My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

G2_G3.cpp 12KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "../../inc/MarlinConfig.h"
  23. #if ENABLED(ARC_SUPPORT)
  24. #include "../gcode.h"
  25. #include "../../module/motion.h"
  26. #include "../../module/planner.h"
  27. #include "../../module/temperature.h"
  28. #if ENABLED(DELTA)
  29. #include "../../module/delta.h"
  30. #elif ENABLED(SCARA)
  31. #include "../../module/scara.h"
  32. #endif
  33. #if N_ARC_CORRECTION < 1
  34. #undef N_ARC_CORRECTION
  35. #define N_ARC_CORRECTION 1
  36. #endif
  37. /**
  38. * Plan an arc in 2 dimensions
  39. *
  40. * The arc is approximated by generating many small linear segments.
  41. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  42. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  43. * larger segments will tend to be more efficient. Your slicer should have
  44. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  45. */
  46. void plan_arc(
  47. const xyze_pos_t &cart, // Destination position
  48. const ab_float_t &offset, // Center of rotation relative to current_position
  49. const uint8_t clockwise // Clockwise?
  50. ) {
  51. #if ENABLED(CNC_WORKSPACE_PLANES)
  52. AxisEnum p_axis, q_axis, l_axis;
  53. switch (gcode.workspace_plane) {
  54. default:
  55. case GcodeSuite::PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
  56. case GcodeSuite::PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
  57. case GcodeSuite::PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
  58. }
  59. #else
  60. constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
  61. #endif
  62. // Radius vector from center to current location
  63. ab_float_t rvec = -offset;
  64. const float radius = HYPOT(rvec.a, rvec.b),
  65. #if ENABLED(AUTO_BED_LEVELING_UBL)
  66. start_L = current_position[l_axis],
  67. #endif
  68. center_P = current_position[p_axis] - rvec.a,
  69. center_Q = current_position[q_axis] - rvec.b,
  70. rt_X = cart[p_axis] - center_P,
  71. rt_Y = cart[q_axis] - center_Q,
  72. linear_travel = cart[l_axis] - current_position[l_axis],
  73. extruder_travel = cart.e - current_position.e;
  74. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  75. float angular_travel = ATAN2(rvec.a * rt_Y - rvec.b * rt_X, rvec.a * rt_X + rvec.b * rt_Y);
  76. if (angular_travel < 0) angular_travel += RADIANS(360);
  77. #ifdef MIN_ARC_SEGMENTS
  78. uint16_t min_segments = CEIL((MIN_ARC_SEGMENTS) * (angular_travel / RADIANS(360)));
  79. NOLESS(min_segments, 1U);
  80. #else
  81. constexpr uint16_t min_segments = 1;
  82. #endif
  83. if (clockwise) angular_travel -= RADIANS(360);
  84. // Make a circle if the angular rotation is 0 and the target is current position
  85. if (angular_travel == 0 && current_position[p_axis] == cart[p_axis] && current_position[q_axis] == cart[q_axis]) {
  86. angular_travel = RADIANS(360);
  87. #ifdef MIN_ARC_SEGMENTS
  88. min_segments = MIN_ARC_SEGMENTS;
  89. #endif
  90. }
  91. const float flat_mm = radius * angular_travel,
  92. mm_of_travel = linear_travel ? HYPOT(flat_mm, linear_travel) : ABS(flat_mm);
  93. if (mm_of_travel < 0.001f) return;
  94. uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
  95. NOLESS(segments, min_segments);
  96. /**
  97. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  98. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  99. * r_T = [cos(phi) -sin(phi);
  100. * sin(phi) cos(phi)] * r ;
  101. *
  102. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  103. * defined from the circle center to the initial position. Each line segment is formed by successive
  104. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  105. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  106. * all double numbers are single precision on the Arduino. (True double precision will not have
  107. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  108. * tool precision in some cases. Therefore, arc path correction is implemented.
  109. *
  110. * Small angle approximation may be used to reduce computation overhead further. This approximation
  111. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  112. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  113. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  114. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  115. * issue for CNC machines with the single precision Arduino calculations.
