My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

temperature.cpp 63KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * temperature.cpp - temperature control
  24. */
  25. #include "Marlin.h"
  26. #include "ultralcd.h"
  27. #include "temperature.h"
  28. #include "thermistortables.h"
  29. #include "language.h"
  30. #if ENABLED(BABYSTEPPING)
  31. #include "stepper.h"
  32. #endif
  33. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  34. #include "endstops.h"
  35. #endif
  36. #if ENABLED(USE_WATCHDOG)
  37. #include "watchdog.h"
  38. #endif
  39. #ifdef K1 // Defined in Configuration.h in the PID settings
  40. #define K2 (1.0-K1)
  41. #endif
  42. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  43. static void* heater_ttbl_map[2] = {(void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE };
  44. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  45. #else
  46. static void* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS((void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE, (void*)HEATER_2_TEMPTABLE, (void*)HEATER_3_TEMPTABLE, (void*)HEATER_4_TEMPTABLE);
  47. static uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN, HEATER_4_TEMPTABLE_LEN);
  48. #endif
  49. Temperature thermalManager;
  50. // public:
  51. float Temperature::current_temperature[HOTENDS] = { 0.0 },
  52. Temperature::current_temperature_bed = 0.0;
  53. int Temperature::current_temperature_raw[HOTENDS] = { 0 },
  54. Temperature::target_temperature[HOTENDS] = { 0 },
  55. Temperature::current_temperature_bed_raw = 0,
  56. Temperature::target_temperature_bed = 0;
  57. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  58. float Temperature::redundant_temperature = 0.0;
  59. #endif
  60. uint8_t Temperature::soft_pwm_bed;
  61. #if ENABLED(FAN_SOFT_PWM)
  62. uint8_t Temperature::fanSpeedSoftPwm[FAN_COUNT];
  63. #endif
  64. #if ENABLED(PIDTEMP)
  65. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  66. float Temperature::Kp[HOTENDS] = ARRAY_BY_HOTENDS1(DEFAULT_Kp),
  67. Temperature::Ki[HOTENDS] = ARRAY_BY_HOTENDS1((DEFAULT_Ki) * (PID_dT)),
  68. Temperature::Kd[HOTENDS] = ARRAY_BY_HOTENDS1((DEFAULT_Kd) / (PID_dT));
  69. #if ENABLED(PID_EXTRUSION_SCALING)
  70. float Temperature::Kc[HOTENDS] = ARRAY_BY_HOTENDS1(DEFAULT_Kc);
  71. #endif
  72. #else
  73. float Temperature::Kp = DEFAULT_Kp,
  74. Temperature::Ki = (DEFAULT_Ki) * (PID_dT),
  75. Temperature::Kd = (DEFAULT_Kd) / (PID_dT);
  76. #if ENABLED(PID_EXTRUSION_SCALING)
  77. float Temperature::Kc = DEFAULT_Kc;
  78. #endif
  79. #endif
  80. #endif
  81. #if ENABLED(PIDTEMPBED)
  82. float Temperature::bedKp = DEFAULT_bedKp,
  83. Temperature::bedKi = ((DEFAULT_bedKi) * PID_dT),
  84. Temperature::bedKd = ((DEFAULT_bedKd) / PID_dT);
  85. #endif
  86. #if ENABLED(BABYSTEPPING)
  87. volatile int Temperature::babystepsTodo[XYZ] = { 0 };
  88. #endif
  89. #if WATCH_HOTENDS
  90. int Temperature::watch_target_temp[HOTENDS] = { 0 };
  91. millis_t Temperature::watch_heater_next_ms[HOTENDS] = { 0 };
  92. #endif
  93. #if WATCH_THE_BED
  94. int Temperature::watch_target_bed_temp = 0;
  95. millis_t Temperature::watch_bed_next_ms = 0;
  96. #endif
  97. #if ENABLED(PREVENT_COLD_EXTRUSION)
  98. bool Temperature::allow_cold_extrude = false;
  99. float Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
  100. #endif
  101. // private:
  102. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  103. int Temperature::redundant_temperature_raw = 0;
  104. float Temperature::redundant_temperature = 0.0;
  105. #endif
  106. volatile bool Temperature::temp_meas_ready = false;
  107. #if ENABLED(PIDTEMP)
  108. float Temperature::temp_iState[HOTENDS] = { 0 },
  109. Temperature::temp_dState[HOTENDS] = { 0 },
  110. Temperature::pTerm[HOTENDS],
  111. Temperature::iTerm[HOTENDS],
  112. Temperature::dTerm[HOTENDS];
  113. #if ENABLED(PID_EXTRUSION_SCALING)
  114. float Temperature::cTerm[HOTENDS];
  115. long Temperature::last_e_position;
  116. long Temperature::lpq[LPQ_MAX_LEN];
  117. int Temperature::lpq_ptr = 0;
  118. #endif
  119. float Temperature::pid_error[HOTENDS];
  120. bool Temperature::pid_reset[HOTENDS];
  121. #endif
  122. #if ENABLED(PIDTEMPBED)
  123. float Temperature::temp_iState_bed = { 0 },
  124. Temperature::temp_dState_bed = { 0 },
  125. Temperature::pTerm_bed,
  126. Temperature::iTerm_bed,
  127. Temperature::dTerm_bed,
  128. Temperature::pid_error_bed;
  129. #else
  130. millis_t Temperature::next_bed_check_ms;
  131. #endif
  132. unsigned long Temperature::raw_temp_value[MAX_EXTRUDERS] = { 0 };
  133. unsigned long Temperature::raw_temp_bed_value = 0;
  134. // Init min and max temp with extreme values to prevent false errors during startup
  135. int Temperature::minttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP, HEATER_4_RAW_LO_TEMP),
  136. Temperature::maxttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP, HEATER_4_RAW_HI_TEMP),
  137. Temperature::minttemp[HOTENDS] = { 0 },
  138. Temperature::maxttemp[HOTENDS] = ARRAY_BY_HOTENDS1(16383);
  139. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  140. int Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
  141. #endif
  142. #ifdef MILLISECONDS_PREHEAT_TIME
  143. unsigned long Temperature::preheat_end_time[HOTENDS] = { 0 };
  144. #endif
  145. #ifdef BED_MINTEMP
  146. int Temperature::bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  147. #endif
  148. #ifdef BED_MAXTEMP
  149. int Temperature::bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  150. #endif
  151. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  152. int Temperature::meas_shift_index; // Index of a delayed sample in buffer
  153. #endif
  154. #if HAS_AUTO_FAN
  155. millis_t Temperature::next_auto_fan_check_ms = 0;
  156. #endif
  157. uint8_t Temperature::soft_pwm[HOTENDS];
  158. #if ENABLED(FAN_SOFT_PWM)
  159. uint8_t Temperature::soft_pwm_fan[FAN_COUNT];
  160. #endif
  161. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  162. int Temperature::current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  163. #endif
  164. #if HAS_PID_HEATING
  165. void Temperature::PID_autotune(float temp, int hotend, int ncycles, bool set_result/*=false*/) {
  166. float input = 0.0;
  167. int cycles = 0;
  168. bool heating = true;
  169. millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
  170. long t_high = 0, t_low = 0;
  171. long bias, d;
  172. float Ku, Tu;
  173. float workKp = 0, workKi = 0, workKd = 0;
  174. float max = 0, min = 10000;
  175. #if HAS_AUTO_FAN
  176. next_auto_fan_check_ms = temp_ms + 2500UL;
  177. #endif
  178. if (hotend >=
  179. #if ENABLED(PIDTEMP)
  180. HOTENDS
  181. #else
  182. 0
  183. #endif
  184. || hotend <
  185. #if ENABLED(PIDTEMPBED)
  186. -1
  187. #else
  188. 0
  189. #endif
  190. ) {
  191. SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
  192. return;
  193. }
  194. SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
  195. disable_all_heaters(); // switch off all heaters.
