My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * G29.cpp - Auto Bed Leveling
  24. */
  25. #include "../../../inc/MarlinConfig.h"
  26. #if HAS_ABL_NOT_UBL
  27. #include "../../gcode.h"
  28. #include "../../../feature/bedlevel/bedlevel.h"
  29. #include "../../../module/motion.h"
  30. #include "../../../module/planner.h"
  31. #include "../../../module/stepper.h"
  32. #include "../../../module/probe.h"
  33. #include "../../queue.h"
  34. #if HAS_DISPLAY
  35. #include "../../../lcd/ultralcd.h"
  36. #endif
  37. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  38. #include "../../../libs/least_squares_fit.h"
  39. #endif
  40. #if ABL_PLANAR
  41. #include "../../../libs/vector_3.h"
  42. #endif
  43. #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
  44. #include "../../../core/debug_out.h"
  45. #if ENABLED(EXTENSIBLE_UI)
  46. #include "../../../lcd/extensible_ui/ui_api.h"
  47. #endif
  48. #if HOTENDS > 1
  49. #include "../../../module/tool_change.h"
  50. #endif
  51. #if ABL_GRID
  52. #if ENABLED(PROBE_Y_FIRST)
  53. #define PR_OUTER_VAR meshCount.x
  54. #define PR_OUTER_END abl_grid_points.x
  55. #define PR_INNER_VAR meshCount.y
  56. #define PR_INNER_END abl_grid_points.y
  57. #else
  58. #define PR_OUTER_VAR meshCount.y
  59. #define PR_OUTER_END abl_grid_points.y
  60. #define PR_INNER_VAR meshCount.x
  61. #define PR_INNER_END abl_grid_points.x
  62. #endif
  63. #endif
  64. #if ENABLED(G29_RETRY_AND_RECOVER)
  65. #define G29_RETURN(b) return b;
  66. #else
  67. #define G29_RETURN(b) return;
  68. #endif
  69. /**
  70. * G29: Detailed Z probe, probes the bed at 3 or more points.
  71. * Will fail if the printer has not been homed with G28.
  72. *
  73. * Enhanced G29 Auto Bed Leveling Probe Routine
  74. *
  75. * O Auto-level only if needed
  76. *
  77. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  78. * or alter the bed level data. Useful to check the topology
  79. * after a first run of G29.
  80. *
  81. * J Jettison current bed leveling data
  82. *
  83. * V Set the verbose level (0-4). Example: "G29 V3"
  84. *
  85. * Parameters With LINEAR leveling only:
  86. *
  87. * P Set the size of the grid that will be probed (P x P points).
  88. * Example: "G29 P4"
  89. *
  90. * X Set the X size of the grid that will be probed (X x Y points).
  91. * Example: "G29 X7 Y5"
  92. *
  93. * Y Set the Y size of the grid that will be probed (X x Y points).
  94. *
  95. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  96. * This is useful for manual bed leveling and finding flaws in the bed (to
  97. * assist with part placement).
  98. * Not supported by non-linear delta printer bed leveling.
  99. *
  100. * Parameters With LINEAR and BILINEAR leveling only:
  101. *
  102. * S Set the XY travel speed between probe points (in units/min)
  103. *
  104. * H Set bounds to a centered square H x H units in size
  105. *
  106. * -or-
  107. *
  108. * F Set the Front limit of the probing grid
  109. * B Set the Back limit of the probing grid
  110. * L Set the Left limit of the probing grid
  111. * R Set the Right limit of the probing grid
  112. *
  113. * Parameters with DEBUG_LEVELING_FEATURE only:
  114. *
  115. * C Make a totally fake grid with no actual probing.
  116. * For use in testing when no probing is possible.
  117. *
  118. * Parameters with BILINEAR leveling only:
  119. *
  120. * Z Supply an additional Z probe offset
  121. *
  122. * Extra parameters with PROBE_MANUALLY:
  123. *
  124. * To do manual probing simply repeat G29 until the procedure is complete.
  125. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  126. *
  127. * Q Query leveling and G29 state
  128. *
  129. * A Abort current leveling procedure
  130. *
  131. * Extra parameters with BILINEAR only:
  132. *
  133. * W Write a mesh point. (If G29 is idle.)
