My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 277KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #include "nozzle.h"
  57. #include "duration_t.h"
  58. #include "types.h"
  59. #if ENABLED(USE_WATCHDOG)
  60. #include "watchdog.h"
  61. #endif
  62. #if ENABLED(BLINKM)
  63. #include "blinkm.h"
  64. #include "Wire.h"
  65. #endif
  66. #if HAS_SERVOS
  67. #include "servo.h"
  68. #endif
  69. #if HAS_DIGIPOTSS
  70. #include <SPI.h>
  71. #endif
  72. #if ENABLED(DAC_STEPPER_CURRENT)
  73. #include "stepper_dac.h"
  74. #endif
  75. #if ENABLED(EXPERIMENTAL_I2CBUS)
  76. #include "twibus.h"
  77. #endif
  78. /**
  79. * Look here for descriptions of G-codes:
  80. * - http://linuxcnc.org/handbook/gcode/g-code.html
  81. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  82. *
  83. * Help us document these G-codes online:
  84. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  85. * - http://reprap.org/wiki/G-code
  86. *
  87. * -----------------
  88. * Implemented Codes
  89. * -----------------
  90. *
  91. * "G" Codes
  92. *
  93. * G0 -> G1
  94. * G1 - Coordinated Movement X Y Z E
  95. * G2 - CW ARC
  96. * G3 - CCW ARC
  97. * G4 - Dwell S<seconds> or P<milliseconds>
  98. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  99. * G10 - Retract filament according to settings of M207
  100. * G11 - Retract recover filament according to settings of M208
  101. * G12 - Clean tool
  102. * G20 - Set input units to inches
  103. * G21 - Set input units to millimeters
  104. * G28 - Home one or more axes
  105. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  106. * G30 - Single Z probe, probes bed at current XY location.
  107. * G31 - Dock sled (Z_PROBE_SLED only)
  108. * G32 - Undock sled (Z_PROBE_SLED only)
  109. * G90 - Use Absolute Coordinates
  110. * G91 - Use Relative Coordinates
  111. * G92 - Set current position to coordinates given
  112. *
  113. * "M" Codes
  114. *
  115. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  116. * M1 - Same as M0
  117. * M17 - Enable/Power all stepper motors
  118. * M18 - Disable all stepper motors; same as M84
  119. * M20 - List SD card
  120. * M21 - Init SD card
  121. * M22 - Release SD card
  122. * M23 - Select SD file (M23 filename.g)
  123. * M24 - Start/resume SD print
  124. * M25 - Pause SD print
  125. * M26 - Set SD position in bytes (M26 S12345)
  126. * M27 - Report SD print status
  127. * M28 - Start SD write (M28 filename.g)
  128. * M29 - Stop SD write
  129. * M30 - Delete file from SD (M30 filename.g)
  130. * M31 - Output time since last M109 or SD card start to serial
  131. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  132. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  133. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  134. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  135. * M33 - Get the longname version of a path
  136. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  137. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  138. * M75 - Start the print job timer
  139. * M76 - Pause the print job timer
  140. * M77 - Stop the print job timer
  141. * M78 - Show statistical information about the print jobs
  142. * M80 - Turn on Power Supply
  143. * M81 - Turn off Power Supply
  144. * M82 - Set E codes absolute (default)
  145. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  146. * M84 - Disable steppers until next move,
  147. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  148. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  149. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  150. * M104 - Set extruder target temp
  151. * M105 - Read current temp
  152. * M106 - Fan on
  153. * M107 - Fan off
  154. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  155. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  156. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  157. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  158. * M110 - Set the current line number
  159. * M111 - Set debug flags with S<mask>. See flag bits defined in enum.h.
  160. * M112 - Emergency stop
  161. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  162. * M114 - Output current position to serial port
  163. * M115 - Capabilities string
  164. * M117 - Display a message on the controller screen
  165. * M119 - Output Endstop status to serial port
  166. * M120 - Enable endstop detection
  167. * M121 - Disable endstop detection
  168. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  169. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  170. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  171. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  172. * M140 - Set bed target temp
  173. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  174. * M149 - Set temperature units
  175. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  176. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  177. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  178. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  179. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  180. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  181. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  182. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  183. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  184. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  185. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  186. * M205 - Set advanced settings. Current units apply:
  187. S<print> T<travel> minimum speeds
  188. B<minimum segment time>
  189. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  190. * M206 - Set additional homing offset
  191. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  192. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  193. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  194. Every normal extrude-only move will be classified as retract depending on the direction.
  195. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  196. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  197. * M221 - Set Flow Percentage: S<percent>
  198. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  199. * M240 - Trigger a camera to take a photograph
  200. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  201. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  202. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  203. * M301 - Set PID parameters P I and D
  204. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  205. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  206. * M304 - Set bed PID parameters P I and D
  207. * M380 - Activate solenoid on active extruder
  208. * M381 - Disable all solenoids
  209. * M400 - Finish all moves
  210. * M401 - Lower Z probe if present
  211. * M402 - Raise Z probe if present
  212. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  213. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  214. * M406 - Disable Filament Sensor extrusion control
  215. * M407 - Display measured filament diameter in millimeters
  216. * M410 - Quickstop. Abort all the planned moves
  217. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  218. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  219. * M428 - Set the home_offset logically based on the current_position
  220. * M500 - Store parameters in EEPROM
  221. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  222. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  223. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  224. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  227. * M666 - Set delta endstop adjustment
  228. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  230. * M907 - Set digital trimpot motor current using axis codes.
  231. * M908 - Control digital trimpot directly.
  232. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  233. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  234. * M350 - Set microstepping mode.
  235. * M351 - Toggle MS1 MS2 pins directly.
  236. *
  237. * ************ SCARA Specific - This can change to suit future G-code regulations
  238. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  239. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  240. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  241. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  242. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  243. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  244. * ************* SCARA End ***************
  245. *
  246. * ************ Custom codes - This can change to suit future G-code regulations
  247. * M100 - Watch Free Memory (For Debugging Only)
  248. * M928 - Start SD logging (M928 filename.g) - ended by M29
  249. * M999 - Restart after being stopped by error
  250. *
  251. * "T" Codes
  252. *
  253. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  254. *
  255. */
  256. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  257. void gcode_M100();
  258. #endif
  259. #if ENABLED(SDSUPPORT)
  260. CardReader card;
  261. #endif
  262. #if ENABLED(EXPERIMENTAL_I2CBUS)
  263. TWIBus i2c;
  264. #endif
  265. bool Running = true;
  266. uint8_t marlin_debug_flags = DEBUG_NONE;
  267. float current_position[NUM_AXIS] = { 0.0 };
  268. static float destination[NUM_AXIS] = { 0.0 };
  269. bool axis_known_position[3] = { false };
  270. bool axis_homed[3] = { false };
  271. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  272. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  273. static char* current_command, *current_command_args;
  274. static uint8_t cmd_queue_index_r = 0,
  275. cmd_queue_index_w = 0,
  276. commands_in_queue = 0;
  277. #if ENABLED(INCH_MODE_SUPPORT)
  278. float linear_unit_factor = 1.0;
  279. float volumetric_unit_factor = 1.0;
  280. #endif
  281. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  282. TempUnit input_temp_units = TEMPUNIT_C;
  283. #endif
  284. /**
  285. * Feed rates are often configured with mm/m
  286. * but the planner and stepper like mm/s units.
  287. */
  288. const float homing_feedrate_mm_s[] = {
  289. #if ENABLED(DELTA)
  290. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  291. #else
  292. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  293. #endif
  294. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  295. };
  296. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  297. int feedrate_percentage = 100, saved_feedrate_percentage;
  298. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  299. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  300. bool volumetric_enabled = false;
  301. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  302. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  303. // The distance that XYZ has been offset by G92. Reset by G28.
  304. float position_shift[3] = { 0 };
  305. // This offset is added to the configured home position.
  306. // Set by M206, M428, or menu item. Saved to EEPROM.
  307. float home_offset[3] = { 0 };
  308. // Software Endstops. Default to configured limits.
  309. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  310. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  311. #if FAN_COUNT > 0
  312. int fanSpeeds[FAN_COUNT] = { 0 };
  313. #endif
  314. // The active extruder (tool). Set with T<extruder> command.
  315. uint8_t active_extruder = 0;
  316. // Relative Mode. Enable with G91, disable with G90.
  317. static bool relative_mode = false;
  318. volatile bool wait_for_heatup = true;
  319. const char errormagic[] PROGMEM = "Error:";
  320. const char echomagic[] PROGMEM = "echo:";
  321. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  322. static int serial_count = 0;
  323. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  324. static char* seen_pointer;
  325. // Next Immediate GCode Command pointer. NULL if none.
  326. const char* queued_commands_P = NULL;
  327. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  328. // Inactivity shutdown
  329. millis_t previous_cmd_ms = 0;
  330. static millis_t max_inactive_time = 0;
  331. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  332. // Print Job Timer
  333. #if ENABLED(PRINTCOUNTER)
  334. PrintCounter print_job_timer = PrintCounter();
  335. #else
  336. Stopwatch print_job_timer = Stopwatch();
  337. #endif
  338. // Buzzer - I2C on the LCD or a BEEPER_PIN
  339. #if ENABLED(LCD_USE_I2C_BUZZER)
  340. #define BUZZ(d,f) lcd_buzz(d, f)
  341. #elif HAS_BUZZER
  342. Buzzer buzzer;
  343. #define BUZZ(d,f) buzzer.tone(d, f)
  344. #else
  345. #define BUZZ(d,f) NOOP
  346. #endif
  347. static uint8_t target_extruder;
  348. #if HAS_BED_PROBE
  349. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  350. #endif
  351. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  352. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  353. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  354. bool bed_leveling_in_progress = false;
  355. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  356. #elif defined(XY_PROBE_SPEED)
  357. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  358. #else
  359. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  360. #endif
  361. #if ENABLED(Z_DUAL_ENDSTOPS)
  362. float z_endstop_adj = 0;
  363. #endif
  364. // Extruder offsets
  365. #if HOTENDS > 1
  366. float hotend_offset[][HOTENDS] = {
  367. HOTEND_OFFSET_X,
  368. HOTEND_OFFSET_Y
  369. #ifdef HOTEND_OFFSET_Z
  370. , HOTEND_OFFSET_Z
  371. #endif
  372. };
  373. #endif
  374. #if HAS_Z_SERVO_ENDSTOP
  375. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  376. #endif
  377. #if ENABLED(BARICUDA)
  378. int baricuda_valve_pressure = 0;
  379. int baricuda_e_to_p_pressure = 0;
  380. #endif
  381. #if ENABLED(FWRETRACT)
  382. bool autoretract_enabled = false;
  383. bool retracted[EXTRUDERS] = { false };
  384. bool retracted_swap[EXTRUDERS] = { false };
  385. float retract_length = RETRACT_LENGTH;
  386. float retract_length_swap = RETRACT_LENGTH_SWAP;
  387. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  388. float retract_zlift = RETRACT_ZLIFT;
  389. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  390. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  391. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  392. #endif // FWRETRACT
  393. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  394. bool powersupply =
  395. #if ENABLED(PS_DEFAULT_OFF)
  396. false
  397. #else
  398. true
  399. #endif
  400. ;
  401. #endif
  402. #if ENABLED(DELTA)
  403. #define TOWER_1 X_AXIS
  404. #define TOWER_2 Y_AXIS
  405. #define TOWER_3 Z_AXIS
  406. float delta[3];
  407. float cartesian_position[3] = { 0 };
  408. #define SIN_60 0.8660254037844386
  409. #define COS_60 0.5
  410. float endstop_adj[3] = { 0 };
  411. // these are the default values, can be overriden with M665
  412. float delta_radius = DELTA_RADIUS;
  413. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  414. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  415. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  416. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  417. float delta_tower3_x = 0; // back middle tower
  418. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  419. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  420. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  421. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  422. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  423. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  424. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  425. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  426. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  427. float delta_clip_start_height = Z_MAX_POS;
  428. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  429. int delta_grid_spacing[2] = { 0, 0 };
  430. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  431. #endif
  432. float delta_safe_distance_from_top();
  433. #else
  434. static bool home_all_axis = true;
  435. #endif
  436. #if ENABLED(SCARA)
  437. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  438. float delta[3];
  439. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  440. #endif
  441. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  442. //Variables for Filament Sensor input
  443. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  444. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  445. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  446. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  447. int filwidth_delay_index1 = 0; //index into ring buffer
  448. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  449. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  450. #endif
  451. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  452. static bool filament_ran_out = false;
  453. #endif
  454. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  455. FilamentChangeMenuResponse filament_change_menu_response;
  456. #endif
  457. #if ENABLED(MIXING_EXTRUDER)
  458. float mixing_factor[MIXING_STEPPERS];
  459. #if MIXING_VIRTUAL_TOOLS > 1
  460. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  461. #endif
  462. #endif
  463. static bool send_ok[BUFSIZE];
  464. #if HAS_SERVOS
  465. Servo servo[NUM_SERVOS];
  466. #define MOVE_SERVO(I, P) servo[I].move(P)
  467. #if HAS_Z_SERVO_ENDSTOP
  468. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  469. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  470. #endif
  471. #endif
  472. #ifdef CHDK
  473. millis_t chdkHigh = 0;
  474. boolean chdkActive = false;
  475. #endif
  476. #if ENABLED(PID_EXTRUSION_SCALING)
  477. int lpq_len = 20;
  478. #endif
  479. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  480. static MarlinBusyState busy_state = NOT_BUSY;
  481. static millis_t next_busy_signal_ms = 0;
  482. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  483. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  484. #else
  485. #define host_keepalive() ;
  486. #define KEEPALIVE_STATE(n) ;
  487. #endif // HOST_KEEPALIVE_FEATURE
  488. /**
  489. * ***************************************************************************
  490. * ******************************** FUNCTIONS ********************************
  491. * ***************************************************************************
  492. */
  493. void stop();
  494. void get_available_commands();
  495. void process_next_command();
  496. void prepare_move_to_destination();
  497. void set_current_from_steppers_for_axis(AxisEnum axis);
  498. #if ENABLED(ARC_SUPPORT)
  499. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  500. #endif
  501. #if ENABLED(BEZIER_CURVE_SUPPORT)
  502. void plan_cubic_move(const float offset[4]);
  503. #endif
  504. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  505. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  506. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  507. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  508. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  509. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  510. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  511. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  512. static void report_current_position();
  513. #if ENABLED(DEBUG_LEVELING_FEATURE)
  514. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  515. serialprintPGM(prefix);
  516. SERIAL_ECHOPAIR("(", x);
  517. SERIAL_ECHOPAIR(", ", y);
  518. SERIAL_ECHOPAIR(", ", z);
  519. SERIAL_ECHOPGM(")");
  520. if (suffix) serialprintPGM(suffix);
  521. else SERIAL_EOL;
  522. }
  523. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  524. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  525. }
  526. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  527. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  528. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  529. }
  530. #endif
  531. #define DEBUG_POS(SUFFIX,VAR) do { \
  532. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  533. #endif
  534. /**
  535. * sync_plan_position
  536. * Set planner / stepper positions to the cartesian current_position.
  537. * The stepper code translates these coordinates into step units.
  538. * Allows translation between steps and millimeters for cartesian & core robots
  539. */
  540. inline void sync_plan_position() {
  541. #if ENABLED(DEBUG_LEVELING_FEATURE)
  542. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  543. #endif
  544. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  545. }
  546. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  547. #if ENABLED(DELTA) || ENABLED(SCARA)
  548. inline void sync_plan_position_delta() {
  549. #if ENABLED(DEBUG_LEVELING_FEATURE)
  550. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  551. #endif
  552. inverse_kinematics(current_position);
  553. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  554. }
  555. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  556. #else
  557. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  558. #endif
  559. #if ENABLED(SDSUPPORT)
  560. #include "SdFatUtil.h"
  561. int freeMemory() { return SdFatUtil::FreeRam(); }
  562. #else
  563. extern "C" {
  564. extern unsigned int __bss_end;
  565. extern unsigned int __heap_start;
  566. extern void* __brkval;
  567. int freeMemory() {
  568. int free_memory;
  569. if ((int)__brkval == 0)
  570. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  571. else
  572. free_memory = ((int)&free_memory) - ((int)__brkval);
  573. return free_memory;
  574. }
  575. }
  576. #endif //!SDSUPPORT
  577. #if ENABLED(DIGIPOT_I2C)
  578. extern void digipot_i2c_set_current(int channel, float current);
  579. extern void digipot_i2c_init();
  580. #endif
  581. /**
  582. * Inject the next "immediate" command, when possible.
  583. * Return true if any immediate commands remain to inject.
  584. */
  585. static bool drain_queued_commands_P() {
  586. if (queued_commands_P != NULL) {
  587. size_t i = 0;
  588. char c, cmd[30];
  589. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  590. cmd[sizeof(cmd) - 1] = '\0';
  591. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  592. cmd[i] = '\0';
  593. if (enqueue_and_echo_command(cmd)) { // success?
  594. if (c) // newline char?
  595. queued_commands_P += i + 1; // advance to the next command
  596. else
  597. queued_commands_P = NULL; // nul char? no more commands
  598. }
  599. }
  600. return (queued_commands_P != NULL); // return whether any more remain
  601. }
  602. /**
  603. * Record one or many commands to run from program memory.
  604. * Aborts the current queue, if any.
  605. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  606. */
  607. void enqueue_and_echo_commands_P(const char* pgcode) {
  608. queued_commands_P = pgcode;
  609. drain_queued_commands_P(); // first command executed asap (when possible)
  610. }
  611. void clear_command_queue() {
  612. cmd_queue_index_r = cmd_queue_index_w;
  613. commands_in_queue = 0;
  614. }
  615. /**
  616. * Once a new command is in the ring buffer, call this to commit it
  617. */
  618. inline void _commit_command(bool say_ok) {
  619. send_ok[cmd_queue_index_w] = say_ok;
  620. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  621. commands_in_queue++;
  622. }
  623. /**
  624. * Copy a command directly into the main command buffer, from RAM.
  625. * Returns true if successfully adds the command
  626. */
  627. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  628. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  629. strcpy(command_queue[cmd_queue_index_w], cmd);
  630. _commit_command(say_ok);
  631. return true;
  632. }
  633. void enqueue_and_echo_command_now(const char* cmd) {
  634. while (!enqueue_and_echo_command(cmd)) idle();
  635. }
  636. /**
  637. * Enqueue with Serial Echo
  638. */
  639. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  640. if (_enqueuecommand(cmd, say_ok)) {
  641. SERIAL_ECHO_START;
  642. SERIAL_ECHOPGM(MSG_Enqueueing);
  643. SERIAL_ECHO(cmd);
  644. SERIAL_ECHOLNPGM("\"");
  645. return true;
  646. }
  647. return false;
  648. }
  649. void setup_killpin() {
  650. #if HAS_KILL
  651. SET_INPUT(KILL_PIN);
  652. WRITE(KILL_PIN, HIGH);
  653. #endif
  654. }
  655. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  656. void setup_filrunoutpin() {
  657. pinMode(FIL_RUNOUT_PIN, INPUT);
  658. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  659. WRITE(FIL_RUNOUT_PIN, HIGH);
  660. #endif
  661. }
  662. #endif
  663. // Set home pin
  664. void setup_homepin(void) {
  665. #if HAS_HOME
  666. SET_INPUT(HOME_PIN);
  667. WRITE(HOME_PIN, HIGH);
  668. #endif
  669. }
  670. void setup_photpin() {
  671. #if HAS_PHOTOGRAPH
  672. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  673. #endif
  674. }
  675. void setup_powerhold() {
  676. #if HAS_SUICIDE
  677. OUT_WRITE(SUICIDE_PIN, HIGH);
  678. #endif
  679. #if HAS_POWER_SWITCH
  680. #if ENABLED(PS_DEFAULT_OFF)
  681. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  682. #else
  683. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  684. #endif
  685. #endif
  686. }
  687. void suicide() {
  688. #if HAS_SUICIDE
  689. OUT_WRITE(SUICIDE_PIN, LOW);
  690. #endif
  691. }
  692. void servo_init() {
  693. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  694. servo[0].attach(SERVO0_PIN);
  695. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  696. #endif
  697. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  698. servo[1].attach(SERVO1_PIN);
  699. servo[1].detach();
  700. #endif
  701. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  702. servo[2].attach(SERVO2_PIN);
  703. servo[2].detach();
  704. #endif
  705. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  706. servo[3].attach(SERVO3_PIN);
  707. servo[3].detach();
  708. #endif
  709. #if HAS_Z_SERVO_ENDSTOP
  710. /**
  711. * Set position of Z Servo Endstop
  712. *
  713. * The servo might be deployed and positioned too low to stow
  714. * when starting up the machine or rebooting the board.
  715. * There's no way to know where the nozzle is positioned until
  716. * homing has been done - no homing with z-probe without init!
  717. *
  718. */
  719. STOW_Z_SERVO();
  720. #endif
  721. #if HAS_BED_PROBE
  722. endstops.enable_z_probe(false);
  723. #endif
  724. }
  725. /**
  726. * Stepper Reset (RigidBoard, et.al.)
  727. */
  728. #if HAS_STEPPER_RESET
  729. void disableStepperDrivers() {
  730. pinMode(STEPPER_RESET_PIN, OUTPUT);
  731. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  732. }
  733. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  734. #endif
  735. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  736. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  737. i2c.receive(bytes);
  738. }
  739. void i2c_on_request() { // just send dummy data for now
  740. static const char *msg = "Hello World!\n";
  741. const char *adr = msg;
  742. char c;
  743. i2c.reset();
  744. while (c = *adr++) i2c.addbyte(c);
  745. i2c.send();
  746. }
  747. #endif
  748. /**
  749. * Marlin entry-point: Set up before the program loop
  750. * - Set up the kill pin, filament runout, power hold
  751. * - Start the serial port
  752. * - Print startup messages and diagnostics
  753. * - Get EEPROM or default settings
  754. * - Initialize managers for:
  755. * • temperature
  756. * • planner
  757. * • watchdog
  758. * • stepper
  759. * • photo pin
  760. * • servos
  761. * • LCD controller
  762. * • Digipot I2C
  763. * • Z probe sled
  764. * • status LEDs
  765. */
  766. void setup() {
  767. #ifdef DISABLE_JTAG
  768. // Disable JTAG on AT90USB chips to free up pins for IO
  769. MCUCR = 0x80;
  770. MCUCR = 0x80;
  771. #endif
  772. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  773. setup_filrunoutpin();
  774. #endif
  775. setup_killpin();
  776. setup_powerhold();
  777. #if HAS_STEPPER_RESET
  778. disableStepperDrivers();
  779. #endif
  780. MYSERIAL.begin(BAUDRATE);
  781. SERIAL_PROTOCOLLNPGM("start");
  782. SERIAL_ECHO_START;
  783. // Check startup - does nothing if bootloader sets MCUSR to 0
  784. byte mcu = MCUSR;
  785. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  786. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  787. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  788. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  789. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  790. MCUSR = 0;
  791. SERIAL_ECHOPGM(MSG_MARLIN);
  792. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  793. #ifdef STRING_DISTRIBUTION_DATE
  794. #ifdef STRING_CONFIG_H_AUTHOR
  795. SERIAL_ECHO_START;
  796. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  797. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  798. SERIAL_ECHOPGM(MSG_AUTHOR);
  799. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  800. SERIAL_ECHOPGM("Compiled: ");
  801. SERIAL_ECHOLNPGM(__DATE__);
  802. #endif // STRING_CONFIG_H_AUTHOR
  803. #endif // STRING_DISTRIBUTION_DATE
  804. SERIAL_ECHO_START;
  805. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  806. SERIAL_ECHO(freeMemory());
  807. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  808. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  809. // Send "ok" after commands by default
  810. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  811. // Load data from EEPROM if available (or use defaults)
  812. // This also updates variables in the planner, elsewhere
  813. Config_RetrieveSettings();
  814. // Initialize current position based on home_offset
  815. memcpy(current_position, home_offset, sizeof(home_offset));
  816. // Vital to init stepper/planner equivalent for current_position
  817. SYNC_PLAN_POSITION_KINEMATIC();
  818. thermalManager.init(); // Initialize temperature loop
  819. #if ENABLED(USE_WATCHDOG)
  820. watchdog_init();
  821. #endif
  822. stepper.init(); // Initialize stepper, this enables interrupts!
  823. setup_photpin();
  824. servo_init();
  825. #if HAS_CONTROLLERFAN
  826. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  827. #endif
  828. #if HAS_STEPPER_RESET
  829. enableStepperDrivers();
  830. #endif
  831. #if ENABLED(DIGIPOT_I2C)
  832. digipot_i2c_init();
  833. #endif
  834. #if ENABLED(DAC_STEPPER_CURRENT)
  835. dac_init();
  836. #endif
  837. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  838. pinMode(SLED_PIN, OUTPUT);
  839. digitalWrite(SLED_PIN, LOW); // turn it off
  840. #endif // Z_PROBE_SLED
  841. setup_homepin();
  842. #ifdef STAT_LED_RED
  843. pinMode(STAT_LED_RED, OUTPUT);
  844. digitalWrite(STAT_LED_RED, LOW); // turn it off
  845. #endif
  846. #ifdef STAT_LED_BLUE
  847. pinMode(STAT_LED_BLUE, OUTPUT);
  848. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  849. #endif
  850. lcd_init();
  851. #if ENABLED(SHOW_BOOTSCREEN)
  852. #if ENABLED(DOGLCD)
  853. safe_delay(BOOTSCREEN_TIMEOUT);
  854. #elif ENABLED(ULTRA_LCD)
  855. bootscreen();
  856. lcd_init();
  857. #endif
  858. #endif
  859. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  860. // Initialize mixing to 100% color 1
  861. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  862. mixing_factor[i] = (i == 0) ? 1 : 0;
  863. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  864. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  865. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  866. #endif
  867. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  868. i2c.onReceive(i2c_on_receive);
  869. i2c.onRequest(i2c_on_request);
  870. #endif
  871. }
  872. /**
  873. * The main Marlin program loop
  874. *
  875. * - Save or log commands to SD
  876. * - Process available commands (if not saving)
  877. * - Call heater manager
  878. * - Call inactivity manager
  879. * - Call endstop manager
  880. * - Call LCD update
  881. */
  882. void loop() {
  883. if (commands_in_queue < BUFSIZE) get_available_commands();
  884. #if ENABLED(SDSUPPORT)
  885. card.checkautostart(false);
  886. #endif
  887. if (commands_in_queue) {
  888. #if ENABLED(SDSUPPORT)
  889. if (card.saving) {
  890. char* command = command_queue[cmd_queue_index_r];
  891. if (strstr_P(command, PSTR("M29"))) {
  892. // M29 closes the file
  893. card.closefile();
  894. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  895. ok_to_send();
  896. }
  897. else {
  898. // Write the string from the read buffer to SD
  899. card.write_command(command);
  900. if (card.logging)
  901. process_next_command(); // The card is saving because it's logging
  902. else
  903. ok_to_send();
  904. }
  905. }
  906. else
  907. process_next_command();
  908. #else
  909. process_next_command();
  910. #endif // SDSUPPORT
  911. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  912. if (commands_in_queue) {
  913. --commands_in_queue;
  914. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  915. }
  916. }
  917. endstops.report_state();
  918. idle();
  919. }
  920. void gcode_line_error(const char* err, bool doFlush = true) {
  921. SERIAL_ERROR_START;
  922. serialprintPGM(err);
  923. SERIAL_ERRORLN(gcode_LastN);
  924. //Serial.println(gcode_N);
  925. if (doFlush) FlushSerialRequestResend();
  926. serial_count = 0;
  927. }
  928. inline void get_serial_commands() {
  929. static char serial_line_buffer[MAX_CMD_SIZE];
  930. static boolean serial_comment_mode = false;
  931. // If the command buffer is empty for too long,
  932. // send "wait" to indicate Marlin is still waiting.