  196. #if HAS_PID_FOR_BOTH
  197. if (hotend < 0)
  198. soft_pwm_bed = bias = d = (MAX_BED_POWER) >> 1;
  199. else
  200. soft_pwm[hotend] = bias = d = (PID_MAX) >> 1;
  201. #elif ENABLED(PIDTEMP)
  202. soft_pwm[hotend] = bias = d = (PID_MAX) >> 1;
  203. #else
  204. soft_pwm_bed = bias = d = (MAX_BED_POWER) >> 1;
  205. #endif
  206. wait_for_heatup = true;
  207. // PID Tuning loop
  208. while (wait_for_heatup) {
  209. millis_t ms = millis();
  210. if (temp_meas_ready) { // temp sample ready
  211. updateTemperaturesFromRawValues();
  212. input =
  213. #if HAS_PID_FOR_BOTH
  214. hotend < 0 ? current_temperature_bed : current_temperature[hotend]
  215. #elif ENABLED(PIDTEMP)
  216. current_temperature[hotend]
  217. #else
  218. current_temperature_bed
  219. #endif
  220. ;
  221. NOLESS(max, input);
  222. NOMORE(min, input);
  223. #if HAS_AUTO_FAN
  224. if (ELAPSED(ms, next_auto_fan_check_ms)) {
  225. checkExtruderAutoFans();
  226. next_auto_fan_check_ms = ms + 2500UL;
  227. }
  228. #endif
  229. if (heating && input > temp) {
  230. if (ELAPSED(ms, t2 + 5000UL)) {
  231. heating = false;
  232. #if HAS_PID_FOR_BOTH
  233. if (hotend < 0)
  234. soft_pwm_bed = (bias - d) >> 1;
  235. else
  236. soft_pwm[hotend] = (bias - d) >> 1;
  237. #elif ENABLED(PIDTEMP)
  238. soft_pwm[hotend] = (bias - d) >> 1;
  239. #elif ENABLED(PIDTEMPBED)
  240. soft_pwm_bed = (bias - d) >> 1;
  241. #endif
  242. t1 = ms;
  243. t_high = t1 - t2;
  244. max = temp;
  245. }
  246. }
  247. if (!heating && input < temp) {
  248. if (ELAPSED(ms, t1 + 5000UL)) {
  249. heating = true;
  250. t2 = ms;
  251. t_low = t2 - t1;
  252. if (cycles > 0) {
  253. long max_pow =
  254. #if HAS_PID_FOR_BOTH
  255. hotend < 0 ? MAX_BED_POWER : PID_MAX
  256. #elif ENABLED(PIDTEMP)
  257. PID_MAX
  258. #else
  259. MAX_BED_POWER
  260. #endif
  261. ;
  262. bias += (d * (t_high - t_low)) / (t_low + t_high);
  263. bias = constrain(bias, 20, max_pow - 20);
  264. d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
  265. SERIAL_PROTOCOLPAIR(MSG_BIAS, bias);
  266. SERIAL_PROTOCOLPAIR(MSG_D, d);
  267. SERIAL_PROTOCOLPAIR(MSG_T_MIN, min);
  268. SERIAL_PROTOCOLPAIR(MSG_T_MAX, max);
  269. if (cycles > 2) {
  270. Ku = (4.0 * d) / (M_PI * (max - min) * 0.5);
  271. Tu = ((float)(t_low + t_high) * 0.001);
  272. SERIAL_PROTOCOLPAIR(MSG_KU, Ku);
  273. SERIAL_PROTOCOLPAIR(MSG_TU, Tu);
  274. workKp = 0.6 * Ku;
  275. workKi = 2 * workKp / Tu;
  276. workKd = workKp * Tu * 0.125;
  277. SERIAL_PROTOCOLLNPGM("\n" MSG_CLASSIC_PID);
  278. SERIAL_PROTOCOLPAIR(MSG_KP, workKp);
  279. SERIAL_PROTOCOLPAIR(MSG_KI, workKi);
  280. SERIAL_PROTOCOLLNPAIR(MSG_KD, workKd);
  281. /**
  282. workKp = 0.33*Ku;
  283. workKi = workKp/Tu;
  284. workKd = workKp*Tu/3;
  285. SERIAL_PROTOCOLLNPGM(" Some overshoot");
  286. SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
  287. SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
  288. SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
  289. workKp = 0.2*Ku;
  290. workKi = 2*workKp/Tu;
  291. workKd = workKp*Tu/3;
  292. SERIAL_PROTOCOLLNPGM(" No overshoot");
  293. SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
  294. SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
  295. SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
  296. */
  297. }
  298. }
  299. #if HAS_PID_FOR_BOTH
  300. if (hotend < 0)
  301. soft_pwm_bed = (bias + d) >> 1;
  302. else
  303. soft_pwm[hotend] = (bias + d) >> 1;
  304. #elif ENABLED(PIDTEMP)
  305. soft_pwm[hotend] = (bias + d) >> 1;
  306. #else
  307. soft_pwm_bed = (bias + d) >> 1;
  308. #endif
  309. cycles++;
  310. min = temp;
  311. }
  312. }
  313. }
  314. #define MAX_OVERSHOOT_PID_AUTOTUNE 20
  315. if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) {
  316. SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
  317. return;
  318. }
  319. // Every 2 seconds...
  320. if (ELAPSED(ms, temp_ms + 2000UL)) {
  321. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  322. print_heaterstates();
  323. SERIAL_EOL;
  324. #endif
  325. temp_ms = ms;
  326. } // every 2 seconds
  327. // Over 2 minutes?
  328. if (((ms - t1) + (ms - t2)) > (10L * 60L * 1000L * 2L)) {
  329. SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
  330. return;
  331. }
  332. if (cycles > ncycles) {
  333. SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
  334. #if HAS_PID_FOR_BOTH
  335. const char* estring = hotend < 0 ? "bed" : "";
  336. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kp ", workKp); SERIAL_EOL;
  337. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Ki ", workKi); SERIAL_EOL;
  338. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kd ", workKd); SERIAL_EOL;
  339. #elif ENABLED(PIDTEMP)
  340. SERIAL_PROTOCOLPAIR("#define DEFAULT_Kp ", workKp); SERIAL_EOL;
  341. SERIAL_PROTOCOLPAIR("#define DEFAULT_Ki ", workKi); SERIAL_EOL;
  342. SERIAL_PROTOCOLPAIR("#define DEFAULT_Kd ", workKd); SERIAL_EOL;
  343. #else
  344. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKp ", workKp); SERIAL_EOL;
  345. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKi ", workKi); SERIAL_EOL;
  346. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKd ", workKd); SERIAL_EOL;
  347. #endif
  348. #define _SET_BED_PID() do { \
  349. bedKp = workKp; \
  350. bedKi = scalePID_i(workKi); \
  351. bedKd = scalePID_d(workKd); \
  352. updatePID(); } while(0)
  353. #define _SET_EXTRUDER_PID() do { \
  354. PID_PARAM(Kp, hotend) = workKp; \
  355. PID_PARAM(Ki, hotend) = scalePID_i(workKi); \
  356. PID_PARAM(Kd, hotend) = scalePID_d(workKd); \
  357. updatePID(); } while(0)
  358. // Use the result? (As with "M303 U1")
  359. if (set_result) {
  360. #if HAS_PID_FOR_BOTH
  361. if (hotend < 0)
  362. _SET_BED_PID();
  363. else
  364. _SET_EXTRUDER_PID();
  365. #elif ENABLED(PIDTEMP)
  366. _SET_EXTRUDER_PID();
  367. #else
  368. _SET_BED_PID();
  369. #endif
  370. }
  371. return;
  372. }
  373. lcd_update();
  374. }
  375. if (!wait_for_heatup) disable_all_heaters();
  376. }
  377. #endif // HAS_PID_HEATING
  378. /**
  379. * Class and Instance Methods
  380. */
  381. Temperature::Temperature() { }
  382. void Temperature::updatePID() {
  383. #if ENABLED(PIDTEMP)
  384. #if ENABLED(PID_EXTRUSION_SCALING)
  385. last_e_position = 0;
  386. #endif
  387. #endif
  388. }
  389. int Temperature::getHeaterPower(int heater) {
  390. return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
  391. }
  392. #if HAS_AUTO_FAN
  393. void Temperature::checkExtruderAutoFans() {
  394. constexpr int8_t fanPin[] = { E0_AUTO_FAN_PIN, E1_AUTO_FAN_PIN, E2_AUTO_FAN_PIN, E3_AUTO_FAN_PIN, E4_AUTO_FAN_PIN };
  395. constexpr int fanBit[] = {
  396. 0,
  397. AUTO_1_IS_0 ? 0 : 1,
  398. AUTO_2_IS_0 ? 0 : AUTO_2_IS_1 ? 1 : 2,
  399. AUTO_3_IS_0 ? 0 : AUTO_3_IS_1 ? 1 : AUTO_3_IS_2 ? 2 : 3,
  400. AUTO_4_IS_0 ? 0 : AUTO_4_IS_1 ? 1 : AUTO_4_IS_2 ? 2 : AUTO_4_IS_3 ? 3 : 4
  401. };
  402. uint8_t fanState = 0;
  403. HOTEND_LOOP() {
  404. if (current_temperature[e] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  405. SBI(fanState, fanBit[e]);
  406. }
  407. uint8_t fanDone = 0;
  408. for (uint8_t f = 0; f < COUNT(fanPin); f++) {
  409. int8_t pin = fanPin[f];
  410. if (pin >= 0 && !TEST(fanDone, fanBit[f])) {
  411. uint8_t newFanSpeed = TEST(fanState, fanBit[f]) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  412. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  413. digitalWrite(pin, newFanSpeed);
  414. analogWrite(pin, newFanSpeed);
  415. SBI(fanDone, fanBit[f]);
  416. }
  417. }
  418. }
  419. #endif // HAS_AUTO_FAN
  420. //
  421. // Temperature Error Handlers
  422. //
  423. void Temperature::_temp_error(int e, const char* serial_msg, const char* lcd_msg) {
  424. static bool killed = false;
  425. if (IsRunning()) {
  426. SERIAL_ERROR_START;
  427. serialprintPGM(serial_msg);
  428. SERIAL_ERRORPGM(MSG_STOPPED_HEATER);
  429. if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED);
  430. }
  431. #if DISABLED(BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE)
  432. if (!killed) {
  433. Running = false;
  434. killed = true;
  435. kill(lcd_msg);
  436. }
  437. else
  438. disable_all_heaters(); // paranoia
  439. #endif
  440. }
  441. void Temperature::max_temp_error(int8_t e) {
  442. #if HAS_TEMP_BED
  443. _temp_error(e, PSTR(MSG_T_MAXTEMP), e >= 0 ? PSTR(MSG_ERR_MAXTEMP) : PSTR(MSG_ERR_MAXTEMP_BED));
  444. #else
  445. _temp_error(HOTEND_INDEX, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
  446. #if HOTENDS == 1
  447. UNUSED(e);
  448. #endif
  449. #endif
  450. }
  451. void Temperature::min_temp_error(int8_t e) {
  452. #if HAS_TEMP_BED
  453. _temp_error(e, PSTR(MSG_T_MINTEMP), e >= 0 ? PSTR(MSG_ERR_MINTEMP) : PSTR(MSG_ERR_MINTEMP_BED));
  454. #else
  455. _temp_error(HOTEND_INDEX, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
  456. #if HOTENDS == 1
  457. UNUSED(e);
  458. #endif
  459. #endif
  460. }
  461. float Temperature::get_pid_output(int e) {
  462. #if HOTENDS == 1
  463. UNUSED(e);
  464. #define _HOTEND_TEST true
  465. #else
  466. #define _HOTEND_TEST e == active_extruder
  467. #endif
  468. float pid_output;
  469. #if ENABLED(PIDTEMP)
  470. #if DISABLED(PID_OPENLOOP)
  471. pid_error[HOTEND_INDEX] = target_temperature[HOTEND_INDEX] - current_temperature[HOTEND_INDEX];
  472. dTerm[HOTEND_INDEX] = K2 * PID_PARAM(Kd, HOTEND_INDEX) * (current_temperature[HOTEND_INDEX] - temp_dState[HOTEND_INDEX]) + K1 * dTerm[HOTEND_INDEX];
  473. temp_dState[HOTEND_INDEX] = current_temperature[HOTEND_INDEX];
