My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #include "nozzle.h"
  57. #include "duration_t.h"
  58. #include "types.h"
  59. #if ENABLED(USE_WATCHDOG)
  60. #include "watchdog.h"
  61. #endif
  62. #if ENABLED(BLINKM)
  63. #include "blinkm.h"
  64. #include "Wire.h"
  65. #endif
  66. #if HAS_SERVOS
  67. #include "servo.h"
  68. #endif
  69. #if HAS_DIGIPOTSS
  70. #include <SPI.h>
  71. #endif
  72. #if ENABLED(DAC_STEPPER_CURRENT)
  73. #include "stepper_dac.h"
  74. #endif
  75. #if ENABLED(EXPERIMENTAL_I2CBUS)
  76. #include "twibus.h"
  77. #endif
  78. /**
  79. * Look here for descriptions of G-codes:
  80. * - http://linuxcnc.org/handbook/gcode/g-code.html
  81. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  82. *
  83. * Help us document these G-codes online:
  84. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  85. * - http://reprap.org/wiki/G-code
  86. *
  87. * -----------------
  88. * Implemented Codes
  89. * -----------------
  90. *
  91. * "G" Codes
  92. *
  93. * G0 -> G1
  94. * G1 - Coordinated Movement X Y Z E
  95. * G2 - CW ARC
  96. * G3 - CCW ARC
  97. * G4 - Dwell S<seconds> or P<milliseconds>
  98. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  99. * G10 - Retract filament according to settings of M207
  100. * G11 - Retract recover filament according to settings of M208
  101. * G12 - Clean tool
  102. * G20 - Set input units to inches
  103. * G21 - Set input units to millimeters
  104. * G28 - Home one or more axes
  105. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  106. * G30 - Single Z probe, probes bed at current XY location.
  107. * G31 - Dock sled (Z_PROBE_SLED only)
  108. * G32 - Undock sled (Z_PROBE_SLED only)
  109. * G90 - Use Absolute Coordinates
  110. * G91 - Use Relative Coordinates
  111. * G92 - Set current position to coordinates given
  112. *
  113. * "M" Codes
  114. *
  115. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  116. * M1 - Same as M0
  117. * M17 - Enable/Power all stepper motors
  118. * M18 - Disable all stepper motors; same as M84
  119. * M20 - List SD card
  120. * M21 - Init SD card
  121. * M22 - Release SD card
  122. * M23 - Select SD file (M23 filename.g)
  123. * M24 - Start/resume SD print
  124. * M25 - Pause SD print
  125. * M26 - Set SD position in bytes (M26 S12345)
  126. * M27 - Report SD print status
  127. * M28 - Start SD write (M28 filename.g)
  128. * M29 - Stop SD write
  129. * M30 - Delete file from SD (M30 filename.g)
  130. * M31 - Output time since last M109 or SD card start to serial
  131. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  132. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  133. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  134. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  135. * M33 - Get the longname version of a path
  136. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  137. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  138. * M75 - Start the print job timer
  139. * M76 - Pause the print job timer
  140. * M77 - Stop the print job timer
  141. * M78 - Show statistical information about the print jobs
  142. * M80 - Turn on Power Supply
  143. * M81 - Turn off Power Supply
  144. * M82 - Set E codes absolute (default)
  145. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  146. * M84 - Disable steppers until next move,
  147. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  148. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  149. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  150. * M104 - Set extruder target temp
  151. * M105 - Read current temp
  152. * M106 - Fan on
  153. * M107 - Fan off
  154. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  155. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  156. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  157. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  158. * M110 - Set the current line number
  159. * M111 - Set debug flags with S<mask>. See flag bits defined in enum.h.
  160. * M112 - Emergency stop
  161. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  162. * M114 - Output current position to serial port
  163. * M115 - Capabilities string
  164. * M117 - Display a message on the controller screen
  165. * M119 - Output Endstop status to serial port
  166. * M120 - Enable endstop detection
  167. * M121 - Disable endstop detection
  168. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  169. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  170. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  171. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  172. * M140 - Set bed target temp
  173. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  174. * M149 - Set temperature units
  175. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  176. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  177. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  178. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  179. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  180. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  181. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  182. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  183. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  184. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  185. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  186. * M205 - Set advanced settings. Current units apply:
  187. S<print> T<travel> minimum speeds
  188. B<minimum segment time>
  189. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  190. * M206 - Set additional homing offset
  191. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  192. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  193. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  194. Every normal extrude-only move will be classified as retract depending on the direction.
  195. * M211 - Enable, Disable, and/or Report software endstops: [S<bool>]
  196. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  197. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  198. * M221 - Set Flow Percentage: S<percent>
  199. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  200. * M240 - Trigger a camera to take a photograph
  201. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  202. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  203. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  204. * M301 - Set PID parameters P I and D
  205. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  206. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  207. * M304 - Set bed PID parameters P I and D
  208. * M380 - Activate solenoid on active extruder
  209. * M381 - Disable all solenoids
  210. * M400 - Finish all moves
  211. * M401 - Lower Z probe if present
  212. * M402 - Raise Z probe if present
  213. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  214. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  215. * M406 - Disable Filament Sensor extrusion control
  216. * M407 - Display measured filament diameter in millimeters
  217. * M410 - Quickstop. Abort all the planned moves
  218. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  219. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  220. * M428 - Set the home_offset logically based on the current_position
  221. * M500 - Store parameters in EEPROM
  222. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  223. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  224. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  225. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  226. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  227. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  228. * M666 - Set delta endstop adjustment
  229. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  230. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  231. * M907 - Set digital trimpot motor current using axis codes.
  232. * M908 - Control digital trimpot directly.
  233. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  234. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  235. * M350 - Set microstepping mode.
  236. * M351 - Toggle MS1 MS2 pins directly.
  237. *
  238. * ************ SCARA Specific - This can change to suit future G-code regulations
  239. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  240. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  241. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  242. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  243. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  244. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  245. * ************* SCARA End ***************
  246. *
  247. * ************ Custom codes - This can change to suit future G-code regulations
  248. * M100 - Watch Free Memory (For Debugging Only)
  249. * M928 - Start SD logging (M928 filename.g) - ended by M29
  250. * M999 - Restart after being stopped by error
  251. *
  252. * "T" Codes
  253. *
  254. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  255. *
  256. */
  257. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  258. void gcode_M100();
  259. #endif
  260. #if ENABLED(SDSUPPORT)
  261. CardReader card;
  262. #endif
  263. #if ENABLED(EXPERIMENTAL_I2CBUS)
  264. TWIBus i2c;
  265. #endif
  266. bool Running = true;
  267. uint8_t marlin_debug_flags = DEBUG_NONE;
  268. float current_position[NUM_AXIS] = { 0.0 };
  269. static float destination[NUM_AXIS] = { 0.0 };
  270. bool axis_known_position[XYZ] = { false };
  271. bool axis_homed[XYZ] = { false };
  272. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  273. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  274. static char* current_command, *current_command_args;
  275. static uint8_t cmd_queue_index_r = 0,
  276. cmd_queue_index_w = 0,
  277. commands_in_queue = 0;
  278. #if ENABLED(INCH_MODE_SUPPORT)
  279. float linear_unit_factor = 1.0;
  280. float volumetric_unit_factor = 1.0;
  281. #endif
  282. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  283. TempUnit input_temp_units = TEMPUNIT_C;
  284. #endif
  285. /**
  286. * Feed rates are often configured with mm/m
  287. * but the planner and stepper like mm/s units.
  288. */
  289. const float homing_feedrate_mm_s[] = {
  290. #if ENABLED(DELTA)
  291. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  292. #else
  293. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  294. #endif
  295. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  296. };
  297. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  298. int feedrate_percentage = 100, saved_feedrate_percentage;
  299. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  300. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  301. bool volumetric_enabled = false;
  302. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  303. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  304. // The distance that XYZ has been offset by G92. Reset by G28.
  305. float position_shift[XYZ] = { 0 };
  306. // This offset is added to the configured home position.
  307. // Set by M206, M428, or menu item. Saved to EEPROM.
  308. float home_offset[XYZ] = { 0 };
  309. // Software Endstops are based on the configured limits.
  310. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  311. bool soft_endstops_enabled = true;
  312. #endif
  313. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  314. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  315. #if FAN_COUNT > 0
  316. int fanSpeeds[FAN_COUNT] = { 0 };
  317. #endif
  318. // The active extruder (tool). Set with T<extruder> command.
  319. uint8_t active_extruder = 0;
  320. // Relative Mode. Enable with G91, disable with G90.
  321. static bool relative_mode = false;
  322. volatile bool wait_for_heatup = true;
  323. const char errormagic[] PROGMEM = "Error:";
  324. const char echomagic[] PROGMEM = "echo:";
  325. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  326. static int serial_count = 0;
  327. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  328. static char* seen_pointer;
  329. // Next Immediate GCode Command pointer. NULL if none.
  330. const char* queued_commands_P = NULL;
  331. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  332. // Inactivity shutdown
  333. millis_t previous_cmd_ms = 0;
  334. static millis_t max_inactive_time = 0;
  335. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  336. // Print Job Timer
  337. #if ENABLED(PRINTCOUNTER)
  338. PrintCounter print_job_timer = PrintCounter();
  339. #else
  340. Stopwatch print_job_timer = Stopwatch();
  341. #endif
  342. // Buzzer - I2C on the LCD or a BEEPER_PIN
  343. #if ENABLED(LCD_USE_I2C_BUZZER)
  344. #define BUZZ(d,f) lcd_buzz(d, f)
  345. #elif HAS_BUZZER
  346. Buzzer buzzer;
  347. #define BUZZ(d,f) buzzer.tone(d, f)
  348. #else
  349. #define BUZZ(d,f) NOOP
  350. #endif
  351. static uint8_t target_extruder;
  352. #if HAS_BED_PROBE
  353. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  354. #endif
  355. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  356. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  357. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  358. bool bed_leveling_in_progress = false;
  359. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  360. #elif defined(XY_PROBE_SPEED)
  361. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  362. #else
  363. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  364. #endif
  365. #if ENABLED(Z_DUAL_ENDSTOPS)
  366. float z_endstop_adj = 0;
  367. #endif
  368. // Extruder offsets
  369. #if HOTENDS > 1
  370. float hotend_offset[][HOTENDS] = {
  371. HOTEND_OFFSET_X,
  372. HOTEND_OFFSET_Y
  373. #ifdef HOTEND_OFFSET_Z
  374. , HOTEND_OFFSET_Z
  375. #endif
  376. };
  377. #endif
  378. #if HAS_Z_SERVO_ENDSTOP
  379. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  380. #endif
  381. #if ENABLED(BARICUDA)
  382. int baricuda_valve_pressure = 0;
  383. int baricuda_e_to_p_pressure = 0;
  384. #endif
  385. #if ENABLED(FWRETRACT)
  386. bool autoretract_enabled = false;
  387. bool retracted[EXTRUDERS] = { false };
  388. bool retracted_swap[EXTRUDERS] = { false };
  389. float retract_length = RETRACT_LENGTH;
  390. float retract_length_swap = RETRACT_LENGTH_SWAP;
  391. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  392. float retract_zlift = RETRACT_ZLIFT;
  393. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  394. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  395. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  396. #endif // FWRETRACT
  397. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  398. bool powersupply =
  399. #if ENABLED(PS_DEFAULT_OFF)
  400. false
  401. #else
  402. true
  403. #endif
  404. ;
  405. #endif
  406. #if ENABLED(DELTA)
  407. #define TOWER_1 X_AXIS
  408. #define TOWER_2 Y_AXIS
  409. #define TOWER_3 Z_AXIS
  410. float delta[ABC];
  411. float cartesian_position[XYZ] = { 0 };
  412. #define SIN_60 0.8660254037844386
  413. #define COS_60 0.5
  414. float endstop_adj[ABC] = { 0 };
  415. // these are the default values, can be overriden with M665
  416. float delta_radius = DELTA_RADIUS;
  417. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  418. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  419. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  420. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  421. float delta_tower3_x = 0; // back middle tower
  422. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  423. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  424. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  425. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  426. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  427. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  428. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  429. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  430. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  431. float delta_clip_start_height = Z_MAX_POS;
  432. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  433. int delta_grid_spacing[2] = { 0, 0 };
  434. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  435. #endif
  436. float delta_safe_distance_from_top();
  437. #else
  438. static bool home_all_axis = true;
  439. #endif
  440. #if ENABLED(SCARA)
  441. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  442. float delta[ABC];
  443. float axis_scaling[ABC] = { 1, 1, 1 }; // Build size scaling, default to 1
  444. #endif
  445. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  446. //Variables for Filament Sensor input
  447. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  448. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  449. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  450. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  451. int filwidth_delay_index1 = 0; //index into ring buffer
  452. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  453. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  454. #endif
  455. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  456. static bool filament_ran_out = false;
  457. #endif
  458. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  459. FilamentChangeMenuResponse filament_change_menu_response;
  460. #endif
  461. #if ENABLED(MIXING_EXTRUDER)
  462. float mixing_factor[MIXING_STEPPERS];
  463. #if MIXING_VIRTUAL_TOOLS > 1
  464. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  465. #endif
  466. #endif
  467. static bool send_ok[BUFSIZE];
  468. #if HAS_SERVOS
  469. Servo servo[NUM_SERVOS];
  470. #define MOVE_SERVO(I, P) servo[I].move(P)
  471. #if HAS_Z_SERVO_ENDSTOP
  472. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  473. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  474. #endif
  475. #endif
  476. #ifdef CHDK
  477. millis_t chdkHigh = 0;
  478. boolean chdkActive = false;
  479. #endif
  480. #if ENABLED(PID_EXTRUSION_SCALING)
  481. int lpq_len = 20;
  482. #endif
  483. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  484. static MarlinBusyState busy_state = NOT_BUSY;
  485. static millis_t next_busy_signal_ms = 0;
  486. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  487. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  488. #else
  489. #define host_keepalive() ;
  490. #define KEEPALIVE_STATE(n) ;
  491. #endif // HOST_KEEPALIVE_FEATURE
  492. /**
  493. * ***************************************************************************
  494. * ******************************** FUNCTIONS ********************************
  495. * ***************************************************************************
  496. */
  497. void stop();
  498. void get_available_commands();
  499. void process_next_command();
  500. void prepare_move_to_destination();
  501. void set_current_from_steppers_for_axis(AxisEnum axis);
  502. #if ENABLED(ARC_SUPPORT)
  503. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  504. #endif
  505. #if ENABLED(BEZIER_CURVE_SUPPORT)
  506. void plan_cubic_move(const float offset[4]);
  507. #endif
  508. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  509. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  510. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  511. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  512. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  513. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  514. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  515. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  516. static void report_current_position();
  517. #if ENABLED(DEBUG_LEVELING_FEATURE)
  518. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  519. serialprintPGM(prefix);
  520. SERIAL_ECHOPAIR("(", x);
  521. SERIAL_ECHOPAIR(", ", y);
  522. SERIAL_ECHOPAIR(", ", z);
  523. SERIAL_ECHOPGM(")");
  524. if (suffix) serialprintPGM(suffix);
  525. else SERIAL_EOL;
  526. }
  527. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  528. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  529. }
  530. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  531. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  532. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  533. }
  534. #endif
  535. #define DEBUG_POS(SUFFIX,VAR) do { \
  536. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  537. #endif
  538. /**
  539. * sync_plan_position
  540. * Set planner / stepper positions to the cartesian current_position.
  541. * The stepper code translates these coordinates into step units.
  542. * Allows translation between steps and millimeters for cartesian & core robots
  543. */
  544. inline void sync_plan_position() {
  545. #if ENABLED(DEBUG_LEVELING_FEATURE)
  546. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  547. #endif
  548. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  549. }
  550. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  551. #if ENABLED(DELTA) || ENABLED(SCARA)
  552. inline void sync_plan_position_delta() {
  553. #if ENABLED(DEBUG_LEVELING_FEATURE)
  554. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  555. #endif
  556. inverse_kinematics(current_position);
  557. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  558. }
  559. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  560. #else
  561. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  562. #endif
  563. #if ENABLED(SDSUPPORT)
  564. #include "SdFatUtil.h"
  565. int freeMemory() { return SdFatUtil::FreeRam(); }
  566. #else
  567. extern "C" {
  568. extern unsigned int __bss_end;
  569. extern unsigned int __heap_start;
  570. extern void* __brkval;
  571. int freeMemory() {
  572. int free_memory;
  573. if ((int)__brkval == 0)
  574. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  575. else
  576. free_memory = ((int)&free_memory) - ((int)__brkval);
  577. return free_memory;
  578. }
  579. }
  580. #endif //!SDSUPPORT
  581. #if ENABLED(DIGIPOT_I2C)
  582. extern void digipot_i2c_set_current(int channel, float current);
  583. extern void digipot_i2c_init();
  584. #endif
  585. /**
  586. * Inject the next "immediate" command, when possible.
  587. * Return true if any immediate commands remain to inject.
