My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 132KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <https://www.gnu.org/licenses/>.
  41. */
  42. /**
  43. * Timer calculations informed by the 'RepRap cartesian firmware' by Zack Smith
  44. * and Philipp Tiefenbacher.
  45. */
  46. /**
  47. * __________________________
  48. * /| |\ _________________ ^
  49. * / | | \ /| |\ |
  50. * / | | \ / | | \ s
  51. * / | | | | | \ p
  52. * / | | | | | \ e
  53. * +-----+------------------------+---+--+---------------+----+ e
  54. * | BLOCK 1 | BLOCK 2 | d
  55. *
  56. * time ----->
  57. *
  58. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  59. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  60. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  61. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  62. */
  63. /**
  64. * Marlin uses the Bresenham algorithm. For a detailed explanation of theory and
  65. * method see https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
  66. */
  67. /**
  68. * Jerk controlled movements planner added Apr 2018 by Eduardo José Tagle.
  69. * Equations based on Synthethos TinyG2 sources, but the fixed-point
  70. * implementation is new, as we are running the ISR with a variable period.
  71. * Also implemented the Bézier velocity curve evaluation in ARM assembler,
  72. * to avoid impacting ISR speed.
  73. */
  74. #include "stepper.h"
  75. Stepper stepper; // Singleton
  76. #define BABYSTEPPING_EXTRA_DIR_WAIT
  77. #ifdef __AVR__
  78. #include "speed_lookuptable.h"
  79. #endif
  80. #include "endstops.h"
  81. #include "planner.h"
  82. #include "motion.h"
  83. #include "../lcd/marlinui.h"
  84. #include "../gcode/queue.h"
  85. #include "../sd/cardreader.h"
  86. #include "../MarlinCore.h"
  87. #include "../HAL/shared/Delay.h"
  88. #if ENABLED(INTEGRATED_BABYSTEPPING)
  89. #include "../feature/babystep.h"
  90. #endif
  91. #if MB(ALLIGATOR)
  92. #include "../feature/dac/dac_dac084s085.h"
  93. #endif
  94. #if HAS_MOTOR_CURRENT_SPI
  95. #include <SPI.h>
  96. #endif
  97. #if ENABLED(MIXING_EXTRUDER)
  98. #include "../feature/mixing.h"
  99. #endif
  100. #if HAS_FILAMENT_RUNOUT_DISTANCE
  101. #include "../feature/runout.h"
  102. #endif
  103. #if HAS_L64XX
  104. #include "../libs/L64XX/L64XX_Marlin.h"
  105. uint8_t L6470_buf[MAX_L64XX + 1]; // chip command sequence - element 0 not used
  106. bool L64XX_OK_to_power_up = false; // flag to keep L64xx steppers powered down after a reset or power up
  107. #endif
  108. #if ENABLED(AUTO_POWER_CONTROL)
  109. #include "../feature/power.h"
  110. #endif
  111. #if ENABLED(POWER_LOSS_RECOVERY)
  112. #include "../feature/powerloss.h"
  113. #endif
  114. #if HAS_CUTTER
  115. #include "../feature/spindle_laser.h"
  116. #endif
  117. #if ENABLED(EXTENSIBLE_UI)
  118. #include "../lcd/extui/ui_api.h"
  119. #endif
  120. // public:
  121. #if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
  122. bool Stepper::separate_multi_axis = false;
  123. #endif
  124. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  125. bool Stepper::initialized; // = false
  126. uint32_t Stepper::motor_current_setting[MOTOR_CURRENT_COUNT]; // Initialized by settings.load()
  127. #if HAS_MOTOR_CURRENT_SPI
  128. constexpr uint32_t Stepper::digipot_count[];
  129. #endif
  130. #endif
  131. axis_flags_t Stepper::axis_enabled; // {0}
  132. // private:
  133. block_t* Stepper::current_block; // (= nullptr) A pointer to the block currently being traced
  134. axis_bits_t Stepper::last_direction_bits, // = 0
  135. Stepper::axis_did_move; // = 0
  136. bool Stepper::abort_current_block;
  137. #if DISABLED(MIXING_EXTRUDER) && HAS_MULTI_EXTRUDER
  138. uint8_t Stepper::last_moved_extruder = 0xFF;
  139. #endif
  140. #if ENABLED(X_DUAL_ENDSTOPS)
  141. bool Stepper::locked_X_motor = false, Stepper::locked_X2_motor = false;
  142. #endif
  143. #if ENABLED(Y_DUAL_ENDSTOPS)
  144. bool Stepper::locked_Y_motor = false, Stepper::locked_Y2_motor = false;
  145. #endif
  146. #if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
  147. bool Stepper::locked_Z_motor = false, Stepper::locked_Z2_motor = false
  148. #if NUM_Z_STEPPER_DRIVERS >= 3
  149. , Stepper::locked_Z3_motor = false
  150. #if NUM_Z_STEPPER_DRIVERS >= 4
  151. , Stepper::locked_Z4_motor = false
  152. #endif
  153. #endif
  154. ;
  155. #endif
  156. uint32_t Stepper::acceleration_time, Stepper::deceleration_time;
  157. uint8_t Stepper::steps_per_isr;
  158. #if HAS_FREEZE_PIN
  159. bool Stepper::frozen; // = false
  160. #endif
  161. IF_DISABLED(ADAPTIVE_STEP_SMOOTHING, constexpr) uint8_t Stepper::oversampling_factor;
  162. xyze_long_t Stepper::delta_error{0};
  163. xyze_ulong_t Stepper::advance_dividend{0};
  164. uint32_t Stepper::advance_divisor = 0,
  165. Stepper::step_events_completed = 0, // The number of step events executed in the current block
  166. Stepper::accelerate_until, // The count at which to stop accelerating
  167. Stepper::decelerate_after, // The count at which to start decelerating
  168. Stepper::step_event_count; // The total event count for the current block
  169. #if EITHER(HAS_MULTI_EXTRUDER, MIXING_EXTRUDER)
  170. uint8_t Stepper::stepper_extruder;
  171. #else
  172. constexpr uint8_t Stepper::stepper_extruder;
  173. #endif
  174. #if ENABLED(S_CURVE_ACCELERATION)
  175. int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler
  176. int32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B"); // B coefficient in Bézier speed curve with alias for assembler
  177. int32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C"); // C coefficient in Bézier speed curve with alias for assembler
  178. uint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F"); // F coefficient in Bézier speed curve with alias for assembler
  179. uint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assembler
  180. #ifdef __AVR__
  181. bool __attribute__((used)) Stepper::A_negative __asm__("A_negative"); // If A coefficient was negative
  182. #endif
  183. bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not
  184. #endif
  185. #if ENABLED(LIN_ADVANCE)
  186. uint32_t Stepper::nextAdvanceISR = LA_ADV_NEVER,
  187. Stepper::LA_isr_rate = LA_ADV_NEVER;
  188. uint16_t Stepper::LA_current_adv_steps = 0,
  189. Stepper::LA_final_adv_steps,
  190. Stepper::LA_max_adv_steps;
  191. int8_t Stepper::LA_steps = 0;
  192. bool Stepper::LA_use_advance_lead;
  193. #endif // LIN_ADVANCE
  194. #if ENABLED(INTEGRATED_BABYSTEPPING)
  195. uint32_t Stepper::nextBabystepISR = BABYSTEP_NEVER;
  196. #endif
  197. #if ENABLED(DIRECT_STEPPING)
  198. page_step_state_t Stepper::page_step_state;
  199. #endif
  200. int32_t Stepper::ticks_nominal = -1;
  201. #if DISABLED(S_CURVE_ACCELERATION)
  202. uint32_t Stepper::acc_step_rate; // needed for deceleration start point
  203. #endif
  204. xyz_long_t Stepper::endstops_trigsteps;
  205. xyze_long_t Stepper::count_position{0};
  206. xyze_int8_t Stepper::count_direction{0};
  207. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
  208. Stepper::stepper_laser_t Stepper::laser_trap = {
  209. .enabled = false,
  210. .cur_power = 0,
  211. .cruise_set = false,
  212. #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
  213. .last_step_count = 0,
  214. .acc_step_count = 0
  215. #else
  216. .till_update = 0
  217. #endif
  218. };
  219. #endif
  220. #define MINDIR(A) (count_direction[_AXIS(A)] < 0)
  221. #define MAXDIR(A) (count_direction[_AXIS(A)] > 0)
  222. #define STEPTEST(A,M,I) TERN0(HAS_ ##A## ##I## _ ##M, !(TEST(endstops.state(), A## ##I## _ ##M) && M## DIR(A)) && !locked_ ##A## ##I## _motor)
  223. #define DUAL_ENDSTOP_APPLY_STEP(A,V) \
  224. if (separate_multi_axis) { \
  225. if (ENABLED(A##_HOME_TO_MIN)) { \
  226. if (STEPTEST(A,MIN, )) A## _STEP_WRITE(V); \
  227. if (STEPTEST(A,MIN,2)) A##2_STEP_WRITE(V); \
  228. } \
  229. else if (ENABLED(A##_HOME_TO_MAX)) { \
  230. if (STEPTEST(A,MAX, )) A## _STEP_WRITE(V); \
  231. if (STEPTEST(A,MAX,2)) A##2_STEP_WRITE(V); \
  232. } \
  233. } \
  234. else { \
  235. A##_STEP_WRITE(V); \
  236. A##2_STEP_WRITE(V); \
  237. }
  238. #define DUAL_SEPARATE_APPLY_STEP(A,V) \
  239. if (separate_multi_axis) { \
  240. if (!locked_##A## _motor) A## _STEP_WRITE(V); \
  241. if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
  242. } \
  243. else { \
  244. A##_STEP_WRITE(V); \
  245. A##2_STEP_WRITE(V); \
  246. }
  247. #define TRIPLE_ENDSTOP_APPLY_STEP(A,V) \
  248. if (separate_multi_axis) { \
  249. if (ENABLED(A##_HOME_TO_MIN)) { \
  250. if (STEPTEST(A,MIN, )) A## _STEP_WRITE(V); \
  251. if (STEPTEST(A,MIN,2)) A##2_STEP_WRITE(V); \
  252. if (STEPTEST(A,MIN,3)) A##3_STEP_WRITE(V); \
  253. } \
  254. else if (ENABLED(A##_HOME_TO_MAX)) { \
  255. if (STEPTEST(A,MAX, )) A## _STEP_WRITE(V); \
  256. if (STEPTEST(A,MAX,2)) A##2_STEP_WRITE(V); \
  257. if (STEPTEST(A,MAX,3)) A##3_STEP_WRITE(V); \
  258. } \
  259. } \
  260. else { \
  261. A##_STEP_WRITE(V); \
  262. A##2_STEP_WRITE(V); \
  263. A##3_STEP_WRITE(V); \
  264. }
  265. #define TRIPLE_SEPARATE_APPLY_STEP(A,V) \
  266. if (separate_multi_axis) { \
  267. if (!locked_##A## _motor) A## _STEP_WRITE(V); \
  268. if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
  269. if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \
  270. } \
  271. else { \
  272. A## _STEP_WRITE(V); \
  273. A##2_STEP_WRITE(V); \
  274. A##3_STEP_WRITE(V); \
  275. }
  276. #define QUAD_ENDSTOP_APPLY_STEP(A,V) \
  277. if (separate_multi_axis) { \
  278. if (ENABLED(A##_HOME_TO_MIN)) { \
  279. if (STEPTEST(A,MIN, )) A## _STEP_WRITE(V); \
  280. if (STEPTEST(A,MIN,2)) A##2_STEP_WRITE(V); \
  281. if (STEPTEST(A,MIN,3)) A##3_STEP_WRITE(V); \
  282. if (STEPTEST(A,MIN,4)) A##4_STEP_WRITE(V); \
  283. } \
  284. else if (ENABLED(A##_HOME_TO_MAX)) { \
  285. if (STEPTEST(A,MAX, )) A## _STEP_WRITE(V); \
  286. if (STEPTEST(A,MAX,2)) A##2_STEP_WRITE(V); \
  287. if (STEPTEST(A,MAX,3)) A##3_STEP_WRITE(V); \
  288. if (STEPTEST(A,MAX,4)) A##4_STEP_WRITE(V); \
  289. } \
  290. } \
  291. else { \
  292. A## _STEP_WRITE(V); \
  293. A##2_STEP_WRITE(V); \
  294. A##3_STEP_WRITE(V); \
  295. A##4_STEP_WRITE(V); \
  296. }
  297. #define QUAD_SEPARATE_APPLY_STEP(A,V) \
  298. if (separate_multi_axis) { \
  299. if (!locked_##A## _motor) A## _STEP_WRITE(V); \
  300. if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
  301. if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \
  302. if (!locked_##A##4_motor) A##4_STEP_WRITE(V); \
  303. } \
  304. else { \
  305. A## _STEP_WRITE(V); \
  306. A##2_STEP_WRITE(V); \
  307. A##3_STEP_WRITE(V); \
  308. A##4_STEP_WRITE(V); \
  309. }
  310. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  311. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) ^ ENABLED(INVERT_X2_VS_X_DIR)); }while(0)
  312. #if ENABLED(X_DUAL_ENDSTOPS)
  313. #define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
  314. #else
  315. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  316. #endif
  317. #elif ENABLED(DUAL_X_CARRIAGE)
  318. #define X_APPLY_DIR(v,ALWAYS) do{ \
  319. if (extruder_duplication_enabled || ALWAYS) { X_DIR_WRITE(v); X2_DIR_WRITE((v) ^ idex_mirrored_mode); } \
  320. else if (last_moved_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  321. }while(0)
  322. #define X_APPLY_STEP(v,ALWAYS) do{ \
  323. if (extruder_duplication_enabled || ALWAYS) { X_STEP_WRITE(v); X2_STEP_WRITE(v); } \
  324. else if (last_moved_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  325. }while(0)
  326. #else
  327. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  328. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  329. #endif
  330. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  331. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) ^ ENABLED(INVERT_Y2_VS_Y_DIR)); }while(0)
  332. #if ENABLED(Y_DUAL_ENDSTOPS)
  333. #define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
  334. #else
  335. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  336. #endif
  337. #elif HAS_Y_AXIS
  338. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  339. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  340. #endif
  341. #if NUM_Z_STEPPER_DRIVERS == 4
  342. #define Z_APPLY_DIR(v,Q) do{ \
  343. Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); \
  344. Z3_DIR_WRITE((v) ^ ENABLED(INVERT_Z3_VS_Z_DIR)); Z4_DIR_WRITE((v) ^ ENABLED(INVERT_Z4_VS_Z_DIR)); \
  345. }while(0)
  346. #if ENABLED(Z_MULTI_ENDSTOPS)
  347. #define Z_APPLY_STEP(v,Q) QUAD_ENDSTOP_APPLY_STEP(Z,v)
  348. #elif ENABLED(Z_STEPPER_AUTO_ALIGN)
  349. #define Z_APPLY_STEP(v,Q) QUAD_SEPARATE_APPLY_STEP(Z,v)
  350. #else
  351. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); Z3_STEP_WRITE(v); Z4_STEP_WRITE(v); }while(0)
  352. #endif
  353. #elif NUM_Z_STEPPER_DRIVERS == 3
  354. #define Z_APPLY_DIR(v,Q) do{ \
  355. Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); Z3_DIR_WRITE((v) ^ ENABLED(INVERT_Z3_VS_Z_DIR)); \
  356. }while(0)
  357. #if ENABLED(Z_MULTI_ENDSTOPS)
  358. #define Z_APPLY_STEP(v,Q) TRIPLE_ENDSTOP_APPLY_STEP(Z,v)
  359. #elif ENABLED(Z_STEPPER_AUTO_ALIGN)
  360. #define Z_APPLY_STEP(v,Q) TRIPLE_SEPARATE_APPLY_STEP(Z,v)
  361. #else
  362. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); Z3_STEP_WRITE(v); }while(0)
  363. #endif
  364. #elif NUM_Z_STEPPER_DRIVERS == 2
  365. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); }while(0)
  366. #if ENABLED(Z_MULTI_ENDSTOPS)
  367. #define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
  368. #elif ENABLED(Z_STEPPER_AUTO_ALIGN)
  369. #define Z_APPLY_STEP(v,Q) DUAL_SEPARATE_APPLY_STEP(Z,v)
  370. #else
  371. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  372. #endif
  373. #elif HAS_Z_AXIS
  374. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  375. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  376. #endif
  377. #if HAS_I_AXIS
  378. #define I_APPLY_DIR(v,Q) I_DIR_WRITE(v)
  379. #define I_APPLY_STEP(v,Q) I_STEP_WRITE(v)
  380. #endif
  381. #if HAS_J_AXIS
  382. #define J_APPLY_DIR(v,Q) J_DIR_WRITE(v)
  383. #define J_APPLY_STEP(v,Q) J_STEP_WRITE(v)
  384. #endif
  385. #if HAS_K_AXIS
  386. #define K_APPLY_DIR(v,Q) K_DIR_WRITE(v)
  387. #define K_APPLY_STEP(v,Q) K_STEP_WRITE(v)
  388. #endif
  389. #if DISABLED(MIXING_EXTRUDER)
  390. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(stepper_extruder, v)
  391. #endif
  392. #define CYCLES_TO_NS(CYC) (1000UL * (CYC) / ((F_CPU) / 1000000))
  393. #define NS_PER_PULSE_TIMER_TICK (1000000000UL / (STEPPER_TIMER_RATE))
  394. // Round up when converting from ns to timer ticks
  395. #define NS_TO_PULSE_TIMER_TICKS(NS) (((NS) + (NS_PER_PULSE_TIMER_TICK) / 2) / (NS_PER_PULSE_TIMER_TICK))
  396. #define TIMER_SETUP_NS (CYCLES_TO_NS(TIMER_READ_ADD_AND_STORE_CYCLES))
  397. #define PULSE_HIGH_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_HIGH_NS - _MIN(_MIN_PULSE_HIGH_NS, TIMER_SETUP_NS)))
  398. #define PULSE_LOW_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_LOW_NS - _MIN(_MIN_PULSE_LOW_NS, TIMER_SETUP_NS)))
  399. #define USING_TIMED_PULSE() hal_timer_t start_pulse_count = 0
  400. #define START_TIMED_PULSE(DIR) (start_pulse_count = HAL_timer_get_count(MF_TIMER_PULSE))
  401. #define AWAIT_TIMED_PULSE(DIR) while (PULSE_##DIR##_TICK_COUNT > HAL_timer_get_count(MF_TIMER_PULSE) - start_pulse_count) { }
  402. #define START_HIGH_PULSE() START_TIMED_PULSE(HIGH)
  403. #define AWAIT_HIGH_PULSE() AWAIT_TIMED_PULSE(HIGH)
  404. #define START_LOW_PULSE() START_TIMED_PULSE(LOW)
  405. #define AWAIT_LOW_PULSE() AWAIT_TIMED_PULSE(LOW)
  406. #if MINIMUM_STEPPER_PRE_DIR_DELAY > 0
  407. #define DIR_WAIT_BEFORE() DELAY_NS(MINIMUM_STEPPER_PRE_DIR_DELAY)
  408. #else
  409. #define DIR_WAIT_BEFORE()
  410. #endif
  411. #if MINIMUM_STEPPER_POST_DIR_DELAY > 0
  412. #define DIR_WAIT_AFTER() DELAY_NS(MINIMUM_STEPPER_POST_DIR_DELAY)
  413. #else
  414. #define DIR_WAIT_AFTER()
  415. #endif
  416. void Stepper::enable_axis(const AxisEnum axis) {
  417. #define _CASE_ENABLE(N) case N##_AXIS: ENABLE_AXIS_##N(); break;
  418. switch (axis) {
  419. LINEAR_AXIS_CODE(
  420. _CASE_ENABLE(X), _CASE_ENABLE(Y), _CASE_ENABLE(Z),
  421. _CASE_ENABLE(I), _CASE_ENABLE(J), _CASE_ENABLE(K)
  422. );
  423. default: break;
  424. }
  425. mark_axis_enabled(axis);
  426. }
  427. bool Stepper::disable_axis(const AxisEnum axis) {
  428. mark_axis_disabled(axis);
  429. // If all the axes that share the enabled bit are disabled
  430. const bool can_disable = can_axis_disable(axis);
  431. if (can_disable) {
  432. #define _CASE_DISABLE(N) case N##_AXIS: DISABLE_AXIS_##N(); break;
  433. switch (axis) {
  434. LINEAR_AXIS_CODE(
  435. _CASE_DISABLE(X), _CASE_DISABLE(Y), _CASE_DISABLE(Z),
  436. _CASE_DISABLE(I), _CASE_DISABLE(J), _CASE_DISABLE(K)
  437. );
  438. default: break;
  439. }
  440. }
  441. return can_disable;
  442. }
  443. #if HAS_EXTRUDERS
  444. void Stepper::enable_extruder(E_TERN_(const uint8_t eindex)) {
  445. IF_DISABLED(HAS_MULTI_EXTRUDER, constexpr uint8_t eindex = 0);
  446. #define _CASE_ENA_E(N) case N: ENABLE_AXIS_E##N(); mark_axis_enabled(E_AXIS E_OPTARG(eindex)); break;
  447. switch (eindex) {
  448. REPEAT(E_STEPPERS, _CASE_ENA_E)
  449. }
  450. }
  451. bool Stepper::disable_extruder(E_TERN_(const uint8_t eindex)) {
  452. IF_DISABLED(HAS_MULTI_EXTRUDER, constexpr uint8_t eindex = 0);
  453. mark_axis_disabled(E_AXIS E_OPTARG(eindex));
  454. const bool can_disable = can_axis_disable(E_AXIS E_OPTARG(eindex));
  455. if (can_disable) {
  456. #define _CASE_DIS_E(N) case N: DISABLE_AXIS_E##N(); break;
  457. switch (eindex) { REPEAT(E_STEPPERS, _CASE_DIS_E) }
  458. }
  459. return can_disable;
  460. }
  461. void Stepper::enable_e_steppers() {
  462. #define _ENA_E(N) ENABLE_EXTRUDER(N);
  463. REPEAT(EXTRUDERS, _ENA_E)
  464. }
  465. void Stepper::disable_e_steppers() {
  466. #define _DIS_E(N) DISABLE_EXTRUDER(N);
  467. REPEAT(EXTRUDERS, _DIS_E)
  468. }
  469. #endif
  470. void Stepper::enable_all_steppers() {
  471. TERN_(AUTO_POWER_CONTROL, powerManager.power_on());
  472. LINEAR_AXIS_CODE(
  473. enable_axis(X_AXIS), enable_axis(Y_AXIS), enable_axis(Z_AXIS),
  474. enable_axis(I_AXIS), enable_axis(J_AXIS), enable_axis(K_AXIS)
  475. );
  476. enable_e_steppers();
  477. TERN_(EXTENSIBLE_UI, ExtUI::onSteppersEnabled());
  478. }
  479. void Stepper::disable_all_steppers() {
  480. LINEAR_AXIS_CODE(
  481. disable_axis(X_AXIS), disable_axis(Y_AXIS), disable_axis(Z_AXIS),
  482. disable_axis(I_AXIS), disable_axis(J_AXIS), disable_axis(K_AXIS)
  483. );
  484. disable_e_steppers();
  485. TERN_(EXTENSIBLE_UI, ExtUI::onSteppersDisabled());
  486. }
  487. /**
  488. * Set the stepper direction of each axis
  489. *
  490. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  491. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  492. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  493. */
  494. void Stepper::set_directions() {
  495. DIR_WAIT_BEFORE();
  496. #define SET_STEP_DIR(A) \
  497. if (motor_direction(_AXIS(A))) { \
  498. A##_APPLY_DIR(INVERT_##A##_DIR, false); \
  499. count_direction[_AXIS(A)] = -1; \
  500. } \
  501. else { \
  502. A##_APPLY_DIR(!INVERT_##A##_DIR, false); \
  503. count_direction[_AXIS(A)] = 1; \
  504. }
  505. TERN_(HAS_X_DIR, SET_STEP_DIR(X)); // A
  506. TERN_(HAS_Y_DIR, SET_STEP_DIR(Y)); // B
  507. TERN_(HAS_Z_DIR, SET_STEP_DIR(Z)); // C
  508. TERN_(HAS_I_DIR, SET_STEP_DIR(I));
  509. TERN_(HAS_J_DIR, SET_STEP_DIR(J));
  510. TERN_(HAS_K_DIR, SET_STEP_DIR(K));
  511. #if DISABLED(LIN_ADVANCE)
  512. #if ENABLED(MIXING_EXTRUDER)
  513. // Because this is valid for the whole block we don't know
  514. // what e-steppers will step. Likely all. Set all.
