My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

M100_Free_Mem_Chk.cpp 8.4KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * M100 Free Memory Watcher
  24. *
  25. * This code watches the free memory block between the bottom of the heap and the top of the stack.
  26. * This memory block is initialized and watched via the M100 command.
  27. *
  28. * M100 I Initializes the free memory block and prints vitals statistics about the area
  29. * M100 F Identifies how much of the free memory block remains free and unused. It also
  30. * detects and reports any corruption within the free memory block that may have
  31. * happened due to errant firmware.
  32. * M100 D Does a hex display of the free memory block along with a flag for any errant
  33. * data that does not match the expected value.
  34. * M100 C x Corrupts x locations within the free memory block. This is useful to check the
  35. * correctness of the M100 F and M100 D commands.
  36. *
  37. * Initial version by Roxy-3DPrintBoard
  38. */
  39. #define M100_FREE_MEMORY_DUMPER // Comment out to remove Dump sub-command
  40. #define M100_FREE_MEMORY_CORRUPTOR // Comment out to remove Corrupt sub-command
  41. #include "Marlin.h"
  42. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  43. extern void* __brkval;
  44. extern size_t __heap_start, __heap_end, __flp;
  45. //
  46. // Utility functions used by M100 to get its work done.
  47. //
  48. unsigned char* top_of_stack();
  49. void prt_hex_nibble(unsigned int);
  50. void prt_hex_byte(unsigned int);
  51. void prt_hex_word(unsigned int);
  52. int how_many_E5s_are_here(unsigned char*);
  53. void gcode_M100() {
  54. static int m100_not_initialized = 1;
  55. unsigned char* sp, *ptr;
  56. int i, j, n;
  57. //
  58. // M100 D dumps the free memory block from __brkval to the stack pointer.
  59. // malloc() eats memory from the start of the block and the stack grows
  60. // up from the bottom of the block. Solid 0xE5's indicate nothing has
  61. // used that memory yet. There should not be anything but 0xE5's within
  62. // the block of 0xE5's. If there is, that would indicate memory corruption
  63. // probably caused by bad pointers. Any unexpected values will be flagged in
  64. // the right hand column to help spotting them.
  65. //
  66. #if ENABLED(M100_FREE_MEMORY_DUMPER) // Disable to remove Dump sub-command
  67. if (code_seen('D')) {
  68. ptr = (unsigned char*) __brkval;
  69. //
  70. // We want to start and end the dump on a nice 16 byte boundry even though
  71. // the values we are using are not 16 byte aligned.
  72. //
  73. SERIAL_ECHOPGM("\n__brkval : ");
  74. prt_hex_word((unsigned int) ptr);
  75. ptr = (unsigned char*)((unsigned long) ptr & 0xfff0);
  76. sp = top_of_stack();
  77. SERIAL_ECHOPGM("\nStack Pointer : ");
  78. prt_hex_word((unsigned int) sp);
  79. SERIAL_ECHOPGM("\n");
  80. sp = (unsigned char*)((unsigned long) sp | 0x000f);
  81. n = sp - ptr;
  82. //
  83. // This is the main loop of the Dump command.
  84. //
  85. while (ptr < sp) {
  86. prt_hex_word((unsigned int) ptr); // Print the address
  87. SERIAL_ECHOPGM(":");
  88. for (i = 0; i < 16; i++) { // and 16 data bytes
  89. prt_hex_byte(*(ptr + i));
  90. SERIAL_ECHOPGM(" ");
  91. delay(2);
  92. }
  93. SERIAL_ECHO("|"); // now show where non 0xE5's are
  94. for (i = 0; i < 16; i++) {
  95. delay(2);
  96. if (*(ptr + i) == 0xe5)
  97. SERIAL_ECHOPGM(" ");
  98. else
  99. SERIAL_ECHOPGM("?");
  100. }
  101. SERIAL_ECHO("\n");
  102. ptr += 16;
  103. delay(2);
  104. }
  105. SERIAL_ECHOLNPGM("Done.\n");
  106. return;
  107. }
  108. #endif
  109. //
  110. // M100 F requests the code to return the number of free bytes in the memory pool along with
  111. // other vital statistics that define the memory pool.
  112. //
  113. if (code_seen('F')) {
  114. #if 0
  115. int max_addr = (int) __brkval;
  116. int max_cnt = 0;
  117. #endif
  118. int block_cnt = 0;
  119. ptr = (unsigned char*) __brkval;
  120. sp = top_of_stack();
  121. n = sp - ptr;
  122. // Scan through the range looking for the biggest block of 0xE5's we can find
  123. for (i = 0; i < n; i++) {
  124. if (*(ptr + i) == (unsigned char) 0xe5) {
  125. j = how_many_E5s_are_here((unsigned char*) ptr + i);
  126. if (j > 8) {
  127. SERIAL_ECHOPAIR("Found ", j);
  128. SERIAL_ECHOPGM(" bytes free at 0x");
  129. prt_hex_word((int) ptr + i);
  130. SERIAL_ECHOPGM("\n");
  131. i += j;
  132. block_cnt++;
  133. }
  134. #if 0
  135. if (j > max_cnt) { // We don't do anything with this information yet
  136. max_cnt = j; // but we do know where the biggest free memory block is.