  134. * I X index for mesh point
  135. * J Y index for mesh point
  136. * X X for mesh point, overrides I
  137. * Y Y for mesh point, overrides J
  138. * Z Z for mesh point. Otherwise, raw current Z.
  139. *
  140. * Without PROBE_MANUALLY:
  141. *
  142. * E By default G29 will engage the Z probe, test the bed, then disengage.
  143. * Include "E" to engage/disengage the Z probe for each sample.
  144. * There's no extra effect if you have a fixed Z probe.
  145. *
  146. */
  147. G29_TYPE GcodeSuite::G29() {
  148. #if EITHER(DEBUG_LEVELING_FEATURE, PROBE_MANUALLY)
  149. const bool seenQ = parser.seen('Q');
  150. #else
  151. constexpr bool seenQ = false;
  152. #endif
  153. // G29 Q is also available if debugging
  154. #if ENABLED(DEBUG_LEVELING_FEATURE)
  155. const uint8_t old_debug_flags = marlin_debug_flags;
  156. if (seenQ) marlin_debug_flags |= MARLIN_DEBUG_LEVELING;
  157. if (DEBUGGING(LEVELING)) {
  158. DEBUG_POS(">>> G29", current_position);
  159. log_machine_info();
  160. }
  161. marlin_debug_flags = old_debug_flags;
  162. #if DISABLED(PROBE_MANUALLY)
  163. if (seenQ) G29_RETURN(false);
  164. #endif
  165. #endif
  166. #if ENABLED(PROBE_MANUALLY)
  167. const bool seenA = parser.seen('A');
  168. #else
  169. constexpr bool seenA = false;
  170. #endif
  171. const bool no_action = seenA || seenQ,
  172. faux =
  173. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  174. parser.boolval('C')
  175. #else
  176. no_action
  177. #endif
  178. ;
  179. // Don't allow auto-leveling without homing first
  180. if (axis_unhomed_error()) G29_RETURN(false);
  181. if (!no_action && planner.leveling_active && parser.boolval('O')) { // Auto-level only if needed
  182. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> Auto-level not needed, skip\n<<< G29");
  183. G29_RETURN(false);
  184. }
  185. // Define local vars 'static' for manual probing, 'auto' otherwise
  186. #if ENABLED(PROBE_MANUALLY)
  187. #define ABL_VAR static
  188. #else
  189. #define ABL_VAR
  190. #endif
  191. ABL_VAR int verbose_level;
  192. ABL_VAR xy_pos_t probePos;
  193. ABL_VAR float measured_z;
  194. ABL_VAR bool dryrun, abl_should_enable;
  195. #if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR)
  196. ABL_VAR int abl_probe_index;
  197. #endif
  198. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  199. ABL_VAR bool saved_soft_endstops_state = true;
  200. #endif
  201. #if ABL_GRID
  202. #if ENABLED(PROBE_MANUALLY)
  203. ABL_VAR xy_int8_t meshCount;
  204. #endif
  205. ABL_VAR xy_float_t probe_position_lf, probe_position_rb;
  206. ABL_VAR xy_float_t gridSpacing = { 0, 0 };
  207. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  208. ABL_VAR bool do_topography_map;
  209. ABL_VAR xy_uint8_t abl_grid_points;
  210. #else // Bilinear
  211. constexpr xy_uint8_t abl_grid_points = { GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y };
  212. #endif
  213. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  214. ABL_VAR int abl_points;
  215. #elif ENABLED(PROBE_MANUALLY) // Bilinear
  216. int constexpr abl_points = GRID_MAX_POINTS;
  217. #endif
  218. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  219. ABL_VAR float zoffset;
  220. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  221. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  222. ABL_VAR float eqnAMatrix[(GRID_MAX_POINTS) * 3], // "A" matrix of the linear system of equations
  223. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  224. mean;
  225. #endif
  226. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  227. #if ENABLED(PROBE_MANUALLY)
  228. int constexpr abl_points = 3; // used to show total points
  229. #endif
  230. vector_3 points[3];
  231. get_three_probe_points(points);
  232. #endif // AUTO_BED_LEVELING_3POINT
  233. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  234. struct linear_fit_data lsf_results;
  235. incremental_LSF_reset(&lsf_results);
  236. #endif
  237. /**
  238. * On the initial G29 fetch command parameters.