  515. if (motor_direction(E_AXIS)) {
  516. MIXER_STEPPER_LOOP(j) REV_E_DIR(j);
  517. count_direction.e = -1;
  518. }
  519. else {
  520. MIXER_STEPPER_LOOP(j) NORM_E_DIR(j);
  521. count_direction.e = 1;
  522. }
  523. #elif HAS_EXTRUDERS
  524. if (motor_direction(E_AXIS)) {
  525. REV_E_DIR(stepper_extruder);
  526. count_direction.e = -1;
  527. }
  528. else {
  529. NORM_E_DIR(stepper_extruder);
  530. count_direction.e = 1;
  531. }
  532. #endif
  533. #endif // !LIN_ADVANCE
  534. #if HAS_L64XX
  535. if (L64XX_OK_to_power_up) { // OK to send the direction commands (which powers up the L64XX steppers)
  536. if (L64xxManager.spi_active) {
  537. L64xxManager.spi_abort = true; // Interrupted SPI transfer needs to shut down gracefully
  538. for (uint8_t j = 1; j <= L64XX::chain[0]; j++)
  539. L6470_buf[j] = dSPIN_NOP; // Fill buffer with NOOPs
  540. L64xxManager.transfer(L6470_buf, L64XX::chain[0]); // Send enough NOOPs to complete any command
  541. L64xxManager.transfer(L6470_buf, L64XX::chain[0]);
  542. L64xxManager.transfer(L6470_buf, L64XX::chain[0]);
  543. }
  544. // L64xxManager.dir_commands[] is an array that holds direction command for each stepper
  545. // Scan command array, copy matches into L64xxManager.transfer
  546. for (uint8_t j = 1; j <= L64XX::chain[0]; j++)
  547. L6470_buf[j] = L64xxManager.dir_commands[L64XX::chain[j]];
  548. L64xxManager.transfer(L6470_buf, L64XX::chain[0]); // send the command stream to the drivers
  549. }
  550. #endif
  551. DIR_WAIT_AFTER();
  552. }
  553. #if ENABLED(S_CURVE_ACCELERATION)
  554. /**
  555. * This uses a quintic (fifth-degree) Bézier polynomial for the velocity curve, giving
  556. * a "linear pop" velocity curve; with pop being the sixth derivative of position:
  557. * velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th
  558. *
  559. * The Bézier curve takes the form:
  560. *
  561. * V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t)
  562. *
  563. * Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t)
  564. * through B_5(t) are the Bernstein basis as follows:
  565. *
  566. * B_0(t) = (1-t)^5 = -t^5 + 5t^4 - 10t^3 + 10t^2 - 5t + 1
  567. * B_1(t) = 5(1-t)^4 * t = 5t^5 - 20t^4 + 30t^3 - 20t^2 + 5t
  568. * B_2(t) = 10(1-t)^3 * t^2 = -10t^5 + 30t^4 - 30t^3 + 10t^2
  569. * B_3(t) = 10(1-t)^2 * t^3 = 10t^5 - 20t^4 + 10t^3
  570. * B_4(t) = 5(1-t) * t^4 = -5t^5 + 5t^4
  571. * B_5(t) = t^5 = t^5
  572. * ^ ^ ^ ^ ^ ^
  573. * | | | | | |
  574. * A B C D E F
  575. *
  576. * Unfortunately, we cannot use forward-differencing to calculate each position through
  577. * the curve, as Marlin uses variable timer periods. So, we require a formula of the form:
  578. *
  579. * V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F
  580. *
  581. * Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5
  582. * through t of the Bézier form of V(t), we can determine that:
  583. *
  584. * A = -P_0 + 5*P_1 - 10*P_2 + 10*P_3 - 5*P_4 + P_5
  585. * B = 5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 + 5*P_4
  586. * C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3
  587. * D = 10*P_0 - 20*P_1 + 10*P_2
  588. * E = - 5*P_0 + 5*P_1
  589. * F = P_0
  590. *
  591. * Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0,
  592. * We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity),
  593. * which, after simplification, resolves to:
  594. *
  595. * A = - 6*P_i + 6*P_t = 6*(P_t - P_i)
  596. * B = 15*P_i - 15*P_t = 15*(P_i - P_t)
  597. * C = -10*P_i + 10*P_t = 10*(P_t - P_i)
  598. * D = 0
  599. * E = 0
  600. * F = P_i
  601. *
  602. * As the t is evaluated in non uniform steps here, there is no other way rather than evaluating
  603. * the Bézier curve at each point:
  604. *
  605. * V_f(t) = A*t^5 + B*t^4 + C*t^3 + F [0 <= t <= 1]
  606. *
  607. * Floating point arithmetic execution time cost is prohibitive, so we will transform the math to
  608. * use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps
  609. * per second (driver pulses should at least be 2µS hi/2µS lo), and allocating 2 bits to avoid
  610. * overflows on the evaluation of the Bézier curve, means we can use
  611. *
  612. * t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned
  613. * A: signed Q24.7 , |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign
  614. * B: signed Q24.7 , |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign
  615. * C: signed Q24.7 , |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign
  616. * F: signed Q24.7 , |range = +/- 250000 * 128 = 32000000 = 0x01E84800 | 25 bits + sign
  617. *
  618. * The trapezoid generator state contains the following information, that we will use to create and evaluate
  619. * the Bézier curve:
  620. *
  621. * blk->step_event_count [TS] = The total count of steps for this movement. (=distance)
  622. * blk->initial_rate [VI] = The initial steps per second (=velocity)
  623. * blk->final_rate [VF] = The ending steps per second (=velocity)
  624. * and the count of events completed (step_events_completed) [CS] (=distance until now)
  625. *
  626. * Note the abbreviations we use in the following formulae are between []s
  627. *
  628. * For Any 32bit CPU:
  629. *
  630. * At the start of each trapezoid, calculate the coefficients A,B,C,F and Advance [AV], as follows:
  631. *
  632. * A = 6*128*(VF - VI) = 768*(VF - VI)
  633. * B = 15*128*(VI - VF) = 1920*(VI - VF)
  634. * C = 10*128*(VF - VI) = 1280*(VF - VI)
  635. * F = 128*VI = 128*VI
  636. * AV = (1<<32)/TS ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR)
  637. *
  638. * And for each point, evaluate the curve with the following sequence:
  639. *
  640. * void lsrs(uint32_t& d, uint32_t s, int cnt) {
  641. * d = s >> cnt;
  642. * }
  643. * void lsls(uint32_t& d, uint32_t s, int cnt) {
  644. * d = s << cnt;
  645. * }
  646. * void lsrs(int32_t& d, uint32_t s, int cnt) {
  647. * d = uint32_t(s) >> cnt;
  648. * }
  649. * void lsls(int32_t& d, uint32_t s, int cnt) {
  650. * d = uint32_t(s) << cnt;
  651. * }
  652. * void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) {
  653. * uint64_t res = uint64_t(op1) * op2;
  654. * rlo = uint32_t(res & 0xFFFFFFFF);
  655. * rhi = uint32_t((res >> 32) & 0xFFFFFFFF);
  656. * }
  657. * void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) {
  658. * int64_t mul = int64_t(op1) * op2;
  659. * int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U)));
  660. * mul += s;
  661. * rlo = int32_t(mul & 0xFFFFFFFF);
  662. * rhi = int32_t((mul >> 32) & 0xFFFFFFFF);
  663. * }
  664. * int32_t _eval_bezier_curve_arm(uint32_t curr_step) {
  665. * uint32_t flo = 0;
  666. * uint32_t fhi = bezier_AV * curr_step;
  667. * uint32_t t = fhi;
  668. * int32_t alo = bezier_F;
  669. * int32_t ahi = 0;
  670. * int32_t A = bezier_A;
  671. * int32_t B = bezier_B;
  672. * int32_t C = bezier_C;
  673. *
  674. * lsrs(ahi, alo, 1); // a = F << 31
  675. * lsls(alo, alo, 31); //
  676. * umull(flo, fhi, fhi, t); // f *= t
  677. * umull(flo, fhi, fhi, t); // f>>=32; f*=t
  678. * lsrs(flo, fhi, 1); //
  679. * smlal(alo, ahi, flo, C); // a+=(f>>33)*C
  680. * umull(flo, fhi, fhi, t); // f>>=32; f*=t
  681. * lsrs(flo, fhi, 1); //
  682. * smlal(alo, ahi, flo, B); // a+=(f>>33)*B
  683. * umull(flo, fhi, fhi, t); // f>>=32; f*=t
  684. * lsrs(flo, fhi, 1); // f>>=33;
  685. * smlal(alo, ahi, flo, A); // a+=(f>>33)*A;
  686. * lsrs(alo, ahi, 6); // a>>=38
  687. *
  688. * return alo;
  689. * }
  690. *
  691. * This is rewritten in ARM assembly for optimal performance (43 cycles to execute).
  692. *
  693. * For AVR, the precision of coefficients is scaled so the Bézier curve can be evaluated in real-time:
  694. * Let's reduce precision as much as possible. After some experimentation we found that:
  695. *
  696. * Assume t and AV with 24 bits is enough
  697. * A = 6*(VF - VI)
  698. * B = 15*(VI - VF)
  699. * C = 10*(VF - VI)
  700. * F = VI
  701. * AV = (1<<24)/TS (this is computed at the planner, to offload expensive calculations from the ISR)
  702. *
  703. * Instead of storing sign for each coefficient, we will store its absolute value,
  704. * and flag the sign of the A coefficient, so we can save to store the sign bit.
  705. * It always holds that sign(A) = - sign(B) = sign(C)
  706. *
  707. * So, the resulting range of the coefficients are:
  708. *
  709. * t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned
  710. * A: signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits
  711. * B: signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits
  712. * C: signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits
  713. * F: signed Q24 , range = 250000 = 250000 = 0x0ED090 | 20 bits
  714. *
  715. * And for each curve, estimate its coefficients with:
  716. *
  717. * void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) {
  718. * // Calculate the Bézier coefficients
  719. * if (v1 < v0) {
  720. * A_negative = true;
  721. * bezier_A = 6 * (v0 - v1);
  722. * bezier_B = 15 * (v0 - v1);
  723. * bezier_C = 10 * (v0 - v1);
  724. * }
  725. * else {
  726. * A_negative = false;
  727. * bezier_A = 6 * (v1 - v0);
  728. * bezier_B = 15 * (v1 - v0);
  729. * bezier_C = 10 * (v1 - v0);
  730. * }
  731. * bezier_F = v0;
  732. * }
  733. *
  734. * And for each point, evaluate the curve with the following sequence:
  735. *
  736. * // unsigned multiplication of 24 bits x 24bits, return upper 16 bits
  737. * void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) {
  738. * r = (uint64_t(op1) * op2) >> 8;
  739. * }
  740. * // unsigned multiplication of 16 bits x 16bits, return upper 16 bits
  741. * void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) {
  742. * r = (uint32_t(op1) * op2) >> 16;
  743. * }
  744. * // unsigned multiplication of 16 bits x 24bits, return upper 24 bits
  745. * void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) {
  746. * r = uint24_t((uint64_t(op1) * op2) >> 16);
  747. * }
  748. *
  749. * int32_t _eval_bezier_curve(uint32_t curr_step) {
  750. * // To save computing, the first step is always the initial speed
  751. * if (!curr_step)
  752. * return bezier_F;
  753. *
  754. * uint16_t t;
  755. * umul24x24to16hi(t, bezier_AV, curr_step); // t: Range 0 - 1^16 = 16 bits
  756. * uint16_t f = t;
  757. * umul16x16to16hi(f, f, t); // Range 16 bits (unsigned)
  758. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^3 (unsigned)
  759. * uint24_t acc = bezier_F; // Range 20 bits (unsigned)
  760. * if (A_negative) {
  761. * uint24_t v;
  762. * umul16x24to24hi(v, f, bezier_C); // Range 21bits
  763. * acc -= v;
  764. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
  765. * umul16x24to24hi(v, f, bezier_B); // Range 22bits
  766. * acc += v;
  767. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
  768. * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
  769. * acc -= v;
  770. * }
  771. * else {
  772. * uint24_t v;
  773. * umul16x24to24hi(v, f, bezier_C); // Range 21bits
  774. * acc += v;
  775. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
  776. * umul16x24to24hi(v, f, bezier_B); // Range 22bits
  777. * acc -= v;
  778. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
  779. * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
  780. * acc += v;
  781. * }
  782. * return acc;
  783. * }
  784. * These functions are translated to assembler for optimal performance.
  785. * Coefficient calculation takes 70 cycles. Bezier point evaluation takes 150 cycles.