  137. max_addr = (int) ptr + i;
  138. }
  139. #endif
  140. }
  141. }
  142. if (block_cnt > 1)
  143. SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.\n");
  144. SERIAL_ECHO("\nDone.\n");
  145. return;
  146. }
  147. //
  148. // M100 C x Corrupts x locations in the free memory pool and reports the locations of the corruption.
  149. // This is useful to check the correctness of the M100 D and the M100 F commands.
  150. //
  151. #if ENABLED(M100_FREE_MEMORY_CORRUPTOR)
  152. if (code_seen('C')) {
  153. int x = code_value_int(); // x gets the # of locations to corrupt within the memory pool
  154. SERIAL_ECHOLNPGM("Corrupting free memory block.\n");
  155. ptr = (unsigned char*) __brkval;
  156. SERIAL_ECHOPAIR("\n__brkval : ", ptr);
  157. ptr += 8;
  158. sp = top_of_stack();
  159. SERIAL_ECHOPAIR("\nStack Pointer : ", sp);
  160. SERIAL_ECHOLNPGM("\n");
  161. n = sp - ptr - 64; // -64 just to keep us from finding interrupt activity that
  162. // has altered the stack.
  163. j = n / (x + 1);
  164. for (i = 1; i <= x; i++) {
  165. *(ptr + (i * j)) = i;
  166. SERIAL_ECHO("\nCorrupting address: 0x");
  167. prt_hex_word((unsigned int)(ptr + (i * j)));
  168. }
  169. SERIAL_ECHOLNPGM("\n");
  170. return;
  171. }
  172. #endif
  173. //
  174. // M100 I Initializes the free memory pool so it can be watched and prints vital
  175. // statistics that define the free memory pool.
  176. //
  177. if (m100_not_initialized || code_seen('I')) { // If no sub-command is specified, the first time
  178. SERIAL_ECHOLNPGM("Initializing free memory block.\n"); // this happens, it will Initialize.
  179. ptr = (unsigned char*) __brkval; // Repeated M100 with no sub-command will not destroy the
  180. SERIAL_ECHOPAIR("\n__brkval : ", ptr); // state of the initialized free memory pool.
  181. ptr += 8;
  182. sp = top_of_stack();
  183. SERIAL_ECHOPAIR("\nStack Pointer : ", sp);
  184. SERIAL_ECHOLNPGM("\n");
  185. n = sp - ptr - 64; // -64 just to keep us from finding interrupt activity that
  186. // has altered the stack.
  187. SERIAL_ECHO(n);
  188. SERIAL_ECHOLNPGM(" bytes of memory initialized.\n");
  189. for (i = 0; i < n; i++)
  190. *(ptr + i) = (unsigned char) 0xe5;
  191. for (i = 0; i < n; i++) {
  192. if (*(ptr + i) != (unsigned char) 0xe5) {
  193. SERIAL_ECHOPAIR("? address : ", ptr + i);
  194. SERIAL_ECHOPAIR("=", *(ptr + i));
  195. SERIAL_ECHOLNPGM("\n");
  196. }
  197. }
  198. m100_not_initialized = 0;
  199. SERIAL_ECHOLNPGM("Done.\n");
  200. return;
  201. }
  202. return;
  203. }
  204. // top_of_stack() returns the location of a variable on its stack frame. The value returned is above
  205. // the stack once the function returns to the caller.
  206. unsigned char* top_of_stack() {
  207. unsigned char x;
  208. return &x + 1; // x is pulled on return;
  209. }
  210. //
  211. // 3 support routines to print hex numbers. We can print a nibble, byte and word
  212. //
  213. void prt_hex_nibble(unsigned int n) {
  214. if (n <= 9)
  215. SERIAL_ECHO(n);
  216. else
  217. SERIAL_ECHO((char)('A' + n - 10));
  218. delay(2);
  219. }
  220. void prt_hex_byte(unsigned int b) {
  221. prt_hex_nibble((b & 0xf0) >> 4);
  222. prt_hex_nibble(b & 0x0f);
  223. }
  224. void prt_hex_word(unsigned int w) {
  225. prt_hex_byte((w & 0xff00) >> 8);
  226. prt_hex_byte(w & 0x0ff);
  227. }
  228. // how_many_E5s_are_here() is a utility function to easily find out how many 0xE5's are
  229. // at the specified location. Having this logic as a function simplifies the search code.
  230. //
  231. int how_many_E5s_are_here(unsigned char* p) {
  232. int n;
  233. for (n = 0; n < 32000; n++) {
  234. if (*(p + n) != (unsigned char) 0xe5)
  235. return n - 1;
  236. }
  237. return -1;
  238. }
  239. #endif