  933. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  934. static millis_t last_command_time = 0;
  935. millis_t ms = millis();
  936. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  937. SERIAL_ECHOLNPGM(MSG_WAIT);
  938. last_command_time = ms;
  939. }
  940. #endif
  941. /**
  942. * Loop while serial characters are incoming and the queue is not full
  943. */
  944. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  945. char serial_char = MYSERIAL.read();
  946. /**
  947. * If the character ends the line
  948. */
  949. if (serial_char == '\n' || serial_char == '\r') {
  950. serial_comment_mode = false; // end of line == end of comment
  951. if (!serial_count) continue; // skip empty lines
  952. serial_line_buffer[serial_count] = 0; // terminate string
  953. serial_count = 0; //reset buffer
  954. char* command = serial_line_buffer;
  955. while (*command == ' ') command++; // skip any leading spaces
  956. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  957. char* apos = strchr(command, '*');
  958. if (npos) {
  959. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  960. if (M110) {
  961. char* n2pos = strchr(command + 4, 'N');
  962. if (n2pos) npos = n2pos;
  963. }
  964. gcode_N = strtol(npos + 1, NULL, 10);
  965. if (gcode_N != gcode_LastN + 1 && !M110) {
  966. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  967. return;
  968. }
  969. if (apos) {
  970. byte checksum = 0, count = 0;
  971. while (command[count] != '*') checksum ^= command[count++];
  972. if (strtol(apos + 1, NULL, 10) != checksum) {
  973. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  974. return;
  975. }
  976. // if no errors, continue parsing
  977. }
  978. else {
  979. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  980. return;
  981. }
  982. gcode_LastN = gcode_N;
  983. // if no errors, continue parsing
  984. }
  985. else if (apos) { // No '*' without 'N'
  986. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  987. return;
  988. }
  989. // Movement commands alert when stopped
  990. if (IsStopped()) {
  991. char* gpos = strchr(command, 'G');
  992. if (gpos) {
  993. int codenum = strtol(gpos + 1, NULL, 10);
  994. switch (codenum) {
  995. case 0:
  996. case 1:
  997. case 2:
  998. case 3:
  999. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  1000. LCD_MESSAGEPGM(MSG_STOPPED);
  1001. break;
  1002. }
  1003. }
  1004. }
  1005. #if DISABLED(EMERGENCY_PARSER)
  1006. // If command was e-stop process now
  1007. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  1008. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  1009. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  1010. #endif
  1011. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  1012. last_command_time = ms;
  1013. #endif
  1014. // Add the command to the queue
  1015. _enqueuecommand(serial_line_buffer, true);
  1016. }
  1017. else if (serial_count >= MAX_CMD_SIZE - 1) {
  1018. // Keep fetching, but ignore normal characters beyond the max length
  1019. // The command will be injected when EOL is reached
  1020. }
  1021. else if (serial_char == '\\') { // Handle escapes
  1022. if (MYSERIAL.available() > 0) {
  1023. // if we have one more character, copy it over
  1024. serial_char = MYSERIAL.read();
  1025. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1026. }
  1027. // otherwise do nothing
  1028. }
  1029. else { // it's not a newline, carriage return or escape char
  1030. if (serial_char == ';') serial_comment_mode = true;
  1031. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1032. }
  1033. } // queue has space, serial has data
  1034. }
  1035. #if ENABLED(SDSUPPORT)
  1036. inline void get_sdcard_commands() {
  1037. static bool stop_buffering = false,
  1038. sd_comment_mode = false;
  1039. if (!card.sdprinting) return;
  1040. /**
  1041. * '#' stops reading from SD to the buffer prematurely, so procedural
  1042. * macro calls are possible. If it occurs, stop_buffering is triggered
  1043. * and the buffer is run dry; this character _can_ occur in serial com
  1044. * due to checksums, however, no checksums are used in SD printing.
  1045. */
  1046. if (commands_in_queue == 0) stop_buffering = false;
  1047. uint16_t sd_count = 0;
  1048. bool card_eof = card.eof();
  1049. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1050. int16_t n = card.get();
  1051. char sd_char = (char)n;
  1052. card_eof = card.eof();
  1053. if (card_eof || n == -1
  1054. || sd_char == '\n' || sd_char == '\r'
  1055. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1056. ) {
  1057. if (card_eof) {
  1058. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1059. card.printingHasFinished();
  1060. card.checkautostart(true);
  1061. }
  1062. else if (n == -1) {
  1063. SERIAL_ERROR_START;
  1064. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1065. }
  1066. if (sd_char == '#') stop_buffering = true;
  1067. sd_comment_mode = false; //for new command
  1068. if (!sd_count) continue; //skip empty lines
  1069. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1070. sd_count = 0; //clear buffer
  1071. _commit_command(false);
  1072. }
  1073. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1074. /**
  1075. * Keep fetching, but ignore normal characters beyond the max length
  1076. * The command will be injected when EOL is reached
  1077. */
  1078. }
  1079. else {
  1080. if (sd_char == ';') sd_comment_mode = true;
  1081. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1082. }
  1083. }
  1084. }
  1085. #endif // SDSUPPORT
  1086. /**
  1087. * Add to the circular command queue the next command from:
  1088. * - The command-injection queue (queued_commands_P)
  1089. * - The active serial input (usually USB)
  1090. * - The SD card file being actively printed
  1091. */
  1092. void get_available_commands() {
  1093. // if any immediate commands remain, don't get other commands yet
  1094. if (drain_queued_commands_P()) return;
  1095. get_serial_commands();
  1096. #if ENABLED(SDSUPPORT)
  1097. get_sdcard_commands();
  1098. #endif
  1099. }
  1100. inline bool code_has_value() {
  1101. int i = 1;
  1102. char c = seen_pointer[i];
  1103. while (c == ' ') c = seen_pointer[++i];
  1104. if (c == '-' || c == '+') c = seen_pointer[++i];
  1105. if (c == '.') c = seen_pointer[++i];
  1106. return NUMERIC(c);
  1107. }
  1108. inline float code_value_float() {
  1109. float ret;
  1110. char* e = strchr(seen_pointer, 'E');
  1111. if (e) {
  1112. *e = 0;
  1113. ret = strtod(seen_pointer + 1, NULL);
  1114. *e = 'E';
  1115. }
  1116. else
  1117. ret = strtod(seen_pointer + 1, NULL);
  1118. return ret;
  1119. }
  1120. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1121. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1122. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1123. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1124. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1125. inline bool code_value_bool() { return code_value_byte() > 0; }
  1126. #if ENABLED(INCH_MODE_SUPPORT)
  1127. inline void set_input_linear_units(LinearUnit units) {
  1128. switch (units) {
  1129. case LINEARUNIT_INCH:
  1130. linear_unit_factor = 25.4;
  1131. break;
  1132. case LINEARUNIT_MM:
  1133. default:
  1134. linear_unit_factor = 1.0;
  1135. break;
  1136. }
  1137. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1138. }
  1139. inline float axis_unit_factor(int axis) {
  1140. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1141. }
  1142. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1143. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1144. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1145. #else
  1146. inline float code_value_linear_units() { return code_value_float(); }
  1147. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1148. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1149. #endif
  1150. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1151. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1152. float code_value_temp_abs() {
  1153. switch (input_temp_units) {
  1154. case TEMPUNIT_C:
  1155. return code_value_float();
  1156. case TEMPUNIT_F:
  1157. return (code_value_float() - 32) * 0.5555555556;
  1158. case TEMPUNIT_K:
  1159. return code_value_float() - 272.15;
  1160. default:
  1161. return code_value_float();
  1162. }
  1163. }
  1164. float code_value_temp_diff() {
  1165. switch (input_temp_units) {
  1166. case TEMPUNIT_C:
  1167. case TEMPUNIT_K:
  1168. return code_value_float();
  1169. case TEMPUNIT_F:
  1170. return code_value_float() * 0.5555555556;
  1171. default:
  1172. return code_value_float();
  1173. }
  1174. }
  1175. #else
  1176. float code_value_temp_abs() { return code_value_float(); }
  1177. float code_value_temp_diff() { return code_value_float(); }
  1178. #endif
  1179. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1180. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1181. bool code_seen(char code) {
  1182. seen_pointer = strchr(current_command_args, code);
  1183. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1184. }
  1185. /**
  1186. * Set target_extruder from the T parameter or the active_extruder
  1187. *
  1188. * Returns TRUE if the target is invalid
  1189. */
  1190. bool get_target_extruder_from_command(int code) {
  1191. if (code_seen('T')) {
  1192. if (code_value_byte() >= EXTRUDERS) {
  1193. SERIAL_ECHO_START;
  1194. SERIAL_CHAR('M');
  1195. SERIAL_ECHO(code);
  1196. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1197. SERIAL_EOL;
  1198. return true;
  1199. }
  1200. target_extruder = code_value_byte();
  1201. }
  1202. else
  1203. target_extruder = active_extruder;
  1204. return false;
  1205. }
  1206. #define DEFINE_PGM_READ_ANY(type, reader) \
  1207. static inline type pgm_read_any(const type *p) \
  1208. { return pgm_read_##reader##_near(p); }
  1209. DEFINE_PGM_READ_ANY(float, float);
  1210. DEFINE_PGM_READ_ANY(signed char, byte);
  1211. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1212. static const PROGMEM type array##_P[3] = \
  1213. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1214. static inline type array(int axis) \
  1215. { return pgm_read_any(&array##_P[axis]); }
  1216. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1217. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1218. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1219. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1220. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1221. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1222. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1223. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1224. #endif
  1225. #if ENABLED(DUAL_X_CARRIAGE)
  1226. #define DXC_FULL_CONTROL_MODE 0
  1227. #define DXC_AUTO_PARK_MODE 1
  1228. #define DXC_DUPLICATION_MODE 2
  1229. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1230. static float x_home_pos(int extruder) {
  1231. if (extruder == 0)
  1232. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1233. else
  1234. /**
  1235. * In dual carriage mode the extruder offset provides an override of the
  1236. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1237. * This allow soft recalibration of the second extruder offset position
  1238. * without firmware reflash (through the M218 command).
  1239. */
  1240. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1241. }
  1242. static int x_home_dir(int extruder) {
  1243. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1244. }
  1245. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1246. static bool active_extruder_parked = false; // used in mode 1 & 2
  1247. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1248. static millis_t delayed_move_time = 0; // used in mode 1
  1249. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1250. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1251. #endif //DUAL_X_CARRIAGE
  1252. /**
  1253. * Software endstops can be used to monitor the open end of
  1254. * an axis that has a hardware endstop on the other end. Or
  1255. * they can prevent axes from moving past endstops and grinding.
  1256. *
  1257. * To keep doing their job as the coordinate system changes,
  1258. * the software endstop positions must be refreshed to remain
  1259. * at the same positions relative to the machine.
  1260. */
  1261. static void update_software_endstops(AxisEnum axis) {
  1262. float offs = LOGICAL_POSITION(0, axis);
  1263. #if ENABLED(DUAL_X_CARRIAGE)
  1264. if (axis == X_AXIS) {
  1265. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1266. if (active_extruder != 0) {
  1267. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1268. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1269. return;
  1270. }
  1271. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1272. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1273. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1274. return;
  1275. }
  1276. }
  1277. else
  1278. #endif
  1279. {
  1280. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1281. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1282. }
  1283. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1284. if (DEBUGGING(LEVELING)) {
  1285. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1286. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1287. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1288. SERIAL_ECHOPAIR("\n sw_endstop_min = ", sw_endstop_min[axis]);
  1289. SERIAL_ECHOPAIR("\n sw_endstop_max = ", sw_endstop_max[axis]);
  1290. SERIAL_EOL;
  1291. }
  1292. #endif
  1293. #if ENABLED(DELTA)
  1294. if (axis == Z_AXIS) {
  1295. delta_clip_start_height = sw_endstop_max[axis] - delta_safe_distance_from_top();
  1296. }
  1297. #endif
  1298. }
  1299. /**
  1300. * Change the home offset for an axis, update the current
  1301. * position and the software endstops to retain the same
  1302. * relative distance to the new home.
  1303. *
  1304. * Since this changes the current_position, code should
  1305. * call sync_plan_position soon after this.
  1306. */
  1307. static void set_home_offset(AxisEnum axis, float v) {
  1308. current_position[axis] += v - home_offset[axis];
  1309. home_offset[axis] = v;
  1310. update_software_endstops(axis);
  1311. }
  1312. static void set_axis_is_at_home(AxisEnum axis) {
  1313. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1314. if (DEBUGGING(LEVELING)) {
  1315. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis);
  1316. SERIAL_ECHOLNPGM(")");
  1317. }
  1318. #endif
  1319. position_shift[axis] = 0;
  1320. #if ENABLED(DUAL_X_CARRIAGE)
  1321. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1322. if (active_extruder != 0)
  1323. current_position[X_AXIS] = x_home_pos(active_extruder);
  1324. else
  1325. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1326. update_software_endstops(X_AXIS);
  1327. return;
  1328. }
  1329. #endif
  1330. #if ENABLED(SCARA)
  1331. if (axis == X_AXIS || axis == Y_AXIS) {
  1332. float homeposition[3];
  1333. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1334. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1335. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1336. /**
  1337. * Works out real Homeposition angles using inverse kinematics,
  1338. * and calculates homing offset using forward kinematics
  1339. */
  1340. inverse_kinematics(homeposition);
  1341. forward_kinematics_SCARA(delta);
  1342. // SERIAL_ECHOPAIR("Delta X=", delta[X_AXIS]);
  1343. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1344. current_position[axis] = LOGICAL_POSITION(delta[axis], axis);
  1345. /**
  1346. * SCARA home positions are based on configuration since the actual
  1347. * limits are determined by the inverse kinematic transform.
  1348. */
  1349. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1350. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1351. }
  1352. else
  1353. #endif
  1354. {
  1355. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1356. update_software_endstops(axis);
  1357. #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
  1358. if (axis == Z_AXIS) {
  1359. current_position[Z_AXIS] -= zprobe_zoffset;
  1360. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1361. if (DEBUGGING(LEVELING)) {
  1362. SERIAL_ECHOPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1363. SERIAL_EOL;
  1364. }
  1365. #endif
  1366. }
  1367. #endif
  1368. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1369. if (DEBUGGING(LEVELING)) {
  1370. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1371. SERIAL_ECHOPAIR("] = ", home_offset[axis]);
  1372. SERIAL_EOL;
  1373. DEBUG_POS("", current_position);
  1374. }
  1375. #endif
  1376. }
  1377. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1378. if (DEBUGGING(LEVELING)) {
  1379. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1380. SERIAL_ECHOLNPGM(")");
  1381. }
  1382. #endif
  1383. }
  1384. /**
  1385. * Some planner shorthand inline functions
  1386. */
  1387. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1388. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1389. int hbd = homing_bump_divisor[axis];
  1390. if (hbd < 1) {
  1391. hbd = 10;
  1392. SERIAL_ECHO_START;
  1393. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1394. }
  1395. return homing_feedrate_mm_s[axis] / hbd;
  1396. }
  1397. //
  1398. // line_to_current_position
  1399. // Move the planner to the current position from wherever it last moved
  1400. // (or from wherever it has been told it is located).
  1401. //
  1402. inline void line_to_current_position() {
  1403. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1404. }
  1405. inline void line_to_z(float zPosition) {
  1406. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1407. }
  1408. inline void line_to_axis_pos(AxisEnum axis, float where, float fr_mm_s = 0.0) {
  1409. float old_feedrate_mm_s = feedrate_mm_s;
  1410. current_position[axis] = where;
  1411. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[axis];
  1412. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1413. stepper.synchronize();
  1414. feedrate_mm_s = old_feedrate_mm_s;
  1415. }
  1416. //
  1417. // line_to_destination
  1418. // Move the planner, not necessarily synced with current_position
  1419. //
  1420. inline void line_to_destination(float fr_mm_s) {
  1421. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1422. }
  1423. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1424. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1425. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1426. #if ENABLED(DELTA)
  1427. /**
  1428. * Calculate delta, start a line, and set current_position to destination
  1429. */
  1430. void prepare_move_to_destination_raw() {
  1431. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1432. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1433. #endif
  1434. refresh_cmd_timeout();
  1435. inverse_kinematics(destination);
  1436. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMS_SCALED(feedrate_mm_s), active_extruder);
  1437. set_current_to_destination();
  1438. }
  1439. #endif
  1440. /**
  1441. * Plan a move to (X, Y, Z) and set the current_position
  1442. * The final current_position may not be the one that was requested
  1443. */
  1444. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1445. float old_feedrate_mm_s = feedrate_mm_s;
  1446. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1447. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1448. #endif
  1449. #if ENABLED(DELTA)
  1450. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1451. set_destination_to_current(); // sync destination at the start
  1452. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1453. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1454. #endif
  1455. // when in the danger zone
  1456. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1457. if (z > delta_clip_start_height) { // staying in the danger zone
  1458. destination[X_AXIS] = x; // move directly (uninterpolated)
  1459. destination[Y_AXIS] = y;
  1460. destination[Z_AXIS] = z;
  1461. prepare_move_to_destination_raw(); // set_current_to_destination
  1462. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1463. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1464. #endif
  1465. return;
  1466. }
  1467. else {
  1468. destination[Z_AXIS] = delta_clip_start_height;
  1469. prepare_move_to_destination_raw(); // set_current_to_destination
  1470. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1471. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1472. #endif
  1473. }
  1474. }
  1475. if (z > current_position[Z_AXIS]) { // raising?
  1476. destination[Z_AXIS] = z;
  1477. prepare_move_to_destination_raw(); // set_current_to_destination
  1478. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1479. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1480. #endif
  1481. }
  1482. destination[X_AXIS] = x;
  1483. destination[Y_AXIS] = y;
  1484. prepare_move_to_destination(); // set_current_to_destination
  1485. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1486. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1487. #endif
  1488. if (z < current_position[Z_AXIS]) { // lowering?
  1489. destination[Z_AXIS] = z;
  1490. prepare_move_to_destination_raw(); // set_current_to_destination
  1491. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1492. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1493. #endif
  1494. }
  1495. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1496. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1497. #endif
  1498. #else
  1499. // If Z needs to raise, do it before moving XY
  1500. if (current_position[Z_AXIS] < z) {
  1501. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1502. current_position[Z_AXIS] = z;
  1503. line_to_current_position();
  1504. }
  1505. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1506. current_position[X_AXIS] = x;
  1507. current_position[Y_AXIS] = y;
  1508. line_to_current_position();
  1509. // If Z needs to lower, do it after moving XY
  1510. if (current_position[Z_AXIS] > z) {
  1511. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1512. current_position[Z_AXIS] = z;
  1513. line_to_current_position();
  1514. }
  1515. #endif
  1516. stepper.synchronize();
  1517. feedrate_mm_s = old_feedrate_mm_s;
  1518. }
  1519. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1520. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1521. }
  1522. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1523. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1524. }
  1525. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1526. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1527. }
  1528. //
  1529. // Prepare to do endstop or probe moves
  1530. // with custom feedrates.
  1531. //
  1532. // - Save current feedrates
  1533. // - Reset the rate multiplier
  1534. // - Reset the command timeout
  1535. // - Enable the endstops (for endstop moves)
  1536. //
  1537. static void setup_for_endstop_or_probe_move() {
  1538. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1539. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1540. #endif
  1541. saved_feedrate_mm_s = feedrate_mm_s;
  1542. saved_feedrate_percentage = feedrate_percentage;
  1543. feedrate_percentage = 100;
  1544. refresh_cmd_timeout();
  1545. }
  1546. static void clean_up_after_endstop_or_probe_move() {
  1547. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1548. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1549. #endif
  1550. feedrate_mm_s = saved_feedrate_mm_s;
  1551. feedrate_percentage = saved_feedrate_percentage;
  1552. refresh_cmd_timeout();
  1553. }
  1554. #if HAS_BED_PROBE
  1555. /**
  1556. * Raise Z to a minimum height to make room for a probe to move
  1557. */
  1558. inline void do_probe_raise(float z_raise) {
  1559. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1560. if (DEBUGGING(LEVELING)) {
  1561. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1562. SERIAL_ECHOLNPGM(")");
  1563. }
  1564. #endif
  1565. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1566. if (z_dest > current_position[Z_AXIS])
  1567. do_blocking_move_to_z(z_dest);
  1568. }
  1569. #endif //HAS_BED_PROBE
  1570. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1571. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1572. const bool xx = x && !axis_homed[X_AXIS],
  1573. yy = y && !axis_homed[Y_AXIS],
  1574. zz = z && !axis_homed[Z_AXIS];
  1575. if (xx || yy || zz) {
  1576. SERIAL_ECHO_START;
  1577. SERIAL_ECHOPGM(MSG_HOME " ");
  1578. if (xx) SERIAL_ECHOPGM(MSG_X);
  1579. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1580. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1581. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1582. #if ENABLED(ULTRA_LCD)
  1583. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1584. strcat_P(message, PSTR(MSG_HOME " "));
  1585. if (xx) strcat_P(message, PSTR(MSG_X));
  1586. if (yy) strcat_P(message, PSTR(MSG_Y));
  1587. if (zz) strcat_P(message, PSTR(MSG_Z));
  1588. strcat_P(message, PSTR(" " MSG_FIRST));
  1589. lcd_setstatus(message);
  1590. #endif
  1591. return true;
  1592. }
  1593. return false;
  1594. }
  1595. #endif
  1596. #if ENABLED(Z_PROBE_SLED)
  1597. #ifndef SLED_DOCKING_OFFSET
  1598. #define SLED_DOCKING_OFFSET 0
  1599. #endif
  1600. /**
  1601. * Method to dock/undock a sled designed by Charles Bell.
  1602. *
  1603. * stow[in] If false, move to MAX_X and engage the solenoid
  1604. * If true, move to MAX_X and release the solenoid
  1605. */
  1606. static void dock_sled(bool stow) {
  1607. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1608. if (DEBUGGING(LEVELING)) {
  1609. SERIAL_ECHOPAIR("dock_sled(", stow);
  1610. SERIAL_ECHOLNPGM(")");
  1611. }
  1612. #endif
  1613. // Dock sled a bit closer to ensure proper capturing
  1614. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1615. #if PIN_EXISTS(SLED)
  1616. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1617. #endif
  1618. }
  1619. #endif // Z_PROBE_SLED
  1620. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1621. void run_deploy_moves_script() {
  1622. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1623. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1624. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1625. #endif
  1626. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1627. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1628. #endif
  1629. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1630. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1631. #endif
  1632. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1633. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1634. #endif
  1635. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1636. #endif
  1637. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1638. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1639. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1640. #endif
  1641. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1642. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1643. #endif
  1644. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1645. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1646. #endif
  1647. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1648. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1649. #endif
  1650. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1651. #endif
  1652. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1653. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1654. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1655. #endif
  1656. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1657. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1658. #endif
  1659. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1660. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1661. #endif
  1662. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1663. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1664. #endif
  1665. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1666. #endif
  1667. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1668. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1669. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1670. #endif
  1671. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1672. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1673. #endif
  1674. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1675. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1676. #endif
  1677. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1678. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1679. #endif
  1680. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1681. #endif
  1682. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1683. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1684. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1685. #endif
  1686. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1687. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1688. #endif
  1689. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1690. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1691. #endif
  1692. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1693. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1694. #endif
  1695. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1696. #endif
  1697. }
  1698. void run_stow_moves_script() {
  1699. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1700. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1701. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1702. #endif
  1703. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1704. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1705. #endif
  1706. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1707. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1708. #endif
  1709. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1710. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1711. #endif
  1712. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1713. #endif
  1714. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1715. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1716. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1717. #endif
  1718. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1719. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1720. #endif
  1721. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1722. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1723. #endif
  1724. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1725. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1726. #endif
  1727. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1728. #endif
  1729. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1730. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1731. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1732. #endif
  1733. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1734. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1735. #endif
  1736. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1737. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1738. #endif
  1739. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1740. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1741. #endif
  1742. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1743. #endif
  1744. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1745. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1746. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1747. #endif
  1748. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1749. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1750. #endif
  1751. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1752. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1753. #endif
  1754. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1755. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1756. #endif
  1757. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1758. #endif
  1759. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1760. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1761. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1762. #endif
  1763. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1764. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1765. #endif
  1766. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1767. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1768. #endif
  1769. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1770. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1771. #endif
  1772. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1773. #endif
  1774. }
  1775. #endif
  1776. #if HAS_BED_PROBE
  1777. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1778. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1779. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1780. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1781. #else
  1782. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1783. #endif
  1784. #endif
  1785. #define DEPLOY_PROBE() set_probe_deployed( true )
  1786. #define STOW_PROBE() set_probe_deployed( false )
  1787. // returns false for ok and true for failure
  1788. static bool set_probe_deployed(bool deploy) {
  1789. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1790. if (DEBUGGING(LEVELING)) {
  1791. DEBUG_POS("set_probe_deployed", current_position);
  1792. SERIAL_ECHOPAIR("deploy: ", deploy);
  1793. SERIAL_EOL;
  1794. }
  1795. #endif
  1796. if (endstops.z_probe_enabled == deploy) return false;
  1797. // Make room for probe
  1798. do_probe_raise(_Z_PROBE_DEPLOY_HEIGHT);
  1799. #if ENABLED(Z_PROBE_SLED)
  1800. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1801. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1802. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1803. #endif
  1804. float oldXpos = current_position[X_AXIS]; // save x position
  1805. float oldYpos = current_position[Y_AXIS]; // save y position
  1806. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1807. // If endstop is already false, the Z probe is deployed
  1808. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1809. // Would a goto be less ugly?
  1810. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1811. // for a triggered when stowed manual probe.
  1812. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1813. // otherwise an Allen-Key probe can't be stowed.
  1814. #endif
  1815. #if ENABLED(Z_PROBE_SLED)
  1816. dock_sled(!deploy);
  1817. #elif HAS_Z_SERVO_ENDSTOP
  1818. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1819. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1820. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1821. #endif
  1822. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1823. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1824. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1825. if (IsRunning()) {
  1826. SERIAL_ERROR_START;
  1827. SERIAL_ERRORLNPGM("Z-Probe failed");
  1828. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1829. }
  1830. stop();
  1831. return true;
  1832. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1833. #endif
  1834. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1835. endstops.enable_z_probe( deploy );
  1836. return false;
  1837. }
  1838. // Do a single Z probe and return with current_position[Z_AXIS]
  1839. // at the height where the probe triggered.
  1840. static float run_z_probe() {
  1841. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1842. refresh_cmd_timeout();
  1843. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1844. planner.bed_level_matrix.set_to_identity();
  1845. #endif
  1846. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1847. do_blocking_move_to_z(-(Z_MAX_LENGTH + 10), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1848. endstops.hit_on_purpose();
  1849. set_current_from_steppers_for_axis(Z_AXIS);
  1850. SYNC_PLAN_POSITION_KINEMATIC();
  1851. // move up the retract distance
  1852. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1853. #else
  1854. // move fast, close to the bed
  1855. do_blocking_move_to_z(home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1856. #endif
  1857. // move down slowly to find bed
  1858. do_blocking_move_to_z(current_position[Z_AXIS] -2.0*home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_SLOW));
  1859. endstops.hit_on_purpose();
  1860. set_current_from_steppers_for_axis(Z_AXIS);
  1861. SYNC_PLAN_POSITION_KINEMATIC();
  1862. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1863. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1864. #endif
  1865. return current_position[Z_AXIS];
  1866. }
  1867. //
  1868. // - Move to the given XY
  1869. // - Deploy the probe, if not already deployed
  1870. // - Probe the bed, get the Z position
  1871. // - Depending on the 'stow' flag
  1872. // - Stow the probe, or
  1873. // - Raise to the BETWEEN height
  1874. // - Return the probed Z position
  1875. //
  1876. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1877. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1878. if (DEBUGGING(LEVELING)) {
  1879. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1880. SERIAL_ECHOPAIR(", ", y);
  1881. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1882. SERIAL_ECHOLNPGM(")");
  1883. DEBUG_POS("", current_position);
  1884. }
  1885. #endif
  1886. float old_feedrate_mm_s = feedrate_mm_s;
  1887. // Ensure a minimum height before moving the probe
  1888. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1889. // Move to the XY where we shall probe
  1890. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1891. if (DEBUGGING(LEVELING)) {
  1892. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1893. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1894. SERIAL_ECHOLNPGM(")");
  1895. }
  1896. #endif
  1897. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1898. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1899. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1900. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1901. #endif
  1902. if (DEPLOY_PROBE()) return NAN;
  1903. float measured_z = run_z_probe();
  1904. if (stow) {
  1905. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1906. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1907. #endif
  1908. if (STOW_PROBE()) return NAN;
  1909. }
  1910. else {
  1911. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1912. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1913. #endif
  1914. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1915. }
  1916. if (verbose_level > 2) {
  1917. SERIAL_PROTOCOLPGM("Bed X: ");
  1918. SERIAL_PROTOCOL_F(x, 3);
  1919. SERIAL_PROTOCOLPGM(" Y: ");
  1920. SERIAL_PROTOCOL_F(y, 3);
  1921. SERIAL_PROTOCOLPGM(" Z: ");
  1922. SERIAL_PROTOCOL_F(measured_z, 3);
  1923. SERIAL_EOL;
  1924. }
  1925. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1926. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1927. #endif
  1928. feedrate_mm_s = old_feedrate_mm_s;
  1929. return measured_z;
  1930. }
  1931. #endif // HAS_BED_PROBE
  1932. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1933. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1934. #if DISABLED(DELTA)
  1935. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1936. //planner.bed_level_matrix.debug("bed level before");
  1937. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1938. planner.bed_level_matrix.set_to_identity();
  1939. if (DEBUGGING(LEVELING)) {
  1940. vector_3 uncorrected_position = planner.adjusted_position();
  1941. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1942. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1943. }
  1944. #endif
  1945. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1946. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1947. vector_3 corrected_position = planner.adjusted_position();
  1948. current_position[X_AXIS] = corrected_position.x;
  1949. current_position[Y_AXIS] = corrected_position.y;
  1950. current_position[Z_AXIS] = corrected_position.z;
  1951. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1952. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1953. #endif
  1954. SYNC_PLAN_POSITION_KINEMATIC();
  1955. }
  1956. #endif // !DELTA
  1957. #else // !AUTO_BED_LEVELING_GRID
  1958. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1959. planner.bed_level_matrix.set_to_identity();
  1960. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1961. if (DEBUGGING(LEVELING)) {
  1962. vector_3 uncorrected_position = planner.adjusted_position();
  1963. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1964. }
  1965. #endif
  1966. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1967. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1968. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1969. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1970. if (planeNormal.z < 0) {
  1971. planeNormal.x = -planeNormal.x;
  1972. planeNormal.y = -planeNormal.y;
  1973. planeNormal.z = -planeNormal.z;
  1974. }
  1975. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1976. vector_3 corrected_position = planner.adjusted_position();
  1977. current_position[X_AXIS] = corrected_position.x;
  1978. current_position[Y_AXIS] = corrected_position.y;
  1979. current_position[Z_AXIS] = corrected_position.z;
  1980. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1981. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1982. #endif
  1983. SYNC_PLAN_POSITION_KINEMATIC();
  1984. }
  1985. #endif // !AUTO_BED_LEVELING_GRID
  1986. #if ENABLED(DELTA)
  1987. /**
  1988. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1989. */
  1990. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1991. if (bed_level[x][y] != 0.0) {
  1992. return; // Don't overwrite good values.