  588. */
  589. static bool drain_queued_commands_P() {
  590. if (queued_commands_P != NULL) {
  591. size_t i = 0;
  592. char c, cmd[30];
  593. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  594. cmd[sizeof(cmd) - 1] = '\0';
  595. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  596. cmd[i] = '\0';
  597. if (enqueue_and_echo_command(cmd)) { // success?
  598. if (c) // newline char?
  599. queued_commands_P += i + 1; // advance to the next command
  600. else
  601. queued_commands_P = NULL; // nul char? no more commands
  602. }
  603. }
  604. return (queued_commands_P != NULL); // return whether any more remain
  605. }
  606. /**
  607. * Record one or many commands to run from program memory.
  608. * Aborts the current queue, if any.
  609. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  610. */
  611. void enqueue_and_echo_commands_P(const char* pgcode) {
  612. queued_commands_P = pgcode;
  613. drain_queued_commands_P(); // first command executed asap (when possible)
  614. }
  615. void clear_command_queue() {
  616. cmd_queue_index_r = cmd_queue_index_w;
  617. commands_in_queue = 0;
  618. }
  619. /**
  620. * Once a new command is in the ring buffer, call this to commit it
  621. */
  622. inline void _commit_command(bool say_ok) {
  623. send_ok[cmd_queue_index_w] = say_ok;
  624. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  625. commands_in_queue++;
  626. }
  627. /**
  628. * Copy a command directly into the main command buffer, from RAM.
  629. * Returns true if successfully adds the command
  630. */
  631. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  632. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  633. strcpy(command_queue[cmd_queue_index_w], cmd);
  634. _commit_command(say_ok);
  635. return true;
  636. }
  637. void enqueue_and_echo_command_now(const char* cmd) {
  638. while (!enqueue_and_echo_command(cmd)) idle();
  639. }
  640. /**
  641. * Enqueue with Serial Echo
  642. */
  643. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  644. if (_enqueuecommand(cmd, say_ok)) {
  645. SERIAL_ECHO_START;
  646. SERIAL_ECHOPGM(MSG_Enqueueing);
  647. SERIAL_ECHO(cmd);
  648. SERIAL_ECHOLNPGM("\"");
  649. return true;
  650. }
  651. return false;
  652. }
  653. void setup_killpin() {
  654. #if HAS_KILL
  655. SET_INPUT(KILL_PIN);
  656. WRITE(KILL_PIN, HIGH);
  657. #endif
  658. }
  659. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  660. void setup_filrunoutpin() {
  661. pinMode(FIL_RUNOUT_PIN, INPUT);
  662. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  663. WRITE(FIL_RUNOUT_PIN, HIGH);
  664. #endif
  665. }
  666. #endif
  667. // Set home pin
  668. void setup_homepin(void) {
  669. #if HAS_HOME
  670. SET_INPUT(HOME_PIN);
  671. WRITE(HOME_PIN, HIGH);
  672. #endif
  673. }
  674. void setup_photpin() {
  675. #if HAS_PHOTOGRAPH
  676. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  677. #endif
  678. }
  679. void setup_powerhold() {
  680. #if HAS_SUICIDE
  681. OUT_WRITE(SUICIDE_PIN, HIGH);
  682. #endif
  683. #if HAS_POWER_SWITCH
  684. #if ENABLED(PS_DEFAULT_OFF)
  685. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  686. #else
  687. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  688. #endif
  689. #endif
  690. }
  691. void suicide() {
  692. #if HAS_SUICIDE
  693. OUT_WRITE(SUICIDE_PIN, LOW);
  694. #endif
  695. }
  696. void servo_init() {
  697. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  698. servo[0].attach(SERVO0_PIN);
  699. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  700. #endif
  701. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  702. servo[1].attach(SERVO1_PIN);
  703. servo[1].detach();
  704. #endif
  705. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  706. servo[2].attach(SERVO2_PIN);
  707. servo[2].detach();
  708. #endif
  709. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  710. servo[3].attach(SERVO3_PIN);
  711. servo[3].detach();
  712. #endif
  713. #if HAS_Z_SERVO_ENDSTOP
  714. /**
  715. * Set position of Z Servo Endstop
  716. *
  717. * The servo might be deployed and positioned too low to stow
  718. * when starting up the machine or rebooting the board.
  719. * There's no way to know where the nozzle is positioned until
  720. * homing has been done - no homing with z-probe without init!
  721. *
  722. */
  723. STOW_Z_SERVO();
  724. #endif
  725. #if HAS_BED_PROBE
  726. endstops.enable_z_probe(false);
  727. #endif
  728. }
  729. /**
  730. * Stepper Reset (RigidBoard, et.al.)
  731. */
  732. #if HAS_STEPPER_RESET
  733. void disableStepperDrivers() {
  734. pinMode(STEPPER_RESET_PIN, OUTPUT);
  735. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  736. }
  737. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  738. #endif
  739. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  740. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  741. i2c.receive(bytes);
  742. }
  743. void i2c_on_request() { // just send dummy data for now
  744. i2c.reply("Hello World!\n");
  745. }
  746. #endif
  747. /**
  748. * Marlin entry-point: Set up before the program loop
  749. * - Set up the kill pin, filament runout, power hold
  750. * - Start the serial port
  751. * - Print startup messages and diagnostics
  752. * - Get EEPROM or default settings
  753. * - Initialize managers for:
  754. * • temperature
  755. * • planner
  756. * • watchdog
  757. * • stepper
  758. * • photo pin
  759. * • servos
  760. * • LCD controller
  761. * • Digipot I2C
  762. * • Z probe sled
  763. * • status LEDs
  764. */
  765. void setup() {
  766. #ifdef DISABLE_JTAG
  767. // Disable JTAG on AT90USB chips to free up pins for IO
  768. MCUCR = 0x80;
  769. MCUCR = 0x80;
  770. #endif
  771. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  772. setup_filrunoutpin();
  773. #endif
  774. setup_killpin();
  775. setup_powerhold();
  776. #if HAS_STEPPER_RESET
  777. disableStepperDrivers();
  778. #endif
  779. MYSERIAL.begin(BAUDRATE);
  780. SERIAL_PROTOCOLLNPGM("start");
  781. SERIAL_ECHO_START;
  782. // Check startup - does nothing if bootloader sets MCUSR to 0
  783. byte mcu = MCUSR;
  784. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  785. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  786. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  787. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  788. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  789. MCUSR = 0;
  790. SERIAL_ECHOPGM(MSG_MARLIN);
  791. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  792. #ifdef STRING_DISTRIBUTION_DATE
  793. #ifdef STRING_CONFIG_H_AUTHOR
  794. SERIAL_ECHO_START;
  795. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  796. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  797. SERIAL_ECHOPGM(MSG_AUTHOR);
  798. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  799. SERIAL_ECHOPGM("Compiled: ");
  800. SERIAL_ECHOLNPGM(__DATE__);
  801. #endif // STRING_CONFIG_H_AUTHOR
  802. #endif // STRING_DISTRIBUTION_DATE
  803. SERIAL_ECHO_START;
  804. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  805. SERIAL_ECHO(freeMemory());
  806. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  807. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  808. // Send "ok" after commands by default
  809. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  810. // Load data from EEPROM if available (or use defaults)
  811. // This also updates variables in the planner, elsewhere
  812. Config_RetrieveSettings();
  813. // Initialize current position based on home_offset
  814. memcpy(current_position, home_offset, sizeof(home_offset));
  815. // Vital to init stepper/planner equivalent for current_position
  816. SYNC_PLAN_POSITION_KINEMATIC();
  817. thermalManager.init(); // Initialize temperature loop
  818. #if ENABLED(USE_WATCHDOG)
  819. watchdog_init();
  820. #endif
  821. stepper.init(); // Initialize stepper, this enables interrupts!
  822. setup_photpin();
  823. servo_init();
  824. #if HAS_CONTROLLERFAN
  825. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  826. #endif
  827. #if HAS_STEPPER_RESET
  828. enableStepperDrivers();
  829. #endif
  830. #if ENABLED(DIGIPOT_I2C)
  831. digipot_i2c_init();
  832. #endif
  833. #if ENABLED(DAC_STEPPER_CURRENT)
  834. dac_init();
  835. #endif
  836. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  837. pinMode(SLED_PIN, OUTPUT);
  838. digitalWrite(SLED_PIN, LOW); // turn it off
  839. #endif // Z_PROBE_SLED
  840. setup_homepin();
  841. #ifdef STAT_LED_RED
  842. pinMode(STAT_LED_RED, OUTPUT);
  843. digitalWrite(STAT_LED_RED, LOW); // turn it off
  844. #endif
  845. #ifdef STAT_LED_BLUE
  846. pinMode(STAT_LED_BLUE, OUTPUT);
  847. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  848. #endif
  849. lcd_init();
  850. #if ENABLED(SHOW_BOOTSCREEN)
  851. #if ENABLED(DOGLCD)
  852. safe_delay(BOOTSCREEN_TIMEOUT);
  853. #elif ENABLED(ULTRA_LCD)
  854. bootscreen();
  855. lcd_init();
  856. #endif
  857. #endif
  858. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  859. // Initialize mixing to 100% color 1
  860. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  861. mixing_factor[i] = (i == 0) ? 1 : 0;
  862. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  863. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  864. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  865. #endif
  866. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  867. i2c.onReceive(i2c_on_receive);
  868. i2c.onRequest(i2c_on_request);
  869. #endif
  870. }
  871. /**
  872. * The main Marlin program loop
  873. *
  874. * - Save or log commands to SD
  875. * - Process available commands (if not saving)
  876. * - Call heater manager
  877. * - Call inactivity manager
  878. * - Call endstop manager
  879. * - Call LCD update
  880. */
  881. void loop() {
  882. if (commands_in_queue < BUFSIZE) get_available_commands();
  883. #if ENABLED(SDSUPPORT)
  884. card.checkautostart(false);
  885. #endif
  886. if (commands_in_queue) {
  887. #if ENABLED(SDSUPPORT)
  888. if (card.saving) {
  889. char* command = command_queue[cmd_queue_index_r];
  890. if (strstr_P(command, PSTR("M29"))) {
  891. // M29 closes the file
  892. card.closefile();
  893. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  894. ok_to_send();
  895. }
  896. else {
  897. // Write the string from the read buffer to SD
  898. card.write_command(command);
  899. if (card.logging)
  900. process_next_command(); // The card is saving because it's logging
  901. else
  902. ok_to_send();
  903. }
  904. }
  905. else
  906. process_next_command();
  907. #else
  908. process_next_command();
  909. #endif // SDSUPPORT
  910. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  911. if (commands_in_queue) {
  912. --commands_in_queue;
  913. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  914. }
  915. }
  916. endstops.report_state();
  917. idle();
  918. }
  919. void gcode_line_error(const char* err, bool doFlush = true) {
  920. SERIAL_ERROR_START;
  921. serialprintPGM(err);
  922. SERIAL_ERRORLN(gcode_LastN);
  923. //Serial.println(gcode_N);
  924. if (doFlush) FlushSerialRequestResend();
  925. serial_count = 0;
  926. }
  927. inline void get_serial_commands() {
  928. static char serial_line_buffer[MAX_CMD_SIZE];
  929. static boolean serial_comment_mode = false;
  930. // If the command buffer is empty for too long,
  931. // send "wait" to indicate Marlin is still waiting.
  932. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  933. static millis_t last_command_time = 0;
  934. millis_t ms = millis();
  935. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  936. SERIAL_ECHOLNPGM(MSG_WAIT);
  937. last_command_time = ms;
  938. }
  939. #endif
  940. /**
  941. * Loop while serial characters are incoming and the queue is not full
  942. */
  943. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  944. char serial_char = MYSERIAL.read();
  945. /**
  946. * If the character ends the line
  947. */
  948. if (serial_char == '\n' || serial_char == '\r') {
  949. serial_comment_mode = false; // end of line == end of comment
  950. if (!serial_count) continue; // skip empty lines
  951. serial_line_buffer[serial_count] = 0; // terminate string
  952. serial_count = 0; //reset buffer
  953. char* command = serial_line_buffer;
  954. while (*command == ' ') command++; // skip any leading spaces
  955. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  956. char* apos = strchr(command, '*');
  957. if (npos) {
  958. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  959. if (M110) {
  960. char* n2pos = strchr(command + 4, 'N');
  961. if (n2pos) npos = n2pos;
  962. }
  963. gcode_N = strtol(npos + 1, NULL, 10);
  964. if (gcode_N != gcode_LastN + 1 && !M110) {
  965. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  966. return;
  967. }
  968. if (apos) {
  969. byte checksum = 0, count = 0;
  970. while (command[count] != '*') checksum ^= command[count++];
  971. if (strtol(apos + 1, NULL, 10) != checksum) {
  972. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  973. return;
  974. }
  975. // if no errors, continue parsing
  976. }
  977. else {
  978. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  979. return;
  980. }
  981. gcode_LastN = gcode_N;
  982. // if no errors, continue parsing
  983. }
  984. else if (apos) { // No '*' without 'N'
  985. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  986. return;
  987. }
  988. // Movement commands alert when stopped
  989. if (IsStopped()) {
  990. char* gpos = strchr(command, 'G');
  991. if (gpos) {
  992. int codenum = strtol(gpos + 1, NULL, 10);
  993. switch (codenum) {
  994. case 0:
  995. case 1:
  996. case 2:
  997. case 3:
  998. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  999. LCD_MESSAGEPGM(MSG_STOPPED);
  1000. break;
  1001. }
  1002. }
  1003. }
  1004. #if DISABLED(EMERGENCY_PARSER)
  1005. // If command was e-stop process now
  1006. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  1007. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  1008. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  1009. #endif
  1010. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  1011. last_command_time = ms;
  1012. #endif
  1013. // Add the command to the queue
  1014. _enqueuecommand(serial_line_buffer, true);
  1015. }
  1016. else if (serial_count >= MAX_CMD_SIZE - 1) {
  1017. // Keep fetching, but ignore normal characters beyond the max length
  1018. // The command will be injected when EOL is reached
  1019. }
  1020. else if (serial_char == '\\') { // Handle escapes
  1021. if (MYSERIAL.available() > 0) {
  1022. // if we have one more character, copy it over
  1023. serial_char = MYSERIAL.read();
  1024. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1025. }
  1026. // otherwise do nothing
  1027. }
  1028. else { // it's not a newline, carriage return or escape char
  1029. if (serial_char == ';') serial_comment_mode = true;
  1030. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1031. }
  1032. } // queue has space, serial has data
  1033. }
  1034. #if ENABLED(SDSUPPORT)
  1035. inline void get_sdcard_commands() {
  1036. static bool stop_buffering = false,
  1037. sd_comment_mode = false;
  1038. if (!card.sdprinting) return;
  1039. /**
  1040. * '#' stops reading from SD to the buffer prematurely, so procedural
  1041. * macro calls are possible. If it occurs, stop_buffering is triggered
  1042. * and the buffer is run dry; this character _can_ occur in serial com
  1043. * due to checksums, however, no checksums are used in SD printing.
