_move_time != 0xFFFFFFFFUL)
  3782. {
  3783. memcpy(current_position, destination, sizeof(current_position));
  3784. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3785. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3786. delayed_move_time = millis();
  3787. return;
  3788. }
  3789. }
  3790. delayed_move_time = 0;
  3791. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3792. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3793. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3794. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3795. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3796. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3797. active_extruder_parked = false;
  3798. }
  3799. }
  3800. #endif //DUAL_X_CARRIAGE
  3801. #if ! (defined DELTA || defined SCARA)
  3802. // Do not use feedmultiply for E or Z only moves
  3803. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3804. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3805. }
  3806. else {
  3807. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3808. }
  3809. #endif // !(DELTA || SCARA)
  3810. for(int8_t i=0; i < NUM_AXIS; i++) {
  3811. current_position[i] = destination[i];
  3812. }
  3813. }
  3814. void prepare_arc_move(char isclockwise) {
  3815. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3816. // Trace the arc
  3817. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3818. // As far as the parser is concerned, the position is now == target. In reality the
  3819. // motion control system might still be processing the action and the real tool position
  3820. // in any intermediate location.
  3821. for(int8_t i=0; i < NUM_AXIS; i++) {
  3822. current_position[i] = destination[i];
  3823. }
  3824. previous_millis_cmd = millis();
  3825. }
  3826. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3827. #if defined(FAN_PIN)
  3828. #if CONTROLLERFAN_PIN == FAN_PIN
  3829. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3830. #endif
  3831. #endif
  3832. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3833. unsigned long lastMotorCheck = 0;
  3834. void controllerFan()
  3835. {
  3836. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3837. {
  3838. lastMotorCheck = millis();
  3839. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3840. #if EXTRUDERS > 2
  3841. || !READ(E2_ENABLE_PIN)
  3842. #endif
  3843. #if EXTRUDER > 1
  3844. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3845. || !READ(X2_ENABLE_PIN)
  3846. #endif
  3847. || !READ(E1_ENABLE_PIN)
  3848. #endif
  3849. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3850. {
  3851. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3852. }
  3853. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3854. {
  3855. digitalWrite(CONTROLLERFAN_PIN, 0);
  3856. analogWrite(CONTROLLERFAN_PIN, 0);
  3857. }
  3858. else
  3859. {
  3860. // allows digital or PWM fan output to be used (see M42 handling)
  3861. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3862. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3863. }
  3864. }
  3865. }
  3866. #endif
  3867. #ifdef SCARA
  3868. void calculate_SCARA_forward_Transform(float f_scara[3])
  3869. {
  3870. // Perform forward kinematics, and place results in delta[3]
  3871. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3872. float x_sin, x_cos, y_sin, y_cos;
  3873. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3874. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3875. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3876. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3877. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3878. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3879. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  3880. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  3881. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  3882. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  3883. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  3884. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  3885. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  3886. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3887. }
  3888. void calculate_delta(float cartesian[3]){
  3889. //reverse kinematics.