  239. */
  240. if (!g29_in_progress) {
  241. #if HOTENDS > 1
  242. if (active_extruder != 0) tool_change(0);
  243. #endif
  244. #if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR)
  245. abl_probe_index = -1;
  246. #endif
  247. abl_should_enable = planner.leveling_active;
  248. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  249. const bool seen_w = parser.seen('W');
  250. if (seen_w) {
  251. if (!leveling_is_valid()) {
  252. SERIAL_ERROR_MSG("No bilinear grid");
  253. G29_RETURN(false);
  254. }
  255. const float rz = parser.seenval('Z') ? RAW_Z_POSITION(parser.value_linear_units()) : current_position.z;
  256. if (!WITHIN(rz, -10, 10)) {
  257. SERIAL_ERROR_MSG("Bad Z value");
  258. G29_RETURN(false);
  259. }
  260. const float rx = RAW_X_POSITION(parser.linearval('X', NAN)),
  261. ry = RAW_Y_POSITION(parser.linearval('Y', NAN));
  262. int8_t i = parser.byteval('I', -1), j = parser.byteval('J', -1);
  263. if (!isnan(rx) && !isnan(ry)) {
  264. // Get nearest i / j from rx / ry
  265. i = (rx - bilinear_start.x + 0.5 * gridSpacing.x) / gridSpacing.x;
  266. j = (ry - bilinear_start.y + 0.5 * gridSpacing.y) / gridSpacing.y;
  267. LIMIT(i, 0, GRID_MAX_POINTS_X - 1);
  268. LIMIT(j, 0, GRID_MAX_POINTS_Y - 1);
  269. }
  270. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  271. set_bed_leveling_enabled(false);
  272. z_values[i][j] = rz;
  273. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  274. bed_level_virt_interpolate();
  275. #endif
  276. #if ENABLED(EXTENSIBLE_UI)
  277. ExtUI::onMeshUpdate(i, j, rz);
  278. #endif
  279. set_bed_leveling_enabled(abl_should_enable);
  280. if (abl_should_enable) report_current_position();
  281. }
  282. G29_RETURN(false);
  283. } // parser.seen('W')
  284. #else
  285. constexpr bool seen_w = false;
  286. #endif
  287. // Jettison bed leveling data
  288. if (!seen_w && parser.seen('J')) {
  289. reset_bed_level();
  290. G29_RETURN(false);
  291. }
  292. verbose_level = parser.intval('V');
  293. if (!WITHIN(verbose_level, 0, 4)) {
  294. SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).");
  295. G29_RETURN(false);
  296. }
  297. dryrun = parser.boolval('D')
  298. #if ENABLED(PROBE_MANUALLY)
  299. || no_action
  300. #endif
  301. ;
  302. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  303. do_topography_map = verbose_level > 2 || parser.boolval('T');
  304. // X and Y specify points in each direction, overriding the default
  305. // These values may be saved with the completed mesh
  306. abl_grid_points.set(
  307. parser.byteval('X', GRID_MAX_POINTS_X),
  308. parser.byteval('Y', GRID_MAX_POINTS_Y)
  309. );
  310. if (parser.seenval('P')) abl_grid_points.x = abl_grid_points.y = parser.value_int();
  311. if (!WITHIN(abl_grid_points.x, 2, GRID_MAX_POINTS_X)) {
  312. SERIAL_ECHOLNPGM("?Probe points (X) implausible (2-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  313. G29_RETURN(false);
  314. }
  315. if (!WITHIN(abl_grid_points.y, 2, GRID_MAX_POINTS_Y)) {
  316. SERIAL_ECHOLNPGM("?Probe points (Y) implausible (2-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  317. G29_RETURN(false);
  318. }
  319. abl_points = abl_grid_points.x * abl_grid_points.y;
  320. mean = 0;
  321. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  322. zoffset = parser.linearval('Z');
  323. #endif
  324. #if ABL_GRID
  325. xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
  326. const float x_min = probe_min_x(), x_max = probe_max_x(),
  327. y_min = probe_min_y(), y_max = probe_max_y();