  1993. }
  1994. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1995. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1996. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1997. float median = c; // Median is robust (ignores outliers).
  1998. if (a < b) {
  1999. if (b < c) median = b;
  2000. if (c < a) median = a;
  2001. }
  2002. else { // b <= a
  2003. if (c < b) median = b;
  2004. if (a < c) median = a;
  2005. }
  2006. bed_level[x][y] = median;
  2007. }
  2008. /**
  2009. * Fill in the unprobed points (corners of circular print surface)
  2010. * using linear extrapolation, away from the center.
  2011. */
  2012. static void extrapolate_unprobed_bed_level() {
  2013. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  2014. for (int y = 0; y <= half; y++) {
  2015. for (int x = 0; x <= half; x++) {
  2016. if (x + y < 3) continue;
  2017. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  2018. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  2019. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  2020. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  2021. }
  2022. }
  2023. }
  2024. /**
  2025. * Print calibration results for plotting or manual frame adjustment.
  2026. */
  2027. static void print_bed_level() {
  2028. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  2029. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  2030. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  2031. SERIAL_PROTOCOLCHAR(' ');
  2032. }
  2033. SERIAL_EOL;
  2034. }
  2035. }
  2036. /**
  2037. * Reset calibration results to zero.
  2038. */
  2039. void reset_bed_level() {
  2040. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2041. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2042. #endif
  2043. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  2044. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  2045. bed_level[x][y] = 0.0;
  2046. }
  2047. }
  2048. }
  2049. #endif // DELTA
  2050. #endif // AUTO_BED_LEVELING_FEATURE
  2051. /**
  2052. * Home an individual axis
  2053. */
  2054. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2055. static void homeaxis(AxisEnum axis) {
  2056. #define HOMEAXIS_DO(LETTER) \
  2057. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  2058. if (!(axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0)) return;
  2059. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2060. if (DEBUGGING(LEVELING)) {
  2061. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  2062. SERIAL_ECHOLNPGM(")");
  2063. }
  2064. #endif
  2065. int axis_home_dir =
  2066. #if ENABLED(DUAL_X_CARRIAGE)
  2067. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2068. #endif
  2069. home_dir(axis);
  2070. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2071. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2072. if (axis == Z_AXIS && axis_home_dir < 0) {
  2073. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2074. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2075. #endif
  2076. if (DEPLOY_PROBE()) return;
  2077. }
  2078. #endif
  2079. // Set the axis position as setup for the move
  2080. current_position[axis] = 0;
  2081. sync_plan_position();
  2082. // Set a flag for Z motor locking
  2083. #if ENABLED(Z_DUAL_ENDSTOPS)
  2084. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2085. #endif
  2086. // Move towards the endstop until an endstop is triggered
  2087. line_to_axis_pos(axis, 1.5 * max_length(axis) * axis_home_dir);
  2088. // Set the axis position as setup for the move
  2089. current_position[axis] = 0;
  2090. sync_plan_position();
  2091. // Move away from the endstop by the axis HOME_BUMP_MM
  2092. line_to_axis_pos(axis, -home_bump_mm(axis) * axis_home_dir);
  2093. // Move slowly towards the endstop until triggered
  2094. line_to_axis_pos(axis, 2 * home_bump_mm(axis) * axis_home_dir, get_homing_bump_feedrate(axis));
  2095. // reset current_position to 0 to reflect hitting endpoint
  2096. current_position[axis] = 0;
  2097. sync_plan_position();
  2098. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2099. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  2100. #endif
  2101. #if ENABLED(Z_DUAL_ENDSTOPS)
  2102. if (axis == Z_AXIS) {
  2103. float adj = fabs(z_endstop_adj);
  2104. bool lockZ1;
  2105. if (axis_home_dir > 0) {
  2106. adj = -adj;
  2107. lockZ1 = (z_endstop_adj > 0);
  2108. }
  2109. else
  2110. lockZ1 = (z_endstop_adj < 0);
  2111. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2112. // Move to the adjusted endstop height
  2113. line_to_axis_pos(axis, adj);
  2114. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2115. stepper.set_homing_flag(false);
  2116. } // Z_AXIS
  2117. #endif
  2118. #if ENABLED(DELTA)
  2119. // retrace by the amount specified in endstop_adj
  2120. if (endstop_adj[axis] * axis_home_dir < 0) {
  2121. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2122. if (DEBUGGING(LEVELING)) {
  2123. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2124. DEBUG_POS("", current_position);
  2125. }
  2126. #endif
  2127. line_to_axis_pos(axis, endstop_adj[axis]);
  2128. }
  2129. #endif
  2130. // Set the axis position to its home position (plus home offsets)
  2131. set_axis_is_at_home(axis);
  2132. SYNC_PLAN_POSITION_KINEMATIC();
  2133. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2134. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2135. #endif
  2136. destination[axis] = current_position[axis];
  2137. endstops.hit_on_purpose(); // clear endstop hit flags
  2138. axis_known_position[axis] = true;
  2139. axis_homed[axis] = true;
  2140. // Put away the Z probe
  2141. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2142. if (axis == Z_AXIS && axis_home_dir < 0) {
  2143. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2144. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2145. #endif
  2146. if (STOW_PROBE()) return;
  2147. }
  2148. #endif
  2149. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2150. if (DEBUGGING(LEVELING)) {
  2151. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2152. SERIAL_ECHOLNPGM(")");
  2153. }
  2154. #endif
  2155. }
  2156. #if ENABLED(FWRETRACT)
  2157. void retract(bool retracting, bool swapping = false) {
  2158. if (retracting == retracted[active_extruder]) return;
  2159. float old_feedrate_mm_s = feedrate_mm_s;
  2160. set_destination_to_current();
  2161. if (retracting) {
  2162. feedrate_mm_s = retract_feedrate_mm_s;
  2163. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2164. sync_plan_position_e();
  2165. prepare_move_to_destination();
  2166. if (retract_zlift > 0.01) {
  2167. current_position[Z_AXIS] -= retract_zlift;
  2168. SYNC_PLAN_POSITION_KINEMATIC();
  2169. prepare_move_to_destination();
  2170. }
  2171. }
  2172. else {
  2173. if (retract_zlift > 0.01) {
  2174. current_position[Z_AXIS] += retract_zlift;
  2175. SYNC_PLAN_POSITION_KINEMATIC();
  2176. }
  2177. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2178. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2179. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2180. sync_plan_position_e();
  2181. prepare_move_to_destination();
  2182. }
  2183. feedrate_mm_s = old_feedrate_mm_s;
  2184. retracted[active_extruder] = retracting;
  2185. } // retract()
  2186. #endif // FWRETRACT
  2187. #if ENABLED(MIXING_EXTRUDER)
  2188. void normalize_mix() {
  2189. float mix_total = 0.0;
  2190. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2191. float v = mixing_factor[i];
  2192. if (v < 0) v = mixing_factor[i] = 0;
  2193. mix_total += v;
  2194. }
  2195. // Scale all values if they don't add up to ~1.0
  2196. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2197. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2198. float mix_scale = 1.0 / mix_total;
  2199. for (int i = 0; i < MIXING_STEPPERS; i++)
  2200. mixing_factor[i] *= mix_scale;
  2201. }
  2202. }
  2203. #if ENABLED(DIRECT_MIXING_IN_G1)
  2204. // Get mixing parameters from the GCode
  2205. // Factors that are left out are set to 0
  2206. // The total "must" be 1.0 (but it will be normalized)
  2207. void gcode_get_mix() {
  2208. const char* mixing_codes = "ABCDHI";
  2209. for (int i = 0; i < MIXING_STEPPERS; i++)
  2210. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2211. normalize_mix();
  2212. }
  2213. #endif
  2214. #endif
  2215. /**
  2216. * ***************************************************************************
  2217. * ***************************** G-CODE HANDLING *****************************
  2218. * ***************************************************************************
  2219. */
  2220. /**
  2221. * Set XYZE destination and feedrate from the current GCode command
  2222. *
  2223. * - Set destination from included axis codes
  2224. * - Set to current for missing axis codes
  2225. * - Set the feedrate, if included
  2226. */
  2227. void gcode_get_destination() {
  2228. LOOP_XYZE(i) {
  2229. if (code_seen(axis_codes[i]))
  2230. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2231. else
  2232. destination[i] = current_position[i];
  2233. }
  2234. if (code_seen('F') && code_value_linear_units() > 0.0)
  2235. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2236. #if ENABLED(PRINTCOUNTER)
  2237. if (!DEBUGGING(DRYRUN))
  2238. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2239. #endif
  2240. // Get ABCDHI mixing factors
  2241. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2242. gcode_get_mix();
  2243. #endif
  2244. }
  2245. void unknown_command_error() {
  2246. SERIAL_ECHO_START;
  2247. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2248. SERIAL_ECHO(current_command);
  2249. SERIAL_ECHOLNPGM("\"");
  2250. }
  2251. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2252. /**
  2253. * Output a "busy" message at regular intervals
  2254. * while the machine is not accepting commands.
  2255. */
  2256. void host_keepalive() {
  2257. millis_t ms = millis();
  2258. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2259. if (PENDING(ms, next_busy_signal_ms)) return;
  2260. switch (busy_state) {
  2261. case IN_HANDLER:
  2262. case IN_PROCESS:
  2263. SERIAL_ECHO_START;
  2264. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2265. break;
  2266. case PAUSED_FOR_USER:
  2267. SERIAL_ECHO_START;
  2268. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2269. break;
  2270. case PAUSED_FOR_INPUT:
  2271. SERIAL_ECHO_START;
  2272. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2273. break;
  2274. default:
  2275. break;
  2276. }
  2277. }
  2278. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2279. }
  2280. #endif //HOST_KEEPALIVE_FEATURE
  2281. /**
  2282. * G0, G1: Coordinated movement of X Y Z E axes
  2283. */
  2284. inline void gcode_G0_G1() {
  2285. if (IsRunning()) {
  2286. gcode_get_destination(); // For X Y Z E F
  2287. #if ENABLED(FWRETRACT)
  2288. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2289. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2290. // Is this move an attempt to retract or recover?
  2291. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2292. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2293. sync_plan_position_e(); // AND from the planner
  2294. retract(!retracted[active_extruder]);
  2295. return;
  2296. }
  2297. }
  2298. #endif //FWRETRACT
  2299. prepare_move_to_destination();
  2300. }
  2301. }
  2302. /**
  2303. * G2: Clockwise Arc
  2304. * G3: Counterclockwise Arc
  2305. */
  2306. #if ENABLED(ARC_SUPPORT)
  2307. inline void gcode_G2_G3(bool clockwise) {
  2308. if (IsRunning()) {
  2309. #if ENABLED(SF_ARC_FIX)
  2310. bool relative_mode_backup = relative_mode;
  2311. relative_mode = true;
  2312. #endif
  2313. gcode_get_destination();
  2314. #if ENABLED(SF_ARC_FIX)
  2315. relative_mode = relative_mode_backup;
  2316. #endif
  2317. // Center of arc as offset from current_position
  2318. float arc_offset[2] = {
  2319. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2320. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2321. };
  2322. // Send an arc to the planner
  2323. plan_arc(destination, arc_offset, clockwise);
  2324. refresh_cmd_timeout();
  2325. }
  2326. }
  2327. #endif
  2328. /**
  2329. * G4: Dwell S<seconds> or P<milliseconds>
  2330. */
  2331. inline void gcode_G4() {
  2332. millis_t dwell_ms = 0;
  2333. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2334. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2335. stepper.synchronize();
  2336. refresh_cmd_timeout();
  2337. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2338. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2339. while (PENDING(millis(), dwell_ms)) idle();
  2340. }
  2341. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2342. /**
  2343. * Parameters interpreted according to:
  2344. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2345. * However I, J omission is not supported at this point; all
  2346. * parameters can be omitted and default to zero.
  2347. */
  2348. /**
  2349. * G5: Cubic B-spline
  2350. */
  2351. inline void gcode_G5() {
  2352. if (IsRunning()) {
  2353. gcode_get_destination();
  2354. float offset[] = {
  2355. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2356. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2357. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2358. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2359. };
  2360. plan_cubic_move(offset);
  2361. }
  2362. }
  2363. #endif // BEZIER_CURVE_SUPPORT
  2364. #if ENABLED(FWRETRACT)
  2365. /**
  2366. * G10 - Retract filament according to settings of M207
  2367. * G11 - Recover filament according to settings of M208
  2368. */
  2369. inline void gcode_G10_G11(bool doRetract=false) {
  2370. #if EXTRUDERS > 1
  2371. if (doRetract) {
  2372. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2373. }
  2374. #endif
  2375. retract(doRetract
  2376. #if EXTRUDERS > 1
  2377. , retracted_swap[active_extruder]
  2378. #endif
  2379. );
  2380. }
  2381. #endif //FWRETRACT
  2382. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2383. /**
  2384. * G12: Clean the nozzle
  2385. */
  2386. inline void gcode_G12() {
  2387. // Don't allow nozzle cleaning without homing first
  2388. if (axis_unhomed_error(true, true, true)) { return; }
  2389. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2390. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2391. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2392. Nozzle::clean(pattern, strokes, objects);
  2393. }
  2394. #endif
  2395. #if ENABLED(INCH_MODE_SUPPORT)
  2396. /**
  2397. * G20: Set input mode to inches
  2398. */
  2399. inline void gcode_G20() {
  2400. set_input_linear_units(LINEARUNIT_INCH);
  2401. }
  2402. /**
  2403. * G21: Set input mode to millimeters
  2404. */
  2405. inline void gcode_G21() {
  2406. set_input_linear_units(LINEARUNIT_MM);
  2407. }
  2408. #endif
  2409. #if ENABLED(NOZZLE_PARK_FEATURE)
  2410. /**
  2411. * G27: Park the nozzle
  2412. */
  2413. inline void gcode_G27() {
  2414. // Don't allow nozzle parking without homing first
  2415. if (axis_unhomed_error(true, true, true)) { return; }
  2416. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2417. Nozzle::park(z_action);
  2418. }
  2419. #endif // NOZZLE_PARK_FEATURE
  2420. #if ENABLED(QUICK_HOME)
  2421. static void quick_home_xy() {
  2422. // Pretend the current position is 0,0
  2423. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2424. sync_plan_position();
  2425. int x_axis_home_dir =
  2426. #if ENABLED(DUAL_X_CARRIAGE)
  2427. x_home_dir(active_extruder)
  2428. #else
  2429. home_dir(X_AXIS)
  2430. #endif
  2431. ;
  2432. float mlx = max_length(X_AXIS),
  2433. mly = max_length(Y_AXIS),
  2434. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2435. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2436. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2437. endstops.hit_on_purpose(); // clear endstop hit flags
  2438. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2439. }
  2440. #endif // QUICK_HOME
  2441. /**
  2442. * G28: Home all axes according to settings
  2443. *
  2444. * Parameters
  2445. *
  2446. * None Home to all axes with no parameters.
  2447. * With QUICK_HOME enabled XY will home together, then Z.
  2448. *
  2449. * Cartesian parameters
  2450. *
  2451. * X Home to the X endstop
  2452. * Y Home to the Y endstop
  2453. * Z Home to the Z endstop
  2454. *
  2455. */
  2456. inline void gcode_G28() {
  2457. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2458. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28");
  2459. #endif
  2460. // Wait for planner moves to finish!
  2461. stepper.synchronize();
  2462. // For auto bed leveling, clear the level matrix
  2463. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2464. planner.bed_level_matrix.set_to_identity();
  2465. #if ENABLED(DELTA)
  2466. reset_bed_level();
  2467. #endif
  2468. #endif
  2469. // Always home with tool 0 active
  2470. #if HOTENDS > 1
  2471. uint8_t old_tool_index = active_extruder;
  2472. tool_change(0, 0, true);
  2473. #endif
  2474. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2475. extruder_duplication_enabled = false;
  2476. #endif
  2477. /**
  2478. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2479. * on again when homing all axis
  2480. */
  2481. #if ENABLED(MESH_BED_LEVELING)
  2482. float pre_home_z = MESH_HOME_SEARCH_Z;
  2483. if (mbl.active()) {
  2484. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2485. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2486. #endif
  2487. // Save known Z position if already homed
  2488. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2489. pre_home_z = current_position[Z_AXIS];
  2490. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2491. }
  2492. mbl.set_active(false);
  2493. current_position[Z_AXIS] = pre_home_z;
  2494. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2495. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2496. #endif
  2497. }
  2498. #endif
  2499. setup_for_endstop_or_probe_move();
  2500. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2501. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2502. #endif
  2503. endstops.enable(true); // Enable endstops for next homing move
  2504. #if ENABLED(DELTA)
  2505. /**
  2506. * A delta can only safely home all axes at the same time
  2507. */
  2508. // Pretend the current position is 0,0,0
  2509. // This is like quick_home_xy() but for 3 towers.
  2510. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 0.0;
  2511. sync_plan_position();
  2512. // Move all carriages up together until the first endstop is hit.
  2513. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 3.0 * (Z_MAX_LENGTH);
  2514. feedrate_mm_s = 1.732 * homing_feedrate_mm_s[X_AXIS];
  2515. line_to_current_position();
  2516. stepper.synchronize();
  2517. endstops.hit_on_purpose(); // clear endstop hit flags
  2518. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 0.0;
  2519. // take care of back off and rehome. Now one carriage is at the top.
  2520. HOMEAXIS(X);
  2521. HOMEAXIS(Y);
  2522. HOMEAXIS(Z);
  2523. SYNC_PLAN_POSITION_KINEMATIC();
  2524. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2525. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2526. #endif
  2527. #else // NOT DELTA
  2528. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2529. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2530. set_destination_to_current();
  2531. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2532. if (home_all_axis || homeZ) {
  2533. HOMEAXIS(Z);
  2534. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2535. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2536. #endif
  2537. }
  2538. #else
  2539. if (home_all_axis || homeX || homeY) {
  2540. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2541. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2542. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2543. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2544. if (DEBUGGING(LEVELING)) {
  2545. SERIAL_ECHOPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2546. SERIAL_EOL;
  2547. }
  2548. #endif
  2549. do_blocking_move_to_z(destination[Z_AXIS]);
  2550. }
  2551. }
  2552. #endif
  2553. #if ENABLED(QUICK_HOME)
  2554. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2555. #endif
  2556. #if ENABLED(HOME_Y_BEFORE_X)
  2557. // Home Y
  2558. if (home_all_axis || homeY) {
  2559. HOMEAXIS(Y);
  2560. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2561. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2562. #endif
  2563. }
  2564. #endif
  2565. // Home X
  2566. if (home_all_axis || homeX) {
  2567. #if ENABLED(DUAL_X_CARRIAGE)
  2568. int tmp_extruder = active_extruder;
  2569. active_extruder = !active_extruder;
  2570. HOMEAXIS(X);
  2571. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2572. active_extruder = tmp_extruder;
  2573. HOMEAXIS(X);
  2574. // reset state used by the different modes
  2575. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2576. delayed_move_time = 0;
  2577. active_extruder_parked = true;
  2578. #else
  2579. HOMEAXIS(X);
  2580. #endif
  2581. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2582. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2583. #endif
  2584. }
  2585. #if DISABLED(HOME_Y_BEFORE_X)
  2586. // Home Y
  2587. if (home_all_axis || homeY) {
  2588. HOMEAXIS(Y);
  2589. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2590. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2591. #endif
  2592. }
  2593. #endif
  2594. // Home Z last if homing towards the bed
  2595. #if Z_HOME_DIR < 0
  2596. if (home_all_axis || homeZ) {
  2597. #if ENABLED(Z_SAFE_HOMING)
  2598. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2599. if (DEBUGGING(LEVELING)) {
  2600. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2601. }
  2602. #endif
  2603. if (home_all_axis) {
  2604. /**
  2605. * At this point we already have Z at Z_HOMING_HEIGHT height
  2606. * No need to move Z any more as this height should already be safe
  2607. * enough to reach Z_SAFE_HOMING XY positions.
  2608. * Just make sure the planner is in sync.
  2609. */
  2610. SYNC_PLAN_POSITION_KINEMATIC();
  2611. /**
  2612. * Move the Z probe (or just the nozzle) to the safe homing point
  2613. */
  2614. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2615. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2616. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2617. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2618. if (DEBUGGING(LEVELING)) {
  2619. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2620. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2621. }
  2622. #endif
  2623. // Move in the XY plane
  2624. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2625. }
  2626. // Let's see if X and Y are homed
  2627. if (axis_unhomed_error(true, true, false)) return;
  2628. /**
  2629. * Make sure the Z probe is within the physical limits
  2630. * NOTE: This doesn't necessarily ensure the Z probe is also
  2631. * within the bed!
  2632. */
  2633. float cpx = RAW_CURRENT_POSITION(X_AXIS), cpy = RAW_CURRENT_POSITION(Y_AXIS);
  2634. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2635. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2636. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2637. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2638. // Home the Z axis
  2639. HOMEAXIS(Z);
  2640. }
  2641. else {
  2642. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2643. SERIAL_ECHO_START;
  2644. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2645. }
  2646. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2647. if (DEBUGGING(LEVELING)) {
  2648. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2649. }
  2650. #endif
  2651. #else // !Z_SAFE_HOMING
  2652. HOMEAXIS(Z);
  2653. #endif // !Z_SAFE_HOMING
  2654. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2655. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2656. #endif
  2657. } // home_all_axis || homeZ
  2658. #endif // Z_HOME_DIR < 0
  2659. SYNC_PLAN_POSITION_KINEMATIC();
  2660. #endif // !DELTA (gcode_G28)
  2661. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2662. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.not_homing()");
  2663. #endif
  2664. endstops.not_homing();
  2665. endstops.hit_on_purpose(); // clear endstop hit flags
  2666. // Enable mesh leveling again
  2667. #if ENABLED(MESH_BED_LEVELING)
  2668. if (mbl.has_mesh()) {
  2669. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2670. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2671. #endif
  2672. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2673. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2674. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2675. #endif
  2676. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2677. #if Z_HOME_DIR > 0
  2678. + Z_MAX_POS
  2679. #endif
  2680. ;
  2681. SYNC_PLAN_POSITION_KINEMATIC();
  2682. mbl.set_active(true);
  2683. #if ENABLED(MESH_G28_REST_ORIGIN)
  2684. current_position[Z_AXIS] = 0.0;
  2685. set_destination_to_current();
  2686. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  2687. line_to_destination();
  2688. stepper.synchronize();
  2689. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2690. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2691. #endif
  2692. #else
  2693. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2694. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2695. #if Z_HOME_DIR > 0
  2696. + Z_MAX_POS
  2697. #endif
  2698. ;
  2699. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2700. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2701. #endif
  2702. #endif
  2703. }
  2704. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2705. current_position[Z_AXIS] = pre_home_z;
  2706. SYNC_PLAN_POSITION_KINEMATIC();
  2707. mbl.set_active(true);
  2708. current_position[Z_AXIS] = pre_home_z -
  2709. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2710. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2711. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2712. #endif
  2713. }
  2714. }
  2715. #endif
  2716. #if ENABLED(DELTA)
  2717. // move to a height where we can use the full xy-area
  2718. do_blocking_move_to_z(delta_clip_start_height);
  2719. #endif
  2720. clean_up_after_endstop_or_probe_move();
  2721. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2722. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2723. #endif
  2724. // Restore the active tool after homing
  2725. #if HOTENDS > 1
  2726. tool_change(old_tool_index, 0, true);
  2727. #endif
  2728. report_current_position();
  2729. }
  2730. #if HAS_PROBING_PROCEDURE
  2731. void out_of_range_error(const char* p_edge) {
  2732. SERIAL_PROTOCOLPGM("?Probe ");
  2733. serialprintPGM(p_edge);
  2734. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2735. }
  2736. #endif
  2737. #if ENABLED(MESH_BED_LEVELING)
  2738. inline void _mbl_goto_xy(float x, float y) {
  2739. float old_feedrate_mm_s = feedrate_mm_s;
  2740. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2741. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2742. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2743. + Z_PROBE_TRAVEL_HEIGHT
  2744. #elif Z_HOMING_HEIGHT > 0
  2745. + Z_HOMING_HEIGHT
  2746. #endif
  2747. ;
  2748. line_to_current_position();
  2749. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2750. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2751. line_to_current_position();
  2752. #if Z_PROBE_TRAVEL_HEIGHT > 0 || Z_HOMING_HEIGHT > 0
  2753. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2754. line_to_current_position();
  2755. #endif
  2756. feedrate_mm_s = old_feedrate_mm_s;
  2757. stepper.synchronize();
  2758. }
  2759. /**
  2760. * G29: Mesh-based Z probe, probes a grid and produces a
  2761. * mesh to compensate for variable bed height
  2762. *
  2763. * Parameters With MESH_BED_LEVELING:
  2764. *
  2765. * S0 Produce a mesh report
  2766. * S1 Start probing mesh points
  2767. * S2 Probe the next mesh point
  2768. * S3 Xn Yn Zn.nn Manually modify a single point
  2769. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2770. * S5 Reset and disable mesh
  2771. *
  2772. * The S0 report the points as below
  2773. *
  2774. * +----> X-axis 1-n
  2775. * |
  2776. * |
  2777. * v Y-axis 1-n
  2778. *
  2779. */
  2780. inline void gcode_G29() {
  2781. static int probe_point = -1;
  2782. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2783. if (state < 0 || state > 5) {
  2784. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2785. return;
  2786. }
  2787. int8_t px, py;
  2788. switch (state) {
  2789. case MeshReport:
  2790. if (mbl.has_mesh()) {
  2791. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? "On" : "Off");
  2792. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2793. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2794. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2795. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2796. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2797. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2798. SERIAL_PROTOCOLPGM(" ");
  2799. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2800. }
  2801. SERIAL_EOL;
  2802. }
  2803. }
  2804. else
  2805. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2806. break;
  2807. case MeshStart:
  2808. mbl.reset();
  2809. probe_point = 0;
  2810. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2811. break;
  2812. case MeshNext:
  2813. if (probe_point < 0) {
  2814. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2815. return;
  2816. }
  2817. // For each G29 S2...
  2818. if (probe_point == 0) {
  2819. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2820. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2821. #if Z_HOME_DIR > 0
  2822. + Z_MAX_POS
  2823. #endif
  2824. ;
  2825. SYNC_PLAN_POSITION_KINEMATIC();
  2826. }
  2827. else {
  2828. // For G29 S2 after adjusting Z.
  2829. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2830. }
  2831. // If there's another point to sample, move there with optional lift.
  2832. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2833. mbl.zigzag(probe_point, px, py);
  2834. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2835. probe_point++;
  2836. }
  2837. else {
  2838. // One last "return to the bed" (as originally coded) at completion
  2839. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2840. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2841. + Z_PROBE_TRAVEL_HEIGHT
  2842. #elif Z_HOMING_HEIGHT > 0
  2843. + Z_HOMING_HEIGHT
  2844. #endif
  2845. ;
  2846. line_to_current_position();
  2847. stepper.synchronize();
  2848. // After recording the last point, activate the mbl and home
  2849. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2850. probe_point = -1;
  2851. mbl.set_has_mesh(true);
  2852. enqueue_and_echo_commands_P(PSTR("G28"));
  2853. }
  2854. break;
  2855. case MeshSet:
  2856. if (code_seen('X')) {
  2857. px = code_value_int() - 1;
  2858. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2859. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2860. return;
  2861. }
  2862. }
  2863. else {
  2864. SERIAL_PROTOCOLLNPGM("X not entered.");
  2865. return;
  2866. }
  2867. if (code_seen('Y')) {
  2868. py = code_value_int() - 1;
  2869. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2870. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2871. return;
  2872. }
  2873. }
  2874. else {
  2875. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2876. return;
  2877. }
  2878. if (code_seen('Z')) {
  2879. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2880. }
  2881. else {
  2882. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2883. return;
  2884. }
  2885. break;
  2886. case MeshSetZOffset:
  2887. if (code_seen('Z')) {
  2888. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2889. }
  2890. else {
  2891. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2892. return;
  2893. }
  2894. break;
  2895. case MeshReset:
  2896. if (mbl.active()) {
  2897. current_position[Z_AXIS] +=
  2898. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2899. mbl.reset();
  2900. SYNC_PLAN_POSITION_KINEMATIC();
  2901. }
  2902. else
  2903. mbl.reset();
  2904. } // switch(state)
  2905. report_current_position();
  2906. }
  2907. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2908. /**
  2909. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2910. * Will fail if the printer has not been homed with G28.