  116. *
  117. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  118. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  119. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  120. * This is important when there are successive arc motions.
  121. */
  122. // Vector rotation matrix values
  123. xyze_pos_t raw;
  124. const float theta_per_segment = angular_travel / segments,
  125. linear_per_segment = linear_travel / segments,
  126. extruder_per_segment = extruder_travel / segments,
  127. sin_T = theta_per_segment,
  128. cos_T = 1 - 0.5f * sq(theta_per_segment); // Small angle approximation
  129. // Initialize the linear axis
  130. raw[l_axis] = current_position[l_axis];
  131. // Initialize the extruder axis
  132. raw.e = current_position.e;
  133. const feedRate_t scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s);
  134. #if ENABLED(SCARA_FEEDRATE_SCALING)
  135. const float inv_duration = scaled_fr_mm_s / MM_PER_ARC_SEGMENT;
  136. #endif
  137. millis_t next_idle_ms = millis() + 200UL;
  138. #if N_ARC_CORRECTION > 1
  139. int8_t arc_recalc_count = N_ARC_CORRECTION;
  140. #endif
  141. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  142. thermalManager.manage_heater();
  143. if (ELAPSED(millis(), next_idle_ms)) {
  144. next_idle_ms = millis() + 200UL;
  145. idle();
  146. }
  147. #if N_ARC_CORRECTION > 1
  148. if (--arc_recalc_count) {
  149. // Apply vector rotation matrix to previous rvec.a / 1
  150. const float r_new_Y = rvec.a * sin_T + rvec.b * cos_T;
  151. rvec.a = rvec.a * cos_T - rvec.b * sin_T;
  152. rvec.b = r_new_Y;
  153. }
  154. else
  155. #endif
  156. {
  157. #if N_ARC_CORRECTION > 1
  158. arc_recalc_count = N_ARC_CORRECTION;
  159. #endif
  160. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  161. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  162. // To reduce stuttering, the sin and cos could be computed at different times.
  163. // For now, compute both at the same time.
  164. const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
  165. rvec.a = -offset[0] * cos_Ti + offset[1] * sin_Ti;
  166. rvec.b = -offset[0] * sin_Ti - offset[1] * cos_Ti;
  167. }
  168. // Update raw location
  169. raw[p_axis] = center_P + rvec.a;
  170. raw[q_axis] = center_Q + rvec.b;
  171. #if ENABLED(AUTO_BED_LEVELING_UBL)
  172. raw[l_axis] = start_L;
  173. UNUSED(linear_per_segment);
  174. #else
  175. raw[l_axis] += linear_per_segment;
  176. #endif
  177. raw.e += extruder_per_segment;
  178. apply_motion_limits(raw);
  179. #if HAS_LEVELING && !PLANNER_LEVELING
  180. planner.apply_leveling(raw);
  181. #endif
  182. if (!planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, MM_PER_ARC_SEGMENT
  183. #if ENABLED(SCARA_FEEDRATE_SCALING)
  184. , inv_duration
  185. #endif
  186. ))
  187. break;
  188. }
  189. // Ensure last segment arrives at target location.
  190. raw = cart;
  191. #if ENABLED(AUTO_BED_LEVELING_UBL)
  192. raw[l_axis] = start_L;
  193. #endif
  194. apply_motion_limits(raw);
  195. #if HAS_LEVELING && !PLANNER_LEVELING
  196. planner.apply_leveling(raw);
  197. #endif
  198. planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, MM_PER_ARC_SEGMENT
  199. #if ENABLED(SCARA_FEEDRATE_SCALING)
  200. , inv_duration
  201. #endif
  202. );
  203. #if ENABLED(AUTO_BED_LEVELING_UBL)
  204. raw[l_axis] = start_L;
  205. #endif
  206. current_position = raw;
  207. } // plan_arc
  208. /**
  209. * G2: Clockwise Arc
  210. * G3: Counterclockwise Arc
  211. *
  212. * This command has two forms: IJ-form (JK, KI) and R-form.