  1044. */
  1045. if (commands_in_queue == 0) stop_buffering = false;
  1046. uint16_t sd_count = 0;
  1047. bool card_eof = card.eof();
  1048. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1049. int16_t n = card.get();
  1050. char sd_char = (char)n;
  1051. card_eof = card.eof();
  1052. if (card_eof || n == -1
  1053. || sd_char == '\n' || sd_char == '\r'
  1054. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1055. ) {
  1056. if (card_eof) {
  1057. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1058. card.printingHasFinished();
  1059. card.checkautostart(true);
  1060. }
  1061. else if (n == -1) {
  1062. SERIAL_ERROR_START;
  1063. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1064. }
  1065. if (sd_char == '#') stop_buffering = true;
  1066. sd_comment_mode = false; //for new command
  1067. if (!sd_count) continue; //skip empty lines
  1068. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1069. sd_count = 0; //clear buffer
  1070. _commit_command(false);
  1071. }
  1072. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1073. /**
  1074. * Keep fetching, but ignore normal characters beyond the max length
  1075. * The command will be injected when EOL is reached
  1076. */
  1077. }
  1078. else {
  1079. if (sd_char == ';') sd_comment_mode = true;
  1080. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1081. }
  1082. }
  1083. }
  1084. #endif // SDSUPPORT
  1085. /**
  1086. * Add to the circular command queue the next command from:
  1087. * - The command-injection queue (queued_commands_P)
  1088. * - The active serial input (usually USB)
  1089. * - The SD card file being actively printed
  1090. */
  1091. void get_available_commands() {
  1092. // if any immediate commands remain, don't get other commands yet
  1093. if (drain_queued_commands_P()) return;
  1094. get_serial_commands();
  1095. #if ENABLED(SDSUPPORT)
  1096. get_sdcard_commands();
  1097. #endif
  1098. }
  1099. inline bool code_has_value() {
  1100. int i = 1;
  1101. char c = seen_pointer[i];
  1102. while (c == ' ') c = seen_pointer[++i];
  1103. if (c == '-' || c == '+') c = seen_pointer[++i];
  1104. if (c == '.') c = seen_pointer[++i];
  1105. return NUMERIC(c);
  1106. }
  1107. inline float code_value_float() {
  1108. float ret;
  1109. char* e = strchr(seen_pointer, 'E');
  1110. if (e) {
  1111. *e = 0;
  1112. ret = strtod(seen_pointer + 1, NULL);
  1113. *e = 'E';
  1114. }
  1115. else
  1116. ret = strtod(seen_pointer + 1, NULL);
  1117. return ret;
  1118. }
  1119. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1120. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1121. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1122. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1123. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1124. inline bool code_value_bool() { return code_value_byte() > 0; }
  1125. #if ENABLED(INCH_MODE_SUPPORT)
  1126. inline void set_input_linear_units(LinearUnit units) {
  1127. switch (units) {
  1128. case LINEARUNIT_INCH:
  1129. linear_unit_factor = 25.4;
  1130. break;
  1131. case LINEARUNIT_MM:
  1132. default:
  1133. linear_unit_factor = 1.0;
  1134. break;
  1135. }
  1136. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1137. }
  1138. inline float axis_unit_factor(int axis) {
  1139. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1140. }
  1141. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1142. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1143. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1144. #else
  1145. inline float code_value_linear_units() { return code_value_float(); }
  1146. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1147. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1148. #endif
  1149. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1150. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1151. float code_value_temp_abs() {
  1152. switch (input_temp_units) {
  1153. case TEMPUNIT_C:
  1154. return code_value_float();
  1155. case TEMPUNIT_F:
  1156. return (code_value_float() - 32) * 0.5555555556;
  1157. case TEMPUNIT_K:
  1158. return code_value_float() - 272.15;
  1159. default:
  1160. return code_value_float();
  1161. }
  1162. }
  1163. float code_value_temp_diff() {
  1164. switch (input_temp_units) {
  1165. case TEMPUNIT_C:
  1166. case TEMPUNIT_K:
  1167. return code_value_float();
  1168. case TEMPUNIT_F:
  1169. return code_value_float() * 0.5555555556;
  1170. default:
  1171. return code_value_float();
  1172. }
  1173. }
  1174. #else
  1175. float code_value_temp_abs() { return code_value_float(); }
  1176. float code_value_temp_diff() { return code_value_float(); }
  1177. #endif
  1178. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1179. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1180. bool code_seen(char code) {
  1181. seen_pointer = strchr(current_command_args, code);
  1182. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1183. }
  1184. /**
  1185. * Set target_extruder from the T parameter or the active_extruder
  1186. *
  1187. * Returns TRUE if the target is invalid
  1188. */
  1189. bool get_target_extruder_from_command(int code) {
  1190. if (code_seen('T')) {
  1191. if (code_value_byte() >= EXTRUDERS) {
  1192. SERIAL_ECHO_START;
  1193. SERIAL_CHAR('M');
  1194. SERIAL_ECHO(code);
  1195. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1196. return true;
  1197. }
  1198. target_extruder = code_value_byte();
  1199. }
  1200. else
  1201. target_extruder = active_extruder;
  1202. return false;
  1203. }
  1204. #define DEFINE_PGM_READ_ANY(type, reader) \
  1205. static inline type pgm_read_any(const type *p) \
  1206. { return pgm_read_##reader##_near(p); }
  1207. DEFINE_PGM_READ_ANY(float, float);
  1208. DEFINE_PGM_READ_ANY(signed char, byte);
  1209. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1210. static const PROGMEM type array##_P[XYZ] = \
  1211. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1212. static inline type array(int axis) \
  1213. { return pgm_read_any(&array##_P[axis]); }
  1214. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1215. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1216. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1217. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1218. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1219. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1220. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1221. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1222. #endif
  1223. #if ENABLED(DUAL_X_CARRIAGE)
  1224. #define DXC_FULL_CONTROL_MODE 0
  1225. #define DXC_AUTO_PARK_MODE 1
  1226. #define DXC_DUPLICATION_MODE 2
  1227. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1228. static float x_home_pos(int extruder) {
  1229. if (extruder == 0)
  1230. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1231. else
  1232. /**
  1233. * In dual carriage mode the extruder offset provides an override of the
  1234. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1235. * This allow soft recalibration of the second extruder offset position
  1236. * without firmware reflash (through the M218 command).
  1237. */
  1238. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1239. }
  1240. static int x_home_dir(int extruder) {
  1241. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1242. }
  1243. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1244. static bool active_extruder_parked = false; // used in mode 1 & 2
  1245. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1246. static millis_t delayed_move_time = 0; // used in mode 1
  1247. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1248. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1249. #endif //DUAL_X_CARRIAGE
  1250. /**
  1251. * Software endstops can be used to monitor the open end of
  1252. * an axis that has a hardware endstop on the other end. Or
  1253. * they can prevent axes from moving past endstops and grinding.
  1254. *
  1255. * To keep doing their job as the coordinate system changes,
  1256. * the software endstop positions must be refreshed to remain
  1257. * at the same positions relative to the machine.
  1258. */
  1259. void update_software_endstops(AxisEnum axis) {
  1260. float offs = LOGICAL_POSITION(0, axis);
  1261. #if ENABLED(DUAL_X_CARRIAGE)
  1262. if (axis == X_AXIS) {
  1263. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1264. if (active_extruder != 0) {
  1265. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1266. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1267. return;
  1268. }
  1269. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1270. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1271. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1272. return;
  1273. }
  1274. }
  1275. else
  1276. #endif
  1277. {
  1278. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1279. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1280. }
  1281. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1282. if (DEBUGGING(LEVELING)) {
  1283. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1284. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1285. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1286. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1287. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1288. }
  1289. #endif
  1290. #if ENABLED(DELTA)
  1291. if (axis == Z_AXIS)
  1292. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1293. #endif
  1294. }
  1295. /**
  1296. * Change the home offset for an axis, update the current
  1297. * position and the software endstops to retain the same
  1298. * relative distance to the new home.
  1299. *
  1300. * Since this changes the current_position, code should
  1301. * call sync_plan_position soon after this.
  1302. */
  1303. static void set_home_offset(AxisEnum axis, float v) {
  1304. current_position[axis] += v - home_offset[axis];
  1305. home_offset[axis] = v;
  1306. update_software_endstops(axis);
  1307. }
  1308. static void set_axis_is_at_home(AxisEnum axis) {
  1309. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1310. if (DEBUGGING(LEVELING)) {
  1311. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1312. SERIAL_ECHOLNPGM(")");
  1313. }
  1314. #endif
  1315. position_shift[axis] = 0;
  1316. #if ENABLED(DUAL_X_CARRIAGE)
  1317. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1318. if (active_extruder != 0)
  1319. current_position[X_AXIS] = x_home_pos(active_extruder);
  1320. else
  1321. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1322. update_software_endstops(X_AXIS);
  1323. return;
  1324. }
  1325. #endif
  1326. #if ENABLED(SCARA)
  1327. if (axis == X_AXIS || axis == Y_AXIS) {
  1328. float homeposition[XYZ];
  1329. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1330. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1331. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1332. /**
  1333. * Works out real Homeposition angles using inverse kinematics,
  1334. * and calculates homing offset using forward kinematics
  1335. */
  1336. inverse_kinematics(homeposition);
  1337. forward_kinematics_SCARA(delta);
  1338. // SERIAL_ECHOPAIR("Delta X=", delta[X_AXIS]);
  1339. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1340. current_position[axis] = LOGICAL_POSITION(delta[axis], axis);
  1341. /**
  1342. * SCARA home positions are based on configuration since the actual
  1343. * limits are determined by the inverse kinematic transform.
  1344. */
  1345. soft_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1346. soft_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1347. }
  1348. else
  1349. #endif
  1350. {
  1351. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1352. update_software_endstops(axis);
  1353. if (axis == Z_AXIS) {
  1354. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1355. #if DISABLED(Z_MIN_PROBE_ENDSTOP)
  1356. current_position[Z_AXIS] -= zprobe_zoffset;
  1357. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1358. if (DEBUGGING(LEVELING)) {
  1359. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1360. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1361. }
  1362. #endif
  1363. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1364. if (DEBUGGING(LEVELING))
  1365. SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1366. #endif
  1367. #endif
  1368. }
  1369. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1370. if (DEBUGGING(LEVELING)) {
  1371. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1372. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1373. DEBUG_POS("", current_position);
  1374. }
  1375. #endif
  1376. }
  1377. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1378. if (DEBUGGING(LEVELING)) {
  1379. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1380. SERIAL_ECHOLNPGM(")");
  1381. }
  1382. #endif
  1383. axis_known_position[axis] = axis_homed[axis] = true;
  1384. }
  1385. /**
  1386. * Some planner shorthand inline functions
  1387. */
  1388. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1389. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1390. int hbd = homing_bump_divisor[axis];
  1391. if (hbd < 1) {
  1392. hbd = 10;
  1393. SERIAL_ECHO_START;
  1394. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1395. }
  1396. return homing_feedrate_mm_s[axis] / hbd;
  1397. }
  1398. //
  1399. // line_to_current_position
  1400. // Move the planner to the current position from wherever it last moved
  1401. // (or from wherever it has been told it is located).
  1402. //
  1403. inline void line_to_current_position() {
  1404. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1405. }
  1406. inline void line_to_z(float zPosition) {
  1407. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1408. }
  1409. //
  1410. // line_to_destination
  1411. // Move the planner, not necessarily synced with current_position
  1412. //
  1413. inline void line_to_destination(float fr_mm_s) {
  1414. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1415. }
  1416. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1417. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1418. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1419. #if ENABLED(DELTA)
  1420. /**
  1421. * Calculate delta, start a line, and set current_position to destination
  1422. */
  1423. void prepare_move_to_destination_raw() {
  1424. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1425. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1426. #endif
  1427. refresh_cmd_timeout();
  1428. inverse_kinematics(destination);
  1429. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMS_SCALED(feedrate_mm_s), active_extruder);
  1430. set_current_to_destination();
  1431. }
  1432. #endif
  1433. /**
  1434. * Plan a move to (X, Y, Z) and set the current_position
  1435. * The final current_position may not be the one that was requested
  1436. */
  1437. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1438. float old_feedrate_mm_s = feedrate_mm_s;
  1439. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1440. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1441. #endif
  1442. #if ENABLED(DELTA)
  1443. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1444. set_destination_to_current(); // sync destination at the start
  1445. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1446. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1447. #endif
  1448. // when in the danger zone
  1449. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1450. if (z > delta_clip_start_height) { // staying in the danger zone
  1451. destination[X_AXIS] = x; // move directly (uninterpolated)
  1452. destination[Y_AXIS] = y;
  1453. destination[Z_AXIS] = z;
  1454. prepare_move_to_destination_raw(); // set_current_to_destination
  1455. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1456. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1457. #endif
  1458. return;
  1459. }
  1460. else {
  1461. destination[Z_AXIS] = delta_clip_start_height;
  1462. prepare_move_to_destination_raw(); // set_current_to_destination
  1463. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1464. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1465. #endif
  1466. }
  1467. }
  1468. if (z > current_position[Z_AXIS]) { // raising?
  1469. destination[Z_AXIS] = z;
  1470. prepare_move_to_destination_raw(); // set_current_to_destination
  1471. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1472. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1473. #endif
  1474. }
  1475. destination[X_AXIS] = x;
  1476. destination[Y_AXIS] = y;
  1477. prepare_move_to_destination(); // set_current_to_destination
  1478. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1479. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1480. #endif
  1481. if (z < current_position[Z_AXIS]) { // lowering?
  1482. destination[Z_AXIS] = z;
  1483. prepare_move_to_destination_raw(); // set_current_to_destination
  1484. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1485. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1486. #endif
  1487. }
  1488. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1489. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1490. #endif
  1491. #else
  1492. // If Z needs to raise, do it before moving XY
  1493. if (current_position[Z_AXIS] < z) {
  1494. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1495. current_position[Z_AXIS] = z;
  1496. line_to_current_position();
  1497. }
  1498. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1499. current_position[X_AXIS] = x;
  1500. current_position[Y_AXIS] = y;
  1501. line_to_current_position();
  1502. // If Z needs to lower, do it after moving XY
  1503. if (current_position[Z_AXIS] > z) {
  1504. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1505. current_position[Z_AXIS] = z;
  1506. line_to_current_position();
  1507. }
  1508. #endif
  1509. stepper.synchronize();
  1510. feedrate_mm_s = old_feedrate_mm_s;
  1511. }
  1512. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1513. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1514. }
  1515. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1516. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1517. }
  1518. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1519. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1520. }
  1521. //
  1522. // Prepare to do endstop or probe moves
  1523. // with custom feedrates.
  1524. //
  1525. // - Save current feedrates
  1526. // - Reset the rate multiplier
  1527. // - Reset the command timeout
  1528. // - Enable the endstops (for endstop moves)
  1529. //
  1530. static void setup_for_endstop_or_probe_move() {
  1531. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1532. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1533. #endif
  1534. saved_feedrate_mm_s = feedrate_mm_s;
  1535. saved_feedrate_percentage = feedrate_percentage;
  1536. feedrate_percentage = 100;
  1537. refresh_cmd_timeout();
  1538. }
  1539. static void clean_up_after_endstop_or_probe_move() {
  1540. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1541. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1542. #endif
  1543. feedrate_mm_s = saved_feedrate_mm_s;
  1544. feedrate_percentage = saved_feedrate_percentage;
  1545. refresh_cmd_timeout();
  1546. }
  1547. #if HAS_BED_PROBE
  1548. /**
  1549. * Raise Z to a minimum height to make room for a probe to move
  1550. */
  1551. inline void do_probe_raise(float z_raise) {
  1552. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1553. if (DEBUGGING(LEVELING)) {
  1554. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1555. SERIAL_ECHOLNPGM(")");
  1556. }
  1557. #endif
  1558. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1559. if (z_dest > current_position[Z_AXIS])
  1560. do_blocking_move_to_z(z_dest);
  1561. }
  1562. #endif //HAS_BED_PROBE
  1563. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1564. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1565. const bool xx = x && !axis_homed[X_AXIS],
  1566. yy = y && !axis_homed[Y_AXIS],
  1567. zz = z && !axis_homed[Z_AXIS];
  1568. if (xx || yy || zz) {
  1569. SERIAL_ECHO_START;
  1570. SERIAL_ECHOPGM(MSG_HOME " ");
  1571. if (xx) SERIAL_ECHOPGM(MSG_X);
  1572. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1573. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1574. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1575. #if ENABLED(ULTRA_LCD)
  1576. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1577. strcat_P(message, PSTR(MSG_HOME " "));
  1578. if (xx) strcat_P(message, PSTR(MSG_X));
  1579. if (yy) strcat_P(message, PSTR(MSG_Y));
  1580. if (zz) strcat_P(message, PSTR(MSG_Z));
  1581. strcat_P(message, PSTR(" " MSG_FIRST));
  1582. lcd_setstatus(message);
  1583. #endif
  1584. return true;
  1585. }
  1586. return false;
  1587. }
  1588. #endif
  1589. #if ENABLED(Z_PROBE_SLED)
  1590. #ifndef SLED_DOCKING_OFFSET
  1591. #define SLED_DOCKING_OFFSET 0
  1592. #endif
  1593. /**
  1594. * Method to dock/undock a sled designed by Charles Bell.