  474. if (pid_error[HOTEND_INDEX] > PID_FUNCTIONAL_RANGE) {
  475. pid_output = BANG_MAX;
  476. pid_reset[HOTEND_INDEX] = true;
  477. }
  478. else if (pid_error[HOTEND_INDEX] < -(PID_FUNCTIONAL_RANGE) || target_temperature[HOTEND_INDEX] == 0) {
  479. pid_output = 0;
  480. pid_reset[HOTEND_INDEX] = true;
  481. }
  482. else {
  483. if (pid_reset[HOTEND_INDEX]) {
  484. temp_iState[HOTEND_INDEX] = 0.0;
  485. pid_reset[HOTEND_INDEX] = false;
  486. }
  487. pTerm[HOTEND_INDEX] = PID_PARAM(Kp, HOTEND_INDEX) * pid_error[HOTEND_INDEX];
  488. temp_iState[HOTEND_INDEX] += pid_error[HOTEND_INDEX];
  489. iTerm[HOTEND_INDEX] = PID_PARAM(Ki, HOTEND_INDEX) * temp_iState[HOTEND_INDEX];
  490. pid_output = pTerm[HOTEND_INDEX] + iTerm[HOTEND_INDEX] - dTerm[HOTEND_INDEX];
  491. #if ENABLED(PID_EXTRUSION_SCALING)
  492. cTerm[HOTEND_INDEX] = 0;
  493. if (_HOTEND_TEST) {
  494. long e_position = stepper.position(E_AXIS);
  495. if (e_position > last_e_position) {
  496. lpq[lpq_ptr] = e_position - last_e_position;
  497. last_e_position = e_position;
  498. }
  499. else {
  500. lpq[lpq_ptr] = 0;
  501. }
  502. if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
  503. cTerm[HOTEND_INDEX] = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
  504. pid_output += cTerm[HOTEND_INDEX];
  505. }
  506. #endif // PID_EXTRUSION_SCALING
  507. if (pid_output > PID_MAX) {
  508. if (pid_error[HOTEND_INDEX] > 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
  509. pid_output = PID_MAX;
  510. }
  511. else if (pid_output < 0) {
  512. if (pid_error[HOTEND_INDEX] < 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
  513. pid_output = 0;
  514. }
  515. }
  516. #else
  517. pid_output = constrain(target_temperature[HOTEND_INDEX], 0, PID_MAX);
  518. #endif //PID_OPENLOOP
  519. #if ENABLED(PID_DEBUG)
  520. SERIAL_ECHO_START;
  521. SERIAL_ECHOPAIR(MSG_PID_DEBUG, HOTEND_INDEX);
  522. SERIAL_ECHOPAIR(MSG_PID_DEBUG_INPUT, current_temperature[HOTEND_INDEX]);
  523. SERIAL_ECHOPAIR(MSG_PID_DEBUG_OUTPUT, pid_output);
  524. SERIAL_ECHOPAIR(MSG_PID_DEBUG_PTERM, pTerm[HOTEND_INDEX]);
  525. SERIAL_ECHOPAIR(MSG_PID_DEBUG_ITERM, iTerm[HOTEND_INDEX]);
  526. SERIAL_ECHOPAIR(MSG_PID_DEBUG_DTERM, dTerm[HOTEND_INDEX]);
  527. #if ENABLED(PID_EXTRUSION_SCALING)
  528. SERIAL_ECHOPAIR(MSG_PID_DEBUG_CTERM, cTerm[HOTEND_INDEX]);
  529. #endif
  530. SERIAL_EOL;
  531. #endif //PID_DEBUG
  532. #else /* PID off */
  533. pid_output = (current_temperature[HOTEND_INDEX] < target_temperature[HOTEND_INDEX]) ? PID_MAX : 0;
  534. #endif
  535. return pid_output;
  536. }
  537. #if ENABLED(PIDTEMPBED)
  538. float Temperature::get_pid_output_bed() {
  539. float pid_output;
  540. #if DISABLED(PID_OPENLOOP)
  541. pid_error_bed = target_temperature_bed - current_temperature_bed;
  542. pTerm_bed = bedKp * pid_error_bed;
  543. temp_iState_bed += pid_error_bed;
  544. iTerm_bed = bedKi * temp_iState_bed;
  545. dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
  546. temp_dState_bed = current_temperature_bed;
  547. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  548. if (pid_output > MAX_BED_POWER) {
  549. if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  550. pid_output = MAX_BED_POWER;
  551. }
  552. else if (pid_output < 0) {
  553. if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  554. pid_output = 0;
  555. }
  556. #else
  557. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  558. #endif // PID_OPENLOOP
  559. #if ENABLED(PID_BED_DEBUG)
  560. SERIAL_ECHO_START;
  561. SERIAL_ECHOPGM(" PID_BED_DEBUG ");
  562. SERIAL_ECHOPGM(": Input ");
  563. SERIAL_ECHO(current_temperature_bed);
  564. SERIAL_ECHOPGM(" Output ");
  565. SERIAL_ECHO(pid_output);
  566. SERIAL_ECHOPGM(" pTerm ");
  567. SERIAL_ECHO(pTerm_bed);
  568. SERIAL_ECHOPGM(" iTerm ");
  569. SERIAL_ECHO(iTerm_bed);
  570. SERIAL_ECHOPGM(" dTerm ");
  571. SERIAL_ECHOLN(dTerm_bed);
  572. #endif //PID_BED_DEBUG
  573. return pid_output;
  574. }
  575. #endif //PIDTEMPBED
  576. /**
  577. * Manage heating activities for extruder hot-ends and a heated bed
  578. * - Acquire updated temperature readings
  579. * - Also resets the watchdog timer
  580. * - Invoke thermal runaway protection
  581. * - Manage extruder auto-fan
  582. * - Apply filament width to the extrusion rate (may move)
  583. * - Update the heated bed PID output value
  584. */
  585. /**
  586. * The following line SOMETIMES results in the dreaded "unable to find a register to spill in class 'POINTER_REGS'"
  587. * compile error.
  588. * thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
  589. *
  590. * This is due to a bug in the C++ compiler used by the Arduino IDE from 1.6.10 to at least 1.8.1.
  591. *
  592. * The work around is to add the compiler flag "__attribute__((__optimize__("O2")))" to the declaration for manage_heater()
  593. */
  594. //void Temperature::manage_heater() __attribute__((__optimize__("O2")));
  595. void Temperature::manage_heater() {
  596. if (!temp_meas_ready) return;
  597. updateTemperaturesFromRawValues(); // also resets the watchdog
  598. #if ENABLED(HEATER_0_USES_MAX6675)
  599. if (current_temperature[0] > min(HEATER_0_MAXTEMP, MAX6675_TMAX - 1)) max_temp_error(0);
  600. if (current_temperature[0] < max(HEATER_0_MINTEMP, MAX6675_TMIN + 0.01)) min_temp_error(0);
  601. #endif
  602. #if WATCH_HOTENDS || WATCH_THE_BED || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN
  603. millis_t ms = millis();
  604. #endif
  605. // Loop through all hotends
  606. HOTEND_LOOP() {
  607. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  608. thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
  609. #endif
  610. float pid_output = get_pid_output(e);
  611. // Check if temperature is within the correct range
  612. soft_pwm[e] = (current_temperature[e] > minttemp[e] || is_preheating(e)) && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
  613. // Check if the temperature is failing to increase
  614. #if WATCH_HOTENDS
  615. // Is it time to check this extruder's heater?
  616. if (watch_heater_next_ms[e] && ELAPSED(ms, watch_heater_next_ms[e])) {
  617. // Has it failed to increase enough?
  618. if (degHotend(e) < watch_target_temp[e]) {
  619. // Stop!
  620. _temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  621. }
  622. else {
  623. // Start again if the target is still far off
  624. start_watching_heater(e);
  625. }
  626. }
  627. #endif // THERMAL_PROTECTION_HOTENDS
  628. // Check if the temperature is failing to increase
  629. #if WATCH_THE_BED
  630. // Is it time to check the bed?
  631. if (watch_bed_next_ms && ELAPSED(ms, watch_bed_next_ms)) {
  632. // Has it failed to increase enough?
  633. if (degBed() < watch_target_bed_temp) {
  634. // Stop!
  635. _temp_error(-1, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  636. }
  637. else {
  638. // Start again if the target is still far off
  639. start_watching_bed();
  640. }
  641. }
  642. #endif // THERMAL_PROTECTION_HOTENDS
  643. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  644. if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  645. _temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
  646. }
  647. #endif
  648. } // HOTEND_LOOP
  649. #if HAS_AUTO_FAN
  650. if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently
  651. checkExtruderAutoFans();
  652. next_auto_fan_check_ms = ms + 2500UL;
  653. }
  654. #endif
  655. // Control the extruder rate based on the width sensor
  656. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  657. if (filament_sensor) {
  658. meas_shift_index = filwidth_delay_index[0] - meas_delay_cm;
  659. if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
  660. // Get the delayed info and add 100 to reconstitute to a percent of
  661. // the nominal filament diameter then square it to get an area
  662. meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
  663. float vm = pow((measurement_delay[meas_shift_index] + 100.0) * 0.01, 2);
  664. NOLESS(vm, 0.01);
  665. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
  666. }
  667. #endif //FILAMENT_WIDTH_SENSOR
  668. #if DISABLED(PIDTEMPBED)
  669. if (PENDING(ms, next_bed_check_ms)) return;
  670. next_bed_check_ms = ms + BED_CHECK_INTERVAL;
  671. #endif
  672. #if TEMP_SENSOR_BED != 0
  673. #if HAS_THERMALLY_PROTECTED_BED
  674. thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
  675. #endif
  676. #if ENABLED(PIDTEMPBED)
  677. float pid_output = get_pid_output_bed();
  678. soft_pwm_bed = WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP) ? (int)pid_output >> 1 : 0;
  679. #elif ENABLED(BED_LIMIT_SWITCHING)
  680. // Check if temperature is within the correct band
  681. if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
  682. if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
  683. soft_pwm_bed = 0;
  684. else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS))
  685. soft_pwm_bed = MAX_BED_POWER >> 1;
  686. }
  687. else {
  688. soft_pwm_bed = 0;
  689. WRITE_HEATER_BED(LOW);
  690. }
  691. #else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
  692. // Check if temperature is within the correct range
  693. if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
  694. soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
  695. }
  696. else {
  697. soft_pwm_bed = 0;
  698. WRITE_HEATER_BED(LOW);
  699. }
  700. #endif
  701. #endif //TEMP_SENSOR_BED != 0
  702. }
  703. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  704. // Derived from RepRap FiveD extruder::getTemperature()
  705. // For hot end temperature measurement.
