My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 196KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define HAS_LCD_BUZZ (defined(ULTRALCD) || (defined(BEEPER) && BEEPER >= 0) || defined(LCD_USE_I2C_BUZZER))
  31. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  32. #ifdef MESH_BED_LEVELING
  33. #include "mesh_bed_leveling.h"
  34. #endif
  35. #include "ultralcd.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "configuration_store.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #ifdef BLINKM
  47. #include "blinkm.h"
  48. #include "Wire.h"
  49. #endif
  50. #if NUM_SERVOS > 0
  51. #include "servo.h"
  52. #endif
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. /**
  57. * Look here for descriptions of G-codes:
  58. * - http://linuxcnc.org/handbook/gcode/g-code.html
  59. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  60. *
  61. * Help us document these G-codes online:
  62. * - http://reprap.org/wiki/G-code
  63. * - https://github.com/MarlinFirmware/Marlin/wiki/Marlin-G-Code
  64. */
  65. /**
  66. * Implemented Codes
  67. * -------------------
  68. *
  69. * "G" Codes
  70. *
  71. * G0 -> G1
  72. * G1 - Coordinated Movement X Y Z E
  73. * G2 - CW ARC
  74. * G3 - CCW ARC
  75. * G4 - Dwell S<seconds> or P<milliseconds>
  76. * G10 - retract filament according to settings of M207
  77. * G11 - retract recover filament according to settings of M208
  78. * G28 - Home one or more axes
  79. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  80. * G30 - Single Z Probe, probes bed at current XY location.
  81. * G31 - Dock sled (Z_PROBE_SLED only)
  82. * G32 - Undock sled (Z_PROBE_SLED only)
  83. * G90 - Use Absolute Coordinates
  84. * G91 - Use Relative Coordinates
  85. * G92 - Set current position to coordinates given
  86. *
  87. * "M" Codes
  88. *
  89. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  90. * M1 - Same as M0
  91. * M17 - Enable/Power all stepper motors
  92. * M18 - Disable all stepper motors; same as M84
  93. * M20 - List SD card
  94. * M21 - Init SD card
  95. * M22 - Release SD card
  96. * M23 - Select SD file (M23 filename.g)
  97. * M24 - Start/resume SD print
  98. * M25 - Pause SD print
  99. * M26 - Set SD position in bytes (M26 S12345)
  100. * M27 - Report SD print status
  101. * M28 - Start SD write (M28 filename.g)
  102. * M29 - Stop SD write
  103. * M30 - Delete file from SD (M30 filename.g)
  104. * M31 - Output time since last M109 or SD card start to serial
  105. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  106. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  107. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  108. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  109. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  110. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  111. * M80 - Turn on Power Supply
  112. * M81 - Turn off Power Supply
  113. * M82 - Set E codes absolute (default)
  114. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  115. * M84 - Disable steppers until next move,
  116. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  117. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  118. * M92 - Set axis_steps_per_unit - same syntax as G92
  119. * M104 - Set extruder target temp
  120. * M105 - Read current temp
  121. * M106 - Fan on
  122. * M107 - Fan off
  123. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  124. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  125. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  126. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  127. * M112 - Emergency stop
  128. * M114 - Output current position to serial port
  129. * M115 - Capabilities string
  130. * M117 - display message
  131. * M119 - Output Endstop status to serial port
  132. * M120 - Enable endstop detection
  133. * M121 - Disable endstop detection
  134. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  135. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  136. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  138. * M140 - Set bed target temp
  139. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  140. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  141. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  142. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  143. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  144. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  145. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  146. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  147. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  148. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  149. * M206 - Set additional homing offset
  150. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  151. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  152. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  153. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  154. * M220 - Set speed factor override percentage: S<factor in percent>
  155. * M221 - Set extrude factor override percentage: S<factor in percent>
  156. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  157. * M240 - Trigger a camera to take a photograph
  158. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  159. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  160. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  161. * M301 - Set PID parameters P I and D
  162. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  163. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  164. * M304 - Set bed PID parameters P I and D
  165. * M380 - Activate solenoid on active extruder
  166. * M381 - Disable all solenoids
  167. * M400 - Finish all moves
  168. * M401 - Lower z-probe if present
  169. * M402 - Raise z-probe if present
  170. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  171. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  172. * M406 - Turn off Filament Sensor extrusion control
  173. * M407 - Display measured filament diameter
  174. * M410 - Quickstop. Abort all the planned moves
  175. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  176. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  177. * M428 - Set the home_offset logically based on the current_position
  178. * M500 - Store parameters in EEPROM
  179. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  180. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  181. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  182. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  183. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  184. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  185. * M666 - Set delta endstop adjustment
  186. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  187. * M907 - Set digital trimpot motor current using axis codes.
  188. * M908 - Control digital trimpot directly.
  189. * M350 - Set microstepping mode.
  190. * M351 - Toggle MS1 MS2 pins directly.
  191. *
  192. * ************ SCARA Specific - This can change to suit future G-code regulations
  193. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  194. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  195. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  196. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  197. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  198. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  199. * ************* SCARA End ***************
  200. *
  201. * M928 - Start SD logging (M928 filename.g) - ended by M29
  202. * M999 - Restart after being stopped by error
  203. */
  204. #ifdef SDSUPPORT
  205. CardReader card;
  206. #endif
  207. bool Running = true;
  208. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  209. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  210. float current_position[NUM_AXIS] = { 0.0 };
  211. static float destination[NUM_AXIS] = { 0.0 };
  212. bool axis_known_position[3] = { false };
  213. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  214. static int cmd_queue_index_r = 0;
  215. static int cmd_queue_index_w = 0;
  216. static int commands_in_queue = 0;
  217. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  218. float homing_feedrate[] = HOMING_FEEDRATE;
  219. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  220. int feedrate_multiplier = 100; //100->1 200->2
  221. int saved_feedrate_multiplier;
  222. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  223. bool volumetric_enabled = false;
  224. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  225. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  226. float home_offset[3] = { 0 };
  227. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  228. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  229. uint8_t active_extruder = 0;
  230. int fanSpeed = 0;
  231. bool cancel_heatup = false;
  232. const char errormagic[] PROGMEM = "Error:";
  233. const char echomagic[] PROGMEM = "echo:";
  234. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  235. static float offset[3] = { 0 };
  236. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  237. static char serial_char;
  238. static int serial_count = 0;
  239. static boolean comment_mode = false;
  240. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  241. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  242. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  243. // Inactivity shutdown
  244. millis_t previous_cmd_ms = 0;
  245. static millis_t max_inactive_time = 0;
  246. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  247. millis_t print_job_start_ms = 0; ///< Print job start time
  248. millis_t print_job_stop_ms = 0; ///< Print job stop time
  249. static uint8_t target_extruder;
  250. bool no_wait_for_cooling = true;
  251. bool target_direction;
  252. #ifdef ENABLE_AUTO_BED_LEVELING
  253. int xy_travel_speed = XY_TRAVEL_SPEED;
  254. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  255. #endif
  256. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  257. float z_endstop_adj = 0;
  258. #endif
  259. // Extruder offsets
  260. #if EXTRUDERS > 1
  261. #ifndef EXTRUDER_OFFSET_X
  262. #define EXTRUDER_OFFSET_X { 0 }
  263. #endif
  264. #ifndef EXTRUDER_OFFSET_Y
  265. #define EXTRUDER_OFFSET_Y { 0 }
  266. #endif
  267. float extruder_offset[][EXTRUDERS] = {
  268. EXTRUDER_OFFSET_X,
  269. EXTRUDER_OFFSET_Y
  270. #ifdef DUAL_X_CARRIAGE
  271. , { 0 } // supports offsets in XYZ plane
  272. #endif
  273. };
  274. #endif
  275. #ifdef SERVO_ENDSTOPS
  276. int servo_endstops[] = SERVO_ENDSTOPS;
  277. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  278. #endif
  279. #ifdef BARICUDA
  280. int ValvePressure = 0;
  281. int EtoPPressure = 0;
  282. #endif
  283. #ifdef FWRETRACT
  284. bool autoretract_enabled = false;
  285. bool retracted[EXTRUDERS] = { false };
  286. bool retracted_swap[EXTRUDERS] = { false };
  287. float retract_length = RETRACT_LENGTH;
  288. float retract_length_swap = RETRACT_LENGTH_SWAP;
  289. float retract_feedrate = RETRACT_FEEDRATE;
  290. float retract_zlift = RETRACT_ZLIFT;
  291. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  292. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  293. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  294. #endif // FWRETRACT
  295. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  296. bool powersupply =
  297. #ifdef PS_DEFAULT_OFF
  298. false
  299. #else
  300. true
  301. #endif
  302. ;
  303. #endif
  304. #ifdef DELTA
  305. float delta[3] = { 0 };
  306. #define SIN_60 0.8660254037844386
  307. #define COS_60 0.5
  308. float endstop_adj[3] = { 0 };
  309. // these are the default values, can be overriden with M665
  310. float delta_radius = DELTA_RADIUS;
  311. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  312. float delta_tower1_y = -COS_60 * delta_radius;
  313. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  314. float delta_tower2_y = -COS_60 * delta_radius;
  315. float delta_tower3_x = 0; // back middle tower
  316. float delta_tower3_y = delta_radius;
  317. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  318. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  319. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  320. #ifdef ENABLE_AUTO_BED_LEVELING
  321. int delta_grid_spacing[2] = { 0, 0 };
  322. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  323. #endif
  324. #else
  325. static bool home_all_axis = true;
  326. #endif
  327. #ifdef SCARA
  328. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  329. static float delta[3] = { 0 };
  330. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  331. #endif
  332. #ifdef FILAMENT_SENSOR
  333. //Variables for Filament Sensor input
  334. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  335. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  336. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  337. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  338. int delay_index1 = 0; //index into ring buffer
  339. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  340. float delay_dist = 0; //delay distance counter
  341. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  342. #endif
  343. #ifdef FILAMENT_RUNOUT_SENSOR
  344. static bool filrunoutEnqueued = false;
  345. #endif
  346. #ifdef SDSUPPORT
  347. static bool fromsd[BUFSIZE];
  348. #endif
  349. #if NUM_SERVOS > 0
  350. Servo servo[NUM_SERVOS];
  351. #endif
  352. #ifdef CHDK
  353. unsigned long chdkHigh = 0;
  354. boolean chdkActive = false;
  355. #endif
  356. //===========================================================================
  357. //================================ Functions ================================
  358. //===========================================================================
  359. void get_arc_coordinates();
  360. bool setTargetedHotend(int code);
  361. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  362. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  363. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  364. #ifdef PREVENT_DANGEROUS_EXTRUDE
  365. float extrude_min_temp = EXTRUDE_MINTEMP;
  366. #endif
  367. #ifdef SDSUPPORT
  368. #include "SdFatUtil.h"
  369. int freeMemory() { return SdFatUtil::FreeRam(); }
  370. #else
  371. extern "C" {
  372. extern unsigned int __bss_end;
  373. extern unsigned int __heap_start;
  374. extern void *__brkval;
  375. int freeMemory() {
  376. int free_memory;
  377. if ((int)__brkval == 0)
  378. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  379. else
  380. free_memory = ((int)&free_memory) - ((int)__brkval);
  381. return free_memory;
  382. }
  383. }
  384. #endif //!SDSUPPORT
  385. /**
  386. * Inject the next command from the command queue, when possible
  387. * Return false only if no command was pending
  388. */
  389. static bool drain_queued_commands_P() {
  390. if (!queued_commands_P) return false;
  391. // Get the next 30 chars from the sequence of gcodes to run
  392. char cmd[30];
  393. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  394. cmd[sizeof(cmd) - 1] = '\0';
  395. // Look for the end of line, or the end of sequence
  396. size_t i = 0;
  397. char c;
  398. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  399. cmd[i] = '\0';
  400. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  401. if (c)
  402. queued_commands_P += i + 1; // move to next command
  403. else
  404. queued_commands_P = NULL; // will have no more commands in the sequence
  405. }
  406. return true;
  407. }
  408. /**
  409. * Record one or many commands to run from program memory.
  410. * Aborts the current queue, if any.
  411. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  412. */
  413. void enqueuecommands_P(const char* pgcode) {
  414. queued_commands_P = pgcode;
  415. drain_queued_commands_P(); // first command executed asap (when possible)
  416. }
  417. /**
  418. * Copy a command directly into the main command buffer, from RAM.
  419. *
  420. * This is done in a non-safe way and needs a rework someday.
  421. * Returns false if it doesn't add any command
  422. */
  423. bool enqueuecommand(const char *cmd) {
  424. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  425. // This is dangerous if a mixing of serial and this happens
  426. char *command = command_queue[cmd_queue_index_w];
  427. strcpy(command, cmd);
  428. SERIAL_ECHO_START;
  429. SERIAL_ECHOPGM(MSG_Enqueueing);
  430. SERIAL_ECHO(command);
  431. SERIAL_ECHOLNPGM("\"");
  432. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  433. commands_in_queue++;
  434. return true;
  435. }
  436. void setup_killpin() {
  437. #if HAS_KILL
  438. SET_INPUT(KILL_PIN);
  439. WRITE(KILL_PIN, HIGH);
  440. #endif
  441. }
  442. void setup_filrunoutpin() {
  443. #if HAS_FILRUNOUT
  444. pinMode(FILRUNOUT_PIN, INPUT);
  445. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  446. WRITE(FILRUNOUT_PIN, HIGH);
  447. #endif
  448. #endif
  449. }
  450. // Set home pin
  451. void setup_homepin(void) {
  452. #if HAS_HOME
  453. SET_INPUT(HOME_PIN);
  454. WRITE(HOME_PIN, HIGH);
  455. #endif
  456. }
  457. void setup_photpin() {
  458. #if HAS_PHOTOGRAPH
  459. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  460. #endif
  461. }
  462. void setup_powerhold() {
  463. #if HAS_SUICIDE
  464. OUT_WRITE(SUICIDE_PIN, HIGH);
  465. #endif
  466. #if HAS_POWER_SWITCH
  467. #ifdef PS_DEFAULT_OFF
  468. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  469. #else
  470. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  471. #endif
  472. #endif
  473. }
  474. void suicide() {
  475. #if HAS_SUICIDE
  476. OUT_WRITE(SUICIDE_PIN, LOW);
  477. #endif
  478. }
  479. void servo_init() {
  480. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  481. servo[0].attach(SERVO0_PIN);
  482. #endif
  483. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  484. servo[1].attach(SERVO1_PIN);
  485. #endif
  486. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  487. servo[2].attach(SERVO2_PIN);
  488. #endif
  489. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  490. servo[3].attach(SERVO3_PIN);
  491. #endif
  492. // Set position of Servo Endstops that are defined
  493. #ifdef SERVO_ENDSTOPS
  494. for (int i = 0; i < 3; i++)
  495. if (servo_endstops[i] >= 0)
  496. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  497. #endif
  498. #if SERVO_LEVELING
  499. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  500. servo[servo_endstops[Z_AXIS]].detach();
  501. #endif
  502. }
  503. /**
  504. * Marlin entry-point: Set up before the program loop
  505. * - Set up the kill pin, filament runout, power hold
  506. * - Start the serial port
  507. * - Print startup messages and diagnostics
  508. * - Get EEPROM or default settings
  509. * - Initialize managers for:
  510. * • temperature
  511. * • planner
  512. * • watchdog
  513. * • stepper
  514. * • photo pin
  515. * • servos
  516. * • LCD controller
  517. * • Digipot I2C
  518. * • Z probe sled
  519. * • status LEDs
  520. */
  521. void setup() {
  522. setup_killpin();
  523. setup_filrunoutpin();
  524. setup_powerhold();
  525. MYSERIAL.begin(BAUDRATE);
  526. SERIAL_PROTOCOLLNPGM("start");
  527. SERIAL_ECHO_START;
  528. // Check startup - does nothing if bootloader sets MCUSR to 0
  529. byte mcu = MCUSR;
  530. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  531. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  532. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  533. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  534. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  535. MCUSR = 0;
  536. SERIAL_ECHOPGM(MSG_MARLIN);
  537. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  538. #ifdef STRING_VERSION_CONFIG_H
  539. #ifdef STRING_CONFIG_H_AUTHOR
  540. SERIAL_ECHO_START;
  541. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  542. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  543. SERIAL_ECHOPGM(MSG_AUTHOR);
  544. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  545. SERIAL_ECHOPGM("Compiled: ");
  546. SERIAL_ECHOLNPGM(__DATE__);
  547. #endif // STRING_CONFIG_H_AUTHOR
  548. #endif // STRING_VERSION_CONFIG_H
  549. SERIAL_ECHO_START;
  550. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  551. SERIAL_ECHO(freeMemory());
  552. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  553. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  554. #ifdef SDSUPPORT
  555. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  556. #endif
  557. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  558. Config_RetrieveSettings();
  559. tp_init(); // Initialize temperature loop
  560. plan_init(); // Initialize planner;
  561. watchdog_init();
  562. st_init(); // Initialize stepper, this enables interrupts!