  1595. *
  1596. * stow[in] If false, move to MAX_X and engage the solenoid
  1597. * If true, move to MAX_X and release the solenoid
  1598. */
  1599. static void dock_sled(bool stow) {
  1600. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1601. if (DEBUGGING(LEVELING)) {
  1602. SERIAL_ECHOPAIR("dock_sled(", stow);
  1603. SERIAL_ECHOLNPGM(")");
  1604. }
  1605. #endif
  1606. // Dock sled a bit closer to ensure proper capturing
  1607. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1608. #if PIN_EXISTS(SLED)
  1609. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1610. #endif
  1611. }
  1612. #endif // Z_PROBE_SLED
  1613. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1614. void run_deploy_moves_script() {
  1615. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1616. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1617. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1618. #endif
  1619. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1620. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1621. #endif
  1622. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1623. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1624. #endif
  1625. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1626. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1627. #endif
  1628. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1629. #endif
  1630. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1631. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1632. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1633. #endif
  1634. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1635. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1636. #endif
  1637. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1638. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1639. #endif
  1640. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1641. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1642. #endif
  1643. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1644. #endif
  1645. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1646. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1647. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1648. #endif
  1649. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1650. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1651. #endif
  1652. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1653. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1654. #endif
  1655. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1656. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1657. #endif
  1658. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1659. #endif
  1660. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1661. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1662. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1663. #endif
  1664. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1665. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1666. #endif
  1667. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1668. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1669. #endif
  1670. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1671. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1672. #endif
  1673. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1674. #endif
  1675. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1676. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1677. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1678. #endif
  1679. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1680. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1681. #endif
  1682. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1683. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1684. #endif
  1685. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1686. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1687. #endif
  1688. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1689. #endif
  1690. }
  1691. void run_stow_moves_script() {
  1692. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1693. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1694. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1695. #endif
  1696. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1697. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1698. #endif
  1699. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1700. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1701. #endif
  1702. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1703. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1704. #endif
  1705. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1706. #endif
  1707. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1708. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1709. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1710. #endif
  1711. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1712. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1713. #endif
  1714. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1715. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1716. #endif
  1717. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1718. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1719. #endif
  1720. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1721. #endif
  1722. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1723. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1724. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1725. #endif
  1726. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1727. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1728. #endif
  1729. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1730. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1731. #endif
  1732. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1733. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1734. #endif
  1735. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1736. #endif
  1737. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1738. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1739. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1740. #endif
  1741. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1742. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1743. #endif
  1744. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1745. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1746. #endif
  1747. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1748. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1749. #endif
  1750. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1751. #endif
  1752. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1753. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1754. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1755. #endif
  1756. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1757. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1758. #endif
  1759. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1760. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1761. #endif
  1762. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1763. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1764. #endif
  1765. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1766. #endif
  1767. }
  1768. #endif
  1769. #if HAS_BED_PROBE
  1770. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1771. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1772. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1773. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1774. #else
  1775. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1776. #endif
  1777. #endif
  1778. #define DEPLOY_PROBE() set_probe_deployed( true )
  1779. #define STOW_PROBE() set_probe_deployed( false )
  1780. // returns false for ok and true for failure
  1781. static bool set_probe_deployed(bool deploy) {
  1782. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1783. if (DEBUGGING(LEVELING)) {
  1784. DEBUG_POS("set_probe_deployed", current_position);
  1785. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1786. }
  1787. #endif
  1788. if (endstops.z_probe_enabled == deploy) return false;
  1789. // Make room for probe
  1790. do_probe_raise(_Z_PROBE_DEPLOY_HEIGHT);
  1791. #if ENABLED(Z_PROBE_SLED)
  1792. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1793. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1794. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1795. #endif
  1796. float oldXpos = current_position[X_AXIS]; // save x position
  1797. float oldYpos = current_position[Y_AXIS]; // save y position
  1798. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1799. // If endstop is already false, the Z probe is deployed
  1800. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1801. // Would a goto be less ugly?
  1802. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1803. // for a triggered when stowed manual probe.
  1804. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1805. // otherwise an Allen-Key probe can't be stowed.
  1806. #endif
  1807. #if ENABLED(Z_PROBE_SLED)
  1808. dock_sled(!deploy);
  1809. #elif HAS_Z_SERVO_ENDSTOP
  1810. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1811. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1812. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1813. #endif
  1814. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1815. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1816. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1817. if (IsRunning()) {
  1818. SERIAL_ERROR_START;
  1819. SERIAL_ERRORLNPGM("Z-Probe failed");
  1820. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1821. }
  1822. stop();
  1823. return true;
  1824. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1825. #endif
  1826. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1827. endstops.enable_z_probe(deploy);
  1828. return false;
  1829. }
  1830. static void do_probe_move(float z, float fr_mm_m) {
  1831. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1832. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1833. #endif
  1834. // Move down until probe triggered
  1835. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1836. // Clear endstop flags
  1837. endstops.hit_on_purpose();
  1838. // Get Z where the steppers were interrupted
  1839. set_current_from_steppers_for_axis(Z_AXIS);
  1840. // Tell the planner where we actually are
  1841. SYNC_PLAN_POSITION_KINEMATIC();
  1842. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1843. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1844. #endif
  1845. }
  1846. // Do a single Z probe and return with current_position[Z_AXIS]
  1847. // at the height where the probe triggered.
  1848. static float run_z_probe() {
  1849. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1850. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1851. #endif
  1852. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1853. refresh_cmd_timeout();
  1854. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1855. planner.bed_level_matrix.set_to_identity();
  1856. #endif
  1857. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1858. // Do a first probe at the fast speed
  1859. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1860. // move up by the bump distance
  1861. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1862. #else
  1863. // If the nozzle is above the travel height then
  1864. // move down quickly before doing the slow probe
  1865. float z = LOGICAL_Z_POSITION(Z_PROBE_TRAVEL_HEIGHT);
  1866. if (z < current_position[Z_AXIS])
  1867. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1868. #endif
  1869. // move down slowly to find bed
  1870. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1871. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1872. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1873. #endif
  1874. return current_position[Z_AXIS];
  1875. }
  1876. //
  1877. // - Move to the given XY
  1878. // - Deploy the probe, if not already deployed
  1879. // - Probe the bed, get the Z position
  1880. // - Depending on the 'stow' flag
  1881. // - Stow the probe, or
  1882. // - Raise to the BETWEEN height
  1883. // - Return the probed Z position
  1884. //
  1885. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1886. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1887. if (DEBUGGING(LEVELING)) {
  1888. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1889. SERIAL_ECHOPAIR(", ", y);
  1890. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1891. SERIAL_ECHOLNPGM(")");
  1892. DEBUG_POS("", current_position);
  1893. }
  1894. #endif
  1895. float old_feedrate_mm_s = feedrate_mm_s;
  1896. // Ensure a minimum height before moving the probe
  1897. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1898. // Move to the XY where we shall probe
  1899. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1900. if (DEBUGGING(LEVELING)) {
  1901. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1902. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1903. SERIAL_ECHOLNPGM(")");
  1904. }
  1905. #endif
  1906. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1907. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1908. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1909. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1910. #endif
  1911. if (DEPLOY_PROBE()) return NAN;
  1912. float measured_z = run_z_probe();
  1913. if (stow) {
  1914. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1915. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1916. #endif
  1917. if (STOW_PROBE()) return NAN;
  1918. }
  1919. else {
  1920. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1921. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1922. #endif
  1923. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1924. }
  1925. if (verbose_level > 2) {
  1926. SERIAL_PROTOCOLPGM("Bed X: ");
  1927. SERIAL_PROTOCOL_F(x, 3);
  1928. SERIAL_PROTOCOLPGM(" Y: ");
  1929. SERIAL_PROTOCOL_F(y, 3);
  1930. SERIAL_PROTOCOLPGM(" Z: ");
  1931. SERIAL_PROTOCOL_F(measured_z, 3);
  1932. SERIAL_EOL;
  1933. }
  1934. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1935. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1936. #endif
  1937. feedrate_mm_s = old_feedrate_mm_s;
  1938. return measured_z;
  1939. }
  1940. #endif // HAS_BED_PROBE
  1941. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1942. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1943. #if DISABLED(DELTA)
  1944. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1945. //planner.bed_level_matrix.debug("bed level before");
  1946. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1947. planner.bed_level_matrix.set_to_identity();
  1948. if (DEBUGGING(LEVELING)) {
  1949. vector_3 uncorrected_position = planner.adjusted_position();
  1950. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1951. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1952. }
  1953. #endif
  1954. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1955. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1956. vector_3 corrected_position = planner.adjusted_position();
  1957. current_position[X_AXIS] = corrected_position.x;
  1958. current_position[Y_AXIS] = corrected_position.y;
  1959. current_position[Z_AXIS] = corrected_position.z;
  1960. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1961. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1962. #endif
  1963. SYNC_PLAN_POSITION_KINEMATIC();
  1964. }
  1965. #endif // !DELTA
  1966. #else // !AUTO_BED_LEVELING_GRID
  1967. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1968. planner.bed_level_matrix.set_to_identity();
  1969. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1970. if (DEBUGGING(LEVELING)) {
  1971. vector_3 uncorrected_position = planner.adjusted_position();
  1972. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1973. }
  1974. #endif
  1975. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1976. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1977. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1978. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1979. if (planeNormal.z < 0) {
  1980. planeNormal.x = -planeNormal.x;
  1981. planeNormal.y = -planeNormal.y;
  1982. planeNormal.z = -planeNormal.z;
  1983. }
  1984. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1985. vector_3 corrected_position = planner.adjusted_position();
  1986. current_position[X_AXIS] = corrected_position.x;
  1987. current_position[Y_AXIS] = corrected_position.y;
  1988. current_position[Z_AXIS] = corrected_position.z;
  1989. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1990. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1991. #endif
  1992. SYNC_PLAN_POSITION_KINEMATIC();
  1993. }
  1994. #endif // !AUTO_BED_LEVELING_GRID
  1995. #if ENABLED(DELTA)
  1996. /**
  1997. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1998. */
  1999. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  2000. if (bed_level[x][y] != 0.0) {
  2001. return; // Don't overwrite good values.
  2002. }
  2003. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  2004. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  2005. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  2006. float median = c; // Median is robust (ignores outliers).
  2007. if (a < b) {
  2008. if (b < c) median = b;
  2009. if (c < a) median = a;
  2010. }
  2011. else { // b <= a
  2012. if (c < b) median = b;
  2013. if (a < c) median = a;
  2014. }
  2015. bed_level[x][y] = median;
  2016. }
  2017. /**
  2018. * Fill in the unprobed points (corners of circular print surface)
  2019. * using linear extrapolation, away from the center.
  2020. */
  2021. static void extrapolate_unprobed_bed_level() {
  2022. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  2023. for (int y = 0; y <= half; y++) {
  2024. for (int x = 0; x <= half; x++) {
  2025. if (x + y < 3) continue;
  2026. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  2027. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  2028. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  2029. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  2030. }
  2031. }
  2032. }
  2033. /**
  2034. * Print calibration results for plotting or manual frame adjustment.
  2035. */
  2036. static void print_bed_level() {
  2037. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  2038. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  2039. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  2040. SERIAL_PROTOCOLCHAR(' ');
  2041. }
  2042. SERIAL_EOL;
  2043. }
  2044. }
  2045. /**
  2046. * Reset calibration results to zero.
  2047. */
  2048. void reset_bed_level() {
  2049. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2050. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2051. #endif
  2052. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  2053. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  2054. bed_level[x][y] = 0.0;
  2055. }
  2056. }
  2057. }
  2058. #endif // DELTA
  2059. #endif // AUTO_BED_LEVELING_FEATURE
  2060. /**
  2061. * Home an individual axis
  2062. */
  2063. static void do_homing_move(AxisEnum axis, float where, float fr_mm_s = 0.0) {
  2064. current_position[axis] = 0;
  2065. sync_plan_position();
  2066. current_position[axis] = where;
  2067. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2068. stepper.synchronize();
  2069. endstops.hit_on_purpose();
  2070. }
  2071. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2072. static void homeaxis(AxisEnum axis) {
  2073. #define HOMEAXIS_DO(LETTER) \
  2074. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  2075. if (!(axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : false)) return;
  2076. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2077. if (DEBUGGING(LEVELING)) {
  2078. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2079. SERIAL_ECHOLNPGM(")");
  2080. }
  2081. #endif
  2082. int axis_home_dir =
  2083. #if ENABLED(DUAL_X_CARRIAGE)
  2084. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2085. #endif
  2086. home_dir(axis);
  2087. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2088. #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2089. if (axis == Z_AXIS) {
  2090. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2091. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2092. #endif
  2093. if (DEPLOY_PROBE()) return;
  2094. }
  2095. #endif
  2096. // Set a flag for Z motor locking
  2097. #if ENABLED(Z_DUAL_ENDSTOPS)
  2098. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2099. #endif
  2100. // Move towards the endstop until an endstop is triggered
  2101. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2102. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2103. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 1st Home", current_position[axis]);
  2104. #endif
  2105. // Move away from the endstop by the axis HOME_BUMP_MM
  2106. do_homing_move(axis, -home_bump_mm(axis) * axis_home_dir);
  2107. // Move slowly towards the endstop until triggered
  2108. do_homing_move(axis, 2 * home_bump_mm(axis) * axis_home_dir, get_homing_bump_feedrate(axis));
  2109. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2110. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 2nd Home", current_position[axis]);
  2111. #endif
  2112. #if ENABLED(Z_DUAL_ENDSTOPS)
  2113. if (axis == Z_AXIS) {
  2114. float adj = fabs(z_endstop_adj);
  2115. bool lockZ1;
  2116. if (axis_home_dir > 0) {
  2117. adj = -adj;
  2118. lockZ1 = (z_endstop_adj > 0);
  2119. }
  2120. else
  2121. lockZ1 = (z_endstop_adj < 0);
  2122. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2123. // Move to the adjusted endstop height
  2124. do_homing_move(axis, adj);
  2125. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2126. stepper.set_homing_flag(false);
  2127. } // Z_AXIS
  2128. #endif
  2129. // Delta has already moved all three towers up in G28
  2130. // so here it re-homes each tower in turn.
  2131. // Delta homing treats the axes as normal linear axes.
  2132. #if ENABLED(DELTA)
  2133. // retrace by the amount specified in endstop_adj
  2134. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2135. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2136. if (DEBUGGING(LEVELING)) {
  2137. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis] * Z_HOME_DIR);
  2138. DEBUG_POS("", current_position);
  2139. }
  2140. #endif
  2141. do_homing_move(axis, endstop_adj[axis]);
  2142. }
  2143. #else
  2144. // Set the axis position to its home position (plus home offsets)
  2145. set_axis_is_at_home(axis);
  2146. sync_plan_position();
  2147. destination[axis] = current_position[axis];
  2148. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2149. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2150. #endif
  2151. #endif
  2152. // Put away the Z probe
  2153. #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2154. if (axis == Z_AXIS) {
  2155. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2156. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2157. #endif
  2158. if (STOW_PROBE()) return;
  2159. }
  2160. #endif
  2161. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2162. if (DEBUGGING(LEVELING)) {
  2163. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2164. SERIAL_ECHOLNPGM(")");
  2165. }
  2166. #endif
  2167. } // homeaxis()
  2168. #if ENABLED(FWRETRACT)
  2169. void retract(bool retracting, bool swapping = false) {
  2170. if (retracting == retracted[active_extruder]) return;
  2171. float old_feedrate_mm_s = feedrate_mm_s;
  2172. set_destination_to_current();
  2173. if (retracting) {
  2174. feedrate_mm_s = retract_feedrate_mm_s;
  2175. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2176. sync_plan_position_e();
  2177. prepare_move_to_destination();
  2178. if (retract_zlift > 0.01) {
  2179. current_position[Z_AXIS] -= retract_zlift;
  2180. SYNC_PLAN_POSITION_KINEMATIC();
  2181. prepare_move_to_destination();
  2182. }
  2183. }
  2184. else {
  2185. if (retract_zlift > 0.01) {
  2186. current_position[Z_AXIS] += retract_zlift;
  2187. SYNC_PLAN_POSITION_KINEMATIC();
  2188. }
  2189. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2190. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2191. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2192. sync_plan_position_e();
  2193. prepare_move_to_destination();
  2194. }
  2195. feedrate_mm_s = old_feedrate_mm_s;
  2196. retracted[active_extruder] = retracting;
  2197. } // retract()
  2198. #endif // FWRETRACT
  2199. #if ENABLED(MIXING_EXTRUDER)
  2200. void normalize_mix() {
  2201. float mix_total = 0.0;
  2202. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2203. float v = mixing_factor[i];
  2204. if (v < 0) v = mixing_factor[i] = 0;
  2205. mix_total += v;
  2206. }
  2207. // Scale all values if they don't add up to ~1.0
  2208. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2209. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2210. float mix_scale = 1.0 / mix_total;
  2211. for (int i = 0; i < MIXING_STEPPERS; i++)
  2212. mixing_factor[i] *= mix_scale;
  2213. }
  2214. }
  2215. #if ENABLED(DIRECT_MIXING_IN_G1)
  2216. // Get mixing parameters from the GCode
  2217. // Factors that are left out are set to 0
  2218. // The total "must" be 1.0 (but it will be normalized)
  2219. void gcode_get_mix() {
  2220. const char* mixing_codes = "ABCDHI";
  2221. for (int i = 0; i < MIXING_STEPPERS; i++)
  2222. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2223. normalize_mix();
  2224. }
  2225. #endif
  2226. #endif
  2227. /**
  2228. * ***************************************************************************
  2229. * ***************************** G-CODE HANDLING *****************************
  2230. * ***************************************************************************
  2231. */
  2232. /**
  2233. * Set XYZE destination and feedrate from the current GCode command
  2234. *
  2235. * - Set destination from included axis codes
  2236. * - Set to current for missing axis codes
  2237. * - Set the feedrate, if included
  2238. */
  2239. void gcode_get_destination() {
  2240. LOOP_XYZE(i) {
  2241. if (code_seen(axis_codes[i]))
  2242. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2243. else
  2244. destination[i] = current_position[i];
  2245. }
  2246. if (code_seen('F') && code_value_linear_units() > 0.0)
  2247. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2248. #if ENABLED(PRINTCOUNTER)
  2249. if (!DEBUGGING(DRYRUN))
  2250. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2251. #endif
  2252. // Get ABCDHI mixing factors
  2253. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2254. gcode_get_mix();
  2255. #endif
  2256. }
  2257. void unknown_command_error() {
  2258. SERIAL_ECHO_START;
  2259. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2260. SERIAL_ECHO(current_command);
  2261. SERIAL_ECHOLNPGM("\"");
  2262. }
  2263. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2264. /**
  2265. * Output a "busy" message at regular intervals
  2266. * while the machine is not accepting commands.