  786. */
  787. #ifdef __AVR__
  788. // For AVR we use assembly to maximize speed
  789. void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
  790. // Store advance
  791. bezier_AV = av;
  792. // Calculate the rest of the coefficients
  793. uint8_t r2 = v0 & 0xFF;
  794. uint8_t r3 = (v0 >> 8) & 0xFF;
  795. uint8_t r12 = (v0 >> 16) & 0xFF;
  796. uint8_t r5 = v1 & 0xFF;
  797. uint8_t r6 = (v1 >> 8) & 0xFF;
  798. uint8_t r7 = (v1 >> 16) & 0xFF;
  799. uint8_t r4,r8,r9,r10,r11;
  800. __asm__ __volatile__(
  801. /* Calculate the Bézier coefficients */
  802. /* %10:%1:%0 = v0*/
  803. /* %5:%4:%3 = v1*/
  804. /* %7:%6:%10 = temporary*/
  805. /* %9 = val (must be high register!)*/
  806. /* %10 (must be high register!)*/
  807. /* Store initial velocity*/
  808. A("sts bezier_F, %0")
  809. A("sts bezier_F+1, %1")
  810. A("sts bezier_F+2, %10") /* bezier_F = %10:%1:%0 = v0 */
  811. /* Get delta speed */
  812. A("ldi %2,-1") /* %2 = 0xFF, means A_negative = true */
  813. A("clr %8") /* %8 = 0 */
  814. A("sub %0,%3")
  815. A("sbc %1,%4")
  816. A("sbc %10,%5") /* v0 -= v1, C=1 if result is negative */
  817. A("brcc 1f") /* branch if result is positive (C=0), that means v0 >= v1 */
  818. /* Result was negative, get the absolute value*/
  819. A("com %10")
  820. A("com %1")
  821. A("neg %0")
  822. A("sbc %1,%2")
  823. A("sbc %10,%2") /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */
  824. A("clr %2") /* %2 = 0, means A_negative = false */
  825. /* Store negative flag*/
  826. L("1")
  827. A("sts A_negative, %2") /* Store negative flag */
  828. /* Compute coefficients A,B and C [20 cycles worst case]*/
  829. A("ldi %9,6") /* %9 = 6 */
  830. A("mul %0,%9") /* r1:r0 = 6*LO(v0-v1) */
  831. A("sts bezier_A, r0")
  832. A("mov %6,r1")
  833. A("clr %7") /* %7:%6:r0 = 6*LO(v0-v1) */
  834. A("mul %1,%9") /* r1:r0 = 6*MI(v0-v1) */
  835. A("add %6,r0")
  836. A("adc %7,r1") /* %7:%6:?? += 6*MI(v0-v1) << 8 */
  837. A("mul %10,%9") /* r1:r0 = 6*HI(v0-v1) */
  838. A("add %7,r0") /* %7:%6:?? += 6*HI(v0-v1) << 16 */
  839. A("sts bezier_A+1, %6")
  840. A("sts bezier_A+2, %7") /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */
  841. A("ldi %9,15") /* %9 = 15 */
  842. A("mul %0,%9") /* r1:r0 = 5*LO(v0-v1) */
  843. A("sts bezier_B, r0")
  844. A("mov %6,r1")
  845. A("clr %7") /* %7:%6:?? = 5*LO(v0-v1) */
  846. A("mul %1,%9") /* r1:r0 = 5*MI(v0-v1) */
  847. A("add %6,r0")
  848. A("adc %7,r1") /* %7:%6:?? += 5*MI(v0-v1) << 8 */
  849. A("mul %10,%9") /* r1:r0 = 5*HI(v0-v1) */
  850. A("add %7,r0") /* %7:%6:?? += 5*HI(v0-v1) << 16 */
  851. A("sts bezier_B+1, %6")
  852. A("sts bezier_B+2, %7") /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */
  853. A("ldi %9,10") /* %9 = 10 */
  854. A("mul %0,%9") /* r1:r0 = 10*LO(v0-v1) */
  855. A("sts bezier_C, r0")
  856. A("mov %6,r1")
  857. A("clr %7") /* %7:%6:?? = 10*LO(v0-v1) */
  858. A("mul %1,%9") /* r1:r0 = 10*MI(v0-v1) */
  859. A("add %6,r0")
  860. A("adc %7,r1") /* %7:%6:?? += 10*MI(v0-v1) << 8 */
  861. A("mul %10,%9") /* r1:r0 = 10*HI(v0-v1) */
  862. A("add %7,r0") /* %7:%6:?? += 10*HI(v0-v1) << 16 */
  863. A("sts bezier_C+1, %6")
  864. " sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */
  865. : "+r" (r2),
  866. "+d" (r3),
  867. "=r" (r4),
  868. "+r" (r5),
  869. "+r" (r6),
  870. "+r" (r7),
  871. "=r" (r8),
  872. "=r" (r9),
  873. "=r" (r10),
  874. "=d" (r11),
  875. "+r" (r12)
  876. :
  877. : "r0", "r1", "cc", "memory"
  878. );
  879. }
  880. FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
  881. // If dealing with the first step, save expensive computing and return the initial speed
  882. if (!curr_step)
  883. return bezier_F;
  884. uint8_t r0 = 0; /* Zero register */
  885. uint8_t r2 = (curr_step) & 0xFF;
  886. uint8_t r3 = (curr_step >> 8) & 0xFF;
  887. uint8_t r4 = (curr_step >> 16) & 0xFF;
  888. uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */
  889. __asm__ __volatile(
  890. /* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/
  891. A("lds %9,bezier_AV") /* %9 = LO(AV)*/
  892. A("mul %9,%2") /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/
  893. A("mov %7,r1") /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/
  894. A("clr %8") /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/
  895. A("lds %10,bezier_AV+1") /* %10 = MI(AV)*/
  896. A("mul %10,%2") /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/
  897. A("add %7,r0")
  898. A("adc %8,r1") /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/
  899. A("lds r1,bezier_AV+2") /* r11 = HI(AV)*/
  900. A("mul r1,%2") /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/
  901. A("add %8,r0") /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/
  902. A("mul %9,%3") /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/
  903. A("add %7,r0")
  904. A("adc %8,r1") /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/
  905. A("mul %10,%3") /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/
  906. A("add %8,r0") /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/
  907. A("mul %9,%4") /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/
  908. A("add %8,r0") /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/
  909. /* %8:%7 = t*/
  910. /* uint16_t f = t;*/
  911. A("mov %5,%7") /* %6:%5 = f*/
  912. A("mov %6,%8")
  913. /* %6:%5 = f*/
  914. /* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */
  915. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  916. A("mov %9,r1") /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/
  917. A("clr %10") /* %10 = 0*/
  918. A("clr %11") /* %11 = 0*/
  919. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  920. A("add %9,r0") /* %9 += LO(LO(f) * HI(t))*/
  921. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  922. A("adc %11,%0") /* %11 += carry*/
  923. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  924. A("add %9,r0") /* %9 += LO(HI(f) * LO(t))*/
  925. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t)) */
  926. A("adc %11,%0") /* %11 += carry*/
  927. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  928. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  929. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  930. A("mov %5,%10") /* %6:%5 = */
  931. A("mov %6,%11") /* f = %10:%11*/
  932. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
  933. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  934. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  935. A("clr %10") /* %10 = 0*/
  936. A("clr %11") /* %11 = 0*/
  937. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  938. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  939. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  940. A("adc %11,%0") /* %11 += carry*/
  941. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  942. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  943. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  944. A("adc %11,%0") /* %11 += carry*/
  945. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  946. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  947. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  948. A("mov %5,%10") /* %6:%5 =*/
  949. A("mov %6,%11") /* f = %10:%11*/
  950. /* [15 +17*2] = [49]*/
  951. /* %4:%3:%2 will be acc from now on*/
  952. /* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/
  953. A("clr %9") /* "decimal place we get for free"*/
  954. A("lds %2,bezier_F")
  955. A("lds %3,bezier_F+1")
  956. A("lds %4,bezier_F+2") /* %4:%3:%2 = acc*/
  957. /* if (A_negative) {*/
  958. A("lds r0,A_negative")
  959. A("or r0,%0") /* Is flag signalling negative? */
  960. A("brne 3f") /* If yes, Skip next instruction if A was negative*/
  961. A("rjmp 1f") /* Otherwise, jump */
  962. /* uint24_t v; */
  963. /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */
  964. /* acc -= v; */
  965. L("3")
  966. A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
  967. A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
  968. A("sub %9,r1")
  969. A("sbc %2,%0")
  970. A("sbc %3,%0")
  971. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/
  972. A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
  973. A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  974. A("sub %9,r0")
  975. A("sbc %2,r1")
  976. A("sbc %3,%0")
  977. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/
  978. A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
  979. A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  980. A("sub %2,r0")
  981. A("sbc %3,r1")
  982. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/
  983. A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
  984. A("sub %9,r0")
  985. A("sbc %2,r1")
  986. A("sbc %3,%0")
  987. A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/
  988. A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
  989. A("sub %2,r0")
  990. A("sbc %3,r1")
  991. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/
  992. A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
  993. A("sub %3,r0")
  994. A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/
  995. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
  996. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  997. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  998. A("clr %10") /* %10 = 0*/
  999. A("clr %11") /* %11 = 0*/
  1000. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  1001. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  1002. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  1003. A("adc %11,%0") /* %11 += carry*/
  1004. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  1005. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  1006. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  1007. A("adc %11,%0") /* %11 += carry*/
  1008. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  1009. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  1010. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  1011. A("mov %5,%10") /* %6:%5 =*/
  1012. A("mov %6,%11") /* f = %10:%11*/
  1013. /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
  1014. /* acc += v; */
  1015. A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
  1016. A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
  1017. A("add %9,r1")
  1018. A("adc %2,%0")
  1019. A("adc %3,%0")
  1020. A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/
  1021. A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
  1022. A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1023. A("add %9,r0")
  1024. A("adc %2,r1")
  1025. A("adc %3,%0")
  1026. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/
  1027. A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
  1028. A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1029. A("add %2,r0")
  1030. A("adc %3,r1")
  1031. A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/
  1032. A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
  1033. A("add %9,r0")
  1034. A("adc %2,r1")
  1035. A("adc %3,%0")
  1036. A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/
  1037. A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
  1038. A("add %2,r0")
  1039. A("adc %3,r1")
  1040. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/
  1041. A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
  1042. A("add %3,r0")
  1043. A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/
  1044. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
  1045. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  1046. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  1047. A("clr %10") /* %10 = 0*/
  1048. A("clr %11") /* %11 = 0*/
  1049. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  1050. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  1051. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  1052. A("adc %11,%0") /* %11 += carry*/
  1053. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  1054. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  1055. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  1056. A("adc %11,%0") /* %11 += carry*/
  1057. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  1058. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  1059. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  1060. A("mov %5,%10") /* %6:%5 =*/
  1061. A("mov %6,%11") /* f = %10:%11*/
  1062. /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
  1063. /* acc -= v; */
  1064. A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
  1065. A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
  1066. A("sub %9,r1")
  1067. A("sbc %2,%0")
  1068. A("sbc %3,%0")
  1069. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/
  1070. A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
  1071. A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1072. A("sub %9,r0")
  1073. A("sbc %2,r1")
  1074. A("sbc %3,%0")
  1075. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/
  1076. A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
  1077. A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1078. A("sub %2,r0")
  1079. A("sbc %3,r1")
  1080. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/
  1081. A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
  1082. A("sub %9,r0")
  1083. A("sbc %2,r1")
  1084. A("sbc %3,%0")
  1085. A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/
  1086. A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
  1087. A("sub %2,r0")
  1088. A("sbc %3,r1")
  1089. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/
  1090. A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
  1091. A("sub %3,r0")
  1092. A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/
  1093. A("jmp 2f") /* Done!*/
  1094. L("1")
  1095. /* uint24_t v; */
  1096. /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/
  1097. /* acc += v; */
  1098. A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
  1099. A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
  1100. A("add %9,r1")
  1101. A("adc %2,%0")
  1102. A("adc %3,%0")
  1103. A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/
  1104. A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
  1105. A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  1106. A("add %9,r0")
  1107. A("adc %2,r1")
  1108. A("adc %3,%0")
  1109. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/
  1110. A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
  1111. A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  1112. A("add %2,r0")
  1113. A("adc %3,r1")
  1114. A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/
  1115. A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
  1116. A("add %9,r0")
  1117. A("adc %2,r1")
  1118. A("adc %3,%0")
  1119. A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/
  1120. A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
  1121. A("add %2,r0")
  1122. A("adc %3,r1")
  1123. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/
  1124. A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
  1125. A("add %3,r0")
  1126. A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/
  1127. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
  1128. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  1129. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  1130. A("clr %10") /* %10 = 0*/
  1131. A("clr %11") /* %11 = 0*/
  1132. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  1133. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  1134. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  1135. A("adc %11,%0") /* %11 += carry*/
  1136. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  1137. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  1138. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  1139. A("adc %11,%0") /* %11 += carry*/
  1140. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  1141. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  1142. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  1143. A("mov %5,%10") /* %6:%5 =*/
  1144. A("mov %6,%11") /* f = %10:%11*/
  1145. /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
  1146. /* acc -= v;*/
  1147. A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
  1148. A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
  1149. A("sub %9,r1")
  1150. A("sbc %2,%0")
  1151. A("sbc %3,%0")
  1152. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/
  1153. A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
  1154. A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1155. A("sub %9,r0")
  1156. A("sbc %2,r1")
  1157. A("sbc %3,%0")
  1158. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/
  1159. A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
  1160. A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1161. A("sub %2,r0")
  1162. A("sbc %3,r1")
  1163. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/
  1164. A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
  1165. A("sub %9,r0")
  1166. A("sbc %2,r1")
  1167. A("sbc %3,%0")
  1168. A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/
  1169. A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
  1170. A("sub %2,r0")
  1171. A("sbc %3,r1")
  1172. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/
  1173. A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
  1174. A("sub %3,r0")
  1175. A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/
  1176. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
  1177. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  1178. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  1179. A("clr %10") /* %10 = 0*/
  1180. A("clr %11") /* %11 = 0*/
  1181. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  1182. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  1183. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  1184. A("adc %11,%0") /* %11 += carry*/
  1185. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  1186. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  1187. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  1188. A("adc %11,%0") /* %11 += carry*/
  1189. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  1190. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  1191. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  1192. A("mov %5,%10") /* %6:%5 =*/
  1193. A("mov %6,%11") /* f = %10:%11*/
  1194. /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
  1195. /* acc += v; */
  1196. A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
  1197. A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
  1198. A("add %9,r1")
  1199. A("adc %2,%0")
  1200. A("adc %3,%0")
  1201. A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/
  1202. A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
  1203. A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1204. A("add %9,r0")
  1205. A("adc %2,r1")
  1206. A("adc %3,%0")
  1207. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/
  1208. A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
  1209. A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1210. A("add %2,r0")
  1211. A("adc %3,r1")
  1212. A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/
  1213. A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
  1214. A("add %9,r0")
  1215. A("adc %2,r1")
  1216. A("adc %3,%0")
  1217. A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/
  1218. A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
  1219. A("add %2,r0")
  1220. A("adc %3,r1")
  1221. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/
  1222. A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
  1223. A("add %3,r0")
  1224. A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/
  1225. L("2")
  1226. " clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */
  1227. : "+r"(r0),
  1228. "+r"(r1),
  1229. "+r"(r2),
  1230. "+r"(r3),
  1231. "+r"(r4),
  1232. "+r"(r5),
  1233. "+r"(r6),
  1234. "+r"(r7),
  1235. "+r"(r8),
  1236. "+r"(r9),
  1237. "+r"(r10),
  1238. "+r"(r11)
  1239. :
  1240. :"cc","r0","r1"
  1241. );
  1242. return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16);
  1243. }
  1244. #else
  1245. // For all the other 32bit CPUs
  1246. FORCE_INLINE void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
  1247. // Calculate the Bézier coefficients
  1248. bezier_A = 768 * (v1 - v0);
  1249. bezier_B = 1920 * (v0 - v1);
  1250. bezier_C = 1280 * (v1 - v0);
  1251. bezier_F = 128 * v0;
  1252. bezier_AV = av;
  1253. }
  1254. FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
  1255. #if (defined(__arm__) || defined(__thumb__)) && !defined(STM32G0B1xx) // TODO: Test define STM32G0xx versus STM32G0B1xx
  1256. // For ARM Cortex M3/M4 CPUs, we have the optimized assembler version, that takes 43 cycles to execute
  1257. uint32_t flo = 0;
  1258. uint32_t fhi = bezier_AV * curr_step;
  1259. uint32_t t = fhi;
  1260. int32_t alo = bezier_F;
  1261. int32_t ahi = 0;
  1262. int32_t A = bezier_A;
  1263. int32_t B = bezier_B;
  1264. int32_t C = bezier_C;
  1265. __asm__ __volatile__(
  1266. ".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
  1267. A("lsrs %[ahi],%[alo],#1") // a = F << 31 1 cycles
  1268. A("lsls %[alo],%[alo],#31") // 1 cycles
  1269. A("umull %[flo],%[fhi],%[fhi],%[t]") // f *= t 5 cycles [fhi:flo=64bits]
  1270. A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
  1271. A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
  1272. A("smlal %[alo],%[ahi],%[flo],%[C]") // a+=(f>>33)*C; 5 cycles
  1273. A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
  1274. A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
  1275. A("smlal %[alo],%[ahi],%[flo],%[B]") // a+=(f>>33)*B; 5 cycles
  1276. A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
  1277. A("lsrs %[flo],%[fhi],#1") // f>>=33; 1 cycles [31bits]
  1278. A("smlal %[alo],%[ahi],%[flo],%[A]") // a+=(f>>33)*A; 5 cycles
  1279. A("lsrs %[alo],%[ahi],#6") // a>>=38 1 cycles
  1280. : [alo]"+r"( alo ) ,
  1281. [flo]"+r"( flo ) ,
  1282. [fhi]"+r"( fhi ) ,
  1283. [ahi]"+r"( ahi ) ,
  1284. [A]"+r"( A ) , // <== Note: Even if A, B, C, and t registers are INPUT ONLY
  1285. [B]"+r"( B ) , // GCC does bad optimizations on the code if we list them as
  1286. [C]"+r"( C ) , // such, breaking this function. So, to avoid that problem,
  1287. [t]"+r"( t ) // we list all registers as input-outputs.
  1288. :
  1289. : "cc"
  1290. );
  1291. return alo;
  1292. #else
  1293. // For non ARM targets, we provide a fallback implementation. Really doubt it
  1294. // will be useful, unless the processor is fast and 32bit
  1295. uint32_t t = bezier_AV * curr_step; // t: Range 0 - 1^32 = 32 bits
  1296. uint64_t f = t;
  1297. f *= t; // Range 32*2 = 64 bits (unsigned)
  1298. f >>= 32; // Range 32 bits (unsigned)
  1299. f *= t; // Range 32*2 = 64 bits (unsigned)
  1300. f >>= 32; // Range 32 bits : f = t^3 (unsigned)
  1301. int64_t acc = (int64_t) bezier_F << 31; // Range 63 bits (signed)
  1302. acc += ((uint32_t) f >> 1) * (int64_t) bezier_C; // Range 29bits + 31 = 60bits (plus sign)
  1303. f *= t; // Range 32*2 = 64 bits
  1304. f >>= 32; // Range 32 bits : f = t^3 (unsigned)
  1305. acc += ((uint32_t) f >> 1) * (int64_t) bezier_B; // Range 29bits + 31 = 60bits (plus sign)
  1306. f *= t; // Range 32*2 = 64 bits
  1307. f >>= 32; // Range 32 bits : f = t^3 (unsigned)
  1308. acc += ((uint32_t) f >> 1) * (int64_t) bezier_A; // Range 28bits + 31 = 59bits (plus sign)
  1309. acc >>= (31 + 7); // Range 24bits (plus sign)
  1310. return (int32_t) acc;
  1311. #endif
  1312. }
  1313. #endif
  1314. #endif // S_CURVE_ACCELERATION
  1315. /**
  1316. * Stepper Driver Interrupt
  1317. *
  1318. * Directly pulses the stepper motors at high frequency.