  328. if (parser.seen('H')) {
  329. const int16_t size = (int16_t)parser.value_linear_units();
  330. probe_position_lf.set(
  331. _MAX(X_CENTER - size / 2, x_min),
  332. _MAX(Y_CENTER - size / 2, y_min)
  333. );
  334. probe_position_rb.set(
  335. _MIN(probe_position_lf.x + size, x_max),
  336. _MIN(probe_position_lf.y + size, y_max)
  337. );
  338. }
  339. else {
  340. probe_position_lf.set(
  341. parser.seenval('L') ? (int)RAW_X_POSITION(parser.value_linear_units()) : (_MAX(x_min, X_CENTER - (X_BED_SIZE) / 2) + MIN_PROBE_EDGE_LEFT),
  342. parser.seenval('F') ? (int)RAW_Y_POSITION(parser.value_linear_units()) : (_MAX(y_min, Y_CENTER - (Y_BED_SIZE) / 2) + MIN_PROBE_EDGE_FRONT)
  343. );
  344. probe_position_rb.set(
  345. parser.seenval('R') ? (int)RAW_X_POSITION(parser.value_linear_units()) : (_MIN(x_max, probe_position_lf.x + X_BED_SIZE) - MIN_PROBE_EDGE_RIGHT),
  346. parser.seenval('B') ? (int)RAW_Y_POSITION(parser.value_linear_units()) : (_MIN(y_max, probe_position_lf.y + Y_BED_SIZE) - MIN_PROBE_EDGE_BACK)
  347. );
  348. SERIAL_ECHOLN("Set Trail 1");
  349. }
  350. if (
  351. #if IS_SCARA || ENABLED(DELTA)
  352. !position_is_reachable_by_probe(probe_position_lf.x, 0)
  353. || !position_is_reachable_by_probe(probe_position_rb.x, 0)
  354. || !position_is_reachable_by_probe(0, probe_position_lf.y)
  355. || !position_is_reachable_by_probe(0, probe_position_rb.y)
  356. #else
  357. !position_is_reachable_by_probe(probe_position_lf)
  358. || !position_is_reachable_by_probe(probe_position_rb)
  359. #endif
  360. ) {
  361. SERIAL_ECHOLNPGM("? (L,R,F,B) out of bounds.");
  362. G29_RETURN(false);
  363. }
  364. // probe at the points of a lattice grid
  365. gridSpacing.set((probe_position_rb.x - probe_position_lf.x) / (abl_grid_points.x - 1),
  366. (probe_position_rb.y - probe_position_lf.y) / (abl_grid_points.y - 1));
  367. #endif // ABL_GRID
  368. if (verbose_level > 0) {
  369. SERIAL_ECHOPGM("G29 Auto Bed Leveling");
  370. if (dryrun) SERIAL_ECHOPGM(" (DRYRUN)");
  371. SERIAL_EOL();
  372. }
  373. planner.synchronize();
  374. // Disable auto bed leveling during G29.
  375. // Be formal so G29 can be done successively without G28.
  376. if (!no_action) set_bed_leveling_enabled(false);
  377. #if HAS_BED_PROBE
  378. // Deploy the probe. Probe will raise if needed.
  379. if (DEPLOY_PROBE()) {
  380. set_bed_leveling_enabled(abl_should_enable);
  381. G29_RETURN(false);
  382. }
  383. #endif
  384. if (!faux) remember_feedrate_scaling_off();
  385. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  386. #if ENABLED(PROBE_MANUALLY)
  387. if (!no_action)
  388. #endif
  389. if (gridSpacing != bilinear_grid_spacing || probe_position_lf != bilinear_start) {
  390. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  391. reset_bed_level();
  392. // Initialize a grid with the given dimensions
  393. bilinear_grid_spacing = gridSpacing;
  394. bilinear_start = probe_position_lf;
  395. // Can't re-enable (on error) until the new grid is written
  396. abl_should_enable = false;
  397. }
  398. #endif // AUTO_BED_LEVELING_BILINEAR
  399. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  400. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> 3-point Leveling");
  401. // Probe at 3 arbitrary points
  402. points[0].z = points[1].z = points[2].z = 0;
  403. #endif // AUTO_BED_LEVELING_3POINT
  404. } // !g29_in_progress
  405. #if ENABLED(PROBE_MANUALLY)
  406. // For manual probing, get the next index to probe now.