  706. float Temperature::analog2temp(int raw, uint8_t e) {
  707. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  708. if (e > HOTENDS)
  709. #else
  710. if (e >= HOTENDS)
  711. #endif
  712. {
  713. SERIAL_ERROR_START;
  714. SERIAL_ERROR((int)e);
  715. SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
  716. kill(PSTR(MSG_KILLED));
  717. return 0.0;
  718. }
  719. #if ENABLED(HEATER_0_USES_MAX6675)
  720. if (e == 0) return 0.25 * raw;
  721. #endif
  722. if (heater_ttbl_map[e] != NULL) {
  723. float celsius = 0;
  724. uint8_t i;
  725. short(*tt)[][2] = (short(*)[][2])(heater_ttbl_map[e]);
  726. for (i = 1; i < heater_ttbllen_map[e]; i++) {
  727. if (PGM_RD_W((*tt)[i][0]) > raw) {
  728. celsius = PGM_RD_W((*tt)[i - 1][1]) +
  729. (raw - PGM_RD_W((*tt)[i - 1][0])) *
  730. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i - 1][1])) /
  731. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i - 1][0]));
  732. break;
  733. }
  734. }
  735. // Overflow: Set to last value in the table
  736. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i - 1][1]);
  737. return celsius;
  738. }
  739. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
  740. }
  741. // Derived from RepRap FiveD extruder::getTemperature()
  742. // For bed temperature measurement.
  743. float Temperature::analog2tempBed(int raw) {
  744. #if ENABLED(BED_USES_THERMISTOR)
  745. float celsius = 0;
  746. byte i;
  747. for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
  748. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
  749. celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]) +
  750. (raw - PGM_RD_W(BEDTEMPTABLE[i - 1][0])) *
  751. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i - 1][1])) /
  752. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i - 1][0]));
  753. break;
  754. }
  755. }
  756. // Overflow: Set to last value in the table
  757. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]);
  758. return celsius;
  759. #elif defined(BED_USES_AD595)
  760. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
  761. #else
  762. UNUSED(raw);
  763. return 0;
  764. #endif
  765. }
  766. /**
  767. * Get the raw values into the actual temperatures.
  768. * The raw values are created in interrupt context,
  769. * and this function is called from normal context
  770. * as it would block the stepper routine.
  771. */
  772. void Temperature::updateTemperaturesFromRawValues() {
  773. #if ENABLED(HEATER_0_USES_MAX6675)
  774. current_temperature_raw[0] = read_max6675();
  775. #endif
  776. HOTEND_LOOP()
  777. current_temperature[e] = Temperature::analog2temp(current_temperature_raw[e], e);
  778. current_temperature_bed = Temperature::analog2tempBed(current_temperature_bed_raw);
  779. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  780. redundant_temperature = Temperature::analog2temp(redundant_temperature_raw, 1);
  781. #endif
  782. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  783. filament_width_meas = analog2widthFil();
  784. #endif
  785. #if ENABLED(USE_WATCHDOG)
  786. // Reset the watchdog after we know we have a temperature measurement.
  787. watchdog_reset();
  788. #endif
  789. CRITICAL_SECTION_START;
  790. temp_meas_ready = false;
  791. CRITICAL_SECTION_END;
  792. }
  793. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  794. // Convert raw Filament Width to millimeters
  795. float Temperature::analog2widthFil() {
  796. return current_raw_filwidth / 16383.0 * 5.0;
  797. //return current_raw_filwidth;
  798. }
  799. // Convert raw Filament Width to a ratio
  800. int Temperature::widthFil_to_size_ratio() {
  801. float temp = filament_width_meas;
  802. if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
  803. else NOMORE(temp, MEASURED_UPPER_LIMIT);
  804. return filament_width_nominal / temp * 100;
  805. }
  806. #endif
  807. /**
  808. * Initialize the temperature manager
  809. * The manager is implemented by periodic calls to manage_heater()
  810. */
  811. void Temperature::init() {
  812. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  813. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  814. MCUCR = _BV(JTD);
  815. MCUCR = _BV(JTD);
  816. #endif
  817. // Finish init of mult hotend arrays
  818. HOTEND_LOOP() maxttemp[e] = maxttemp[0];
  819. #if ENABLED(PIDTEMP) && ENABLED(PID_EXTRUSION_SCALING)
  820. last_e_position = 0;
  821. #endif
  822. #if HAS_HEATER_0
  823. SET_OUTPUT(HEATER_0_PIN);
  824. #endif
  825. #if HAS_HEATER_1
  826. SET_OUTPUT(HEATER_1_PIN);
  827. #endif
  828. #if HAS_HEATER_2
  829. SET_OUTPUT(HEATER_2_PIN);
  830. #endif
  831. #if HAS_HEATER_3
  832. SET_OUTPUT(HEATER_3_PIN);
  833. #endif
  834. #if HAS_HEATER_4
  835. SET_OUTPUT(HEATER_3_PIN);
  836. #endif
  837. #if HAS_HEATER_BED
  838. SET_OUTPUT(HEATER_BED_PIN);
  839. #endif
  840. #if HAS_FAN0
  841. SET_OUTPUT(FAN_PIN);
  842. #if ENABLED(FAST_PWM_FAN)
  843. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  844. #endif
  845. #endif
  846. #if HAS_FAN1
  847. SET_OUTPUT(FAN1_PIN);
  848. #if ENABLED(FAST_PWM_FAN)
  849. setPwmFrequency(FAN1_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  850. #endif
  851. #endif
  852. #if HAS_FAN2
  853. SET_OUTPUT(FAN2_PIN);
  854. #if ENABLED(FAST_PWM_FAN)
  855. setPwmFrequency(FAN2_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  856. #endif
  857. #endif
  858. #if ENABLED(HEATER_0_USES_MAX6675)
  859. OUT_WRITE(SCK_PIN, LOW);
  860. OUT_WRITE(MOSI_PIN, HIGH);
  861. SET_INPUT_PULLUP(MISO_PIN);
  862. OUT_WRITE(SS_PIN, HIGH);
  863. OUT_WRITE(MAX6675_SS, HIGH);
  864. #endif //HEATER_0_USES_MAX6675
  865. #ifdef DIDR2
  866. #define ANALOG_SELECT(pin) do{ if (pin < 8) SBI(DIDR0, pin); else SBI(DIDR2, pin - 8); }while(0)
  867. #else
  868. #define ANALOG_SELECT(pin) do{ SBI(DIDR0, pin); }while(0)
  869. #endif
  870. // Set analog inputs
  871. ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIF) | 0x07;
  872. DIDR0 = 0;
  873. #ifdef DIDR2
  874. DIDR2 = 0;
  875. #endif
  876. #if HAS_TEMP_0
  877. ANALOG_SELECT(TEMP_0_PIN);
  878. #endif
  879. #if HAS_TEMP_1
  880. ANALOG_SELECT(TEMP_1_PIN);
  881. #endif
  882. #if HAS_TEMP_2
  883. ANALOG_SELECT(TEMP_2_PIN);
  884. #endif
  885. #if HAS_TEMP_3
  886. ANALOG_SELECT(TEMP_3_PIN);
  887. #endif
  888. #if HAS_TEMP_4
  889. ANALOG_SELECT(TEMP_4_PIN);
  890. #endif
  891. #if HAS_TEMP_BED
  892. ANALOG_SELECT(TEMP_BED_PIN);
  893. #endif
  894. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  895. ANALOG_SELECT(FILWIDTH_PIN);
  896. #endif
  897. #if HAS_AUTO_FAN_0
  898. #if E0_AUTO_FAN_PIN == FAN1_PIN
  899. SET_OUTPUT(E0_AUTO_FAN_PIN);
  900. #if ENABLED(FAST_PWM_FAN)
  901. setPwmFrequency(E0_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  902. #endif
  903. #else
  904. SET_OUTPUT(E0_AUTO_FAN_PIN);
  905. #endif
  906. #endif
  907. #if HAS_AUTO_FAN_1 && !AUTO_1_IS_0
  908. #if E1_AUTO_FAN_PIN == FAN1_PIN
  909. SET_OUTPUT(E1_AUTO_FAN_PIN);
  910. #if ENABLED(FAST_PWM_FAN)
  911. setPwmFrequency(E1_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  912. #endif
  913. #else
  914. SET_OUTPUT(E1_AUTO_FAN_PIN);
  915. #endif
  916. #endif
  917. #if HAS_AUTO_FAN_2 && !AUTO_2_IS_0 && !AUTO_2_IS_1
  918. #if E2_AUTO_FAN_PIN == FAN1_PIN
  919. SET_OUTPUT(E2_AUTO_FAN_PIN);
  920. #if ENABLED(FAST_PWM_FAN)
  921. setPwmFrequency(E2_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  922. #endif
  923. #else
  924. SET_OUTPUT(E2_AUTO_FAN_PIN);
  925. #endif
  926. #endif
  927. #if HAS_AUTO_FAN_3 && !AUTO_3_IS_0 && !AUTO_3_IS_1 && !AUTO_3_IS_2