  1319. */
  1320. HAL_STEP_TIMER_ISR() {
  1321. HAL_timer_isr_prologue(MF_TIMER_STEP);
  1322. Stepper::isr();
  1323. HAL_timer_isr_epilogue(MF_TIMER_STEP);
  1324. }
  1325. #ifdef CPU_32_BIT
  1326. #define STEP_MULTIPLY(A,B) MultiU32X24toH32(A, B)
  1327. #else
  1328. #define STEP_MULTIPLY(A,B) MultiU24X32toH16(A, B)
  1329. #endif
  1330. void Stepper::isr() {
  1331. static uint32_t nextMainISR = 0; // Interval until the next main Stepper Pulse phase (0 = Now)
  1332. #ifndef __AVR__
  1333. // Disable interrupts, to avoid ISR preemption while we reprogram the period
  1334. // (AVR enters the ISR with global interrupts disabled, so no need to do it here)
  1335. DISABLE_ISRS();
  1336. #endif
  1337. // Program timer compare for the maximum period, so it does NOT
  1338. // flag an interrupt while this ISR is running - So changes from small
  1339. // periods to big periods are respected and the timer does not reset to 0
  1340. HAL_timer_set_compare(MF_TIMER_STEP, hal_timer_t(HAL_TIMER_TYPE_MAX));
  1341. // Count of ticks for the next ISR
  1342. hal_timer_t next_isr_ticks = 0;
  1343. // Limit the amount of iterations
  1344. uint8_t max_loops = 10;
  1345. // We need this variable here to be able to use it in the following loop
  1346. hal_timer_t min_ticks;
  1347. do {
  1348. // Enable ISRs to reduce USART processing latency
  1349. ENABLE_ISRS();
  1350. if (!nextMainISR) pulse_phase_isr(); // 0 = Do coordinated axes Stepper pulses
  1351. #if ENABLED(LIN_ADVANCE)
  1352. if (!nextAdvanceISR) nextAdvanceISR = advance_isr(); // 0 = Do Linear Advance E Stepper pulses
  1353. #endif
  1354. #if ENABLED(INTEGRATED_BABYSTEPPING)
  1355. const bool is_babystep = (nextBabystepISR == 0); // 0 = Do Babystepping (XY)Z pulses
  1356. if (is_babystep) nextBabystepISR = babystepping_isr();
  1357. #endif
  1358. // ^== Time critical. NOTHING besides pulse generation should be above here!!!
  1359. if (!nextMainISR) nextMainISR = block_phase_isr(); // Manage acc/deceleration, get next block
  1360. #if ENABLED(INTEGRATED_BABYSTEPPING)
  1361. if (is_babystep) // Avoid ANY stepping too soon after baby-stepping
  1362. NOLESS(nextMainISR, (BABYSTEP_TICKS) / 8); // FULL STOP for 125µs after a baby-step
  1363. if (nextBabystepISR != BABYSTEP_NEVER) // Avoid baby-stepping too close to axis Stepping
  1364. NOLESS(nextBabystepISR, nextMainISR / 2); // TODO: Only look at axes enabled for baby-stepping
  1365. #endif
  1366. // Get the interval to the next ISR call
  1367. const uint32_t interval = _MIN(
  1368. uint32_t(HAL_TIMER_TYPE_MAX), // Come back in a very long time
  1369. nextMainISR // Time until the next Pulse / Block phase
  1370. OPTARG(LIN_ADVANCE, nextAdvanceISR) // Come back early for Linear Advance?
  1371. OPTARG(INTEGRATED_BABYSTEPPING, nextBabystepISR) // Come back early for Babystepping?
  1372. );
  1373. //
  1374. // Compute remaining time for each ISR phase
  1375. // NEVER : The phase is idle
  1376. // Zero : The phase will occur on the next ISR call
  1377. // Non-zero : The phase will occur on a future ISR call
  1378. //
  1379. nextMainISR -= interval;
  1380. #if ENABLED(LIN_ADVANCE)
  1381. if (nextAdvanceISR != LA_ADV_NEVER) nextAdvanceISR -= interval;
  1382. #endif
  1383. #if ENABLED(INTEGRATED_BABYSTEPPING)
  1384. if (nextBabystepISR != BABYSTEP_NEVER) nextBabystepISR -= interval;
  1385. #endif
  1386. /**
  1387. * This needs to avoid a race-condition caused by interleaving
  1388. * of interrupts required by both the LA and Stepper algorithms.
  1389. *
  1390. * Assume the following tick times for stepper pulses:
  1391. * Stepper ISR (S): 1 1000 2000 3000 4000
  1392. * Linear Adv. (E): 10 1010 2010 3010 4010
  1393. *
  1394. * The current algorithm tries to interleave them, giving:
  1395. * 1:S 10:E 1000:S 1010:E 2000:S 2010:E 3000:S 3010:E 4000:S 4010:E
  1396. *
  1397. * Ideal timing would yield these delta periods:
  1398. * 1:S 9:E 990:S 10:E 990:S 10:E 990:S 10:E 990:S 10:E
  1399. *
  1400. * But, since each event must fire an ISR with a minimum duration, the
  1401. * minimum delta might be 900, so deltas under 900 get rounded up:
  1402. * 900:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E
  1403. *
  1404. * It works, but divides the speed of all motors by half, leading to a sudden
  1405. * reduction to 1/2 speed! Such jumps in speed lead to lost steps (not even
  1406. * accounting for double/quad stepping, which makes it even worse).
  1407. */
  1408. // Compute the tick count for the next ISR
  1409. next_isr_ticks += interval;
  1410. /**
  1411. * The following section must be done with global interrupts disabled.
  1412. * We want nothing to interrupt it, as that could mess the calculations
  1413. * we do for the next value to program in the period register of the
  1414. * stepper timer and lead to skipped ISRs (if the value we happen to program
  1415. * is less than the current count due to something preempting between the
  1416. * read and the write of the new period value).
  1417. */
  1418. DISABLE_ISRS();
  1419. /**
  1420. * Get the current tick value + margin
  1421. * Assuming at least 6µs between calls to this ISR...
  1422. * On AVR the ISR epilogue+prologue is estimated at 100 instructions - Give 8µs as margin
  1423. * On ARM the ISR epilogue+prologue is estimated at 20 instructions - Give 1µs as margin
  1424. */
  1425. min_ticks = HAL_timer_get_count(MF_TIMER_STEP) + hal_timer_t(
  1426. #ifdef __AVR__
  1427. 8
  1428. #else
  1429. 1
  1430. #endif
  1431. * (STEPPER_TIMER_TICKS_PER_US)
  1432. );
  1433. /**
  1434. * NB: If for some reason the stepper monopolizes the MPU, eventually the
  1435. * timer will wrap around (and so will 'next_isr_ticks'). So, limit the
  1436. * loop to 10 iterations. Beyond that, there's no way to ensure correct pulse
  1437. * timing, since the MCU isn't fast enough.
  1438. */
  1439. if (!--max_loops) next_isr_ticks = min_ticks;
  1440. // Advance pulses if not enough time to wait for the next ISR
  1441. } while (next_isr_ticks < min_ticks);
  1442. // Now 'next_isr_ticks' contains the period to the next Stepper ISR - And we are
  1443. // sure that the time has not arrived yet - Warrantied by the scheduler
  1444. // Set the next ISR to fire at the proper time
  1445. HAL_timer_set_compare(MF_TIMER_STEP, hal_timer_t(next_isr_ticks));
  1446. // Don't forget to finally reenable interrupts
  1447. ENABLE_ISRS();
  1448. }
  1449. #if MINIMUM_STEPPER_PULSE || MAXIMUM_STEPPER_RATE
  1450. #define ISR_PULSE_CONTROL 1
  1451. #endif
  1452. #if ISR_PULSE_CONTROL && DISABLED(I2S_STEPPER_STREAM)
  1453. #define ISR_MULTI_STEPS 1
  1454. #endif
  1455. /**
  1456. * This phase of the ISR should ONLY create the pulses for the steppers.
  1457. * This prevents jitter caused by the interval between the start of the
  1458. * interrupt and the start of the pulses. DON'T add any logic ahead of the
  1459. * call to this method that might cause variation in the timing. The aim
  1460. * is to keep pulse timing as regular as possible.
  1461. */
  1462. void Stepper::pulse_phase_isr() {
  1463. // If we must abort the current block, do so!
  1464. if (abort_current_block) {
  1465. abort_current_block = false;
  1466. if (current_block) discard_current_block();
  1467. }
  1468. // If there is no current block, do nothing
  1469. if (!current_block) return;
  1470. // Skipping step processing causes motion to freeze
  1471. if (TERN0(HAS_FREEZE_PIN, frozen)) return;
  1472. // Count of pending loops and events for this iteration
  1473. const uint32_t pending_events = step_event_count - step_events_completed;
  1474. uint8_t events_to_do = _MIN(pending_events, steps_per_isr);
  1475. // Just update the value we will get at the end of the loop
  1476. step_events_completed += events_to_do;
  1477. // Take multiple steps per interrupt (For high speed moves)
  1478. #if ISR_MULTI_STEPS
  1479. bool firstStep = true;
  1480. USING_TIMED_PULSE();
  1481. #endif
  1482. xyze_bool_t step_needed{0};
  1483. do {
  1484. #define _APPLY_STEP(AXIS, INV, ALWAYS) AXIS ##_APPLY_STEP(INV, ALWAYS)
  1485. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  1486. // Determine if a pulse is needed using Bresenham
  1487. #define PULSE_PREP(AXIS) do{ \
  1488. delta_error[_AXIS(AXIS)] += advance_dividend[_AXIS(AXIS)]; \
  1489. step_needed[_AXIS(AXIS)] = (delta_error[_AXIS(AXIS)] >= 0); \
  1490. if (step_needed[_AXIS(AXIS)]) { \
  1491. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  1492. delta_error[_AXIS(AXIS)] -= advance_divisor; \
  1493. } \
  1494. }while(0)
  1495. // Start an active pulse if needed
  1496. #define PULSE_START(AXIS) do{ \
  1497. if (step_needed[_AXIS(AXIS)]) { \
  1498. _APPLY_STEP(AXIS, !_INVERT_STEP_PIN(AXIS), 0); \
  1499. } \
  1500. }while(0)
  1501. // Stop an active pulse if needed
  1502. #define PULSE_STOP(AXIS) do { \
  1503. if (step_needed[_AXIS(AXIS)]) { \
  1504. _APPLY_STEP(AXIS, _INVERT_STEP_PIN(AXIS), 0); \
  1505. } \
  1506. }while(0)
  1507. // Direct Stepping page?
  1508. const bool is_page = IS_PAGE(current_block);
  1509. #if ENABLED(DIRECT_STEPPING)
  1510. // TODO (DerAndere): Add support for HAS_I_AXIS
  1511. if (is_page) {
  1512. #if STEPPER_PAGE_FORMAT == SP_4x4D_128
  1513. #define PAGE_SEGMENT_UPDATE(AXIS, VALUE) do{ \
  1514. if ((VALUE) < 7) SBI(dm, _AXIS(AXIS)); \
  1515. else if ((VALUE) > 7) CBI(dm, _AXIS(AXIS)); \
  1516. page_step_state.sd[_AXIS(AXIS)] = VALUE; \
  1517. page_step_state.bd[_AXIS(AXIS)] += VALUE; \
  1518. }while(0)
  1519. #define PAGE_PULSE_PREP(AXIS) do{ \
  1520. step_needed[_AXIS(AXIS)] = \
  1521. pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x7]); \
  1522. }while(0)
  1523. switch (page_step_state.segment_steps) {
  1524. case DirectStepping::Config::SEGMENT_STEPS:
  1525. page_step_state.segment_idx += 2;
  1526. page_step_state.segment_steps = 0;
  1527. // fallthru
  1528. case 0: {
  1529. const uint8_t low = page_step_state.page[page_step_state.segment_idx],
  1530. high = page_step_state.page[page_step_state.segment_idx + 1];
  1531. axis_bits_t dm = last_direction_bits;
  1532. PAGE_SEGMENT_UPDATE(X, low >> 4);
  1533. PAGE_SEGMENT_UPDATE(Y, low & 0xF);
  1534. PAGE_SEGMENT_UPDATE(Z, high >> 4);
  1535. PAGE_SEGMENT_UPDATE(E, high & 0xF);
  1536. if (dm != last_direction_bits)
  1537. set_directions(dm);
  1538. } break;
  1539. default: break;
  1540. }
  1541. PAGE_PULSE_PREP(X);
  1542. PAGE_PULSE_PREP(Y);
  1543. PAGE_PULSE_PREP(Z);
  1544. TERN_(HAS_EXTRUDERS, PAGE_PULSE_PREP(E));
  1545. page_step_state.segment_steps++;
  1546. #elif STEPPER_PAGE_FORMAT == SP_4x2_256
  1547. #define PAGE_SEGMENT_UPDATE(AXIS, VALUE) \
  1548. page_step_state.sd[_AXIS(AXIS)] = VALUE; \
  1549. page_step_state.bd[_AXIS(AXIS)] += VALUE;
  1550. #define PAGE_PULSE_PREP(AXIS) do{ \
  1551. step_needed[_AXIS(AXIS)] = \
  1552. pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x3]); \
  1553. }while(0)
  1554. switch (page_step_state.segment_steps) {
  1555. case DirectStepping::Config::SEGMENT_STEPS:
  1556. page_step_state.segment_idx++;
  1557. page_step_state.segment_steps = 0;
  1558. // fallthru
  1559. case 0: {
  1560. const uint8_t b = page_step_state.page[page_step_state.segment_idx];
  1561. PAGE_SEGMENT_UPDATE(X, (b >> 6) & 0x3);
  1562. PAGE_SEGMENT_UPDATE(Y, (b >> 4) & 0x3);
  1563. PAGE_SEGMENT_UPDATE(Z, (b >> 2) & 0x3);
  1564. PAGE_SEGMENT_UPDATE(E, (b >> 0) & 0x3);
  1565. } break;
  1566. default: break;
  1567. }
  1568. PAGE_PULSE_PREP(X);
  1569. PAGE_PULSE_PREP(Y);
  1570. PAGE_PULSE_PREP(Z);
  1571. TERN_(HAS_EXTRUDERS, PAGE_PULSE_PREP(E));
  1572. page_step_state.segment_steps++;
  1573. #elif STEPPER_PAGE_FORMAT == SP_4x1_512
  1574. #define PAGE_PULSE_PREP(AXIS, BITS) do{ \
  1575. step_needed[_AXIS(AXIS)] = (steps >> BITS) & 0x1; \
  1576. if (step_needed[_AXIS(AXIS)]) \
  1577. page_step_state.bd[_AXIS(AXIS)]++; \
  1578. }while(0)
  1579. uint8_t steps = page_step_state.page[page_step_state.segment_idx >> 1];
  1580. if (page_step_state.segment_idx & 0x1) steps >>= 4;
  1581. PAGE_PULSE_PREP(X, 3);
  1582. PAGE_PULSE_PREP(Y, 2);
  1583. PAGE_PULSE_PREP(Z, 1);
  1584. PAGE_PULSE_PREP(E, 0);
  1585. page_step_state.segment_idx++;
  1586. #else
  1587. #error "Unknown direct stepping page format!"
  1588. #endif
  1589. }
  1590. #endif // DIRECT_STEPPING
  1591. if (!is_page) {
  1592. // Determine if pulses are needed
  1593. #if HAS_X_STEP
  1594. PULSE_PREP(X);
  1595. #endif
  1596. #if HAS_Y_STEP
  1597. PULSE_PREP(Y);
  1598. #endif
  1599. #if HAS_Z_STEP
  1600. PULSE_PREP(Z);
  1601. #endif
  1602. #if HAS_I_STEP
  1603. PULSE_PREP(I);
  1604. #endif
  1605. #if HAS_J_STEP
  1606. PULSE_PREP(J);
  1607. #endif
  1608. #if HAS_K_STEP
  1609. PULSE_PREP(K);
  1610. #endif
  1611. #if EITHER(LIN_ADVANCE, MIXING_EXTRUDER)
  1612. delta_error.e += advance_dividend.e;
  1613. if (delta_error.e >= 0) {
  1614. #if ENABLED(LIN_ADVANCE)
  1615. delta_error.e -= advance_divisor;
  1616. // Don't step E here - But remember the number of steps to perform
  1617. motor_direction(E_AXIS) ? --LA_steps : ++LA_steps;
  1618. #else
  1619. count_position.e += count_direction.e;
  1620. step_needed.e = true;
  1621. #endif
  1622. }
  1623. #elif HAS_E0_STEP
  1624. PULSE_PREP(E);
  1625. #endif
  1626. }
  1627. #if ISR_MULTI_STEPS
  1628. if (firstStep)
  1629. firstStep = false;
  1630. else
  1631. AWAIT_LOW_PULSE();
  1632. #endif
  1633. // Pulse start
  1634. #if HAS_X_STEP
  1635. PULSE_START(X);
  1636. #endif
  1637. #if HAS_Y_STEP
  1638. PULSE_START(Y);
  1639. #endif
  1640. #if HAS_Z_STEP
  1641. PULSE_START(Z);
  1642. #endif
  1643. #if HAS_I_STEP
  1644. PULSE_START(I);
  1645. #endif
  1646. #if HAS_J_STEP
  1647. PULSE_START(J);
  1648. #endif
  1649. #if HAS_K_STEP
  1650. PULSE_START(K);
  1651. #endif
  1652. #if DISABLED(LIN_ADVANCE)
  1653. #if ENABLED(MIXING_EXTRUDER)
  1654. if (step_needed.e) E_STEP_WRITE(mixer.get_next_stepper(), !INVERT_E_STEP_PIN);
  1655. #elif HAS_E0_STEP
  1656. PULSE_START(E);
  1657. #endif
  1658. #endif
  1659. #if ENABLED(I2S_STEPPER_STREAM)
  1660. i2s_push_sample();
  1661. #endif
  1662. // TODO: need to deal with MINIMUM_STEPPER_PULSE over i2s
  1663. #if ISR_MULTI_STEPS
  1664. START_HIGH_PULSE();
  1665. AWAIT_HIGH_PULSE();
  1666. #endif
  1667. // Pulse stop
  1668. #if HAS_X_STEP
  1669. PULSE_STOP(X);
  1670. #endif
  1671. #if HAS_Y_STEP
  1672. PULSE_STOP(Y);
  1673. #endif
  1674. #if HAS_Z_STEP
  1675. PULSE_STOP(Z);
  1676. #endif
  1677. #if HAS_I_STEP
  1678. PULSE_STOP(I);
  1679. #endif
  1680. #if HAS_J_STEP
  1681. PULSE_STOP(J);
  1682. #endif
  1683. #if HAS_K_STEP
  1684. PULSE_STOP(K);
  1685. #endif
  1686. #if DISABLED(LIN_ADVANCE)
  1687. #if ENABLED(MIXING_EXTRUDER)
  1688. if (delta_error.e >= 0) {
  1689. delta_error.e -= advance_divisor;
  1690. E_STEP_WRITE(mixer.get_stepper(), INVERT_E_STEP_PIN);
  1691. }
  1692. #elif HAS_E0_STEP
  1693. PULSE_STOP(E);
  1694. #endif
  1695. #endif
  1696. #if ISR_MULTI_STEPS
  1697. if (events_to_do) START_LOW_PULSE();
  1698. #endif
  1699. } while (--events_to_do);
  1700. }
  1701. // This is the last half of the stepper interrupt: This one processes and
  1702. // properly schedules blocks from the planner. This is executed after creating
  1703. // the step pulses, so it is not time critical, as pulses are already done.