  407. // On the first probe this will be incremented to 0.
  408. if (!no_action) {
  409. ++abl_probe_index;
  410. g29_in_progress = true;
  411. }
  412. // Abort current G29 procedure, go back to idle state
  413. if (seenA && g29_in_progress) {
  414. SERIAL_ECHOLNPGM("Manual G29 aborted");
  415. #if HAS_SOFTWARE_ENDSTOPS
  416. soft_endstops_enabled = saved_soft_endstops_state;
  417. #endif
  418. set_bed_leveling_enabled(abl_should_enable);
  419. g29_in_progress = false;
  420. #if ENABLED(LCD_BED_LEVELING)
  421. ui.wait_for_bl_move = false;
  422. #endif
  423. }
  424. // Query G29 status
  425. if (verbose_level || seenQ) {
  426. SERIAL_ECHOPGM("Manual G29 ");
  427. if (g29_in_progress) {
  428. SERIAL_ECHOPAIR("point ", _MIN(abl_probe_index + 1, abl_points));
  429. SERIAL_ECHOLNPAIR(" of ", abl_points);
  430. }
  431. else
  432. SERIAL_ECHOLNPGM("idle");
  433. }
  434. if (no_action) G29_RETURN(false);
  435. if (abl_probe_index == 0) {
  436. // For the initial G29 S2 save software endstop state
  437. #if HAS_SOFTWARE_ENDSTOPS
  438. saved_soft_endstops_state = soft_endstops_enabled;
  439. #endif
  440. // Move close to the bed before the first point
  441. do_blocking_move_to_z(0);
  442. }
  443. else {
  444. #if EITHER(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_3POINT)
  445. const uint16_t index = abl_probe_index - 1;
  446. #endif
  447. // For G29 after adjusting Z.
  448. // Save the previous Z before going to the next point
  449. measured_z = current_position.z;
  450. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  451. mean += measured_z;
  452. eqnBVector[index] = measured_z;
  453. eqnAMatrix[index + 0 * abl_points] = probePos.x;
  454. eqnAMatrix[index + 1 * abl_points] = probePos.y;
  455. eqnAMatrix[index + 2 * abl_points] = 1;
  456. incremental_LSF(&lsf_results, probePos, measured_z);
  457. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  458. points[index].z = measured_z;
  459. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  460. const float newz = measured_z + zoffset;
  461. z_values[meshCount.x][meshCount.y] = newz;
  462. #if ENABLED(EXTENSIBLE_UI)
  463. ExtUI::onMeshUpdate(meshCount, newz);
  464. #endif
  465. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR_P(PSTR("Save X"), meshCount.x, SP_Y_STR, meshCount.y, SP_Z_STR, measured_z + zoffset);
  466. #endif
  467. }
  468. //
  469. // If there's another point to sample, move there with optional lift.
  470. //
  471. #if ABL_GRID
  472. // Skip any unreachable points
  473. while (abl_probe_index < abl_points) {
  474. // Set meshCount.x, meshCount.y based on abl_probe_index, with zig-zag
  475. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  476. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  477. // Probe in reverse order for every other row/column
  478. bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
  479. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  480. probePos = probe_position_lf + gridSpacing * meshCount.asFloat();
  481. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  482. indexIntoAB[meshCount.x][meshCount.y] = abl_probe_index;
  483. #endif
  484. // Keep looping till a reachable point is found
  485. if (position_is_reachable(probePos)) break;
  486. ++abl_probe_index;
  487. }
  488. // Is there a next point to move to?
  489. if (abl_probe_index < abl_points) {
  490. _manual_goto_xy(probePos); // Can be used here too!