  213. *
  214. * - Depending on the current Workspace Plane orientation,
  215. * use parameters IJ/JK/KI to specify the XY/YZ/ZX offsets.
  216. * At least one of the IJ/JK/KI parameters is required.
  217. * XY/YZ/ZX can be omitted to do a complete circle.
  218. * The given XY/YZ/ZX is not error-checked. The arc ends
  219. * based on the angle of the destination.
  220. * Mixing IJ/JK/KI with R will throw an error.
  221. *
  222. * - R specifies the radius. X or Y (Y or Z / Z or X) is required.
  223. * Omitting both XY/YZ/ZX will throw an error.
  224. * XY/YZ/ZX must differ from the current XY/YZ/ZX.
  225. * Mixing R with IJ/JK/KI will throw an error.
  226. *
  227. * - P specifies the number of full circles to do
  228. * before the specified arc move.
  229. *
  230. * Examples:
  231. *
  232. * G2 I10 ; CW circle centered at X+10
  233. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  234. */
  235. void GcodeSuite::G2_G3(const bool clockwise) {
  236. if (MOTION_CONDITIONS) {
  237. #if ENABLED(SF_ARC_FIX)
  238. const bool relative_mode_backup = relative_mode;
  239. relative_mode = true;
  240. #endif
  241. get_destination_from_command();
  242. #if ENABLED(SF_ARC_FIX)
  243. relative_mode = relative_mode_backup;
  244. #endif
  245. ab_float_t arc_offset = { 0, 0 };
  246. if (parser.seenval('R')) {
  247. const float r = parser.value_linear_units();
  248. if (r) {
  249. const xy_pos_t p1 = current_position, p2 = destination;
  250. if (p1 != p2) {
  251. const xy_pos_t d2 = (p2 - p1) * 0.5f; // XY vector to midpoint of move from current
  252. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  253. len = d2.magnitude(), // Distance to mid-point of move from current
  254. h2 = (r - len) * (r + len), // factored to reduce rounding error
  255. h = (h2 >= 0) ? SQRT(h2) : 0.0f; // Distance to the arc pivot-point from midpoint
  256. const xy_pos_t s = { -d2.y, d2.x }; // Perpendicular bisector. (Divide by len for unit vector.)
  257. arc_offset = d2 + s / len * e * h; // The calculated offset (mid-point if |r| <= len)
  258. }
  259. }
  260. }
  261. else {
  262. #if ENABLED(CNC_WORKSPACE_PLANES)
  263. char achar, bchar;
  264. switch (gcode.workspace_plane) {
  265. default:
  266. case GcodeSuite::PLANE_XY: achar = 'I'; bchar = 'J'; break;
  267. case GcodeSuite::PLANE_YZ: achar = 'J'; bchar = 'K'; break;
  268. case GcodeSuite::PLANE_ZX: achar = 'K'; bchar = 'I'; break;
  269. }
  270. #else
  271. constexpr char achar = 'I', bchar = 'J';
  272. #endif
  273. if (parser.seenval(achar)) arc_offset.a = parser.value_linear_units();
  274. if (parser.seenval(bchar)) arc_offset.b = parser.value_linear_units();
  275. }
  276. if (arc_offset) {
  277. #if ENABLED(ARC_P_CIRCLES)
  278. // P indicates number of circles to do
  279. int8_t circles_to_do = parser.byteval('P');
  280. if (!WITHIN(circles_to_do, 0, 100))
  281. SERIAL_ERROR_MSG(MSG_ERR_ARC_ARGS);
  282. while (circles_to_do--)
  283. plan_arc(current_position, arc_offset, clockwise);
  284. #endif
  285. // Send the arc to the planner
  286. plan_arc(destination, arc_offset, clockwise);
  287. reset_stepper_timeout();
  288. }
  289. else
  290. SERIAL_ERROR_MSG(MSG_ERR_ARC_ARGS);
  291. }
  292. }
  293. #endif // ARC_SUPPORT