  928. #if E3_AUTO_FAN_PIN == FAN1_PIN
  929. SET_OUTPUT(E3_AUTO_FAN_PIN);
  930. #if ENABLED(FAST_PWM_FAN)
  931. setPwmFrequency(E3_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  932. #endif
  933. #else
  934. SET_OUTPUT(E3_AUTO_FAN_PIN);
  935. #endif
  936. #endif
  937. #if HAS_AUTO_FAN_4 && !AUTO_4_IS_0 && !AUTO_4_IS_1 && !AUTO_4_IS_2 && !AUTO_4_IS_3
  938. #if E4_AUTO_FAN_PIN == FAN1_PIN
  939. SET_OUTPUT(E4_AUTO_FAN_PIN);
  940. #if ENABLED(FAST_PWM_FAN)
  941. setPwmFrequency(E4_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  942. #endif
  943. #else
  944. SET_OUTPUT(E4_AUTO_FAN_PIN);
  945. #endif
  946. #endif
  947. // Use timer0 for temperature measurement
  948. // Interleave temperature interrupt with millies interrupt
  949. OCR0B = 128;
  950. SBI(TIMSK0, OCIE0B);
  951. // Wait for temperature measurement to settle
  952. delay(250);
  953. #define TEMP_MIN_ROUTINE(NR) \
  954. minttemp[NR] = HEATER_ ##NR## _MINTEMP; \
  955. while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ##NR## _MINTEMP) { \
  956. if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
  957. minttemp_raw[NR] += OVERSAMPLENR; \
  958. else \
  959. minttemp_raw[NR] -= OVERSAMPLENR; \
  960. }
  961. #define TEMP_MAX_ROUTINE(NR) \
  962. maxttemp[NR] = HEATER_ ##NR## _MAXTEMP; \
  963. while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ##NR## _MAXTEMP) { \
  964. if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
  965. maxttemp_raw[NR] -= OVERSAMPLENR; \
  966. else \
  967. maxttemp_raw[NR] += OVERSAMPLENR; \
  968. }
  969. #ifdef HEATER_0_MINTEMP
  970. TEMP_MIN_ROUTINE(0);
  971. #endif
  972. #ifdef HEATER_0_MAXTEMP
  973. TEMP_MAX_ROUTINE(0);
  974. #endif
  975. #if HOTENDS > 1
  976. #ifdef HEATER_1_MINTEMP
  977. TEMP_MIN_ROUTINE(1);
  978. #endif
  979. #ifdef HEATER_1_MAXTEMP
  980. TEMP_MAX_ROUTINE(1);
  981. #endif
  982. #if HOTENDS > 2
  983. #ifdef HEATER_2_MINTEMP
  984. TEMP_MIN_ROUTINE(2);
  985. #endif
  986. #ifdef HEATER_2_MAXTEMP
  987. TEMP_MAX_ROUTINE(2);
  988. #endif
  989. #if HOTENDS > 3
  990. #ifdef HEATER_3_MINTEMP
  991. TEMP_MIN_ROUTINE(3);
  992. #endif
  993. #ifdef HEATER_3_MAXTEMP
  994. TEMP_MAX_ROUTINE(3);
  995. #endif
  996. #if HOTENDS > 4
  997. #ifdef HEATER_4_MINTEMP
  998. TEMP_MIN_ROUTINE(4);
  999. #endif
  1000. #ifdef HEATER_4_MAXTEMP
  1001. TEMP_MAX_ROUTINE(4);
  1002. #endif
  1003. #endif // HOTENDS > 4
  1004. #endif // HOTENDS > 3
  1005. #endif // HOTENDS > 2
  1006. #endif // HOTENDS > 1
  1007. #ifdef BED_MINTEMP
  1008. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1009. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1010. bed_minttemp_raw += OVERSAMPLENR;
  1011. #else
  1012. bed_minttemp_raw -= OVERSAMPLENR;
  1013. #endif
  1014. }
  1015. #endif //BED_MINTEMP
  1016. #ifdef BED_MAXTEMP
  1017. while (analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1018. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1019. bed_maxttemp_raw -= OVERSAMPLENR;
  1020. #else
  1021. bed_maxttemp_raw += OVERSAMPLENR;
  1022. #endif
  1023. }
  1024. #endif //BED_MAXTEMP
  1025. }
  1026. #if WATCH_HOTENDS
  1027. /**
  1028. * Start Heating Sanity Check for hotends that are below
  1029. * their target temperature by a configurable margin.
  1030. * This is called when the temperature is set. (M104, M109)
  1031. */
  1032. void Temperature::start_watching_heater(uint8_t e) {
  1033. #if HOTENDS == 1
  1034. UNUSED(e);
  1035. #endif
  1036. if (degHotend(HOTEND_INDEX) < degTargetHotend(HOTEND_INDEX) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
  1037. watch_target_temp[HOTEND_INDEX] = degHotend(HOTEND_INDEX) + WATCH_TEMP_INCREASE;
  1038. watch_heater_next_ms[HOTEND_INDEX] = millis() + (WATCH_TEMP_PERIOD) * 1000UL;
  1039. }
  1040. else
  1041. watch_heater_next_ms[HOTEND_INDEX] = 0;
  1042. }
  1043. #endif
  1044. #if WATCH_THE_BED
  1045. /**
  1046. * Start Heating Sanity Check for hotends that are below
  1047. * their target temperature by a configurable margin.
  1048. * This is called when the temperature is set. (M140, M190)
  1049. */
  1050. void Temperature::start_watching_bed() {
  1051. if (degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) {
  1052. watch_target_bed_temp = degBed() + WATCH_BED_TEMP_INCREASE;
  1053. watch_bed_next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL;
  1054. }
  1055. else
  1056. watch_bed_next_ms = 0;
  1057. }
  1058. #endif
  1059. #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
  1060. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  1061. Temperature::TRState Temperature::thermal_runaway_state_machine[HOTENDS] = { TRInactive };
  1062. millis_t Temperature::thermal_runaway_timer[HOTENDS] = { 0 };
  1063. #endif
  1064. #if HAS_THERMALLY_PROTECTED_BED
  1065. Temperature::TRState Temperature::thermal_runaway_bed_state_machine = TRInactive;
  1066. millis_t Temperature::thermal_runaway_bed_timer;
  1067. #endif
  1068. void Temperature::thermal_runaway_protection(Temperature::TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
  1069. static float tr_target_temperature[HOTENDS + 1] = { 0.0 };
  1070. /**
  1071. SERIAL_ECHO_START;
  1072. SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
  1073. if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id);
  1074. SERIAL_ECHOPAIR(" ; State:", *state);
  1075. SERIAL_ECHOPAIR(" ; Timer:", *timer);
  1076. SERIAL_ECHOPAIR(" ; Temperature:", temperature);
  1077. SERIAL_ECHOPAIR(" ; Target Temp:", target_temperature);
  1078. SERIAL_EOL;
  1079. */
  1080. int heater_index = heater_id >= 0 ? heater_id : HOTENDS;
  1081. // If the target temperature changes, restart
  1082. if (tr_target_temperature[heater_index] != target_temperature) {
  1083. tr_target_temperature[heater_index] = target_temperature;
  1084. *state = target_temperature > 0 ? TRFirstHeating : TRInactive;
  1085. }
  1086. switch (*state) {
  1087. // Inactive state waits for a target temperature to be set
  1088. case TRInactive: break;
  1089. // When first heating, wait for the temperature to be reached then go to Stable state
  1090. case TRFirstHeating:
  1091. if (temperature < tr_target_temperature[heater_index]) break;
  1092. *state = TRStable;
  1093. // While the temperature is stable watch for a bad temperature
  1094. case TRStable:
  1095. if (temperature >= tr_target_temperature[heater_index] - hysteresis_degc) {
  1096. *timer = millis() + period_seconds * 1000UL;
  1097. break;
  1098. }
  1099. else if (PENDING(millis(), *timer)) break;
  1100. *state = TRRunaway;
  1101. case TRRunaway:
  1102. _temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
  1103. }
  1104. }
  1105. #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
  1106. void Temperature::disable_all_heaters() {
  1107. HOTEND_LOOP() setTargetHotend(0, e);
  1108. setTargetBed(0);
  1109. // If all heaters go down then for sure our print job has stopped
  1110. print_job_timer.stop();
  1111. #define DISABLE_HEATER(NR) { \
  1112. setTargetHotend(0, NR); \
  1113. soft_pwm[NR] = 0; \
  1114. WRITE_HEATER_ ##NR (LOW); \
  1115. }
  1116. #if HAS_TEMP_HOTEND
  1117. DISABLE_HEATER(0);
  1118. #if HOTENDS > 1
  1119. DISABLE_HEATER(1);
  1120. #if HOTENDS > 2
  1121. DISABLE_HEATER(2);
  1122. #if HOTENDS > 3
  1123. DISABLE_HEATER(3);
  1124. #if HOTENDS > 4
  1125. DISABLE_HEATER(4);
  1126. #endif // HOTENDS > 4
  1127. #endif // HOTENDS > 3
  1128. #endif // HOTENDS > 2
  1129. #endif // HOTENDS > 1
  1130. #endif
  1131. #if HAS_TEMP_BED
  1132. target_temperature_bed = 0;
  1133. soft_pwm_bed = 0;