  491. #if HAS_SOFTWARE_ENDSTOPS
  492. // Disable software endstops to allow manual adjustment
  493. // If G29 is not completed, they will not be re-enabled
  494. soft_endstops_enabled = false;
  495. #endif
  496. G29_RETURN(false);
  497. }
  498. else {
  499. // Leveling done! Fall through to G29 finishing code below
  500. SERIAL_ECHOLNPGM("Grid probing done.");
  501. // Re-enable software endstops, if needed
  502. #if HAS_SOFTWARE_ENDSTOPS
  503. soft_endstops_enabled = saved_soft_endstops_state;
  504. #endif
  505. }
  506. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  507. // Probe at 3 arbitrary points
  508. if (abl_probe_index < abl_points) {
  509. probePos = points[abl_probe_index];
  510. _manual_goto_xy(probePos);
  511. #if HAS_SOFTWARE_ENDSTOPS
  512. // Disable software endstops to allow manual adjustment
  513. // If G29 is not completed, they will not be re-enabled
  514. soft_endstops_enabled = false;
  515. #endif
  516. G29_RETURN(false);
  517. }
  518. else {
  519. SERIAL_ECHOLNPGM("3-point probing done.");
  520. // Re-enable software endstops, if needed
  521. #if HAS_SOFTWARE_ENDSTOPS
  522. soft_endstops_enabled = saved_soft_endstops_state;
  523. #endif
  524. if (!dryrun) {
  525. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  526. if (planeNormal.z < 0) planeNormal *= -1;
  527. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  528. // Can't re-enable (on error) until the new grid is written
  529. abl_should_enable = false;
  530. }
  531. }
  532. #endif // AUTO_BED_LEVELING_3POINT
  533. #else // !PROBE_MANUALLY
  534. {
  535. const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
  536. measured_z = 0;
  537. #if ABL_GRID
  538. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  539. measured_z = 0;
  540. xy_int8_t meshCount;
  541. // Outer loop is X with PROBE_Y_FIRST enabled
  542. // Outer loop is Y with PROBE_Y_FIRST disabled
  543. for (PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
  544. int8_t inStart, inStop, inInc;
  545. if (zig) { // Zig away from origin
  546. inStart = 0; // Left or front
  547. inStop = PR_INNER_END; // Right or back
  548. inInc = 1; // Zig right
  549. }
  550. else { // Zag towards origin
  551. inStart = PR_INNER_END - 1; // Right or back
  552. inStop = -1; // Left or front
  553. inInc = -1; // Zag left
  554. }
  555. zig ^= true; // zag
  556. // An index to print current state
  557. uint8_t pt_index = (PR_OUTER_VAR) * (PR_INNER_END) + 1;
  558. // Inner loop is Y with PROBE_Y_FIRST enabled
  559. // Inner loop is X with PROBE_Y_FIRST disabled
  560. for (PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; pt_index++, PR_INNER_VAR += inInc) {
  561. probePos = probe_position_lf + gridSpacing * meshCount.asFloat();
  562. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  563. indexIntoAB[meshCount.x][meshCount.y] = ++abl_probe_index; // 0...
  564. #endif
  565. #if IS_KINEMATIC
  566. // Avoid probing outside the round or hexagonal area
  567. if (!position_is_reachable_by_probe(probePos)) continue;
  568. #endif
  569. if (verbose_level) SERIAL_ECHOLNPAIR("Probing mesh point ", int(pt_index), "/", int(GRID_MAX_POINTS), ".");
  570. #if HAS_DISPLAY
  571. ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_MESH), int(pt_index), int(GRID_MAX_POINTS));
  572. #endif
  573. measured_z = faux ? 0.001f * random(-100, 101) : probe_at_point(probePos, raise_after, verbose_level);
  574. if (isnan(measured_z)) {
  575. set_bed_leveling_enabled(abl_should_enable);
  576. break; // Breaks out of both loops
  577. }
  578. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  579. mean += measured_z;