  2911. *
  2912. * Enhanced G29 Auto Bed Leveling Probe Routine
  2913. *
  2914. * Parameters With AUTO_BED_LEVELING_GRID:
  2915. *
  2916. * P Set the size of the grid that will be probed (P x P points).
  2917. * Not supported by non-linear delta printer bed leveling.
  2918. * Example: "G29 P4"
  2919. *
  2920. * S Set the XY travel speed between probe points (in units/min)
  2921. *
  2922. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2923. * or clean the rotation Matrix. Useful to check the topology
  2924. * after a first run of G29.
  2925. *
  2926. * V Set the verbose level (0-4). Example: "G29 V3"
  2927. *
  2928. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2929. * This is useful for manual bed leveling and finding flaws in the bed (to
  2930. * assist with part placement).
  2931. * Not supported by non-linear delta printer bed leveling.
  2932. *
  2933. * F Set the Front limit of the probing grid
  2934. * B Set the Back limit of the probing grid
  2935. * L Set the Left limit of the probing grid
  2936. * R Set the Right limit of the probing grid
  2937. *
  2938. * Global Parameters:
  2939. *
  2940. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2941. * Include "E" to engage/disengage the Z probe for each sample.
  2942. * There's no extra effect if you have a fixed Z probe.
  2943. * Usage: "G29 E" or "G29 e"
  2944. *
  2945. */
  2946. inline void gcode_G29() {
  2947. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2948. if (DEBUGGING(LEVELING)) {
  2949. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2950. DEBUG_POS("", current_position);
  2951. }
  2952. #endif
  2953. // Don't allow auto-leveling without homing first
  2954. if (axis_unhomed_error(true, true, true)) return;
  2955. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2956. if (verbose_level < 0 || verbose_level > 4) {
  2957. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2958. return;
  2959. }
  2960. bool dryrun = code_seen('D');
  2961. bool stow_probe_after_each = code_seen('E');
  2962. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2963. #if DISABLED(DELTA)
  2964. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2965. #endif
  2966. if (verbose_level > 0) {
  2967. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2968. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2969. }
  2970. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2971. #if DISABLED(DELTA)
  2972. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2973. if (auto_bed_leveling_grid_points < 2) {
  2974. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2975. return;
  2976. }
  2977. #endif
  2978. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  2979. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  2980. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  2981. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  2982. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  2983. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  2984. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2985. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  2986. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2987. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  2988. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2989. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  2990. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2991. if (left_out || right_out || front_out || back_out) {
  2992. if (left_out) {
  2993. out_of_range_error(PSTR("(L)eft"));
  2994. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  2995. }
  2996. if (right_out) {
  2997. out_of_range_error(PSTR("(R)ight"));
  2998. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  2999. }
  3000. if (front_out) {
  3001. out_of_range_error(PSTR("(F)ront"));
  3002. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3003. }
  3004. if (back_out) {
  3005. out_of_range_error(PSTR("(B)ack"));
  3006. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3007. }
  3008. return;
  3009. }
  3010. #endif // AUTO_BED_LEVELING_GRID
  3011. if (!dryrun) {
  3012. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  3013. if (DEBUGGING(LEVELING)) {
  3014. vector_3 corrected_position = planner.adjusted_position();
  3015. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  3016. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  3017. }
  3018. #endif
  3019. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  3020. planner.bed_level_matrix.set_to_identity();
  3021. #if ENABLED(DELTA)
  3022. reset_bed_level();
  3023. #else //!DELTA
  3024. //vector_3 corrected_position = planner.adjusted_position();
  3025. //corrected_position.debug("position before G29");
  3026. vector_3 uncorrected_position = planner.adjusted_position();
  3027. //uncorrected_position.debug("position during G29");
  3028. current_position[X_AXIS] = uncorrected_position.x;
  3029. current_position[Y_AXIS] = uncorrected_position.y;
  3030. current_position[Z_AXIS] = uncorrected_position.z;
  3031. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3032. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  3033. #endif
  3034. SYNC_PLAN_POSITION_KINEMATIC();
  3035. #endif // !DELTA
  3036. }
  3037. stepper.synchronize();
  3038. setup_for_endstop_or_probe_move();
  3039. // Deploy the probe. Probe will raise if needed.
  3040. if (DEPLOY_PROBE()) return;
  3041. bed_leveling_in_progress = true;
  3042. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3043. // probe at the points of a lattice grid
  3044. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  3045. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  3046. #if ENABLED(DELTA)
  3047. delta_grid_spacing[0] = xGridSpacing;
  3048. delta_grid_spacing[1] = yGridSpacing;
  3049. float zoffset = zprobe_zoffset;
  3050. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3051. #else // !DELTA
  3052. /**
  3053. * solve the plane equation ax + by + d = z
  3054. * A is the matrix with rows [x y 1] for all the probed points
  3055. * B is the vector of the Z positions
  3056. * the normal vector to the plane is formed by the coefficients of the
  3057. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3058. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3059. */
  3060. int abl2 = sq(auto_bed_leveling_grid_points);
  3061. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3062. eqnBVector[abl2], // "B" vector of Z points
  3063. mean = 0.0;
  3064. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  3065. #endif // !DELTA
  3066. int probePointCounter = 0;
  3067. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  3068. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  3069. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  3070. int xStart, xStop, xInc;
  3071. if (zig) {
  3072. xStart = 0;
  3073. xStop = auto_bed_leveling_grid_points;
  3074. xInc = 1;
  3075. }
  3076. else {
  3077. xStart = auto_bed_leveling_grid_points - 1;
  3078. xStop = -1;
  3079. xInc = -1;
  3080. }
  3081. zig = !zig;
  3082. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  3083. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  3084. #if ENABLED(DELTA)
  3085. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  3086. float distance_from_center = HYPOT(xProbe, yProbe);
  3087. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  3088. #endif //DELTA
  3089. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3090. #if DISABLED(DELTA)
  3091. mean += measured_z;
  3092. eqnBVector[probePointCounter] = measured_z;
  3093. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3094. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3095. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3096. indexIntoAB[xCount][yCount] = probePointCounter;
  3097. #else
  3098. bed_level[xCount][yCount] = measured_z + zoffset;
  3099. #endif
  3100. probePointCounter++;
  3101. idle();
  3102. } //xProbe
  3103. } //yProbe
  3104. #else // !AUTO_BED_LEVELING_GRID
  3105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3106. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3107. #endif
  3108. // Probe at 3 arbitrary points
  3109. float z_at_pt_1 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_1_X),
  3110. LOGICAL_Y_POSITION(ABL_PROBE_PT_1_Y),
  3111. stow_probe_after_each, verbose_level),
  3112. z_at_pt_2 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_2_X),
  3113. LOGICAL_Y_POSITION(ABL_PROBE_PT_2_Y),
  3114. stow_probe_after_each, verbose_level),
  3115. z_at_pt_3 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_3_X),
  3116. LOGICAL_Y_POSITION(ABL_PROBE_PT_3_Y),
  3117. stow_probe_after_each, verbose_level);
  3118. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3119. #endif // !AUTO_BED_LEVELING_GRID
  3120. // Raise to _Z_PROBE_DEPLOY_HEIGHT. Stow the probe.
  3121. if (STOW_PROBE()) return;
  3122. // Restore state after probing
  3123. clean_up_after_endstop_or_probe_move();
  3124. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3125. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3126. #endif
  3127. // Calculate leveling, print reports, correct the position
  3128. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3129. #if ENABLED(DELTA)
  3130. if (!dryrun) extrapolate_unprobed_bed_level();
  3131. print_bed_level();
  3132. #else // !DELTA
  3133. // solve lsq problem
  3134. double plane_equation_coefficients[3];
  3135. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3136. mean /= abl2;
  3137. if (verbose_level) {
  3138. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3139. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3140. SERIAL_PROTOCOLPGM(" b: ");
  3141. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3142. SERIAL_PROTOCOLPGM(" d: ");
  3143. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3144. SERIAL_EOL;
  3145. if (verbose_level > 2) {
  3146. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3147. SERIAL_PROTOCOL_F(mean, 8);
  3148. SERIAL_EOL;
  3149. }
  3150. }
  3151. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3152. // Show the Topography map if enabled
  3153. if (do_topography_map) {
  3154. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3155. " +--- BACK --+\n"
  3156. " | |\n"
  3157. " L | (+) | R\n"
  3158. " E | | I\n"
  3159. " F | (-) N (+) | G\n"
  3160. " T | | H\n"
  3161. " | (-) | T\n"
  3162. " | |\n"
  3163. " O-- FRONT --+\n"
  3164. " (0,0)");
  3165. float min_diff = 999;
  3166. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3167. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3168. int ind = indexIntoAB[xx][yy];
  3169. float diff = eqnBVector[ind] - mean;
  3170. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3171. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3172. z_tmp = 0;
  3173. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3174. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3175. if (diff >= 0.0)
  3176. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3177. else
  3178. SERIAL_PROTOCOLCHAR(' ');
  3179. SERIAL_PROTOCOL_F(diff, 5);
  3180. } // xx
  3181. SERIAL_EOL;
  3182. } // yy
  3183. SERIAL_EOL;
  3184. if (verbose_level > 3) {
  3185. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3186. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3187. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3188. int ind = indexIntoAB[xx][yy];
  3189. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3190. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3191. z_tmp = 0;
  3192. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3193. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3194. if (diff >= 0.0)
  3195. SERIAL_PROTOCOLPGM(" +");
  3196. // Include + for column alignment
  3197. else
  3198. SERIAL_PROTOCOLCHAR(' ');
  3199. SERIAL_PROTOCOL_F(diff, 5);
  3200. } // xx
  3201. SERIAL_EOL;
  3202. } // yy
  3203. SERIAL_EOL;
  3204. }
  3205. } //do_topography_map
  3206. #endif //!DELTA
  3207. #endif // AUTO_BED_LEVELING_GRID
  3208. #if DISABLED(DELTA)
  3209. if (verbose_level > 0)
  3210. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3211. if (!dryrun) {
  3212. /**
  3213. * Correct the Z height difference from Z probe position and nozzle tip position.
  3214. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3215. * from the nozzle. When the bed is uneven, this height must be corrected.
  3216. */
  3217. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3218. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3219. z_tmp = current_position[Z_AXIS],
  3220. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3221. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3222. if (DEBUGGING(LEVELING)) {
  3223. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3224. SERIAL_ECHOPAIR(" ... z_tmp = ", z_tmp);
  3225. SERIAL_EOL;
  3226. }
  3227. #endif
  3228. // Apply the correction sending the Z probe offset
  3229. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3230. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3231. if (DEBUGGING(LEVELING)) {
  3232. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3233. SERIAL_EOL;
  3234. }
  3235. #endif
  3236. // Adjust the current Z and send it to the planner.
  3237. current_position[Z_AXIS] += z_tmp - stepper_z;
  3238. SYNC_PLAN_POSITION_KINEMATIC();
  3239. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3240. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3241. #endif
  3242. }
  3243. #endif // !DELTA
  3244. #ifdef Z_PROBE_END_SCRIPT
  3245. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3246. if (DEBUGGING(LEVELING)) {
  3247. SERIAL_ECHOPGM("Z Probe End Script: ");
  3248. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3249. }
  3250. #endif
  3251. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3252. stepper.synchronize();
  3253. #endif
  3254. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3255. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3256. #endif
  3257. bed_leveling_in_progress = false;
  3258. report_current_position();
  3259. KEEPALIVE_STATE(IN_HANDLER);
  3260. }
  3261. #endif //AUTO_BED_LEVELING_FEATURE
  3262. #if HAS_BED_PROBE
  3263. /**
  3264. * G30: Do a single Z probe at the current XY
  3265. */
  3266. inline void gcode_G30() {
  3267. setup_for_endstop_or_probe_move();
  3268. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3269. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3270. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3271. true, 1);
  3272. SERIAL_PROTOCOLPGM("Bed X: ");
  3273. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3274. SERIAL_PROTOCOLPGM(" Y: ");
  3275. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3276. SERIAL_PROTOCOLPGM(" Z: ");
  3277. SERIAL_PROTOCOL(measured_z + 0.0001);
  3278. SERIAL_EOL;
  3279. clean_up_after_endstop_or_probe_move();
  3280. report_current_position();
  3281. }
  3282. #if ENABLED(Z_PROBE_SLED)
  3283. /**
  3284. * G31: Deploy the Z probe
  3285. */
  3286. inline void gcode_G31() { DEPLOY_PROBE(); }
  3287. /**
  3288. * G32: Stow the Z probe
  3289. */
  3290. inline void gcode_G32() { STOW_PROBE(); }
  3291. #endif // Z_PROBE_SLED
  3292. #endif // HAS_BED_PROBE
  3293. /**
  3294. * G92: Set current position to given X Y Z E
  3295. */
  3296. inline void gcode_G92() {
  3297. bool didE = code_seen('E');
  3298. if (!didE) stepper.synchronize();
  3299. bool didXYZ = false;
  3300. LOOP_XYZE(i) {
  3301. if (code_seen(axis_codes[i])) {
  3302. float p = current_position[i],
  3303. v = code_value_axis_units(i);
  3304. current_position[i] = v;
  3305. if (i != E_AXIS) {
  3306. position_shift[i] += v - p; // Offset the coordinate space
  3307. update_software_endstops((AxisEnum)i);
  3308. didXYZ = true;
  3309. }
  3310. }
  3311. }
  3312. if (didXYZ)
  3313. SYNC_PLAN_POSITION_KINEMATIC();
  3314. else if (didE)
  3315. sync_plan_position_e();
  3316. }
  3317. #if ENABLED(ULTIPANEL)
  3318. /**
  3319. * M0: Unconditional stop - Wait for user button press on LCD
  3320. * M1: Conditional stop - Wait for user button press on LCD
  3321. */
  3322. inline void gcode_M0_M1() {
  3323. char* args = current_command_args;
  3324. millis_t codenum = 0;
  3325. bool hasP = false, hasS = false;
  3326. if (code_seen('P')) {
  3327. codenum = code_value_millis(); // milliseconds to wait
  3328. hasP = codenum > 0;
  3329. }
  3330. if (code_seen('S')) {
  3331. codenum = code_value_millis_from_seconds(); // seconds to wait
  3332. hasS = codenum > 0;
  3333. }
  3334. if (!hasP && !hasS && *args != '\0')
  3335. lcd_setstatus(args, true);
  3336. else {
  3337. LCD_MESSAGEPGM(MSG_USERWAIT);
  3338. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3339. dontExpireStatus();
  3340. #endif
  3341. }
  3342. lcd_ignore_click();
  3343. stepper.synchronize();
  3344. refresh_cmd_timeout();
  3345. if (codenum > 0) {
  3346. codenum += previous_cmd_ms; // wait until this time for a click
  3347. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3348. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3349. KEEPALIVE_STATE(IN_HANDLER);
  3350. lcd_ignore_click(false);
  3351. }
  3352. else {
  3353. if (!lcd_detected()) return;
  3354. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3355. while (!lcd_clicked()) idle();
  3356. KEEPALIVE_STATE(IN_HANDLER);
  3357. }
  3358. if (IS_SD_PRINTING)
  3359. LCD_MESSAGEPGM(MSG_RESUMING);
  3360. else
  3361. LCD_MESSAGEPGM(WELCOME_MSG);
  3362. }
  3363. #endif // ULTIPANEL
  3364. /**
  3365. * M17: Enable power on all stepper motors
  3366. */
  3367. inline void gcode_M17() {
  3368. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3369. enable_all_steppers();
  3370. }
  3371. #if ENABLED(SDSUPPORT)
  3372. /**
  3373. * M20: List SD card to serial output
  3374. */
  3375. inline void gcode_M20() {
  3376. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3377. card.ls();
  3378. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3379. }
  3380. /**
  3381. * M21: Init SD Card
  3382. */
  3383. inline void gcode_M21() {
  3384. card.initsd();
  3385. }
  3386. /**
  3387. * M22: Release SD Card
  3388. */
  3389. inline void gcode_M22() {
  3390. card.release();
  3391. }
  3392. /**
  3393. * M23: Open a file
  3394. */
  3395. inline void gcode_M23() {
  3396. card.openFile(current_command_args, true);
  3397. }
  3398. /**
  3399. * M24: Start SD Print
  3400. */
  3401. inline void gcode_M24() {
  3402. card.startFileprint();
  3403. print_job_timer.start();
  3404. }
  3405. /**
  3406. * M25: Pause SD Print
  3407. */
  3408. inline void gcode_M25() {
  3409. card.pauseSDPrint();
  3410. }
  3411. /**
  3412. * M26: Set SD Card file index
  3413. */
  3414. inline void gcode_M26() {
  3415. if (card.cardOK && code_seen('S'))
  3416. card.setIndex(code_value_long());
  3417. }
  3418. /**
  3419. * M27: Get SD Card status
  3420. */
  3421. inline void gcode_M27() {
  3422. card.getStatus();
  3423. }
  3424. /**
  3425. * M28: Start SD Write
  3426. */
  3427. inline void gcode_M28() {
  3428. card.openFile(current_command_args, false);
  3429. }
  3430. /**
  3431. * M29: Stop SD Write
  3432. * Processed in write to file routine above
  3433. */
  3434. inline void gcode_M29() {
  3435. // card.saving = false;
  3436. }
  3437. /**
  3438. * M30 <filename>: Delete SD Card file
  3439. */
  3440. inline void gcode_M30() {
  3441. if (card.cardOK) {
  3442. card.closefile();
  3443. card.removeFile(current_command_args);
  3444. }
  3445. }
  3446. #endif //SDSUPPORT
  3447. /**
  3448. * M31: Get the time since the start of SD Print (or last M109)
  3449. */
  3450. inline void gcode_M31() {
  3451. char buffer[21];
  3452. duration_t elapsed = print_job_timer.duration();
  3453. elapsed.toString(buffer);
  3454. lcd_setstatus(buffer);
  3455. SERIAL_ECHO_START;
  3456. SERIAL_ECHOPGM("Print time: ");
  3457. SERIAL_ECHOLN(buffer);
  3458. thermalManager.autotempShutdown();
  3459. }
  3460. #if ENABLED(SDSUPPORT)
  3461. /**
  3462. * M32: Select file and start SD Print
  3463. */
  3464. inline void gcode_M32() {
  3465. if (card.sdprinting)
  3466. stepper.synchronize();
  3467. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3468. if (!namestartpos)
  3469. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3470. else
  3471. namestartpos++; //to skip the '!'
  3472. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3473. if (card.cardOK) {
  3474. card.openFile(namestartpos, true, call_procedure);
  3475. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3476. card.setIndex(code_value_long());
  3477. card.startFileprint();
  3478. // Procedure calls count as normal print time.
  3479. if (!call_procedure) print_job_timer.start();
  3480. }
  3481. }
  3482. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3483. /**
  3484. * M33: Get the long full path of a file or folder
  3485. *
  3486. * Parameters:
  3487. * <dospath> Case-insensitive DOS-style path to a file or folder
  3488. *
  3489. * Example:
  3490. * M33 miscel~1/armchair/armcha~1.gco
  3491. *
  3492. * Output:
  3493. * /Miscellaneous/Armchair/Armchair.gcode
  3494. */
  3495. inline void gcode_M33() {
  3496. card.printLongPath(current_command_args);
  3497. }
  3498. #endif
  3499. /**
  3500. * M928: Start SD Write
  3501. */
  3502. inline void gcode_M928() {
  3503. card.openLogFile(current_command_args);
  3504. }
  3505. #endif // SDSUPPORT
  3506. /**
  3507. * M42: Change pin status via GCode
  3508. *
  3509. * P<pin> Pin number (LED if omitted)
  3510. * S<byte> Pin status from 0 - 255
  3511. */
  3512. inline void gcode_M42() {
  3513. if (!code_seen('S')) return;
  3514. int pin_status = code_value_int();
  3515. if (pin_status < 0 || pin_status > 255) return;
  3516. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3517. if (pin_number < 0) return;
  3518. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3519. if (pin_number == sensitive_pins[i]) return;
  3520. pinMode(pin_number, OUTPUT);
  3521. digitalWrite(pin_number, pin_status);
  3522. analogWrite(pin_number, pin_status);
  3523. #if FAN_COUNT > 0
  3524. switch (pin_number) {
  3525. #if HAS_FAN0
  3526. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3527. #endif
  3528. #if HAS_FAN1
  3529. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3530. #endif
  3531. #if HAS_FAN2
  3532. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3533. #endif
  3534. }
  3535. #endif
  3536. }
  3537. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3538. /**
  3539. * M48: Z probe repeatability measurement function.
  3540. *
  3541. * Usage:
  3542. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3543. * P = Number of sampled points (4-50, default 10)
  3544. * X = Sample X position
  3545. * Y = Sample Y position
  3546. * V = Verbose level (0-4, default=1)
  3547. * E = Engage Z probe for each reading
  3548. * L = Number of legs of movement before probe
  3549. * S = Schizoid (Or Star if you prefer)
  3550. *
  3551. * This function assumes the bed has been homed. Specifically, that a G28 command
  3552. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3553. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3554. * regenerated.
  3555. */
  3556. inline void gcode_M48() {
  3557. if (axis_unhomed_error(true, true, true)) return;
  3558. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3559. if (verbose_level < 0 || verbose_level > 4) {
  3560. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3561. return;
  3562. }
  3563. if (verbose_level > 0)
  3564. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3565. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3566. if (n_samples < 4 || n_samples > 50) {
  3567. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3568. return;
  3569. }
  3570. float X_current = current_position[X_AXIS],
  3571. Y_current = current_position[Y_AXIS];
  3572. bool stow_probe_after_each = code_seen('E');
  3573. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3574. #if DISABLED(DELTA)
  3575. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3576. out_of_range_error(PSTR("X"));
  3577. return;
  3578. }
  3579. #endif
  3580. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3581. #if DISABLED(DELTA)
  3582. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3583. out_of_range_error(PSTR("Y"));
  3584. return;
  3585. }
  3586. #else
  3587. if (HYPOT(RAW_X_POSITION(X_probe_location), RAW_Y_POSITION(Y_probe_location)) > DELTA_PROBEABLE_RADIUS) {
  3588. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3589. return;
  3590. }
  3591. #endif
  3592. bool seen_L = code_seen('L');
  3593. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3594. if (n_legs > 15) {
  3595. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3596. return;
  3597. }
  3598. if (n_legs == 1) n_legs = 2;
  3599. bool schizoid_flag = code_seen('S');
  3600. if (schizoid_flag && !seen_L) n_legs = 7;
  3601. /**
  3602. * Now get everything to the specified probe point So we can safely do a
  3603. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3604. * we don't want to use that as a starting point for each probe.
  3605. */
  3606. if (verbose_level > 2)
  3607. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3608. #if ENABLED(DELTA)
  3609. // we don't do bed level correction in M48 because we want the raw data when we probe
  3610. reset_bed_level();
  3611. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3612. // we don't do bed level correction in M48 because we want the raw data when we probe
  3613. planner.bed_level_matrix.set_to_identity();
  3614. #endif
  3615. setup_for_endstop_or_probe_move();
  3616. // Move to the first point, deploy, and probe
  3617. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3618. randomSeed(millis());
  3619. double mean = 0, sigma = 0, sample_set[n_samples];
  3620. for (uint8_t n = 0; n < n_samples; n++) {
  3621. if (n_legs) {
  3622. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3623. float angle = random(0.0, 360.0),
  3624. radius = random(
  3625. #if ENABLED(DELTA)
  3626. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3627. #else
  3628. 5, X_MAX_LENGTH / 8
  3629. #endif
  3630. );
  3631. if (verbose_level > 3) {
  3632. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3633. SERIAL_ECHOPAIR(" angle: ", angle);
  3634. SERIAL_ECHOPGM(" Direction: ");
  3635. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3636. SERIAL_ECHOLNPGM("Clockwise");
  3637. }
  3638. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3639. double delta_angle;
  3640. if (schizoid_flag)
  3641. // The points of a 5 point star are 72 degrees apart. We need to
  3642. // skip a point and go to the next one on the star.
  3643. delta_angle = dir * 2.0 * 72.0;
  3644. else
  3645. // If we do this line, we are just trying to move further
  3646. // around the circle.
  3647. delta_angle = dir * (float) random(25, 45);
  3648. angle += delta_angle;
  3649. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3650. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3651. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3652. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3653. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3654. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3655. #if DISABLED(DELTA)
  3656. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3657. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3658. #else
  3659. // If we have gone out too far, we can do a simple fix and scale the numbers
  3660. // back in closer to the origin.
  3661. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3662. X_current /= 1.25;
  3663. Y_current /= 1.25;
  3664. if (verbose_level > 3) {
  3665. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3666. SERIAL_ECHOPAIR(", ", Y_current);
  3667. SERIAL_EOL;
  3668. }
  3669. }
  3670. #endif
  3671. if (verbose_level > 3) {
  3672. SERIAL_PROTOCOLPGM("Going to:");
  3673. SERIAL_ECHOPAIR(" X", X_current);
  3674. SERIAL_ECHOPAIR(" Y", Y_current);
  3675. SERIAL_ECHOPAIR(" Z", current_position[Z_AXIS]);
  3676. SERIAL_EOL;
  3677. }
  3678. do_blocking_move_to_xy(X_current, Y_current);
  3679. } // n_legs loop
  3680. } // n_legs
  3681. // Probe a single point
  3682. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3683. /**
  3684. * Get the current mean for the data points we have so far
  3685. */
  3686. double sum = 0.0;
  3687. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3688. mean = sum / (n + 1);
  3689. /**
  3690. * Now, use that mean to calculate the standard deviation for the
  3691. * data points we have so far
  3692. */
  3693. sum = 0.0;
  3694. for (uint8_t j = 0; j <= n; j++)
  3695. sum += sq(sample_set[j] - mean);
  3696. sigma = sqrt(sum / (n + 1));
  3697. if (verbose_level > 0) {
  3698. if (verbose_level > 1) {
  3699. SERIAL_PROTOCOL(n + 1);
  3700. SERIAL_PROTOCOLPGM(" of ");
  3701. SERIAL_PROTOCOL((int)n_samples);
  3702. SERIAL_PROTOCOLPGM(" z: ");
  3703. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3704. if (verbose_level > 2) {
  3705. SERIAL_PROTOCOLPGM(" mean: ");
  3706. SERIAL_PROTOCOL_F(mean, 6);
  3707. SERIAL_PROTOCOLPGM(" sigma: ");
  3708. SERIAL_PROTOCOL_F(sigma, 6);
  3709. }
  3710. }
  3711. SERIAL_EOL;
  3712. }
  3713. } // End of probe loop
  3714. if (STOW_PROBE()) return;
  3715. if (verbose_level > 0) {
  3716. SERIAL_PROTOCOLPGM("Mean: ");
  3717. SERIAL_PROTOCOL_F(mean, 6);
  3718. SERIAL_EOL;
  3719. }
  3720. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3721. SERIAL_PROTOCOL_F(sigma, 6);
  3722. SERIAL_EOL; SERIAL_EOL;
  3723. clean_up_after_endstop_or_probe_move();
  3724. report_current_position();
  3725. }
  3726. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3727. /**
  3728. * M75: Start print timer
  3729. */
  3730. inline void gcode_M75() { print_job_timer.start(); }
  3731. /**
  3732. * M76: Pause print timer
  3733. */
  3734. inline void gcode_M76() { print_job_timer.pause(); }
  3735. /**
  3736. * M77: Stop print timer
  3737. */
  3738. inline void gcode_M77() { print_job_timer.stop(); }
  3739. #if ENABLED(PRINTCOUNTER)
  3740. /**
  3741. * M78: Show print statistics
  3742. */
  3743. inline void gcode_M78() {
  3744. // "M78 S78" will reset the statistics
  3745. if (code_seen('S') && code_value_int() == 78)
  3746. print_job_timer.initStats();
  3747. else print_job_timer.showStats();
  3748. }
  3749. #endif
  3750. /**
  3751. * M104: Set hot end temperature
  3752. */
  3753. inline void gcode_M104() {
  3754. if (get_target_extruder_from_command(104)) return;
  3755. if (DEBUGGING(DRYRUN)) return;
  3756. #if ENABLED(SINGLENOZZLE)
  3757. if (target_extruder != active_extruder) return;
  3758. #endif
  3759. if (code_seen('S')) {
  3760. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3761. #if ENABLED(DUAL_X_CARRIAGE)
  3762. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3763. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3764. #endif
  3765. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3766. /**
  3767. * Stop the timer at the end of print, starting is managed by
  3768. * 'heat and wait' M109.