  1134. #if HAS_HEATER_BED
  1135. WRITE_HEATER_BED(LOW);
  1136. #endif
  1137. #endif
  1138. }
  1139. #if ENABLED(HEATER_0_USES_MAX6675)
  1140. #define MAX6675_HEAT_INTERVAL 250u
  1141. #if ENABLED(MAX6675_IS_MAX31855)
  1142. uint32_t max6675_temp = 2000;
  1143. #define MAX6675_ERROR_MASK 7
  1144. #define MAX6675_DISCARD_BITS 18
  1145. #define MAX6675_SPEED_BITS (_BV(SPR1)) // clock ÷ 64
  1146. #else
  1147. uint16_t max6675_temp = 2000;
  1148. #define MAX6675_ERROR_MASK 4
  1149. #define MAX6675_DISCARD_BITS 3
  1150. #define MAX6675_SPEED_BITS (_BV(SPR0)) // clock ÷ 16
  1151. #endif
  1152. int Temperature::read_max6675() {
  1153. static millis_t next_max6675_ms = 0;
  1154. millis_t ms = millis();
  1155. if (PENDING(ms, next_max6675_ms)) return (int)max6675_temp;
  1156. next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
  1157. CBI(
  1158. #ifdef PRR
  1159. PRR
  1160. #elif defined(PRR0)
  1161. PRR0
  1162. #endif
  1163. , PRSPI);
  1164. SPCR = _BV(MSTR) | _BV(SPE) | MAX6675_SPEED_BITS;
  1165. WRITE(MAX6675_SS, 0); // enable TT_MAX6675
  1166. // ensure 100ns delay - a bit extra is fine
  1167. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1168. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1169. // Read a big-endian temperature value
  1170. max6675_temp = 0;
  1171. for (uint8_t i = sizeof(max6675_temp); i--;) {
  1172. SPDR = 0;
  1173. for (;!TEST(SPSR, SPIF););
  1174. max6675_temp |= SPDR;
  1175. if (i > 0) max6675_temp <<= 8; // shift left if not the last byte
  1176. }
  1177. WRITE(MAX6675_SS, 1); // disable TT_MAX6675
  1178. if (max6675_temp & MAX6675_ERROR_MASK) {
  1179. SERIAL_ERROR_START;
  1180. SERIAL_ERRORPGM("Temp measurement error! ");
  1181. #if MAX6675_ERROR_MASK == 7
  1182. SERIAL_ERRORPGM("MAX31855 ");
  1183. if (max6675_temp & 1)
  1184. SERIAL_ERRORLNPGM("Open Circuit");
  1185. else if (max6675_temp & 2)
  1186. SERIAL_ERRORLNPGM("Short to GND");
  1187. else if (max6675_temp & 4)
  1188. SERIAL_ERRORLNPGM("Short to VCC");
  1189. #else
  1190. SERIAL_ERRORLNPGM("MAX6675");
  1191. #endif
  1192. max6675_temp = MAX6675_TMAX * 4; // thermocouple open
  1193. }
  1194. else
  1195. max6675_temp >>= MAX6675_DISCARD_BITS;
  1196. #if ENABLED(MAX6675_IS_MAX31855)
  1197. // Support negative temperature
  1198. if (max6675_temp & 0x00002000) max6675_temp |= 0xffffc000;
  1199. #endif
  1200. return (int)max6675_temp;
  1201. }
  1202. #endif //HEATER_0_USES_MAX6675
  1203. /**
  1204. * Get raw temperatures
  1205. */
  1206. void Temperature::set_current_temp_raw() {
  1207. #if HAS_TEMP_0 && DISABLED(HEATER_0_USES_MAX6675)
  1208. current_temperature_raw[0] = raw_temp_value[0];
  1209. #endif
  1210. #if HAS_TEMP_1
  1211. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  1212. redundant_temperature_raw = raw_temp_value[1];
  1213. #else
  1214. current_temperature_raw[1] = raw_temp_value[1];
  1215. #endif
  1216. #if HAS_TEMP_2
  1217. current_temperature_raw[2] = raw_temp_value[2];
  1218. #if HAS_TEMP_3
  1219. current_temperature_raw[3] = raw_temp_value[3];
  1220. #if HAS_TEMP_4
  1221. current_temperature_raw[4] = raw_temp_value[4];
  1222. #endif
  1223. #endif
  1224. #endif
  1225. #endif
  1226. current_temperature_bed_raw = raw_temp_bed_value;
  1227. temp_meas_ready = true;
  1228. }
  1229. #if ENABLED(PINS_DEBUGGING)
  1230. /**
  1231. * monitors endstops & Z probe for changes
  1232. *
  1233. * If a change is detected then the LED is toggled and
  1234. * a message is sent out the serial port
  1235. *
  1236. * Yes, we could miss a rapid back & forth change but
  1237. * that won't matter because this is all manual.
  1238. *
  1239. */
  1240. void endstop_monitor() {
  1241. static uint16_t old_endstop_bits_local = 0;
  1242. static uint8_t local_LED_status = 0;
  1243. uint16_t current_endstop_bits_local = 0;
  1244. #if HAS_X_MIN
  1245. if (READ(X_MIN_PIN)) SBI(current_endstop_bits_local, X_MIN);
  1246. #endif
  1247. #if HAS_X_MAX
  1248. if (READ(X_MAX_PIN)) SBI(current_endstop_bits_local, X_MAX);
  1249. #endif
  1250. #if HAS_Y_MIN
  1251. if (READ(Y_MIN_PIN)) SBI(current_endstop_bits_local, Y_MIN);
  1252. #endif
  1253. #if HAS_Y_MAX
  1254. if (READ(Y_MAX_PIN)) SBI(current_endstop_bits_local, Y_MAX);
  1255. #endif
  1256. #if HAS_Z_MIN
  1257. if (READ(Z_MIN_PIN)) SBI(current_endstop_bits_local, Z_MIN);
  1258. #endif
  1259. #if HAS_Z_MAX
  1260. if (READ(Z_MAX_PIN)) SBI(current_endstop_bits_local, Z_MAX);
  1261. #endif
  1262. #if HAS_Z_MIN_PROBE_PIN
  1263. if (READ(Z_MIN_PROBE_PIN)) SBI(current_endstop_bits_local, Z_MIN_PROBE);
  1264. #endif
  1265. #if HAS_Z2_MIN
  1266. if (READ(Z2_MIN_PIN)) SBI(current_endstop_bits_local, Z2_MIN);
  1267. #endif
  1268. #if HAS_Z2_MAX
  1269. if (READ(Z2_MAX_PIN)) SBI(current_endstop_bits_local, Z2_MAX);
  1270. #endif
  1271. uint16_t endstop_change = current_endstop_bits_local ^ old_endstop_bits_local;
  1272. if (endstop_change) {
  1273. #if HAS_X_MIN
  1274. if (TEST(endstop_change, X_MIN)) SERIAL_PROTOCOLPAIR("X_MIN:", !!TEST(current_endstop_bits_local, X_MIN));
  1275. #endif
  1276. #if HAS_X_MAX
  1277. if (TEST(endstop_change, X_MAX)) SERIAL_PROTOCOLPAIR(" X_MAX:", !!TEST(current_endstop_bits_local, X_MAX));
  1278. #endif
  1279. #if HAS_Y_MIN
  1280. if (TEST(endstop_change, Y_MIN)) SERIAL_PROTOCOLPAIR(" Y_MIN:", !!TEST(current_endstop_bits_local, Y_MIN));
  1281. #endif
  1282. #if HAS_Y_MAX
  1283. if (TEST(endstop_change, Y_MAX)) SERIAL_PROTOCOLPAIR(" Y_MAX:", !!TEST(current_endstop_bits_local, Y_MAX));
  1284. #endif
  1285. #if HAS_Z_MIN
  1286. if (TEST(endstop_change, Z_MIN)) SERIAL_PROTOCOLPAIR(" Z_MIN:", !!TEST(current_endstop_bits_local, Z_MIN));
  1287. #endif
  1288. #if HAS_Z_MAX
  1289. if (TEST(endstop_change, Z_MAX)) SERIAL_PROTOCOLPAIR(" Z_MAX:", !!TEST(current_endstop_bits_local, Z_MAX));
  1290. #endif
  1291. #if HAS_Z_MIN_PROBE_PIN
  1292. if (TEST(endstop_change, Z_MIN_PROBE)) SERIAL_PROTOCOLPAIR(" PROBE:", !!TEST(current_endstop_bits_local, Z_MIN_PROBE));
  1293. #endif
  1294. #if HAS_Z2_MIN
  1295. if (TEST(endstop_change, Z2_MIN)) SERIAL_PROTOCOLPAIR(" Z2_MIN:", !!TEST(current_endstop_bits_local, Z2_MIN));
  1296. #endif
  1297. #if HAS_Z2_MAX
  1298. if (TEST(endstop_change, Z2_MAX)) SERIAL_PROTOCOLPAIR(" Z2_MAX:", !!TEST(current_endstop_bits_local, Z2_MAX));
  1299. #endif
  1300. SERIAL_PROTOCOLPGM("\n\n");
  1301. analogWrite(LED_PIN, local_LED_status);
  1302. local_LED_status ^= 255;
  1303. old_endstop_bits_local = current_endstop_bits_local;
  1304. }
  1305. }
  1306. #endif // PINS_DEBUGGING
  1307. /**
  1308. * Timer 0 is shared with millies so don't change the prescaler.
  1309. *
  1310. * This ISR uses the compare method so it runs at the base
  1311. * frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
  1312. * in OCR0B above (128 or halfway between OVFs).
  1313. *
  1314. * - Manage PWM to all the heaters and fan
  1315. * - Prepare or Measure one of the raw ADC sensor values
  1316. * - Check new temperature values for MIN/MAX errors (kill on error)
  1317. * - Step the babysteps value for each axis towards 0
  1318. * - For PINS_DEBUGGING, monitor and report endstop pins
  1319. * - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
  1320. */
  1321. ISR(TIMER0_COMPB_vect) { Temperature::isr(); }
  1322. volatile bool Temperature::in_temp_isr = false;
  1323. void Temperature::isr() {
  1324. // The stepper ISR can interrupt this ISR. When it does it re-enables this ISR
  1325. // at the end of its run, potentially causing re-entry. This flag prevents it.