  563. setup_photpin();
  564. servo_init();
  565. lcd_init();
  566. _delay_ms(1000); // wait 1sec to display the splash screen
  567. #if HAS_CONTROLLERFAN
  568. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  569. #endif
  570. #ifdef DIGIPOT_I2C
  571. digipot_i2c_init();
  572. #endif
  573. #ifdef Z_PROBE_SLED
  574. pinMode(SLED_PIN, OUTPUT);
  575. digitalWrite(SLED_PIN, LOW); // turn it off
  576. #endif // Z_PROBE_SLED
  577. setup_homepin();
  578. #ifdef STAT_LED_RED
  579. pinMode(STAT_LED_RED, OUTPUT);
  580. digitalWrite(STAT_LED_RED, LOW); // turn it off
  581. #endif
  582. #ifdef STAT_LED_BLUE
  583. pinMode(STAT_LED_BLUE, OUTPUT);
  584. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  585. #endif
  586. }
  587. /**
  588. * The main Marlin program loop
  589. *
  590. * - Save or log commands to SD
  591. * - Process available commands (if not saving)
  592. * - Call heater manager
  593. * - Call inactivity manager
  594. * - Call endstop manager
  595. * - Call LCD update
  596. */
  597. void loop() {
  598. if (commands_in_queue < BUFSIZE - 1) get_command();
  599. #ifdef SDSUPPORT
  600. card.checkautostart(false);
  601. #endif
  602. if (commands_in_queue) {
  603. #ifdef SDSUPPORT
  604. if (card.saving) {
  605. char *command = command_queue[cmd_queue_index_r];
  606. if (strstr_P(command, PSTR("M29"))) {
  607. // M29 closes the file
  608. card.closefile();
  609. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  610. }
  611. else {
  612. // Write the string from the read buffer to SD
  613. card.write_command(command);
  614. if (card.logging)
  615. process_commands(); // The card is saving because it's logging
  616. else
  617. SERIAL_PROTOCOLLNPGM(MSG_OK);
  618. }
  619. }
  620. else
  621. process_commands();
  622. #else
  623. process_commands();
  624. #endif // SDSUPPORT
  625. commands_in_queue--;
  626. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  627. }
  628. // Check heater every n milliseconds
  629. manage_heater();
  630. manage_inactivity();
  631. checkHitEndstops();
  632. lcd_update();
  633. }
  634. /**
  635. * Add to the circular command queue the next command from:
  636. * - The command-injection queue (queued_commands_P)
  637. * - The active serial input (usually USB)
  638. * - The SD card file being actively printed
  639. */
  640. void get_command() {
  641. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  642. #ifdef NO_TIMEOUTS
  643. static millis_t last_command_time = 0;
  644. millis_t ms = millis();
  645. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  646. SERIAL_ECHOLNPGM(MSG_WAIT);
  647. last_command_time = ms;
  648. }
  649. #endif
  650. while (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  651. #ifdef NO_TIMEOUTS
  652. last_command_time = ms;
  653. #endif
  654. serial_char = MYSERIAL.read();
  655. if (serial_char == '\n' || serial_char == '\r' ||
  656. serial_count >= (MAX_CMD_SIZE - 1)
  657. ) {
  658. // end of line == end of comment
  659. comment_mode = false;
  660. if (!serial_count) return; // shortcut for empty lines
  661. char *command = command_queue[cmd_queue_index_w];
  662. command[serial_count] = 0; // terminate string
  663. #ifdef SDSUPPORT
  664. fromsd[cmd_queue_index_w] = false;
  665. #endif
  666. if (strchr(command, 'N') != NULL) {
  667. strchr_pointer = strchr(command, 'N');
  668. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  669. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  670. SERIAL_ERROR_START;
  671. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  672. SERIAL_ERRORLN(gcode_LastN);
  673. //Serial.println(gcode_N);
  674. FlushSerialRequestResend();
  675. serial_count = 0;
  676. return;
  677. }
  678. if (strchr(command, '*') != NULL) {
  679. byte checksum = 0;
  680. byte count = 0;
  681. while (command[count] != '*') checksum ^= command[count++];
  682. strchr_pointer = strchr(command, '*');
  683. if (strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  684. SERIAL_ERROR_START;
  685. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  686. SERIAL_ERRORLN(gcode_LastN);
  687. FlushSerialRequestResend();
  688. serial_count = 0;
  689. return;
  690. }
  691. //if no errors, continue parsing
  692. }
  693. else {
  694. SERIAL_ERROR_START;
  695. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  696. SERIAL_ERRORLN(gcode_LastN);
  697. FlushSerialRequestResend();
  698. serial_count = 0;
  699. return;
  700. }
  701. gcode_LastN = gcode_N;
  702. //if no errors, continue parsing
  703. }
  704. else { // if we don't receive 'N' but still see '*'
  705. if ((strchr(command, '*') != NULL)) {
  706. SERIAL_ERROR_START;
  707. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  708. SERIAL_ERRORLN(gcode_LastN);
  709. serial_count = 0;
  710. return;
  711. }
  712. }
  713. if (strchr(command, 'G') != NULL) {
  714. strchr_pointer = strchr(command, 'G');
  715. switch (strtol(strchr_pointer + 1, NULL, 10)) {
  716. case 0:
  717. case 1:
  718. case 2:
  719. case 3:
  720. if (IsStopped()) {
  721. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  722. LCD_MESSAGEPGM(MSG_STOPPED);
  723. }
  724. break;
  725. default:
  726. break;
  727. }
  728. }
  729. // If command was e-stop process now
  730. if (strcmp(command, "M112") == 0) kill();
  731. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  732. commands_in_queue += 1;
  733. serial_count = 0; //clear buffer
  734. }
  735. else if (serial_char == '\\') { // Handle escapes
  736. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  737. // if we have one more character, copy it over
  738. serial_char = MYSERIAL.read();
  739. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  740. }
  741. // otherwise do nothing
  742. }
  743. else { // its not a newline, carriage return or escape char
  744. if (serial_char == ';') comment_mode = true;
  745. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  746. }
  747. }
  748. #ifdef SDSUPPORT
  749. if (!card.sdprinting || serial_count) return;
  750. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  751. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  752. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  753. static bool stop_buffering = false;
  754. if (commands_in_queue == 0) stop_buffering = false;
  755. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  756. int16_t n = card.get();
  757. serial_char = (char)n;
  758. if (serial_char == '\n' || serial_char == '\r' ||
  759. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  760. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  761. ) {
  762. if (card.eof()) {
  763. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  764. print_job_stop_ms = millis();
  765. char time[30];
  766. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  767. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  768. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  769. SERIAL_ECHO_START;
  770. SERIAL_ECHOLN(time);
  771. lcd_setstatus(time, true);
  772. card.printingHasFinished();
  773. card.checkautostart(true);
  774. }
  775. if (serial_char == '#') stop_buffering = true;
  776. if (!serial_count) {
  777. comment_mode = false; //for new command
  778. return; //if empty line
  779. }
  780. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  781. // if (!comment_mode) {
  782. fromsd[cmd_queue_index_w] = true;
  783. commands_in_queue += 1;
  784. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  785. // }
  786. comment_mode = false; //for new command
  787. serial_count = 0; //clear buffer
  788. }
  789. else {
  790. if (serial_char == ';') comment_mode = true;
  791. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  792. }
  793. }
  794. #endif // SDSUPPORT
  795. }
  796. bool code_has_value() {
  797. int i = 1;
  798. char c = strchr_pointer[i];
  799. if (c == '-' || c == '+') c = strchr_pointer[++i];
  800. if (c == '.') c = strchr_pointer[++i];
  801. return (c >= '0' && c <= '9');
  802. }
  803. float code_value() {
  804. float ret;
  805. char *e = strchr(strchr_pointer, 'E');
  806. if (e) {
  807. *e = 0;
  808. ret = strtod(strchr_pointer+1, NULL);
  809. *e = 'E';
  810. }
  811. else
  812. ret = strtod(strchr_pointer+1, NULL);
  813. return ret;
  814. }
  815. long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
  816. int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
  817. bool code_seen(char code) {
  818. strchr_pointer = strchr(command_queue[cmd_queue_index_r], code);
  819. return (strchr_pointer != NULL); //Return True if a character was found
  820. }
  821. #define DEFINE_PGM_READ_ANY(type, reader) \
  822. static inline type pgm_read_any(const type *p) \
  823. { return pgm_read_##reader##_near(p); }
  824. DEFINE_PGM_READ_ANY(float, float);
  825. DEFINE_PGM_READ_ANY(signed char, byte);
  826. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  827. static const PROGMEM type array##_P[3] = \
  828. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  829. static inline type array(int axis) \
  830. { return pgm_read_any(&array##_P[axis]); }
  831. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  832. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  833. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  834. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  835. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  836. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  837. #ifdef DUAL_X_CARRIAGE
  838. #define DXC_FULL_CONTROL_MODE 0
  839. #define DXC_AUTO_PARK_MODE 1
  840. #define DXC_DUPLICATION_MODE 2
  841. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  842. static float x_home_pos(int extruder) {
  843. if (extruder == 0)
  844. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  845. else
  846. // In dual carriage mode the extruder offset provides an override of the
  847. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  848. // This allow soft recalibration of the second extruder offset position without firmware reflash
  849. // (through the M218 command).
  850. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  851. }
  852. static int x_home_dir(int extruder) {
  853. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  854. }
  855. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  856. static bool active_extruder_parked = false; // used in mode 1 & 2
  857. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  858. static millis_t delayed_move_time = 0; // used in mode 1
  859. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  860. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  861. bool extruder_duplication_enabled = false; // used in mode 2
  862. #endif //DUAL_X_CARRIAGE
  863. static void axis_is_at_home(int axis) {
  864. #ifdef DUAL_X_CARRIAGE
  865. if (axis == X_AXIS) {
  866. if (active_extruder != 0) {
  867. current_position[X_AXIS] = x_home_pos(active_extruder);
  868. min_pos[X_AXIS] = X2_MIN_POS;
  869. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  870. return;
  871. }
  872. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  873. float xoff = home_offset[X_AXIS];
  874. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  875. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  876. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  877. return;
  878. }
  879. }
  880. #endif
  881. #ifdef SCARA
  882. if (axis == X_AXIS || axis == Y_AXIS) {
  883. float homeposition[3];
  884. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  885. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  886. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  887. // Works out real Homeposition angles using inverse kinematics,
  888. // and calculates homing offset using forward kinematics
  889. calculate_delta(homeposition);
  890. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  891. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  892. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  893. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  894. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  895. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  896. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  897. calculate_SCARA_forward_Transform(delta);
  898. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  899. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  900. current_position[axis] = delta[axis];
  901. // SCARA home positions are based on configuration since the actual limits are determined by the
  902. // inverse kinematic transform.
  903. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  904. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  905. }
  906. else
  907. #endif
  908. {
  909. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  910. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  911. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  912. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  913. if (axis == Z_AXIS) current_position[Z_AXIS] += zprobe_zoffset;
  914. #endif
  915. }
  916. }
  917. /**
  918. * Some planner shorthand inline functions
  919. */
  920. inline void set_homing_bump_feedrate(AxisEnum axis) {
  921. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  922. if (homing_bump_divisor[axis] >= 1)
  923. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  924. else {
  925. feedrate = homing_feedrate[axis] / 10;
  926. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  927. }
  928. }
  929. inline void line_to_current_position() {
  930. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  931. }
  932. inline void line_to_z(float zPosition) {
  933. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  934. }
  935. inline void line_to_destination(float mm_m) {
  936. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  937. }
  938. inline void line_to_destination() {
  939. line_to_destination(feedrate);
  940. }
  941. inline void sync_plan_position() {
  942. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  943. }
  944. #if defined(DELTA) || defined(SCARA)
  945. inline void sync_plan_position_delta() {
  946. calculate_delta(current_position);
  947. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  948. }
  949. #endif
  950. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  951. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  952. static void setup_for_endstop_move() {
  953. saved_feedrate = feedrate;
  954. saved_feedrate_multiplier = feedrate_multiplier;
  955. feedrate_multiplier = 100;
  956. refresh_cmd_timeout();
  957. enable_endstops(true);
  958. }
  959. #ifdef ENABLE_AUTO_BED_LEVELING
  960. #ifdef DELTA
  961. /**
  962. * Calculate delta, start a line, and set current_position to destination
  963. */
  964. void prepare_move_raw() {
  965. refresh_cmd_timeout();
  966. calculate_delta(destination);
  967. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  968. set_current_to_destination();
  969. }
  970. #endif
  971. #ifdef AUTO_BED_LEVELING_GRID
  972. #ifndef DELTA
  973. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  974. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  975. planeNormal.debug("planeNormal");
  976. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  977. //bedLevel.debug("bedLevel");
  978. //plan_bed_level_matrix.debug("bed level before");
  979. //vector_3 uncorrected_position = plan_get_position_mm();
  980. //uncorrected_position.debug("position before");
  981. vector_3 corrected_position = plan_get_position();
  982. //corrected_position.debug("position after");
  983. current_position[X_AXIS] = corrected_position.x;
  984. current_position[Y_AXIS] = corrected_position.y;
  985. current_position[Z_AXIS] = corrected_position.z;
  986. sync_plan_position();
  987. }
  988. #endif // !DELTA
  989. #else // !AUTO_BED_LEVELING_GRID
  990. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  991. plan_bed_level_matrix.set_to_identity();
  992. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  993. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  994. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  995. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  996. if (planeNormal.z < 0) {
  997. planeNormal.x = -planeNormal.x;
  998. planeNormal.y = -planeNormal.y;
  999. planeNormal.z = -planeNormal.z;
  1000. }
  1001. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1002. vector_3 corrected_position = plan_get_position();
  1003. current_position[X_AXIS] = corrected_position.x;
  1004. current_position[Y_AXIS] = corrected_position.y;
  1005. current_position[Z_AXIS] = corrected_position.z;
  1006. sync_plan_position();
  1007. }
  1008. #endif // !AUTO_BED_LEVELING_GRID
  1009. static void run_z_probe() {
  1010. #ifdef DELTA
  1011. float start_z = current_position[Z_AXIS];
  1012. long start_steps = st_get_position(Z_AXIS);
  1013. // move down slowly until you find the bed
  1014. feedrate = homing_feedrate[Z_AXIS] / 4;
  1015. destination[Z_AXIS] = -10;
  1016. prepare_move_raw(); // this will also set_current_to_destination
  1017. st_synchronize();
  1018. endstops_hit_on_purpose(); // clear endstop hit flags
  1019. // we have to let the planner know where we are right now as it is not where we said to go.
  1020. long stop_steps = st_get_position(Z_AXIS);
  1021. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1022. current_position[Z_AXIS] = mm;
  1023. sync_plan_position_delta();
  1024. #else // !DELTA
  1025. plan_bed_level_matrix.set_to_identity();
  1026. feedrate = homing_feedrate[Z_AXIS];
  1027. // move down until you find the bed
  1028. float zPosition = -10;
  1029. line_to_z(zPosition);
  1030. st_synchronize();
  1031. // we have to let the planner know where we are right now as it is not where we said to go.
  1032. zPosition = st_get_position_mm(Z_AXIS);
  1033. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1034. // move up the retract distance
  1035. zPosition += home_bump_mm(Z_AXIS);
  1036. line_to_z(zPosition);
  1037. st_synchronize();
  1038. endstops_hit_on_purpose(); // clear endstop hit flags
  1039. // move back down slowly to find bed
  1040. set_homing_bump_feedrate(Z_AXIS);
  1041. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1042. line_to_z(zPosition);
  1043. st_synchronize();
  1044. endstops_hit_on_purpose(); // clear endstop hit flags
  1045. // Get the current stepper position after bumping an endstop
  1046. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1047. sync_plan_position();
  1048. #endif // !DELTA
  1049. }
  1050. /**
  1051. * Plan a move to (X, Y, Z) and set the current_position
  1052. * The final current_position may not be the one that was requested
  1053. */
  1054. static void do_blocking_move_to(float x, float y, float z) {
  1055. float oldFeedRate = feedrate;
  1056. #ifdef DELTA
  1057. feedrate = XY_TRAVEL_SPEED;
  1058. destination[X_AXIS] = x;
  1059. destination[Y_AXIS] = y;
  1060. destination[Z_AXIS] = z;
  1061. prepare_move_raw(); // this will also set_current_to_destination
  1062. st_synchronize();
  1063. #else
  1064. feedrate = homing_feedrate[Z_AXIS];
  1065. current_position[Z_AXIS] = z;
  1066. line_to_current_position();
  1067. st_synchronize();
  1068. feedrate = xy_travel_speed;
  1069. current_position[X_AXIS] = x;
  1070. current_position[Y_AXIS] = y;
  1071. line_to_current_position();
  1072. st_synchronize();
  1073. #endif
  1074. feedrate = oldFeedRate;
  1075. }
  1076. static void clean_up_after_endstop_move() {
  1077. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1078. enable_endstops(false);
  1079. #endif
  1080. feedrate = saved_feedrate;
  1081. feedrate_multiplier = saved_feedrate_multiplier;
  1082. refresh_cmd_timeout();
  1083. }
  1084. static void deploy_z_probe() {
  1085. #ifdef SERVO_ENDSTOPS
  1086. // Engage Z Servo endstop if enabled
  1087. if (servo_endstops[Z_AXIS] >= 0) {
  1088. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1089. #if SERVO_LEVELING
  1090. srv->attach(0);
  1091. #endif
  1092. srv->write(servo_endstop_angles[Z_AXIS * 2]);
  1093. #if SERVO_LEVELING
  1094. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1095. srv->detach();
  1096. #endif
  1097. }
  1098. #elif defined(Z_PROBE_ALLEN_KEY)
  1099. feedrate = homing_feedrate[X_AXIS];
  1100. // Move to the start position to initiate deployment
  1101. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1102. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1103. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1104. prepare_move_raw(); // this will also set_current_to_destination
  1105. // Home X to touch the belt
  1106. feedrate = homing_feedrate[X_AXIS]/10;
  1107. destination[X_AXIS] = 0;
  1108. prepare_move_raw(); // this will also set_current_to_destination
  1109. // Home Y for safety
  1110. feedrate = homing_feedrate[X_AXIS]/2;
  1111. destination[Y_AXIS] = 0;
  1112. prepare_move_raw(); // this will also set_current_to_destination
  1113. st_synchronize();
  1114. #ifdef Z_PROBE_ENDSTOP
  1115. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1116. if (z_probe_endstop)
  1117. #else
  1118. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1119. if (z_min_endstop)
  1120. #endif
  1121. {
  1122. if (IsRunning()) {
  1123. SERIAL_ERROR_START;
  1124. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1125. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1126. }
  1127. Stop();
  1128. }
  1129. #endif // Z_PROBE_ALLEN_KEY
  1130. }
  1131. static void stow_z_probe(bool doRaise=true) {
  1132. #ifdef SERVO_ENDSTOPS
  1133. // Retract Z Servo endstop if enabled
  1134. if (servo_endstops[Z_AXIS] >= 0) {
  1135. #if Z_RAISE_AFTER_PROBING > 0
  1136. if (doRaise) {
  1137. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1138. st_synchronize();
  1139. }
  1140. #endif
  1141. // Change the Z servo angle
  1142. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1143. #if SERVO_LEVELING
  1144. srv->attach(0);
  1145. #endif
  1146. srv->write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1147. #if SERVO_LEVELING
  1148. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1149. srv->detach();
  1150. #endif
  1151. }
  1152. #elif defined(Z_PROBE_ALLEN_KEY)
  1153. // Move up for safety
  1154. feedrate = homing_feedrate[X_AXIS];
  1155. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1156. prepare_move_raw(); // this will also set_current_to_destination
  1157. // Move to the start position to initiate retraction
  1158. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1159. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1160. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1161. prepare_move_raw(); // this will also set_current_to_destination
  1162. // Move the nozzle down to push the probe into retracted position
  1163. feedrate = homing_feedrate[Z_AXIS]/10;
  1164. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1165. prepare_move_raw(); // this will also set_current_to_destination
  1166. // Move up for safety
  1167. feedrate = homing_feedrate[Z_AXIS]/2;
  1168. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1169. prepare_move_raw(); // this will also set_current_to_destination
  1170. // Home XY for safety
  1171. feedrate = homing_feedrate[X_AXIS]/2;
  1172. destination[X_AXIS] = 0;
  1173. destination[Y_AXIS] = 0;
  1174. prepare_move_raw(); // this will also set_current_to_destination
  1175. st_synchronize();
  1176. #ifdef Z_PROBE_ENDSTOP
  1177. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1178. if (!z_probe_endstop)
  1179. #else
  1180. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1181. if (!z_min_endstop)
  1182. #endif
  1183. {
  1184. if (IsRunning()) {
  1185. SERIAL_ERROR_START;
  1186. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1187. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1188. }
  1189. Stop();
  1190. }
  1191. #endif
  1192. }
  1193. enum ProbeAction {
  1194. ProbeStay = 0,
  1195. ProbeDeploy = BIT(0),
  1196. ProbeStow = BIT(1),
  1197. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1198. };
  1199. // Probe bed height at position (x,y), returns the measured z value
  1200. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
  1201. // move to right place
  1202. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1203. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1204. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1205. if (retract_action & ProbeDeploy) deploy_z_probe();
  1206. #endif
  1207. run_z_probe();
  1208. float measured_z = current_position[Z_AXIS];
  1209. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1210. if (retract_action == ProbeStay) {
  1211. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
  1212. st_synchronize();
  1213. }
  1214. #endif
  1215. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1216. if (retract_action & ProbeStow) stow_z_probe();
  1217. #endif
  1218. if (verbose_level > 2) {
  1219. SERIAL_PROTOCOLPGM("Bed");
  1220. SERIAL_PROTOCOLPGM(" X: ");
  1221. SERIAL_PROTOCOL_F(x, 3);
  1222. SERIAL_PROTOCOLPGM(" Y: ");
  1223. SERIAL_PROTOCOL_F(y, 3);
  1224. SERIAL_PROTOCOLPGM(" Z: ");
  1225. SERIAL_PROTOCOL_F(measured_z, 3);
  1226. SERIAL_EOL;
  1227. }
  1228. return measured_z;
  1229. }
  1230. #ifdef DELTA
  1231. /**
  1232. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1233. */
  1234. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1235. if (bed_level[x][y] != 0.0) {
  1236. return; // Don't overwrite good values.
  1237. }
  1238. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1239. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1240. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1241. float median = c; // Median is robust (ignores outliers).
  1242. if (a < b) {
  1243. if (b < c) median = b;
  1244. if (c < a) median = a;
  1245. } else { // b <= a
  1246. if (c < b) median = b;
  1247. if (a < c) median = a;
  1248. }
  1249. bed_level[x][y] = median;
  1250. }
  1251. // Fill in the unprobed points (corners of circular print surface)
  1252. // using linear extrapolation, away from the center.
  1253. static void extrapolate_unprobed_bed_level() {
  1254. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1255. for (int y = 0; y <= half; y++) {
  1256. for (int x = 0; x <= half; x++) {
  1257. if (x + y < 3) continue;
  1258. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1259. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1260. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1261. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1262. }
  1263. }
  1264. }
  1265. // Print calibration results for plotting or manual frame adjustment.
  1266. static void print_bed_level() {
  1267. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1268. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1269. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1270. SERIAL_PROTOCOLCHAR(' ');
  1271. }
  1272. SERIAL_EOL;
  1273. }
  1274. }
  1275. // Reset calibration results to zero.
  1276. void reset_bed_level() {
  1277. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1278. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1279. bed_level[x][y] = 0.0;
  1280. }
  1281. }
  1282. }
  1283. #endif // DELTA
  1284. #endif // ENABLE_AUTO_BED_LEVELING
  1285. #ifdef Z_PROBE_SLED
  1286. #ifndef SLED_DOCKING_OFFSET
  1287. #define SLED_DOCKING_OFFSET 0
  1288. #endif
  1289. /**
  1290. * Method to dock/undock a sled designed by Charles Bell.