  3769. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3770. * stand by mode, for instance in a dual extruder setup, without affecting
  3771. * the running print timer.
  3772. */
  3773. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3774. print_job_timer.stop();
  3775. LCD_MESSAGEPGM(WELCOME_MSG);
  3776. }
  3777. #endif
  3778. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3779. }
  3780. }
  3781. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3782. void print_heaterstates() {
  3783. #if HAS_TEMP_HOTEND
  3784. SERIAL_PROTOCOLPGM(" T:");
  3785. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3786. SERIAL_PROTOCOLPGM(" /");
  3787. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3788. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3789. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3790. SERIAL_CHAR(')');
  3791. #endif
  3792. #endif
  3793. #if HAS_TEMP_BED
  3794. SERIAL_PROTOCOLPGM(" B:");
  3795. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3796. SERIAL_PROTOCOLPGM(" /");
  3797. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3798. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3799. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3800. SERIAL_CHAR(')');
  3801. #endif
  3802. #endif
  3803. #if HOTENDS > 1
  3804. HOTEND_LOOP() {
  3805. SERIAL_PROTOCOLPAIR(" T", e);
  3806. SERIAL_PROTOCOLCHAR(':');
  3807. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3808. SERIAL_PROTOCOLPGM(" /");
  3809. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3810. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3811. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3812. SERIAL_CHAR(')');
  3813. #endif
  3814. }
  3815. #endif
  3816. SERIAL_PROTOCOLPGM(" @:");
  3817. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3818. #if HAS_TEMP_BED
  3819. SERIAL_PROTOCOLPGM(" B@:");
  3820. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3821. #endif
  3822. #if HOTENDS > 1
  3823. HOTEND_LOOP() {
  3824. SERIAL_PROTOCOLPAIR(" @", e);
  3825. SERIAL_PROTOCOLCHAR(':');
  3826. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3827. }
  3828. #endif
  3829. }
  3830. #endif
  3831. /**
  3832. * M105: Read hot end and bed temperature
  3833. */
  3834. inline void gcode_M105() {
  3835. if (get_target_extruder_from_command(105)) return;
  3836. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3837. SERIAL_PROTOCOLPGM(MSG_OK);
  3838. print_heaterstates();
  3839. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3840. SERIAL_ERROR_START;
  3841. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3842. #endif
  3843. SERIAL_EOL;
  3844. }
  3845. #if FAN_COUNT > 0
  3846. /**
  3847. * M106: Set Fan Speed
  3848. *
  3849. * S<int> Speed between 0-255
  3850. * P<index> Fan index, if more than one fan
  3851. */
  3852. inline void gcode_M106() {
  3853. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3854. p = code_seen('P') ? code_value_ushort() : 0;
  3855. NOMORE(s, 255);
  3856. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3857. }
  3858. /**
  3859. * M107: Fan Off
  3860. */
  3861. inline void gcode_M107() {
  3862. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3863. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3864. }
  3865. #endif // FAN_COUNT > 0
  3866. #if DISABLED(EMERGENCY_PARSER)
  3867. /**
  3868. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3869. */
  3870. inline void gcode_M108() { wait_for_heatup = false; }
  3871. /**
  3872. * M112: Emergency Stop
  3873. */
  3874. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3875. /**
  3876. * M410: Quickstop - Abort all planned moves
  3877. *
  3878. * This will stop the carriages mid-move, so most likely they
  3879. * will be out of sync with the stepper position after this.
  3880. */
  3881. inline void gcode_M410() { quickstop_stepper(); }
  3882. #endif
  3883. #ifndef MIN_COOLING_SLOPE_DEG
  3884. #define MIN_COOLING_SLOPE_DEG 1.50
  3885. #endif
  3886. #ifndef MIN_COOLING_SLOPE_TIME
  3887. #define MIN_COOLING_SLOPE_TIME 60
  3888. #endif
  3889. /**
  3890. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3891. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3892. */
  3893. inline void gcode_M109() {
  3894. if (get_target_extruder_from_command(109)) return;
  3895. if (DEBUGGING(DRYRUN)) return;
  3896. #if ENABLED(SINGLENOZZLE)
  3897. if (target_extruder != active_extruder) return;
  3898. #endif
  3899. bool no_wait_for_cooling = code_seen('S');
  3900. if (no_wait_for_cooling || code_seen('R')) {
  3901. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3902. #if ENABLED(DUAL_X_CARRIAGE)
  3903. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3904. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3905. #endif
  3906. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3907. /**
  3908. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3909. * stand by mode, for instance in a dual extruder setup, without affecting
  3910. * the running print timer.
  3911. */
  3912. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3913. print_job_timer.stop();
  3914. LCD_MESSAGEPGM(WELCOME_MSG);
  3915. }
  3916. /**
  3917. * We do not check if the timer is already running because this check will
  3918. * be done for us inside the Stopwatch::start() method thus a running timer
  3919. * will not restart.
  3920. */
  3921. else print_job_timer.start();
  3922. #endif
  3923. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3924. }
  3925. #if ENABLED(AUTOTEMP)
  3926. planner.autotemp_M109();
  3927. #endif
  3928. #if TEMP_RESIDENCY_TIME > 0
  3929. millis_t residency_start_ms = 0;
  3930. // Loop until the temperature has stabilized
  3931. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3932. #else
  3933. // Loop until the temperature is very close target
  3934. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3935. #endif //TEMP_RESIDENCY_TIME > 0
  3936. float theTarget = -1.0, old_temp = 9999.0;
  3937. bool wants_to_cool = false;
  3938. wait_for_heatup = true;
  3939. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3940. KEEPALIVE_STATE(NOT_BUSY);
  3941. do {
  3942. // Target temperature might be changed during the loop
  3943. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3944. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3945. theTarget = thermalManager.degTargetHotend(target_extruder);
  3946. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3947. if (no_wait_for_cooling && wants_to_cool) break;
  3948. }
  3949. now = millis();
  3950. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3951. next_temp_ms = now + 1000UL;
  3952. print_heaterstates();
  3953. #if TEMP_RESIDENCY_TIME > 0
  3954. SERIAL_PROTOCOLPGM(" W:");
  3955. if (residency_start_ms) {
  3956. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3957. SERIAL_PROTOCOLLN(rem);
  3958. }
  3959. else {
  3960. SERIAL_PROTOCOLLNPGM("?");
  3961. }
  3962. #else
  3963. SERIAL_EOL;
  3964. #endif
  3965. }
  3966. idle();
  3967. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3968. float temp = thermalManager.degHotend(target_extruder);
  3969. #if TEMP_RESIDENCY_TIME > 0
  3970. float temp_diff = fabs(theTarget - temp);
  3971. if (!residency_start_ms) {
  3972. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3973. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3974. }
  3975. else if (temp_diff > TEMP_HYSTERESIS) {
  3976. // Restart the timer whenever the temperature falls outside the hysteresis.
  3977. residency_start_ms = now;
  3978. }
  3979. #endif //TEMP_RESIDENCY_TIME > 0
  3980. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3981. if (wants_to_cool) {
  3982. // break after MIN_COOLING_SLOPE_TIME seconds
  3983. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3984. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3985. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3986. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3987. old_temp = temp;
  3988. }
  3989. }
  3990. } while (wait_for_heatup && TEMP_CONDITIONS);
  3991. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3992. KEEPALIVE_STATE(IN_HANDLER);
  3993. }
  3994. #if HAS_TEMP_BED
  3995. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3996. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  3997. #endif
  3998. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3999. #define MIN_COOLING_SLOPE_TIME_BED 60
  4000. #endif
  4001. /**
  4002. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4003. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4004. */
  4005. inline void gcode_M190() {
  4006. if (DEBUGGING(DRYRUN)) return;
  4007. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4008. bool no_wait_for_cooling = code_seen('S');
  4009. if (no_wait_for_cooling || code_seen('R')) {
  4010. thermalManager.setTargetBed(code_value_temp_abs());
  4011. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4012. if (code_value_temp_abs() > BED_MINTEMP) {
  4013. /**
  4014. * We start the timer when 'heating and waiting' command arrives, LCD
  4015. * functions never wait. Cooling down managed by extruders.
  4016. *
  4017. * We do not check if the timer is already running because this check will
  4018. * be done for us inside the Stopwatch::start() method thus a running timer
  4019. * will not restart.
  4020. */
  4021. print_job_timer.start();
  4022. }
  4023. #endif
  4024. }
  4025. #if TEMP_BED_RESIDENCY_TIME > 0
  4026. millis_t residency_start_ms = 0;
  4027. // Loop until the temperature has stabilized
  4028. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4029. #else
  4030. // Loop until the temperature is very close target
  4031. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4032. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4033. float theTarget = -1.0, old_temp = 9999.0;
  4034. bool wants_to_cool = false;
  4035. wait_for_heatup = true;
  4036. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4037. KEEPALIVE_STATE(NOT_BUSY);
  4038. target_extruder = active_extruder; // for print_heaterstates
  4039. do {
  4040. // Target temperature might be changed during the loop
  4041. if (theTarget != thermalManager.degTargetBed()) {
  4042. wants_to_cool = thermalManager.isCoolingBed();
  4043. theTarget = thermalManager.degTargetBed();
  4044. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4045. if (no_wait_for_cooling && wants_to_cool) break;
  4046. }
  4047. now = millis();
  4048. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4049. next_temp_ms = now + 1000UL;
  4050. print_heaterstates();
  4051. #if TEMP_BED_RESIDENCY_TIME > 0
  4052. SERIAL_PROTOCOLPGM(" W:");
  4053. if (residency_start_ms) {
  4054. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4055. SERIAL_PROTOCOLLN(rem);
  4056. }
  4057. else {
  4058. SERIAL_PROTOCOLLNPGM("?");
  4059. }
  4060. #else
  4061. SERIAL_EOL;
  4062. #endif
  4063. }
  4064. idle();
  4065. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4066. float temp = thermalManager.degBed();
  4067. #if TEMP_BED_RESIDENCY_TIME > 0
  4068. float temp_diff = fabs(theTarget - temp);
  4069. if (!residency_start_ms) {
  4070. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4071. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4072. }
  4073. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4074. // Restart the timer whenever the temperature falls outside the hysteresis.
  4075. residency_start_ms = now;
  4076. }
  4077. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4078. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4079. if (wants_to_cool) {
  4080. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4081. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4082. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4083. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4084. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4085. old_temp = temp;
  4086. }
  4087. }
  4088. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4089. LCD_MESSAGEPGM(MSG_BED_DONE);
  4090. KEEPALIVE_STATE(IN_HANDLER);
  4091. }
  4092. #endif // HAS_TEMP_BED
  4093. /**
  4094. * M110: Set Current Line Number
  4095. */
  4096. inline void gcode_M110() {
  4097. if (code_seen('N')) gcode_N = code_value_long();
  4098. }
  4099. /**
  4100. * M111: Set the debug level
  4101. */
  4102. inline void gcode_M111() {
  4103. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4104. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4105. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4106. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4107. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4108. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4109. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4110. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4111. #endif
  4112. const static char* const debug_strings[] PROGMEM = {
  4113. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4114. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4115. str_debug_32
  4116. #endif
  4117. };
  4118. SERIAL_ECHO_START;
  4119. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4120. if (marlin_debug_flags) {
  4121. uint8_t comma = 0;
  4122. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4123. if (TEST(marlin_debug_flags, i)) {
  4124. if (comma++) SERIAL_CHAR(',');
  4125. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4126. }
  4127. }
  4128. }
  4129. else {
  4130. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4131. }
  4132. SERIAL_EOL;
  4133. }
  4134. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4135. /**
  4136. * M113: Get or set Host Keepalive interval (0 to disable)
  4137. *
  4138. * S<seconds> Optional. Set the keepalive interval.
  4139. */
  4140. inline void gcode_M113() {
  4141. if (code_seen('S')) {
  4142. host_keepalive_interval = code_value_byte();
  4143. NOMORE(host_keepalive_interval, 60);
  4144. }
  4145. else {
  4146. SERIAL_ECHO_START;
  4147. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4148. SERIAL_EOL;
  4149. }
  4150. }
  4151. #endif
  4152. #if ENABLED(BARICUDA)
  4153. #if HAS_HEATER_1
  4154. /**
  4155. * M126: Heater 1 valve open
  4156. */
  4157. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4158. /**
  4159. * M127: Heater 1 valve close
  4160. */
  4161. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4162. #endif
  4163. #if HAS_HEATER_2
  4164. /**
  4165. * M128: Heater 2 valve open
  4166. */
  4167. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4168. /**
  4169. * M129: Heater 2 valve close
  4170. */
  4171. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4172. #endif
  4173. #endif //BARICUDA
  4174. /**
  4175. * M140: Set bed temperature
  4176. */
  4177. inline void gcode_M140() {
  4178. if (DEBUGGING(DRYRUN)) return;
  4179. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4180. }
  4181. #if ENABLED(ULTIPANEL)
  4182. /**
  4183. * M145: Set the heatup state for a material in the LCD menu
  4184. * S<material> (0=PLA, 1=ABS)
  4185. * H<hotend temp>
  4186. * B<bed temp>
  4187. * F<fan speed>
  4188. */
  4189. inline void gcode_M145() {
  4190. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4191. if (material < 0 || material > 1) {
  4192. SERIAL_ERROR_START;
  4193. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4194. }
  4195. else {
  4196. int v;
  4197. switch (material) {
  4198. case 0:
  4199. if (code_seen('H')) {
  4200. v = code_value_int();
  4201. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4202. }
  4203. if (code_seen('F')) {
  4204. v = code_value_int();
  4205. preheatFanSpeed1 = constrain(v, 0, 255);
  4206. }
  4207. #if TEMP_SENSOR_BED != 0
  4208. if (code_seen('B')) {
  4209. v = code_value_int();
  4210. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4211. }
  4212. #endif
  4213. break;
  4214. case 1:
  4215. if (code_seen('H')) {
  4216. v = code_value_int();
  4217. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4218. }
  4219. if (code_seen('F')) {
  4220. v = code_value_int();
  4221. preheatFanSpeed2 = constrain(v, 0, 255);
  4222. }
  4223. #if TEMP_SENSOR_BED != 0
  4224. if (code_seen('B')) {
  4225. v = code_value_int();
  4226. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4227. }
  4228. #endif
  4229. break;
  4230. }
  4231. }
  4232. }
  4233. #endif
  4234. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4235. /**
  4236. * M149: Set temperature units
  4237. */
  4238. inline void gcode_M149() {
  4239. if (code_seen('C')) {
  4240. set_input_temp_units(TEMPUNIT_C);
  4241. } else if (code_seen('K')) {
  4242. set_input_temp_units(TEMPUNIT_K);
  4243. } else if (code_seen('F')) {
  4244. set_input_temp_units(TEMPUNIT_F);
  4245. }
  4246. }
  4247. #endif
  4248. #if HAS_POWER_SWITCH
  4249. /**
  4250. * M80: Turn on Power Supply
  4251. */
  4252. inline void gcode_M80() {
  4253. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4254. /**
  4255. * If you have a switch on suicide pin, this is useful
  4256. * if you want to start another print with suicide feature after
  4257. * a print without suicide...
  4258. */
  4259. #if HAS_SUICIDE
  4260. OUT_WRITE(SUICIDE_PIN, HIGH);
  4261. #endif
  4262. #if ENABLED(ULTIPANEL)
  4263. powersupply = true;
  4264. LCD_MESSAGEPGM(WELCOME_MSG);
  4265. lcd_update();
  4266. #endif
  4267. }
  4268. #endif // HAS_POWER_SWITCH
  4269. /**
  4270. * M81: Turn off Power, including Power Supply, if there is one.
  4271. *
  4272. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4273. */
  4274. inline void gcode_M81() {
  4275. thermalManager.disable_all_heaters();
  4276. stepper.finish_and_disable();
  4277. #if FAN_COUNT > 0
  4278. #if FAN_COUNT > 1
  4279. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4280. #else
  4281. fanSpeeds[0] = 0;
  4282. #endif
  4283. #endif
  4284. delay(1000); // Wait 1 second before switching off
  4285. #if HAS_SUICIDE
  4286. stepper.synchronize();
  4287. suicide();
  4288. #elif HAS_POWER_SWITCH
  4289. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4290. #endif
  4291. #if ENABLED(ULTIPANEL)
  4292. #if HAS_POWER_SWITCH
  4293. powersupply = false;
  4294. #endif
  4295. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4296. lcd_update();
  4297. #endif
  4298. }
  4299. /**
  4300. * M82: Set E codes absolute (default)
  4301. */
  4302. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4303. /**
  4304. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4305. */
  4306. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4307. /**
  4308. * M18, M84: Disable all stepper motors
  4309. */
  4310. inline void gcode_M18_M84() {
  4311. if (code_seen('S')) {
  4312. stepper_inactive_time = code_value_millis_from_seconds();
  4313. }
  4314. else {
  4315. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4316. if (all_axis) {
  4317. stepper.finish_and_disable();
  4318. }
  4319. else {
  4320. stepper.synchronize();
  4321. if (code_seen('X')) disable_x();
  4322. if (code_seen('Y')) disable_y();
  4323. if (code_seen('Z')) disable_z();
  4324. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4325. if (code_seen('E')) {
  4326. disable_e0();
  4327. disable_e1();
  4328. disable_e2();
  4329. disable_e3();
  4330. }
  4331. #endif
  4332. }
  4333. }
  4334. }
  4335. /**
  4336. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4337. */
  4338. inline void gcode_M85() {
  4339. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4340. }
  4341. /**
  4342. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4343. * (Follows the same syntax as G92)
  4344. */
  4345. inline void gcode_M92() {
  4346. LOOP_XYZE(i) {
  4347. if (code_seen(axis_codes[i])) {
  4348. if (i == E_AXIS) {
  4349. float value = code_value_per_axis_unit(i);
  4350. if (value < 20.0) {
  4351. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4352. planner.max_e_jerk *= factor;
  4353. planner.max_feedrate_mm_s[i] *= factor;
  4354. planner.max_acceleration_steps_per_s2[i] *= factor;
  4355. }
  4356. planner.axis_steps_per_mm[i] = value;
  4357. }
  4358. else {
  4359. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4360. }
  4361. }
  4362. }
  4363. planner.refresh_positioning();
  4364. }
  4365. /**
  4366. * Output the current position to serial
  4367. */
  4368. static void report_current_position() {
  4369. SERIAL_PROTOCOLPGM("X:");
  4370. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4371. SERIAL_PROTOCOLPGM(" Y:");
  4372. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4373. SERIAL_PROTOCOLPGM(" Z:");
  4374. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4375. SERIAL_PROTOCOLPGM(" E:");
  4376. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4377. stepper.report_positions();
  4378. #if ENABLED(SCARA)
  4379. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4380. SERIAL_PROTOCOL(delta[X_AXIS]);
  4381. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4382. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4383. SERIAL_EOL;
  4384. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4385. SERIAL_PROTOCOL(delta[X_AXIS]);
  4386. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4387. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90);
  4388. SERIAL_EOL;
  4389. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4390. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4391. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4392. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4393. SERIAL_EOL; SERIAL_EOL;
  4394. #endif
  4395. }
  4396. /**
  4397. * M114: Output current position to serial port
  4398. */
  4399. inline void gcode_M114() { report_current_position(); }
  4400. /**
  4401. * M115: Capabilities string
  4402. */
  4403. inline void gcode_M115() {
  4404. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4405. }
  4406. /**
  4407. * M117: Set LCD Status Message
  4408. */
  4409. inline void gcode_M117() {
  4410. lcd_setstatus(current_command_args);
  4411. }
  4412. /**
  4413. * M119: Output endstop states to serial output
  4414. */
  4415. inline void gcode_M119() { endstops.M119(); }
  4416. /**
  4417. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4418. */
  4419. inline void gcode_M120() { endstops.enable_globally(true); }
  4420. /**
  4421. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4422. */
  4423. inline void gcode_M121() { endstops.enable_globally(false); }
  4424. #if ENABLED(BLINKM)
  4425. /**
  4426. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4427. */
  4428. inline void gcode_M150() {
  4429. SendColors(
  4430. code_seen('R') ? code_value_byte() : 0,
  4431. code_seen('U') ? code_value_byte() : 0,
  4432. code_seen('B') ? code_value_byte() : 0
  4433. );
  4434. }
  4435. #endif // BLINKM
  4436. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4437. /**
  4438. * M155: Send data to a I2C slave device
  4439. *
  4440. * This is a PoC, the formating and arguments for the GCODE will
  4441. * change to be more compatible, the current proposal is:
  4442. *
  4443. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4444. *
  4445. * M155 B<byte-1 value in base 10>
  4446. * M155 B<byte-2 value in base 10>
  4447. * M155 B<byte-3 value in base 10>
  4448. *
  4449. * M155 S1 ; Send the buffered data and reset the buffer
  4450. * M155 R1 ; Reset the buffer without sending data
  4451. *
  4452. */
  4453. inline void gcode_M155() {
  4454. // Set the target address
  4455. if (code_seen('A')) i2c.address(code_value_byte());
  4456. // Add a new byte to the buffer
  4457. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4458. // Flush the buffer to the bus
  4459. if (code_seen('S')) i2c.send();
  4460. // Reset and rewind the buffer
  4461. else if (code_seen('R')) i2c.reset();
  4462. }
  4463. /**
  4464. * M156: Request X bytes from I2C slave device
  4465. *
  4466. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4467. */
  4468. inline void gcode_M156() {
  4469. if (code_seen('A')) i2c.address(code_value_byte());
  4470. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4471. if (i2c.addr > 0 && bytes > 0 && bytes <= 32) {
  4472. i2c.reqbytes(bytes);
  4473. }
  4474. else {
  4475. SERIAL_ERROR_START;
  4476. SERIAL_ERRORLN("Bad i2c request");
  4477. }
  4478. }
  4479. #endif //EXPERIMENTAL_I2CBUS
  4480. /**
  4481. * M200: Set filament diameter and set E axis units to cubic units
  4482. *
  4483. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4484. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4485. */
  4486. inline void gcode_M200() {
  4487. if (get_target_extruder_from_command(200)) return;
  4488. if (code_seen('D')) {
  4489. // setting any extruder filament size disables volumetric on the assumption that
  4490. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4491. // for all extruders
  4492. volumetric_enabled = (code_value_linear_units() != 0.0);
  4493. if (volumetric_enabled) {
  4494. filament_size[target_extruder] = code_value_linear_units();
  4495. // make sure all extruders have some sane value for the filament size
  4496. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4497. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4498. }
  4499. }
  4500. else {
  4501. //reserved for setting filament diameter via UFID or filament measuring device
  4502. return;
  4503. }
  4504. calculate_volumetric_multipliers();
  4505. }
  4506. /**
  4507. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4508. */
  4509. inline void gcode_M201() {
  4510. LOOP_XYZE(i) {
  4511. if (code_seen(axis_codes[i])) {
  4512. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4513. }
  4514. }
  4515. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4516. planner.reset_acceleration_rates();
  4517. }
  4518. #if 0 // Not used for Sprinter/grbl gen6
  4519. inline void gcode_M202() {
  4520. LOOP_XYZE(i) {
  4521. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4522. }
  4523. }
  4524. #endif
  4525. /**
  4526. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4527. */
  4528. inline void gcode_M203() {
  4529. LOOP_XYZE(i)
  4530. if (code_seen(axis_codes[i]))
  4531. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4532. }
  4533. /**
  4534. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4535. *
  4536. * P = Printing moves
  4537. * R = Retract only (no X, Y, Z) moves
  4538. * T = Travel (non printing) moves
  4539. *
  4540. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4541. */
  4542. inline void gcode_M204() {
  4543. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4544. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4545. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4546. SERIAL_EOL;
  4547. }
  4548. if (code_seen('P')) {
  4549. planner.acceleration = code_value_linear_units();
  4550. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4551. SERIAL_EOL;
  4552. }
  4553. if (code_seen('R')) {
  4554. planner.retract_acceleration = code_value_linear_units();
  4555. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4556. SERIAL_EOL;
  4557. }
  4558. if (code_seen('T')) {
  4559. planner.travel_acceleration = code_value_linear_units();
  4560. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4561. SERIAL_EOL;
  4562. }
  4563. }
  4564. /**
  4565. * M205: Set Advanced Settings
  4566. *
  4567. * S = Min Feed Rate (units/s)
  4568. * T = Min Travel Feed Rate (units/s)
  4569. * B = Min Segment Time (µs)
  4570. * X = Max XY Jerk (units/sec^2)
  4571. * Z = Max Z Jerk (units/sec^2)
  4572. * E = Max E Jerk (units/sec^2)
  4573. */
  4574. inline void gcode_M205() {
  4575. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4576. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4577. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4578. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4579. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4580. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4581. }
  4582. /**
  4583. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4584. */
  4585. inline void gcode_M206() {
  4586. LOOP_XYZ(i)
  4587. if (code_seen(axis_codes[i]))
  4588. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4589. #if ENABLED(SCARA)
  4590. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4591. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4592. #endif
  4593. SYNC_PLAN_POSITION_KINEMATIC();
  4594. report_current_position();
  4595. }
  4596. #if ENABLED(DELTA)
  4597. /**
  4598. * M665: Set delta configurations
  4599. *
  4600. * L = diagonal rod
  4601. * R = delta radius
  4602. * S = segments per second
  4603. * A = Alpha (Tower 1) diagonal rod trim
  4604. * B = Beta (Tower 2) diagonal rod trim
  4605. * C = Gamma (Tower 3) diagonal rod trim
  4606. */
  4607. inline void gcode_M665() {
  4608. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4609. if (code_seen('R')) delta_radius = code_value_linear_units();
  4610. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4611. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4612. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4613. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4614. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4615. }
  4616. /**
  4617. * M666: Set delta endstop adjustment
  4618. */
  4619. inline void gcode_M666() {
  4620. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4621. if (DEBUGGING(LEVELING)) {
  4622. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4623. }
  4624. #endif
  4625. LOOP_XYZ(i) {
  4626. if (code_seen(axis_codes[i])) {
  4627. endstop_adj[i] = code_value_axis_units(i);
  4628. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4629. if (DEBUGGING(LEVELING)) {
  4630. SERIAL_ECHOPGM("endstop_adj[");
  4631. SERIAL_ECHO(axis_codes[i]);
  4632. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4633. SERIAL_EOL;
  4634. }
  4635. #endif
  4636. }
  4637. }
  4638. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4639. if (DEBUGGING(LEVELING)) {
  4640. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4641. }
  4642. #endif
  4643. }
  4644. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4645. /**
  4646. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4647. */
  4648. inline void gcode_M666() {
  4649. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4650. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4651. SERIAL_EOL;
  4652. }
  4653. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4654. #if ENABLED(FWRETRACT)
  4655. /**
  4656. * M207: Set firmware retraction values
  4657. *
  4658. * S[+units] retract_length
  4659. * W[+units] retract_length_swap (multi-extruder)
  4660. * F[units/min] retract_feedrate_mm_s
  4661. * Z[units] retract_zlift
  4662. */
  4663. inline void gcode_M207() {
  4664. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4665. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4666. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4667. #if EXTRUDERS > 1
  4668. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4669. #endif
  4670. }
  4671. /**
  4672. * M208: Set firmware un-retraction values
  4673. *
  4674. * S[+units] retract_recover_length (in addition to M207 S*)
  4675. * W[+units] retract_recover_length_swap (multi-extruder)
  4676. * F[units/min] retract_recover_feedrate_mm_s
  4677. */
  4678. inline void gcode_M208() {
  4679. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4680. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4681. #if EXTRUDERS > 1
  4682. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4683. #endif
  4684. }
  4685. /**
  4686. * M209: Enable automatic retract (M209 S1)
  4687. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4688. */
  4689. inline void gcode_M209() {
  4690. if (code_seen('S')) {
  4691. int t = code_value_int();
  4692. switch (t) {
  4693. case 0:
  4694. autoretract_enabled = false;
  4695. break;
  4696. case 1:
  4697. autoretract_enabled = true;
  4698. break;
  4699. default:
  4700. unknown_command_error();
  4701. return;
  4702. }
  4703. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4704. }
  4705. }
  4706. #endif // FWRETRACT
  4707. #if HOTENDS > 1
  4708. /**
  4709. * M218 - set hotend offset (in linear units)
  4710. *
  4711. * T<tool>
  4712. * X<xoffset>
  4713. * Y<yoffset>
  4714. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4715. */
  4716. inline void gcode_M218() {
  4717. if (get_target_extruder_from_command(218)) return;
  4718. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4719. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4720. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4721. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4722. #endif
  4723. SERIAL_ECHO_START;
  4724. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4725. HOTEND_LOOP() {
  4726. SERIAL_CHAR(' ');
  4727. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4728. SERIAL_CHAR(',');
  4729. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4730. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4731. SERIAL_CHAR(',');
  4732. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4733. #endif
  4734. }
  4735. SERIAL_EOL;
  4736. }
  4737. #endif // HOTENDS > 1
  4738. /**
  4739. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4740. */
  4741. inline void gcode_M220() {
  4742. if (code_seen('S')) feedrate_percentage = code_value_int();
  4743. }
  4744. /**
  4745. * M221: Set extrusion percentage (M221 T0 S95)
  4746. */
  4747. inline void gcode_M221() {
  4748. if (get_target_extruder_from_command(221)) return;
  4749. if (code_seen('S'))
  4750. extruder_multiplier[target_extruder] = code_value_int();
  4751. }
  4752. /**
  4753. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4754. */
  4755. inline void gcode_M226() {
  4756. if (code_seen('P')) {
  4757. int pin_number = code_value_int();
  4758. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4759. if (pin_state >= -1 && pin_state <= 1) {
  4760. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4761. if (sensitive_pins[i] == pin_number) {
  4762. pin_number = -1;
  4763. break;
  4764. }
  4765. }
  4766. if (pin_number > -1) {
  4767. int target = LOW;
  4768. stepper.synchronize();
  4769. pinMode(pin_number, INPUT);
  4770. switch (pin_state) {
  4771. case 1:
  4772. target = HIGH;
  4773. break;
  4774. case 0:
  4775. target = LOW;
  4776. break;
  4777. case -1:
  4778. target = !digitalRead(pin_number);
  4779. break;
  4780. }
  4781. while (digitalRead(pin_number) != target) idle();
  4782. } // pin_number > -1
  4783. } // pin_state -1 0 1
  4784. } // code_seen('P')
  4785. }
  4786. #if HAS_SERVOS
  4787. /**
  4788. * M280: Get or set servo position. P<index> [S<angle>]
  4789. */
  4790. inline void gcode_M280() {
  4791. if (!code_seen('P')) return;
  4792. int servo_index = code_value_int();
  4793. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4794. if (code_seen('S'))
  4795. MOVE_SERVO(servo_index, code_value_int());
  4796. else {
  4797. SERIAL_ECHO_START;
  4798. SERIAL_ECHOPGM(" Servo ");
  4799. SERIAL_ECHO(servo_index);
  4800. SERIAL_ECHOPGM(": ");
  4801. SERIAL_ECHOLN(servo[servo_index].read());
  4802. }
  4803. }
  4804. else {
  4805. SERIAL_ERROR_START;
  4806. SERIAL_ERROR("Servo ");
  4807. SERIAL_ERROR(servo_index);
  4808. SERIAL_ERRORLN(" out of range");
  4809. }
  4810. }
  4811. #endif // HAS_SERVOS
  4812. #if HAS_BUZZER
  4813. /**
  4814. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4815. */
  4816. inline void gcode_M300() {
  4817. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4818. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4819. // Limits the tone duration to 0-5 seconds.