  2267. */
  2268. void host_keepalive() {
  2269. millis_t ms = millis();
  2270. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2271. if (PENDING(ms, next_busy_signal_ms)) return;
  2272. switch (busy_state) {
  2273. case IN_HANDLER:
  2274. case IN_PROCESS:
  2275. SERIAL_ECHO_START;
  2276. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2277. break;
  2278. case PAUSED_FOR_USER:
  2279. SERIAL_ECHO_START;
  2280. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2281. break;
  2282. case PAUSED_FOR_INPUT:
  2283. SERIAL_ECHO_START;
  2284. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2285. break;
  2286. default:
  2287. break;
  2288. }
  2289. }
  2290. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2291. }
  2292. #endif //HOST_KEEPALIVE_FEATURE
  2293. /**
  2294. * G0, G1: Coordinated movement of X Y Z E axes
  2295. */
  2296. inline void gcode_G0_G1() {
  2297. if (IsRunning()) {
  2298. gcode_get_destination(); // For X Y Z E F
  2299. #if ENABLED(FWRETRACT)
  2300. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2301. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2302. // Is this move an attempt to retract or recover?
  2303. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2304. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2305. sync_plan_position_e(); // AND from the planner
  2306. retract(!retracted[active_extruder]);
  2307. return;
  2308. }
  2309. }
  2310. #endif //FWRETRACT
  2311. prepare_move_to_destination();
  2312. }
  2313. }
  2314. /**
  2315. * G2: Clockwise Arc
  2316. * G3: Counterclockwise Arc
  2317. */
  2318. #if ENABLED(ARC_SUPPORT)
  2319. inline void gcode_G2_G3(bool clockwise) {
  2320. if (IsRunning()) {
  2321. #if ENABLED(SF_ARC_FIX)
  2322. bool relative_mode_backup = relative_mode;
  2323. relative_mode = true;
  2324. #endif
  2325. gcode_get_destination();
  2326. #if ENABLED(SF_ARC_FIX)
  2327. relative_mode = relative_mode_backup;
  2328. #endif
  2329. // Center of arc as offset from current_position
  2330. float arc_offset[2] = {
  2331. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2332. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2333. };
  2334. // Send an arc to the planner
  2335. plan_arc(destination, arc_offset, clockwise);
  2336. refresh_cmd_timeout();
  2337. }
  2338. }
  2339. #endif
  2340. /**
  2341. * G4: Dwell S<seconds> or P<milliseconds>
  2342. */
  2343. inline void gcode_G4() {
  2344. millis_t dwell_ms = 0;
  2345. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2346. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2347. stepper.synchronize();
  2348. refresh_cmd_timeout();
  2349. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2350. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2351. while (PENDING(millis(), dwell_ms)) idle();
  2352. }
  2353. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2354. /**
  2355. * Parameters interpreted according to:
  2356. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2357. * However I, J omission is not supported at this point; all
  2358. * parameters can be omitted and default to zero.
  2359. */
  2360. /**
  2361. * G5: Cubic B-spline
  2362. */
  2363. inline void gcode_G5() {
  2364. if (IsRunning()) {
  2365. gcode_get_destination();
  2366. float offset[] = {
  2367. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2368. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2369. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2370. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2371. };
  2372. plan_cubic_move(offset);
  2373. }
  2374. }
  2375. #endif // BEZIER_CURVE_SUPPORT
  2376. #if ENABLED(FWRETRACT)
  2377. /**
  2378. * G10 - Retract filament according to settings of M207
  2379. * G11 - Recover filament according to settings of M208
  2380. */
  2381. inline void gcode_G10_G11(bool doRetract=false) {
  2382. #if EXTRUDERS > 1
  2383. if (doRetract) {
  2384. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2385. }
  2386. #endif
  2387. retract(doRetract
  2388. #if EXTRUDERS > 1
  2389. , retracted_swap[active_extruder]
  2390. #endif
  2391. );
  2392. }
  2393. #endif //FWRETRACT
  2394. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2395. /**
  2396. * G12: Clean the nozzle
  2397. */
  2398. inline void gcode_G12() {
  2399. // Don't allow nozzle cleaning without homing first
  2400. if (axis_unhomed_error(true, true, true)) { return; }
  2401. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2402. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2403. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2404. Nozzle::clean(pattern, strokes, objects);
  2405. }
  2406. #endif
  2407. #if ENABLED(INCH_MODE_SUPPORT)
  2408. /**
  2409. * G20: Set input mode to inches
  2410. */
  2411. inline void gcode_G20() {
  2412. set_input_linear_units(LINEARUNIT_INCH);
  2413. }
  2414. /**
  2415. * G21: Set input mode to millimeters
  2416. */
  2417. inline void gcode_G21() {
  2418. set_input_linear_units(LINEARUNIT_MM);
  2419. }
  2420. #endif
  2421. #if ENABLED(NOZZLE_PARK_FEATURE)
  2422. /**
  2423. * G27: Park the nozzle
  2424. */
  2425. inline void gcode_G27() {
  2426. // Don't allow nozzle parking without homing first
  2427. if (axis_unhomed_error(true, true, true)) { return; }
  2428. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2429. Nozzle::park(z_action);
  2430. }
  2431. #endif // NOZZLE_PARK_FEATURE
  2432. #if ENABLED(QUICK_HOME)
  2433. static void quick_home_xy() {
  2434. // Pretend the current position is 0,0
  2435. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2436. sync_plan_position();
  2437. int x_axis_home_dir =
  2438. #if ENABLED(DUAL_X_CARRIAGE)
  2439. x_home_dir(active_extruder)
  2440. #else
  2441. home_dir(X_AXIS)
  2442. #endif
  2443. ;
  2444. float mlx = max_length(X_AXIS),
  2445. mly = max_length(Y_AXIS),
  2446. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2447. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2448. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2449. endstops.hit_on_purpose(); // clear endstop hit flags
  2450. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2451. }
  2452. #endif // QUICK_HOME
  2453. /**
  2454. * G28: Home all axes according to settings
  2455. *
  2456. * Parameters
  2457. *
  2458. * None Home to all axes with no parameters.
  2459. * With QUICK_HOME enabled XY will home together, then Z.
  2460. *
  2461. * Cartesian parameters
  2462. *
  2463. * X Home to the X endstop
  2464. * Y Home to the Y endstop
  2465. * Z Home to the Z endstop
  2466. *
  2467. */
  2468. inline void gcode_G28() {
  2469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2470. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28");
  2471. #endif
  2472. // Wait for planner moves to finish!
  2473. stepper.synchronize();
  2474. // For auto bed leveling, clear the level matrix
  2475. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2476. planner.bed_level_matrix.set_to_identity();
  2477. #if ENABLED(DELTA)
  2478. reset_bed_level();
  2479. #endif
  2480. #endif
  2481. // Always home with tool 0 active
  2482. #if HOTENDS > 1
  2483. uint8_t old_tool_index = active_extruder;
  2484. tool_change(0, 0, true);
  2485. #endif
  2486. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2487. extruder_duplication_enabled = false;
  2488. #endif
  2489. /**
  2490. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2491. * on again when homing all axis
  2492. */
  2493. #if ENABLED(MESH_BED_LEVELING)
  2494. float pre_home_z = MESH_HOME_SEARCH_Z;
  2495. if (mbl.active()) {
  2496. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2497. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2498. #endif
  2499. // Save known Z position if already homed
  2500. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2501. pre_home_z = current_position[Z_AXIS];
  2502. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2503. }
  2504. mbl.set_active(false);
  2505. current_position[Z_AXIS] = pre_home_z;
  2506. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2507. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2508. #endif
  2509. }
  2510. #endif
  2511. setup_for_endstop_or_probe_move();
  2512. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2513. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2514. #endif
  2515. endstops.enable(true); // Enable endstops for next homing move
  2516. #if ENABLED(DELTA)
  2517. /**
  2518. * A delta can only safely home all axes at the same time
  2519. * This is like quick_home_xy() but for 3 towers.
  2520. */
  2521. // Init the current position of all carriages to 0,0,0
  2522. memset(current_position, 0, sizeof(current_position));
  2523. sync_plan_position();
  2524. // Move all carriages together linearly until an endstop is hit.
  2525. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2526. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2527. line_to_current_position();
  2528. stepper.synchronize();
  2529. endstops.hit_on_purpose(); // clear endstop hit flags
  2530. // Probably not needed. Double-check this line:
  2531. memset(current_position, 0, sizeof(current_position));
  2532. // At least one carriage has reached the top.
  2533. // Now back off and re-home each carriage separately.
  2534. HOMEAXIS(A);
  2535. HOMEAXIS(B);
  2536. HOMEAXIS(C);
  2537. // Set all carriages to their home positions
  2538. // Do this here all at once for Delta, because
  2539. // XYZ isn't ABC. Applying this per-tower would
  2540. // give the impression that they are the same.
  2541. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2542. SYNC_PLAN_POSITION_KINEMATIC();
  2543. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2544. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2545. #endif
  2546. #else // NOT DELTA
  2547. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2548. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2549. set_destination_to_current();
  2550. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2551. if (home_all_axis || homeZ) {
  2552. HOMEAXIS(Z);
  2553. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2554. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2555. #endif
  2556. }
  2557. #else
  2558. if (home_all_axis || homeX || homeY) {
  2559. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2560. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2561. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2562. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2563. if (DEBUGGING(LEVELING))
  2564. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2565. #endif
  2566. do_blocking_move_to_z(destination[Z_AXIS]);
  2567. }
  2568. }
  2569. #endif
  2570. #if ENABLED(QUICK_HOME)
  2571. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2572. #endif
  2573. #if ENABLED(HOME_Y_BEFORE_X)
  2574. // Home Y
  2575. if (home_all_axis || homeY) {
  2576. HOMEAXIS(Y);
  2577. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2578. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2579. #endif
  2580. }
  2581. #endif
  2582. // Home X
  2583. if (home_all_axis || homeX) {
  2584. #if ENABLED(DUAL_X_CARRIAGE)
  2585. int tmp_extruder = active_extruder;
  2586. active_extruder = !active_extruder;
  2587. HOMEAXIS(X);
  2588. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2589. active_extruder = tmp_extruder;
  2590. HOMEAXIS(X);
  2591. // reset state used by the different modes
  2592. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2593. delayed_move_time = 0;
  2594. active_extruder_parked = true;
  2595. #else
  2596. HOMEAXIS(X);
  2597. #endif
  2598. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2599. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2600. #endif
  2601. }
  2602. #if DISABLED(HOME_Y_BEFORE_X)
  2603. // Home Y
  2604. if (home_all_axis || homeY) {
  2605. HOMEAXIS(Y);
  2606. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2607. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2608. #endif
  2609. }
  2610. #endif
  2611. // Home Z last if homing towards the bed
  2612. #if Z_HOME_DIR < 0
  2613. if (home_all_axis || homeZ) {
  2614. #if ENABLED(Z_SAFE_HOMING)
  2615. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2616. if (DEBUGGING(LEVELING)) {
  2617. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2618. }
  2619. #endif
  2620. if (home_all_axis) {
  2621. /**
  2622. * At this point we already have Z at Z_HOMING_HEIGHT height
  2623. * No need to move Z any more as this height should already be safe
  2624. * enough to reach Z_SAFE_HOMING XY positions.
  2625. * Just make sure the planner is in sync.
  2626. */
  2627. SYNC_PLAN_POSITION_KINEMATIC();
  2628. /**
  2629. * Move the Z probe (or just the nozzle) to the safe homing point
  2630. */
  2631. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2632. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2633. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2634. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2635. if (DEBUGGING(LEVELING)) {
  2636. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2637. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2638. }
  2639. #endif
  2640. // Move in the XY plane
  2641. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2642. }
  2643. // Let's see if X and Y are homed
  2644. if (axis_unhomed_error(true, true, false)) return;
  2645. /**
  2646. * Make sure the Z probe is within the physical limits
  2647. * NOTE: This doesn't necessarily ensure the Z probe is also
  2648. * within the bed!
  2649. */
  2650. float cpx = RAW_CURRENT_POSITION(X_AXIS), cpy = RAW_CURRENT_POSITION(Y_AXIS);
  2651. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2652. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2653. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2654. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2655. // Home the Z axis
  2656. HOMEAXIS(Z);
  2657. }
  2658. else {
  2659. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2660. SERIAL_ECHO_START;
  2661. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2662. }
  2663. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2664. if (DEBUGGING(LEVELING)) {
  2665. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2666. }
  2667. #endif
  2668. #else // !Z_SAFE_HOMING
  2669. HOMEAXIS(Z);
  2670. #endif // !Z_SAFE_HOMING
  2671. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2672. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2673. #endif
  2674. } // home_all_axis || homeZ
  2675. #endif // Z_HOME_DIR < 0
  2676. SYNC_PLAN_POSITION_KINEMATIC();
  2677. #endif // !DELTA (gcode_G28)
  2678. endstops.not_homing();
  2679. // Enable mesh leveling again
  2680. #if ENABLED(MESH_BED_LEVELING)
  2681. if (mbl.has_mesh()) {
  2682. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2683. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2684. #endif
  2685. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2686. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2687. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2688. #endif
  2689. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2690. #if Z_HOME_DIR > 0
  2691. + Z_MAX_POS
  2692. #endif
  2693. ;
  2694. SYNC_PLAN_POSITION_KINEMATIC();
  2695. mbl.set_active(true);
  2696. #if ENABLED(MESH_G28_REST_ORIGIN)
  2697. current_position[Z_AXIS] = 0.0;
  2698. set_destination_to_current();
  2699. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  2700. line_to_destination();
  2701. stepper.synchronize();
  2702. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2703. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2704. #endif
  2705. #else
  2706. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2707. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2708. #if Z_HOME_DIR > 0
  2709. + Z_MAX_POS
  2710. #endif
  2711. ;
  2712. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2713. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2714. #endif
  2715. #endif
  2716. }
  2717. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2718. current_position[Z_AXIS] = pre_home_z;
  2719. SYNC_PLAN_POSITION_KINEMATIC();
  2720. mbl.set_active(true);
  2721. current_position[Z_AXIS] = pre_home_z -
  2722. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2723. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2724. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2725. #endif
  2726. }
  2727. }
  2728. #endif
  2729. #if ENABLED(DELTA)
  2730. // move to a height where we can use the full xy-area
  2731. do_blocking_move_to_z(delta_clip_start_height);
  2732. #endif
  2733. clean_up_after_endstop_or_probe_move();
  2734. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2735. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2736. #endif
  2737. // Restore the active tool after homing
  2738. #if HOTENDS > 1
  2739. tool_change(old_tool_index, 0, true);
  2740. #endif
  2741. report_current_position();
  2742. }
  2743. #if HAS_PROBING_PROCEDURE
  2744. void out_of_range_error(const char* p_edge) {
  2745. SERIAL_PROTOCOLPGM("?Probe ");
  2746. serialprintPGM(p_edge);
  2747. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2748. }
  2749. #endif
  2750. #if ENABLED(MESH_BED_LEVELING)
  2751. inline void _mbl_goto_xy(float x, float y) {
  2752. float old_feedrate_mm_s = feedrate_mm_s;
  2753. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2754. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2755. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2756. + Z_PROBE_TRAVEL_HEIGHT
  2757. #elif Z_HOMING_HEIGHT > 0
  2758. + Z_HOMING_HEIGHT
  2759. #endif
  2760. ;
  2761. line_to_current_position();
  2762. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2763. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2764. line_to_current_position();
  2765. #if Z_PROBE_TRAVEL_HEIGHT > 0 || Z_HOMING_HEIGHT > 0
  2766. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2767. line_to_current_position();
  2768. #endif
  2769. feedrate_mm_s = old_feedrate_mm_s;
  2770. stepper.synchronize();
  2771. }
  2772. /**
  2773. * G29: Mesh-based Z probe, probes a grid and produces a
  2774. * mesh to compensate for variable bed height
  2775. *
  2776. * Parameters With MESH_BED_LEVELING:
  2777. *
  2778. * S0 Produce a mesh report
  2779. * S1 Start probing mesh points
  2780. * S2 Probe the next mesh point
  2781. * S3 Xn Yn Zn.nn Manually modify a single point
  2782. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2783. * S5 Reset and disable mesh
  2784. *
  2785. * The S0 report the points as below
  2786. *
  2787. * +----> X-axis 1-n
  2788. * |
  2789. * |
  2790. * v Y-axis 1-n
  2791. *
  2792. */
  2793. inline void gcode_G29() {
  2794. static int probe_point = -1;
  2795. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2796. if (state < 0 || state > 5) {
  2797. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2798. return;
  2799. }
  2800. int8_t px, py;
  2801. switch (state) {
  2802. case MeshReport:
  2803. if (mbl.has_mesh()) {
  2804. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2805. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2806. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2807. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2808. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2809. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2810. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2811. SERIAL_PROTOCOLPGM(" ");
  2812. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2813. }
  2814. SERIAL_EOL;
  2815. }
  2816. }
  2817. else
  2818. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2819. break;
  2820. case MeshStart:
  2821. mbl.reset();
  2822. probe_point = 0;
  2823. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2824. break;
  2825. case MeshNext:
  2826. if (probe_point < 0) {
  2827. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2828. return;
  2829. }
  2830. // For each G29 S2...