  1704. uint32_t Stepper::block_phase_isr() {
  1705. // If no queued movements, just wait 1ms for the next block
  1706. uint32_t interval = (STEPPER_TIMER_RATE) / 1000UL;
  1707. // If there is a current block
  1708. if (current_block) {
  1709. // If current block is finished, reset pointer and finalize state
  1710. if (step_events_completed >= step_event_count) {
  1711. #if ENABLED(DIRECT_STEPPING)
  1712. // TODO (DerAndere): Add support for HAS_I_AXIS
  1713. #if STEPPER_PAGE_FORMAT == SP_4x4D_128
  1714. #define PAGE_SEGMENT_UPDATE_POS(AXIS) \
  1715. count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] - 128 * 7;
  1716. #elif STEPPER_PAGE_FORMAT == SP_4x1_512 || STEPPER_PAGE_FORMAT == SP_4x2_256
  1717. #define PAGE_SEGMENT_UPDATE_POS(AXIS) \
  1718. count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] * count_direction[_AXIS(AXIS)];
  1719. #endif
  1720. if (IS_PAGE(current_block)) {
  1721. PAGE_SEGMENT_UPDATE_POS(X);
  1722. PAGE_SEGMENT_UPDATE_POS(Y);
  1723. PAGE_SEGMENT_UPDATE_POS(Z);
  1724. PAGE_SEGMENT_UPDATE_POS(E);
  1725. }
  1726. #endif
  1727. TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.block_completed(current_block));
  1728. discard_current_block();
  1729. }
  1730. else {
  1731. // Step events not completed yet...
  1732. // Are we in acceleration phase ?
  1733. if (step_events_completed <= accelerate_until) { // Calculate new timer value
  1734. #if ENABLED(S_CURVE_ACCELERATION)
  1735. // Get the next speed to use (Jerk limited!)
  1736. uint32_t acc_step_rate = acceleration_time < current_block->acceleration_time
  1737. ? _eval_bezier_curve(acceleration_time)
  1738. : current_block->cruise_rate;
  1739. #else
  1740. acc_step_rate = STEP_MULTIPLY(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate;
  1741. NOMORE(acc_step_rate, current_block->nominal_rate);
  1742. #endif
  1743. // acc_step_rate is in steps/second
  1744. // step_rate to timer interval and steps per stepper isr
  1745. interval = calc_timer_interval(acc_step_rate, &steps_per_isr);
  1746. acceleration_time += interval;
  1747. #if ENABLED(LIN_ADVANCE)
  1748. if (LA_use_advance_lead) {
  1749. // Fire ISR if final adv_rate is reached
  1750. if (LA_steps && LA_isr_rate != current_block->advance_speed) nextAdvanceISR = 0;
  1751. }
  1752. else if (LA_steps) nextAdvanceISR = 0;
  1753. #endif
  1754. // Update laser - Accelerating
  1755. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
  1756. if (laser_trap.enabled) {
  1757. #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
  1758. if (current_block->laser.entry_per) {
  1759. laser_trap.acc_step_count -= step_events_completed - laser_trap.last_step_count;
  1760. laser_trap.last_step_count = step_events_completed;
  1761. // Should be faster than a divide, since this should trip just once
  1762. if (laser_trap.acc_step_count < 0) {
  1763. while (laser_trap.acc_step_count < 0) {
  1764. laser_trap.acc_step_count += current_block->laser.entry_per;
  1765. if (laser_trap.cur_power < current_block->laser.power) laser_trap.cur_power++;
  1766. }
  1767. cutter.ocr_set_power(laser_trap.cur_power);
  1768. }
  1769. }
  1770. #else
  1771. if (laser_trap.till_update)
  1772. laser_trap.till_update--;
  1773. else {
  1774. laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
  1775. laser_trap.cur_power = (current_block->laser.power * acc_step_rate) / current_block->nominal_rate;
  1776. cutter.ocr_set_power(laser_trap.cur_power); // Cycle efficiency is irrelevant it the last line was many cycles
  1777. }
  1778. #endif
  1779. }
  1780. #endif
  1781. }
  1782. // Are we in Deceleration phase ?
  1783. else if (step_events_completed > decelerate_after) {
  1784. uint32_t step_rate;
  1785. #if ENABLED(S_CURVE_ACCELERATION)
  1786. // If this is the 1st time we process the 2nd half of the trapezoid...
  1787. if (!bezier_2nd_half) {
  1788. // Initialize the Bézier speed curve
  1789. _calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse);
  1790. bezier_2nd_half = true;
  1791. // The first point starts at cruise rate. Just save evaluation of the Bézier curve
  1792. step_rate = current_block->cruise_rate;
  1793. }
  1794. else {
  1795. // Calculate the next speed to use
  1796. step_rate = deceleration_time < current_block->deceleration_time
  1797. ? _eval_bezier_curve(deceleration_time)
  1798. : current_block->final_rate;
  1799. }
  1800. #else
  1801. // Using the old trapezoidal control
  1802. step_rate = STEP_MULTIPLY(deceleration_time, current_block->acceleration_rate);
  1803. if (step_rate < acc_step_rate) { // Still decelerating?
  1804. step_rate = acc_step_rate - step_rate;
  1805. NOLESS(step_rate, current_block->final_rate);
  1806. }
  1807. else
  1808. step_rate = current_block->final_rate;
  1809. #endif
  1810. // step_rate is in steps/second
  1811. // step_rate to timer interval and steps per stepper isr
  1812. interval = calc_timer_interval(step_rate, &steps_per_isr);
  1813. deceleration_time += interval;
  1814. #if ENABLED(LIN_ADVANCE)
  1815. if (LA_use_advance_lead) {
  1816. // Wake up eISR on first deceleration loop and fire ISR if final adv_rate is reached
  1817. if (step_events_completed <= decelerate_after + steps_per_isr || (LA_steps && LA_isr_rate != current_block->advance_speed)) {
  1818. initiateLA();
  1819. LA_isr_rate = current_block->advance_speed;
  1820. }
  1821. }
  1822. else if (LA_steps) nextAdvanceISR = 0;
  1823. #endif // LIN_ADVANCE
  1824. // Update laser - Decelerating
  1825. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
  1826. if (laser_trap.enabled) {
  1827. #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
  1828. if (current_block->laser.exit_per) {
  1829. laser_trap.acc_step_count -= step_events_completed - laser_trap.last_step_count;
  1830. laser_trap.last_step_count = step_events_completed;
  1831. // Should be faster than a divide, since this should trip just once
  1832. if (laser_trap.acc_step_count < 0) {
  1833. while (laser_trap.acc_step_count < 0) {
  1834. laser_trap.acc_step_count += current_block->laser.exit_per;
  1835. if (laser_trap.cur_power > current_block->laser.power_exit) laser_trap.cur_power--;
  1836. }
  1837. cutter.ocr_set_power(laser_trap.cur_power);
  1838. }
  1839. }
  1840. #else
  1841. if (laser_trap.till_update)
  1842. laser_trap.till_update--;
  1843. else {
  1844. laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
  1845. laser_trap.cur_power = (current_block->laser.power * step_rate) / current_block->nominal_rate;
  1846. cutter.ocr_set_power(laser_trap.cur_power); // Cycle efficiency isn't relevant when the last line was many cycles
  1847. }
  1848. #endif
  1849. }
  1850. #endif
  1851. }
  1852. // Must be in cruise phase otherwise
  1853. else {
  1854. #if ENABLED(LIN_ADVANCE)
  1855. // If there are any esteps, fire the next advance_isr "now"
  1856. if (LA_steps && LA_isr_rate != current_block->advance_speed) initiateLA();
  1857. #endif
  1858. // Calculate the ticks_nominal for this nominal speed, if not done yet
  1859. if (ticks_nominal < 0) {
  1860. // step_rate to timer interval and loops for the nominal speed
  1861. ticks_nominal = calc_timer_interval(current_block->nominal_rate, &steps_per_isr);
  1862. }
  1863. // The timer interval is just the nominal value for the nominal speed
  1864. interval = ticks_nominal;
  1865. // Update laser - Cruising
  1866. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
  1867. if (laser_trap.enabled) {
  1868. if (!laser_trap.cruise_set) {
  1869. laser_trap.cur_power = current_block->laser.power;
  1870. cutter.ocr_set_power(laser_trap.cur_power);
  1871. laser_trap.cruise_set = true;
  1872. }
  1873. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
  1874. laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
  1875. #else
  1876. laser_trap.last_step_count = step_events_completed;
  1877. #endif
  1878. }
  1879. #endif
  1880. }
  1881. }
  1882. }
  1883. // If there is no current block at this point, attempt to pop one from the buffer
  1884. // and prepare its movement
  1885. if (!current_block) {
  1886. // Anything in the buffer?
  1887. if ((current_block = planner.get_current_block())) {
  1888. // Sync block? Sync the stepper counts or fan speeds and return
  1889. while (current_block->flag & BLOCK_MASK_SYNC) {
  1890. #if ENABLED(LASER_SYNCHRONOUS_M106_M107)
  1891. const bool is_sync_fans = TEST(current_block->flag, BLOCK_BIT_SYNC_FANS);
  1892. if (is_sync_fans) planner.sync_fan_speeds(current_block->fan_speed);
  1893. #else
  1894. constexpr bool is_sync_fans = false;
  1895. #endif
  1896. if (!is_sync_fans) _set_position(current_block->position);
  1897. discard_current_block();
  1898. // Try to get a new block
  1899. if (!(current_block = planner.get_current_block()))
  1900. return interval; // No more queued movements!
  1901. }
  1902. // For non-inline cutter, grossly apply power
  1903. #if ENABLED(LASER_FEATURE) && DISABLED(LASER_POWER_INLINE)
  1904. cutter.apply_power(current_block->cutter_power);
  1905. #endif
  1906. TERN_(POWER_LOSS_RECOVERY, recovery.info.sdpos = current_block->sdpos);
  1907. #if ENABLED(DIRECT_STEPPING)
  1908. if (IS_PAGE(current_block)) {
  1909. page_step_state.segment_steps = 0;
  1910. page_step_state.segment_idx = 0;
  1911. page_step_state.page = page_manager.get_page(current_block->page_idx);
  1912. page_step_state.bd.reset();
  1913. if (DirectStepping::Config::DIRECTIONAL)
  1914. current_block->direction_bits = last_direction_bits;
  1915. if (!page_step_state.page) {
  1916. discard_current_block();
  1917. return interval;
  1918. }
  1919. }
  1920. #endif
  1921. // Flag all moving axes for proper endstop handling
  1922. #if IS_CORE
  1923. // Define conditions for checking endstops
  1924. #define S_(N) current_block->steps[CORE_AXIS_##N]
  1925. #define D_(N) TEST(current_block->direction_bits, CORE_AXIS_##N)
  1926. #endif
  1927. #if CORE_IS_XY || CORE_IS_XZ
  1928. /**
  1929. * Head direction in -X axis for CoreXY and CoreXZ bots.
  1930. *
  1931. * If steps differ, both axes are moving.
  1932. * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z, handled below)
  1933. * If DeltaA == DeltaB, the movement is only in the 1st axis (X)
  1934. */
  1935. #if EITHER(COREXY, COREXZ)
  1936. #define X_CMP(A,B) ((A)==(B))
  1937. #else
  1938. #define X_CMP(A,B) ((A)!=(B))
  1939. #endif
  1940. #define X_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && X_CMP(D_(1),D_(2))) )
  1941. #elif ENABLED(MARKFORGED_XY)
  1942. #define X_MOVE_TEST (current_block->steps.a != current_block->steps.b)
  1943. #else
  1944. #define X_MOVE_TEST !!current_block->steps.a
  1945. #endif
  1946. #if CORE_IS_XY || CORE_IS_YZ
  1947. /**
  1948. * Head direction in -Y axis for CoreXY / CoreYZ bots.
  1949. *
  1950. * If steps differ, both axes are moving
  1951. * If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y)
  1952. * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z)
  1953. */
  1954. #if EITHER(COREYX, COREYZ)
  1955. #define Y_CMP(A,B) ((A)==(B))
  1956. #else
  1957. #define Y_CMP(A,B) ((A)!=(B))
  1958. #endif
  1959. #define Y_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Y_CMP(D_(1),D_(2))) )
  1960. #elif ENABLED(MARKFORGED_YX)
  1961. #define Y_MOVE_TEST (current_block->steps.a != current_block->steps.b)
  1962. #else
  1963. #define Y_MOVE_TEST !!current_block->steps.b
  1964. #endif
  1965. #if CORE_IS_XZ || CORE_IS_YZ
  1966. /**
  1967. * Head direction in -Z axis for CoreXZ or CoreYZ bots.
  1968. *
  1969. * If steps differ, both axes are moving
  1970. * If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y, already handled above)
  1971. * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Z)
  1972. */
  1973. #if EITHER(COREZX, COREZY)
  1974. #define Z_CMP(A,B) ((A)==(B))
  1975. #else
  1976. #define Z_CMP(A,B) ((A)!=(B))
  1977. #endif
  1978. #define Z_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Z_CMP(D_(1),D_(2))) )
  1979. #else
  1980. #define Z_MOVE_TEST !!current_block->steps.c
  1981. #endif
  1982. axis_bits_t axis_bits = 0;
  1983. LINEAR_AXIS_CODE(
  1984. if (X_MOVE_TEST) SBI(axis_bits, A_AXIS),
  1985. if (Y_MOVE_TEST) SBI(axis_bits, B_AXIS),
  1986. if (Z_MOVE_TEST) SBI(axis_bits, C_AXIS),
  1987. if (current_block->steps.i) SBI(axis_bits, I_AXIS),
  1988. if (current_block->steps.j) SBI(axis_bits, J_AXIS),
  1989. if (current_block->steps.k) SBI(axis_bits, K_AXIS)
  1990. );
  1991. //if (current_block->steps.e) SBI(axis_bits, E_AXIS);
  1992. //if (current_block->steps.a) SBI(axis_bits, X_HEAD);
  1993. //if (current_block->steps.b) SBI(axis_bits, Y_HEAD);
  1994. //if (current_block->steps.c) SBI(axis_bits, Z_HEAD);
  1995. axis_did_move = axis_bits;
  1996. // No acceleration / deceleration time elapsed so far
  1997. acceleration_time = deceleration_time = 0;
  1998. #if ENABLED(ADAPTIVE_STEP_SMOOTHING)
  1999. uint8_t oversampling = 0; // Assume no axis smoothing (via oversampling)
  2000. // Decide if axis smoothing is possible
  2001. uint32_t max_rate = current_block->nominal_rate; // Get the step event rate
  2002. while (max_rate < MIN_STEP_ISR_FREQUENCY) { // As long as more ISRs are possible...
  2003. max_rate <<= 1; // Try to double the rate
  2004. if (max_rate < MIN_STEP_ISR_FREQUENCY) // Don't exceed the estimated ISR limit
  2005. ++oversampling; // Increase the oversampling (used for left-shift)
  2006. }
  2007. oversampling_factor = oversampling; // For all timer interval calculations
  2008. #else
  2009. constexpr uint8_t oversampling = 0;
  2010. #endif
  2011. // Based on the oversampling factor, do the calculations
  2012. step_event_count = current_block->step_event_count << oversampling;
  2013. // Initialize Bresenham delta errors to 1/2
  2014. delta_error = -int32_t(step_event_count);
  2015. // Calculate Bresenham dividends and divisors
  2016. advance_dividend = current_block->steps << 1;
  2017. advance_divisor = step_event_count << 1;
  2018. // No step events completed so far
  2019. step_events_completed = 0;
  2020. // Compute the acceleration and deceleration points
  2021. accelerate_until = current_block->accelerate_until << oversampling;
  2022. decelerate_after = current_block->decelerate_after << oversampling;
  2023. TERN_(MIXING_EXTRUDER, mixer.stepper_setup(current_block->b_color));
  2024. E_TERN_(stepper_extruder = current_block->extruder);
  2025. // Initialize the trapezoid generator from the current block.
  2026. #if ENABLED(LIN_ADVANCE)
  2027. #if DISABLED(MIXING_EXTRUDER) && E_STEPPERS > 1
  2028. // If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
  2029. if (stepper_extruder != last_moved_extruder) LA_current_adv_steps = 0;
  2030. #endif
  2031. if ((LA_use_advance_lead = current_block->use_advance_lead)) {
  2032. LA_final_adv_steps = current_block->final_adv_steps;
  2033. LA_max_adv_steps = current_block->max_adv_steps;
  2034. initiateLA(); // Start the ISR
  2035. LA_isr_rate = current_block->advance_speed;
  2036. }
  2037. else LA_isr_rate = LA_ADV_NEVER;
  2038. #endif
  2039. if ( ENABLED(HAS_L64XX) // Always set direction for L64xx (Also enables the chips)
  2040. || ENABLED(DUAL_X_CARRIAGE) // TODO: Find out why this fixes "jittery" small circles
  2041. || current_block->direction_bits != last_direction_bits
  2042. || TERN(MIXING_EXTRUDER, false, stepper_extruder != last_moved_extruder)
  2043. ) {
  2044. E_TERN_(last_moved_extruder = stepper_extruder);
  2045. TERN_(HAS_L64XX, L64XX_OK_to_power_up = true);
  2046. set_directions(current_block->direction_bits);
  2047. }
  2048. #if ENABLED(LASER_POWER_INLINE)
  2049. const power_status_t stat = current_block->laser.status;
  2050. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
  2051. laser_trap.enabled = stat.isPlanned && stat.isEnabled;
  2052. laser_trap.cur_power = current_block->laser.power_entry; // RESET STATE
  2053. laser_trap.cruise_set = false;
  2054. #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
  2055. laser_trap.last_step_count = 0;
  2056. laser_trap.acc_step_count = current_block->laser.entry_per / 2;
  2057. #else
  2058. laser_trap.till_update = 0;
  2059. #endif
  2060. // Always have PWM in this case
  2061. if (stat.isPlanned) { // Planner controls the laser
  2062. cutter.ocr_set_power(
  2063. stat.isEnabled ? laser_trap.cur_power : 0 // ON with power or OFF
  2064. );
  2065. }
  2066. #else
  2067. if (stat.isPlanned) { // Planner controls the laser
  2068. #if ENABLED(SPINDLE_LASER_USE_PWM)
  2069. cutter.ocr_set_power(
  2070. stat.isEnabled ? current_block->laser.power : 0 // ON with power or OFF
  2071. );
  2072. #else
  2073. cutter.set_enabled(stat.isEnabled);
  2074. #endif
  2075. }
  2076. #endif
  2077. #endif // LASER_POWER_INLINE
  2078. // If the endstop is already pressed, endstop interrupts won't invoke
  2079. // endstop_triggered and the move will grind. So check here for a
  2080. // triggered endstop, which marks the block for discard on the next ISR.
  2081. endstops.update();
  2082. #if ENABLED(Z_LATE_ENABLE)
  2083. // If delayed Z enable, enable it now. This option will severely interfere with
  2084. // timing between pulses when chaining motion between blocks, and it could lead
  2085. // to lost steps in both X and Y axis, so avoid using it unless strictly necessary!!