  4820. NOMORE(duration, 5000);
  4821. BUZZ(duration, frequency);
  4822. }
  4823. #endif // HAS_BUZZER
  4824. #if ENABLED(PIDTEMP)
  4825. /**
  4826. * M301: Set PID parameters P I D (and optionally C, L)
  4827. *
  4828. * P[float] Kp term
  4829. * I[float] Ki term (unscaled)
  4830. * D[float] Kd term (unscaled)
  4831. *
  4832. * With PID_EXTRUSION_SCALING:
  4833. *
  4834. * C[float] Kc term
  4835. * L[float] LPQ length
  4836. */
  4837. inline void gcode_M301() {
  4838. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4839. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4840. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4841. if (e < HOTENDS) { // catch bad input value
  4842. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4843. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4844. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4845. #if ENABLED(PID_EXTRUSION_SCALING)
  4846. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4847. if (code_seen('L')) lpq_len = code_value_float();
  4848. NOMORE(lpq_len, LPQ_MAX_LEN);
  4849. #endif
  4850. thermalManager.updatePID();
  4851. SERIAL_ECHO_START;
  4852. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4853. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4854. SERIAL_ECHO(e);
  4855. #endif // PID_PARAMS_PER_HOTEND
  4856. SERIAL_ECHOPGM(" p:");
  4857. SERIAL_ECHO(PID_PARAM(Kp, e));
  4858. SERIAL_ECHOPGM(" i:");
  4859. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4860. SERIAL_ECHOPGM(" d:");
  4861. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4862. #if ENABLED(PID_EXTRUSION_SCALING)
  4863. SERIAL_ECHOPGM(" c:");
  4864. //Kc does not have scaling applied above, or in resetting defaults
  4865. SERIAL_ECHO(PID_PARAM(Kc, e));
  4866. #endif
  4867. SERIAL_EOL;
  4868. }
  4869. else {
  4870. SERIAL_ERROR_START;
  4871. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4872. }
  4873. }
  4874. #endif // PIDTEMP
  4875. #if ENABLED(PIDTEMPBED)
  4876. inline void gcode_M304() {
  4877. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4878. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4879. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4880. thermalManager.updatePID();
  4881. SERIAL_ECHO_START;
  4882. SERIAL_ECHOPGM(" p:");
  4883. SERIAL_ECHO(thermalManager.bedKp);
  4884. SERIAL_ECHOPGM(" i:");
  4885. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4886. SERIAL_ECHOPGM(" d:");
  4887. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4888. }
  4889. #endif // PIDTEMPBED
  4890. #if defined(CHDK) || HAS_PHOTOGRAPH
  4891. /**
  4892. * M240: Trigger a camera by emulating a Canon RC-1
  4893. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4894. */
  4895. inline void gcode_M240() {
  4896. #ifdef CHDK
  4897. OUT_WRITE(CHDK, HIGH);
  4898. chdkHigh = millis();
  4899. chdkActive = true;
  4900. #elif HAS_PHOTOGRAPH
  4901. const uint8_t NUM_PULSES = 16;
  4902. const float PULSE_LENGTH = 0.01524;
  4903. for (int i = 0; i < NUM_PULSES; i++) {
  4904. WRITE(PHOTOGRAPH_PIN, HIGH);
  4905. _delay_ms(PULSE_LENGTH);
  4906. WRITE(PHOTOGRAPH_PIN, LOW);
  4907. _delay_ms(PULSE_LENGTH);
  4908. }
  4909. delay(7.33);
  4910. for (int i = 0; i < NUM_PULSES; i++) {
  4911. WRITE(PHOTOGRAPH_PIN, HIGH);
  4912. _delay_ms(PULSE_LENGTH);
  4913. WRITE(PHOTOGRAPH_PIN, LOW);
  4914. _delay_ms(PULSE_LENGTH);
  4915. }
  4916. #endif // !CHDK && HAS_PHOTOGRAPH
  4917. }
  4918. #endif // CHDK || PHOTOGRAPH_PIN
  4919. #if HAS_LCD_CONTRAST
  4920. /**
  4921. * M250: Read and optionally set the LCD contrast
  4922. */
  4923. inline void gcode_M250() {
  4924. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4925. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4926. SERIAL_PROTOCOL(lcd_contrast);
  4927. SERIAL_EOL;
  4928. }
  4929. #endif // HAS_LCD_CONTRAST
  4930. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4931. /**
  4932. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4933. *
  4934. * S<temperature> sets the minimum extrude temperature
  4935. * P<bool> enables (1) or disables (0) cold extrusion
  4936. *
  4937. * Examples:
  4938. *
  4939. * M302 ; report current cold extrusion state
  4940. * M302 P0 ; enable cold extrusion checking
  4941. * M302 P1 ; disables cold extrusion checking
  4942. * M302 S0 ; always allow extrusion (disables checking)
  4943. * M302 S170 ; only allow extrusion above 170
  4944. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4945. */
  4946. inline void gcode_M302() {
  4947. bool seen_S = code_seen('S');
  4948. if (seen_S) {
  4949. thermalManager.extrude_min_temp = code_value_temp_abs();
  4950. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4951. }
  4952. if (code_seen('P'))
  4953. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4954. else if (!seen_S) {
  4955. // Report current state
  4956. SERIAL_ECHO_START;
  4957. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4958. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4959. SERIAL_ECHOLNPGM("C)");
  4960. }
  4961. }
  4962. #endif // PREVENT_DANGEROUS_EXTRUDE
  4963. /**
  4964. * M303: PID relay autotune
  4965. *
  4966. * S<temperature> sets the target temperature. (default 150C)
  4967. * E<extruder> (-1 for the bed) (default 0)
  4968. * C<cycles>
  4969. * U<bool> with a non-zero value will apply the result to current settings
  4970. */
  4971. inline void gcode_M303() {
  4972. #if HAS_PID_HEATING
  4973. int e = code_seen('E') ? code_value_int() : 0;
  4974. int c = code_seen('C') ? code_value_int() : 5;
  4975. bool u = code_seen('U') && code_value_bool();
  4976. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4977. if (e >= 0 && e < HOTENDS)
  4978. target_extruder = e;
  4979. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4980. thermalManager.PID_autotune(temp, e, c, u);
  4981. KEEPALIVE_STATE(IN_HANDLER);
  4982. #else
  4983. SERIAL_ERROR_START;
  4984. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4985. #endif
  4986. }
  4987. #if ENABLED(SCARA)
  4988. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4989. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4990. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  4991. if (IsRunning()) {
  4992. //gcode_get_destination(); // For X Y Z E F
  4993. delta[X_AXIS] = delta_x;
  4994. delta[Y_AXIS] = delta_y;
  4995. forward_kinematics_SCARA(delta);
  4996. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4997. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4998. prepare_move_to_destination();
  4999. //ok_to_send();
  5000. return true;
  5001. }
  5002. return false;
  5003. }
  5004. /**
  5005. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5006. */
  5007. inline bool gcode_M360() {
  5008. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5009. return SCARA_move_to_cal(0, 120);
  5010. }
  5011. /**
  5012. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5013. */
  5014. inline bool gcode_M361() {
  5015. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5016. return SCARA_move_to_cal(90, 130);
  5017. }
  5018. /**
  5019. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5020. */
  5021. inline bool gcode_M362() {
  5022. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5023. return SCARA_move_to_cal(60, 180);
  5024. }
  5025. /**
  5026. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5027. */
  5028. inline bool gcode_M363() {
  5029. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5030. return SCARA_move_to_cal(50, 90);
  5031. }
  5032. /**
  5033. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5034. */
  5035. inline bool gcode_M364() {
  5036. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5037. return SCARA_move_to_cal(45, 135);
  5038. }
  5039. /**
  5040. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  5041. */
  5042. inline void gcode_M365() {
  5043. LOOP_XYZ(i)
  5044. if (code_seen(axis_codes[i]))
  5045. axis_scaling[i] = code_value_float();
  5046. }
  5047. #endif // SCARA
  5048. #if ENABLED(EXT_SOLENOID)
  5049. void enable_solenoid(uint8_t num) {
  5050. switch (num) {
  5051. case 0:
  5052. OUT_WRITE(SOL0_PIN, HIGH);
  5053. break;
  5054. #if HAS_SOLENOID_1
  5055. case 1:
  5056. OUT_WRITE(SOL1_PIN, HIGH);
  5057. break;
  5058. #endif
  5059. #if HAS_SOLENOID_2
  5060. case 2:
  5061. OUT_WRITE(SOL2_PIN, HIGH);
  5062. break;
  5063. #endif
  5064. #if HAS_SOLENOID_3
  5065. case 3:
  5066. OUT_WRITE(SOL3_PIN, HIGH);
  5067. break;
  5068. #endif
  5069. default:
  5070. SERIAL_ECHO_START;
  5071. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5072. break;
  5073. }
  5074. }
  5075. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5076. void disable_all_solenoids() {
  5077. OUT_WRITE(SOL0_PIN, LOW);
  5078. OUT_WRITE(SOL1_PIN, LOW);
  5079. OUT_WRITE(SOL2_PIN, LOW);
  5080. OUT_WRITE(SOL3_PIN, LOW);
  5081. }
  5082. /**
  5083. * M380: Enable solenoid on the active extruder
  5084. */
  5085. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5086. /**
  5087. * M381: Disable all solenoids
  5088. */
  5089. inline void gcode_M381() { disable_all_solenoids(); }
  5090. #endif // EXT_SOLENOID
  5091. /**
  5092. * M400: Finish all moves
  5093. */
  5094. inline void gcode_M400() { stepper.synchronize(); }
  5095. #if HAS_BED_PROBE
  5096. /**
  5097. * M401: Engage Z Servo endstop if available
  5098. */
  5099. inline void gcode_M401() { DEPLOY_PROBE(); }
  5100. /**
  5101. * M402: Retract Z Servo endstop if enabled
  5102. */
  5103. inline void gcode_M402() { STOW_PROBE(); }
  5104. #endif // HAS_BED_PROBE
  5105. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5106. /**
  5107. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5108. */
  5109. inline void gcode_M404() {
  5110. if (code_seen('W')) {
  5111. filament_width_nominal = code_value_linear_units();
  5112. }
  5113. else {
  5114. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5115. SERIAL_PROTOCOLLN(filament_width_nominal);
  5116. }
  5117. }
  5118. /**
  5119. * M405: Turn on filament sensor for control
  5120. */
  5121. inline void gcode_M405() {
  5122. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5123. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5124. if (code_seen('D')) meas_delay_cm = code_value_int();
  5125. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5126. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5127. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5128. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5129. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5130. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5131. }
  5132. filament_sensor = true;
  5133. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5134. //SERIAL_PROTOCOL(filament_width_meas);
  5135. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5136. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5137. }
  5138. /**
  5139. * M406: Turn off filament sensor for control
  5140. */
  5141. inline void gcode_M406() { filament_sensor = false; }
  5142. /**
  5143. * M407: Get measured filament diameter on serial output
  5144. */
  5145. inline void gcode_M407() {
  5146. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5147. SERIAL_PROTOCOLLN(filament_width_meas);
  5148. }
  5149. #endif // FILAMENT_WIDTH_SENSOR
  5150. void quickstop_stepper() {
  5151. stepper.quick_stop();
  5152. #if DISABLED(SCARA)
  5153. stepper.synchronize();
  5154. LOOP_XYZ(i) set_current_from_steppers_for_axis((AxisEnum)i);
  5155. SYNC_PLAN_POSITION_KINEMATIC();
  5156. #endif
  5157. }
  5158. #if ENABLED(MESH_BED_LEVELING)
  5159. /**
  5160. * M420: Enable/Disable Mesh Bed Leveling
  5161. */
  5162. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5163. /**
  5164. * M421: Set a single Mesh Bed Leveling Z coordinate
  5165. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5166. */
  5167. inline void gcode_M421() {
  5168. int8_t px = 0, py = 0;
  5169. float z = 0;
  5170. bool hasX, hasY, hasZ, hasI, hasJ;
  5171. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5172. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5173. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5174. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5175. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5176. if (hasX && hasY && hasZ) {
  5177. if (px >= 0 && py >= 0)
  5178. mbl.set_z(px, py, z);
  5179. else {
  5180. SERIAL_ERROR_START;
  5181. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5182. }
  5183. }
  5184. else if (hasI && hasJ && hasZ) {
  5185. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5186. mbl.set_z(px, py, z);
  5187. else {
  5188. SERIAL_ERROR_START;
  5189. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5190. }
  5191. }
  5192. else {
  5193. SERIAL_ERROR_START;
  5194. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5195. }
  5196. }
  5197. #endif
  5198. /**
  5199. * M428: Set home_offset based on the distance between the
  5200. * current_position and the nearest "reference point."
  5201. * If an axis is past center its endstop position
  5202. * is the reference-point. Otherwise it uses 0. This allows
  5203. * the Z offset to be set near the bed when using a max endstop.
  5204. *
  5205. * M428 can't be used more than 2cm away from 0 or an endstop.
  5206. *
  5207. * Use M206 to set these values directly.
  5208. */
  5209. inline void gcode_M428() {
  5210. bool err = false;
  5211. LOOP_XYZ(i) {
  5212. if (axis_homed[i]) {
  5213. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5214. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5215. if (diff > -20 && diff < 20) {
  5216. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5217. }
  5218. else {
  5219. SERIAL_ERROR_START;
  5220. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5221. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5222. BUZZ(200, 40);
  5223. err = true;
  5224. break;
  5225. }
  5226. }
  5227. }
  5228. if (!err) {
  5229. SYNC_PLAN_POSITION_KINEMATIC();
  5230. report_current_position();
  5231. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5232. BUZZ(200, 659);
  5233. BUZZ(200, 698);
  5234. }
  5235. }
  5236. /**
  5237. * M500: Store settings in EEPROM
  5238. */
  5239. inline void gcode_M500() {
  5240. Config_StoreSettings();
  5241. }
  5242. /**
  5243. * M501: Read settings from EEPROM
  5244. */
  5245. inline void gcode_M501() {
  5246. Config_RetrieveSettings();
  5247. }
  5248. /**
  5249. * M502: Revert to default settings
  5250. */
  5251. inline void gcode_M502() {
  5252. Config_ResetDefault();
  5253. }
  5254. /**
  5255. * M503: print settings currently in memory
  5256. */
  5257. inline void gcode_M503() {
  5258. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5259. }
  5260. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5261. /**
  5262. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5263. */
  5264. inline void gcode_M540() {
  5265. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5266. }
  5267. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5268. #if HAS_BED_PROBE
  5269. inline void gcode_M851() {
  5270. SERIAL_ECHO_START;
  5271. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5272. SERIAL_CHAR(' ');
  5273. if (code_seen('Z')) {
  5274. float value = code_value_axis_units(Z_AXIS);
  5275. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5276. zprobe_zoffset = value;
  5277. SERIAL_ECHO(zprobe_zoffset);
  5278. }
  5279. else {
  5280. SERIAL_ECHOPGM(MSG_Z_MIN);
  5281. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5282. SERIAL_CHAR(' ');
  5283. SERIAL_ECHOPGM(MSG_Z_MAX);
  5284. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5285. }
  5286. }
  5287. else {
  5288. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5289. }
  5290. SERIAL_EOL;
  5291. }
  5292. #endif // HAS_BED_PROBE
  5293. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5294. /**
  5295. * M600: Pause for filament change
  5296. *
  5297. * E[distance] - Retract the filament this far (negative value)
  5298. * Z[distance] - Move the Z axis by this distance
  5299. * X[position] - Move to this X position, with Y
  5300. * Y[position] - Move to this Y position, with X
  5301. * L[distance] - Retract distance for removal (manual reload)
  5302. *
  5303. * Default values are used for omitted arguments.
  5304. *
  5305. */
  5306. inline void gcode_M600() {
  5307. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5308. SERIAL_ERROR_START;
  5309. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5310. return;
  5311. }
  5312. // Show initial message and wait for synchronize steppers
  5313. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5314. stepper.synchronize();
  5315. float lastpos[NUM_AXIS];
  5316. // Save current position of all axes
  5317. LOOP_XYZE(i)
  5318. lastpos[i] = destination[i] = current_position[i];
  5319. // Define runplan for move axes
  5320. #if ENABLED(DELTA)
  5321. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5322. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5323. #else
  5324. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5325. #endif
  5326. KEEPALIVE_STATE(IN_HANDLER);
  5327. // Initial retract before move to filament change position
  5328. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5329. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5330. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5331. #endif
  5332. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5333. // Lift Z axis
  5334. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5335. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5336. FILAMENT_CHANGE_Z_ADD
  5337. #else
  5338. 0
  5339. #endif
  5340. ;
  5341. if (z_lift > 0) {
  5342. destination[Z_AXIS] += z_lift;
  5343. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5344. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5345. }
  5346. // Move XY axes to filament exchange position
  5347. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5348. #ifdef FILAMENT_CHANGE_X_POS
  5349. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5350. #endif
  5351. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5352. #ifdef FILAMENT_CHANGE_Y_POS
  5353. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5354. #endif
  5355. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5356. stepper.synchronize();
  5357. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5358. // Unload filament
  5359. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5360. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5361. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5362. #endif
  5363. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5364. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5365. stepper.synchronize();
  5366. disable_e0();
  5367. disable_e1();
  5368. disable_e2();
  5369. disable_e3();
  5370. delay(100);
  5371. #if HAS_BUZZER
  5372. millis_t next_tick = 0;
  5373. #endif
  5374. // Wait for filament insert by user and press button
  5375. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5376. while (!lcd_clicked()) {
  5377. #if HAS_BUZZER
  5378. millis_t ms = millis();
  5379. if (ms >= next_tick) {
  5380. BUZZ(300, 2000);
  5381. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5382. }
  5383. #endif
  5384. idle(true);
  5385. }
  5386. delay(100);
  5387. while (lcd_clicked()) idle(true);
  5388. delay(100);
  5389. // Show load message
  5390. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5391. // Load filament
  5392. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5393. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5394. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5395. #endif
  5396. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5397. stepper.synchronize();
  5398. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5399. do {
  5400. // Extrude filament to get into hotend
  5401. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5402. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5403. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5404. stepper.synchronize();
  5405. // Ask user if more filament should be extruded
  5406. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5407. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5408. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5409. KEEPALIVE_STATE(IN_HANDLER);
  5410. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5411. #endif
  5412. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5413. KEEPALIVE_STATE(IN_HANDLER);
  5414. // Set extruder to saved position
  5415. current_position[E_AXIS] = lastpos[E_AXIS];
  5416. destination[E_AXIS] = lastpos[E_AXIS];
  5417. planner.set_e_position_mm(current_position[E_AXIS]);
  5418. #if ENABLED(DELTA)
  5419. // Move XYZ to starting position, then E
  5420. inverse_kinematics(lastpos);
  5421. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5422. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5423. #else
  5424. // Move XY to starting position, then Z, then E
  5425. destination[X_AXIS] = lastpos[X_AXIS];
  5426. destination[Y_AXIS] = lastpos[Y_AXIS];
  5427. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5428. destination[Z_AXIS] = lastpos[Z_AXIS];
  5429. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5430. #endif
  5431. stepper.synchronize();
  5432. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5433. filament_ran_out = false;
  5434. #endif
  5435. // Show status screen
  5436. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5437. }
  5438. #endif // FILAMENT_CHANGE_FEATURE
  5439. #if ENABLED(DUAL_X_CARRIAGE)
  5440. /**
  5441. * M605: Set dual x-carriage movement mode
  5442. *
  5443. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5444. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5445. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5446. * units x-offset and an optional differential hotend temperature of
  5447. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5448. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5449. *
  5450. * Note: the X axis should be homed after changing dual x-carriage mode.
  5451. */
  5452. inline void gcode_M605() {
  5453. stepper.synchronize();
  5454. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5455. switch (dual_x_carriage_mode) {
  5456. case DXC_DUPLICATION_MODE:
  5457. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5458. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5459. SERIAL_ECHO_START;
  5460. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5461. SERIAL_CHAR(' ');
  5462. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5463. SERIAL_CHAR(',');
  5464. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5465. SERIAL_CHAR(' ');
  5466. SERIAL_ECHO(duplicate_extruder_x_offset);
  5467. SERIAL_CHAR(',');
  5468. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5469. break;
  5470. case DXC_FULL_CONTROL_MODE:
  5471. case DXC_AUTO_PARK_MODE:
  5472. break;
  5473. default:
  5474. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5475. break;
  5476. }
  5477. active_extruder_parked = false;
  5478. extruder_duplication_enabled = false;
  5479. delayed_move_time = 0;
  5480. }
  5481. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5482. inline void gcode_M605() {
  5483. stepper.synchronize();
  5484. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5485. SERIAL_ECHO_START;
  5486. SERIAL_ECHOPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5487. SERIAL_EOL;
  5488. }
  5489. #endif // M605
  5490. #if ENABLED(LIN_ADVANCE)
  5491. /**
  5492. * M905: Set advance factor
  5493. */
  5494. inline void gcode_M905() {
  5495. stepper.synchronize();
  5496. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5497. }
  5498. #endif
  5499. /**
  5500. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5501. */
  5502. inline void gcode_M907() {
  5503. #if HAS_DIGIPOTSS
  5504. LOOP_XYZE(i)
  5505. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5506. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5507. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5508. #endif
  5509. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5510. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5511. #endif
  5512. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5513. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5514. #endif
  5515. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5516. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5517. #endif
  5518. #if ENABLED(DIGIPOT_I2C)
  5519. // this one uses actual amps in floating point
  5520. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5521. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5522. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5523. #endif
  5524. #if ENABLED(DAC_STEPPER_CURRENT)
  5525. if (code_seen('S')) {
  5526. float dac_percent = code_value_float();
  5527. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5528. }
  5529. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5530. #endif
  5531. }
  5532. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5533. /**
  5534. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5535. */
  5536. inline void gcode_M908() {
  5537. #if HAS_DIGIPOTSS
  5538. stepper.digitalPotWrite(
  5539. code_seen('P') ? code_value_int() : 0,
  5540. code_seen('S') ? code_value_int() : 0
  5541. );
  5542. #endif
  5543. #ifdef DAC_STEPPER_CURRENT
  5544. dac_current_raw(
  5545. code_seen('P') ? code_value_byte() : -1,
  5546. code_seen('S') ? code_value_ushort() : 0
  5547. );
  5548. #endif
  5549. }
  5550. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5551. inline void gcode_M909() { dac_print_values(); }
  5552. inline void gcode_M910() { dac_commit_eeprom(); }
  5553. #endif
  5554. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5555. #if HAS_MICROSTEPS
  5556. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5557. inline void gcode_M350() {
  5558. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5559. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5560. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5561. stepper.microstep_readings();
  5562. }
  5563. /**
  5564. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5565. * S# determines MS1 or MS2, X# sets the pin high/low.
  5566. */
  5567. inline void gcode_M351() {
  5568. if (code_seen('S')) switch (code_value_byte()) {
  5569. case 1:
  5570. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5571. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5572. break;
  5573. case 2:
  5574. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5575. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5576. break;
  5577. }
  5578. stepper.microstep_readings();
  5579. }
  5580. #endif // HAS_MICROSTEPS
  5581. #if ENABLED(MIXING_EXTRUDER)
  5582. /**
  5583. * M163: Set a single mix factor for a mixing extruder
  5584. * This is called "weight" by some systems.
  5585. *
  5586. * S[index] The channel index to set
  5587. * P[float] The mix value
  5588. *
  5589. */
  5590. inline void gcode_M163() {
  5591. int mix_index = code_seen('S') ? code_value_int() : 0;
  5592. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5593. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5594. }
  5595. #if MIXING_VIRTUAL_TOOLS > 1
  5596. /**
  5597. * M164: Store the current mix factors as a virtual tool.
  5598. *
  5599. * S[index] The virtual tool to store
  5600. *
  5601. */
  5602. inline void gcode_M164() {
  5603. int tool_index = code_seen('S') ? code_value_int() : 0;
  5604. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5605. normalize_mix();
  5606. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5607. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5608. }
  5609. }
  5610. #endif
  5611. #if ENABLED(DIRECT_MIXING_IN_G1)
  5612. /**
  5613. * M165: Set multiple mix factors for a mixing extruder.
  5614. * Factors that are left out will be set to 0.
  5615. * All factors together must add up to 1.0.
  5616. *
  5617. * A[factor] Mix factor for extruder stepper 1
  5618. * B[factor] Mix factor for extruder stepper 2
  5619. * C[factor] Mix factor for extruder stepper 3
  5620. * D[factor] Mix factor for extruder stepper 4
  5621. * H[factor] Mix factor for extruder stepper 5
  5622. * I[factor] Mix factor for extruder stepper 6
  5623. *
  5624. */
  5625. inline void gcode_M165() { gcode_get_mix(); }
  5626. #endif
  5627. #endif // MIXING_EXTRUDER
  5628. /**
  5629. * M999: Restart after being stopped
  5630. *
  5631. * Default behaviour is to flush the serial buffer and request
  5632. * a resend to the host starting on the last N line received.
  5633. *
  5634. * Sending "M999 S1" will resume printing without flushing the
  5635. * existing command buffer.
  5636. *
  5637. */
  5638. inline void gcode_M999() {
  5639. Running = true;
  5640. lcd_reset_alert_level();
  5641. if (code_seen('S') && code_value_bool()) return;
  5642. // gcode_LastN = Stopped_gcode_LastN;
  5643. FlushSerialRequestResend();
  5644. }
  5645. #if ENABLED(SWITCHING_EXTRUDER)
  5646. inline void move_extruder_servo(uint8_t e) {
  5647. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5648. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5649. }
  5650. #endif
  5651. inline void invalid_extruder_error(const uint8_t &e) {
  5652. SERIAL_ECHO_START;
  5653. SERIAL_CHAR('T');
  5654. SERIAL_PROTOCOL_F(e, DEC);
  5655. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5656. }
  5657. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5658. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5659. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5660. invalid_extruder_error(tmp_extruder);
  5661. return;
  5662. }
  5663. // T0-Tnnn: Switch virtual tool by changing the mix
  5664. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5665. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5666. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5667. #if HOTENDS > 1
  5668. if (tmp_extruder >= EXTRUDERS) {
  5669. invalid_extruder_error(tmp_extruder);
  5670. return;
  5671. }
  5672. float old_feedrate_mm_s = feedrate_mm_s;
  5673. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5674. if (tmp_extruder != active_extruder) {
  5675. if (!no_move && axis_unhomed_error(true, true, true)) {
  5676. SERIAL_ECHOLNPGM("No move on toolchange");
  5677. no_move = true;
  5678. }
  5679. // Save current position to destination, for use later
  5680. set_destination_to_current();
  5681. #if ENABLED(DUAL_X_CARRIAGE)
  5682. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5683. if (DEBUGGING(LEVELING)) {
  5684. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5685. switch (dual_x_carriage_mode) {
  5686. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5687. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5688. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5689. }
  5690. }
  5691. #endif
  5692. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5693. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5694. ) {
  5695. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5696. if (DEBUGGING(LEVELING)) {
  5697. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5698. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5699. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5700. }
  5701. #endif
  5702. // Park old head: 1) raise 2) move to park position 3) lower
  5703. for (uint8_t i = 0; i < 3; i++)
  5704. planner.buffer_line(
  5705. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5706. current_position[Y_AXIS],
  5707. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5708. current_position[E_AXIS],
  5709. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5710. active_extruder
  5711. );
  5712. stepper.synchronize();
  5713. }
  5714. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5715. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5716. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5717. active_extruder = tmp_extruder;
  5718. // This function resets the max/min values - the current position may be overwritten below.