  3890. // Perform reversed kinematics, and place results in delta[3]
  3891. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3892. float SCARA_pos[2];
  3893. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  3894. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  3895. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  3896. #if (Linkage_1 == Linkage_2)
  3897. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  3898. #else
  3899. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  3900. #endif
  3901. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  3902. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  3903. SCARA_K2 = Linkage_2 * SCARA_S2;
  3904. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  3905. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  3906. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  3907. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  3908. delta[Z_AXIS] = cartesian[Z_AXIS];
  3909. /*
  3910. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3911. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3912. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3913. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  3914. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  3915. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3916. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3917. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3918. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  3919. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  3920. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  3921. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  3922. SERIAL_ECHOLN(" ");*/
  3923. }
  3924. #endif
  3925. #ifdef TEMP_STAT_LEDS
  3926. static bool blue_led = false;
  3927. static bool red_led = false;
  3928. static uint32_t stat_update = 0;
  3929. void handle_status_leds(void) {
  3930. float max_temp = 0.0;
  3931. if(millis() > stat_update) {
  3932. stat_update += 500; // Update every 0.5s
  3933. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3934. max_temp = max(max_temp, degHotend(cur_extruder));
  3935. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3936. }
  3937. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3938. max_temp = max(max_temp, degTargetBed());
  3939. max_temp = max(max_temp, degBed());
  3940. #endif
  3941. if((max_temp > 55.0) && (red_led == false)) {
  3942. digitalWrite(STAT_LED_RED, 1);
  3943. digitalWrite(STAT_LED_BLUE, 0);
  3944. red_led = true;
  3945. blue_led = false;
  3946. }
  3947. if((max_temp < 54.0) && (blue_led == false)) {
  3948. digitalWrite(STAT_LED_RED, 0);
  3949. digitalWrite(STAT_LED_BLUE, 1);
  3950. red_led = false;
  3951. blue_led = true;
  3952. }
  3953. }
  3954. }
  3955. #endif
  3956. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  3957. {
  3958. #if defined(KILL_PIN) && KILL_PIN > -1
  3959. static int killCount = 0; // make the inactivity button a bit less responsive
  3960. const int KILL_DELAY = 10000;
  3961. #endif
  3962. #if defined(HOME_PIN) && HOME_PIN > -1
  3963. static int homeDebounceCount = 0; // poor man's debouncing count
  3964. const int HOME_DEBOUNCE_DELAY = 10000;
  3965. #endif
  3966. if(buflen < (BUFSIZE-1))
  3967. get_command();
  3968. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3969. if(max_inactive_time)
  3970. kill();
  3971. if(stepper_inactive_time) {
  3972. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3973. {
  3974. if(blocks_queued() == false && ignore_stepper_queue == false) {
  3975. disable_x();
  3976. disable_y();
  3977. disable_z();
  3978. disable_e0();
  3979. disable_e1();
  3980. disable_e2();
  3981. }
  3982. }
  3983. }
  3984. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3985. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  3986. {
  3987. chdkActive = false;
  3988. WRITE(CHDK, LOW);
  3989. }
  3990. #endif
  3991. #if defined(KILL_PIN) && KILL_PIN > -1
  3992. // Check if the kill button was pressed and wait just in case it was an accidental
  3993. // key kill key press
  3994. // -------------------------------------------------------------------------------
  3995. if( 0 == READ(KILL_PIN) )
  3996. {
  3997. killCount++;
  3998. }
  3999. else if (killCount > 0)
  4000. {
  4001. killCount--;
  4002. }
  4003. // Exceeded threshold and we can confirm that it was not accidental
  4004. // KILL the machine
  4005. // ----------------------------------------------------------------
  4006. if ( killCount >= KILL_DELAY)
  4007. {
  4008. kill();
  4009. }
  4010. #endif
  4011. #if defined(HOME_PIN) && HOME_PIN > -1
  4012. // Check to see if we have to home, use poor man's debouncer
  4013. // ---------------------------------------------------------
  4014. if ( 0 == READ(HOME_PIN) )
  4015. {
  4016. if (homeDebounceCount == 0)
  4017. {
  4018. enquecommands_P((PSTR("G28")));
  4019. homeDebounceCount++;
  4020. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4021. }
  4022. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4023. {
  4024. homeDebounceCount++;
  4025. }
  4026. else
  4027. {
  4028. homeDebounceCount = 0;
  4029. }
  4030. }
  4031. #endif