  1326. if (in_temp_isr) return;
  1327. in_temp_isr = true;
  1328. // Allow UART and stepper ISRs
  1329. CBI(TIMSK0, OCIE0B); //Disable Temperature ISR
  1330. sei();
  1331. static uint8_t temp_count = 0;
  1332. static TempState temp_state = StartupDelay;
  1333. static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
  1334. // avoid multiple loads of pwm_count
  1335. uint8_t pwm_count_tmp = pwm_count;
  1336. // Static members for each heater
  1337. #if ENABLED(SLOW_PWM_HEATERS)
  1338. static uint8_t slow_pwm_count = 0;
  1339. #define ISR_STATICS(n) \
  1340. static uint8_t soft_pwm_ ## n; \
  1341. static uint8_t state_heater_ ## n = 0; \
  1342. static uint8_t state_timer_heater_ ## n = 0
  1343. #else
  1344. #define ISR_STATICS(n) static uint8_t soft_pwm_ ## n = 0
  1345. #endif
  1346. // Statics per heater
  1347. ISR_STATICS(0);
  1348. #if HOTENDS > 1
  1349. ISR_STATICS(1);
  1350. #if HOTENDS > 2
  1351. ISR_STATICS(2);
  1352. #if HOTENDS > 3
  1353. ISR_STATICS(3);
  1354. #if HOTENDS > 4
  1355. ISR_STATICS(4);
  1356. #endif // HOTENDS > 4
  1357. #endif // HOTENDS > 3
  1358. #endif // HOTENDS > 2
  1359. #endif // HOTENDS > 1
  1360. #if HAS_HEATER_BED
  1361. ISR_STATICS(BED);
  1362. #endif
  1363. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1364. static unsigned long raw_filwidth_value = 0;
  1365. #endif
  1366. #if DISABLED(SLOW_PWM_HEATERS)
  1367. constexpr uint8_t pwm_mask =
  1368. #if ENABLED(SOFT_PWM_DITHER)
  1369. _BV(SOFT_PWM_SCALE) - 1
  1370. #else
  1371. 0
  1372. #endif
  1373. ;
  1374. /**
  1375. * Standard PWM modulation
  1376. */
  1377. if (pwm_count_tmp >= 127) {
  1378. pwm_count_tmp -= 127;
  1379. soft_pwm_0 = (soft_pwm_0 & pwm_mask) + soft_pwm[0];
  1380. WRITE_HEATER_0(soft_pwm_0 > pwm_mask ? HIGH : LOW);
  1381. #if HOTENDS > 1
  1382. soft_pwm_1 = (soft_pwm_1 & pwm_mask) + soft_pwm[1];
  1383. WRITE_HEATER_1(soft_pwm_1 > pwm_mask ? HIGH : LOW);
  1384. #if HOTENDS > 2
  1385. soft_pwm_2 = (soft_pwm_2 & pwm_mask) + soft_pwm[2];
  1386. WRITE_HEATER_2(soft_pwm_2 > pwm_mask ? HIGH : LOW);
  1387. #if HOTENDS > 3
  1388. soft_pwm_3 = (soft_pwm_3 & pwm_mask) + soft_pwm[3];
  1389. WRITE_HEATER_3(soft_pwm_3 > pwm_mask ? HIGH : LOW);
  1390. #if HOTENDS > 4
  1391. soft_pwm_4 = (soft_pwm_4 & pwm_mask) + soft_pwm[4];
  1392. WRITE_HEATER_4(soft_pwm_4 > pwm_mask ? HIGH : LOW);
  1393. #endif // HOTENDS > 4
  1394. #endif // HOTENDS > 3
  1395. #endif // HOTENDS > 2
  1396. #endif // HOTENDS > 1
  1397. #if HAS_HEATER_BED
  1398. soft_pwm_BED = (soft_pwm_BED & pwm_mask) + soft_pwm_bed;
  1399. WRITE_HEATER_BED(soft_pwm_BED > pwm_mask ? HIGH : LOW);
  1400. #endif
  1401. #if ENABLED(FAN_SOFT_PWM)
  1402. #if HAS_FAN0
  1403. soft_pwm_fan[0] = (soft_pwm_fan[0] & pwm_mask) + fanSpeedSoftPwm[0] >> 1;
  1404. WRITE_FAN(soft_pwm_fan[0] > pwm_mask ? HIGH : LOW);
  1405. #endif
  1406. #if HAS_FAN1
  1407. soft_pwm_fan[1] = (soft_pwm_fan[1] & pwm_mask) + fanSpeedSoftPwm[1] >> 1;
  1408. WRITE_FAN1(soft_pwm_fan[1] > pwm_mask ? HIGH : LOW);
  1409. #endif
  1410. #if HAS_FAN2
  1411. soft_pwm_fan[2] = (soft_pwm_fan[2] & pwm_mask) + fanSpeedSoftPwm[2] >> 1;
  1412. WRITE_FAN2(soft_pwm_fan[2] > pwm_mask ? HIGH : LOW);
  1413. #endif
  1414. #endif
  1415. }
  1416. else {
  1417. if (soft_pwm_0 <= pwm_count_tmp) WRITE_HEATER_0(0);
  1418. #if HOTENDS > 1
  1419. if (soft_pwm_1 <= pwm_count_tmp) WRITE_HEATER_1(0);
  1420. #if HOTENDS > 2
  1421. if (soft_pwm_2 <= pwm_count_tmp) WRITE_HEATER_2(0);
  1422. #if HOTENDS > 3
  1423. if (soft_pwm_3 <= pwm_count_tmp) WRITE_HEATER_3(0);
  1424. #if HOTENDS > 4
  1425. if (soft_pwm_4 <= pwm_count_tmp) WRITE_HEATER_4(0);
  1426. #endif // HOTENDS > 4
  1427. #endif // HOTENDS > 3
  1428. #endif // HOTENDS > 2
  1429. #endif // HOTENDS > 1
  1430. #if HAS_HEATER_BED
  1431. if (soft_pwm_BED <= pwm_count_tmp) WRITE_HEATER_BED(0);
  1432. #endif
  1433. #if ENABLED(FAN_SOFT_PWM)
  1434. #if HAS_FAN0
  1435. if (soft_pwm_fan[0] <= pwm_count_tmp) WRITE_FAN(0);
  1436. #endif
  1437. #if HAS_FAN1
  1438. if (soft_pwm_fan[1] <= pwm_count_tmp) WRITE_FAN1(0);
  1439. #endif
  1440. #if HAS_FAN2
  1441. if (soft_pwm_fan[2] <= pwm_count_tmp) WRITE_FAN2(0);
  1442. #endif
  1443. #endif
  1444. }
  1445. // SOFT_PWM_SCALE to frequency:
  1446. //
  1447. // 0: 16000000/64/256/128 = 7.6294 Hz
  1448. // 1: / 64 = 15.2588 Hz
  1449. // 2: / 32 = 30.5176 Hz
  1450. // 3: / 16 = 61.0352 Hz
  1451. // 4: / 8 = 122.0703 Hz
  1452. // 5: / 4 = 244.1406 Hz
  1453. pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
  1454. #else // SLOW_PWM_HEATERS
  1455. /**
  1456. * SLOW PWM HEATERS
  1457. *
  1458. * For relay-driven heaters
  1459. */
  1460. #ifndef MIN_STATE_TIME
  1461. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1462. #endif
  1463. // Macros for Slow PWM timer logic
  1464. #define _SLOW_PWM_ROUTINE(NR, src) \
  1465. soft_pwm_ ##NR = src; \
  1466. if (soft_pwm_ ##NR > 0) { \
  1467. if (state_timer_heater_ ##NR == 0) { \
  1468. if (state_heater_ ##NR == 0) state_timer_heater_ ##NR = MIN_STATE_TIME; \
  1469. state_heater_ ##NR = 1; \
  1470. WRITE_HEATER_ ##NR(1); \
  1471. } \
  1472. } \
  1473. else { \
  1474. if (state_timer_heater_ ##NR == 0) { \
  1475. if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
  1476. state_heater_ ##NR = 0; \
  1477. WRITE_HEATER_ ##NR(0); \
  1478. } \
  1479. }
  1480. #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
  1481. #define PWM_OFF_ROUTINE(NR) \
  1482. if (soft_pwm_ ##NR < slow_pwm_count) { \
  1483. if (state_timer_heater_ ##NR == 0) { \
  1484. if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
  1485. state_heater_ ##NR = 0; \
  1486. WRITE_HEATER_ ##NR (0); \
  1487. } \
  1488. }
  1489. if (slow_pwm_count == 0) {
  1490. SLOW_PWM_ROUTINE(0);
  1491. #if HOTENDS > 1
  1492. SLOW_PWM_ROUTINE(1);
  1493. #if HOTENDS > 2
  1494. SLOW_PWM_ROUTINE(2);
  1495. #if HOTENDS > 3
  1496. SLOW_PWM_ROUTINE(3);
  1497. #if HOTENDS > 4
  1498. SLOW_PWM_ROUTINE(4);
  1499. #endif // HOTENDS > 4
  1500. #endif // HOTENDS > 3
  1501. #endif // HOTENDS > 2
  1502. #endif // HOTENDS > 1
  1503. #if HAS_HEATER_BED
  1504. _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
  1505. #endif
  1506. } // slow_pwm_count == 0
  1507. PWM_OFF_ROUTINE(0);
  1508. #if HOTENDS > 1
  1509. PWM_OFF_ROUTINE(1);
  1510. #if HOTENDS > 2
  1511. PWM_OFF_ROUTINE(2);
  1512. #if HOTENDS > 3
  1513. PWM_OFF_ROUTINE(3);
  1514. #if HOTENDS > 4
  1515. PWM_OFF_ROUTINE(4);
  1516. #endif // HOTENDS > 4
  1517. #endif // HOTENDS > 3
  1518. #endif // HOTENDS > 2
  1519. #endif // HOTENDS > 1
  1520. #if HAS_HEATER_BED
  1521. PWM_OFF_ROUTINE(BED); // BED
  1522. #endif
  1523. #if ENABLED(FAN_SOFT_PWM)
  1524. if (pwm_count_tmp >= 127) {
  1525. pwm_count_tmp = 0;
  1526. #if HAS_FAN0
  1527. soft_pwm_fan[0] = fanSpeedSoftPwm[0] >> 1;
  1528. WRITE_FAN(soft_pwm_fan[0] > 0 ? HIGH : LOW);
  1529. #endif
  1530. #if HAS_FAN1
  1531. soft_pwm_fan[1] = fanSpeedSoftPwm[1] >> 1;
  1532. WRITE_FAN1(soft_pwm_fan[1] > 0 ? HIGH : LOW);
  1533. #endif
  1534. #if HAS_FAN2
  1535. soft_pwm_fan[2] = fanSpeedSoftPwm[2] >> 1;
  1536. WRITE_FAN2(soft_pwm_fan[2] > 0 ? HIGH : LOW);
  1537. #endif
  1538. }
  1539. #if HAS_FAN0
  1540. if (soft_pwm_fan[0] <= pwm_count_tmp) WRITE_FAN(0);
  1541. #endif
  1542. #if HAS_FAN1
  1543. if (soft_pwm_fan[1] <= pwm_count_tmp) WRITE_FAN1(0);
  1544. #endif
  1545. #if HAS_FAN2
  1546. if (soft_pwm_fan[2] <= pwm_count_tmp) WRITE_FAN2(0);
  1547. #endif
  1548. #endif // FAN_SOFT_PWM
  1549. // SOFT_PWM_SCALE to frequency:
  1550. //
  1551. // 0: 16000000/64/256/128 = 7.6294 Hz
  1552. // 1: / 64 = 15.2588 Hz
  1553. // 2: / 32 = 30.5176 Hz
  1554. // 3: / 16 = 61.0352 Hz
  1555. // 4: / 8 = 122.0703 Hz
  1556. // 5: / 4 = 244.1406 Hz
  1557. pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
  1558. // increment slow_pwm_count only every 64th pwm_count,
  1559. // i.e. yielding a PWM frequency of 16/128 Hz (8s).