  5719. set_axis_is_at_home(X_AXIS);
  5720. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5721. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5722. #endif
  5723. switch (dual_x_carriage_mode) {
  5724. case DXC_FULL_CONTROL_MODE:
  5725. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5726. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5727. break;
  5728. case DXC_DUPLICATION_MODE:
  5729. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5730. if (active_extruder_parked)
  5731. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5732. else
  5733. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5734. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5735. extruder_duplication_enabled = false;
  5736. break;
  5737. default:
  5738. // record raised toolhead position for use by unpark
  5739. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5740. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5741. active_extruder_parked = true;
  5742. delayed_move_time = 0;
  5743. break;
  5744. }
  5745. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5746. if (DEBUGGING(LEVELING)) {
  5747. SERIAL_ECHOPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5748. SERIAL_EOL;
  5749. DEBUG_POS("New extruder (parked)", current_position);
  5750. }
  5751. #endif
  5752. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5753. #else // !DUAL_X_CARRIAGE
  5754. #if ENABLED(SWITCHING_EXTRUDER)
  5755. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5756. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5757. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5758. // Always raise by some amount
  5759. planner.buffer_line(
  5760. current_position[X_AXIS],
  5761. current_position[Y_AXIS],
  5762. current_position[Z_AXIS] + z_raise,
  5763. current_position[E_AXIS],
  5764. planner.max_feedrate_mm_s[Z_AXIS],
  5765. active_extruder
  5766. );
  5767. stepper.synchronize();
  5768. move_extruder_servo(active_extruder);
  5769. delay(500);
  5770. // Move back down, if needed
  5771. if (z_raise != z_diff) {
  5772. planner.buffer_line(
  5773. current_position[X_AXIS],
  5774. current_position[Y_AXIS],
  5775. current_position[Z_AXIS] + z_diff,
  5776. current_position[E_AXIS],
  5777. planner.max_feedrate_mm_s[Z_AXIS],
  5778. active_extruder
  5779. );
  5780. stepper.synchronize();
  5781. }
  5782. #endif
  5783. /**
  5784. * Set current_position to the position of the new nozzle.
  5785. * Offsets are based on linear distance, so we need to get
  5786. * the resulting position in coordinate space.
  5787. *
  5788. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5789. * - With mesh leveling, update Z for the new position
  5790. * - Otherwise, just use the raw linear distance
  5791. *
  5792. * Software endstops are altered here too. Consider a case where:
  5793. * E0 at X=0 ... E1 at X=10
  5794. * When we switch to E1 now X=10, but E1 can't move left.
  5795. * To express this we apply the change in XY to the software endstops.
  5796. * E1 can move farther right than E0, so the right limit is extended.
  5797. *
  5798. * Note that we don't adjust the Z software endstops. Why not?
  5799. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5800. * because the bed is 1mm lower at the new position. As long as
  5801. * the first nozzle is out of the way, the carriage should be
  5802. * allowed to move 1mm lower. This technically "breaks" the
  5803. * Z software endstop. But this is technically correct (and
  5804. * there is no viable alternative).
  5805. */
  5806. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5807. // Offset extruder, make sure to apply the bed level rotation matrix
  5808. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5809. hotend_offset[Y_AXIS][tmp_extruder],
  5810. 0),
  5811. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5812. hotend_offset[Y_AXIS][active_extruder],
  5813. 0),
  5814. offset_vec = tmp_offset_vec - act_offset_vec;
  5815. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5816. if (DEBUGGING(LEVELING)) {
  5817. tmp_offset_vec.debug("tmp_offset_vec");
  5818. act_offset_vec.debug("act_offset_vec");
  5819. offset_vec.debug("offset_vec (BEFORE)");
  5820. }
  5821. #endif
  5822. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5823. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5824. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5825. #endif
  5826. // Adjustments to the current position
  5827. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5828. current_position[Z_AXIS] += offset_vec.z;
  5829. #else // !AUTO_BED_LEVELING_FEATURE
  5830. float xydiff[2] = {
  5831. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5832. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5833. };
  5834. #if ENABLED(MESH_BED_LEVELING)
  5835. if (mbl.active()) {
  5836. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5837. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5838. #endif
  5839. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5840. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5841. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5842. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5843. if (DEBUGGING(LEVELING)) {
  5844. SERIAL_ECHOPAIR(" after: ", current_position[Z_AXIS]);
  5845. SERIAL_EOL;
  5846. }
  5847. #endif
  5848. }
  5849. #endif // MESH_BED_LEVELING
  5850. #endif // !AUTO_BED_LEVELING_FEATURE
  5851. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5852. if (DEBUGGING(LEVELING)) {
  5853. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5854. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5855. SERIAL_ECHOLNPGM(" }");
  5856. }
  5857. #endif
  5858. // The newly-selected extruder XY is actually at...
  5859. current_position[X_AXIS] += xydiff[X_AXIS];
  5860. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5861. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5862. position_shift[i] += xydiff[i];
  5863. update_software_endstops((AxisEnum)i);
  5864. }
  5865. // Set the new active extruder
  5866. active_extruder = tmp_extruder;
  5867. #endif // !DUAL_X_CARRIAGE
  5868. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5869. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5870. #endif
  5871. // Tell the planner the new "current position"
  5872. SYNC_PLAN_POSITION_KINEMATIC();
  5873. // Move to the "old position" (move the extruder into place)
  5874. if (!no_move && IsRunning()) {
  5875. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5876. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5877. #endif
  5878. prepare_move_to_destination();
  5879. }
  5880. } // (tmp_extruder != active_extruder)
  5881. stepper.synchronize();
  5882. #if ENABLED(EXT_SOLENOID)
  5883. disable_all_solenoids();
  5884. enable_solenoid_on_active_extruder();
  5885. #endif // EXT_SOLENOID
  5886. feedrate_mm_s = old_feedrate_mm_s;
  5887. #else // HOTENDS <= 1
  5888. // Set the new active extruder
  5889. active_extruder = tmp_extruder;
  5890. UNUSED(fr_mm_s);
  5891. UNUSED(no_move);
  5892. #endif // HOTENDS <= 1
  5893. SERIAL_ECHO_START;
  5894. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5895. SERIAL_PROTOCOLLN((int)active_extruder);
  5896. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5897. }
  5898. /**
  5899. * T0-T3: Switch tool, usually switching extruders
  5900. *
  5901. * F[units/min] Set the movement feedrate
  5902. * S1 Don't move the tool in XY after change
  5903. */
  5904. inline void gcode_T(uint8_t tmp_extruder) {
  5905. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5906. if (DEBUGGING(LEVELING)) {
  5907. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5908. SERIAL_ECHOLNPGM(")");
  5909. DEBUG_POS("BEFORE", current_position);
  5910. }
  5911. #endif
  5912. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  5913. tool_change(tmp_extruder);
  5914. #elif HOTENDS > 1
  5915. tool_change(
  5916. tmp_extruder,
  5917. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  5918. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  5919. );
  5920. #endif
  5921. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5922. if (DEBUGGING(LEVELING)) {
  5923. DEBUG_POS("AFTER", current_position);
  5924. SERIAL_ECHOLNPGM("<<< gcode_T");
  5925. }
  5926. #endif
  5927. }
  5928. /**
  5929. * Process a single command and dispatch it to its handler
  5930. * This is called from the main loop()
  5931. */
  5932. void process_next_command() {
  5933. current_command = command_queue[cmd_queue_index_r];
  5934. if (DEBUGGING(ECHO)) {
  5935. SERIAL_ECHO_START;
  5936. SERIAL_ECHOLN(current_command);
  5937. }
  5938. // Sanitize the current command:
  5939. // - Skip leading spaces
  5940. // - Bypass N[-0-9][0-9]*[ ]*
  5941. // - Overwrite * with nul to mark the end
  5942. while (*current_command == ' ') ++current_command;
  5943. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5944. current_command += 2; // skip N[-0-9]
  5945. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5946. while (*current_command == ' ') ++current_command; // skip [ ]*
  5947. }
  5948. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5949. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5950. char *cmd_ptr = current_command;
  5951. // Get the command code, which must be G, M, or T
  5952. char command_code = *cmd_ptr++;
  5953. // Skip spaces to get the numeric part
  5954. while (*cmd_ptr == ' ') cmd_ptr++;
  5955. uint16_t codenum = 0; // define ahead of goto
  5956. // Bail early if there's no code
  5957. bool code_is_good = NUMERIC(*cmd_ptr);
  5958. if (!code_is_good) goto ExitUnknownCommand;
  5959. // Get and skip the code number
  5960. do {
  5961. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5962. cmd_ptr++;
  5963. } while (NUMERIC(*cmd_ptr));
  5964. // Skip all spaces to get to the first argument, or nul
  5965. while (*cmd_ptr == ' ') cmd_ptr++;
  5966. // The command's arguments (if any) start here, for sure!
  5967. current_command_args = cmd_ptr;
  5968. KEEPALIVE_STATE(IN_HANDLER);
  5969. // Handle a known G, M, or T
  5970. switch (command_code) {
  5971. case 'G': switch (codenum) {
  5972. // G0, G1
  5973. case 0:
  5974. case 1:
  5975. gcode_G0_G1();
  5976. break;
  5977. // G2, G3
  5978. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5979. case 2: // G2 - CW ARC
  5980. case 3: // G3 - CCW ARC
  5981. gcode_G2_G3(codenum == 2);
  5982. break;
  5983. #endif
  5984. // G4 Dwell
  5985. case 4:
  5986. gcode_G4();
  5987. break;
  5988. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5989. // G5
  5990. case 5: // G5 - Cubic B_spline
  5991. gcode_G5();
  5992. break;
  5993. #endif // BEZIER_CURVE_SUPPORT
  5994. #if ENABLED(FWRETRACT)
  5995. case 10: // G10: retract
  5996. case 11: // G11: retract_recover
  5997. gcode_G10_G11(codenum == 10);
  5998. break;
  5999. #endif // FWRETRACT
  6000. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  6001. case 12:
  6002. gcode_G12(); // G12: Nozzle Clean
  6003. break;
  6004. #endif // NOZZLE_CLEAN_FEATURE
  6005. #if ENABLED(INCH_MODE_SUPPORT)
  6006. case 20: //G20: Inch Mode
  6007. gcode_G20();
  6008. break;
  6009. case 21: //G21: MM Mode
  6010. gcode_G21();
  6011. break;
  6012. #endif // INCH_MODE_SUPPORT
  6013. #if ENABLED(NOZZLE_PARK_FEATURE)
  6014. case 27: // G27: Nozzle Park
  6015. gcode_G27();
  6016. break;
  6017. #endif // NOZZLE_PARK_FEATURE
  6018. case 28: // G28: Home all axes, one at a time
  6019. gcode_G28();
  6020. break;
  6021. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  6022. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6023. gcode_G29();
  6024. break;
  6025. #endif // AUTO_BED_LEVELING_FEATURE
  6026. #if HAS_BED_PROBE
  6027. case 30: // G30 Single Z probe
  6028. gcode_G30();
  6029. break;
  6030. #if ENABLED(Z_PROBE_SLED)
  6031. case 31: // G31: dock the sled
  6032. gcode_G31();
  6033. break;
  6034. case 32: // G32: undock the sled
  6035. gcode_G32();
  6036. break;
  6037. #endif // Z_PROBE_SLED
  6038. #endif // HAS_BED_PROBE
  6039. case 90: // G90
  6040. relative_mode = false;
  6041. break;
  6042. case 91: // G91
  6043. relative_mode = true;
  6044. break;
  6045. case 92: // G92
  6046. gcode_G92();
  6047. break;
  6048. }
  6049. break;
  6050. case 'M': switch (codenum) {
  6051. #if ENABLED(ULTIPANEL)
  6052. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6053. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6054. gcode_M0_M1();
  6055. break;
  6056. #endif // ULTIPANEL
  6057. case 17:
  6058. gcode_M17();
  6059. break;
  6060. #if ENABLED(SDSUPPORT)
  6061. case 20: // M20 - list SD card
  6062. gcode_M20(); break;
  6063. case 21: // M21 - init SD card
  6064. gcode_M21(); break;
  6065. case 22: //M22 - release SD card
  6066. gcode_M22(); break;
  6067. case 23: //M23 - Select file
  6068. gcode_M23(); break;
  6069. case 24: //M24 - Start SD print
  6070. gcode_M24(); break;
  6071. case 25: //M25 - Pause SD print
  6072. gcode_M25(); break;
  6073. case 26: //M26 - Set SD index
  6074. gcode_M26(); break;
  6075. case 27: //M27 - Get SD status
  6076. gcode_M27(); break;
  6077. case 28: //M28 - Start SD write
  6078. gcode_M28(); break;
  6079. case 29: //M29 - Stop SD write
  6080. gcode_M29(); break;
  6081. case 30: //M30 <filename> Delete File
  6082. gcode_M30(); break;
  6083. case 32: //M32 - Select file and start SD print
  6084. gcode_M32(); break;
  6085. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6086. case 33: //M33 - Get the long full path to a file or folder
  6087. gcode_M33(); break;
  6088. #endif // LONG_FILENAME_HOST_SUPPORT
  6089. case 928: //M928 - Start SD write
  6090. gcode_M928(); break;
  6091. #endif //SDSUPPORT
  6092. case 31: //M31 take time since the start of the SD print or an M109 command
  6093. gcode_M31();
  6094. break;
  6095. case 42: //M42 -Change pin status via gcode
  6096. gcode_M42();
  6097. break;
  6098. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6099. case 48: // M48 Z probe repeatability
  6100. gcode_M48();
  6101. break;
  6102. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6103. case 75: // Start print timer
  6104. gcode_M75();
  6105. break;
  6106. case 76: // Pause print timer
  6107. gcode_M76();
  6108. break;
  6109. case 77: // Stop print timer
  6110. gcode_M77();
  6111. break;
  6112. #if ENABLED(PRINTCOUNTER)
  6113. case 78: // Show print statistics
  6114. gcode_M78();
  6115. break;
  6116. #endif
  6117. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6118. case 100:
  6119. gcode_M100();
  6120. break;
  6121. #endif
  6122. case 104: // M104
  6123. gcode_M104();
  6124. break;
  6125. case 110: // M110: Set Current Line Number
  6126. gcode_M110();
  6127. break;
  6128. case 111: // M111: Set debug level
  6129. gcode_M111();
  6130. break;
  6131. #if DISABLED(EMERGENCY_PARSER)
  6132. case 108: // M108: Cancel Waiting
  6133. gcode_M108();
  6134. break;
  6135. case 112: // M112: Emergency Stop
  6136. gcode_M112();
  6137. break;
  6138. case 410: // M410 quickstop - Abort all the planned moves.
  6139. gcode_M410();
  6140. break;
  6141. #endif
  6142. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6143. case 113: // M113: Set Host Keepalive interval
  6144. gcode_M113();
  6145. break;
  6146. #endif
  6147. case 140: // M140: Set bed temp
  6148. gcode_M140();
  6149. break;
  6150. case 105: // M105: Read current temperature
  6151. gcode_M105();
  6152. KEEPALIVE_STATE(NOT_BUSY);
  6153. return; // "ok" already printed
  6154. case 109: // M109: Wait for temperature
  6155. gcode_M109();
  6156. break;
  6157. #if HAS_TEMP_BED
  6158. case 190: // M190: Wait for bed heater to reach target
  6159. gcode_M190();
  6160. break;
  6161. #endif // HAS_TEMP_BED
  6162. #if FAN_COUNT > 0
  6163. case 106: // M106: Fan On
  6164. gcode_M106();
  6165. break;
  6166. case 107: // M107: Fan Off
  6167. gcode_M107();
  6168. break;
  6169. #endif // FAN_COUNT > 0
  6170. #if ENABLED(BARICUDA)
  6171. // PWM for HEATER_1_PIN
  6172. #if HAS_HEATER_1
  6173. case 126: // M126: valve open
  6174. gcode_M126();
  6175. break;
  6176. case 127: // M127: valve closed
  6177. gcode_M127();
  6178. break;
  6179. #endif // HAS_HEATER_1
  6180. // PWM for HEATER_2_PIN
  6181. #if HAS_HEATER_2
  6182. case 128: // M128: valve open
  6183. gcode_M128();
  6184. break;
  6185. case 129: // M129: valve closed
  6186. gcode_M129();
  6187. break;
  6188. #endif // HAS_HEATER_2
  6189. #endif // BARICUDA
  6190. #if HAS_POWER_SWITCH
  6191. case 80: // M80: Turn on Power Supply
  6192. gcode_M80();
  6193. break;
  6194. #endif // HAS_POWER_SWITCH
  6195. case 81: // M81: Turn off Power, including Power Supply, if possible
  6196. gcode_M81();
  6197. break;
  6198. case 82:
  6199. gcode_M82();
  6200. break;
  6201. case 83:
  6202. gcode_M83();
  6203. break;
  6204. case 18: // (for compatibility)
  6205. case 84: // M84
  6206. gcode_M18_M84();
  6207. break;
  6208. case 85: // M85
  6209. gcode_M85();
  6210. break;
  6211. case 92: // M92: Set the steps-per-unit for one or more axes
  6212. gcode_M92();
  6213. break;
  6214. case 115: // M115: Report capabilities
  6215. gcode_M115();
  6216. break;
  6217. case 117: // M117: Set LCD message text, if possible
  6218. gcode_M117();
  6219. break;
  6220. case 114: // M114: Report current position
  6221. gcode_M114();
  6222. break;
  6223. case 120: // M120: Enable endstops
  6224. gcode_M120();
  6225. break;
  6226. case 121: // M121: Disable endstops
  6227. gcode_M121();
  6228. break;
  6229. case 119: // M119: Report endstop states
  6230. gcode_M119();
  6231. break;
  6232. #if ENABLED(ULTIPANEL)
  6233. case 145: // M145: Set material heatup parameters
  6234. gcode_M145();
  6235. break;
  6236. #endif
  6237. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6238. case 149:
  6239. gcode_M149();
  6240. break;
  6241. #endif
  6242. #if ENABLED(BLINKM)
  6243. case 150: // M150
  6244. gcode_M150();
  6245. break;
  6246. #endif //BLINKM
  6247. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6248. case 155:
  6249. gcode_M155();
  6250. break;
  6251. case 156:
  6252. gcode_M156();
  6253. break;
  6254. #endif //EXPERIMENTAL_I2CBUS
  6255. #if ENABLED(MIXING_EXTRUDER)
  6256. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6257. gcode_M163();
  6258. break;
  6259. #if MIXING_VIRTUAL_TOOLS > 1
  6260. case 164: // M164 S<int> save current mix as a virtual extruder
  6261. gcode_M164();
  6262. break;
  6263. #endif
  6264. #if ENABLED(DIRECT_MIXING_IN_G1)
  6265. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6266. gcode_M165();
  6267. break;
  6268. #endif
  6269. #endif
  6270. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6271. gcode_M200();
  6272. break;
  6273. case 201: // M201
  6274. gcode_M201();
  6275. break;
  6276. #if 0 // Not used for Sprinter/grbl gen6
  6277. case 202: // M202
  6278. gcode_M202();
  6279. break;
  6280. #endif
  6281. case 203: // M203 max feedrate units/sec
  6282. gcode_M203();
  6283. break;
  6284. case 204: // M204 acclereration S normal moves T filmanent only moves
  6285. gcode_M204();
  6286. break;
  6287. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6288. gcode_M205();
  6289. break;
  6290. case 206: // M206 additional homing offset
  6291. gcode_M206();
  6292. break;
  6293. #if ENABLED(DELTA)
  6294. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6295. gcode_M665();
  6296. break;
  6297. #endif
  6298. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6299. case 666: // M666 set delta / dual endstop adjustment
  6300. gcode_M666();
  6301. break;
  6302. #endif
  6303. #if ENABLED(FWRETRACT)
  6304. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6305. gcode_M207();
  6306. break;
  6307. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6308. gcode_M208();
  6309. break;
  6310. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6311. gcode_M209();
  6312. break;
  6313. #endif // FWRETRACT
  6314. #if HOTENDS > 1
  6315. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6316. gcode_M218();
  6317. break;
  6318. #endif
  6319. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6320. gcode_M220();
  6321. break;
  6322. case 221: // M221 - Set Flow Percentage: S<percent>
  6323. gcode_M221();
  6324. break;
  6325. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6326. gcode_M226();
  6327. break;
  6328. #if HAS_SERVOS
  6329. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6330. gcode_M280();
  6331. break;
  6332. #endif // HAS_SERVOS
  6333. #if HAS_BUZZER
  6334. case 300: // M300 - Play beep tone
  6335. gcode_M300();
  6336. break;
  6337. #endif // HAS_BUZZER
  6338. #if ENABLED(PIDTEMP)
  6339. case 301: // M301
  6340. gcode_M301();
  6341. break;
  6342. #endif // PIDTEMP
  6343. #if ENABLED(PIDTEMPBED)
  6344. case 304: // M304
  6345. gcode_M304();
  6346. break;
  6347. #endif // PIDTEMPBED
  6348. #if defined(CHDK) || HAS_PHOTOGRAPH
  6349. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6350. gcode_M240();
  6351. break;
  6352. #endif // CHDK || PHOTOGRAPH_PIN
  6353. #if HAS_LCD_CONTRAST
  6354. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6355. gcode_M250();
  6356. break;
  6357. #endif // HAS_LCD_CONTRAST
  6358. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6359. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6360. gcode_M302();
  6361. break;
  6362. #endif // PREVENT_DANGEROUS_EXTRUDE
  6363. case 303: // M303 PID autotune
  6364. gcode_M303();
  6365. break;
  6366. #if ENABLED(SCARA)
  6367. case 360: // M360 SCARA Theta pos1
  6368. if (gcode_M360()) return;
  6369. break;
  6370. case 361: // M361 SCARA Theta pos2
  6371. if (gcode_M361()) return;
  6372. break;
  6373. case 362: // M362 SCARA Psi pos1
  6374. if (gcode_M362()) return;
  6375. break;
  6376. case 363: // M363 SCARA Psi pos2
  6377. if (gcode_M363()) return;
  6378. break;
  6379. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6380. if (gcode_M364()) return;
  6381. break;
  6382. case 365: // M365 Set SCARA scaling for X Y Z
  6383. gcode_M365();
  6384. break;
  6385. #endif // SCARA
  6386. case 400: // M400 finish all moves
  6387. gcode_M400();
  6388. break;
  6389. #if HAS_BED_PROBE
  6390. case 401:
  6391. gcode_M401();
  6392. break;
  6393. case 402:
  6394. gcode_M402();
  6395. break;
  6396. #endif // HAS_BED_PROBE
  6397. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6398. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6399. gcode_M404();
  6400. break;
  6401. case 405: //M405 Turn on filament sensor for control
  6402. gcode_M405();
  6403. break;
  6404. case 406: //M406 Turn off filament sensor for control
  6405. gcode_M406();
  6406. break;
  6407. case 407: //M407 Display measured filament diameter
  6408. gcode_M407();
  6409. break;
  6410. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6411. #if ENABLED(MESH_BED_LEVELING)
  6412. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6413. gcode_M420();
  6414. break;
  6415. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6416. gcode_M421();
  6417. break;
  6418. #endif
  6419. case 428: // M428 Apply current_position to home_offset
  6420. gcode_M428();
  6421. break;
  6422. case 500: // M500 Store settings in EEPROM
  6423. gcode_M500();
  6424. break;
  6425. case 501: // M501 Read settings from EEPROM
  6426. gcode_M501();
  6427. break;
  6428. case 502: // M502 Revert to default settings
  6429. gcode_M502();
  6430. break;
  6431. case 503: // M503 print settings currently in memory
  6432. gcode_M503();
  6433. break;
  6434. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6435. case 540:
  6436. gcode_M540();
  6437. break;
  6438. #endif
  6439. #if HAS_BED_PROBE
  6440. case 851:
  6441. gcode_M851();
  6442. break;
  6443. #endif // HAS_BED_PROBE
  6444. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6445. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6446. gcode_M600();
  6447. break;
  6448. #endif // FILAMENT_CHANGE_FEATURE
  6449. #if ENABLED(DUAL_X_CARRIAGE)
  6450. case 605:
  6451. gcode_M605();
  6452. break;
  6453. #endif // DUAL_X_CARRIAGE
  6454. #if ENABLED(LIN_ADVANCE)
  6455. case 905: // M905 Set advance factor.
  6456. gcode_M905();
  6457. break;
  6458. #endif
  6459. case 907: // M907 Set digital trimpot motor current using axis codes.
  6460. gcode_M907();
  6461. break;
  6462. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6463. case 908: // M908 Control digital trimpot directly.
  6464. gcode_M908();
  6465. break;
  6466. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6467. case 909: // M909 Print digipot/DAC current value
  6468. gcode_M909();
  6469. break;
  6470. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6471. gcode_M910();
  6472. break;
  6473. #endif
  6474. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6475. #if HAS_MICROSTEPS
  6476. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6477. gcode_M350();
  6478. break;
  6479. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6480. gcode_M351();
  6481. break;
  6482. #endif // HAS_MICROSTEPS
  6483. case 999: // M999: Restart after being Stopped
  6484. gcode_M999();
  6485. break;
  6486. }
  6487. break;
  6488. case 'T':
  6489. gcode_T(codenum);
  6490. break;
  6491. default: code_is_good = false;
  6492. }
  6493. KEEPALIVE_STATE(NOT_BUSY);
  6494. ExitUnknownCommand:
  6495. // Still unknown command? Throw an error
  6496. if (!code_is_good) unknown_command_error();
  6497. ok_to_send();
  6498. }
  6499. void FlushSerialRequestResend() {
  6500. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6501. MYSERIAL.flush();
  6502. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6503. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6504. ok_to_send();
  6505. }
  6506. void ok_to_send() {
  6507. refresh_cmd_timeout();
  6508. if (!send_ok[cmd_queue_index_r]) return;
  6509. SERIAL_PROTOCOLPGM(MSG_OK);
  6510. #if ENABLED(ADVANCED_OK)
  6511. char* p = command_queue[cmd_queue_index_r];
  6512. if (*p == 'N') {
  6513. SERIAL_PROTOCOL(' ');
  6514. SERIAL_ECHO(*p++);
  6515. while (NUMERIC_SIGNED(*p))
  6516. SERIAL_ECHO(*p++);
  6517. }
  6518. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6519. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6520. #endif
  6521. SERIAL_EOL;
  6522. }
  6523. void clamp_to_software_endstops(float target[3]) {
  6524. if (min_software_endstops) {
  6525. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6526. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6527. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6528. }
  6529. if (max_software_endstops) {
  6530. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6531. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6532. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6533. }
  6534. }
  6535. #if ENABLED(DELTA)
  6536. void recalc_delta_settings(float radius, float diagonal_rod) {
  6537. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6538. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6539. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6540. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6541. delta_tower3_x = 0.0; // back middle tower
  6542. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6543. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6544. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6545. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6546. }
  6547. void inverse_kinematics(const float in_cartesian[3]) {
  6548. const float cartesian[3] = {
  6549. RAW_X_POSITION(in_cartesian[X_AXIS]),
  6550. RAW_Y_POSITION(in_cartesian[Y_AXIS]),
  6551. RAW_Z_POSITION(in_cartesian[Z_AXIS])
  6552. };
  6553. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6554. - sq(delta_tower1_x - cartesian[X_AXIS])
  6555. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6556. ) + cartesian[Z_AXIS];
  6557. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6558. - sq(delta_tower2_x - cartesian[X_AXIS])
  6559. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6560. ) + cartesian[Z_AXIS];
  6561. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6562. - sq(delta_tower3_x - cartesian[X_AXIS])
  6563. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6564. ) + cartesian[Z_AXIS];
  6565. /**
  6566. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6567. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6568. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6569. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6570. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6571. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6572. */
  6573. }
  6574. float delta_safe_distance_from_top() {
  6575. float cartesian[3] = {
  6576. LOGICAL_X_POSITION(0),
  6577. LOGICAL_Y_POSITION(0),
  6578. LOGICAL_Z_POSITION(0)
  6579. };
  6580. inverse_kinematics(cartesian);
  6581. float distance = delta[TOWER_3];
  6582. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6583. inverse_kinematics(cartesian);
  6584. return abs(distance - delta[TOWER_3]);
  6585. }
  6586. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6587. //As discussed in Wikipedia "Trilateration"
  6588. //we are establishing a new coordinate
  6589. //system in the plane of the three carriage points.