  1291. *
  1292. * dock[in] If true, move to MAX_X and engage the electromagnet
  1293. * offset[in] The additional distance to move to adjust docking location
  1294. */
  1295. static void dock_sled(bool dock, int offset=0) {
  1296. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1297. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1298. SERIAL_ECHO_START;
  1299. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1300. return;
  1301. }
  1302. if (dock) {
  1303. float oldXpos = current_position[X_AXIS]; // save x position
  1304. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // rise Z
  1305. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1, current_position[Y_AXIS], current_position[Z_AXIS]); // Dock sled a bit closer to ensure proper capturing
  1306. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1307. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1308. } else {
  1309. float oldXpos = current_position[X_AXIS]; // save x position
  1310. float z_loc = current_position[Z_AXIS];
  1311. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1312. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1313. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1314. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1315. }
  1316. }
  1317. #endif // Z_PROBE_SLED
  1318. /**
  1319. * Home an individual axis
  1320. */
  1321. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1322. static void homeaxis(AxisEnum axis) {
  1323. #define HOMEAXIS_DO(LETTER) \
  1324. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1325. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1326. int axis_home_dir =
  1327. #ifdef DUAL_X_CARRIAGE
  1328. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1329. #endif
  1330. home_dir(axis);
  1331. // Set the axis position as setup for the move
  1332. current_position[axis] = 0;
  1333. sync_plan_position();
  1334. #ifdef Z_PROBE_SLED
  1335. // Get Probe
  1336. if (axis == Z_AXIS) {
  1337. if (axis_home_dir < 0) dock_sled(false);
  1338. }
  1339. #endif
  1340. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1341. // Deploy a probe if there is one, and homing towards the bed
  1342. if (axis == Z_AXIS) {
  1343. if (axis_home_dir < 0) deploy_z_probe();
  1344. }
  1345. else
  1346. #endif
  1347. #ifdef SERVO_ENDSTOPS
  1348. {
  1349. // Engage Servo endstop if enabled
  1350. if (servo_endstops[axis] > -1)
  1351. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1352. }
  1353. #endif
  1354. // Set a flag for Z motor locking
  1355. #ifdef Z_DUAL_ENDSTOPS
  1356. if (axis == Z_AXIS) In_Homing_Process(true);
  1357. #endif
  1358. // Move towards the endstop until an endstop is triggered
  1359. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1360. feedrate = homing_feedrate[axis];
  1361. line_to_destination();
  1362. st_synchronize();
  1363. // Set the axis position as setup for the move
  1364. current_position[axis] = 0;
  1365. sync_plan_position();
  1366. enable_endstops(false); // Disable endstops while moving away
  1367. // Move away from the endstop by the axis HOME_BUMP_MM
  1368. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1369. line_to_destination();
  1370. st_synchronize();
  1371. enable_endstops(true); // Enable endstops for next homing move
  1372. // Slow down the feedrate for the next move
  1373. set_homing_bump_feedrate(axis);
  1374. // Move slowly towards the endstop until triggered
  1375. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1376. line_to_destination();
  1377. st_synchronize();
  1378. #ifdef Z_DUAL_ENDSTOPS
  1379. if (axis == Z_AXIS) {
  1380. float adj = fabs(z_endstop_adj);
  1381. bool lockZ1;
  1382. if (axis_home_dir > 0) {
  1383. adj = -adj;
  1384. lockZ1 = (z_endstop_adj > 0);
  1385. }
  1386. else
  1387. lockZ1 = (z_endstop_adj < 0);
  1388. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1389. sync_plan_position();
  1390. // Move to the adjusted endstop height
  1391. feedrate = homing_feedrate[axis];
  1392. destination[Z_AXIS] = adj;
  1393. line_to_destination();
  1394. st_synchronize();
  1395. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1396. In_Homing_Process(false);
  1397. } // Z_AXIS
  1398. #endif
  1399. #ifdef DELTA
  1400. // retrace by the amount specified in endstop_adj
  1401. if (endstop_adj[axis] * axis_home_dir < 0) {
  1402. enable_endstops(false); // Disable endstops while moving away
  1403. sync_plan_position();
  1404. destination[axis] = endstop_adj[axis];
  1405. line_to_destination();
  1406. st_synchronize();
  1407. enable_endstops(true); // Enable endstops for next homing move
  1408. }
  1409. #endif
  1410. // Set the axis position to its home position (plus home offsets)
  1411. axis_is_at_home(axis);
  1412. sync_plan_position();
  1413. destination[axis] = current_position[axis];
  1414. feedrate = 0.0;
  1415. endstops_hit_on_purpose(); // clear endstop hit flags
  1416. axis_known_position[axis] = true;
  1417. #ifdef Z_PROBE_SLED
  1418. // bring probe back
  1419. if (axis == Z_AXIS) {
  1420. if (axis_home_dir < 0) dock_sled(true);
  1421. }
  1422. #endif
  1423. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1424. // Deploy a probe if there is one, and homing towards the bed
  1425. if (axis == Z_AXIS) {
  1426. if (axis_home_dir < 0) stow_z_probe();
  1427. }
  1428. else
  1429. #endif
  1430. #ifdef SERVO_ENDSTOPS
  1431. {
  1432. // Retract Servo endstop if enabled
  1433. if (servo_endstops[axis] > -1)
  1434. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1435. }
  1436. #endif
  1437. }
  1438. }
  1439. #ifdef FWRETRACT
  1440. void retract(bool retracting, bool swapping=false) {
  1441. if (retracting == retracted[active_extruder]) return;
  1442. float oldFeedrate = feedrate;
  1443. set_destination_to_current();
  1444. if (retracting) {
  1445. feedrate = retract_feedrate * 60;
  1446. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1447. plan_set_e_position(current_position[E_AXIS]);
  1448. prepare_move();
  1449. if (retract_zlift > 0.01) {
  1450. current_position[Z_AXIS] -= retract_zlift;
  1451. #ifdef DELTA
  1452. sync_plan_position_delta();
  1453. #else
  1454. sync_plan_position();
  1455. #endif
  1456. prepare_move();
  1457. }
  1458. }
  1459. else {
  1460. if (retract_zlift > 0.01) {
  1461. current_position[Z_AXIS] += retract_zlift;
  1462. #ifdef DELTA
  1463. sync_plan_position_delta();
  1464. #else
  1465. sync_plan_position();
  1466. #endif
  1467. //prepare_move();
  1468. }
  1469. feedrate = retract_recover_feedrate * 60;
  1470. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1471. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1472. plan_set_e_position(current_position[E_AXIS]);
  1473. prepare_move();
  1474. }
  1475. feedrate = oldFeedrate;
  1476. retracted[active_extruder] = retracting;
  1477. } // retract()
  1478. #endif // FWRETRACT
  1479. /**
  1480. *
  1481. * G-Code Handler functions
  1482. *
  1483. */
  1484. /**
  1485. * G0, G1: Coordinated movement of X Y Z E axes
  1486. */
  1487. inline void gcode_G0_G1() {
  1488. if (IsRunning()) {
  1489. get_coordinates(); // For X Y Z E F
  1490. #ifdef FWRETRACT
  1491. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1492. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1493. // Is this move an attempt to retract or recover?
  1494. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1495. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1496. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1497. retract(!retracted[active_extruder]);
  1498. return;
  1499. }
  1500. }
  1501. #endif //FWRETRACT
  1502. prepare_move();
  1503. //ok_to_send();
  1504. }
  1505. }
  1506. /**
  1507. * G2: Clockwise Arc
  1508. * G3: Counterclockwise Arc
  1509. */
  1510. inline void gcode_G2_G3(bool clockwise) {
  1511. if (IsRunning()) {
  1512. get_arc_coordinates();
  1513. prepare_arc_move(clockwise);
  1514. }
  1515. }
  1516. /**
  1517. * G4: Dwell S<seconds> or P<milliseconds>
  1518. */
  1519. inline void gcode_G4() {
  1520. millis_t codenum = 0;
  1521. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1522. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1523. st_synchronize();
  1524. refresh_cmd_timeout();
  1525. codenum += previous_cmd_ms; // keep track of when we started waiting
  1526. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1527. while (millis() < codenum) {
  1528. manage_heater();
  1529. manage_inactivity();
  1530. lcd_update();
  1531. }
  1532. }
  1533. #ifdef FWRETRACT
  1534. /**
  1535. * G10 - Retract filament according to settings of M207
  1536. * G11 - Recover filament according to settings of M208
  1537. */
  1538. inline void gcode_G10_G11(bool doRetract=false) {
  1539. #if EXTRUDERS > 1
  1540. if (doRetract) {
  1541. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1542. }
  1543. #endif
  1544. retract(doRetract
  1545. #if EXTRUDERS > 1
  1546. , retracted_swap[active_extruder]
  1547. #endif
  1548. );
  1549. }
  1550. #endif //FWRETRACT
  1551. /**
  1552. * G28: Home all axes according to settings
  1553. *
  1554. * Parameters
  1555. *
  1556. * None Home to all axes with no parameters.
  1557. * With QUICK_HOME enabled XY will home together, then Z.
  1558. *
  1559. * Cartesian parameters
  1560. *
  1561. * X Home to the X endstop
  1562. * Y Home to the Y endstop
  1563. * Z Home to the Z endstop
  1564. *
  1565. */
  1566. inline void gcode_G28() {
  1567. // Wait for planner moves to finish!
  1568. st_synchronize();
  1569. // For auto bed leveling, clear the level matrix
  1570. #ifdef ENABLE_AUTO_BED_LEVELING
  1571. plan_bed_level_matrix.set_to_identity();
  1572. #ifdef DELTA
  1573. reset_bed_level();
  1574. #endif
  1575. #endif
  1576. // For manual bed leveling deactivate the matrix temporarily
  1577. #ifdef MESH_BED_LEVELING
  1578. uint8_t mbl_was_active = mbl.active;
  1579. mbl.active = 0;
  1580. #endif
  1581. setup_for_endstop_move();
  1582. set_destination_to_current();
  1583. feedrate = 0.0;
  1584. #ifdef DELTA
  1585. // A delta can only safely home all axis at the same time
  1586. // all axis have to home at the same time
  1587. // Pretend the current position is 0,0,0
  1588. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1589. sync_plan_position();
  1590. // Move all carriages up together until the first endstop is hit.
  1591. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1592. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1593. line_to_destination();
  1594. st_synchronize();
  1595. endstops_hit_on_purpose(); // clear endstop hit flags
  1596. // Destination reached
  1597. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1598. // take care of back off and rehome now we are all at the top
  1599. HOMEAXIS(X);
  1600. HOMEAXIS(Y);
  1601. HOMEAXIS(Z);
  1602. sync_plan_position_delta();
  1603. #else // NOT DELTA
  1604. bool homeX = code_seen(axis_codes[X_AXIS]),
  1605. homeY = code_seen(axis_codes[Y_AXIS]),
  1606. homeZ = code_seen(axis_codes[Z_AXIS]);
  1607. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1608. if (home_all_axis || homeZ) {
  1609. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1610. HOMEAXIS(Z);
  1611. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1612. // Raise Z before homing any other axes
  1613. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1614. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1615. feedrate = max_feedrate[Z_AXIS] * 60;
  1616. line_to_destination();
  1617. st_synchronize();
  1618. #endif
  1619. } // home_all_axis || homeZ
  1620. #ifdef QUICK_HOME
  1621. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1622. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1623. #ifdef DUAL_X_CARRIAGE
  1624. int x_axis_home_dir = x_home_dir(active_extruder);
  1625. extruder_duplication_enabled = false;
  1626. #else
  1627. int x_axis_home_dir = home_dir(X_AXIS);
  1628. #endif
  1629. sync_plan_position();
  1630. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1631. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1632. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1633. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1634. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1635. line_to_destination();
  1636. st_synchronize();
  1637. axis_is_at_home(X_AXIS);
  1638. axis_is_at_home(Y_AXIS);
  1639. sync_plan_position();
  1640. destination[X_AXIS] = current_position[X_AXIS];
  1641. destination[Y_AXIS] = current_position[Y_AXIS];
  1642. line_to_destination();
  1643. feedrate = 0.0;
  1644. st_synchronize();
  1645. endstops_hit_on_purpose(); // clear endstop hit flags
  1646. current_position[X_AXIS] = destination[X_AXIS];
  1647. current_position[Y_AXIS] = destination[Y_AXIS];
  1648. #ifndef SCARA
  1649. current_position[Z_AXIS] = destination[Z_AXIS];
  1650. #endif
  1651. }
  1652. #endif // QUICK_HOME
  1653. #ifdef HOME_Y_BEFORE_X
  1654. // Home Y
  1655. if (home_all_axis || homeY) HOMEAXIS(Y);
  1656. #endif
  1657. // Home X
  1658. if (home_all_axis || homeX) {
  1659. #ifdef DUAL_X_CARRIAGE
  1660. int tmp_extruder = active_extruder;
  1661. extruder_duplication_enabled = false;
  1662. active_extruder = !active_extruder;
  1663. HOMEAXIS(X);
  1664. inactive_extruder_x_pos = current_position[X_AXIS];
  1665. active_extruder = tmp_extruder;
  1666. HOMEAXIS(X);
  1667. // reset state used by the different modes
  1668. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1669. delayed_move_time = 0;
  1670. active_extruder_parked = true;
  1671. #else
  1672. HOMEAXIS(X);
  1673. #endif
  1674. }
  1675. #ifndef HOME_Y_BEFORE_X
  1676. // Home Y
  1677. if (home_all_axis || homeY) HOMEAXIS(Y);
  1678. #endif
  1679. // Home Z last if homing towards the bed
  1680. #if Z_HOME_DIR < 0
  1681. if (home_all_axis || homeZ) {
  1682. #ifdef Z_SAFE_HOMING
  1683. if (home_all_axis) {
  1684. current_position[Z_AXIS] = 0;
  1685. sync_plan_position();
  1686. //
  1687. // Set the probe (or just the nozzle) destination to the safe homing point
  1688. //
  1689. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1690. // then this may not work as expected.
  1691. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1692. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1693. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1694. feedrate = XY_TRAVEL_SPEED;
  1695. // This could potentially move X, Y, Z all together
  1696. line_to_destination();
  1697. st_synchronize();
  1698. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1699. current_position[X_AXIS] = destination[X_AXIS];
  1700. current_position[Y_AXIS] = destination[Y_AXIS];
  1701. // Home the Z axis
  1702. HOMEAXIS(Z);
  1703. }
  1704. else if (homeZ) { // Don't need to Home Z twice
  1705. // Let's see if X and Y are homed
  1706. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1707. // Make sure the probe is within the physical limits
  1708. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1709. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1710. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1711. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1712. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1713. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1714. // Set the plan current position to X, Y, 0
  1715. current_position[Z_AXIS] = 0;
  1716. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1717. // Set Z destination away from bed and raise the axis
  1718. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1719. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1720. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1721. line_to_destination();
  1722. st_synchronize();
  1723. // Home the Z axis
  1724. HOMEAXIS(Z);
  1725. }
  1726. else {
  1727. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1728. SERIAL_ECHO_START;
  1729. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1730. }
  1731. }
  1732. else {
  1733. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1734. SERIAL_ECHO_START;
  1735. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1736. }
  1737. } // !home_all_axes && homeZ
  1738. #else // !Z_SAFE_HOMING
  1739. HOMEAXIS(Z);
  1740. #endif // !Z_SAFE_HOMING
  1741. } // home_all_axis || homeZ
  1742. #endif // Z_HOME_DIR < 0
  1743. sync_plan_position();
  1744. #endif // else DELTA
  1745. #ifdef SCARA
  1746. sync_plan_position_delta();
  1747. #endif
  1748. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1749. enable_endstops(false);
  1750. #endif
  1751. // For manual leveling move back to 0,0
  1752. #ifdef MESH_BED_LEVELING
  1753. if (mbl_was_active) {
  1754. current_position[X_AXIS] = mbl.get_x(0);
  1755. current_position[Y_AXIS] = mbl.get_y(0);
  1756. set_destination_to_current();
  1757. feedrate = homing_feedrate[X_AXIS];
  1758. line_to_destination();
  1759. st_synchronize();
  1760. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1761. sync_plan_position();
  1762. mbl.active = 1;
  1763. }
  1764. #endif
  1765. feedrate = saved_feedrate;
  1766. feedrate_multiplier = saved_feedrate_multiplier;
  1767. refresh_cmd_timeout();
  1768. endstops_hit_on_purpose(); // clear endstop hit flags
  1769. }
  1770. #ifdef MESH_BED_LEVELING
  1771. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1772. /**
  1773. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1774. * mesh to compensate for variable bed height
  1775. *
  1776. * Parameters With MESH_BED_LEVELING:
  1777. *
  1778. * S0 Produce a mesh report
  1779. * S1 Start probing mesh points
  1780. * S2 Probe the next mesh point
  1781. * S3 Xn Yn Zn.nn Manually modify a single point
  1782. *
  1783. * The S0 report the points as below
  1784. *
  1785. * +----> X-axis
  1786. * |
  1787. * |
  1788. * v Y-axis
  1789. *
  1790. */
  1791. inline void gcode_G29() {
  1792. static int probe_point = -1;
  1793. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1794. if (state < 0 || state > 3) {
  1795. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1796. return;
  1797. }
  1798. int ix, iy;
  1799. float z;
  1800. switch(state) {
  1801. case MeshReport:
  1802. if (mbl.active) {
  1803. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1804. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1805. SERIAL_PROTOCOLCHAR(',');
  1806. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1807. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1808. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1809. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1810. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1811. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1812. SERIAL_PROTOCOLPGM(" ");
  1813. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1814. }
  1815. SERIAL_EOL;
  1816. }
  1817. }
  1818. else
  1819. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1820. break;
  1821. case MeshStart:
  1822. mbl.reset();
  1823. probe_point = 0;
  1824. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1825. break;
  1826. case MeshNext:
  1827. if (probe_point < 0) {
  1828. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1829. return;
  1830. }
  1831. if (probe_point == 0) {
  1832. // Set Z to a positive value before recording the first Z.
  1833. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1834. sync_plan_position();
  1835. }
  1836. else {
  1837. // For others, save the Z of the previous point, then raise Z again.
  1838. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1839. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1840. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1841. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1842. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1843. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1844. st_synchronize();
  1845. }
  1846. // Is there another point to sample? Move there.
  1847. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1848. ix = probe_point % MESH_NUM_X_POINTS;
  1849. iy = probe_point / MESH_NUM_X_POINTS;
  1850. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1851. current_position[X_AXIS] = mbl.get_x(ix);
  1852. current_position[Y_AXIS] = mbl.get_y(iy);
  1853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1854. st_synchronize();
  1855. probe_point++;
  1856. }
  1857. else {
  1858. // After recording the last point, activate the mbl and home
  1859. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1860. probe_point = -1;
  1861. mbl.active = 1;
  1862. enqueuecommands_P(PSTR("G28"));
  1863. }
  1864. break;
  1865. case MeshSet:
  1866. if (code_seen('X') || code_seen('x')) {
  1867. ix = code_value_long()-1;
  1868. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1869. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1870. return;
  1871. }
  1872. } else {
  1873. SERIAL_PROTOCOLPGM("X not entered.\n");
  1874. return;
  1875. }
  1876. if (code_seen('Y') || code_seen('y')) {
  1877. iy = code_value_long()-1;
  1878. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  1879. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  1880. return;
  1881. }
  1882. } else {
  1883. SERIAL_PROTOCOLPGM("Y not entered.\n");
  1884. return;
  1885. }
  1886. if (code_seen('Z') || code_seen('z')) {
  1887. z = code_value();
  1888. } else {
  1889. SERIAL_PROTOCOLPGM("Z not entered.\n");
  1890. return;
  1891. }
  1892. mbl.z_values[iy][ix] = z;
  1893. } // switch(state)
  1894. }
  1895. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1896. /**
  1897. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1898. * Will fail if the printer has not been homed with G28.
  1899. *
  1900. * Enhanced G29 Auto Bed Leveling Probe Routine
  1901. *
  1902. * Parameters With AUTO_BED_LEVELING_GRID:
  1903. *
  1904. * P Set the size of the grid that will be probed (P x P points).
  1905. * Not supported by non-linear delta printer bed leveling.
  1906. * Example: "G29 P4"
  1907. *
  1908. * S Set the XY travel speed between probe points (in mm/min)
  1909. *
  1910. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1911. * or clean the rotation Matrix. Useful to check the topology
  1912. * after a first run of G29.
  1913. *
  1914. * V Set the verbose level (0-4). Example: "G29 V3"
  1915. *
  1916. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1917. * This is useful for manual bed leveling and finding flaws in the bed (to
  1918. * assist with part placement).
  1919. * Not supported by non-linear delta printer bed leveling.
  1920. *
  1921. * F Set the Front limit of the probing grid
  1922. * B Set the Back limit of the probing grid
  1923. * L Set the Left limit of the probing grid
  1924. * R Set the Right limit of the probing grid
  1925. *
  1926. * Global Parameters:
  1927. *
  1928. * E/e By default G29 will engage the probe, test the bed, then disengage.
  1929. * Include "E" to engage/disengage the probe for each sample.
  1930. * There's no extra effect if you have a fixed probe.
  1931. * Usage: "G29 E" or "G29 e"
  1932. *
  1933. */
  1934. inline void gcode_G29() {
  1935. // Don't allow auto-leveling without homing first
  1936. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1937. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1938. SERIAL_ECHO_START;
  1939. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1940. return;
  1941. }
  1942. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  1943. if (verbose_level < 0 || verbose_level > 4) {
  1944. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  1945. return;
  1946. }
  1947. bool dryrun = code_seen('D') || code_seen('d'),
  1948. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  1949. #ifdef AUTO_BED_LEVELING_GRID
  1950. #ifndef DELTA
  1951. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1952. #endif
  1953. if (verbose_level > 0) {
  1954. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1955. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  1956. }
  1957. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1958. #ifndef DELTA
  1959. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  1960. if (auto_bed_leveling_grid_points < 2) {
  1961. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1962. return;
  1963. }
  1964. #endif
  1965. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  1966. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  1967. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  1968. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  1969. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  1970. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1971. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1972. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1973. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1974. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1975. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1976. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1977. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1978. if (left_out || right_out || front_out || back_out) {
  1979. if (left_out) {
  1980. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1981. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1982. }
  1983. if (right_out) {
  1984. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1985. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1986. }
  1987. if (front_out) {
  1988. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1989. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1990. }
  1991. if (back_out) {
  1992. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1993. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1994. }
  1995. return;
  1996. }
  1997. #endif // AUTO_BED_LEVELING_GRID
  1998. #ifdef Z_PROBE_SLED
  1999. dock_sled(false); // engage (un-dock) the probe
  2000. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2001. deploy_z_probe();
  2002. #endif
  2003. st_synchronize();
  2004. if (!dryrun) {
  2005. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2006. plan_bed_level_matrix.set_to_identity();
  2007. #ifdef DELTA
  2008. reset_bed_level();
  2009. #else //!DELTA
  2010. //vector_3 corrected_position = plan_get_position_mm();
  2011. //corrected_position.debug("position before G29");
  2012. vector_3 uncorrected_position = plan_get_position();
  2013. //uncorrected_position.debug("position during G29");
  2014. current_position[X_AXIS] = uncorrected_position.x;
  2015. current_position[Y_AXIS] = uncorrected_position.y;
  2016. current_position[Z_AXIS] = uncorrected_position.z;
  2017. sync_plan_position();
  2018. #endif // !DELTA
  2019. }
  2020. setup_for_endstop_move();
  2021. feedrate = homing_feedrate[Z_AXIS];
  2022. #ifdef AUTO_BED_LEVELING_GRID
  2023. // probe at the points of a lattice grid
  2024. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2025. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2026. #ifdef DELTA
  2027. delta_grid_spacing[0] = xGridSpacing;
  2028. delta_grid_spacing[1] = yGridSpacing;
  2029. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  2030. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2031. #else // !DELTA
  2032. // solve the plane equation ax + by + d = z
  2033. // A is the matrix with rows [x y 1] for all the probed points
  2034. // B is the vector of the Z positions
  2035. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2036. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2037. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2038. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2039. eqnBVector[abl2], // "B" vector of Z points
  2040. mean = 0.0;
  2041. #endif // !DELTA
  2042. int probePointCounter = 0;
  2043. bool zig = true;
  2044. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2045. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2046. int xStart, xStop, xInc;
  2047. if (zig) {
  2048. xStart = 0;
  2049. xStop = auto_bed_leveling_grid_points;
  2050. xInc = 1;
  2051. }
  2052. else {
  2053. xStart = auto_bed_leveling_grid_points - 1;
  2054. xStop = -1;
  2055. xInc = -1;
  2056. }
  2057. #ifndef DELTA
  2058. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2059. // This gets the probe points in more readable order.