  2831. if (probe_point == 0) {
  2832. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2833. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2834. #if Z_HOME_DIR > 0
  2835. + Z_MAX_POS
  2836. #endif
  2837. ;
  2838. SYNC_PLAN_POSITION_KINEMATIC();
  2839. }
  2840. else {
  2841. // For G29 S2 after adjusting Z.
  2842. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2843. }
  2844. // If there's another point to sample, move there with optional lift.
  2845. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2846. mbl.zigzag(probe_point, px, py);
  2847. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2848. probe_point++;
  2849. }
  2850. else {
  2851. // One last "return to the bed" (as originally coded) at completion
  2852. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2853. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2854. + Z_PROBE_TRAVEL_HEIGHT
  2855. #elif Z_HOMING_HEIGHT > 0
  2856. + Z_HOMING_HEIGHT
  2857. #endif
  2858. ;
  2859. line_to_current_position();
  2860. stepper.synchronize();
  2861. // After recording the last point, activate the mbl and home
  2862. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2863. probe_point = -1;
  2864. mbl.set_has_mesh(true);
  2865. enqueue_and_echo_commands_P(PSTR("G28"));
  2866. }
  2867. break;
  2868. case MeshSet:
  2869. if (code_seen('X')) {
  2870. px = code_value_int() - 1;
  2871. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2872. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2873. return;
  2874. }
  2875. }
  2876. else {
  2877. SERIAL_PROTOCOLLNPGM("X not entered.");
  2878. return;
  2879. }
  2880. if (code_seen('Y')) {
  2881. py = code_value_int() - 1;
  2882. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2883. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2884. return;
  2885. }
  2886. }
  2887. else {
  2888. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2889. return;
  2890. }
  2891. if (code_seen('Z')) {
  2892. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2893. }
  2894. else {
  2895. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2896. return;
  2897. }
  2898. break;
  2899. case MeshSetZOffset:
  2900. if (code_seen('Z')) {
  2901. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2902. }
  2903. else {
  2904. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2905. return;
  2906. }
  2907. break;
  2908. case MeshReset:
  2909. if (mbl.active()) {
  2910. current_position[Z_AXIS] +=
  2911. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2912. mbl.reset();
  2913. SYNC_PLAN_POSITION_KINEMATIC();
  2914. }
  2915. else
  2916. mbl.reset();
  2917. } // switch(state)
  2918. report_current_position();
  2919. }
  2920. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2921. /**
  2922. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2923. * Will fail if the printer has not been homed with G28.
  2924. *
  2925. * Enhanced G29 Auto Bed Leveling Probe Routine
  2926. *
  2927. * Parameters With AUTO_BED_LEVELING_GRID:
  2928. *
  2929. * P Set the size of the grid that will be probed (P x P points).
  2930. * Not supported by non-linear delta printer bed leveling.
  2931. * Example: "G29 P4"
  2932. *
  2933. * S Set the XY travel speed between probe points (in units/min)
  2934. *
  2935. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2936. * or clean the rotation Matrix. Useful to check the topology
  2937. * after a first run of G29.
  2938. *
  2939. * V Set the verbose level (0-4). Example: "G29 V3"
  2940. *
  2941. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2942. * This is useful for manual bed leveling and finding flaws in the bed (to
  2943. * assist with part placement).
  2944. * Not supported by non-linear delta printer bed leveling.
  2945. *
  2946. * F Set the Front limit of the probing grid
  2947. * B Set the Back limit of the probing grid
  2948. * L Set the Left limit of the probing grid
  2949. * R Set the Right limit of the probing grid
  2950. *
  2951. * Global Parameters:
  2952. *
  2953. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2954. * Include "E" to engage/disengage the Z probe for each sample.
  2955. * There's no extra effect if you have a fixed Z probe.
  2956. * Usage: "G29 E" or "G29 e"
  2957. *
  2958. */
  2959. inline void gcode_G29() {
  2960. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2961. if (DEBUGGING(LEVELING)) {
  2962. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2963. DEBUG_POS("", current_position);
  2964. SERIAL_ECHOPGM("Probe: ");
  2965. #if ENABLED(FIX_MOUNTED_PROBE)
  2966. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2967. #elif HAS_Z_SERVO_ENDSTOP
  2968. SERIAL_ECHOLNPGM("SERVO PROBE");
  2969. #elif ENABLED(BLTOUCH)
  2970. SERIAL_ECHOLNPGM("BLTOUCH");
  2971. #elif ENABLED(Z_PROBE_SLED)
  2972. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2973. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2974. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2975. #endif
  2976. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2977. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2978. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2979. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2980. SERIAL_ECHOPGM(" (Right");
  2981. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2982. SERIAL_ECHOPGM(" (Left");
  2983. #endif
  2984. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2985. SERIAL_ECHOPGM("-Back");
  2986. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2987. SERIAL_ECHOPGM("-Front");
  2988. #endif
  2989. if (zprobe_zoffset < 0)
  2990. SERIAL_ECHOPGM(" & Below");
  2991. else if (zprobe_zoffset > 0)
  2992. SERIAL_ECHOPGM(" & Above");
  2993. else
  2994. SERIAL_ECHOPGM(" & Same Z as");
  2995. SERIAL_ECHOLNPGM(" Nozzle)");
  2996. }
  2997. #endif
  2998. // Don't allow auto-leveling without homing first
  2999. if (axis_unhomed_error(true, true, true)) return;
  3000. int verbose_level = code_seen('V') ? code_value_int() : 1;
  3001. if (verbose_level < 0 || verbose_level > 4) {
  3002. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3003. return;
  3004. }
  3005. bool dryrun = code_seen('D');
  3006. bool stow_probe_after_each = code_seen('E');
  3007. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3008. #if DISABLED(DELTA)
  3009. bool do_topography_map = verbose_level > 2 || code_seen('T');
  3010. #endif
  3011. if (verbose_level > 0) {
  3012. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3013. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3014. }
  3015. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  3016. #if DISABLED(DELTA)
  3017. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  3018. if (auto_bed_leveling_grid_points < 2) {
  3019. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  3020. return;
  3021. }
  3022. #endif
  3023. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3024. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  3025. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  3026. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  3027. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3028. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3029. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3030. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3031. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3032. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3033. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3034. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3035. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3036. if (left_out || right_out || front_out || back_out) {
  3037. if (left_out) {
  3038. out_of_range_error(PSTR("(L)eft"));
  3039. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3040. }
  3041. if (right_out) {
  3042. out_of_range_error(PSTR("(R)ight"));
  3043. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3044. }
  3045. if (front_out) {
  3046. out_of_range_error(PSTR("(F)ront"));
  3047. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3048. }
  3049. if (back_out) {
  3050. out_of_range_error(PSTR("(B)ack"));
  3051. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3052. }
  3053. return;
  3054. }
  3055. #endif // AUTO_BED_LEVELING_GRID
  3056. if (!dryrun) {
  3057. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  3058. if (DEBUGGING(LEVELING)) {
  3059. vector_3 corrected_position = planner.adjusted_position();
  3060. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  3061. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  3062. }
  3063. #endif
  3064. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  3065. planner.bed_level_matrix.set_to_identity();
  3066. #if ENABLED(DELTA)
  3067. reset_bed_level();
  3068. #else //!DELTA
  3069. //vector_3 corrected_position = planner.adjusted_position();
  3070. //corrected_position.debug("position before G29");
  3071. vector_3 uncorrected_position = planner.adjusted_position();
  3072. //uncorrected_position.debug("position during G29");
  3073. current_position[X_AXIS] = uncorrected_position.x;
  3074. current_position[Y_AXIS] = uncorrected_position.y;
  3075. current_position[Z_AXIS] = uncorrected_position.z;
  3076. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3077. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  3078. #endif
  3079. SYNC_PLAN_POSITION_KINEMATIC();
  3080. #endif // !DELTA
  3081. }
  3082. stepper.synchronize();
  3083. setup_for_endstop_or_probe_move();
  3084. // Deploy the probe. Probe will raise if needed.
  3085. if (DEPLOY_PROBE()) return;
  3086. bed_leveling_in_progress = true;
  3087. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3088. // probe at the points of a lattice grid
  3089. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  3090. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  3091. #if ENABLED(DELTA)
  3092. delta_grid_spacing[X_AXIS] = xGridSpacing;
  3093. delta_grid_spacing[Y_AXIS] = yGridSpacing;
  3094. float zoffset = zprobe_zoffset;
  3095. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3096. #else // !DELTA
  3097. /**
  3098. * solve the plane equation ax + by + d = z
  3099. * A is the matrix with rows [x y 1] for all the probed points
  3100. * B is the vector of the Z positions
  3101. * the normal vector to the plane is formed by the coefficients of the
  3102. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3103. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3104. */
  3105. int abl2 = sq(auto_bed_leveling_grid_points);
  3106. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3107. eqnBVector[abl2], // "B" vector of Z points
  3108. mean = 0.0;
  3109. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  3110. #endif // !DELTA
  3111. int probePointCounter = 0;
  3112. bool zig = auto_bed_leveling_grid_points & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  3113. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  3114. float yBase = front_probe_bed_position + yGridSpacing * yCount,
  3115. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3116. int xStart, xStop, xInc;
  3117. if (zig) {
  3118. xStart = 0;
  3119. xStop = auto_bed_leveling_grid_points;
  3120. xInc = 1;
  3121. }
  3122. else {
  3123. xStart = auto_bed_leveling_grid_points - 1;
  3124. xStop = -1;
  3125. xInc = -1;
  3126. }
  3127. zig = !zig;
  3128. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  3129. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3130. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3131. #if ENABLED(DELTA)
  3132. // Avoid probing outside the round or hexagonal area of a delta printer
  3133. if (sq(xProbe) + sq(yProbe) > sq(DELTA_PROBEABLE_RADIUS) + 0.1) continue;
  3134. #endif
  3135. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3136. #if DISABLED(DELTA)
  3137. mean += measured_z;
  3138. eqnBVector[probePointCounter] = measured_z;
  3139. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3140. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3141. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3142. indexIntoAB[xCount][yCount] = probePointCounter;
  3143. #else
  3144. bed_level[xCount][yCount] = measured_z + zoffset;
  3145. #endif
  3146. probePointCounter++;
  3147. idle();
  3148. } //xProbe
  3149. } //yProbe
  3150. #else // !AUTO_BED_LEVELING_GRID
  3151. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3152. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3153. #endif
  3154. // Probe at 3 arbitrary points
  3155. float z_at_pt_1 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_1_X),
  3156. LOGICAL_Y_POSITION(ABL_PROBE_PT_1_Y),
  3157. stow_probe_after_each, verbose_level),
  3158. z_at_pt_2 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_2_X),
  3159. LOGICAL_Y_POSITION(ABL_PROBE_PT_2_Y),
  3160. stow_probe_after_each, verbose_level),
  3161. z_at_pt_3 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_3_X),
  3162. LOGICAL_Y_POSITION(ABL_PROBE_PT_3_Y),
  3163. stow_probe_after_each, verbose_level);
  3164. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3165. #endif // !AUTO_BED_LEVELING_GRID
  3166. // Raise to _Z_PROBE_DEPLOY_HEIGHT. Stow the probe.
  3167. if (STOW_PROBE()) return;
  3168. // Restore state after probing
  3169. clean_up_after_endstop_or_probe_move();
  3170. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3171. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3172. #endif
  3173. // Calculate leveling, print reports, correct the position
  3174. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3175. #if ENABLED(DELTA)
  3176. if (!dryrun) extrapolate_unprobed_bed_level();
  3177. print_bed_level();
  3178. #else // !DELTA
  3179. // solve lsq problem
  3180. double plane_equation_coefficients[3];
  3181. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3182. mean /= abl2;
  3183. if (verbose_level) {
  3184. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3185. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3186. SERIAL_PROTOCOLPGM(" b: ");
  3187. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3188. SERIAL_PROTOCOLPGM(" d: ");
  3189. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3190. SERIAL_EOL;
  3191. if (verbose_level > 2) {
  3192. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3193. SERIAL_PROTOCOL_F(mean, 8);
  3194. SERIAL_EOL;
  3195. }
  3196. }
  3197. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3198. // Show the Topography map if enabled
  3199. if (do_topography_map) {
  3200. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3201. " +--- BACK --+\n"
  3202. " | |\n"
  3203. " L | (+) | R\n"
  3204. " E | | I\n"
  3205. " F | (-) N (+) | G\n"
  3206. " T | | H\n"
  3207. " | (-) | T\n"
  3208. " | |\n"
  3209. " O-- FRONT --+\n"
  3210. " (0,0)");
  3211. float min_diff = 999;
  3212. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3213. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3214. int ind = indexIntoAB[xx][yy];
  3215. float diff = eqnBVector[ind] - mean;
  3216. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3217. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3218. z_tmp = 0;
  3219. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3220. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3221. if (diff >= 0.0)
  3222. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3223. else
  3224. SERIAL_PROTOCOLCHAR(' ');
  3225. SERIAL_PROTOCOL_F(diff, 5);
  3226. } // xx
  3227. SERIAL_EOL;
  3228. } // yy
  3229. SERIAL_EOL;
  3230. if (verbose_level > 3) {
  3231. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3232. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3233. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3234. int ind = indexIntoAB[xx][yy];
  3235. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3236. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3237. z_tmp = 0;
  3238. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3239. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3240. if (diff >= 0.0)
  3241. SERIAL_PROTOCOLPGM(" +");
  3242. // Include + for column alignment
  3243. else
  3244. SERIAL_PROTOCOLCHAR(' ');
  3245. SERIAL_PROTOCOL_F(diff, 5);
  3246. } // xx
  3247. SERIAL_EOL;
  3248. } // yy
  3249. SERIAL_EOL;
  3250. }
  3251. } //do_topography_map
  3252. #endif //!DELTA
  3253. #endif // AUTO_BED_LEVELING_GRID
  3254. #if DISABLED(DELTA)
  3255. if (verbose_level > 0)
  3256. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3257. if (!dryrun) {
  3258. /**
  3259. * Correct the Z height difference from Z probe position and nozzle tip position.
  3260. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3261. * from the nozzle. When the bed is uneven, this height must be corrected.
  3262. */
  3263. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3264. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3265. z_tmp = current_position[Z_AXIS],
  3266. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3267. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3268. if (DEBUGGING(LEVELING)) {
  3269. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3270. SERIAL_ECHOLNPAIR(" ... z_tmp = ", z_tmp);
  3271. }
  3272. #endif
  3273. // Apply the correction sending the Z probe offset
  3274. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3275. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3276. if (DEBUGGING(LEVELING))
  3277. SERIAL_ECHOLNPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3278. #endif
  3279. // Adjust the current Z and send it to the planner.