  6590. //This system will have the origin at tower1 and
  6591. //tower2 is on the x axis. tower3 is in the X-Y
  6592. //plane with a Z component of zero. We will define unit
  6593. //vectors in this coordinate system in our original
  6594. //coordinate system. Then when we calculate the
  6595. //Xnew, Ynew and Znew values, we can translate back into
  6596. //the original system by moving along those unit vectors
  6597. //by the corresponding values.
  6598. // https://en.wikipedia.org/wiki/Trilateration
  6599. // Variable names matched to Marlin, c-version
  6600. // and avoiding a vector library
  6601. // by Andreas Hardtung 2016-06-7
  6602. // based on a Java function from
  6603. // "Delta Robot Kinematics by Steve Graves" V3
  6604. // Result is in cartesian_position[].
  6605. //Create a vector in old coordinates along x axis of new coordinate
  6606. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6607. //Get the Magnitude of vector.
  6608. float d = sqrt( p12[0]*p12[0] + p12[1]*p12[1] + p12[2]*p12[2] );
  6609. //Create unit vector by dividing by magnitude.
  6610. float ex[3] = { p12[0]/d, p12[1]/d, p12[2]/d };
  6611. //Now find vector from the origin of the new system to the third point.
  6612. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6613. //Now use dot product to find the component of this vector on the X axis.
  6614. float i = ex[0]*p13[0] + ex[1]*p13[1] + ex[2]*p13[2];
  6615. //Now create a vector along the x axis that represents the x component of p13.
  6616. float iex[3] = { ex[0]*i, ex[1]*i, ex[2]*i };
  6617. //Now subtract the X component away from the original vector leaving only the Y component. We use the
  6618. //variable that will be the unit vector after we scale it.
  6619. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2]};
  6620. //The magnitude of Y component
  6621. float j = sqrt(sq(ey[0]) + sq(ey[1]) + sq(ey[2]));
  6622. //Now make vector a unit vector
  6623. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6624. //The cross product of the unit x and y is the unit z
  6625. //float[] ez = vectorCrossProd(ex, ey);
  6626. float ez[3] = { ex[1]*ey[2] - ex[2]*ey[1], ex[2]*ey[0] - ex[0]*ey[2], ex[0]*ey[1] - ex[1]*ey[0] };
  6627. //Now we have the d, i and j values defined in Wikipedia.
  6628. //We can plug them into the equations defined in
  6629. //Wikipedia for Xnew, Ynew and Znew
  6630. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + d*d)/(d*2);
  6631. float Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + i*i + j*j)/2 - i*Xnew) /j;
  6632. float Znew = sqrt(delta_diagonal_rod_2_tower_1 - Xnew*Xnew - Ynew*Ynew);
  6633. //Now we can start from the origin in the old coords and
  6634. //add vectors in the old coords that represent the
  6635. //Xnew, Ynew and Znew to find the point in the old system
  6636. cartesian_position[X_AXIS] = delta_tower1_x + ex[0]*Xnew + ey[0]*Ynew - ez[0]*Znew;
  6637. cartesian_position[Y_AXIS] = delta_tower1_y + ex[1]*Xnew + ey[1]*Ynew - ez[1]*Znew;
  6638. cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew;
  6639. };
  6640. void forward_kinematics_DELTA(float point[3]) {
  6641. forward_kinematics_DELTA(point[X_AXIS], point[Y_AXIS], point[Z_AXIS]);
  6642. }
  6643. void set_cartesian_from_steppers() {
  6644. forward_kinematics_DELTA(stepper.get_axis_position_mm(X_AXIS),
  6645. stepper.get_axis_position_mm(Y_AXIS),
  6646. stepper.get_axis_position_mm(Z_AXIS));
  6647. }
  6648. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6649. // Adjust print surface height by linear interpolation over the bed_level array.
  6650. void adjust_delta(float cartesian[3]) {
  6651. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6652. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6653. float h1 = 0.001 - half, h2 = half - 0.001,
  6654. grid_x = max(h1, min(h2, RAW_X_POSITION(cartesian[X_AXIS]) / delta_grid_spacing[0])),
  6655. grid_y = max(h1, min(h2, RAW_Y_POSITION(cartesian[Y_AXIS]) / delta_grid_spacing[1]));
  6656. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6657. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6658. z1 = bed_level[floor_x + half][floor_y + half],
  6659. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6660. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6661. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6662. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6663. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6664. offset = (1 - ratio_x) * left + ratio_x * right;
  6665. delta[X_AXIS] += offset;
  6666. delta[Y_AXIS] += offset;
  6667. delta[Z_AXIS] += offset;
  6668. /**
  6669. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6670. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6671. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6672. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6673. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6674. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6675. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6676. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6677. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6678. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6679. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6680. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6681. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6682. */
  6683. }
  6684. #endif // AUTO_BED_LEVELING_FEATURE
  6685. #endif // DELTA
  6686. void set_current_from_steppers_for_axis(AxisEnum axis) {
  6687. #if ENABLED(DELTA)
  6688. set_cartesian_from_steppers();
  6689. current_position[axis] = LOGICAL_POSITION(cartesian_position[axis], axis);
  6690. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  6691. vector_3 pos = planner.adjusted_position();
  6692. current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
  6693. #else
  6694. current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
  6695. #endif
  6696. }
  6697. #if ENABLED(MESH_BED_LEVELING)
  6698. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6699. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6700. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6701. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6702. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6703. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6704. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6705. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6706. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6707. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6708. if (cx1 == cx2 && cy1 == cy2) {
  6709. // Start and end on same mesh square
  6710. line_to_destination(fr_mm_s);
  6711. set_current_to_destination();
  6712. return;
  6713. }
  6714. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6715. float normalized_dist, end[NUM_AXIS];
  6716. // Split at the left/front border of the right/top square
  6717. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6718. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6719. memcpy(end, destination, sizeof(end));
  6720. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6721. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6722. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6723. CBI(x_splits, gcx);
  6724. }
  6725. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6726. memcpy(end, destination, sizeof(end));
  6727. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6728. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6729. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6730. CBI(y_splits, gcy);
  6731. }
  6732. else {
  6733. // Already split on a border
  6734. line_to_destination(fr_mm_s);
  6735. set_current_to_destination();
  6736. return;
  6737. }
  6738. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6739. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6740. // Do the split and look for more borders
  6741. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6742. // Restore destination from stack
  6743. memcpy(destination, end, sizeof(end));
  6744. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6745. }
  6746. #endif // MESH_BED_LEVELING
  6747. #if ENABLED(DELTA) || ENABLED(SCARA)
  6748. inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
  6749. float difference[NUM_AXIS];
  6750. LOOP_XYZE(i) difference[i] = target[i] - current_position[i];
  6751. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6752. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6753. if (cartesian_mm < 0.000001) return false;
  6754. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  6755. float seconds = cartesian_mm / _feedrate_mm_s;
  6756. int steps = max(1, int(delta_segments_per_second * seconds));
  6757. float inv_steps = 1.0/steps;
  6758. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6759. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6760. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6761. for (int s = 1; s <= steps; s++) {
  6762. float fraction = float(s) * inv_steps;
  6763. LOOP_XYZE(i)
  6764. target[i] = current_position[i] + difference[i] * fraction;
  6765. inverse_kinematics(target);
  6766. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  6767. if (!bed_leveling_in_progress) adjust_delta(target);
  6768. #endif
  6769. //DEBUG_POS("prepare_kinematic_move_to", target);
  6770. //DEBUG_POS("prepare_kinematic_move_to", delta);
  6771. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
  6772. }
  6773. return true;
  6774. }
  6775. #endif // DELTA || SCARA
  6776. #if ENABLED(DUAL_X_CARRIAGE)
  6777. inline bool prepare_move_to_destination_dualx() {
  6778. if (active_extruder_parked) {
  6779. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6780. // move duplicate extruder into correct duplication position.
  6781. planner.set_position_mm(
  6782. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  6783. current_position[Y_AXIS],
  6784. current_position[Z_AXIS],
  6785. current_position[E_AXIS]
  6786. );
  6787. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6788. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  6789. SYNC_PLAN_POSITION_KINEMATIC();
  6790. stepper.synchronize();
  6791. extruder_duplication_enabled = true;
  6792. active_extruder_parked = false;
  6793. }
  6794. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6795. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6796. // This is a travel move (with no extrusion)
  6797. // Skip it, but keep track of the current position
  6798. // (so it can be used as the start of the next non-travel move)
  6799. if (delayed_move_time != 0xFFFFFFFFUL) {
  6800. set_current_to_destination();
  6801. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6802. delayed_move_time = millis();
  6803. return false;
  6804. }
  6805. }
  6806. delayed_move_time = 0;
  6807. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6808. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6809. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6810. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6811. active_extruder_parked = false;
  6812. }
  6813. }
  6814. return true;
  6815. }
  6816. #endif // DUAL_X_CARRIAGE
  6817. #if DISABLED(DELTA) && DISABLED(SCARA)
  6818. inline bool prepare_move_to_destination_cartesian() {
  6819. // Do not use feedrate_percentage for E or Z only moves
  6820. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6821. line_to_destination();
  6822. }
  6823. else {
  6824. #if ENABLED(MESH_BED_LEVELING)
  6825. if (mbl.active()) {
  6826. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  6827. return false;
  6828. }
  6829. else
  6830. #endif
  6831. line_to_destination(MMS_SCALED(feedrate_mm_s));
  6832. }
  6833. return true;
  6834. }
  6835. #endif // !DELTA && !SCARA
  6836. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6837. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6838. if (DEBUGGING(DRYRUN)) return;
  6839. float de = dest_e - curr_e;
  6840. if (de) {
  6841. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6842. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6843. SERIAL_ECHO_START;
  6844. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6845. }
  6846. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6847. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6848. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6849. SERIAL_ECHO_START;
  6850. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6851. }
  6852. #endif
  6853. }
  6854. }
  6855. #endif // PREVENT_DANGEROUS_EXTRUDE
  6856. /**
  6857. * Prepare a single move and get ready for the next one
  6858. *
  6859. * (This may call planner.buffer_line several times to put
  6860. * smaller moves into the planner for DELTA or SCARA.)
  6861. */
  6862. void prepare_move_to_destination() {
  6863. clamp_to_software_endstops(destination);
  6864. refresh_cmd_timeout();
  6865. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6866. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6867. #endif
  6868. #if ENABLED(DELTA) || ENABLED(SCARA)
  6869. if (!prepare_kinematic_move_to(destination)) return;
  6870. #else
  6871. #if ENABLED(DUAL_X_CARRIAGE)
  6872. if (!prepare_move_to_destination_dualx()) return;
  6873. #endif
  6874. if (!prepare_move_to_destination_cartesian()) return;
  6875. #endif
  6876. set_current_to_destination();
  6877. }
  6878. #if ENABLED(ARC_SUPPORT)
  6879. /**
  6880. * Plan an arc in 2 dimensions
  6881. *
  6882. * The arc is approximated by generating many small linear segments.
  6883. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6884. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6885. * larger segments will tend to be more efficient. Your slicer should have
  6886. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6887. */
  6888. void plan_arc(
  6889. float target[NUM_AXIS], // Destination position
  6890. float* offset, // Center of rotation relative to current_position
  6891. uint8_t clockwise // Clockwise?
  6892. ) {
  6893. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  6894. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6895. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6896. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6897. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6898. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6899. r_Y = -offset[Y_AXIS],
  6900. rt_X = target[X_AXIS] - center_X,
  6901. rt_Y = target[Y_AXIS] - center_Y;
  6902. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6903. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6904. if (angular_travel < 0) angular_travel += RADIANS(360);
  6905. if (clockwise) angular_travel -= RADIANS(360);
  6906. // Make a circle if the angular rotation is 0
  6907. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6908. angular_travel += RADIANS(360);
  6909. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  6910. if (mm_of_travel < 0.001) return;
  6911. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6912. if (segments == 0) segments = 1;
  6913. float theta_per_segment = angular_travel / segments;
  6914. float linear_per_segment = linear_travel / segments;
  6915. float extruder_per_segment = extruder_travel / segments;
  6916. /**
  6917. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6918. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6919. * r_T = [cos(phi) -sin(phi);
  6920. * sin(phi) cos(phi] * r ;
  6921. *
  6922. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6923. * defined from the circle center to the initial position. Each line segment is formed by successive
  6924. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6925. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6926. * all double numbers are single precision on the Arduino. (True double precision will not have
  6927. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6928. * tool precision in some cases. Therefore, arc path correction is implemented.
  6929. *
  6930. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6931. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6932. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6933. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6934. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6935. * issue for CNC machines with the single precision Arduino calculations.
  6936. *
  6937. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6938. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6939. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6940. * This is important when there are successive arc motions.
  6941. */
  6942. // Vector rotation matrix values
  6943. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  6944. float sin_T = theta_per_segment;
  6945. float arc_target[NUM_AXIS];
  6946. float sin_Ti, cos_Ti, r_new_Y;
  6947. uint16_t i;
  6948. int8_t count = 0;
  6949. // Initialize the linear axis
  6950. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6951. // Initialize the extruder axis
  6952. arc_target[E_AXIS] = current_position[E_AXIS];
  6953. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  6954. millis_t next_idle_ms = millis() + 200UL;
  6955. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6956. thermalManager.manage_heater();
  6957. millis_t now = millis();
  6958. if (ELAPSED(now, next_idle_ms)) {
  6959. next_idle_ms = now + 200UL;
  6960. idle();
  6961. }
  6962. if (++count < N_ARC_CORRECTION) {
  6963. // Apply vector rotation matrix to previous r_X / 1
  6964. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6965. r_X = r_X * cos_T - r_Y * sin_T;
  6966. r_Y = r_new_Y;
  6967. }
  6968. else {
  6969. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6970. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6971. // To reduce stuttering, the sin and cos could be computed at different times.
  6972. // For now, compute both at the same time.
  6973. cos_Ti = cos(i * theta_per_segment);
  6974. sin_Ti = sin(i * theta_per_segment);
  6975. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6976. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6977. count = 0;
  6978. }
  6979. // Update arc_target location
  6980. arc_target[X_AXIS] = center_X + r_X;
  6981. arc_target[Y_AXIS] = center_Y + r_Y;
  6982. arc_target[Z_AXIS] += linear_per_segment;
  6983. arc_target[E_AXIS] += extruder_per_segment;
  6984. clamp_to_software_endstops(arc_target);
  6985. #if ENABLED(DELTA) || ENABLED(SCARA)
  6986. inverse_kinematics(arc_target);
  6987. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  6988. adjust_delta(arc_target);
  6989. #endif
  6990. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6991. #else
  6992. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6993. #endif
  6994. }
  6995. // Ensure last segment arrives at target location.
  6996. #if ENABLED(DELTA) || ENABLED(SCARA)
  6997. inverse_kinematics(target);
  6998. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  6999. adjust_delta(target);
  7000. #endif
  7001. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  7002. #else
  7003. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  7004. #endif
  7005. // As far as the parser is concerned, the position is now == target. In reality the
  7006. // motion control system might still be processing the action and the real tool position
  7007. // in any intermediate location.
  7008. set_current_to_destination();
  7009. }
  7010. #endif
  7011. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7012. void plan_cubic_move(const float offset[4]) {
  7013. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7014. // As far as the parser is concerned, the position is now == target. In reality the
  7015. // motion control system might still be processing the action and the real tool position
  7016. // in any intermediate location.
  7017. set_current_to_destination();
  7018. }
  7019. #endif // BEZIER_CURVE_SUPPORT
  7020. #if HAS_CONTROLLERFAN
  7021. void controllerFan() {
  7022. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7023. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7024. millis_t ms = millis();
  7025. if (ELAPSED(ms, nextMotorCheck)) {
  7026. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7027. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7028. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7029. #if E_STEPPERS > 1
  7030. || E1_ENABLE_READ == E_ENABLE_ON
  7031. #if HAS_X2_ENABLE
  7032. || X2_ENABLE_READ == X_ENABLE_ON
  7033. #endif
  7034. #if E_STEPPERS > 2
  7035. || E2_ENABLE_READ == E_ENABLE_ON
  7036. #if E_STEPPERS > 3
  7037. || E3_ENABLE_READ == E_ENABLE_ON
  7038. #endif
  7039. #endif
  7040. #endif
  7041. ) {
  7042. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7043. }
  7044. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7045. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7046. // allows digital or PWM fan output to be used (see M42 handling)
  7047. digitalWrite(CONTROLLERFAN_PIN, speed);
  7048. analogWrite(CONTROLLERFAN_PIN, speed);
  7049. }
  7050. }
  7051. #endif // HAS_CONTROLLERFAN
  7052. #if ENABLED(SCARA)
  7053. void forward_kinematics_SCARA(float f_scara[3]) {
  7054. // Perform forward kinematics, and place results in delta[3]
  7055. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  7056. float x_sin, x_cos, y_sin, y_cos;
  7057. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  7058. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  7059. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  7060. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  7061. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  7062. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  7063. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  7064. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  7065. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  7066. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  7067. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  7068. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  7069. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  7070. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  7071. }
  7072. void inverse_kinematics(const float cartesian[3]) {
  7073. // Inverse kinematics.
  7074. // Perform SCARA IK and place results in delta[3].
  7075. // The maths and first version were done by QHARLEY.
  7076. // Integrated, tweaked by Joachim Cerny in June 2014.
  7077. float SCARA_pos[2];
  7078. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  7079. SCARA_pos[X_AXIS] = RAW_X_POSITION(cartesian[X_AXIS]) * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  7080. SCARA_pos[Y_AXIS] = RAW_Y_POSITION(cartesian[Y_AXIS]) * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  7081. #if (Linkage_1 == Linkage_2)
  7082. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  7083. #else
  7084. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  7085. #endif
  7086. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  7087. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  7088. SCARA_K2 = Linkage_2 * SCARA_S2;
  7089. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  7090. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  7091. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  7092. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  7093. delta[Z_AXIS] = RAW_Z_POSITION(cartesian[Z_AXIS]);
  7094. /**
  7095. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  7096. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  7097. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  7098. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  7099. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  7100. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  7101. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  7102. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  7103. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  7104. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  7105. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  7106. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  7107. SERIAL_EOL;
  7108. */
  7109. }
  7110. #endif // SCARA
  7111. #if ENABLED(TEMP_STAT_LEDS)
  7112. static bool red_led = false;
  7113. static millis_t next_status_led_update_ms = 0;
  7114. void handle_status_leds(void) {
  7115. float max_temp = 0.0;
  7116. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7117. next_status_led_update_ms += 500; // Update every 0.5s
  7118. HOTEND_LOOP() {
  7119. max_temp = max(max(max_temp, thermalManager.degHotend(e)), thermalManager.degTargetHotend(e));
  7120. }
  7121. #if HAS_TEMP_BED
  7122. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  7123. #endif
  7124. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7125. if (new_led != red_led) {
  7126. red_led = new_led;
  7127. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7128. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7129. }
  7130. }
  7131. }
  7132. #endif
  7133. void enable_all_steppers() {
  7134. enable_x();
  7135. enable_y();
  7136. enable_z();
  7137. enable_e0();
  7138. enable_e1();
  7139. enable_e2();
  7140. enable_e3();
  7141. }
  7142. void disable_all_steppers() {
  7143. disable_x();
  7144. disable_y();
  7145. disable_z();
  7146. disable_e0();
  7147. disable_e1();
  7148. disable_e2();
  7149. disable_e3();
  7150. }
  7151. /**
  7152. * Standard idle routine keeps the machine alive
  7153. */
  7154. void idle(
  7155. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7156. bool no_stepper_sleep/*=false*/
  7157. #endif
  7158. ) {
  7159. lcd_update();
  7160. host_keepalive();
  7161. manage_inactivity(
  7162. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7163. no_stepper_sleep
  7164. #endif
  7165. );
  7166. thermalManager.manage_heater();
  7167. #if ENABLED(PRINTCOUNTER)
  7168. print_job_timer.tick();
  7169. #endif
  7170. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7171. buzzer.tick();
  7172. #endif
  7173. }
  7174. /**
  7175. * Manage several activities:
  7176. * - Check for Filament Runout
  7177. * - Keep the command buffer full
  7178. * - Check for maximum inactive time between commands
  7179. * - Check for maximum inactive time between stepper commands
  7180. * - Check if pin CHDK needs to go LOW
  7181. * - Check for KILL button held down
  7182. * - Check for HOME button held down
  7183. * - Check if cooling fan needs to be switched on
  7184. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7185. */
  7186. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7187. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7188. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7189. handle_filament_runout();
  7190. #endif
  7191. if (commands_in_queue < BUFSIZE) get_available_commands();
  7192. millis_t ms = millis();
  7193. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7194. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7195. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7196. #if ENABLED(DISABLE_INACTIVE_X)
  7197. disable_x();
  7198. #endif
  7199. #if ENABLED(DISABLE_INACTIVE_Y)
  7200. disable_y();
  7201. #endif
  7202. #if ENABLED(DISABLE_INACTIVE_Z)
  7203. disable_z();
  7204. #endif
  7205. #if ENABLED(DISABLE_INACTIVE_E)
  7206. disable_e0();
  7207. disable_e1();
  7208. disable_e2();
  7209. disable_e3();
  7210. #endif
  7211. }
  7212. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7213. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7214. chdkActive = false;
  7215. WRITE(CHDK, LOW);
  7216. }
  7217. #endif
  7218. #if HAS_KILL
  7219. // Check if the kill button was pressed and wait just in case it was an accidental
  7220. // key kill key press
  7221. // -------------------------------------------------------------------------------
  7222. static int killCount = 0; // make the inactivity button a bit less responsive
  7223. const int KILL_DELAY = 750;
  7224. if (!READ(KILL_PIN))
  7225. killCount++;
  7226. else if (killCount > 0)
  7227. killCount--;
  7228. // Exceeded threshold and we can confirm that it was not accidental
  7229. // KILL the machine
  7230. // ----------------------------------------------------------------
  7231. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7232. #endif
  7233. #if HAS_HOME
  7234. // Check to see if we have to home, use poor man's debouncer
  7235. // ---------------------------------------------------------
  7236. static int homeDebounceCount = 0; // poor man's debouncing count
  7237. const int HOME_DEBOUNCE_DELAY = 2500;
  7238. if (!READ(HOME_PIN)) {
  7239. if (!homeDebounceCount) {
  7240. enqueue_and_echo_commands_P(PSTR("G28"));
  7241. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7242. }
  7243. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7244. homeDebounceCount++;
  7245. else
  7246. homeDebounceCount = 0;
  7247. }
  7248. #endif
  7249. #if HAS_CONTROLLERFAN
  7250. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7251. #endif
  7252. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7253. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7254. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7255. #if ENABLED(SWITCHING_EXTRUDER)
  7256. bool oldstatus = E0_ENABLE_READ;
  7257. enable_e0();
  7258. #else // !SWITCHING_EXTRUDER
  7259. bool oldstatus;
  7260. switch (active_extruder) {
  7261. case 0:
  7262. oldstatus = E0_ENABLE_READ;
  7263. enable_e0();
  7264. break;
  7265. #if E_STEPPERS > 1
  7266. case 1:
  7267. oldstatus = E1_ENABLE_READ;
  7268. enable_e1();
  7269. break;
  7270. #if E_STEPPERS > 2
  7271. case 2:
  7272. oldstatus = E2_ENABLE_READ;
  7273. enable_e2();
  7274. break;
  7275. #if E_STEPPERS > 3
  7276. case 3:
  7277. oldstatus = E3_ENABLE_READ;
  7278. enable_e3();
  7279. break;
  7280. #endif
  7281. #endif
  7282. #endif
  7283. }
  7284. #endif // !SWITCHING_EXTRUDER
  7285. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  7286. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7287. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) * planner.steps_to_mm[E_AXIS],
  7288. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED) * (EXTRUDER_RUNOUT_ESTEPS) * planner.steps_to_mm[E_AXIS], active_extruder);
  7289. current_position[E_AXIS] = oldepos;
  7290. destination[E_AXIS] = oldedes;
  7291. planner.set_e_position_mm(oldepos);
  7292. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7293. stepper.synchronize();
  7294. #if ENABLED(SWITCHING_EXTRUDER)
  7295. E0_ENABLE_WRITE(oldstatus);
  7296. #else
  7297. switch (active_extruder) {
  7298. case 0:
  7299. E0_ENABLE_WRITE(oldstatus);
  7300. break;
  7301. #if E_STEPPERS > 1
  7302. case 1:
  7303. E1_ENABLE_WRITE(oldstatus);
  7304. break;
  7305. #if E_STEPPERS > 2
  7306. case 2:
  7307. E2_ENABLE_WRITE(oldstatus);
  7308. break;
  7309. #if E_STEPPERS > 3
  7310. case 3:
  7311. E3_ENABLE_WRITE(oldstatus);
  7312. break;
  7313. #endif
  7314. #endif
  7315. #endif
  7316. }
  7317. #endif // !SWITCHING_EXTRUDER
  7318. }
  7319. #endif // EXTRUDER_RUNOUT_PREVENT
  7320. #if ENABLED(DUAL_X_CARRIAGE)
  7321. // handle delayed move timeout
  7322. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7323. // travel moves have been received so enact them
  7324. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7325. set_destination_to_current();
  7326. prepare_move_to_destination();
  7327. }
  7328. #endif
  7329. #if ENABLED(TEMP_STAT_LEDS)
  7330. handle_status_leds();
  7331. #endif
  7332. planner.check_axes_activity();
  7333. }
  7334. void kill(const char* lcd_msg) {
  7335. SERIAL_ERROR_START;
  7336. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7337. #if ENABLED(ULTRA_LCD)
  7338. kill_screen(lcd_msg);
  7339. #else
  7340. UNUSED(lcd_msg);
  7341. #endif
  7342. delay(500); // Wait a short time
  7343. cli(); // Stop interrupts
  7344. thermalManager.disable_all_heaters();
  7345. disable_all_steppers();
  7346. #if HAS_POWER_SWITCH
  7347. pinMode(PS_ON_PIN, INPUT);
  7348. #endif
  7349. suicide();
  7350. while (1) {
  7351. #if ENABLED(USE_WATCHDOG)
  7352. watchdog_reset();
  7353. #endif
  7354. } // Wait for reset
  7355. }
  7356. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7357. void handle_filament_runout() {
  7358. if (!filament_ran_out) {
  7359. filament_ran_out = true;
  7360. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7361. stepper.synchronize();
  7362. }
  7363. }
  7364. #endif // FILAMENT_RUNOUT_SENSOR
  7365. #if ENABLED(FAST_PWM_FAN)
  7366. void setPwmFrequency(uint8_t pin, int val) {
  7367. val &= 0x07;
  7368. switch (digitalPinToTimer(pin)) {
  7369. #if defined(TCCR0A)
  7370. case TIMER0A:
  7371. case TIMER0B:
  7372. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7373. // TCCR0B |= val;
  7374. break;
  7375. #endif
  7376. #if defined(TCCR1A)
  7377. case TIMER1A:
  7378. case TIMER1B:
  7379. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7380. // TCCR1B |= val;
  7381. break;
  7382. #endif
  7383. #if defined(TCCR2)
  7384. case TIMER2:
  7385. case TIMER2:
  7386. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7387. TCCR2 |= val;
  7388. break;
  7389. #endif
  7390. #if defined(TCCR2A)
  7391. case TIMER2A:
  7392. case TIMER2B:
  7393. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7394. TCCR2B |= val;
  7395. break;
  7396. #endif
  7397. #if defined(TCCR3A)
  7398. case TIMER3A:
  7399. case TIMER3B:
  7400. case TIMER3C:
  7401. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7402. TCCR3B |= val;
  7403. break;
  7404. #endif
  7405. #if defined(TCCR4A)
  7406. case TIMER4A:
  7407. case TIMER4B:
  7408. case TIMER4C:
  7409. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7410. TCCR4B |= val;
  7411. break;
  7412. #endif
  7413. #if defined(TCCR5A)
  7414. case TIMER5A:
  7415. case TIMER5B:
  7416. case TIMER5C:
  7417. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7418. TCCR5B |= val;
  7419. break;
  7420. #endif
  7421. }
  7422. }
  7423. #endif // FAST_PWM_FAN
  7424. void stop() {
  7425. thermalManager.disable_all_heaters();
  7426. if (IsRunning()) {
  7427. Running = false;
  7428. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7429. SERIAL_ERROR_START;
  7430. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7431. LCD_MESSAGEPGM(MSG_STOPPED);
  7432. }
  7433. }
  7434. float calculate_volumetric_multiplier(float diameter) {
  7435. if (!volumetric_enabled || diameter == 0) return 1.0;
  7436. float d2 = diameter * 0.5;
  7437. return 1.0 / (M_PI * d2 * d2);
  7438. }
  7439. void calculate_volumetric_multipliers() {
  7440. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7441. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7442. }