  2060. if (!do_topography_map) zig = !zig;
  2061. #endif
  2062. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2063. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2064. // raise extruder
  2065. float measured_z,
  2066. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2067. #ifdef DELTA
  2068. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2069. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2070. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2071. #endif //DELTA
  2072. ProbeAction act;
  2073. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2074. act = ProbeDeployAndStow;
  2075. else if (yCount == 0 && xCount == xStart)
  2076. act = ProbeDeploy;
  2077. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2078. act = ProbeStow;
  2079. else
  2080. act = ProbeStay;
  2081. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2082. #ifndef DELTA
  2083. mean += measured_z;
  2084. eqnBVector[probePointCounter] = measured_z;
  2085. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2086. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2087. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2088. #else
  2089. bed_level[xCount][yCount] = measured_z + z_offset;
  2090. #endif
  2091. probePointCounter++;
  2092. manage_heater();
  2093. manage_inactivity();
  2094. lcd_update();
  2095. } //xProbe
  2096. } //yProbe
  2097. clean_up_after_endstop_move();
  2098. #ifdef DELTA
  2099. if (!dryrun) extrapolate_unprobed_bed_level();
  2100. print_bed_level();
  2101. #else // !DELTA
  2102. // solve lsq problem
  2103. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2104. mean /= abl2;
  2105. if (verbose_level) {
  2106. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2107. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2108. SERIAL_PROTOCOLPGM(" b: ");
  2109. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2110. SERIAL_PROTOCOLPGM(" d: ");
  2111. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2112. SERIAL_EOL;
  2113. if (verbose_level > 2) {
  2114. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2115. SERIAL_PROTOCOL_F(mean, 8);
  2116. SERIAL_EOL;
  2117. }
  2118. }
  2119. // Show the Topography map if enabled
  2120. if (do_topography_map) {
  2121. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2122. SERIAL_PROTOCOLPGM("+-----------+\n");
  2123. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2124. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2125. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2126. SERIAL_PROTOCOLPGM("+-----------+\n");
  2127. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2128. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2129. int ind = yy * auto_bed_leveling_grid_points + xx;
  2130. float diff = eqnBVector[ind] - mean;
  2131. if (diff >= 0.0)
  2132. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2133. else
  2134. SERIAL_PROTOCOLCHAR(' ');
  2135. SERIAL_PROTOCOL_F(diff, 5);
  2136. } // xx
  2137. SERIAL_EOL;
  2138. } // yy
  2139. SERIAL_EOL;
  2140. } //do_topography_map
  2141. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2142. free(plane_equation_coefficients);
  2143. #endif //!DELTA
  2144. #else // !AUTO_BED_LEVELING_GRID
  2145. // Actions for each probe
  2146. ProbeAction p1, p2, p3;
  2147. if (deploy_probe_for_each_reading)
  2148. p1 = p2 = p3 = ProbeDeployAndStow;
  2149. else
  2150. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2151. // Probe at 3 arbitrary points
  2152. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2153. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2154. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2155. clean_up_after_endstop_move();
  2156. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2157. #endif // !AUTO_BED_LEVELING_GRID
  2158. #ifndef DELTA
  2159. if (verbose_level > 0)
  2160. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2161. if (!dryrun) {
  2162. // Correct the Z height difference from z-probe position and hotend tip position.
  2163. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2164. // When the bed is uneven, this height must be corrected.
  2165. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2166. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2167. z_tmp = current_position[Z_AXIS],
  2168. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2169. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2170. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2171. sync_plan_position();
  2172. }
  2173. #endif // !DELTA
  2174. #ifdef Z_PROBE_SLED
  2175. dock_sled(true); // dock the probe
  2176. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2177. stow_z_probe();
  2178. #endif
  2179. #ifdef Z_PROBE_END_SCRIPT
  2180. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2181. st_synchronize();
  2182. #endif
  2183. }
  2184. #ifndef Z_PROBE_SLED
  2185. inline void gcode_G30() {
  2186. deploy_z_probe(); // Engage Z Servo endstop if available
  2187. st_synchronize();
  2188. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2189. setup_for_endstop_move();
  2190. feedrate = homing_feedrate[Z_AXIS];
  2191. run_z_probe();
  2192. SERIAL_PROTOCOLPGM("Bed");
  2193. SERIAL_PROTOCOLPGM(" X: ");
  2194. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2195. SERIAL_PROTOCOLPGM(" Y: ");
  2196. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2197. SERIAL_PROTOCOLPGM(" Z: ");
  2198. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2199. SERIAL_EOL;
  2200. clean_up_after_endstop_move();
  2201. stow_z_probe(); // Retract Z Servo endstop if available
  2202. }
  2203. #endif //!Z_PROBE_SLED
  2204. #endif //ENABLE_AUTO_BED_LEVELING
  2205. /**
  2206. * G92: Set current position to given X Y Z E
  2207. */
  2208. inline void gcode_G92() {
  2209. if (!code_seen(axis_codes[E_AXIS]))
  2210. st_synchronize();
  2211. bool didXYZ = false;
  2212. for (int i = 0; i < NUM_AXIS; i++) {
  2213. if (code_seen(axis_codes[i])) {
  2214. float v = current_position[i] = code_value();
  2215. if (i == E_AXIS)
  2216. plan_set_e_position(v);
  2217. else
  2218. didXYZ = true;
  2219. }
  2220. }
  2221. if (didXYZ) sync_plan_position();
  2222. }
  2223. #ifdef ULTIPANEL
  2224. /**
  2225. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2226. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2227. */
  2228. inline void gcode_M0_M1() {
  2229. char *src = strchr_pointer + 2;
  2230. millis_t codenum = 0;
  2231. bool hasP = false, hasS = false;
  2232. if (code_seen('P')) {
  2233. codenum = code_value_short(); // milliseconds to wait
  2234. hasP = codenum > 0;
  2235. }
  2236. if (code_seen('S')) {
  2237. codenum = code_value() * 1000; // seconds to wait
  2238. hasS = codenum > 0;
  2239. }
  2240. char* starpos = strchr(src, '*');
  2241. if (starpos != NULL) *(starpos) = '\0';
  2242. while (*src == ' ') ++src;
  2243. if (!hasP && !hasS && *src != '\0')
  2244. lcd_setstatus(src, true);
  2245. else {
  2246. LCD_MESSAGEPGM(MSG_USERWAIT);
  2247. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2248. dontExpireStatus();
  2249. #endif
  2250. }
  2251. lcd_ignore_click();
  2252. st_synchronize();
  2253. refresh_cmd_timeout();
  2254. if (codenum > 0) {
  2255. codenum += previous_cmd_ms; // keep track of when we started waiting
  2256. while(millis() < codenum && !lcd_clicked()) {
  2257. manage_heater();
  2258. manage_inactivity();
  2259. lcd_update();
  2260. }
  2261. lcd_ignore_click(false);
  2262. }
  2263. else {
  2264. if (!lcd_detected()) return;
  2265. while (!lcd_clicked()) {
  2266. manage_heater();
  2267. manage_inactivity();
  2268. lcd_update();
  2269. }
  2270. }
  2271. if (IS_SD_PRINTING)
  2272. LCD_MESSAGEPGM(MSG_RESUMING);
  2273. else
  2274. LCD_MESSAGEPGM(WELCOME_MSG);
  2275. }
  2276. #endif // ULTIPANEL
  2277. /**
  2278. * M17: Enable power on all stepper motors
  2279. */
  2280. inline void gcode_M17() {
  2281. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2282. enable_all_steppers();
  2283. }
  2284. #ifdef SDSUPPORT
  2285. /**
  2286. * M20: List SD card to serial output
  2287. */
  2288. inline void gcode_M20() {
  2289. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2290. card.ls();
  2291. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2292. }
  2293. /**
  2294. * M21: Init SD Card
  2295. */
  2296. inline void gcode_M21() {
  2297. card.initsd();
  2298. }
  2299. /**
  2300. * M22: Release SD Card
  2301. */
  2302. inline void gcode_M22() {
  2303. card.release();
  2304. }
  2305. /**
  2306. * M23: Select a file
  2307. */
  2308. inline void gcode_M23() {
  2309. char* codepos = strchr_pointer + 4;
  2310. char* starpos = strchr(codepos, '*');
  2311. if (starpos) *starpos = '\0';
  2312. card.openFile(codepos, true);
  2313. }
  2314. /**
  2315. * M24: Start SD Print
  2316. */
  2317. inline void gcode_M24() {
  2318. card.startFileprint();
  2319. print_job_start_ms = millis();
  2320. }
  2321. /**
  2322. * M25: Pause SD Print
  2323. */
  2324. inline void gcode_M25() {
  2325. card.pauseSDPrint();
  2326. }
  2327. /**
  2328. * M26: Set SD Card file index
  2329. */
  2330. inline void gcode_M26() {
  2331. if (card.cardOK && code_seen('S'))
  2332. card.setIndex(code_value_short());
  2333. }
  2334. /**
  2335. * M27: Get SD Card status
  2336. */
  2337. inline void gcode_M27() {
  2338. card.getStatus();
  2339. }
  2340. /**
  2341. * M28: Start SD Write
  2342. */
  2343. inline void gcode_M28() {
  2344. char* codepos = strchr_pointer + 4;
  2345. char* starpos = strchr(codepos, '*');
  2346. if (starpos) {
  2347. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2348. strchr_pointer = strchr(npos, ' ') + 1;
  2349. *(starpos) = '\0';
  2350. }
  2351. card.openFile(codepos, false);
  2352. }
  2353. /**
  2354. * M29: Stop SD Write
  2355. * Processed in write to file routine above
  2356. */
  2357. inline void gcode_M29() {
  2358. // card.saving = false;
  2359. }
  2360. /**
  2361. * M30 <filename>: Delete SD Card file
  2362. */
  2363. inline void gcode_M30() {
  2364. if (card.cardOK) {
  2365. card.closefile();
  2366. char* starpos = strchr(strchr_pointer + 4, '*');
  2367. if (starpos) {
  2368. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2369. strchr_pointer = strchr(npos, ' ') + 1;
  2370. *(starpos) = '\0';
  2371. }
  2372. card.removeFile(strchr_pointer + 4);
  2373. }
  2374. }
  2375. #endif
  2376. /**
  2377. * M31: Get the time since the start of SD Print (or last M109)
  2378. */
  2379. inline void gcode_M31() {
  2380. print_job_stop_ms = millis();
  2381. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2382. int min = t / 60, sec = t % 60;
  2383. char time[30];
  2384. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2385. SERIAL_ECHO_START;
  2386. SERIAL_ECHOLN(time);
  2387. lcd_setstatus(time);
  2388. autotempShutdown();
  2389. }
  2390. #ifdef SDSUPPORT
  2391. /**
  2392. * M32: Select file and start SD Print
  2393. */
  2394. inline void gcode_M32() {
  2395. if (card.sdprinting)
  2396. st_synchronize();
  2397. char* codepos = strchr_pointer + 4;
  2398. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2399. if (! namestartpos)
  2400. namestartpos = codepos; //default name position, 4 letters after the M
  2401. else
  2402. namestartpos++; //to skip the '!'
  2403. char* starpos = strchr(codepos, '*');
  2404. if (starpos) *(starpos) = '\0';
  2405. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2406. if (card.cardOK) {
  2407. card.openFile(namestartpos, true, !call_procedure);
  2408. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2409. card.setIndex(code_value_short());
  2410. card.startFileprint();
  2411. if (!call_procedure)
  2412. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2413. }
  2414. }
  2415. /**
  2416. * M928: Start SD Write
  2417. */
  2418. inline void gcode_M928() {
  2419. char* starpos = strchr(strchr_pointer + 5, '*');
  2420. if (starpos) {
  2421. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2422. strchr_pointer = strchr(npos, ' ') + 1;
  2423. *(starpos) = '\0';
  2424. }
  2425. card.openLogFile(strchr_pointer + 5);
  2426. }
  2427. #endif // SDSUPPORT
  2428. /**
  2429. * M42: Change pin status via GCode
  2430. */
  2431. inline void gcode_M42() {
  2432. if (code_seen('S')) {
  2433. int pin_status = code_value_short(),
  2434. pin_number = LED_PIN;
  2435. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2436. pin_number = code_value_short();
  2437. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2438. if (sensitive_pins[i] == pin_number) {
  2439. pin_number = -1;
  2440. break;
  2441. }
  2442. }
  2443. #if HAS_FAN
  2444. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2445. #endif
  2446. if (pin_number > -1) {
  2447. pinMode(pin_number, OUTPUT);
  2448. digitalWrite(pin_number, pin_status);
  2449. analogWrite(pin_number, pin_status);
  2450. }
  2451. } // code_seen('S')
  2452. }
  2453. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2454. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2455. #ifdef Z_PROBE_ENDSTOP
  2456. #if !HAS_Z_PROBE
  2457. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2458. #endif
  2459. #elif !HAS_Z_MIN
  2460. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2461. #endif
  2462. /**
  2463. * M48: Z-Probe repeatability measurement function.
  2464. *
  2465. * Usage:
  2466. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2467. * P = Number of sampled points (4-50, default 10)
  2468. * X = Sample X position
  2469. * Y = Sample Y position
  2470. * V = Verbose level (0-4, default=1)
  2471. * E = Engage probe for each reading
  2472. * L = Number of legs of movement before probe
  2473. *
  2474. * This function assumes the bed has been homed. Specifically, that a G28 command
  2475. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2476. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2477. * regenerated.
  2478. */
  2479. inline void gcode_M48() {
  2480. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2481. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2482. if (code_seen('V') || code_seen('v')) {
  2483. verbose_level = code_value_short();
  2484. if (verbose_level < 0 || verbose_level > 4 ) {
  2485. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2486. return;
  2487. }
  2488. }
  2489. if (verbose_level > 0)
  2490. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2491. if (code_seen('P') || code_seen('p')) {
  2492. n_samples = code_value_short();
  2493. if (n_samples < 4 || n_samples > 50) {
  2494. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2495. return;
  2496. }
  2497. }
  2498. double X_current = st_get_position_mm(X_AXIS),
  2499. Y_current = st_get_position_mm(Y_AXIS),
  2500. Z_current = st_get_position_mm(Z_AXIS),
  2501. E_current = st_get_position_mm(E_AXIS),
  2502. X_probe_location = X_current, Y_probe_location = Y_current,
  2503. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2504. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2505. if (code_seen('X') || code_seen('x')) {
  2506. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2507. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2508. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2509. return;
  2510. }
  2511. }
  2512. if (code_seen('Y') || code_seen('y')) {
  2513. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2514. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2515. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2516. return;
  2517. }
  2518. }
  2519. if (code_seen('L') || code_seen('l')) {
  2520. n_legs = code_value_short();
  2521. if (n_legs == 1) n_legs = 2;
  2522. if (n_legs < 0 || n_legs > 15) {
  2523. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2524. return;
  2525. }
  2526. }
  2527. //
  2528. // Do all the preliminary setup work. First raise the probe.
  2529. //
  2530. st_synchronize();
  2531. plan_bed_level_matrix.set_to_identity();
  2532. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2533. st_synchronize();
  2534. //
  2535. // Now get everything to the specified probe point So we can safely do a probe to
  2536. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2537. // use that as a starting point for each probe.
  2538. //
  2539. if (verbose_level > 2)
  2540. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2541. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2542. E_current,
  2543. homing_feedrate[X_AXIS]/60,
  2544. active_extruder);
  2545. st_synchronize();
  2546. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2547. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2548. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2549. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2550. //
  2551. // OK, do the initial probe to get us close to the bed.