  2086. if (current_block->steps.z) enable_axis(Z_AXIS);
  2087. #endif
  2088. // Mark the time_nominal as not calculated yet
  2089. ticks_nominal = -1;
  2090. #if ENABLED(S_CURVE_ACCELERATION)
  2091. // Initialize the Bézier speed curve
  2092. _calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);
  2093. // We haven't started the 2nd half of the trapezoid
  2094. bezier_2nd_half = false;
  2095. #else
  2096. // Set as deceleration point the initial rate of the block
  2097. acc_step_rate = current_block->initial_rate;
  2098. #endif
  2099. // Calculate the initial timer interval
  2100. interval = calc_timer_interval(current_block->initial_rate, &steps_per_isr);
  2101. }
  2102. #if ENABLED(LASER_POWER_INLINE_CONTINUOUS)
  2103. else { // No new block found; so apply inline laser parameters
  2104. // This should mean ending file with 'M5 I' will stop the laser; thus the inline flag isn't needed
  2105. const power_status_t stat = planner.laser_inline.status;
  2106. if (stat.isPlanned) { // Planner controls the laser
  2107. #if ENABLED(SPINDLE_LASER_USE_PWM)
  2108. cutter.ocr_set_power(
  2109. stat.isEnabled ? planner.laser_inline.power : 0 // ON with power or OFF
  2110. );
  2111. #else
  2112. cutter.set_enabled(stat.isEnabled);
  2113. #endif
  2114. }
  2115. }
  2116. #endif
  2117. }
  2118. // Return the interval to wait
  2119. return interval;
  2120. }
  2121. #if ENABLED(LIN_ADVANCE)
  2122. // Timer interrupt for E. LA_steps is set in the main routine
  2123. uint32_t Stepper::advance_isr() {
  2124. uint32_t interval;
  2125. if (LA_use_advance_lead) {
  2126. if (step_events_completed > decelerate_after && LA_current_adv_steps > LA_final_adv_steps) {
  2127. LA_steps--;
  2128. LA_current_adv_steps--;
  2129. interval = LA_isr_rate;
  2130. }
  2131. else if (step_events_completed < decelerate_after && LA_current_adv_steps < LA_max_adv_steps) {
  2132. LA_steps++;
  2133. LA_current_adv_steps++;
  2134. interval = LA_isr_rate;
  2135. }
  2136. else
  2137. interval = LA_isr_rate = LA_ADV_NEVER;
  2138. }
  2139. else
  2140. interval = LA_ADV_NEVER;
  2141. if (!LA_steps) return interval; // Leave pins alone if there are no steps!
  2142. DIR_WAIT_BEFORE();
  2143. #if ENABLED(MIXING_EXTRUDER)
  2144. // We don't know which steppers will be stepped because LA loop follows,
  2145. // with potentially multiple steps. Set all.
  2146. if (LA_steps > 0) {
  2147. MIXER_STEPPER_LOOP(j) NORM_E_DIR(j);
  2148. count_direction.e = 1;
  2149. }
  2150. else if (LA_steps < 0) {
  2151. MIXER_STEPPER_LOOP(j) REV_E_DIR(j);
  2152. count_direction.e = -1;
  2153. }
  2154. #else
  2155. if (LA_steps > 0) {
  2156. NORM_E_DIR(stepper_extruder);
  2157. count_direction.e = 1;
  2158. }
  2159. else if (LA_steps < 0) {
  2160. REV_E_DIR(stepper_extruder);
  2161. count_direction.e = -1;
  2162. }
  2163. #endif
  2164. DIR_WAIT_AFTER();
  2165. //const hal_timer_t added_step_ticks = hal_timer_t(ADDED_STEP_TICKS);
  2166. // Step E stepper if we have steps
  2167. #if ISR_MULTI_STEPS
  2168. bool firstStep = true;
  2169. USING_TIMED_PULSE();
  2170. #endif
  2171. while (LA_steps) {
  2172. #if ISR_MULTI_STEPS
  2173. if (firstStep)
  2174. firstStep = false;
  2175. else
  2176. AWAIT_LOW_PULSE();
  2177. #endif
  2178. count_position.e += count_direction.e;
  2179. // Set the STEP pulse ON
  2180. #if ENABLED(MIXING_EXTRUDER)
  2181. E_STEP_WRITE(mixer.get_next_stepper(), !INVERT_E_STEP_PIN);
  2182. #else
  2183. E_STEP_WRITE(stepper_extruder, !INVERT_E_STEP_PIN);
  2184. #endif
  2185. // Enforce a minimum duration for STEP pulse ON
  2186. #if ISR_PULSE_CONTROL
  2187. START_HIGH_PULSE();
  2188. #endif
  2189. LA_steps < 0 ? ++LA_steps : --LA_steps;
  2190. #if ISR_PULSE_CONTROL
  2191. AWAIT_HIGH_PULSE();
  2192. #endif
  2193. // Set the STEP pulse OFF
  2194. #if ENABLED(MIXING_EXTRUDER)
  2195. E_STEP_WRITE(mixer.get_stepper(), INVERT_E_STEP_PIN);
  2196. #else
  2197. E_STEP_WRITE(stepper_extruder, INVERT_E_STEP_PIN);
  2198. #endif
  2199. // For minimum pulse time wait before looping
  2200. // Just wait for the requested pulse duration
  2201. #if ISR_PULSE_CONTROL
  2202. if (LA_steps) START_LOW_PULSE();
  2203. #endif
  2204. } // LA_steps
  2205. return interval;
  2206. }
  2207. #endif // LIN_ADVANCE
  2208. #if ENABLED(INTEGRATED_BABYSTEPPING)
  2209. // Timer interrupt for baby-stepping
  2210. uint32_t Stepper::babystepping_isr() {
  2211. babystep.task();
  2212. return babystep.has_steps() ? BABYSTEP_TICKS : BABYSTEP_NEVER;
  2213. }
  2214. #endif
  2215. // Check if the given block is busy or not - Must not be called from ISR contexts
  2216. // The current_block could change in the middle of the read by an Stepper ISR, so
  2217. // we must explicitly prevent that!
  2218. bool Stepper::is_block_busy(const block_t * const block) {
  2219. #ifdef __AVR__
  2220. // A SW memory barrier, to ensure GCC does not overoptimize loops
  2221. #define sw_barrier() asm volatile("": : :"memory");
  2222. // Keep reading until 2 consecutive reads return the same value,
  2223. // meaning there was no update in-between caused by an interrupt.
  2224. // This works because stepper ISRs happen at a slower rate than
  2225. // successive reads of a variable, so 2 consecutive reads with
  2226. // the same value means no interrupt updated it.
  2227. block_t *vold, *vnew = current_block;
  2228. sw_barrier();
  2229. do {
  2230. vold = vnew;
  2231. vnew = current_block;
  2232. sw_barrier();
  2233. } while (vold != vnew);
  2234. #else
  2235. block_t *vnew = current_block;
  2236. #endif
  2237. // Return if the block is busy or not
  2238. return block == vnew;
  2239. }
  2240. void Stepper::init() {
  2241. #if MB(ALLIGATOR)
  2242. const float motor_current[] = MOTOR_CURRENT;
  2243. unsigned int digipot_motor = 0;
  2244. LOOP_L_N(i, 3 + EXTRUDERS) {
  2245. digipot_motor = 255 * (motor_current[i] / 2.5);
  2246. dac084s085::setValue(i, digipot_motor);
  2247. }
  2248. #endif
  2249. // Init Microstepping Pins
  2250. TERN_(HAS_MICROSTEPS, microstep_init());
  2251. // Init Dir Pins
  2252. TERN_(HAS_X_DIR, X_DIR_INIT());
  2253. TERN_(HAS_X2_DIR, X2_DIR_INIT());
  2254. #if HAS_Y_DIR
  2255. Y_DIR_INIT();
  2256. #if BOTH(Y_DUAL_STEPPER_DRIVERS, HAS_Y2_DIR)
  2257. Y2_DIR_INIT();
  2258. #endif
  2259. #endif
  2260. #if HAS_Z_DIR
  2261. Z_DIR_INIT();
  2262. #if NUM_Z_STEPPER_DRIVERS >= 2 && HAS_Z2_DIR
  2263. Z2_DIR_INIT();
  2264. #endif
  2265. #if NUM_Z_STEPPER_DRIVERS >= 3 && HAS_Z3_DIR
  2266. Z3_DIR_INIT();
  2267. #endif
  2268. #if NUM_Z_STEPPER_DRIVERS >= 4 && HAS_Z4_DIR
  2269. Z4_DIR_INIT();
  2270. #endif
  2271. #endif
  2272. #if HAS_I_DIR
  2273. I_DIR_INIT();
  2274. #endif
  2275. #if HAS_J_DIR
  2276. J_DIR_INIT();
  2277. #endif
  2278. #if HAS_K_DIR
  2279. K_DIR_INIT();
  2280. #endif
  2281. #if HAS_E0_DIR
  2282. E0_DIR_INIT();
  2283. #endif
  2284. #if HAS_E1_DIR
  2285. E1_DIR_INIT();
  2286. #endif
  2287. #if HAS_E2_DIR
  2288. E2_DIR_INIT();
  2289. #endif
  2290. #if HAS_E3_DIR
  2291. E3_DIR_INIT();
  2292. #endif
  2293. #if HAS_E4_DIR
  2294. E4_DIR_INIT();
  2295. #endif
  2296. #if HAS_E5_DIR
  2297. E5_DIR_INIT();
  2298. #endif
  2299. #if HAS_E6_DIR
  2300. E6_DIR_INIT();
  2301. #endif
  2302. #if HAS_E7_DIR
  2303. E7_DIR_INIT();
  2304. #endif
  2305. // Init Enable Pins - steppers default to disabled.
  2306. #if HAS_X_ENABLE
  2307. X_ENABLE_INIT();
  2308. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  2309. #if BOTH(HAS_X2_STEPPER, HAS_X2_ENABLE)
  2310. X2_ENABLE_INIT();
  2311. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  2312. #endif
  2313. #endif
  2314. #if HAS_Y_ENABLE
  2315. Y_ENABLE_INIT();
  2316. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  2317. #if BOTH(Y_DUAL_STEPPER_DRIVERS, HAS_Y2_ENABLE)
  2318. Y2_ENABLE_INIT();
  2319. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  2320. #endif
  2321. #endif
  2322. #if HAS_Z_ENABLE
  2323. Z_ENABLE_INIT();
  2324. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  2325. #if NUM_Z_STEPPER_DRIVERS >= 2 && HAS_Z2_ENABLE
  2326. Z2_ENABLE_INIT();
  2327. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  2328. #endif
  2329. #if NUM_Z_STEPPER_DRIVERS >= 3 && HAS_Z3_ENABLE
  2330. Z3_ENABLE_INIT();
  2331. if (!Z_ENABLE_ON) Z3_ENABLE_WRITE(HIGH);
  2332. #endif
  2333. #if NUM_Z_STEPPER_DRIVERS >= 4 && HAS_Z4_ENABLE
  2334. Z4_ENABLE_INIT();
  2335. if (!Z_ENABLE_ON) Z4_ENABLE_WRITE(HIGH);
  2336. #endif
  2337. #endif
  2338. #if HAS_I_ENABLE
  2339. I_ENABLE_INIT();
  2340. if (!I_ENABLE_ON) I_ENABLE_WRITE(HIGH);
  2341. #endif
  2342. #if HAS_J_ENABLE
  2343. J_ENABLE_INIT();
  2344. if (!J_ENABLE_ON) J_ENABLE_WRITE(HIGH);
  2345. #endif
  2346. #if HAS_K_ENABLE
  2347. K_ENABLE_INIT();
  2348. if (!K_ENABLE_ON) K_ENABLE_WRITE(HIGH);
  2349. #endif
  2350. #if HAS_E0_ENABLE
  2351. E0_ENABLE_INIT();
  2352. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  2353. #endif
  2354. #if HAS_E1_ENABLE
  2355. E1_ENABLE_INIT();
  2356. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  2357. #endif
  2358. #if HAS_E2_ENABLE
  2359. E2_ENABLE_INIT();
  2360. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  2361. #endif
  2362. #if HAS_E3_ENABLE
  2363. E3_ENABLE_INIT();
  2364. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  2365. #endif
  2366. #if HAS_E4_ENABLE
  2367. E4_ENABLE_INIT();
  2368. if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
  2369. #endif
  2370. #if HAS_E5_ENABLE
  2371. E5_ENABLE_INIT();
  2372. if (!E_ENABLE_ON) E5_ENABLE_WRITE(HIGH);
  2373. #endif
  2374. #if HAS_E6_ENABLE
  2375. E6_ENABLE_INIT();
  2376. if (!E_ENABLE_ON) E6_ENABLE_WRITE(HIGH);
  2377. #endif
  2378. #if HAS_E7_ENABLE
  2379. E7_ENABLE_INIT();
  2380. if (!E_ENABLE_ON) E7_ENABLE_WRITE(HIGH);
  2381. #endif
  2382. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT()
  2383. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  2384. #define _DISABLE_AXIS(AXIS) DISABLE_AXIS_## AXIS()
  2385. #define AXIS_INIT(AXIS, PIN) \
  2386. _STEP_INIT(AXIS); \
  2387. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  2388. _DISABLE_AXIS(AXIS)
  2389. #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
  2390. // Init Step Pins
  2391. #if HAS_X_STEP
  2392. #if EITHER(X_DUAL_STEPPER_DRIVERS, DUAL_X_CARRIAGE)
  2393. X2_STEP_INIT();
  2394. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  2395. #endif
  2396. AXIS_INIT(X, X);
  2397. #endif
  2398. #if HAS_Y_STEP
  2399. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  2400. Y2_STEP_INIT();
  2401. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  2402. #endif
  2403. AXIS_INIT(Y, Y);
  2404. #endif
  2405. #if HAS_Z_STEP
  2406. #if NUM_Z_STEPPER_DRIVERS >= 2
  2407. Z2_STEP_INIT();
  2408. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  2409. #endif
  2410. #if NUM_Z_STEPPER_DRIVERS >= 3
  2411. Z3_STEP_INIT();
  2412. Z3_STEP_WRITE(INVERT_Z_STEP_PIN);
  2413. #endif
  2414. #if NUM_Z_STEPPER_DRIVERS >= 4
  2415. Z4_STEP_INIT();
  2416. Z4_STEP_WRITE(INVERT_Z_STEP_PIN);
  2417. #endif
  2418. AXIS_INIT(Z, Z);
  2419. #endif
  2420. #if HAS_I_STEP
  2421. AXIS_INIT(I, I);
  2422. #endif
  2423. #if HAS_J_STEP
  2424. AXIS_INIT(J, J);
  2425. #endif
  2426. #if HAS_K_STEP
  2427. AXIS_INIT(K, K);
  2428. #endif
  2429. #if E_STEPPERS && HAS_E0_STEP
  2430. E_AXIS_INIT(0);
  2431. #endif
  2432. #if (E_STEPPERS > 1 || ENABLED(E_DUAL_STEPPER_DRIVERS)) && HAS_E1_STEP
  2433. E_AXIS_INIT(1);
  2434. #endif
  2435. #if E_STEPPERS > 2 && HAS_E2_STEP
  2436. E_AXIS_INIT(2);
  2437. #endif
  2438. #if E_STEPPERS > 3 && HAS_E3_STEP
  2439. E_AXIS_INIT(3);
  2440. #endif
  2441. #if E_STEPPERS > 4 && HAS_E4_STEP
  2442. E_AXIS_INIT(4);
  2443. #endif
  2444. #if E_STEPPERS > 5 && HAS_E5_STEP
  2445. E_AXIS_INIT(5);
  2446. #endif
  2447. #if E_STEPPERS > 6 && HAS_E6_STEP
  2448. E_AXIS_INIT(6);
  2449. #endif
  2450. #if E_STEPPERS > 7 && HAS_E7_STEP
  2451. E_AXIS_INIT(7);
  2452. #endif
  2453. #if DISABLED(I2S_STEPPER_STREAM)
  2454. HAL_timer_start(MF_TIMER_STEP, 122); // Init Stepper ISR to 122 Hz for quick starting
  2455. wake_up();
  2456. sei();
  2457. #endif
  2458. // Init direction bits for first moves
  2459. set_directions(0
  2460. LINEAR_AXIS_GANG(
  2461. | TERN0(INVERT_X_DIR, _BV(X_AXIS)),
  2462. | TERN0(INVERT_Y_DIR, _BV(Y_AXIS)),
  2463. | TERN0(INVERT_Z_DIR, _BV(Z_AXIS)),
  2464. | TERN0(INVERT_I_DIR, _BV(I_AXIS)),
  2465. | TERN0(INVERT_J_DIR, _BV(J_AXIS)),
  2466. | TERN0(INVERT_K_DIR, _BV(K_AXIS))
  2467. )
  2468. );
  2469. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  2470. initialized = true;
  2471. digipot_init();
  2472. #endif
  2473. }
  2474. /**
  2475. * Set the stepper positions directly in steps
  2476. *
  2477. * The input is based on the typical per-axis XYZE steps.
  2478. * For CORE machines XYZ needs to be translated to ABC.
  2479. *
  2480. * This allows get_axis_position_mm to correctly
  2481. * derive the current XYZE position later on.
  2482. */
  2483. void Stepper::_set_position(const abce_long_t &spos) {
  2484. #if ANY(IS_CORE, MARKFORGED_XY, MARKFORGED_YX)
  2485. #if CORE_IS_XY
  2486. // corexy positioning
  2487. // these equations follow the form of the dA and dB equations on https://www.corexy.com/theory.html
  2488. count_position.set(spos.a + spos.b, CORESIGN(spos.a - spos.b), spos.c);
  2489. #elif CORE_IS_XZ
  2490. // corexz planning
  2491. count_position.set(spos.a + spos.c, spos.b, CORESIGN(spos.a - spos.c));
  2492. #elif CORE_IS_YZ
  2493. // coreyz planning
  2494. count_position.set(spos.a, spos.b + spos.c, CORESIGN(spos.b - spos.c));
  2495. #elif ENABLED(MARKFORGED_XY)
  2496. count_position.set(spos.a - spos.b, spos.b, spos.c);
  2497. #elif ENABLED(MARKFORGED_YX)
  2498. count_position.set(spos.a, spos.b - spos.a, spos.c);
  2499. #endif
  2500. TERN_(HAS_EXTRUDERS, count_position.e = spos.e);
  2501. #else
  2502. // default non-h-bot planning
  2503. count_position = spos;
  2504. #endif
  2505. }
  2506. /**
  2507. * Get a stepper's position in steps.