  4032. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4033. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4034. #endif
  4035. #ifdef EXTRUDER_RUNOUT_PREVENT
  4036. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4037. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4038. {
  4039. bool oldstatus=READ(E0_ENABLE_PIN);
  4040. enable_e0();
  4041. float oldepos=current_position[E_AXIS];
  4042. float oldedes=destination[E_AXIS];
  4043. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4044. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4045. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4046. current_position[E_AXIS]=oldepos;
  4047. destination[E_AXIS]=oldedes;
  4048. plan_set_e_position(oldepos);
  4049. previous_millis_cmd=millis();
  4050. st_synchronize();
  4051. WRITE(E0_ENABLE_PIN,oldstatus);
  4052. }
  4053. #endif
  4054. #if defined(DUAL_X_CARRIAGE)
  4055. // handle delayed move timeout
  4056. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4057. {
  4058. // travel moves have been received so enact them
  4059. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4060. memcpy(destination,current_position,sizeof(destination));
  4061. prepare_move();
  4062. }
  4063. #endif
  4064. #ifdef TEMP_STAT_LEDS
  4065. handle_status_leds();
  4066. #endif
  4067. check_axes_activity();
  4068. }
  4069. void kill()
  4070. {
  4071. cli(); // Stop interrupts
  4072. disable_heater();
  4073. disable_x();
  4074. disable_y();
  4075. disable_z();
  4076. disable_e0();
  4077. disable_e1();
  4078. disable_e2();
  4079. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4080. pinMode(PS_ON_PIN,INPUT);
  4081. #endif
  4082. SERIAL_ERROR_START;
  4083. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4084. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4085. // FMC small patch to update the LCD before ending
  4086. sei(); // enable interrupts
  4087. for ( int i=5; i--; lcd_update())
  4088. {
  4089. delay(200);
  4090. }
  4091. cli(); // disable interrupts
  4092. suicide();
  4093. while(1) { /* Intentionally left empty */ } // Wait for reset
  4094. }
  4095. void Stop()
  4096. {
  4097. disable_heater();
  4098. if(Stopped == false) {
  4099. Stopped = true;
  4100. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4101. SERIAL_ERROR_START;
  4102. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4103. LCD_MESSAGEPGM(MSG_STOPPED);
  4104. }
  4105. }
  4106. bool IsStopped() { return Stopped; };
  4107. #ifdef FAST_PWM_FAN
  4108. void setPwmFrequency(uint8_t pin, int val)
  4109. {
  4110. val &= 0x07;
  4111. switch(digitalPinToTimer(pin))
  4112. {
  4113. #if defined(TCCR0A)
  4114. case TIMER0A:
  4115. case TIMER0B:
  4116. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4117. // TCCR0B |= val;
  4118. break;
  4119. #endif
  4120. #if defined(TCCR1A)
  4121. case TIMER1A:
  4122. case TIMER1B:
  4123. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4124. // TCCR1B |= val;
  4125. break;
  4126. #endif
  4127. #if defined(TCCR2)
  4128. case TIMER2:
  4129. case TIMER2:
  4130. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4131. TCCR2 |= val;
  4132. break;
  4133. #endif
  4134. #if defined(TCCR2A)
  4135. case TIMER2A:
  4136. case TIMER2B:
  4137. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4138. TCCR2B |= val;
  4139. break;
  4140. #endif
  4141. #if defined(TCCR3A)
  4142. case TIMER3A:
  4143. case TIMER3B:
  4144. case TIMER3C:
  4145. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4146. TCCR3B |= val;
  4147. break;
  4148. #endif
  4149. #if defined(TCCR4A)
  4150. case TIMER4A:
  4151. case TIMER4B:
  4152. case TIMER4C:
  4153. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4154. TCCR4B |= val;
  4155. break;
  4156. #endif
  4157. #if defined(TCCR5A)
  4158. case TIMER5A:
  4159. case TIMER5B:
  4160. case TIMER5C:
  4161. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4162. TCCR5B |= val;
  4163. break;
  4164. #endif
  4165. }
  4166. }
  4167. #endif //FAST_PWM_FAN
  4168. bool setTargetedHotend(int code){
  4169. tmp_extruder = active_extruder;
  4170. if(code_seen('T')) {
  4171. tmp_extruder = code_value();
  4172. if(tmp_extruder >= EXTRUDERS) {
  4173. SERIAL_ECHO_START;
  4174. switch(code){
  4175. case 104:
  4176. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4177. break;
  4178. case 105:
  4179. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4180. break;
  4181. case 109:
  4182. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4183. break;
  4184. case 218:
  4185. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4186. break;
  4187. case 221:
  4188. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4189. break;
  4190. }
  4191. SERIAL_ECHOLN(tmp_extruder);
  4192. return true;
  4193. }
  4194. }
  4195. return false;
  4196. }
  4197. float calculate_volumetric_multiplier(float diameter) {
  4198. float area = .0;
  4199. float radius = .0;
  4200. radius = diameter * .5;
  4201. if (! volumetric_enabled || radius == 0) {
  4202. area = 1;
  4203. }
  4204. else {
  4205. area = M_PI * pow(radius, 2);
  4206. }
  4207. return 1.0 / area;
  4208. }
  4209. void calculate_volumetric_multipliers() {
  4210. for (int i=0; i<EXTRUDERS; i++)
  4211. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  4212. }