  2552. // Then retrace the right amount and use that in subsequent probes
  2553. //
  2554. deploy_z_probe();
  2555. setup_for_endstop_move();
  2556. run_z_probe();
  2557. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2558. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2559. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2560. E_current,
  2561. homing_feedrate[X_AXIS]/60,
  2562. active_extruder);
  2563. st_synchronize();
  2564. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2565. if (deploy_probe_for_each_reading) stow_z_probe();
  2566. for (uint8_t n=0; n < n_samples; n++) {
  2567. // Make sure we are at the probe location
  2568. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2569. if (n_legs) {
  2570. millis_t ms = millis();
  2571. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2572. theta = RADIANS(ms % 360L);
  2573. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2574. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2575. //SERIAL_ECHOPAIR(" theta: ",theta);
  2576. //SERIAL_ECHOPAIR(" direction: ",dir);
  2577. //SERIAL_EOL;
  2578. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2579. ms = millis();
  2580. theta += RADIANS(dir * (ms % 20L));
  2581. radius += (ms % 10L) - 5L;
  2582. if (radius < 0.0) radius = -radius;
  2583. X_current = X_probe_location + cos(theta) * radius;
  2584. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2585. Y_current = Y_probe_location + sin(theta) * radius;
  2586. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2587. if (verbose_level > 3) {
  2588. SERIAL_ECHOPAIR("x: ", X_current);
  2589. SERIAL_ECHOPAIR("y: ", Y_current);
  2590. SERIAL_EOL;
  2591. }
  2592. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2593. } // n_legs loop
  2594. // Go back to the probe location
  2595. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2596. } // n_legs
  2597. if (deploy_probe_for_each_reading) {
  2598. deploy_z_probe();
  2599. delay(1000);
  2600. }
  2601. setup_for_endstop_move();
  2602. run_z_probe();
  2603. sample_set[n] = current_position[Z_AXIS];
  2604. //
  2605. // Get the current mean for the data points we have so far
  2606. //
  2607. sum = 0.0;
  2608. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2609. mean = sum / (n + 1);
  2610. //
  2611. // Now, use that mean to calculate the standard deviation for the
  2612. // data points we have so far
  2613. //
  2614. sum = 0.0;
  2615. for (uint8_t j = 0; j <= n; j++) {
  2616. float ss = sample_set[j] - mean;
  2617. sum += ss * ss;
  2618. }
  2619. sigma = sqrt(sum / (n + 1));
  2620. if (verbose_level > 1) {
  2621. SERIAL_PROTOCOL(n+1);
  2622. SERIAL_PROTOCOLPGM(" of ");
  2623. SERIAL_PROTOCOL(n_samples);
  2624. SERIAL_PROTOCOLPGM(" z: ");
  2625. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2626. if (verbose_level > 2) {
  2627. SERIAL_PROTOCOLPGM(" mean: ");
  2628. SERIAL_PROTOCOL_F(mean,6);
  2629. SERIAL_PROTOCOLPGM(" sigma: ");
  2630. SERIAL_PROTOCOL_F(sigma,6);
  2631. }
  2632. }
  2633. if (verbose_level > 0) SERIAL_EOL;
  2634. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2635. st_synchronize();
  2636. // Stow between
  2637. if (deploy_probe_for_each_reading) {
  2638. stow_z_probe();
  2639. delay(1000);
  2640. }
  2641. }
  2642. // Stow after
  2643. if (!deploy_probe_for_each_reading) {
  2644. stow_z_probe();
  2645. delay(1000);
  2646. }
  2647. clean_up_after_endstop_move();
  2648. if (verbose_level > 0) {
  2649. SERIAL_PROTOCOLPGM("Mean: ");
  2650. SERIAL_PROTOCOL_F(mean, 6);
  2651. SERIAL_EOL;
  2652. }
  2653. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2654. SERIAL_PROTOCOL_F(sigma, 6);
  2655. SERIAL_EOL; SERIAL_EOL;
  2656. }
  2657. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2658. /**
  2659. * M104: Set hot end temperature
  2660. */
  2661. inline void gcode_M104() {
  2662. if (setTargetedHotend(104)) return;
  2663. if (code_seen('S')) {
  2664. float temp = code_value();
  2665. setTargetHotend(temp, target_extruder);
  2666. #ifdef DUAL_X_CARRIAGE
  2667. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2668. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2669. #endif
  2670. #ifdef THERMAL_PROTECTION_HOTENDS
  2671. start_watching_heater(target_extruder);
  2672. #endif
  2673. }
  2674. }
  2675. /**
  2676. * M105: Read hot end and bed temperature
  2677. */
  2678. inline void gcode_M105() {
  2679. if (setTargetedHotend(105)) return;
  2680. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2681. SERIAL_PROTOCOLPGM("ok");
  2682. #if HAS_TEMP_0
  2683. SERIAL_PROTOCOLPGM(" T:");
  2684. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2685. SERIAL_PROTOCOLPGM(" /");
  2686. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2687. #endif
  2688. #if HAS_TEMP_BED
  2689. SERIAL_PROTOCOLPGM(" B:");
  2690. SERIAL_PROTOCOL_F(degBed(), 1);
  2691. SERIAL_PROTOCOLPGM(" /");
  2692. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2693. #endif
  2694. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2695. SERIAL_PROTOCOLPGM(" T");
  2696. SERIAL_PROTOCOL(e);
  2697. SERIAL_PROTOCOLCHAR(':');
  2698. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2699. SERIAL_PROTOCOLPGM(" /");
  2700. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2701. }
  2702. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2703. SERIAL_ERROR_START;
  2704. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2705. #endif
  2706. SERIAL_PROTOCOLPGM(" @:");
  2707. #ifdef EXTRUDER_WATTS
  2708. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2709. SERIAL_PROTOCOLCHAR('W');
  2710. #else
  2711. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2712. #endif
  2713. SERIAL_PROTOCOLPGM(" B@:");
  2714. #ifdef BED_WATTS
  2715. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2716. SERIAL_PROTOCOLCHAR('W');
  2717. #else
  2718. SERIAL_PROTOCOL(getHeaterPower(-1));
  2719. #endif
  2720. #ifdef SHOW_TEMP_ADC_VALUES
  2721. #if HAS_TEMP_BED
  2722. SERIAL_PROTOCOLPGM(" ADC B:");
  2723. SERIAL_PROTOCOL_F(degBed(),1);
  2724. SERIAL_PROTOCOLPGM("C->");
  2725. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2726. #endif
  2727. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2728. SERIAL_PROTOCOLPGM(" T");
  2729. SERIAL_PROTOCOL(cur_extruder);
  2730. SERIAL_PROTOCOLCHAR(':');
  2731. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2732. SERIAL_PROTOCOLPGM("C->");
  2733. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2734. }
  2735. #endif
  2736. SERIAL_EOL;
  2737. }
  2738. #if HAS_FAN
  2739. /**
  2740. * M106: Set Fan Speed
  2741. */
  2742. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2743. /**
  2744. * M107: Fan Off
  2745. */
  2746. inline void gcode_M107() { fanSpeed = 0; }
  2747. #endif // HAS_FAN
  2748. /**
  2749. * M109: Wait for extruder(s) to reach temperature
  2750. */
  2751. inline void gcode_M109() {
  2752. if (setTargetedHotend(109)) return;
  2753. LCD_MESSAGEPGM(MSG_HEATING);
  2754. no_wait_for_cooling = code_seen('S');
  2755. if (no_wait_for_cooling || code_seen('R')) {
  2756. float temp = code_value();
  2757. setTargetHotend(temp, target_extruder);
  2758. #ifdef DUAL_X_CARRIAGE
  2759. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2760. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2761. #endif
  2762. }
  2763. #ifdef AUTOTEMP
  2764. autotemp_enabled = code_seen('F');
  2765. if (autotemp_enabled) autotemp_factor = code_value();
  2766. if (code_seen('S')) autotemp_min = code_value();
  2767. if (code_seen('B')) autotemp_max = code_value();
  2768. #endif
  2769. #ifdef THERMAL_PROTECTION_HOTENDS
  2770. start_watching_heater(target_extruder);
  2771. #endif
  2772. millis_t temp_ms = millis();
  2773. /* See if we are heating up or cooling down */
  2774. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2775. cancel_heatup = false;
  2776. #ifdef TEMP_RESIDENCY_TIME
  2777. long residency_start_ms = -1;
  2778. /* continue to loop until we have reached the target temp
  2779. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2780. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2781. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2782. #else
  2783. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2784. #endif //TEMP_RESIDENCY_TIME
  2785. { // while loop
  2786. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2787. SERIAL_PROTOCOLPGM("T:");
  2788. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2789. SERIAL_PROTOCOLPGM(" E:");
  2790. SERIAL_PROTOCOL((int)target_extruder);
  2791. #ifdef TEMP_RESIDENCY_TIME
  2792. SERIAL_PROTOCOLPGM(" W:");
  2793. if (residency_start_ms > -1) {
  2794. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2795. SERIAL_PROTOCOLLN(temp_ms);
  2796. }
  2797. else {
  2798. SERIAL_PROTOCOLLNPGM("?");
  2799. }
  2800. #else
  2801. SERIAL_EOL;
  2802. #endif
  2803. temp_ms = millis();
  2804. }
  2805. manage_heater();
  2806. manage_inactivity();
  2807. lcd_update();
  2808. #ifdef TEMP_RESIDENCY_TIME
  2809. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2810. // or when current temp falls outside the hysteresis after target temp was reached
  2811. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2812. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2813. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2814. {
  2815. residency_start_ms = millis();
  2816. }
  2817. #endif //TEMP_RESIDENCY_TIME
  2818. }
  2819. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2820. refresh_cmd_timeout();
  2821. print_job_start_ms = previous_cmd_ms;
  2822. }
  2823. #if HAS_TEMP_BED
  2824. /**
  2825. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2826. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2827. */
  2828. inline void gcode_M190() {
  2829. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2830. no_wait_for_cooling = code_seen('S');
  2831. if (no_wait_for_cooling || code_seen('R'))
  2832. setTargetBed(code_value());
  2833. millis_t temp_ms = millis();
  2834. cancel_heatup = false;
  2835. target_direction = isHeatingBed(); // true if heating, false if cooling
  2836. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2837. millis_t ms = millis();
  2838. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2839. temp_ms = ms;
  2840. float tt = degHotend(active_extruder);
  2841. SERIAL_PROTOCOLPGM("T:");
  2842. SERIAL_PROTOCOL(tt);
  2843. SERIAL_PROTOCOLPGM(" E:");
  2844. SERIAL_PROTOCOL((int)active_extruder);
  2845. SERIAL_PROTOCOLPGM(" B:");
  2846. SERIAL_PROTOCOL_F(degBed(), 1);
  2847. SERIAL_EOL;
  2848. }
  2849. manage_heater();
  2850. manage_inactivity();
  2851. lcd_update();
  2852. }
  2853. LCD_MESSAGEPGM(MSG_BED_DONE);
  2854. refresh_cmd_timeout();
  2855. }
  2856. #endif // HAS_TEMP_BED
  2857. /**
  2858. * M111: Set the debug level
  2859. */
  2860. inline void gcode_M111() {
  2861. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_ERRORS;
  2862. }
  2863. /**
  2864. * M112: Emergency Stop
  2865. */
  2866. inline void gcode_M112() { kill(); }
  2867. #ifdef BARICUDA
  2868. #if HAS_HEATER_1
  2869. /**
  2870. * M126: Heater 1 valve open
  2871. */
  2872. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2873. /**
  2874. * M127: Heater 1 valve close
  2875. */
  2876. inline void gcode_M127() { ValvePressure = 0; }
  2877. #endif
  2878. #if HAS_HEATER_2
  2879. /**
  2880. * M128: Heater 2 valve open
  2881. */
  2882. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2883. /**
  2884. * M129: Heater 2 valve close
  2885. */
  2886. inline void gcode_M129() { EtoPPressure = 0; }
  2887. #endif
  2888. #endif //BARICUDA
  2889. /**
  2890. * M140: Set bed temperature
  2891. */
  2892. inline void gcode_M140() {
  2893. if (code_seen('S')) setTargetBed(code_value());
  2894. }
  2895. #ifdef ULTIPANEL
  2896. /**
  2897. * M145: Set the heatup state for a material in the LCD menu
  2898. * S<material> (0=PLA, 1=ABS)
  2899. * H<hotend temp>
  2900. * B<bed temp>
  2901. * F<fan speed>
  2902. */
  2903. inline void gcode_M145() {
  2904. uint8_t material = code_seen('S') ? code_value_short() : 0;
  2905. if (material < 0 || material > 1) {
  2906. SERIAL_ERROR_START;
  2907. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  2908. }
  2909. else {
  2910. int v;
  2911. switch (material) {
  2912. case 0:
  2913. if (code_seen('H')) {
  2914. v = code_value_short();
  2915. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  2916. }
  2917. if (code_seen('F')) {
  2918. v = code_value_short();
  2919. plaPreheatFanSpeed = constrain(v, 0, 255);
  2920. }
  2921. #if TEMP_SENSOR_BED != 0
  2922. if (code_seen('B')) {
  2923. v = code_value_short();
  2924. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  2925. }
  2926. #endif
  2927. break;
  2928. case 1:
  2929. if (code_seen('H')) {
  2930. v = code_value_short();
  2931. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  2932. }
  2933. if (code_seen('F')) {
  2934. v = code_value_short();
  2935. absPreheatFanSpeed = constrain(v, 0, 255);
  2936. }
  2937. #if TEMP_SENSOR_BED != 0
  2938. if (code_seen('B')) {
  2939. v = code_value_short();
  2940. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  2941. }
  2942. #endif
  2943. break;
  2944. }
  2945. }
  2946. }
  2947. #endif
  2948. #if HAS_POWER_SWITCH
  2949. /**
  2950. * M80: Turn on Power Supply
  2951. */
  2952. inline void gcode_M80() {
  2953. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2954. // If you have a switch on suicide pin, this is useful
  2955. // if you want to start another print with suicide feature after
  2956. // a print without suicide...
  2957. #if HAS_SUICIDE
  2958. OUT_WRITE(SUICIDE_PIN, HIGH);
  2959. #endif
  2960. #ifdef ULTIPANEL
  2961. powersupply = true;
  2962. LCD_MESSAGEPGM(WELCOME_MSG);
  2963. lcd_update();
  2964. #endif
  2965. }
  2966. #endif // HAS_POWER_SWITCH
  2967. /**
  2968. * M81: Turn off Power, including Power Supply, if there is one.
  2969. *
  2970. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2971. */
  2972. inline void gcode_M81() {
  2973. disable_all_heaters();
  2974. st_synchronize();
  2975. disable_e0();
  2976. disable_e1();
  2977. disable_e2();
  2978. disable_e3();
  2979. finishAndDisableSteppers();
  2980. fanSpeed = 0;
  2981. delay(1000); // Wait 1 second before switching off
  2982. #if HAS_SUICIDE
  2983. st_synchronize();
  2984. suicide();
  2985. #elif HAS_POWER_SWITCH
  2986. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2987. #endif
  2988. #ifdef ULTIPANEL
  2989. #if HAS_POWER_SWITCH
  2990. powersupply = false;
  2991. #endif
  2992. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2993. lcd_update();
  2994. #endif
  2995. }
  2996. /**
  2997. * M82: Set E codes absolute (default)
  2998. */
  2999. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3000. /**
  3001. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  3002. */
  3003. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3004. /**
  3005. * M18, M84: Disable all stepper motors
  3006. */
  3007. inline void gcode_M18_M84() {
  3008. if (code_seen('S')) {
  3009. stepper_inactive_time = code_value() * 1000;
  3010. }
  3011. else {
  3012. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3013. if (all_axis) {
  3014. st_synchronize();
  3015. disable_e0();
  3016. disable_e1();
  3017. disable_e2();
  3018. disable_e3();
  3019. finishAndDisableSteppers();
  3020. }
  3021. else {
  3022. st_synchronize();
  3023. if (code_seen('X')) disable_x();
  3024. if (code_seen('Y')) disable_y();
  3025. if (code_seen('Z')) disable_z();
  3026. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3027. if (code_seen('E')) {
  3028. disable_e0();
  3029. disable_e1();
  3030. disable_e2();
  3031. disable_e3();
  3032. }
  3033. #endif
  3034. }
  3035. }
  3036. }
  3037. /**
  3038. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3039. */
  3040. inline void gcode_M85() {
  3041. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3042. }
  3043. /**
  3044. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3045. * (Follows the same syntax as G92)
  3046. */
  3047. inline void gcode_M92() {
  3048. for(int8_t i=0; i < NUM_AXIS; i++) {
  3049. if (code_seen(axis_codes[i])) {
  3050. if (i == E_AXIS) {
  3051. float value = code_value();
  3052. if (value < 20.0) {
  3053. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3054. max_e_jerk *= factor;
  3055. max_feedrate[i] *= factor;
  3056. axis_steps_per_sqr_second[i] *= factor;
  3057. }
  3058. axis_steps_per_unit[i] = value;
  3059. }
  3060. else {
  3061. axis_steps_per_unit[i] = code_value();
  3062. }
  3063. }
  3064. }
  3065. }
  3066. /**
  3067. * M114: Output current position to serial port
  3068. */
  3069. inline void gcode_M114() {
  3070. SERIAL_PROTOCOLPGM("X:");
  3071. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3072. SERIAL_PROTOCOLPGM(" Y:");
  3073. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3074. SERIAL_PROTOCOLPGM(" Z:");
  3075. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3076. SERIAL_PROTOCOLPGM(" E:");
  3077. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3078. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3079. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3080. SERIAL_PROTOCOLPGM(" Y:");
  3081. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3082. SERIAL_PROTOCOLPGM(" Z:");
  3083. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3084. SERIAL_EOL;
  3085. #ifdef SCARA
  3086. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3087. SERIAL_PROTOCOL(delta[X_AXIS]);
  3088. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3089. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3090. SERIAL_EOL;
  3091. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3092. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3093. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3094. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3095. SERIAL_EOL;
  3096. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3097. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3098. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3099. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3100. SERIAL_EOL; SERIAL_EOL;
  3101. #endif
  3102. }
  3103. /**
  3104. * M115: Capabilities string
  3105. */
  3106. inline void gcode_M115() {
  3107. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3108. }
  3109. /**
  3110. * M117: Set LCD Status Message
  3111. */
  3112. inline void gcode_M117() {
  3113. char* codepos = strchr_pointer + 5;
  3114. char* starpos = strchr(codepos, '*');
  3115. if (starpos) *starpos = '\0';
  3116. lcd_setstatus(codepos);
  3117. }
  3118. /**
  3119. * M119: Output endstop states to serial output
  3120. */
  3121. inline void gcode_M119() {
  3122. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3123. #if HAS_X_MIN
  3124. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3125. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3126. #endif
  3127. #if HAS_X_MAX
  3128. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3129. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3130. #endif
  3131. #if HAS_Y_MIN
  3132. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3133. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3134. #endif
  3135. #if HAS_Y_MAX
  3136. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3137. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3138. #endif
  3139. #if HAS_Z_MIN
  3140. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3141. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3142. #endif
  3143. #if HAS_Z_MAX
  3144. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3145. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3146. #endif
  3147. #if HAS_Z2_MAX
  3148. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3149. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3150. #endif
  3151. #if HAS_Z_PROBE
  3152. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3153. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3154. #endif
  3155. }
  3156. /**
  3157. * M120: Enable endstops
  3158. */
  3159. inline void gcode_M120() { enable_endstops(false); }
  3160. /**
  3161. * M121: Disable endstops
  3162. */
  3163. inline void gcode_M121() { enable_endstops(true); }
  3164. #ifdef BLINKM
  3165. /**
  3166. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3167. */
  3168. inline void gcode_M150() {
  3169. SendColors(
  3170. code_seen('R') ? (byte)code_value_short() : 0,
  3171. code_seen('U') ? (byte)code_value_short() : 0,
  3172. code_seen('B') ? (byte)code_value_short() : 0
  3173. );
  3174. }
  3175. #endif // BLINKM
  3176. /**
  3177. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3178. * T<extruder>
  3179. * D<millimeters>
  3180. */
  3181. inline void gcode_M200() {
  3182. int tmp_extruder = active_extruder;
  3183. if (code_seen('T')) {
  3184. tmp_extruder = code_value_short();
  3185. if (tmp_extruder >= EXTRUDERS) {
  3186. SERIAL_ECHO_START;
  3187. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3188. return;
  3189. }
  3190. }
  3191. if (code_seen('D')) {
  3192. float diameter = code_value();
  3193. // setting any extruder filament size disables volumetric on the assumption that
  3194. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3195. // for all extruders
  3196. volumetric_enabled = (diameter != 0.0);
  3197. if (volumetric_enabled) {
  3198. filament_size[tmp_extruder] = diameter;
  3199. // make sure all extruders have some sane value for the filament size
  3200. for (int i=0; i<EXTRUDERS; i++)
  3201. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3202. }
  3203. }
  3204. else {
  3205. //reserved for setting filament diameter via UFID or filament measuring device
  3206. return;
  3207. }
  3208. calculate_volumetric_multipliers();
  3209. }
  3210. /**
  3211. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3212. */
  3213. inline void gcode_M201() {
  3214. for (int8_t i=0; i < NUM_AXIS; i++) {
  3215. if (code_seen(axis_codes[i])) {
  3216. max_acceleration_units_per_sq_second[i] = code_value();
  3217. }
  3218. }
  3219. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3220. reset_acceleration_rates();
  3221. }
  3222. #if 0 // Not used for Sprinter/grbl gen6
  3223. inline void gcode_M202() {
  3224. for(int8_t i=0; i < NUM_AXIS; i++) {
  3225. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3226. }
  3227. }
  3228. #endif
  3229. /**
  3230. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3231. */
  3232. inline void gcode_M203() {
  3233. for (int8_t i=0; i < NUM_AXIS; i++) {
  3234. if (code_seen(axis_codes[i])) {
  3235. max_feedrate[i] = code_value();
  3236. }
  3237. }
  3238. }
  3239. /**
  3240. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3241. *
  3242. * P = Printing moves
  3243. * R = Retract only (no X, Y, Z) moves
  3244. * T = Travel (non printing) moves
  3245. *
  3246. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3247. */
  3248. inline void gcode_M204() {
  3249. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3250. acceleration = code_value();
  3251. travel_acceleration = acceleration;
  3252. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3253. SERIAL_EOL;
  3254. }
  3255. if (code_seen('P')) {
  3256. acceleration = code_value();
  3257. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3258. SERIAL_EOL;
  3259. }
  3260. if (code_seen('R')) {
  3261. retract_acceleration = code_value();
  3262. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3263. SERIAL_EOL;
  3264. }
  3265. if (code_seen('T')) {
  3266. travel_acceleration = code_value();
  3267. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3268. SERIAL_EOL;
  3269. }
  3270. }
  3271. /**
  3272. * M205: Set Advanced Settings
  3273. *
  3274. * S = Min Feed Rate (mm/s)
  3275. * T = Min Travel Feed Rate (mm/s)
  3276. * B = Min Segment Time (µs)
  3277. * X = Max XY Jerk (mm/s/s)
  3278. * Z = Max Z Jerk (mm/s/s)
  3279. * E = Max E Jerk (mm/s/s)
  3280. */
  3281. inline void gcode_M205() {
  3282. if (code_seen('S')) minimumfeedrate = code_value();
  3283. if (code_seen('T')) mintravelfeedrate = code_value();
  3284. if (code_seen('B')) minsegmenttime = code_value();
  3285. if (code_seen('X')) max_xy_jerk = code_value();
  3286. if (code_seen('Z')) max_z_jerk = code_value();
  3287. if (code_seen('E')) max_e_jerk = code_value();
  3288. }
  3289. /**
  3290. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3291. */
  3292. inline void gcode_M206() {
  3293. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3294. if (code_seen(axis_codes[i])) {
  3295. home_offset[i] = code_value();
  3296. }
  3297. }
  3298. #ifdef SCARA
  3299. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3300. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3301. #endif
  3302. }
  3303. #ifdef DELTA
  3304. /**
  3305. * M665: Set delta configurations