  580. eqnBVector[abl_probe_index] = measured_z;
  581. eqnAMatrix[abl_probe_index + 0 * abl_points] = probePos.x;
  582. eqnAMatrix[abl_probe_index + 1 * abl_points] = probePos.y;
  583. eqnAMatrix[abl_probe_index + 2 * abl_points] = 1;
  584. incremental_LSF(&lsf_results, probePos, measured_z);
  585. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  586. z_values[meshCount.x][meshCount.y] = measured_z + zoffset;
  587. #if ENABLED(EXTENSIBLE_UI)
  588. ExtUI::onMeshUpdate(meshCount, z_values[meshCount.x][meshCount.y]);
  589. #endif
  590. #endif
  591. abl_should_enable = false;
  592. idle();
  593. } // inner
  594. } // outer
  595. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  596. // Probe at 3 arbitrary points
  597. for (uint8_t i = 0; i < 3; ++i) {
  598. if (verbose_level) SERIAL_ECHOLNPAIR("Probing point ", int(i), "/3.");
  599. #if HAS_DISPLAY
  600. ui.status_printf_P(0, PSTR(S_FMT " %i/3"), GET_TEXT(MSG_PROBING_MESH), int(i));
  601. #endif
  602. // Retain the last probe position
  603. probePos = points[i];
  604. measured_z = faux ? 0.001 * random(-100, 101) : probe_at_point(probePos, raise_after, verbose_level);
  605. if (isnan(measured_z)) {
  606. set_bed_leveling_enabled(abl_should_enable);
  607. break;
  608. }
  609. points[i].z = measured_z;
  610. }
  611. if (!dryrun && !isnan(measured_z)) {
  612. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  613. if (planeNormal.z < 0) planeNormal *= -1;
  614. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  615. // Can't re-enable (on error) until the new grid is written
  616. abl_should_enable = false;
  617. }
  618. #endif // AUTO_BED_LEVELING_3POINT
  619. #if HAS_DISPLAY
  620. ui.reset_status();
  621. #endif
  622. // Stow the probe. No raise for FIX_MOUNTED_PROBE.
  623. if (STOW_PROBE()) {
  624. set_bed_leveling_enabled(abl_should_enable);
  625. measured_z = NAN;
  626. }
  627. }
  628. #endif // !PROBE_MANUALLY
  629. //
  630. // G29 Finishing Code
  631. //
  632. // Unless this is a dry run, auto bed leveling will
  633. // definitely be enabled after this point.
  634. //
  635. // If code above wants to continue leveling, it should
  636. // return or loop before this point.
  637. //
  638. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  639. #if ENABLED(PROBE_MANUALLY)
  640. g29_in_progress = false;
  641. #if ENABLED(LCD_BED_LEVELING)
  642. ui.wait_for_bl_move = false;
  643. #endif
  644. #endif
  645. // Calculate leveling, print reports, correct the position
  646. if (!isnan(measured_z)) {
  647. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  648. if (!dryrun) extrapolate_unprobed_bed_level();
  649. print_bilinear_leveling_grid();
  650. refresh_bed_level();
  651. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  652. print_bilinear_leveling_grid_virt();
  653. #endif
  654. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  655. // For LINEAR leveling calculate matrix, print reports, correct the position
  656. /**
  657. * solve the plane equation ax + by + d = z
  658. * A is the matrix with rows [x y 1] for all the probed points
  659. * B is the vector of the Z positions
  660. * the normal vector to the plane is formed by the coefficients of the
  661. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  662. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  663. */
  664. struct { float a, b, d; } plane_equation_coefficients;
  665. finish_incremental_LSF(&lsf_results);
  666. plane_equation_coefficients.a = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
  667. plane_equation_coefficients.b = -lsf_results.B; // but that is not yet tested.