  3280. current_position[Z_AXIS] += z_tmp - stepper_z;
  3281. SYNC_PLAN_POSITION_KINEMATIC();
  3282. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3283. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3284. #endif
  3285. }
  3286. #endif // !DELTA
  3287. #ifdef Z_PROBE_END_SCRIPT
  3288. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3289. if (DEBUGGING(LEVELING)) {
  3290. SERIAL_ECHOPGM("Z Probe End Script: ");
  3291. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3292. }
  3293. #endif
  3294. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3295. stepper.synchronize();
  3296. #endif
  3297. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3298. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3299. #endif
  3300. bed_leveling_in_progress = false;
  3301. report_current_position();
  3302. KEEPALIVE_STATE(IN_HANDLER);
  3303. }
  3304. #endif //AUTO_BED_LEVELING_FEATURE
  3305. #if HAS_BED_PROBE
  3306. /**
  3307. * G30: Do a single Z probe at the current XY
  3308. */
  3309. inline void gcode_G30() {
  3310. setup_for_endstop_or_probe_move();
  3311. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3312. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3313. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3314. true, 1);
  3315. SERIAL_PROTOCOLPGM("Bed X: ");
  3316. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3317. SERIAL_PROTOCOLPGM(" Y: ");
  3318. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3319. SERIAL_PROTOCOLPGM(" Z: ");
  3320. SERIAL_PROTOCOL(measured_z + 0.0001);
  3321. SERIAL_EOL;
  3322. clean_up_after_endstop_or_probe_move();
  3323. report_current_position();
  3324. }
  3325. #if ENABLED(Z_PROBE_SLED)
  3326. /**
  3327. * G31: Deploy the Z probe
  3328. */
  3329. inline void gcode_G31() { DEPLOY_PROBE(); }
  3330. /**
  3331. * G32: Stow the Z probe
  3332. */
  3333. inline void gcode_G32() { STOW_PROBE(); }
  3334. #endif // Z_PROBE_SLED
  3335. #endif // HAS_BED_PROBE
  3336. /**
  3337. * G92: Set current position to given X Y Z E
  3338. */
  3339. inline void gcode_G92() {
  3340. bool didE = code_seen('E');
  3341. if (!didE) stepper.synchronize();
  3342. bool didXYZ = false;
  3343. LOOP_XYZE(i) {
  3344. if (code_seen(axis_codes[i])) {
  3345. float p = current_position[i],
  3346. v = code_value_axis_units(i);
  3347. current_position[i] = v;
  3348. if (i != E_AXIS) {
  3349. position_shift[i] += v - p; // Offset the coordinate space
  3350. update_software_endstops((AxisEnum)i);
  3351. didXYZ = true;
  3352. }
  3353. }
  3354. }
  3355. if (didXYZ)
  3356. SYNC_PLAN_POSITION_KINEMATIC();
  3357. else if (didE)
  3358. sync_plan_position_e();
  3359. }
  3360. #if ENABLED(ULTIPANEL)
  3361. /**
  3362. * M0: Unconditional stop - Wait for user button press on LCD
  3363. * M1: Conditional stop - Wait for user button press on LCD
  3364. */
  3365. inline void gcode_M0_M1() {
  3366. char* args = current_command_args;
  3367. millis_t codenum = 0;
  3368. bool hasP = false, hasS = false;
  3369. if (code_seen('P')) {
  3370. codenum = code_value_millis(); // milliseconds to wait
  3371. hasP = codenum > 0;
  3372. }
  3373. if (code_seen('S')) {
  3374. codenum = code_value_millis_from_seconds(); // seconds to wait
  3375. hasS = codenum > 0;
  3376. }
  3377. if (!hasP && !hasS && *args != '\0')
  3378. lcd_setstatus(args, true);
  3379. else {
  3380. LCD_MESSAGEPGM(MSG_USERWAIT);
  3381. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3382. dontExpireStatus();
  3383. #endif
  3384. }
  3385. lcd_ignore_click();
  3386. stepper.synchronize();
  3387. refresh_cmd_timeout();
  3388. if (codenum > 0) {
  3389. codenum += previous_cmd_ms; // wait until this time for a click
  3390. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3391. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3392. KEEPALIVE_STATE(IN_HANDLER);
  3393. lcd_ignore_click(false);
  3394. }
  3395. else {
  3396. if (!lcd_detected()) return;
  3397. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3398. while (!lcd_clicked()) idle();
  3399. KEEPALIVE_STATE(IN_HANDLER);
  3400. }
  3401. if (IS_SD_PRINTING)
  3402. LCD_MESSAGEPGM(MSG_RESUMING);
  3403. else
  3404. LCD_MESSAGEPGM(WELCOME_MSG);
  3405. }
  3406. #endif // ULTIPANEL
  3407. /**
  3408. * M17: Enable power on all stepper motors
  3409. */
  3410. inline void gcode_M17() {
  3411. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3412. enable_all_steppers();
  3413. }
  3414. #if ENABLED(SDSUPPORT)
  3415. /**
  3416. * M20: List SD card to serial output
  3417. */
  3418. inline void gcode_M20() {
  3419. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3420. card.ls();
  3421. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3422. }
  3423. /**
  3424. * M21: Init SD Card
  3425. */
  3426. inline void gcode_M21() {
  3427. card.initsd();
  3428. }
  3429. /**
  3430. * M22: Release SD Card
  3431. */
  3432. inline void gcode_M22() {
  3433. card.release();
  3434. }
  3435. /**
  3436. * M23: Open a file
  3437. */
  3438. inline void gcode_M23() {
  3439. card.openFile(current_command_args, true);
  3440. }
  3441. /**
  3442. * M24: Start SD Print
  3443. */
  3444. inline void gcode_M24() {
  3445. card.startFileprint();
  3446. print_job_timer.start();
  3447. }
  3448. /**
  3449. * M25: Pause SD Print
  3450. */
  3451. inline void gcode_M25() {
  3452. card.pauseSDPrint();
  3453. }
  3454. /**
  3455. * M26: Set SD Card file index
  3456. */
  3457. inline void gcode_M26() {
  3458. if (card.cardOK && code_seen('S'))
  3459. card.setIndex(code_value_long());
  3460. }
  3461. /**
  3462. * M27: Get SD Card status
  3463. */
  3464. inline void gcode_M27() {
  3465. card.getStatus();
  3466. }
  3467. /**
  3468. * M28: Start SD Write
  3469. */
  3470. inline void gcode_M28() {
  3471. card.openFile(current_command_args, false);
  3472. }
  3473. /**
  3474. * M29: Stop SD Write
  3475. * Processed in write to file routine above
  3476. */
  3477. inline void gcode_M29() {
  3478. // card.saving = false;
  3479. }
  3480. /**
  3481. * M30 <filename>: Delete SD Card file
  3482. */
  3483. inline void gcode_M30() {
  3484. if (card.cardOK) {
  3485. card.closefile();
  3486. card.removeFile(current_command_args);
  3487. }
  3488. }
  3489. #endif //SDSUPPORT
  3490. /**
  3491. * M31: Get the time since the start of SD Print (or last M109)
  3492. */
  3493. inline void gcode_M31() {
  3494. char buffer[21];
  3495. duration_t elapsed = print_job_timer.duration();
  3496. elapsed.toString(buffer);
  3497. lcd_setstatus(buffer);
  3498. SERIAL_ECHO_START;
  3499. SERIAL_ECHOPGM("Print time: ");
  3500. SERIAL_ECHOLN(buffer);
  3501. thermalManager.autotempShutdown();
  3502. }
  3503. #if ENABLED(SDSUPPORT)
  3504. /**
  3505. * M32: Select file and start SD Print
  3506. */
  3507. inline void gcode_M32() {
  3508. if (card.sdprinting)
  3509. stepper.synchronize();
  3510. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3511. if (!namestartpos)
  3512. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3513. else
  3514. namestartpos++; //to skip the '!'
  3515. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3516. if (card.cardOK) {
  3517. card.openFile(namestartpos, true, call_procedure);
  3518. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3519. card.setIndex(code_value_long());
  3520. card.startFileprint();
  3521. // Procedure calls count as normal print time.
  3522. if (!call_procedure) print_job_timer.start();
  3523. }
  3524. }
  3525. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3526. /**
  3527. * M33: Get the long full path of a file or folder
  3528. *
  3529. * Parameters:
  3530. * <dospath> Case-insensitive DOS-style path to a file or folder
  3531. *
  3532. * Example:
  3533. * M33 miscel~1/armchair/armcha~1.gco
  3534. *
  3535. * Output:
  3536. * /Miscellaneous/Armchair/Armchair.gcode
  3537. */
  3538. inline void gcode_M33() {
  3539. card.printLongPath(current_command_args);
  3540. }
  3541. #endif
  3542. /**
  3543. * M928: Start SD Write
  3544. */
  3545. inline void gcode_M928() {
  3546. card.openLogFile(current_command_args);
  3547. }
  3548. #endif // SDSUPPORT
  3549. /**
  3550. * M42: Change pin status via GCode
  3551. *
  3552. * P<pin> Pin number (LED if omitted)
  3553. * S<byte> Pin status from 0 - 255
  3554. */
  3555. inline void gcode_M42() {
  3556. if (!code_seen('S')) return;
  3557. int pin_status = code_value_int();
  3558. if (pin_status < 0 || pin_status > 255) return;
  3559. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3560. if (pin_number < 0) return;
  3561. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3562. if (pin_number == sensitive_pins[i]) return;
  3563. pinMode(pin_number, OUTPUT);
  3564. digitalWrite(pin_number, pin_status);
  3565. analogWrite(pin_number, pin_status);
  3566. #if FAN_COUNT > 0
  3567. switch (pin_number) {
  3568. #if HAS_FAN0
  3569. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3570. #endif
  3571. #if HAS_FAN1
  3572. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3573. #endif
  3574. #if HAS_FAN2
  3575. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3576. #endif
  3577. }
  3578. #endif
  3579. }
  3580. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3581. /**
  3582. * M48: Z probe repeatability measurement function.
  3583. *
  3584. * Usage:
  3585. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3586. * P = Number of sampled points (4-50, default 10)
  3587. * X = Sample X position
  3588. * Y = Sample Y position
  3589. * V = Verbose level (0-4, default=1)
  3590. * E = Engage Z probe for each reading
  3591. * L = Number of legs of movement before probe
  3592. * S = Schizoid (Or Star if you prefer)
  3593. *
  3594. * This function assumes the bed has been homed. Specifically, that a G28 command
  3595. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3596. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3597. * regenerated.
  3598. */
  3599. inline void gcode_M48() {
  3600. if (axis_unhomed_error(true, true, true)) return;
  3601. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3602. if (verbose_level < 0 || verbose_level > 4) {
  3603. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3604. return;
  3605. }
  3606. if (verbose_level > 0)
  3607. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3608. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3609. if (n_samples < 4 || n_samples > 50) {
  3610. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3611. return;
  3612. }
  3613. float X_current = current_position[X_AXIS],
  3614. Y_current = current_position[Y_AXIS];
  3615. bool stow_probe_after_each = code_seen('E');
  3616. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3617. #if DISABLED(DELTA)
  3618. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3619. out_of_range_error(PSTR("X"));
  3620. return;
  3621. }
  3622. #endif
  3623. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3624. #if DISABLED(DELTA)
  3625. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3626. out_of_range_error(PSTR("Y"));
  3627. return;
  3628. }
  3629. #else
  3630. if (HYPOT(RAW_X_POSITION(X_probe_location), RAW_Y_POSITION(Y_probe_location)) > DELTA_PROBEABLE_RADIUS) {
  3631. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3632. return;
  3633. }
  3634. #endif
  3635. bool seen_L = code_seen('L');
  3636. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3637. if (n_legs > 15) {
  3638. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3639. return;
  3640. }
  3641. if (n_legs == 1) n_legs = 2;
  3642. bool schizoid_flag = code_seen('S');
  3643. if (schizoid_flag && !seen_L) n_legs = 7;
  3644. /**
  3645. * Now get everything to the specified probe point So we can safely do a
  3646. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3647. * we don't want to use that as a starting point for each probe.
  3648. */
  3649. if (verbose_level > 2)
  3650. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3651. #if ENABLED(DELTA)
  3652. // we don't do bed level correction in M48 because we want the raw data when we probe
  3653. reset_bed_level();
  3654. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3655. // we don't do bed level correction in M48 because we want the raw data when we probe
  3656. planner.bed_level_matrix.set_to_identity();
  3657. #endif
  3658. setup_for_endstop_or_probe_move();
  3659. // Move to the first point, deploy, and probe
  3660. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3661. randomSeed(millis());
  3662. double mean = 0, sigma = 0, sample_set[n_samples];
  3663. for (uint8_t n = 0; n < n_samples; n++) {
  3664. if (n_legs) {
  3665. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3666. float angle = random(0.0, 360.0),
  3667. radius = random(
  3668. #if ENABLED(DELTA)
  3669. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3670. #else
  3671. 5, X_MAX_LENGTH / 8
  3672. #endif
  3673. );
  3674. if (verbose_level > 3) {
  3675. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3676. SERIAL_ECHOPAIR(" angle: ", angle);
  3677. SERIAL_ECHOPGM(" Direction: ");
  3678. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3679. SERIAL_ECHOLNPGM("Clockwise");
  3680. }
  3681. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3682. double delta_angle;
  3683. if (schizoid_flag)
  3684. // The points of a 5 point star are 72 degrees apart. We need to
  3685. // skip a point and go to the next one on the star.
  3686. delta_angle = dir * 2.0 * 72.0;
  3687. else
  3688. // If we do this line, we are just trying to move further
  3689. // around the circle.
  3690. delta_angle = dir * (float) random(25, 45);
  3691. angle += delta_angle;
  3692. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3693. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3694. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3695. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3696. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3697. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3698. #if DISABLED(DELTA)
  3699. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3700. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3701. #else
  3702. // If we have gone out too far, we can do a simple fix and scale the numbers
  3703. // back in closer to the origin.
  3704. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3705. X_current /= 1.25;
  3706. Y_current /= 1.25;
  3707. if (verbose_level > 3) {
  3708. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3709. SERIAL_ECHOLNPAIR(", ", Y_current);
  3710. }
  3711. }
  3712. #endif
  3713. if (verbose_level > 3) {
  3714. SERIAL_PROTOCOLPGM("Going to:");
  3715. SERIAL_ECHOPAIR(" X", X_current);
  3716. SERIAL_ECHOPAIR(" Y", Y_current);
  3717. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  3718. }
  3719. do_blocking_move_to_xy(X_current, Y_current);
  3720. } // n_legs loop
  3721. } // n_legs
  3722. // Probe a single point
  3723. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3724. /**
  3725. * Get the current mean for the data points we have so far
  3726. */
  3727. double sum = 0.0;
  3728. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3729. mean = sum / (n + 1);
  3730. /**
  3731. * Now, use that mean to calculate the standard deviation for the
  3732. * data points we have so far
  3733. */
  3734. sum = 0.0;
  3735. for (uint8_t j = 0; j <= n; j++)
  3736. sum += sq(sample_set[j] - mean);
  3737. sigma = sqrt(sum / (n + 1));
  3738. if (verbose_level > 0) {
  3739. if (verbose_level > 1) {
  3740. SERIAL_PROTOCOL(n + 1);
  3741. SERIAL_PROTOCOLPGM(" of ");
  3742. SERIAL_PROTOCOL((int)n_samples);
  3743. SERIAL_PROTOCOLPGM(" z: ");
  3744. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3745. if (verbose_level > 2) {
  3746. SERIAL_PROTOCOLPGM(" mean: ");
  3747. SERIAL_PROTOCOL_F(mean, 6);
  3748. SERIAL_PROTOCOLPGM(" sigma: ");
  3749. SERIAL_PROTOCOL_F(sigma, 6);
  3750. }
  3751. }
  3752. SERIAL_EOL;
  3753. }
  3754. } // End of probe loop
  3755. if (STOW_PROBE()) return;
  3756. if (verbose_level > 0) {
  3757. SERIAL_PROTOCOLPGM("Mean: ");
  3758. SERIAL_PROTOCOL_F(mean, 6);
  3759. SERIAL_EOL;
  3760. }
  3761. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3762. SERIAL_PROTOCOL_F(sigma, 6);
  3763. SERIAL_EOL; SERIAL_EOL;
  3764. clean_up_after_endstop_or_probe_move();
  3765. report_current_position();
  3766. }
  3767. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3768. /**
  3769. * M75: Start print timer
  3770. */
  3771. inline void gcode_M75() { print_job_timer.start(); }
  3772. /**
  3773. * M76: Pause print timer
  3774. */
  3775. inline void gcode_M76() { print_job_timer.pause(); }
  3776. /**
  3777. * M77: Stop print timer
  3778. */
  3779. inline void gcode_M77() { print_job_timer.stop(); }
  3780. #if ENABLED(PRINTCOUNTER)
  3781. /**
  3782. * M78: Show print statistics
  3783. */
  3784. inline void gcode_M78() {
  3785. // "M78 S78" will reset the statistics
  3786. if (code_seen('S') && code_value_int() == 78)
  3787. print_job_timer.initStats();
  3788. else print_job_timer.showStats();
  3789. }
  3790. #endif
  3791. /**
  3792. * M104: Set hot end temperature
  3793. */
  3794. inline void gcode_M104() {
  3795. if (get_target_extruder_from_command(104)) return;
  3796. if (DEBUGGING(DRYRUN)) return;
  3797. #if ENABLED(SINGLENOZZLE)
  3798. if (target_extruder != active_extruder) return;
  3799. #endif
  3800. if (code_seen('S')) {
  3801. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3802. #if ENABLED(DUAL_X_CARRIAGE)
  3803. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3804. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3805. #endif
  3806. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3807. /**
  3808. * Stop the timer at the end of print, starting is managed by
  3809. * 'heat and wait' M109.
  3810. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3811. * stand by mode, for instance in a dual extruder setup, without affecting
  3812. * the running print timer.