  3306. *
  3307. * L = diagonal rod
  3308. * R = delta radius
  3309. * S = segments per second
  3310. */
  3311. inline void gcode_M665() {
  3312. if (code_seen('L')) delta_diagonal_rod = code_value();
  3313. if (code_seen('R')) delta_radius = code_value();
  3314. if (code_seen('S')) delta_segments_per_second = code_value();
  3315. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3316. }
  3317. /**
  3318. * M666: Set delta endstop adjustment
  3319. */
  3320. inline void gcode_M666() {
  3321. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3322. if (code_seen(axis_codes[i])) {
  3323. endstop_adj[i] = code_value();
  3324. }
  3325. }
  3326. }
  3327. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3328. /**
  3329. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3330. */
  3331. inline void gcode_M666() {
  3332. if (code_seen('Z')) z_endstop_adj = code_value();
  3333. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3334. SERIAL_EOL;
  3335. }
  3336. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3337. #ifdef FWRETRACT
  3338. /**
  3339. * M207: Set firmware retraction values
  3340. *
  3341. * S[+mm] retract_length
  3342. * W[+mm] retract_length_swap (multi-extruder)
  3343. * F[mm/min] retract_feedrate
  3344. * Z[mm] retract_zlift
  3345. */
  3346. inline void gcode_M207() {
  3347. if (code_seen('S')) retract_length = code_value();
  3348. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3349. if (code_seen('Z')) retract_zlift = code_value();
  3350. #if EXTRUDERS > 1
  3351. if (code_seen('W')) retract_length_swap = code_value();
  3352. #endif
  3353. }
  3354. /**
  3355. * M208: Set firmware un-retraction values
  3356. *
  3357. * S[+mm] retract_recover_length (in addition to M207 S*)
  3358. * W[+mm] retract_recover_length_swap (multi-extruder)
  3359. * F[mm/min] retract_recover_feedrate
  3360. */
  3361. inline void gcode_M208() {
  3362. if (code_seen('S')) retract_recover_length = code_value();
  3363. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3364. #if EXTRUDERS > 1
  3365. if (code_seen('W')) retract_recover_length_swap = code_value();
  3366. #endif
  3367. }
  3368. /**
  3369. * M209: Enable automatic retract (M209 S1)
  3370. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3371. */
  3372. inline void gcode_M209() {
  3373. if (code_seen('S')) {
  3374. int t = code_value_short();
  3375. switch(t) {
  3376. case 0:
  3377. autoretract_enabled = false;
  3378. break;
  3379. case 1:
  3380. autoretract_enabled = true;
  3381. break;
  3382. default:
  3383. SERIAL_ECHO_START;
  3384. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3385. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  3386. SERIAL_ECHOLNPGM("\"");
  3387. return;
  3388. }
  3389. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3390. }
  3391. }
  3392. #endif // FWRETRACT
  3393. #if EXTRUDERS > 1
  3394. /**
  3395. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3396. */
  3397. inline void gcode_M218() {
  3398. if (setTargetedHotend(218)) return;
  3399. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3400. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3401. #ifdef DUAL_X_CARRIAGE
  3402. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3403. #endif
  3404. SERIAL_ECHO_START;
  3405. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3406. for (int e = 0; e < EXTRUDERS; e++) {
  3407. SERIAL_CHAR(' ');
  3408. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3409. SERIAL_CHAR(',');
  3410. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3411. #ifdef DUAL_X_CARRIAGE
  3412. SERIAL_CHAR(',');
  3413. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3414. #endif
  3415. }
  3416. SERIAL_EOL;
  3417. }
  3418. #endif // EXTRUDERS > 1
  3419. /**
  3420. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3421. */
  3422. inline void gcode_M220() {
  3423. if (code_seen('S')) feedrate_multiplier = code_value();
  3424. }
  3425. /**
  3426. * M221: Set extrusion percentage (M221 T0 S95)
  3427. */
  3428. inline void gcode_M221() {
  3429. if (code_seen('S')) {
  3430. int sval = code_value();
  3431. if (code_seen('T')) {
  3432. if (setTargetedHotend(221)) return;
  3433. extruder_multiply[target_extruder] = sval;
  3434. }
  3435. else {
  3436. extruder_multiply[active_extruder] = sval;
  3437. }
  3438. }
  3439. }
  3440. /**
  3441. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3442. */
  3443. inline void gcode_M226() {
  3444. if (code_seen('P')) {
  3445. int pin_number = code_value();
  3446. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3447. if (pin_state >= -1 && pin_state <= 1) {
  3448. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3449. if (sensitive_pins[i] == pin_number) {
  3450. pin_number = -1;
  3451. break;
  3452. }
  3453. }
  3454. if (pin_number > -1) {
  3455. int target = LOW;
  3456. st_synchronize();
  3457. pinMode(pin_number, INPUT);
  3458. switch(pin_state){
  3459. case 1:
  3460. target = HIGH;
  3461. break;
  3462. case 0:
  3463. target = LOW;
  3464. break;
  3465. case -1:
  3466. target = !digitalRead(pin_number);
  3467. break;
  3468. }
  3469. while(digitalRead(pin_number) != target) {
  3470. manage_heater();
  3471. manage_inactivity();
  3472. lcd_update();
  3473. }
  3474. } // pin_number > -1
  3475. } // pin_state -1 0 1
  3476. } // code_seen('P')
  3477. }
  3478. #if NUM_SERVOS > 0
  3479. /**
  3480. * M280: Get or set servo position. P<index> S<angle>
  3481. */
  3482. inline void gcode_M280() {
  3483. int servo_index = code_seen('P') ? code_value_short() : -1;
  3484. int servo_position = 0;
  3485. if (code_seen('S')) {
  3486. servo_position = code_value_short();
  3487. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  3488. Servo *srv = &servo[servo_index];
  3489. #if SERVO_LEVELING
  3490. srv->attach(0);
  3491. #endif
  3492. srv->write(servo_position);
  3493. #if SERVO_LEVELING
  3494. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3495. srv->detach();
  3496. #endif
  3497. }
  3498. else {
  3499. SERIAL_ECHO_START;
  3500. SERIAL_ECHO("Servo ");
  3501. SERIAL_ECHO(servo_index);
  3502. SERIAL_ECHOLN(" out of range");
  3503. }
  3504. }
  3505. else if (servo_index >= 0) {
  3506. SERIAL_PROTOCOL(MSG_OK);
  3507. SERIAL_PROTOCOL(" Servo ");
  3508. SERIAL_PROTOCOL(servo_index);
  3509. SERIAL_PROTOCOL(": ");
  3510. SERIAL_PROTOCOL(servo[servo_index].read());
  3511. SERIAL_EOL;
  3512. }
  3513. }
  3514. #endif // NUM_SERVOS > 0
  3515. #if HAS_LCD_BUZZ
  3516. /**
  3517. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3518. */
  3519. inline void gcode_M300() {
  3520. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3521. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3522. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3523. lcd_buzz(beepP, beepS);
  3524. }
  3525. #endif // HAS_LCD_BUZZ
  3526. #ifdef PIDTEMP
  3527. /**
  3528. * M301: Set PID parameters P I D (and optionally C)
  3529. */
  3530. inline void gcode_M301() {
  3531. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3532. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3533. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3534. if (e < EXTRUDERS) { // catch bad input value
  3535. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3536. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3537. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3538. #ifdef PID_ADD_EXTRUSION_RATE
  3539. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3540. #endif
  3541. updatePID();
  3542. SERIAL_PROTOCOL(MSG_OK);
  3543. #ifdef PID_PARAMS_PER_EXTRUDER
  3544. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3545. SERIAL_PROTOCOL(e);
  3546. #endif // PID_PARAMS_PER_EXTRUDER
  3547. SERIAL_PROTOCOL(" p:");
  3548. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3549. SERIAL_PROTOCOL(" i:");
  3550. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3551. SERIAL_PROTOCOL(" d:");
  3552. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3553. #ifdef PID_ADD_EXTRUSION_RATE
  3554. SERIAL_PROTOCOL(" c:");
  3555. //Kc does not have scaling applied above, or in resetting defaults
  3556. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3557. #endif
  3558. SERIAL_EOL;
  3559. }
  3560. else {
  3561. SERIAL_ECHO_START;
  3562. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3563. }
  3564. }
  3565. #endif // PIDTEMP
  3566. #ifdef PIDTEMPBED
  3567. inline void gcode_M304() {
  3568. if (code_seen('P')) bedKp = code_value();
  3569. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3570. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3571. updatePID();
  3572. SERIAL_PROTOCOL(MSG_OK);
  3573. SERIAL_PROTOCOL(" p:");
  3574. SERIAL_PROTOCOL(bedKp);
  3575. SERIAL_PROTOCOL(" i:");
  3576. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3577. SERIAL_PROTOCOL(" d:");
  3578. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3579. SERIAL_EOL;
  3580. }
  3581. #endif // PIDTEMPBED
  3582. #if defined(CHDK) || HAS_PHOTOGRAPH
  3583. /**
  3584. * M240: Trigger a camera by emulating a Canon RC-1
  3585. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3586. */
  3587. inline void gcode_M240() {
  3588. #ifdef CHDK
  3589. OUT_WRITE(CHDK, HIGH);
  3590. chdkHigh = millis();
  3591. chdkActive = true;
  3592. #elif HAS_PHOTOGRAPH
  3593. const uint8_t NUM_PULSES = 16;
  3594. const float PULSE_LENGTH = 0.01524;
  3595. for (int i = 0; i < NUM_PULSES; i++) {
  3596. WRITE(PHOTOGRAPH_PIN, HIGH);
  3597. _delay_ms(PULSE_LENGTH);
  3598. WRITE(PHOTOGRAPH_PIN, LOW);
  3599. _delay_ms(PULSE_LENGTH);
  3600. }
  3601. delay(7.33);
  3602. for (int i = 0; i < NUM_PULSES; i++) {
  3603. WRITE(PHOTOGRAPH_PIN, HIGH);
  3604. _delay_ms(PULSE_LENGTH);
  3605. WRITE(PHOTOGRAPH_PIN, LOW);
  3606. _delay_ms(PULSE_LENGTH);
  3607. }
  3608. #endif // !CHDK && HAS_PHOTOGRAPH
  3609. }
  3610. #endif // CHDK || PHOTOGRAPH_PIN
  3611. #ifdef HAS_LCD_CONTRAST
  3612. /**
  3613. * M250: Read and optionally set the LCD contrast
  3614. */
  3615. inline void gcode_M250() {
  3616. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3617. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3618. SERIAL_PROTOCOL(lcd_contrast);
  3619. SERIAL_EOL;
  3620. }
  3621. #endif // HAS_LCD_CONTRAST
  3622. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3623. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3624. /**
  3625. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3626. */
  3627. inline void gcode_M302() {
  3628. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3629. }
  3630. #endif // PREVENT_DANGEROUS_EXTRUDE
  3631. /**
  3632. * M303: PID relay autotune
  3633. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3634. * E<extruder> (-1 for the bed)
  3635. * C<cycles>
  3636. */
  3637. inline void gcode_M303() {
  3638. int e = code_seen('E') ? code_value_short() : 0;
  3639. int c = code_seen('C') ? code_value_short() : 5;
  3640. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3641. PID_autotune(temp, e, c);
  3642. }
  3643. #ifdef SCARA
  3644. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3645. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3646. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3647. if (IsRunning()) {
  3648. //get_coordinates(); // For X Y Z E F
  3649. delta[X_AXIS] = delta_x;
  3650. delta[Y_AXIS] = delta_y;
  3651. calculate_SCARA_forward_Transform(delta);
  3652. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3653. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3654. prepare_move();
  3655. //ok_to_send();
  3656. return true;
  3657. }
  3658. return false;
  3659. }
  3660. /**
  3661. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3662. */
  3663. inline bool gcode_M360() {
  3664. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3665. return SCARA_move_to_cal(0, 120);
  3666. }
  3667. /**
  3668. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3669. */
  3670. inline bool gcode_M361() {
  3671. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3672. return SCARA_move_to_cal(90, 130);
  3673. }
  3674. /**
  3675. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3676. */
  3677. inline bool gcode_M362() {
  3678. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3679. return SCARA_move_to_cal(60, 180);
  3680. }
  3681. /**
  3682. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3683. */
  3684. inline bool gcode_M363() {
  3685. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3686. return SCARA_move_to_cal(50, 90);
  3687. }
  3688. /**
  3689. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3690. */
  3691. inline bool gcode_M364() {
  3692. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3693. return SCARA_move_to_cal(45, 135);
  3694. }
  3695. /**
  3696. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3697. */
  3698. inline void gcode_M365() {
  3699. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3700. if (code_seen(axis_codes[i])) {
  3701. axis_scaling[i] = code_value();
  3702. }
  3703. }
  3704. }
  3705. #endif // SCARA
  3706. #ifdef EXT_SOLENOID
  3707. void enable_solenoid(uint8_t num) {
  3708. switch(num) {
  3709. case 0:
  3710. OUT_WRITE(SOL0_PIN, HIGH);
  3711. break;
  3712. #if HAS_SOLENOID_1
  3713. case 1:
  3714. OUT_WRITE(SOL1_PIN, HIGH);
  3715. break;
  3716. #endif
  3717. #if HAS_SOLENOID_2
  3718. case 2:
  3719. OUT_WRITE(SOL2_PIN, HIGH);
  3720. break;
  3721. #endif
  3722. #if HAS_SOLENOID_3
  3723. case 3:
  3724. OUT_WRITE(SOL3_PIN, HIGH);
  3725. break;
  3726. #endif
  3727. default:
  3728. SERIAL_ECHO_START;
  3729. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3730. break;
  3731. }
  3732. }
  3733. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3734. void disable_all_solenoids() {
  3735. OUT_WRITE(SOL0_PIN, LOW);
  3736. OUT_WRITE(SOL1_PIN, LOW);
  3737. OUT_WRITE(SOL2_PIN, LOW);
  3738. OUT_WRITE(SOL3_PIN, LOW);
  3739. }
  3740. /**
  3741. * M380: Enable solenoid on the active extruder
  3742. */
  3743. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3744. /**
  3745. * M381: Disable all solenoids
  3746. */
  3747. inline void gcode_M381() { disable_all_solenoids(); }
  3748. #endif // EXT_SOLENOID
  3749. /**
  3750. * M400: Finish all moves
  3751. */
  3752. inline void gcode_M400() { st_synchronize(); }
  3753. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3754. #ifdef SERVO_ENDSTOPS
  3755. void raise_z_for_servo() {
  3756. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3757. z_dest += axis_known_position[Z_AXIS] ? -zprobe_zoffset : zpos;
  3758. if (zpos < z_dest)
  3759. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3760. }
  3761. #endif
  3762. /**
  3763. * M401: Engage Z Servo endstop if available
  3764. */
  3765. inline void gcode_M401() {
  3766. #ifdef SERVO_ENDSTOPS
  3767. raise_z_for_servo();
  3768. #endif
  3769. deploy_z_probe();
  3770. }
  3771. /**
  3772. * M402: Retract Z Servo endstop if enabled
  3773. */
  3774. inline void gcode_M402() {
  3775. #ifdef SERVO_ENDSTOPS
  3776. raise_z_for_servo();
  3777. #endif
  3778. stow_z_probe(false);
  3779. }
  3780. #endif
  3781. #ifdef FILAMENT_SENSOR
  3782. /**
  3783. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3784. */
  3785. inline void gcode_M404() {
  3786. #if HAS_FILWIDTH
  3787. if (code_seen('W')) {
  3788. filament_width_nominal = code_value();
  3789. }
  3790. else {
  3791. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3792. SERIAL_PROTOCOLLN(filament_width_nominal);
  3793. }
  3794. #endif
  3795. }
  3796. /**
  3797. * M405: Turn on filament sensor for control
  3798. */
  3799. inline void gcode_M405() {
  3800. if (code_seen('D')) meas_delay_cm = code_value();
  3801. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3802. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3803. int temp_ratio = widthFil_to_size_ratio();
  3804. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3805. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3806. delay_index1 = delay_index2 = 0;
  3807. }
  3808. filament_sensor = true;
  3809. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3810. //SERIAL_PROTOCOL(filament_width_meas);
  3811. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3812. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3813. }
  3814. /**
  3815. * M406: Turn off filament sensor for control
  3816. */
  3817. inline void gcode_M406() { filament_sensor = false; }
  3818. /**
  3819. * M407: Get measured filament diameter on serial output
  3820. */
  3821. inline void gcode_M407() {
  3822. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3823. SERIAL_PROTOCOLLN(filament_width_meas);
  3824. }
  3825. #endif // FILAMENT_SENSOR
  3826. /**
  3827. * M410: Quickstop - Abort all planned moves
  3828. *
  3829. * This will stop the carriages mid-move, so most likely they
  3830. * will be out of sync with the stepper position after this.
  3831. */
  3832. inline void gcode_M410() { quickStop(); }
  3833. #ifdef MESH_BED_LEVELING
  3834. /**
  3835. * M420: Enable/Disable Mesh Bed Leveling
  3836. */
  3837. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  3838. /**
  3839. * M421: Set a single Mesh Bed Leveling Z coordinate
  3840. */
  3841. inline void gcode_M421() {
  3842. float x, y, z;
  3843. bool err = false, hasX, hasY, hasZ;
  3844. if ((hasX = code_seen('X'))) x = code_value();
  3845. if ((hasY = code_seen('Y'))) y = code_value();
  3846. if ((hasZ = code_seen('Z'))) z = code_value();
  3847. if (!hasX || !hasY || !hasZ) {
  3848. SERIAL_ERROR_START;
  3849. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  3850. err = true;
  3851. }
  3852. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  3853. SERIAL_ERROR_START;
  3854. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  3855. err = true;
  3856. }
  3857. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  3858. }
  3859. #endif
  3860. /**
  3861. * M428: Set home_offset based on the distance between the
  3862. * current_position and the nearest "reference point."
  3863. * If an axis is past center its endstop position
  3864. * is the reference-point. Otherwise it uses 0. This allows
  3865. * the Z offset to be set near the bed when using a max endstop.
  3866. *
  3867. * M428 can't be used more than 2cm away from 0 or an endstop.
  3868. *
  3869. * Use M206 to set these values directly.
  3870. */
  3871. inline void gcode_M428() {
  3872. bool err = false;
  3873. float new_offs[3], new_pos[3];
  3874. memcpy(new_pos, current_position, sizeof(new_pos));
  3875. memcpy(new_offs, home_offset, sizeof(new_offs));
  3876. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3877. if (axis_known_position[i]) {
  3878. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  3879. diff = new_pos[i] - base;
  3880. if (diff > -20 && diff < 20) {
  3881. new_offs[i] -= diff;
  3882. new_pos[i] = base;
  3883. }
  3884. else {
  3885. SERIAL_ERROR_START;
  3886. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  3887. LCD_ALERTMESSAGEPGM("Err: Too far!");
  3888. #if HAS_LCD_BUZZ
  3889. enqueuecommands_P(PSTR("M300 S40 P200"));
  3890. #endif
  3891. err = true;
  3892. break;
  3893. }
  3894. }
  3895. }
  3896. if (!err) {
  3897. memcpy(current_position, new_pos, sizeof(new_pos));
  3898. memcpy(home_offset, new_offs, sizeof(new_offs));
  3899. sync_plan_position();
  3900. LCD_ALERTMESSAGEPGM("Offset applied.");
  3901. #if HAS_LCD_BUZZ
  3902. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  3903. #endif
  3904. }
  3905. }
  3906. /**
  3907. * M500: Store settings in EEPROM
  3908. */
  3909. inline void gcode_M500() {
  3910. Config_StoreSettings();
  3911. }
  3912. /**
  3913. * M501: Read settings from EEPROM
  3914. */
  3915. inline void gcode_M501() {
  3916. Config_RetrieveSettings();
  3917. }
  3918. /**
  3919. * M502: Revert to default settings
  3920. */
  3921. inline void gcode_M502() {
  3922. Config_ResetDefault();
  3923. }
  3924. /**
  3925. * M503: print settings currently in memory
  3926. */
  3927. inline void gcode_M503() {
  3928. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3929. }
  3930. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3931. /**
  3932. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3933. */
  3934. inline void gcode_M540() {
  3935. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3936. }
  3937. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3938. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3939. inline void gcode_SET_Z_PROBE_OFFSET() {
  3940. float value;
  3941. if (code_seen('Z')) {
  3942. value = code_value();
  3943. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3944. zprobe_zoffset = -value; // compare w/ line 278 of configuration_store.cpp
  3945. SERIAL_ECHO_START;
  3946. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3947. SERIAL_EOL;
  3948. }
  3949. else {
  3950. SERIAL_ECHO_START;
  3951. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3952. SERIAL_ECHOPGM(MSG_Z_MIN);
  3953. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3954. SERIAL_ECHOPGM(MSG_Z_MAX);
  3955. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3956. SERIAL_EOL;
  3957. }
  3958. }
  3959. else {
  3960. SERIAL_ECHO_START;
  3961. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3962. SERIAL_ECHO(-zprobe_zoffset);
  3963. SERIAL_EOL;
  3964. }
  3965. }
  3966. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3967. #ifdef FILAMENTCHANGEENABLE
  3968. /**
  3969. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3970. */
  3971. inline void gcode_M600() {
  3972. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3973. for (int i=0; i<NUM_AXIS; i++)
  3974. target[i] = lastpos[i] = current_position[i];
  3975. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3976. #ifdef DELTA
  3977. #define RUNPLAN calculate_delta(target); BASICPLAN
  3978. #else
  3979. #define RUNPLAN BASICPLAN
  3980. #endif
  3981. //retract by E
  3982. if (code_seen('E')) target[E_AXIS] += code_value();
  3983. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3984. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3985. #endif
  3986. RUNPLAN;
  3987. //lift Z
  3988. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3989. #ifdef FILAMENTCHANGE_ZADD
  3990. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3991. #endif
  3992. RUNPLAN;
  3993. //move xy
  3994. if (code_seen('X')) target[X_AXIS] = code_value();
  3995. #ifdef FILAMENTCHANGE_XPOS
  3996. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3997. #endif
  3998. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3999. #ifdef FILAMENTCHANGE_YPOS
  4000. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4001. #endif
  4002. RUNPLAN;
  4003. if (code_seen('L')) target[E_AXIS] += code_value();
  4004. #ifdef FILAMENTCHANGE_FINALRETRACT
  4005. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4006. #endif
  4007. RUNPLAN;
  4008. //finish moves
  4009. st_synchronize();
  4010. //disable extruder steppers so filament can be removed
  4011. disable_e0();
  4012. disable_e1();
  4013. disable_e2();
  4014. disable_e3();
  4015. delay(100);
  4016. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4017. uint8_t cnt = 0;
  4018. while (!lcd_clicked()) {
  4019. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  4020. manage_heater();
  4021. manage_inactivity(true);
  4022. lcd_update();
  4023. } // while(!lcd_clicked)
  4024. //return to normal
  4025. if (code_seen('L')) target[E_AXIS] -= code_value();
  4026. #ifdef FILAMENTCHANGE_FINALRETRACT
  4027. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4028. #endif
  4029. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4030. plan_set_e_position(current_position[E_AXIS]);
  4031. RUNPLAN; //should do nothing
  4032. lcd_reset_alert_level();
  4033. #ifdef DELTA
  4034. calculate_delta(lastpos);
  4035. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  4036. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4037. #else
  4038. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  4039. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  4040. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4041. #endif
  4042. #ifdef FILAMENT_RUNOUT_SENSOR
  4043. filrunoutEnqueued = false;
  4044. #endif
  4045. }
  4046. #endif // FILAMENTCHANGEENABLE
  4047. #ifdef DUAL_X_CARRIAGE
  4048. /**
  4049. * M605: Set dual x-carriage movement mode
  4050. *
  4051. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4052. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4053. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4054. * millimeters x-offset and an optional differential hotend temperature of
  4055. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4056. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4057. *
  4058. * Note: the X axis should be homed after changing dual x-carriage mode.