  2508. */
  2509. int32_t Stepper::position(const AxisEnum axis) {
  2510. #ifdef __AVR__
  2511. // Protect the access to the position. Only required for AVR, as
  2512. // any 32bit CPU offers atomic access to 32bit variables
  2513. const bool was_enabled = suspend();
  2514. #endif
  2515. const int32_t v = count_position[axis];
  2516. #ifdef __AVR__
  2517. // Reenable Stepper ISR
  2518. if (was_enabled) wake_up();
  2519. #endif
  2520. return v;
  2521. }
  2522. // Set the current position in steps
  2523. void Stepper::set_position(const xyze_long_t &spos) {
  2524. planner.synchronize();
  2525. const bool was_enabled = suspend();
  2526. _set_position(spos);
  2527. if (was_enabled) wake_up();
  2528. }
  2529. void Stepper::set_axis_position(const AxisEnum a, const int32_t &v) {
  2530. planner.synchronize();
  2531. #ifdef __AVR__
  2532. // Protect the access to the position. Only required for AVR, as
  2533. // any 32bit CPU offers atomic access to 32bit variables
  2534. const bool was_enabled = suspend();
  2535. #endif
  2536. count_position[a] = v;
  2537. #ifdef __AVR__
  2538. // Reenable Stepper ISR
  2539. if (was_enabled) wake_up();
  2540. #endif
  2541. }
  2542. // Signal endstops were triggered - This function can be called from
  2543. // an ISR context (Temperature, Stepper or limits ISR), so we must
  2544. // be very careful here. If the interrupt being preempted was the
  2545. // Stepper ISR (this CAN happen with the endstop limits ISR) then
  2546. // when the stepper ISR resumes, we must be very sure that the movement
  2547. // is properly canceled
  2548. void Stepper::endstop_triggered(const AxisEnum axis) {
  2549. const bool was_enabled = suspend();
  2550. endstops_trigsteps[axis] = (
  2551. #if IS_CORE
  2552. (axis == CORE_AXIS_2
  2553. ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  2554. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  2555. ) * double(0.5)
  2556. #elif ENABLED(MARKFORGED_XY)
  2557. axis == CORE_AXIS_1
  2558. ? count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2]
  2559. : count_position[CORE_AXIS_2]
  2560. #elif ENABLED(MARKFORGED_YX)
  2561. axis == CORE_AXIS_1
  2562. ? count_position[CORE_AXIS_1]
  2563. : count_position[CORE_AXIS_2] - count_position[CORE_AXIS_1]
  2564. #else // !IS_CORE
  2565. count_position[axis]
  2566. #endif
  2567. );
  2568. // Discard the rest of the move if there is a current block
  2569. quick_stop();
  2570. if (was_enabled) wake_up();
  2571. }
  2572. int32_t Stepper::triggered_position(const AxisEnum axis) {
  2573. #ifdef __AVR__
  2574. // Protect the access to the position. Only required for AVR, as
  2575. // any 32bit CPU offers atomic access to 32bit variables
  2576. const bool was_enabled = suspend();
  2577. #endif
  2578. const int32_t v = endstops_trigsteps[axis];
  2579. #ifdef __AVR__
  2580. // Reenable Stepper ISR
  2581. if (was_enabled) wake_up();
  2582. #endif
  2583. return v;
  2584. }
  2585. #if ANY(CORE_IS_XY, CORE_IS_XZ, MARKFORGED_XY, MARKFORGED_YX, IS_SCARA, DELTA)
  2586. #define SAYS_A 1
  2587. #endif
  2588. #if ANY(CORE_IS_XY, CORE_IS_YZ, MARKFORGED_XY, MARKFORGED_YX, IS_SCARA, DELTA)
  2589. #define SAYS_B 1
  2590. #endif
  2591. #if ANY(CORE_IS_XZ, CORE_IS_YZ, DELTA)
  2592. #define SAYS_C 1
  2593. #endif
  2594. void Stepper::report_a_position(const xyz_long_t &pos) {
  2595. SERIAL_ECHOLNPGM_P(
  2596. LIST_N(DOUBLE(LINEAR_AXES),
  2597. TERN(SAYS_A, PSTR(STR_COUNT_A), PSTR(STR_COUNT_X)), pos.x,
  2598. TERN(SAYS_B, PSTR("B:"), SP_Y_LBL), pos.y,
  2599. TERN(SAYS_C, PSTR("C:"), SP_Z_LBL), pos.z,
  2600. SP_I_LBL, pos.i,
  2601. SP_J_LBL, pos.j,
  2602. SP_K_LBL, pos.k
  2603. )
  2604. );
  2605. }
  2606. void Stepper::report_positions() {
  2607. #ifdef __AVR__
  2608. // Protect the access to the position.
  2609. const bool was_enabled = suspend();
  2610. #endif
  2611. const xyz_long_t pos = count_position;
  2612. #ifdef __AVR__
  2613. if (was_enabled) wake_up();
  2614. #endif
  2615. report_a_position(pos);
  2616. }
  2617. #if ENABLED(BABYSTEPPING)
  2618. #define _ENABLE_AXIS(A) enable_axis(_AXIS(A))
  2619. #define _READ_DIR(AXIS) AXIS ##_DIR_READ()
  2620. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  2621. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  2622. #if MINIMUM_STEPPER_PULSE
  2623. #define STEP_PULSE_CYCLES ((MINIMUM_STEPPER_PULSE) * CYCLES_PER_MICROSECOND)
  2624. #else
  2625. #define STEP_PULSE_CYCLES 0
  2626. #endif
  2627. #if ENABLED(DELTA)
  2628. #define CYCLES_EATEN_BABYSTEP (2 * 15)
  2629. #else
  2630. #define CYCLES_EATEN_BABYSTEP 0
  2631. #endif
  2632. #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
  2633. #if EXTRA_CYCLES_BABYSTEP > 20
  2634. #define _SAVE_START() const hal_timer_t pulse_start = HAL_timer_get_count(MF_TIMER_PULSE)
  2635. #define _PULSE_WAIT() while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(HAL_timer_get_count(MF_TIMER_PULSE) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
  2636. #else
  2637. #define _SAVE_START() NOOP
  2638. #if EXTRA_CYCLES_BABYSTEP > 0
  2639. #define _PULSE_WAIT() DELAY_NS(EXTRA_CYCLES_BABYSTEP * NANOSECONDS_PER_CYCLE)
  2640. #elif ENABLED(DELTA)
  2641. #define _PULSE_WAIT() DELAY_US(2);
  2642. #elif STEP_PULSE_CYCLES > 0
  2643. #define _PULSE_WAIT() NOOP
  2644. #else
  2645. #define _PULSE_WAIT() DELAY_US(4);
  2646. #endif
  2647. #endif
  2648. #if ENABLED(BABYSTEPPING_EXTRA_DIR_WAIT)
  2649. #define EXTRA_DIR_WAIT_BEFORE DIR_WAIT_BEFORE
  2650. #define EXTRA_DIR_WAIT_AFTER DIR_WAIT_AFTER
  2651. #else
  2652. #define EXTRA_DIR_WAIT_BEFORE()
  2653. #define EXTRA_DIR_WAIT_AFTER()
  2654. #endif
  2655. #if DISABLED(DELTA)
  2656. #define BABYSTEP_AXIS(AXIS, INV, DIR) do{ \
  2657. const uint8_t old_dir = _READ_DIR(AXIS); \
  2658. _ENABLE_AXIS(AXIS); \
  2659. DIR_WAIT_BEFORE(); \
  2660. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^DIR^INV); \
  2661. DIR_WAIT_AFTER(); \
  2662. _SAVE_START(); \
  2663. _APPLY_STEP(AXIS, !_INVERT_STEP_PIN(AXIS), true); \
  2664. _PULSE_WAIT(); \
  2665. _APPLY_STEP(AXIS, _INVERT_STEP_PIN(AXIS), true); \
  2666. EXTRA_DIR_WAIT_BEFORE(); \
  2667. _APPLY_DIR(AXIS, old_dir); \
  2668. EXTRA_DIR_WAIT_AFTER(); \
  2669. }while(0)
  2670. #endif
  2671. #if IS_CORE
  2672. #define BABYSTEP_CORE(A, B, INV, DIR, ALT) do{ \
  2673. const xy_byte_t old_dir = { _READ_DIR(A), _READ_DIR(B) }; \
  2674. _ENABLE_AXIS(A); _ENABLE_AXIS(B); \
  2675. DIR_WAIT_BEFORE(); \
  2676. _APPLY_DIR(A, _INVERT_DIR(A)^DIR^INV); \
  2677. _APPLY_DIR(B, _INVERT_DIR(B)^DIR^INV^ALT); \
  2678. DIR_WAIT_AFTER(); \
  2679. _SAVE_START(); \
  2680. _APPLY_STEP(A, !_INVERT_STEP_PIN(A), true); \
  2681. _APPLY_STEP(B, !_INVERT_STEP_PIN(B), true); \
  2682. _PULSE_WAIT(); \
  2683. _APPLY_STEP(A, _INVERT_STEP_PIN(A), true); \
  2684. _APPLY_STEP(B, _INVERT_STEP_PIN(B), true); \
  2685. EXTRA_DIR_WAIT_BEFORE(); \
  2686. _APPLY_DIR(A, old_dir.a); _APPLY_DIR(B, old_dir.b); \
  2687. EXTRA_DIR_WAIT_AFTER(); \
  2688. }while(0)
  2689. #endif
  2690. // MUST ONLY BE CALLED BY AN ISR,
  2691. // No other ISR should ever interrupt this!
  2692. void Stepper::do_babystep(const AxisEnum axis, const bool direction) {
  2693. IF_DISABLED(INTEGRATED_BABYSTEPPING, cli());
  2694. switch (axis) {
  2695. #if ENABLED(BABYSTEP_XY)
  2696. case X_AXIS:
  2697. #if CORE_IS_XY
  2698. BABYSTEP_CORE(X, Y, 0, direction, 0);
  2699. #elif CORE_IS_XZ
  2700. BABYSTEP_CORE(X, Z, 0, direction, 0);
  2701. #else
  2702. BABYSTEP_AXIS(X, 0, direction);
  2703. #endif
  2704. break;
  2705. case Y_AXIS:
  2706. #if CORE_IS_XY
  2707. BABYSTEP_CORE(X, Y, 1, !direction, (CORESIGN(1)>0));
  2708. #elif CORE_IS_YZ
  2709. BABYSTEP_CORE(Y, Z, 0, direction, (CORESIGN(1)<0));
  2710. #else
  2711. BABYSTEP_AXIS(Y, 0, direction);
  2712. #endif
  2713. break;
  2714. #endif
  2715. case Z_AXIS: {
  2716. #if CORE_IS_XZ
  2717. BABYSTEP_CORE(X, Z, BABYSTEP_INVERT_Z, direction, (CORESIGN(1)<0));
  2718. #elif CORE_IS_YZ
  2719. BABYSTEP_CORE(Y, Z, BABYSTEP_INVERT_Z, direction, (CORESIGN(1)<0));
  2720. #elif DISABLED(DELTA)
  2721. BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction);
  2722. #else // DELTA
  2723. const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  2724. LINEAR_AXIS_CODE(
  2725. enable_axis(X_AXIS), enable_axis(Y_AXIS), enable_axis(Z_AXIS),
  2726. enable_axis(I_AXIS), enable_axis(J_AXIS), enable_axis(K_AXIS)
  2727. );
  2728. DIR_WAIT_BEFORE();
  2729. const xyz_byte_t old_dir = LINEAR_AXIS_ARRAY(
  2730. X_DIR_READ(), Y_DIR_READ(), Z_DIR_READ(),
  2731. I_DIR_READ(), J_DIR_READ(), K_DIR_READ()
  2732. );
  2733. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  2734. #ifdef Y_DIR_WRITE
  2735. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  2736. #endif
  2737. #ifdef Z_DIR_WRITE
  2738. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  2739. #endif
  2740. #ifdef I_DIR_WRITE
  2741. I_DIR_WRITE(INVERT_I_DIR ^ z_direction);
  2742. #endif
  2743. #ifdef J_DIR_WRITE
  2744. J_DIR_WRITE(INVERT_J_DIR ^ z_direction);
  2745. #endif
  2746. #ifdef K_DIR_WRITE
  2747. K_DIR_WRITE(INVERT_K_DIR ^ z_direction);
  2748. #endif
  2749. DIR_WAIT_AFTER();
  2750. _SAVE_START();
  2751. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  2752. #ifdef Y_STEP_WRITE
  2753. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  2754. #endif
  2755. #ifdef Z_STEP_WRITE
  2756. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  2757. #endif
  2758. #ifdef I_STEP_WRITE
  2759. I_STEP_WRITE(!INVERT_I_STEP_PIN);
  2760. #endif
  2761. #ifdef J_STEP_WRITE
  2762. J_STEP_WRITE(!INVERT_J_STEP_PIN);
  2763. #endif
  2764. #ifdef K_STEP_WRITE
  2765. K_STEP_WRITE(!INVERT_K_STEP_PIN);
  2766. #endif
  2767. _PULSE_WAIT();
  2768. X_STEP_WRITE(INVERT_X_STEP_PIN);
  2769. #ifdef Y_STEP_WRITE
  2770. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  2771. #endif
  2772. #ifdef Z_STEP_WRITE
  2773. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  2774. #endif
  2775. #ifdef I_STEP_WRITE
  2776. I_STEP_WRITE(INVERT_I_STEP_PIN);
  2777. #endif
  2778. #ifdef J_STEP_WRITE
  2779. J_STEP_WRITE(INVERT_J_STEP_PIN);
  2780. #endif
  2781. #ifdef K_STEP_WRITE
  2782. K_STEP_WRITE(INVERT_K_STEP_PIN);
  2783. #endif
  2784. // Restore direction bits
  2785. EXTRA_DIR_WAIT_BEFORE();
  2786. X_DIR_WRITE(old_dir.x);
  2787. #ifdef Y_DIR_WRITE
  2788. Y_DIR_WRITE(old_dir.y);
  2789. #endif
  2790. #ifdef Z_DIR_WRITE
  2791. Z_DIR_WRITE(old_dir.z);
  2792. #endif
  2793. #ifdef I_DIR_WRITE
  2794. I_DIR_WRITE(old_dir.i);
  2795. #endif
  2796. #ifdef J_DIR_WRITE
  2797. J_DIR_WRITE(old_dir.j);
  2798. #endif
  2799. #ifdef K_DIR_WRITE
  2800. K_DIR_WRITE(old_dir.k);
  2801. #endif
  2802. EXTRA_DIR_WAIT_AFTER();
  2803. #endif
  2804. } break;
  2805. #if HAS_I_AXIS
  2806. case I_AXIS: BABYSTEP_AXIS(I, 0, direction); break;
  2807. #endif
  2808. #if HAS_J_AXIS
  2809. case J_AXIS: BABYSTEP_AXIS(J, 0, direction); break;
  2810. #endif
  2811. #if HAS_K_AXIS
  2812. case K_AXIS: BABYSTEP_AXIS(K, 0, direction); break;
  2813. #endif
  2814. default: break;
  2815. }
  2816. IF_DISABLED(INTEGRATED_BABYSTEPPING, sei());
  2817. }
  2818. #endif // BABYSTEPPING
  2819. /**
  2820. * Software-controlled Stepper Motor Current
  2821. */
  2822. #if HAS_MOTOR_CURRENT_SPI
  2823. // From Arduino DigitalPotControl example
  2824. void Stepper::set_digipot_value_spi(const int16_t address, const int16_t value) {
  2825. WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
  2826. SPI.transfer(address); // Send the address and value via SPI
  2827. SPI.transfer(value);
  2828. WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
  2829. //delay(10);
  2830. }
  2831. #endif // HAS_MOTOR_CURRENT_SPI
  2832. #if HAS_MOTOR_CURRENT_PWM
  2833. void Stepper::refresh_motor_power() {
  2834. if (!initialized) return;
  2835. LOOP_L_N(i, COUNT(motor_current_setting)) {
  2836. switch (i) {
  2837. #if ANY_PIN(MOTOR_CURRENT_PWM_XY, MOTOR_CURRENT_PWM_X, MOTOR_CURRENT_PWM_Y)
  2838. case 0:
  2839. #endif
  2840. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  2841. case 1:
  2842. #endif
  2843. #if ANY_PIN(MOTOR_CURRENT_PWM_E, MOTOR_CURRENT_PWM_E0, MOTOR_CURRENT_PWM_E1)
  2844. case 2:
  2845. #endif
  2846. set_digipot_current(i, motor_current_setting[i]);
  2847. default: break;
  2848. }
  2849. }
  2850. }
  2851. #endif // HAS_MOTOR_CURRENT_PWM
  2852. #if !MB(PRINTRBOARD_G2)
  2853. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  2854. void Stepper::set_digipot_current(const uint8_t driver, const int16_t current) {
  2855. if (WITHIN(driver, 0, MOTOR_CURRENT_COUNT - 1))
  2856. motor_current_setting[driver] = current; // update motor_current_setting
  2857. if (!initialized) return;
  2858. #if HAS_MOTOR_CURRENT_SPI
  2859. //SERIAL_ECHOLNPGM("Digipotss current ", current);
  2860. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  2861. set_digipot_value_spi(digipot_ch[driver], current);
  2862. #elif HAS_MOTOR_CURRENT_PWM
  2863. #define _WRITE_CURRENT_PWM(P) set_pwm_duty(pin_t(MOTOR_CURRENT_PWM_## P ##_PIN), 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  2864. switch (driver) {
  2865. case 0:
  2866. #if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
  2867. _WRITE_CURRENT_PWM(X);
  2868. #endif
  2869. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
  2870. _WRITE_CURRENT_PWM(Y);
  2871. #endif
  2872. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  2873. _WRITE_CURRENT_PWM(XY);
  2874. #endif
  2875. break;
  2876. case 1:
  2877. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  2878. _WRITE_CURRENT_PWM(Z);
  2879. #endif
  2880. break;
  2881. case 2:
  2882. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  2883. _WRITE_CURRENT_PWM(E);
  2884. #endif
  2885. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