  668. plane_equation_coefficients.d = -lsf_results.D;
  669. mean /= abl_points;
  670. if (verbose_level) {
  671. SERIAL_ECHOPAIR_F("Eqn coefficients: a: ", plane_equation_coefficients.a, 8);
  672. SERIAL_ECHOPAIR_F(" b: ", plane_equation_coefficients.b, 8);
  673. SERIAL_ECHOPAIR_F(" d: ", plane_equation_coefficients.d, 8);
  674. if (verbose_level > 2)
  675. SERIAL_ECHOPAIR_F("\nMean of sampled points: ", mean, 8);
  676. SERIAL_EOL();
  677. }
  678. // Create the matrix but don't correct the position yet
  679. if (!dryrun)
  680. planner.bed_level_matrix = matrix_3x3::create_look_at(
  681. vector_3(-plane_equation_coefficients.a, -plane_equation_coefficients.b, 1) // We can eliminate the '-' here and up above
  682. );
  683. // Show the Topography map if enabled
  684. if (do_topography_map) {
  685. float min_diff = 999;
  686. auto print_topo_map = [&](PGM_P const title, const bool get_min) {
  687. serialprintPGM(title);
  688. for (int8_t yy = abl_grid_points.y - 1; yy >= 0; yy--) {
  689. for (uint8_t xx = 0; xx < abl_grid_points.x; xx++) {
  690. const int ind = indexIntoAB[xx][yy];
  691. xyz_float_t tmp = { eqnAMatrix[ind + 0 * abl_points],
  692. eqnAMatrix[ind + 1 * abl_points], 0 };
  693. apply_rotation_xyz(planner.bed_level_matrix, tmp);
  694. if (get_min) NOMORE(min_diff, eqnBVector[ind] - tmp.z);
  695. const float subval = get_min ? mean : tmp.z + min_diff,
  696. diff = eqnBVector[ind] - subval;
  697. SERIAL_CHAR(' '); if (diff >= 0.0) SERIAL_CHAR('+'); // Include + for column alignment
  698. SERIAL_ECHO_F(diff, 5);
  699. } // xx
  700. SERIAL_EOL();
  701. } // yy
  702. SERIAL_EOL();
  703. };
  704. print_topo_map(PSTR("\nBed Height Topography:\n"
  705. " +--- BACK --+\n"
  706. " | |\n"
  707. " L | (+) | R\n"
  708. " E | | I\n"
  709. " F | (-) N (+) | G\n"
  710. " T | | H\n"
  711. " | (-) | T\n"
  712. " | |\n"
  713. " O-- FRONT --+\n"
  714. " (0,0)\n"), true);
  715. if (verbose_level > 3)
  716. print_topo_map(PSTR("\nCorrected Bed Height vs. Bed Topology:\n"), false);
  717. } //do_topography_map
  718. #endif // AUTO_BED_LEVELING_LINEAR
  719. #if ABL_PLANAR
  720. // For LINEAR and 3POINT leveling correct the current position
  721. if (verbose_level > 0)
  722. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  723. if (!dryrun) {
  724. //
  725. // Correct the current XYZ position based on the tilted plane.
  726. //
  727. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  728. xyze_pos_t converted = current_position;
  729. planner.force_unapply_leveling(converted); // use conversion machinery
  730. // Use the last measured distance to the bed, if possible
  731. if ( NEAR(current_position.x, probePos.x - probe_offset.x)
  732. && NEAR(current_position.y, probePos.y - probe_offset.y)
  733. ) {
  734. const float simple_z = current_position.z - measured_z;
  735. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Probed Z", simple_z, " Matrix Z", converted.z, " Discrepancy ", simple_z - converted.z);
  736. converted.z = simple_z;
  737. }
  738. // The rotated XY and corrected Z are now current_position
  739. current_position = converted;
  740. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  741. }
  742. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  743. if (!dryrun) {
  744. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("G29 uncorrected Z:", current_position.z);
  745. // Unapply the offset because it is going to be immediately applied
  746. // and cause compensation movement in Z
  747. current_position.z -= bilinear_z_offset(current_position);
  748. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(" corrected Z:", current_position.z);
  749. }
  750. #endif // ABL_PLANAR
  751. // Auto Bed Leveling is complete! Enable if possible.
  752. planner.leveling_active = dryrun ? abl_should_enable : true;
  753. } // !isnan(measured_z)
  754. // Restore state after probing
  755. if (!faux) restore_feedrate_and_scaling();
  756. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("<<< G29");
  757. if (planner.leveling_active)
  758. sync_plan_position();
  759. #if HAS_BED_PROBE && defined(Z_AFTER_PROBING)
  760. move_z_after_probing();
  761. #endif
  762. #ifdef Z_PROBE_END_SCRIPT
  763. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  764. planner.synchronize();
  765. process_subcommands_now_P(PSTR(Z_PROBE_END_SCRIPT));
  766. #endif
  767. report_current_position();
  768. G29_RETURN(isnan(measured_z));
  769. }
  770. #endif // HAS_ABL_NOT_UBL