  4059. */
  4060. inline void gcode_M605() {
  4061. st_synchronize();
  4062. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4063. switch(dual_x_carriage_mode) {
  4064. case DXC_DUPLICATION_MODE:
  4065. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4066. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4067. SERIAL_ECHO_START;
  4068. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4069. SERIAL_CHAR(' ');
  4070. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4071. SERIAL_CHAR(',');
  4072. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4073. SERIAL_CHAR(' ');
  4074. SERIAL_ECHO(duplicate_extruder_x_offset);
  4075. SERIAL_CHAR(',');
  4076. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4077. break;
  4078. case DXC_FULL_CONTROL_MODE:
  4079. case DXC_AUTO_PARK_MODE:
  4080. break;
  4081. default:
  4082. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4083. break;
  4084. }
  4085. active_extruder_parked = false;
  4086. extruder_duplication_enabled = false;
  4087. delayed_move_time = 0;
  4088. }
  4089. #endif // DUAL_X_CARRIAGE
  4090. /**
  4091. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4092. */
  4093. inline void gcode_M907() {
  4094. #if HAS_DIGIPOTSS
  4095. for (int i=0;i<NUM_AXIS;i++)
  4096. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4097. if (code_seen('B')) digipot_current(4, code_value());
  4098. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4099. #endif
  4100. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4101. if (code_seen('X')) digipot_current(0, code_value());
  4102. #endif
  4103. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4104. if (code_seen('Z')) digipot_current(1, code_value());
  4105. #endif
  4106. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4107. if (code_seen('E')) digipot_current(2, code_value());
  4108. #endif
  4109. #ifdef DIGIPOT_I2C
  4110. // this one uses actual amps in floating point
  4111. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4112. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4113. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4114. #endif
  4115. }
  4116. #if HAS_DIGIPOTSS
  4117. /**
  4118. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4119. */
  4120. inline void gcode_M908() {
  4121. digitalPotWrite(
  4122. code_seen('P') ? code_value() : 0,
  4123. code_seen('S') ? code_value() : 0
  4124. );
  4125. }
  4126. #endif // HAS_DIGIPOTSS
  4127. #if HAS_MICROSTEPS
  4128. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4129. inline void gcode_M350() {
  4130. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4131. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4132. if(code_seen('B')) microstep_mode(4,code_value());
  4133. microstep_readings();
  4134. }
  4135. /**
  4136. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4137. * S# determines MS1 or MS2, X# sets the pin high/low.
  4138. */
  4139. inline void gcode_M351() {
  4140. if (code_seen('S')) switch(code_value_short()) {
  4141. case 1:
  4142. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4143. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4144. break;
  4145. case 2:
  4146. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4147. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4148. break;
  4149. }
  4150. microstep_readings();
  4151. }
  4152. #endif // HAS_MICROSTEPS
  4153. /**
  4154. * M999: Restart after being stopped
  4155. */
  4156. inline void gcode_M999() {
  4157. Running = true;
  4158. lcd_reset_alert_level();
  4159. gcode_LastN = Stopped_gcode_LastN;
  4160. FlushSerialRequestResend();
  4161. }
  4162. /**
  4163. * T0-T3: Switch tool, usually switching extruders
  4164. */
  4165. inline void gcode_T() {
  4166. int tmp_extruder = code_value();
  4167. if (tmp_extruder >= EXTRUDERS) {
  4168. SERIAL_ECHO_START;
  4169. SERIAL_CHAR('T');
  4170. SERIAL_ECHO(tmp_extruder);
  4171. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4172. }
  4173. else {
  4174. target_extruder = tmp_extruder;
  4175. #if EXTRUDERS > 1
  4176. bool make_move = false;
  4177. #endif
  4178. if (code_seen('F')) {
  4179. #if EXTRUDERS > 1
  4180. make_move = true;
  4181. #endif
  4182. next_feedrate = code_value();
  4183. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4184. }
  4185. #if EXTRUDERS > 1
  4186. if (tmp_extruder != active_extruder) {
  4187. // Save current position to return to after applying extruder offset
  4188. set_destination_to_current();
  4189. #ifdef DUAL_X_CARRIAGE
  4190. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4191. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4192. // Park old head: 1) raise 2) move to park position 3) lower
  4193. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4194. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4195. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4196. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4197. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4198. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4199. st_synchronize();
  4200. }
  4201. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4202. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4203. extruder_offset[Y_AXIS][active_extruder] +
  4204. extruder_offset[Y_AXIS][tmp_extruder];
  4205. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4206. extruder_offset[Z_AXIS][active_extruder] +
  4207. extruder_offset[Z_AXIS][tmp_extruder];
  4208. active_extruder = tmp_extruder;
  4209. // This function resets the max/min values - the current position may be overwritten below.
  4210. axis_is_at_home(X_AXIS);
  4211. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4212. current_position[X_AXIS] = inactive_extruder_x_pos;
  4213. inactive_extruder_x_pos = destination[X_AXIS];
  4214. }
  4215. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4216. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4217. if (active_extruder == 0 || active_extruder_parked)
  4218. current_position[X_AXIS] = inactive_extruder_x_pos;
  4219. else
  4220. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4221. inactive_extruder_x_pos = destination[X_AXIS];
  4222. extruder_duplication_enabled = false;
  4223. }
  4224. else {
  4225. // record raised toolhead position for use by unpark
  4226. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4227. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4228. active_extruder_parked = true;
  4229. delayed_move_time = 0;
  4230. }
  4231. #else // !DUAL_X_CARRIAGE
  4232. // Offset extruder (only by XY)
  4233. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4234. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4235. // Set the new active extruder and position
  4236. active_extruder = tmp_extruder;
  4237. #endif // !DUAL_X_CARRIAGE
  4238. #ifdef DELTA
  4239. sync_plan_position_delta();
  4240. #else
  4241. sync_plan_position();
  4242. #endif
  4243. // Move to the old position if 'F' was in the parameters
  4244. if (make_move && IsRunning()) prepare_move();
  4245. }
  4246. #ifdef EXT_SOLENOID
  4247. st_synchronize();
  4248. disable_all_solenoids();
  4249. enable_solenoid_on_active_extruder();
  4250. #endif // EXT_SOLENOID
  4251. #endif // EXTRUDERS > 1
  4252. SERIAL_ECHO_START;
  4253. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4254. SERIAL_PROTOCOLLN((int)active_extruder);
  4255. }
  4256. }
  4257. /**
  4258. * Process Commands and dispatch them to handlers
  4259. * This is called from the main loop()
  4260. */
  4261. void process_commands() {
  4262. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4263. SERIAL_ECHO_START;
  4264. SERIAL_ECHOLN(command_queue[cmd_queue_index_r]);
  4265. }
  4266. if (code_seen('G')) {
  4267. int gCode = code_value_short();
  4268. switch(gCode) {
  4269. // G0, G1
  4270. case 0:
  4271. case 1:
  4272. gcode_G0_G1();
  4273. break;
  4274. // G2, G3
  4275. #ifndef SCARA
  4276. case 2: // G2 - CW ARC
  4277. case 3: // G3 - CCW ARC
  4278. gcode_G2_G3(gCode == 2);
  4279. break;
  4280. #endif
  4281. // G4 Dwell
  4282. case 4:
  4283. gcode_G4();
  4284. break;
  4285. #ifdef FWRETRACT
  4286. case 10: // G10: retract
  4287. case 11: // G11: retract_recover
  4288. gcode_G10_G11(gCode == 10);
  4289. break;
  4290. #endif //FWRETRACT
  4291. case 28: // G28: Home all axes, one at a time
  4292. gcode_G28();
  4293. break;
  4294. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4295. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4296. gcode_G29();
  4297. break;
  4298. #endif
  4299. #ifdef ENABLE_AUTO_BED_LEVELING
  4300. #ifndef Z_PROBE_SLED
  4301. case 30: // G30 Single Z Probe
  4302. gcode_G30();
  4303. break;
  4304. #else // Z_PROBE_SLED
  4305. case 31: // G31: dock the sled
  4306. case 32: // G32: undock the sled
  4307. dock_sled(gCode == 31);
  4308. break;
  4309. #endif // Z_PROBE_SLED
  4310. #endif // ENABLE_AUTO_BED_LEVELING
  4311. case 90: // G90
  4312. relative_mode = false;
  4313. break;
  4314. case 91: // G91
  4315. relative_mode = true;
  4316. break;
  4317. case 92: // G92
  4318. gcode_G92();
  4319. break;
  4320. }
  4321. }
  4322. else if (code_seen('M')) {
  4323. switch(code_value_short()) {
  4324. #ifdef ULTIPANEL
  4325. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4326. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4327. gcode_M0_M1();
  4328. break;
  4329. #endif // ULTIPANEL
  4330. case 17:
  4331. gcode_M17();
  4332. break;
  4333. #ifdef SDSUPPORT
  4334. case 20: // M20 - list SD card
  4335. gcode_M20(); break;
  4336. case 21: // M21 - init SD card
  4337. gcode_M21(); break;
  4338. case 22: //M22 - release SD card
  4339. gcode_M22(); break;
  4340. case 23: //M23 - Select file
  4341. gcode_M23(); break;
  4342. case 24: //M24 - Start SD print
  4343. gcode_M24(); break;
  4344. case 25: //M25 - Pause SD print
  4345. gcode_M25(); break;
  4346. case 26: //M26 - Set SD index
  4347. gcode_M26(); break;
  4348. case 27: //M27 - Get SD status
  4349. gcode_M27(); break;
  4350. case 28: //M28 - Start SD write
  4351. gcode_M28(); break;
  4352. case 29: //M29 - Stop SD write
  4353. gcode_M29(); break;
  4354. case 30: //M30 <filename> Delete File
  4355. gcode_M30(); break;
  4356. case 32: //M32 - Select file and start SD print
  4357. gcode_M32(); break;
  4358. case 928: //M928 - Start SD write
  4359. gcode_M928(); break;
  4360. #endif //SDSUPPORT
  4361. case 31: //M31 take time since the start of the SD print or an M109 command
  4362. gcode_M31();
  4363. break;
  4364. case 42: //M42 -Change pin status via gcode
  4365. gcode_M42();
  4366. break;
  4367. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4368. case 48: // M48 Z-Probe repeatability
  4369. gcode_M48();
  4370. break;
  4371. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4372. case 104: // M104
  4373. gcode_M104();
  4374. break;
  4375. case 111: // M111: Set debug level
  4376. gcode_M111();
  4377. break;
  4378. case 112: // M112: Emergency Stop
  4379. gcode_M112();
  4380. break;
  4381. case 140: // M140: Set bed temp
  4382. gcode_M140();
  4383. break;
  4384. case 105: // M105: Read current temperature
  4385. gcode_M105();
  4386. return;
  4387. break;
  4388. case 109: // M109: Wait for temperature
  4389. gcode_M109();
  4390. break;
  4391. #if HAS_TEMP_BED
  4392. case 190: // M190: Wait for bed heater to reach target
  4393. gcode_M190();
  4394. break;
  4395. #endif // HAS_TEMP_BED
  4396. #if HAS_FAN
  4397. case 106: // M106: Fan On
  4398. gcode_M106();
  4399. break;
  4400. case 107: // M107: Fan Off
  4401. gcode_M107();
  4402. break;
  4403. #endif // HAS_FAN
  4404. #ifdef BARICUDA
  4405. // PWM for HEATER_1_PIN
  4406. #if HAS_HEATER_1
  4407. case 126: // M126: valve open
  4408. gcode_M126();
  4409. break;
  4410. case 127: // M127: valve closed
  4411. gcode_M127();
  4412. break;
  4413. #endif // HAS_HEATER_1
  4414. // PWM for HEATER_2_PIN
  4415. #if HAS_HEATER_2
  4416. case 128: // M128: valve open
  4417. gcode_M128();
  4418. break;
  4419. case 129: // M129: valve closed
  4420. gcode_M129();
  4421. break;
  4422. #endif // HAS_HEATER_2
  4423. #endif // BARICUDA
  4424. #if HAS_POWER_SWITCH
  4425. case 80: // M80: Turn on Power Supply
  4426. gcode_M80();
  4427. break;
  4428. #endif // HAS_POWER_SWITCH
  4429. case 81: // M81: Turn off Power, including Power Supply, if possible
  4430. gcode_M81();
  4431. break;
  4432. case 82:
  4433. gcode_M82();
  4434. break;
  4435. case 83:
  4436. gcode_M83();
  4437. break;
  4438. case 18: // (for compatibility)
  4439. case 84: // M84
  4440. gcode_M18_M84();
  4441. break;
  4442. case 85: // M85
  4443. gcode_M85();
  4444. break;
  4445. case 92: // M92: Set the steps-per-unit for one or more axes
  4446. gcode_M92();
  4447. break;
  4448. case 115: // M115: Report capabilities
  4449. gcode_M115();
  4450. break;
  4451. case 117: // M117: Set LCD message text
  4452. gcode_M117();
  4453. break;
  4454. case 114: // M114: Report current position
  4455. gcode_M114();
  4456. break;
  4457. case 120: // M120: Enable endstops
  4458. gcode_M120();
  4459. break;
  4460. case 121: // M121: Disable endstops
  4461. gcode_M121();
  4462. break;
  4463. case 119: // M119: Report endstop states
  4464. gcode_M119();
  4465. break;
  4466. #ifdef ULTIPANEL
  4467. case 145: // M145: Set material heatup parameters
  4468. gcode_M145();
  4469. break;
  4470. #endif
  4471. #ifdef BLINKM
  4472. case 150: // M150
  4473. gcode_M150();
  4474. break;
  4475. #endif //BLINKM
  4476. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4477. gcode_M200();
  4478. break;
  4479. case 201: // M201
  4480. gcode_M201();
  4481. break;
  4482. #if 0 // Not used for Sprinter/grbl gen6
  4483. case 202: // M202
  4484. gcode_M202();
  4485. break;
  4486. #endif
  4487. case 203: // M203 max feedrate mm/sec
  4488. gcode_M203();
  4489. break;
  4490. case 204: // M204 acclereration S normal moves T filmanent only moves
  4491. gcode_M204();
  4492. break;
  4493. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4494. gcode_M205();
  4495. break;
  4496. case 206: // M206 additional homing offset
  4497. gcode_M206();
  4498. break;
  4499. #ifdef DELTA
  4500. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4501. gcode_M665();
  4502. break;
  4503. #endif
  4504. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4505. case 666: // M666 set delta / dual endstop adjustment
  4506. gcode_M666();
  4507. break;
  4508. #endif
  4509. #ifdef FWRETRACT
  4510. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4511. gcode_M207();
  4512. break;
  4513. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4514. gcode_M208();
  4515. break;
  4516. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4517. gcode_M209();
  4518. break;
  4519. #endif // FWRETRACT
  4520. #if EXTRUDERS > 1
  4521. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4522. gcode_M218();
  4523. break;
  4524. #endif
  4525. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4526. gcode_M220();
  4527. break;
  4528. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4529. gcode_M221();
  4530. break;
  4531. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4532. gcode_M226();
  4533. break;
  4534. #if NUM_SERVOS > 0
  4535. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4536. gcode_M280();
  4537. break;
  4538. #endif // NUM_SERVOS > 0
  4539. #if HAS_LCD_BUZZ
  4540. case 300: // M300 - Play beep tone
  4541. gcode_M300();
  4542. break;
  4543. #endif // HAS_LCD_BUZZ
  4544. #ifdef PIDTEMP
  4545. case 301: // M301
  4546. gcode_M301();
  4547. break;
  4548. #endif // PIDTEMP
  4549. #ifdef PIDTEMPBED
  4550. case 304: // M304
  4551. gcode_M304();
  4552. break;
  4553. #endif // PIDTEMPBED
  4554. #if defined(CHDK) || HAS_PHOTOGRAPH
  4555. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4556. gcode_M240();
  4557. break;
  4558. #endif // CHDK || PHOTOGRAPH_PIN
  4559. #ifdef HAS_LCD_CONTRAST
  4560. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4561. gcode_M250();
  4562. break;
  4563. #endif // HAS_LCD_CONTRAST
  4564. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4565. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4566. gcode_M302();
  4567. break;
  4568. #endif // PREVENT_DANGEROUS_EXTRUDE
  4569. case 303: // M303 PID autotune
  4570. gcode_M303();
  4571. break;
  4572. #ifdef SCARA
  4573. case 360: // M360 SCARA Theta pos1
  4574. if (gcode_M360()) return;
  4575. break;
  4576. case 361: // M361 SCARA Theta pos2
  4577. if (gcode_M361()) return;
  4578. break;
  4579. case 362: // M362 SCARA Psi pos1
  4580. if (gcode_M362()) return;
  4581. break;
  4582. case 363: // M363 SCARA Psi pos2
  4583. if (gcode_M363()) return;
  4584. break;
  4585. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4586. if (gcode_M364()) return;
  4587. break;
  4588. case 365: // M365 Set SCARA scaling for X Y Z
  4589. gcode_M365();
  4590. break;
  4591. #endif // SCARA
  4592. case 400: // M400 finish all moves
  4593. gcode_M400();
  4594. break;
  4595. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4596. case 401:
  4597. gcode_M401();
  4598. break;
  4599. case 402:
  4600. gcode_M402();
  4601. break;
  4602. #endif
  4603. #ifdef FILAMENT_SENSOR
  4604. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4605. gcode_M404();
  4606. break;
  4607. case 405: //M405 Turn on filament sensor for control
  4608. gcode_M405();
  4609. break;
  4610. case 406: //M406 Turn off filament sensor for control
  4611. gcode_M406();
  4612. break;
  4613. case 407: //M407 Display measured filament diameter
  4614. gcode_M407();
  4615. break;
  4616. #endif // FILAMENT_SENSOR
  4617. case 410: // M410 quickstop - Abort all the planned moves.
  4618. gcode_M410();
  4619. break;
  4620. #ifdef MESH_BED_LEVELING
  4621. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4622. gcode_M420();
  4623. break;
  4624. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4625. gcode_M421();
  4626. break;
  4627. #endif
  4628. case 428: // M428 Apply current_position to home_offset
  4629. gcode_M428();
  4630. break;
  4631. case 500: // M500 Store settings in EEPROM
  4632. gcode_M500();
  4633. break;
  4634. case 501: // M501 Read settings from EEPROM
  4635. gcode_M501();
  4636. break;
  4637. case 502: // M502 Revert to default settings
  4638. gcode_M502();
  4639. break;
  4640. case 503: // M503 print settings currently in memory
  4641. gcode_M503();
  4642. break;
  4643. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4644. case 540:
  4645. gcode_M540();
  4646. break;
  4647. #endif
  4648. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4649. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4650. gcode_SET_Z_PROBE_OFFSET();
  4651. break;
  4652. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4653. #ifdef FILAMENTCHANGEENABLE
  4654. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4655. gcode_M600();
  4656. break;
  4657. #endif // FILAMENTCHANGEENABLE
  4658. #ifdef DUAL_X_CARRIAGE
  4659. case 605:
  4660. gcode_M605();
  4661. break;
  4662. #endif // DUAL_X_CARRIAGE
  4663. case 907: // M907 Set digital trimpot motor current using axis codes.
  4664. gcode_M907();
  4665. break;
  4666. #if HAS_DIGIPOTSS
  4667. case 908: // M908 Control digital trimpot directly.