  2886. _WRITE_CURRENT_PWM(E0);
  2887. #endif
  2888. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
  2889. _WRITE_CURRENT_PWM(E1);
  2890. #endif
  2891. break;
  2892. }
  2893. #endif
  2894. }
  2895. void Stepper::digipot_init() {
  2896. #if HAS_MOTOR_CURRENT_SPI
  2897. SPI.begin();
  2898. SET_OUTPUT(DIGIPOTSS_PIN);
  2899. LOOP_L_N(i, COUNT(motor_current_setting))
  2900. set_digipot_current(i, motor_current_setting[i]);
  2901. #elif HAS_MOTOR_CURRENT_PWM
  2902. #if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
  2903. SET_PWM(MOTOR_CURRENT_PWM_X_PIN);
  2904. #endif
  2905. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
  2906. SET_PWM(MOTOR_CURRENT_PWM_Y_PIN);
  2907. #endif
  2908. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  2909. SET_PWM(MOTOR_CURRENT_PWM_XY_PIN);
  2910. #endif
  2911. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  2912. SET_PWM(MOTOR_CURRENT_PWM_Z_PIN);
  2913. #endif
  2914. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  2915. SET_PWM(MOTOR_CURRENT_PWM_E_PIN);
  2916. #endif
  2917. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
  2918. SET_PWM(MOTOR_CURRENT_PWM_E0_PIN);
  2919. #endif
  2920. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
  2921. SET_PWM(MOTOR_CURRENT_PWM_E1_PIN);
  2922. #endif
  2923. refresh_motor_power();
  2924. // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  2925. #ifdef __AVR__
  2926. SET_CS5(PRESCALER_1);
  2927. #endif
  2928. #endif
  2929. }
  2930. #endif
  2931. #else // PRINTRBOARD_G2
  2932. #include HAL_PATH(../HAL, fastio/G2_PWM.h)
  2933. #endif
  2934. #if HAS_MICROSTEPS
  2935. /**
  2936. * Software-controlled Microstepping
  2937. */
  2938. void Stepper::microstep_init() {
  2939. #if HAS_X_MS_PINS
  2940. SET_OUTPUT(X_MS1_PIN);
  2941. SET_OUTPUT(X_MS2_PIN);
  2942. #if PIN_EXISTS(X_MS3)
  2943. SET_OUTPUT(X_MS3_PIN);
  2944. #endif
  2945. #endif
  2946. #if HAS_X2_MS_PINS
  2947. SET_OUTPUT(X2_MS1_PIN);
  2948. SET_OUTPUT(X2_MS2_PIN);
  2949. #if PIN_EXISTS(X2_MS3)
  2950. SET_OUTPUT(X2_MS3_PIN);
  2951. #endif
  2952. #endif
  2953. #if HAS_Y_MS_PINS
  2954. SET_OUTPUT(Y_MS1_PIN);
  2955. SET_OUTPUT(Y_MS2_PIN);
  2956. #if PIN_EXISTS(Y_MS3)
  2957. SET_OUTPUT(Y_MS3_PIN);
  2958. #endif
  2959. #endif
  2960. #if HAS_Y2_MS_PINS
  2961. SET_OUTPUT(Y2_MS1_PIN);
  2962. SET_OUTPUT(Y2_MS2_PIN);
  2963. #if PIN_EXISTS(Y2_MS3)
  2964. SET_OUTPUT(Y2_MS3_PIN);
  2965. #endif
  2966. #endif
  2967. #if HAS_Z_MS_PINS
  2968. SET_OUTPUT(Z_MS1_PIN);
  2969. SET_OUTPUT(Z_MS2_PIN);
  2970. #if PIN_EXISTS(Z_MS3)
  2971. SET_OUTPUT(Z_MS3_PIN);
  2972. #endif
  2973. #endif
  2974. #if HAS_Z2_MS_PINS
  2975. SET_OUTPUT(Z2_MS1_PIN);
  2976. SET_OUTPUT(Z2_MS2_PIN);
  2977. #if PIN_EXISTS(Z2_MS3)
  2978. SET_OUTPUT(Z2_MS3_PIN);
  2979. #endif
  2980. #endif
  2981. #if HAS_Z3_MS_PINS
  2982. SET_OUTPUT(Z3_MS1_PIN);
  2983. SET_OUTPUT(Z3_MS2_PIN);
  2984. #if PIN_EXISTS(Z3_MS3)
  2985. SET_OUTPUT(Z3_MS3_PIN);
  2986. #endif
  2987. #endif
  2988. #if HAS_Z4_MS_PINS
  2989. SET_OUTPUT(Z4_MS1_PIN);
  2990. SET_OUTPUT(Z4_MS2_PIN);
  2991. #if PIN_EXISTS(Z4_MS3)
  2992. SET_OUTPUT(Z4_MS3_PIN);
  2993. #endif
  2994. #endif
  2995. #if HAS_E0_MS_PINS
  2996. SET_OUTPUT(E0_MS1_PIN);
  2997. SET_OUTPUT(E0_MS2_PIN);
  2998. #if PIN_EXISTS(E0_MS3)
  2999. SET_OUTPUT(E0_MS3_PIN);
  3000. #endif
  3001. #endif
  3002. #if HAS_E1_MS_PINS
  3003. SET_OUTPUT(E1_MS1_PIN);
  3004. SET_OUTPUT(E1_MS2_PIN);
  3005. #if PIN_EXISTS(E1_MS3)
  3006. SET_OUTPUT(E1_MS3_PIN);
  3007. #endif
  3008. #endif
  3009. #if HAS_E2_MS_PINS
  3010. SET_OUTPUT(E2_MS1_PIN);
  3011. SET_OUTPUT(E2_MS2_PIN);
  3012. #if PIN_EXISTS(E2_MS3)
  3013. SET_OUTPUT(E2_MS3_PIN);
  3014. #endif
  3015. #endif
  3016. #if HAS_E3_MS_PINS
  3017. SET_OUTPUT(E3_MS1_PIN);
  3018. SET_OUTPUT(E3_MS2_PIN);
  3019. #if PIN_EXISTS(E3_MS3)
  3020. SET_OUTPUT(E3_MS3_PIN);
  3021. #endif
  3022. #endif
  3023. #if HAS_E4_MS_PINS
  3024. SET_OUTPUT(E4_MS1_PIN);
  3025. SET_OUTPUT(E4_MS2_PIN);
  3026. #if PIN_EXISTS(E4_MS3)
  3027. SET_OUTPUT(E4_MS3_PIN);
  3028. #endif
  3029. #endif
  3030. #if HAS_E5_MS_PINS
  3031. SET_OUTPUT(E5_MS1_PIN);
  3032. SET_OUTPUT(E5_MS2_PIN);
  3033. #if PIN_EXISTS(E5_MS3)
  3034. SET_OUTPUT(E5_MS3_PIN);
  3035. #endif
  3036. #endif
  3037. #if HAS_E6_MS_PINS
  3038. SET_OUTPUT(E6_MS1_PIN);
  3039. SET_OUTPUT(E6_MS2_PIN);
  3040. #if PIN_EXISTS(E6_MS3)
  3041. SET_OUTPUT(E6_MS3_PIN);
  3042. #endif
  3043. #endif
  3044. #if HAS_E7_MS_PINS
  3045. SET_OUTPUT(E7_MS1_PIN);
  3046. SET_OUTPUT(E7_MS2_PIN);
  3047. #if PIN_EXISTS(E7_MS3)
  3048. SET_OUTPUT(E7_MS3_PIN);
  3049. #endif
  3050. #endif
  3051. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  3052. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  3053. microstep_mode(i, microstep_modes[i]);
  3054. }
  3055. void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2, const int8_t ms3) {
  3056. if (ms1 >= 0) switch (driver) {
  3057. #if HAS_X_MS_PINS || HAS_X2_MS_PINS
  3058. case 0:
  3059. #if HAS_X_MS_PINS
  3060. WRITE(X_MS1_PIN, ms1);
  3061. #endif
  3062. #if HAS_X2_MS_PINS
  3063. WRITE(X2_MS1_PIN, ms1);
  3064. #endif
  3065. break;
  3066. #endif
  3067. #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
  3068. case 1:
  3069. #if HAS_Y_MS_PINS
  3070. WRITE(Y_MS1_PIN, ms1);
  3071. #endif
  3072. #if HAS_Y2_MS_PINS
  3073. WRITE(Y2_MS1_PIN, ms1);
  3074. #endif
  3075. break;
  3076. #endif
  3077. #if HAS_SOME_Z_MS_PINS
  3078. case 2:
  3079. #if HAS_Z_MS_PINS
  3080. WRITE(Z_MS1_PIN, ms1);
  3081. #endif
  3082. #if HAS_Z2_MS_PINS
  3083. WRITE(Z2_MS1_PIN, ms1);
  3084. #endif
  3085. #if HAS_Z3_MS_PINS
  3086. WRITE(Z3_MS1_PIN, ms1);
  3087. #endif
  3088. #if HAS_Z4_MS_PINS
  3089. WRITE(Z4_MS1_PIN, ms1);
  3090. #endif
  3091. break;
  3092. #endif
  3093. #if HAS_E0_MS_PINS
  3094. case 3: WRITE(E0_MS1_PIN, ms1); break;
  3095. #endif
  3096. #if HAS_E1_MS_PINS
  3097. case 4: WRITE(E1_MS1_PIN, ms1); break;
  3098. #endif
  3099. #if HAS_E2_MS_PINS
  3100. case 5: WRITE(E2_MS1_PIN, ms1); break;
  3101. #endif
  3102. #if HAS_E3_MS_PINS
  3103. case 6: WRITE(E3_MS1_PIN, ms1); break;
  3104. #endif
  3105. #if HAS_E4_MS_PINS
  3106. case 7: WRITE(E4_MS1_PIN, ms1); break;
  3107. #endif
  3108. #if HAS_E5_MS_PINS
  3109. case 8: WRITE(E5_MS1_PIN, ms1); break;
  3110. #endif
  3111. #if HAS_E6_MS_PINS
  3112. case 9: WRITE(E6_MS1_PIN, ms1); break;
  3113. #endif
  3114. #if HAS_E7_MS_PINS
  3115. case 10: WRITE(E7_MS1_PIN, ms1); break;
  3116. #endif
  3117. #if HAS_I_MICROSTEPS
  3118. case 11: WRITE(I_MS1_PIN, ms1); break
  3119. #endif
  3120. #if HAS_J_MICROSTEPS
  3121. case 12: WRITE(J_MS1_PIN, ms1); break
  3122. #endif
  3123. #if HAS_K_MICROSTEPS
  3124. case 13: WRITE(K_MS1_PIN, ms1); break
  3125. #endif
  3126. }
  3127. if (ms2 >= 0) switch (driver) {
  3128. #if HAS_X_MS_PINS || HAS_X2_MS_PINS
  3129. case 0:
  3130. #if HAS_X_MS_PINS
  3131. WRITE(X_MS2_PIN, ms2);
  3132. #endif
  3133. #if HAS_X2_MS_PINS
  3134. WRITE(X2_MS2_PIN, ms2);
  3135. #endif
  3136. break;
  3137. #endif
  3138. #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
  3139. case 1:
  3140. #if HAS_Y_MS_PINS
  3141. WRITE(Y_MS2_PIN, ms2);
  3142. #endif
  3143. #if HAS_Y2_MS_PINS
  3144. WRITE(Y2_MS2_PIN, ms2);
  3145. #endif
  3146. break;
  3147. #endif
  3148. #if HAS_SOME_Z_MS_PINS
  3149. case 2:
  3150. #if HAS_Z_MS_PINS
  3151. WRITE(Z_MS2_PIN, ms2);
  3152. #endif
  3153. #if HAS_Z2_MS_PINS
  3154. WRITE(Z2_MS2_PIN, ms2);
  3155. #endif
  3156. #if HAS_Z3_MS_PINS
  3157. WRITE(Z3_MS2_PIN, ms2);
  3158. #endif
  3159. #if HAS_Z4_MS_PINS
  3160. WRITE(Z4_MS2_PIN, ms2);
  3161. #endif
  3162. break;
  3163. #endif
  3164. #if HAS_E0_MS_PINS
  3165. case 3: WRITE(E0_MS2_PIN, ms2); break;
  3166. #endif
  3167. #if HAS_E1_MS_PINS
  3168. case 4: WRITE(E1_MS2_PIN, ms2); break;
  3169. #endif
  3170. #if HAS_E2_MS_PINS
  3171. case 5: WRITE(E2_MS2_PIN, ms2); break;
  3172. #endif
  3173. #if HAS_E3_MS_PINS
  3174. case 6: WRITE(E3_MS2_PIN, ms2); break;
  3175. #endif
  3176. #if HAS_E4_MS_PINS
  3177. case 7: WRITE(E4_MS2_PIN, ms2); break;
  3178. #endif
  3179. #if HAS_E5_MS_PINS
  3180. case 8: WRITE(E5_MS2_PIN, ms2); break;
  3181. #endif
  3182. #if HAS_E6_MS_PINS
  3183. case 9: WRITE(E6_MS2_PIN, ms2); break;
  3184. #endif
  3185. #if HAS_E7_MS_PINS
  3186. case 10: WRITE(E7_MS2_PIN, ms2); break;
  3187. #endif
  3188. #if HAS_I_M_PINS
  3189. case 11: WRITE(I_MS2_PIN, ms2); break
  3190. #endif
  3191. #if HAS_J_M_PINS
  3192. case 12: WRITE(J_MS2_PIN, ms2); break
  3193. #endif
  3194. #if HAS_K_M_PINS
  3195. case 13: WRITE(K_MS2_PIN, ms2); break
  3196. #endif
  3197. }
  3198. if (ms3 >= 0) switch (driver) {
  3199. #if HAS_X_MS_PINS || HAS_X2_MS_PINS
  3200. case 0:
  3201. #if HAS_X_MS_PINS && PIN_EXISTS(X_MS3)
  3202. WRITE(X_MS3_PIN, ms3);
  3203. #endif
  3204. #if HAS_X2_MS_PINS && PIN_EXISTS(X2_MS3)
  3205. WRITE(X2_MS3_PIN, ms3);
  3206. #endif
  3207. break;
  3208. #endif
  3209. #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
  3210. case 1:
  3211. #if HAS_Y_MS_PINS && PIN_EXISTS(Y_MS3)
  3212. WRITE(Y_MS3_PIN, ms3);
  3213. #endif
  3214. #if HAS_Y2_MS_PINS && PIN_EXISTS(Y2_MS3)
  3215. WRITE(Y2_MS3_PIN, ms3);
  3216. #endif
  3217. break;
  3218. #endif
  3219. #if HAS_SOME_Z_MS_PINS
  3220. case 2:
  3221. #if HAS_Z_MS_PINS && PIN_EXISTS(Z_MS3)
  3222. WRITE(Z_MS3_PIN, ms3);
  3223. #endif
  3224. #if HAS_Z2_MS_PINS && PIN_EXISTS(Z2_MS3)
  3225. WRITE(Z2_MS3_PIN, ms3);
  3226. #endif
  3227. #if HAS_Z3_MS_PINS && PIN_EXISTS(Z3_MS3)
  3228. WRITE(Z3_MS3_PIN, ms3);
  3229. #endif
  3230. #if HAS_Z4_MS_PINS && PIN_EXISTS(Z4_MS3)
  3231. WRITE(Z4_MS3_PIN, ms3);
  3232. #endif
  3233. break;
  3234. #endif
  3235. #if HAS_E0_MS_PINS && PIN_EXISTS(E0_MS3)
  3236. case 3: WRITE(E0_MS3_PIN, ms3); break;
  3237. #endif
  3238. #if HAS_E1_MS_PINS && PIN_EXISTS(E1_MS3)
  3239. case 4: WRITE(E1_MS3_PIN, ms3); break;
  3240. #endif
  3241. #if HAS_E2_MS_PINS && PIN_EXISTS(E2_MS3)
  3242. case 5: WRITE(E2_MS3_PIN, ms3); break;
  3243. #endif
  3244. #if HAS_E3_MS_PINS && PIN_EXISTS(E3_MS3)
  3245. case 6: WRITE(E3_MS3_PIN, ms3); break;
  3246. #endif
  3247. #if HAS_E4_MS_PINS && PIN_EXISTS(E4_MS3)
  3248. case 7: WRITE(E4_MS3_PIN, ms3); break;
  3249. #endif
  3250. #if HAS_E5_MS_PINS && PIN_EXISTS(E5_MS3)
  3251. case 8: WRITE(E5_MS3_PIN, ms3); break;
  3252. #endif
  3253. #if HAS_E6_MS_PINS && PIN_EXISTS(E6_MS3)
  3254. case 9: WRITE(E6_MS3_PIN, ms3); break;
  3255. #endif
  3256. #if HAS_E7_MS_PINS && PIN_EXISTS(E7_MS3)
  3257. case 10: WRITE(E7_MS3_PIN, ms3); break;
  3258. #endif
  3259. }
  3260. }
  3261. void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
  3262. switch (stepping_mode) {
  3263. #if HAS_MICROSTEP1
  3264. case 1: microstep_ms(driver, MICROSTEP1); break;
  3265. #endif
  3266. #if HAS_MICROSTEP2
  3267. case 2: microstep_ms(driver, MICROSTEP2); break;
  3268. #endif
  3269. #if HAS_MICROSTEP4
  3270. case 4: microstep_ms(driver, MICROSTEP4); break;
  3271. #endif
  3272. #if HAS_MICROSTEP8
  3273. case 8: microstep_ms(driver, MICROSTEP8); break;
  3274. #endif
  3275. #if HAS_MICROSTEP16
  3276. case 16: microstep_ms(driver, MICROSTEP16); break;
  3277. #endif
  3278. #if HAS_MICROSTEP32
  3279. case 32: microstep_ms(driver, MICROSTEP32); break;
  3280. #endif
  3281. #if HAS_MICROSTEP64
  3282. case 64: microstep_ms(driver, MICROSTEP64); break;
  3283. #endif
  3284. #if HAS_MICROSTEP128
  3285. case 128: microstep_ms(driver, MICROSTEP128); break;
  3286. #endif
  3287. default: SERIAL_ERROR_MSG("Microsteps unavailable"); break;
  3288. }
  3289. }
  3290. void Stepper::microstep_readings() {
  3291. #define PIN_CHAR(P) SERIAL_CHAR('0' + READ(P##_PIN))
  3292. #define MS_LINE(A) do{ SERIAL_ECHOPGM(" " STRINGIFY(A) ":"); PIN_CHAR(A##_MS1); PIN_CHAR(A##_MS2); }while(0)
  3293. SERIAL_ECHOPGM("MS1|2|3 Pins");
  3294. #if HAS_X_MS_PINS
  3295. MS_LINE(X);
  3296. #if PIN_EXISTS(X_MS3)
  3297. PIN_CHAR(X_MS3);
  3298. #endif
  3299. #endif
  3300. #if HAS_Y_MS_PINS
  3301. MS_LINE(Y);
  3302. #if PIN_EXISTS(Y_MS3)
  3303. PIN_CHAR(Y_MS3);
  3304. #endif
  3305. #endif
  3306. #if HAS_Z_MS_PINS
  3307. MS_LINE(Z);
  3308. #if PIN_EXISTS(Z_MS3)
  3309. PIN_CHAR(Z_MS3);
  3310. #endif
  3311. #endif
  3312. #if HAS_I_MS_PINS
  3313. MS_LINE(I);
  3314. #if PIN_EXISTS(I_MS3)
  3315. PIN_CHAR(I_MS3);
  3316. #endif
  3317. #endif
  3318. #if HAS_J_MS_PINS
  3319. MS_LINE(J);
  3320. #if PIN_EXISTS(J_MS3)
  3321. PIN_CHAR(J_MS3);
  3322. #endif
  3323. #endif
  3324. #if HAS_K_MS_PINS
  3325. MS_LINE(K);
  3326. #if PIN_EXISTS(K_MS3)
  3327. PIN_CHAR(K_MS3);
  3328. #endif
  3329. #endif
  3330. #if HAS_E0_MS_PINS
  3331. MS_LINE(E0);
  3332. #if PIN_EXISTS(E0_MS3)
  3333. PIN_CHAR(E0_MS3);
  3334. #endif
  3335. #endif
  3336. #if HAS_E1_MS_PINS
  3337. MS_LINE(E1);
  3338. #if PIN_EXISTS(E1_MS3)
  3339. PIN_CHAR(E1_MS3);
  3340. #endif
  3341. #endif
  3342. #if HAS_E2_MS_PINS
  3343. MS_LINE(E2);
  3344. #if PIN_EXISTS(E2_MS3)
  3345. PIN_CHAR(E2_MS3);
  3346. #endif
  3347. #endif
  3348. #if HAS_E3_MS_PINS
  3349. MS_LINE(E3);
  3350. #if PIN_EXISTS(E3_MS3)
  3351. PIN_CHAR(E3_MS3);
  3352. #endif
  3353. #endif
  3354. #if HAS_E4_MS_PINS
  3355. MS_LINE(E4);
  3356. #if PIN_EXISTS(E4_MS3)
  3357. PIN_CHAR(E4_MS3);
  3358. #endif
  3359. #endif
  3360. #if HAS_E5_MS_PINS
  3361. MS_LINE(E5);
  3362. #if PIN_EXISTS(E5_MS3)
  3363. PIN_CHAR(E5_MS3);
  3364. #endif
  3365. #endif
  3366. #if HAS_E6_MS_PINS
  3367. MS_LINE(E6);
  3368. #if PIN_EXISTS(E6_MS3)
  3369. PIN_CHAR(E6_MS3);
  3370. #endif
  3371. #endif
  3372. #if HAS_E7_MS_PINS
  3373. MS_LINE(E7);
  3374. #if PIN_EXISTS(E7_MS3)
  3375. PIN_CHAR(E7_MS3);
  3376. #endif
  3377. #endif
  3378. SERIAL_EOL();
  3379. }
  3380. #endif // HAS_MICROSTEPS