  1560. if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) {
  1561. slow_pwm_count++;
  1562. slow_pwm_count &= 0x7F;
  1563. if (state_timer_heater_0 > 0) state_timer_heater_0--;
  1564. #if HOTENDS > 1
  1565. if (state_timer_heater_1 > 0) state_timer_heater_1--;
  1566. #if HOTENDS > 2
  1567. if (state_timer_heater_2 > 0) state_timer_heater_2--;
  1568. #if HOTENDS > 3
  1569. if (state_timer_heater_3 > 0) state_timer_heater_3--;
  1570. #if HOTENDS > 4
  1571. if (state_timer_heater_4 > 0) state_timer_heater_4--;
  1572. #endif // HOTENDS > 4
  1573. #endif // HOTENDS > 3
  1574. #endif // HOTENDS > 2
  1575. #endif // HOTENDS > 1
  1576. #if HAS_HEATER_BED
  1577. if (state_timer_heater_BED > 0) state_timer_heater_BED--;
  1578. #endif
  1579. } // ((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0
  1580. #endif // SLOW_PWM_HEATERS
  1581. #define SET_ADMUX_ADCSRA(pin) ADMUX = _BV(REFS0) | (pin & 0x07); SBI(ADCSRA, ADSC)
  1582. #ifdef MUX5
  1583. #define START_ADC(pin) if (pin > 7) ADCSRB = _BV(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1584. #else
  1585. #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1586. #endif
  1587. // Prepare or measure a sensor, each one every 14th frame
  1588. switch (temp_state) {
  1589. case PrepareTemp_0:
  1590. #if HAS_TEMP_0
  1591. START_ADC(TEMP_0_PIN);
  1592. #endif
  1593. lcd_buttons_update();
  1594. temp_state = MeasureTemp_0;
  1595. break;
  1596. case MeasureTemp_0:
  1597. #if HAS_TEMP_0
  1598. raw_temp_value[0] += ADC;
  1599. #endif
  1600. temp_state = PrepareTemp_BED;
  1601. break;
  1602. case PrepareTemp_BED:
  1603. #if HAS_TEMP_BED
  1604. START_ADC(TEMP_BED_PIN);
  1605. #endif
  1606. lcd_buttons_update();
  1607. temp_state = MeasureTemp_BED;
  1608. break;
  1609. case MeasureTemp_BED:
  1610. #if HAS_TEMP_BED
  1611. raw_temp_bed_value += ADC;
  1612. #endif
  1613. temp_state = PrepareTemp_1;
  1614. break;
  1615. case PrepareTemp_1:
  1616. #if HAS_TEMP_1
  1617. START_ADC(TEMP_1_PIN);
  1618. #endif
  1619. lcd_buttons_update();
  1620. temp_state = MeasureTemp_1;
  1621. break;
  1622. case MeasureTemp_1:
  1623. #if HAS_TEMP_1
  1624. raw_temp_value[1] += ADC;
  1625. #endif
  1626. temp_state = PrepareTemp_2;
  1627. break;
  1628. case PrepareTemp_2:
  1629. #if HAS_TEMP_2
  1630. START_ADC(TEMP_2_PIN);
  1631. #endif
  1632. lcd_buttons_update();
  1633. temp_state = MeasureTemp_2;
  1634. break;
  1635. case MeasureTemp_2:
  1636. #if HAS_TEMP_2
  1637. raw_temp_value[2] += ADC;
  1638. #endif
  1639. temp_state = PrepareTemp_3;
  1640. break;
  1641. case PrepareTemp_3:
  1642. #if HAS_TEMP_3
  1643. START_ADC(TEMP_3_PIN);
  1644. #endif
  1645. lcd_buttons_update();
  1646. temp_state = MeasureTemp_3;
  1647. break;
  1648. case MeasureTemp_3:
  1649. #if HAS_TEMP_3
  1650. raw_temp_value[3] += ADC;
  1651. #endif
  1652. temp_state = PrepareTemp_4;
  1653. break;
  1654. case PrepareTemp_4:
  1655. #if HAS_TEMP_4
  1656. START_ADC(TEMP_4_PIN);
  1657. #endif
  1658. lcd_buttons_update();
  1659. temp_state = MeasureTemp_4;
  1660. break;
  1661. case MeasureTemp_4:
  1662. #if HAS_TEMP_4
  1663. raw_temp_value[4] += ADC;
  1664. #endif
  1665. temp_state = Prepare_FILWIDTH;
  1666. break;
  1667. case Prepare_FILWIDTH:
  1668. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1669. START_ADC(FILWIDTH_PIN);
  1670. #endif
  1671. lcd_buttons_update();
  1672. temp_state = Measure_FILWIDTH;
  1673. break;
  1674. case Measure_FILWIDTH:
  1675. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1676. // raw_filwidth_value += ADC; //remove to use an IIR filter approach
  1677. if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
  1678. raw_filwidth_value -= (raw_filwidth_value >> 7); //multiply raw_filwidth_value by 127/128
  1679. raw_filwidth_value += ((unsigned long)ADC << 7); //add new ADC reading
  1680. }
  1681. #endif
  1682. temp_state = PrepareTemp_0;
  1683. temp_count++;
  1684. break;
  1685. case StartupDelay:
  1686. temp_state = PrepareTemp_0;
  1687. break;
  1688. // default:
  1689. // SERIAL_ERROR_START;
  1690. // SERIAL_ERRORLNPGM("Temp measurement error!");
  1691. // break;
  1692. } // switch(temp_state)
  1693. if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
  1694. temp_count = 0;
  1695. // Update the raw values if they've been read. Else we could be updating them during reading.
  1696. if (!temp_meas_ready) set_current_temp_raw();
  1697. // Filament Sensor - can be read any time since IIR filtering is used
  1698. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1699. current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
  1700. #endif
  1701. ZERO(raw_temp_value);
  1702. raw_temp_bed_value = 0;
  1703. #define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) > (HEATER_##N##_RAW_HI_TEMP) ? -1 : 1)
  1704. int constexpr temp_dir[] = {
  1705. #if ENABLED(HEATER_0_USES_MAX6675)
  1706. 0
  1707. #else
  1708. TEMPDIR(0)
  1709. #endif
  1710. #if HOTENDS > 1
  1711. , TEMPDIR(1)
  1712. #if HOTENDS > 2
  1713. , TEMPDIR(2)
  1714. #if HOTENDS > 3
  1715. , TEMPDIR(3)
  1716. #if HOTENDS > 4
  1717. , TEMPDIR(4)
  1718. #endif // HOTENDS > 4
  1719. #endif // HOTENDS > 3
  1720. #endif // HOTENDS > 2
  1721. #endif // HOTENDS > 1
  1722. };
  1723. for (uint8_t e = 0; e < COUNT(temp_dir); e++) {
  1724. const int tdir = temp_dir[e], rawtemp = current_temperature_raw[e] * tdir;
  1725. if (rawtemp > maxttemp_raw[e] * tdir && target_temperature[e] > 0.0f) max_temp_error(e);
  1726. if (rawtemp < minttemp_raw[e] * tdir && !is_preheating(e) && target_temperature[e] > 0.0f) {
  1727. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1728. if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
  1729. #endif
  1730. min_temp_error(e);
  1731. }
  1732. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1733. else
  1734. consecutive_low_temperature_error[e] = 0;
  1735. #endif
  1736. }
  1737. #if HAS_TEMP_BED
  1738. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1739. #define GEBED <=
  1740. #else
  1741. #define GEBED >=
  1742. #endif
  1743. if (current_temperature_bed_raw GEBED bed_maxttemp_raw && target_temperature_bed > 0.0f) max_temp_error(-1);
  1744. if (bed_minttemp_raw GEBED current_temperature_bed_raw && target_temperature_bed > 0.0f) min_temp_error(-1);
  1745. #endif
  1746. } // temp_count >= OVERSAMPLENR
  1747. #if ENABLED(BABYSTEPPING)
  1748. LOOP_XYZ(axis) {
  1749. int curTodo = babystepsTodo[axis]; //get rid of volatile for performance
  1750. if (curTodo > 0) {
  1751. stepper.babystep((AxisEnum)axis,/*fwd*/true);
  1752. babystepsTodo[axis]--; //fewer to do next time
  1753. }
  1754. else if (curTodo < 0) {
  1755. stepper.babystep((AxisEnum)axis,/*fwd*/false);
  1756. babystepsTodo[axis]++; //fewer to do next time
  1757. }
  1758. }
  1759. #endif //BABYSTEPPING
  1760. #if ENABLED(PINS_DEBUGGING)
  1761. extern bool endstop_monitor_flag;
  1762. // run the endstop monitor at 15Hz
  1763. static uint8_t endstop_monitor_count = 16; // offset this check from the others
  1764. if (endstop_monitor_flag) {
  1765. endstop_monitor_count += _BV(1); // 15 Hz
  1766. endstop_monitor_count &= 0x7F;
  1767. if (!endstop_monitor_count) endstop_monitor(); // report changes in endstop status
  1768. }
  1769. #endif
  1770. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  1771. extern volatile uint8_t e_hit;
  1772. if (e_hit && ENDSTOPS_ENABLED) {
  1773. endstops.update(); // call endstop update routine
  1774. e_hit--;
  1775. }
  1776. #endif
  1777. cli();
  1778. in_temp_isr = false;
  1779. SBI(TIMSK0, OCIE0B); //re-enable Temperature ISR
  1780. }