  4668. gcode_M908();
  4669. break;
  4670. #endif // HAS_DIGIPOTSS
  4671. #if HAS_MICROSTEPS
  4672. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4673. gcode_M350();
  4674. break;
  4675. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4676. gcode_M351();
  4677. break;
  4678. #endif // HAS_MICROSTEPS
  4679. case 999: // M999: Restart after being Stopped
  4680. gcode_M999();
  4681. break;
  4682. }
  4683. }
  4684. else if (code_seen('T')) {
  4685. gcode_T();
  4686. }
  4687. else {
  4688. SERIAL_ECHO_START;
  4689. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4690. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  4691. SERIAL_ECHOLNPGM("\"");
  4692. }
  4693. ok_to_send();
  4694. }
  4695. void FlushSerialRequestResend() {
  4696. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4697. MYSERIAL.flush();
  4698. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4699. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4700. ok_to_send();
  4701. }
  4702. void ok_to_send() {
  4703. refresh_cmd_timeout();
  4704. #ifdef SDSUPPORT
  4705. if (fromsd[cmd_queue_index_r]) return;
  4706. #endif
  4707. SERIAL_PROTOCOLPGM(MSG_OK);
  4708. #ifdef ADVANCED_OK
  4709. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4710. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4711. #endif
  4712. SERIAL_EOL;
  4713. }
  4714. void get_coordinates() {
  4715. for (int i = 0; i < NUM_AXIS; i++) {
  4716. if (code_seen(axis_codes[i]))
  4717. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4718. else
  4719. destination[i] = current_position[i];
  4720. }
  4721. if (code_seen('F')) {
  4722. next_feedrate = code_value();
  4723. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4724. }
  4725. }
  4726. void get_arc_coordinates() {
  4727. #ifdef SF_ARC_FIX
  4728. bool relative_mode_backup = relative_mode;
  4729. relative_mode = true;
  4730. #endif
  4731. get_coordinates();
  4732. #ifdef SF_ARC_FIX
  4733. relative_mode = relative_mode_backup;
  4734. #endif
  4735. offset[0] = code_seen('I') ? code_value() : 0;
  4736. offset[1] = code_seen('J') ? code_value() : 0;
  4737. }
  4738. void clamp_to_software_endstops(float target[3]) {
  4739. if (min_software_endstops) {
  4740. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4741. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4742. float negative_z_offset = 0;
  4743. #ifdef ENABLE_AUTO_BED_LEVELING
  4744. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4745. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4746. #endif
  4747. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4748. }
  4749. if (max_software_endstops) {
  4750. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4751. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4752. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4753. }
  4754. }
  4755. #ifdef DELTA
  4756. void recalc_delta_settings(float radius, float diagonal_rod) {
  4757. delta_tower1_x = -SIN_60 * radius; // front left tower
  4758. delta_tower1_y = -COS_60 * radius;
  4759. delta_tower2_x = SIN_60 * radius; // front right tower
  4760. delta_tower2_y = -COS_60 * radius;
  4761. delta_tower3_x = 0.0; // back middle tower
  4762. delta_tower3_y = radius;
  4763. delta_diagonal_rod_2 = sq(diagonal_rod);
  4764. }
  4765. void calculate_delta(float cartesian[3]) {
  4766. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4767. - sq(delta_tower1_x-cartesian[X_AXIS])
  4768. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4769. ) + cartesian[Z_AXIS];
  4770. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4771. - sq(delta_tower2_x-cartesian[X_AXIS])
  4772. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4773. ) + cartesian[Z_AXIS];
  4774. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4775. - sq(delta_tower3_x-cartesian[X_AXIS])
  4776. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4777. ) + cartesian[Z_AXIS];
  4778. /*
  4779. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4780. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4781. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4782. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4783. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4784. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4785. */
  4786. }
  4787. #ifdef ENABLE_AUTO_BED_LEVELING
  4788. // Adjust print surface height by linear interpolation over the bed_level array.
  4789. void adjust_delta(float cartesian[3]) {
  4790. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4791. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4792. float h1 = 0.001 - half, h2 = half - 0.001,
  4793. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4794. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4795. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4796. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4797. z1 = bed_level[floor_x + half][floor_y + half],
  4798. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4799. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4800. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4801. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4802. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4803. offset = (1 - ratio_x) * left + ratio_x * right;
  4804. delta[X_AXIS] += offset;
  4805. delta[Y_AXIS] += offset;
  4806. delta[Z_AXIS] += offset;
  4807. /*
  4808. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4809. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4810. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4811. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4812. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4813. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4814. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4815. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4816. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4817. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4818. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4819. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4820. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4821. */
  4822. }
  4823. #endif // ENABLE_AUTO_BED_LEVELING
  4824. #endif // DELTA
  4825. #ifdef MESH_BED_LEVELING
  4826. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4827. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4828. {
  4829. if (!mbl.active) {
  4830. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4831. set_current_to_destination();
  4832. return;
  4833. }
  4834. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4835. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4836. int ix = mbl.select_x_index(x);
  4837. int iy = mbl.select_y_index(y);
  4838. pix = min(pix, MESH_NUM_X_POINTS - 2);
  4839. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  4840. ix = min(ix, MESH_NUM_X_POINTS - 2);
  4841. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  4842. if (pix == ix && piy == iy) {
  4843. // Start and end on same mesh square
  4844. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4845. set_current_to_destination();
  4846. return;
  4847. }
  4848. float nx, ny, ne, normalized_dist;
  4849. if (ix > pix && (x_splits) & BIT(ix)) {
  4850. nx = mbl.get_x(ix);
  4851. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4852. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4853. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4854. x_splits ^= BIT(ix);
  4855. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4856. nx = mbl.get_x(pix);
  4857. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4858. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4859. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4860. x_splits ^= BIT(pix);
  4861. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4862. ny = mbl.get_y(iy);
  4863. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4864. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4865. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4866. y_splits ^= BIT(iy);
  4867. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4868. ny = mbl.get_y(piy);
  4869. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4870. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4871. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4872. y_splits ^= BIT(piy);
  4873. } else {
  4874. // Already split on a border
  4875. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4876. set_current_to_destination();
  4877. return;
  4878. }
  4879. // Do the split and look for more borders
  4880. destination[X_AXIS] = nx;
  4881. destination[Y_AXIS] = ny;
  4882. destination[E_AXIS] = ne;
  4883. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4884. destination[X_AXIS] = x;
  4885. destination[Y_AXIS] = y;
  4886. destination[E_AXIS] = e;
  4887. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4888. }
  4889. #endif // MESH_BED_LEVELING
  4890. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4891. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  4892. float de = dest_e - curr_e;
  4893. if (de) {
  4894. if (degHotend(active_extruder) < extrude_min_temp) {
  4895. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4896. SERIAL_ECHO_START;
  4897. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  4898. }
  4899. #ifdef PREVENT_LENGTHY_EXTRUDE
  4900. if (labs(de) > EXTRUDE_MAXLENGTH) {
  4901. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4902. SERIAL_ECHO_START;
  4903. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  4904. }
  4905. #endif
  4906. }
  4907. }
  4908. #endif // PREVENT_DANGEROUS_EXTRUDE
  4909. #if defined(DELTA) || defined(SCARA)
  4910. inline bool prepare_move_delta() {
  4911. float difference[NUM_AXIS];
  4912. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4913. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4914. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4915. if (cartesian_mm < 0.000001) return false;
  4916. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4917. int steps = max(1, int(delta_segments_per_second * seconds));
  4918. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4919. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4920. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4921. for (int s = 1; s <= steps; s++) {
  4922. float fraction = float(s) / float(steps);
  4923. for (int8_t i = 0; i < NUM_AXIS; i++)
  4924. destination[i] = current_position[i] + difference[i] * fraction;
  4925. calculate_delta(destination);
  4926. #ifdef ENABLE_AUTO_BED_LEVELING
  4927. adjust_delta(destination);
  4928. #endif
  4929. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4930. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4931. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4932. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4933. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4934. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4935. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4936. }
  4937. return true;
  4938. }
  4939. #endif // DELTA || SCARA
  4940. #ifdef SCARA
  4941. inline bool prepare_move_scara() { return prepare_move_delta(); }
  4942. #endif
  4943. #ifdef DUAL_X_CARRIAGE
  4944. inline bool prepare_move_dual_x_carriage() {
  4945. if (active_extruder_parked) {
  4946. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  4947. // move duplicate extruder into correct duplication position.
  4948. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4949. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  4950. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4951. sync_plan_position();
  4952. st_synchronize();
  4953. extruder_duplication_enabled = true;
  4954. active_extruder_parked = false;
  4955. }
  4956. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  4957. if (current_position[E_AXIS] == destination[E_AXIS]) {
  4958. // This is a travel move (with no extrusion)
  4959. // Skip it, but keep track of the current position
  4960. // (so it can be used as the start of the next non-travel move)
  4961. if (delayed_move_time != 0xFFFFFFFFUL) {
  4962. set_current_to_destination();
  4963. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  4964. delayed_move_time = millis();
  4965. return false;
  4966. }
  4967. }
  4968. delayed_move_time = 0;
  4969. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4970. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4971. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  4972. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4973. active_extruder_parked = false;
  4974. }
  4975. }
  4976. return true;
  4977. }
  4978. #endif // DUAL_X_CARRIAGE
  4979. #if !defined(DELTA) && !defined(SCARA)
  4980. inline bool prepare_move_cartesian() {
  4981. // Do not use feedrate_multiplier for E or Z only moves
  4982. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  4983. line_to_destination();
  4984. }
  4985. else {
  4986. #ifdef MESH_BED_LEVELING
  4987. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  4988. return false;
  4989. #else
  4990. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  4991. #endif
  4992. }
  4993. return true;
  4994. }
  4995. #endif // !DELTA && !SCARA
  4996. /**
  4997. * Prepare a single move and get ready for the next one
  4998. */
  4999. void prepare_move() {
  5000. clamp_to_software_endstops(destination);
  5001. refresh_cmd_timeout();
  5002. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5003. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5004. #endif
  5005. #ifdef SCARA
  5006. if (!prepare_move_scara()) return;
  5007. #elif defined(DELTA)
  5008. if (!prepare_move_delta()) return;
  5009. #endif
  5010. #ifdef DUAL_X_CARRIAGE
  5011. if (!prepare_move_dual_x_carriage()) return;
  5012. #endif
  5013. #if !defined(DELTA) && !defined(SCARA)
  5014. if (!prepare_move_cartesian()) return;
  5015. #endif
  5016. set_current_to_destination();
  5017. }
  5018. void prepare_arc_move(char isclockwise) {
  5019. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5020. // Trace the arc
  5021. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedrate_multiplier/60/100.0, r, isclockwise, active_extruder);
  5022. // As far as the parser is concerned, the position is now == target. In reality the
  5023. // motion control system might still be processing the action and the real tool position
  5024. // in any intermediate location.
  5025. set_current_to_destination();
  5026. refresh_cmd_timeout();
  5027. }
  5028. #if HAS_CONTROLLERFAN
  5029. void controllerFan() {
  5030. static millis_t lastMotor = 0; // Last time a motor was turned on
  5031. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5032. millis_t ms = millis();
  5033. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5034. lastMotorCheck = ms;
  5035. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5036. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5037. #if EXTRUDERS > 1
  5038. || E1_ENABLE_READ == E_ENABLE_ON
  5039. #if HAS_X2_ENABLE
  5040. || X2_ENABLE_READ == X_ENABLE_ON
  5041. #endif
  5042. #if EXTRUDERS > 2
  5043. || E2_ENABLE_READ == E_ENABLE_ON
  5044. #if EXTRUDERS > 3
  5045. || E3_ENABLE_READ == E_ENABLE_ON
  5046. #endif
  5047. #endif
  5048. #endif
  5049. ) {
  5050. lastMotor = ms; //... set time to NOW so the fan will turn on
  5051. }
  5052. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5053. // allows digital or PWM fan output to be used (see M42 handling)
  5054. digitalWrite(CONTROLLERFAN_PIN, speed);
  5055. analogWrite(CONTROLLERFAN_PIN, speed);
  5056. }
  5057. }
  5058. #endif // HAS_CONTROLLERFAN
  5059. #ifdef SCARA
  5060. void calculate_SCARA_forward_Transform(float f_scara[3])
  5061. {
  5062. // Perform forward kinematics, and place results in delta[3]
  5063. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5064. float x_sin, x_cos, y_sin, y_cos;
  5065. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5066. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5067. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5068. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5069. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5070. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5071. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5072. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5073. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5074. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5075. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5076. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5077. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5078. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5079. }
  5080. void calculate_delta(float cartesian[3]){
  5081. //reverse kinematics.
  5082. // Perform reversed kinematics, and place results in delta[3]
  5083. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5084. float SCARA_pos[2];
  5085. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5086. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5087. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5088. #if (Linkage_1 == Linkage_2)
  5089. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5090. #else
  5091. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5092. #endif
  5093. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5094. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5095. SCARA_K2 = Linkage_2 * SCARA_S2;
  5096. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5097. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5098. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5099. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5100. delta[Z_AXIS] = cartesian[Z_AXIS];
  5101. /*
  5102. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5103. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5104. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5105. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5106. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5107. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5108. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5109. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5110. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5111. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5112. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5113. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5114. SERIAL_ECHOLN(" ");*/
  5115. }
  5116. #endif
  5117. #ifdef TEMP_STAT_LEDS
  5118. static bool red_led = false;
  5119. static millis_t next_status_led_update_ms = 0;
  5120. void handle_status_leds(void) {
  5121. float max_temp = 0.0;
  5122. if (millis() > next_status_led_update_ms) {
  5123. next_status_led_update_ms += 500; // Update every 0.5s
  5124. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5125. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5126. #if HAS_TEMP_BED
  5127. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5128. #endif
  5129. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5130. if (new_led != red_led) {
  5131. red_led = new_led;
  5132. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5133. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5134. }
  5135. }
  5136. }
  5137. #endif
  5138. void enable_all_steppers() {
  5139. enable_x();
  5140. enable_y();
  5141. enable_z();
  5142. enable_e0();
  5143. enable_e1();
  5144. enable_e2();
  5145. enable_e3();
  5146. }
  5147. void disable_all_steppers() {
  5148. disable_x();
  5149. disable_y();
  5150. disable_z();
  5151. disable_e0();
  5152. disable_e1();
  5153. disable_e2();
  5154. disable_e3();
  5155. }
  5156. /**
  5157. * Manage several activities:
  5158. * - Check for Filament Runout
  5159. * - Keep the command buffer full
  5160. * - Check for maximum inactive time between commands
  5161. * - Check for maximum inactive time between stepper commands
  5162. * - Check if pin CHDK needs to go LOW
  5163. * - Check for KILL button held down
  5164. * - Check for HOME button held down
  5165. * - Check if cooling fan needs to be switched on
  5166. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5167. */
  5168. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5169. #if HAS_FILRUNOUT
  5170. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5171. filrunout();
  5172. #endif
  5173. if (commands_in_queue < BUFSIZE - 1) get_command();
  5174. millis_t ms = millis();
  5175. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill();
  5176. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5177. && !ignore_stepper_queue && !blocks_queued())
  5178. disable_all_steppers();
  5179. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5180. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5181. chdkActive = false;
  5182. WRITE(CHDK, LOW);
  5183. }
  5184. #endif
  5185. #if HAS_KILL
  5186. // Check if the kill button was pressed and wait just in case it was an accidental
  5187. // key kill key press
  5188. // -------------------------------------------------------------------------------
  5189. static int killCount = 0; // make the inactivity button a bit less responsive
  5190. const int KILL_DELAY = 750;
  5191. if (!READ(KILL_PIN))
  5192. killCount++;
  5193. else if (killCount > 0)
  5194. killCount--;
  5195. // Exceeded threshold and we can confirm that it was not accidental
  5196. // KILL the machine
  5197. // ----------------------------------------------------------------
  5198. if (killCount >= KILL_DELAY) kill();
  5199. #endif
  5200. #if HAS_HOME
  5201. // Check to see if we have to home, use poor man's debouncer
  5202. // ---------------------------------------------------------
  5203. static int homeDebounceCount = 0; // poor man's debouncing count
  5204. const int HOME_DEBOUNCE_DELAY = 750;
  5205. if (!READ(HOME_PIN)) {
  5206. if (!homeDebounceCount) {
  5207. enqueuecommands_P(PSTR("G28"));
  5208. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5209. }
  5210. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5211. homeDebounceCount++;
  5212. else
  5213. homeDebounceCount = 0;
  5214. }
  5215. #endif
  5216. #if HAS_CONTROLLERFAN
  5217. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5218. #endif
  5219. #ifdef EXTRUDER_RUNOUT_PREVENT
  5220. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5221. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5222. bool oldstatus;
  5223. switch(active_extruder) {
  5224. case 0:
  5225. oldstatus = E0_ENABLE_READ;
  5226. enable_e0();
  5227. break;
  5228. #if EXTRUDERS > 1
  5229. case 1:
  5230. oldstatus = E1_ENABLE_READ;
  5231. enable_e1();
  5232. break;
  5233. #if EXTRUDERS > 2
  5234. case 2:
  5235. oldstatus = E2_ENABLE_READ;
  5236. enable_e2();
  5237. break;
  5238. #if EXTRUDERS > 3
  5239. case 3:
  5240. oldstatus = E3_ENABLE_READ;
  5241. enable_e3();
  5242. break;
  5243. #endif
  5244. #endif
  5245. #endif
  5246. }
  5247. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5248. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5249. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5250. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5251. current_position[E_AXIS] = oldepos;
  5252. destination[E_AXIS] = oldedes;
  5253. plan_set_e_position(oldepos);
  5254. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5255. st_synchronize();
  5256. switch(active_extruder) {
  5257. case 0:
  5258. E0_ENABLE_WRITE(oldstatus);
  5259. break;
  5260. #if EXTRUDERS > 1
  5261. case 1:
  5262. E1_ENABLE_WRITE(oldstatus);
  5263. break;
  5264. #if EXTRUDERS > 2
  5265. case 2:
  5266. E2_ENABLE_WRITE(oldstatus);
  5267. break;
  5268. #if EXTRUDERS > 3
  5269. case 3:
  5270. E3_ENABLE_WRITE(oldstatus);
  5271. break;
  5272. #endif
  5273. #endif
  5274. #endif
  5275. }
  5276. }
  5277. #endif
  5278. #ifdef DUAL_X_CARRIAGE
  5279. // handle delayed move timeout
  5280. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5281. // travel moves have been received so enact them
  5282. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5283. set_destination_to_current();
  5284. prepare_move();
  5285. }
  5286. #endif
  5287. #ifdef TEMP_STAT_LEDS
  5288. handle_status_leds();
  5289. #endif
  5290. check_axes_activity();
  5291. }
  5292. void kill()
  5293. {
  5294. cli(); // Stop interrupts
  5295. disable_all_heaters();
  5296. disable_all_steppers();
  5297. #if HAS_POWER_SWITCH
  5298. pinMode(PS_ON_PIN, INPUT);
  5299. #endif
  5300. SERIAL_ERROR_START;
  5301. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5302. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5303. // FMC small patch to update the LCD before ending
  5304. sei(); // enable interrupts
  5305. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5306. cli(); // disable interrupts
  5307. suicide();
  5308. while(1) { /* Intentionally left empty */ } // Wait for reset
  5309. }
  5310. #ifdef FILAMENT_RUNOUT_SENSOR
  5311. void filrunout() {
  5312. if (!filrunoutEnqueued) {
  5313. filrunoutEnqueued = true;
  5314. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5315. st_synchronize();
  5316. }
  5317. }
  5318. #endif
  5319. void Stop() {
  5320. disable_all_heaters();
  5321. if (IsRunning()) {
  5322. Running = false;
  5323. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5324. SERIAL_ERROR_START;
  5325. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5326. LCD_MESSAGEPGM(MSG_STOPPED);
  5327. }
  5328. }
  5329. #ifdef FAST_PWM_FAN
  5330. void setPwmFrequency(uint8_t pin, int val)
  5331. {
  5332. val &= 0x07;
  5333. switch(digitalPinToTimer(pin))
  5334. {
  5335. #if defined(TCCR0A)
  5336. case TIMER0A:
  5337. case TIMER0B:
  5338. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5339. // TCCR0B |= val;
  5340. break;
  5341. #endif
  5342. #if defined(TCCR1A)
  5343. case TIMER1A:
  5344. case TIMER1B:
  5345. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5346. // TCCR1B |= val;
  5347. break;
  5348. #endif
  5349. #if defined(TCCR2)
  5350. case TIMER2:
  5351. case TIMER2:
  5352. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5353. TCCR2 |= val;
  5354. break;
  5355. #endif
  5356. #if defined(TCCR2A)
  5357. case TIMER2A:
  5358. case TIMER2B:
  5359. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5360. TCCR2B |= val;
  5361. break;
  5362. #endif
  5363. #if defined(TCCR3A)
  5364. case TIMER3A:
  5365. case TIMER3B:
  5366. case TIMER3C:
  5367. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5368. TCCR3B |= val;
  5369. break;
  5370. #endif
  5371. #if defined(TCCR4A)
  5372. case TIMER4A:
  5373. case TIMER4B:
  5374. case TIMER4C:
  5375. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5376. TCCR4B |= val;
  5377. break;
  5378. #endif
  5379. #if defined(TCCR5A)
  5380. case TIMER5A:
  5381. case TIMER5B:
  5382. case TIMER5C:
  5383. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5384. TCCR5B |= val;
  5385. break;
  5386. #endif
  5387. }
  5388. }
  5389. #endif //FAST_PWM_FAN
  5390. bool setTargetedHotend(int code){
  5391. target_extruder = active_extruder;
  5392. if (code_seen('T')) {
  5393. target_extruder = code_value_short();
  5394. if (target_extruder >= EXTRUDERS) {
  5395. SERIAL_ECHO_START;
  5396. switch(code){
  5397. case 104:
  5398. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5399. break;
  5400. case 105:
  5401. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5402. break;
  5403. case 109:
  5404. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5405. break;
  5406. case 218:
  5407. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5408. break;
  5409. case 221:
  5410. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5411. break;
  5412. }
  5413. SERIAL_ECHOLN(target_extruder);
  5414. return true;
  5415. }
  5416. }
  5417. return false;
  5418. }
  5419. float calculate_volumetric_multiplier(float diameter) {
  5420. if (!volumetric_enabled || diameter == 0) return 1.0;
  5421. float d2 = diameter * 0.5;
  5422. return 1.0 / (M_PI * d2 * d2);
  5423. }
  5424. void calculate_volumetric_multipliers() {
  5425. for (int i=0; i<EXTRUDERS; i++)
  5426. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5427. }