  3813. */
  3814. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3815. print_job_timer.stop();
  3816. LCD_MESSAGEPGM(WELCOME_MSG);
  3817. }
  3818. #endif
  3819. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3820. }
  3821. }
  3822. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3823. void print_heaterstates() {
  3824. #if HAS_TEMP_HOTEND
  3825. SERIAL_PROTOCOLPGM(" T:");
  3826. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3827. SERIAL_PROTOCOLPGM(" /");
  3828. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3829. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3830. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3831. SERIAL_CHAR(')');
  3832. #endif
  3833. #endif
  3834. #if HAS_TEMP_BED
  3835. SERIAL_PROTOCOLPGM(" B:");
  3836. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3837. SERIAL_PROTOCOLPGM(" /");
  3838. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3839. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3840. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3841. SERIAL_CHAR(')');
  3842. #endif
  3843. #endif
  3844. #if HOTENDS > 1
  3845. HOTEND_LOOP() {
  3846. SERIAL_PROTOCOLPAIR(" T", e);
  3847. SERIAL_PROTOCOLCHAR(':');
  3848. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3849. SERIAL_PROTOCOLPGM(" /");
  3850. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3851. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3852. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3853. SERIAL_CHAR(')');
  3854. #endif
  3855. }
  3856. #endif
  3857. SERIAL_PROTOCOLPGM(" @:");
  3858. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3859. #if HAS_TEMP_BED
  3860. SERIAL_PROTOCOLPGM(" B@:");
  3861. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3862. #endif
  3863. #if HOTENDS > 1
  3864. HOTEND_LOOP() {
  3865. SERIAL_PROTOCOLPAIR(" @", e);
  3866. SERIAL_PROTOCOLCHAR(':');
  3867. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3868. }
  3869. #endif
  3870. }
  3871. #endif
  3872. /**
  3873. * M105: Read hot end and bed temperature
  3874. */
  3875. inline void gcode_M105() {
  3876. if (get_target_extruder_from_command(105)) return;
  3877. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3878. SERIAL_PROTOCOLPGM(MSG_OK);
  3879. print_heaterstates();
  3880. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3881. SERIAL_ERROR_START;
  3882. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3883. #endif
  3884. SERIAL_EOL;
  3885. }
  3886. #if FAN_COUNT > 0
  3887. /**
  3888. * M106: Set Fan Speed
  3889. *
  3890. * S<int> Speed between 0-255
  3891. * P<index> Fan index, if more than one fan
  3892. */
  3893. inline void gcode_M106() {
  3894. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3895. p = code_seen('P') ? code_value_ushort() : 0;
  3896. NOMORE(s, 255);
  3897. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3898. }
  3899. /**
  3900. * M107: Fan Off
  3901. */
  3902. inline void gcode_M107() {
  3903. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3904. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3905. }
  3906. #endif // FAN_COUNT > 0
  3907. #if DISABLED(EMERGENCY_PARSER)
  3908. /**
  3909. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3910. */
  3911. inline void gcode_M108() { wait_for_heatup = false; }
  3912. /**
  3913. * M112: Emergency Stop
  3914. */
  3915. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3916. /**
  3917. * M410: Quickstop - Abort all planned moves
  3918. *
  3919. * This will stop the carriages mid-move, so most likely they
  3920. * will be out of sync with the stepper position after this.
  3921. */
  3922. inline void gcode_M410() { quickstop_stepper(); }
  3923. #endif
  3924. #ifndef MIN_COOLING_SLOPE_DEG
  3925. #define MIN_COOLING_SLOPE_DEG 1.50
  3926. #endif
  3927. #ifndef MIN_COOLING_SLOPE_TIME
  3928. #define MIN_COOLING_SLOPE_TIME 60
  3929. #endif
  3930. /**
  3931. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3932. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3933. */
  3934. inline void gcode_M109() {
  3935. if (get_target_extruder_from_command(109)) return;
  3936. if (DEBUGGING(DRYRUN)) return;
  3937. #if ENABLED(SINGLENOZZLE)
  3938. if (target_extruder != active_extruder) return;
  3939. #endif
  3940. bool no_wait_for_cooling = code_seen('S');
  3941. if (no_wait_for_cooling || code_seen('R')) {
  3942. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3943. #if ENABLED(DUAL_X_CARRIAGE)
  3944. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3945. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3946. #endif
  3947. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3948. /**
  3949. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3950. * stand by mode, for instance in a dual extruder setup, without affecting
  3951. * the running print timer.
  3952. */
  3953. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3954. print_job_timer.stop();
  3955. LCD_MESSAGEPGM(WELCOME_MSG);
  3956. }
  3957. /**
  3958. * We do not check if the timer is already running because this check will
  3959. * be done for us inside the Stopwatch::start() method thus a running timer
  3960. * will not restart.
  3961. */
  3962. else print_job_timer.start();
  3963. #endif
  3964. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3965. }
  3966. #if ENABLED(AUTOTEMP)
  3967. planner.autotemp_M109();
  3968. #endif
  3969. #if TEMP_RESIDENCY_TIME > 0
  3970. millis_t residency_start_ms = 0;
  3971. // Loop until the temperature has stabilized
  3972. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3973. #else
  3974. // Loop until the temperature is very close target
  3975. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3976. #endif //TEMP_RESIDENCY_TIME > 0
  3977. float theTarget = -1.0, old_temp = 9999.0;
  3978. bool wants_to_cool = false;
  3979. wait_for_heatup = true;
  3980. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3981. KEEPALIVE_STATE(NOT_BUSY);
  3982. do {
  3983. // Target temperature might be changed during the loop
  3984. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3985. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3986. theTarget = thermalManager.degTargetHotend(target_extruder);
  3987. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3988. if (no_wait_for_cooling && wants_to_cool) break;
  3989. }
  3990. now = millis();
  3991. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3992. next_temp_ms = now + 1000UL;
  3993. print_heaterstates();
  3994. #if TEMP_RESIDENCY_TIME > 0
  3995. SERIAL_PROTOCOLPGM(" W:");
  3996. if (residency_start_ms) {
  3997. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3998. SERIAL_PROTOCOLLN(rem);
  3999. }
  4000. else {
  4001. SERIAL_PROTOCOLLNPGM("?");
  4002. }
  4003. #else
  4004. SERIAL_EOL;
  4005. #endif
  4006. }
  4007. idle();
  4008. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4009. float temp = thermalManager.degHotend(target_extruder);
  4010. #if TEMP_RESIDENCY_TIME > 0
  4011. float temp_diff = fabs(theTarget - temp);
  4012. if (!residency_start_ms) {
  4013. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4014. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4015. }
  4016. else if (temp_diff > TEMP_HYSTERESIS) {
  4017. // Restart the timer whenever the temperature falls outside the hysteresis.
  4018. residency_start_ms = now;
  4019. }
  4020. #endif //TEMP_RESIDENCY_TIME > 0
  4021. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4022. if (wants_to_cool) {
  4023. // break after MIN_COOLING_SLOPE_TIME seconds
  4024. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4025. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4026. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4027. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4028. old_temp = temp;
  4029. }
  4030. }
  4031. } while (wait_for_heatup && TEMP_CONDITIONS);
  4032. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4033. KEEPALIVE_STATE(IN_HANDLER);
  4034. }
  4035. #if HAS_TEMP_BED
  4036. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4037. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4038. #endif
  4039. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4040. #define MIN_COOLING_SLOPE_TIME_BED 60
  4041. #endif
  4042. /**
  4043. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4044. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4045. */
  4046. inline void gcode_M190() {
  4047. if (DEBUGGING(DRYRUN)) return;
  4048. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4049. bool no_wait_for_cooling = code_seen('S');
  4050. if (no_wait_for_cooling || code_seen('R')) {
  4051. thermalManager.setTargetBed(code_value_temp_abs());
  4052. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4053. if (code_value_temp_abs() > BED_MINTEMP) {
  4054. /**
  4055. * We start the timer when 'heating and waiting' command arrives, LCD
  4056. * functions never wait. Cooling down managed by extruders.
  4057. *
  4058. * We do not check if the timer is already running because this check will
  4059. * be done for us inside the Stopwatch::start() method thus a running timer
  4060. * will not restart.
  4061. */
  4062. print_job_timer.start();
  4063. }
  4064. #endif
  4065. }
  4066. #if TEMP_BED_RESIDENCY_TIME > 0
  4067. millis_t residency_start_ms = 0;
  4068. // Loop until the temperature has stabilized
  4069. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4070. #else
  4071. // Loop until the temperature is very close target
  4072. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4073. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4074. float theTarget = -1.0, old_temp = 9999.0;
  4075. bool wants_to_cool = false;
  4076. wait_for_heatup = true;
  4077. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4078. KEEPALIVE_STATE(NOT_BUSY);
  4079. target_extruder = active_extruder; // for print_heaterstates
  4080. do {
  4081. // Target temperature might be changed during the loop
  4082. if (theTarget != thermalManager.degTargetBed()) {
  4083. wants_to_cool = thermalManager.isCoolingBed();
  4084. theTarget = thermalManager.degTargetBed();
  4085. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4086. if (no_wait_for_cooling && wants_to_cool) break;
  4087. }
  4088. now = millis();
  4089. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4090. next_temp_ms = now + 1000UL;
  4091. print_heaterstates();
  4092. #if TEMP_BED_RESIDENCY_TIME > 0
  4093. SERIAL_PROTOCOLPGM(" W:");
  4094. if (residency_start_ms) {
  4095. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4096. SERIAL_PROTOCOLLN(rem);
  4097. }
  4098. else {
  4099. SERIAL_PROTOCOLLNPGM("?");
  4100. }
  4101. #else
  4102. SERIAL_EOL;
  4103. #endif
  4104. }
  4105. idle();
  4106. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4107. float temp = thermalManager.degBed();
  4108. #if TEMP_BED_RESIDENCY_TIME > 0
  4109. float temp_diff = fabs(theTarget - temp);
  4110. if (!residency_start_ms) {
  4111. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4112. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4113. }
  4114. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4115. // Restart the timer whenever the temperature falls outside the hysteresis.
  4116. residency_start_ms = now;
  4117. }
  4118. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4119. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4120. if (wants_to_cool) {
  4121. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4122. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4123. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4124. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4125. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4126. old_temp = temp;
  4127. }
  4128. }
  4129. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4130. LCD_MESSAGEPGM(MSG_BED_DONE);
  4131. KEEPALIVE_STATE(IN_HANDLER);
  4132. }
  4133. #endif // HAS_TEMP_BED
  4134. /**
  4135. * M110: Set Current Line Number
  4136. */
  4137. inline void gcode_M110() {
  4138. if (code_seen('N')) gcode_N = code_value_long();
  4139. }
  4140. /**
  4141. * M111: Set the debug level
  4142. */
  4143. inline void gcode_M111() {
  4144. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4145. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4146. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4147. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4148. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4149. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4150. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4151. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4152. #endif
  4153. const static char* const debug_strings[] PROGMEM = {
  4154. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4155. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4156. str_debug_32
  4157. #endif
  4158. };
  4159. SERIAL_ECHO_START;
  4160. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4161. if (marlin_debug_flags) {
  4162. uint8_t comma = 0;
  4163. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4164. if (TEST(marlin_debug_flags, i)) {
  4165. if (comma++) SERIAL_CHAR(',');
  4166. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4167. }
  4168. }
  4169. }
  4170. else {
  4171. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4172. }
  4173. SERIAL_EOL;
  4174. }
  4175. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4176. /**
  4177. * M113: Get or set Host Keepalive interval (0 to disable)
  4178. *
  4179. * S<seconds> Optional. Set the keepalive interval.
  4180. */
  4181. inline void gcode_M113() {
  4182. if (code_seen('S')) {
  4183. host_keepalive_interval = code_value_byte();
  4184. NOMORE(host_keepalive_interval, 60);
  4185. }
  4186. else {
  4187. SERIAL_ECHO_START;
  4188. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4189. }
  4190. }
  4191. #endif
  4192. #if ENABLED(BARICUDA)
  4193. #if HAS_HEATER_1
  4194. /**
  4195. * M126: Heater 1 valve open
  4196. */
  4197. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4198. /**
  4199. * M127: Heater 1 valve close
  4200. */
  4201. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4202. #endif
  4203. #if HAS_HEATER_2
  4204. /**
  4205. * M128: Heater 2 valve open
  4206. */
  4207. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4208. /**
  4209. * M129: Heater 2 valve close
  4210. */
  4211. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4212. #endif
  4213. #endif //BARICUDA
  4214. /**
  4215. * M140: Set bed temperature
  4216. */
  4217. inline void gcode_M140() {
  4218. if (DEBUGGING(DRYRUN)) return;
  4219. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4220. }
  4221. #if ENABLED(ULTIPANEL)
  4222. /**
  4223. * M145: Set the heatup state for a material in the LCD menu
  4224. * S<material> (0=PLA, 1=ABS)
  4225. * H<hotend temp>
  4226. * B<bed temp>
  4227. * F<fan speed>
  4228. */
  4229. inline void gcode_M145() {
  4230. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4231. if (material < 0 || material > 1) {
  4232. SERIAL_ERROR_START;
  4233. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4234. }
  4235. else {
  4236. int v;
  4237. switch (material) {
  4238. case 0:
  4239. if (code_seen('H')) {
  4240. v = code_value_int();
  4241. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4242. }
  4243. if (code_seen('F')) {
  4244. v = code_value_int();
  4245. preheatFanSpeed1 = constrain(v, 0, 255);
  4246. }
  4247. #if TEMP_SENSOR_BED != 0
  4248. if (code_seen('B')) {
  4249. v = code_value_int();
  4250. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4251. }
  4252. #endif
  4253. break;
  4254. case 1:
  4255. if (code_seen('H')) {
  4256. v = code_value_int();
  4257. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4258. }
  4259. if (code_seen('F')) {
  4260. v = code_value_int();
  4261. preheatFanSpeed2 = constrain(v, 0, 255);
  4262. }
  4263. #if TEMP_SENSOR_BED != 0
  4264. if (code_seen('B')) {
  4265. v = code_value_int();
  4266. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4267. }
  4268. #endif
  4269. break;
  4270. }
  4271. }
  4272. }
  4273. #endif
  4274. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4275. /**
  4276. * M149: Set temperature units
  4277. */
  4278. inline void gcode_M149() {
  4279. if (code_seen('C')) {
  4280. set_input_temp_units(TEMPUNIT_C);
  4281. } else if (code_seen('K')) {
  4282. set_input_temp_units(TEMPUNIT_K);
  4283. } else if (code_seen('F')) {
  4284. set_input_temp_units(TEMPUNIT_F);
  4285. }
  4286. }
  4287. #endif
  4288. #if HAS_POWER_SWITCH
  4289. /**
  4290. * M80: Turn on Power Supply
  4291. */
  4292. inline void gcode_M80() {
  4293. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4294. /**
  4295. * If you have a switch on suicide pin, this is useful
  4296. * if you want to start another print with suicide feature after
  4297. * a print without suicide...
  4298. */
  4299. #if HAS_SUICIDE
  4300. OUT_WRITE(SUICIDE_PIN, HIGH);
  4301. #endif
  4302. #if ENABLED(ULTIPANEL)
  4303. powersupply = true;
  4304. LCD_MESSAGEPGM(WELCOME_MSG);
  4305. lcd_update();
  4306. #endif
  4307. }
  4308. #endif // HAS_POWER_SWITCH
  4309. /**
  4310. * M81: Turn off Power, including Power Supply, if there is one.
  4311. *
  4312. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4313. */
  4314. inline void gcode_M81() {
  4315. thermalManager.disable_all_heaters();
  4316. stepper.finish_and_disable();
  4317. #if FAN_COUNT > 0
  4318. #if FAN_COUNT > 1
  4319. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4320. #else
  4321. fanSpeeds[0] = 0;
  4322. #endif
  4323. #endif
  4324. delay(1000); // Wait 1 second before switching off
  4325. #if HAS_SUICIDE
  4326. stepper.synchronize();
  4327. suicide();
  4328. #elif HAS_POWER_SWITCH
  4329. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4330. #endif
  4331. #if ENABLED(ULTIPANEL)
  4332. #if HAS_POWER_SWITCH
  4333. powersupply = false;
  4334. #endif
  4335. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4336. lcd_update();
  4337. #endif
  4338. }
  4339. /**
  4340. * M82: Set E codes absolute (default)
  4341. */
  4342. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4343. /**
  4344. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4345. */
  4346. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4347. /**
  4348. * M18, M84: Disable all stepper motors
  4349. */
  4350. inline void gcode_M18_M84() {
  4351. if (code_seen('S')) {
  4352. stepper_inactive_time = code_value_millis_from_seconds();
  4353. }
  4354. else {
  4355. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4356. if (all_axis) {
  4357. stepper.finish_and_disable();
  4358. }
  4359. else {
  4360. stepper.synchronize();
  4361. if (code_seen('X')) disable_x();
  4362. if (code_seen('Y')) disable_y();
  4363. if (code_seen('Z')) disable_z();
  4364. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4365. if (code_seen('E')) {
  4366. disable_e0();
  4367. disable_e1();
  4368. disable_e2();
  4369. disable_e3();
  4370. }
  4371. #endif
  4372. }
  4373. }
  4374. }
  4375. /**
  4376. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4377. */
  4378. inline void gcode_M85() {
  4379. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4380. }
  4381. /**
  4382. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4383. * (Follows the same syntax as G92)
  4384. */
  4385. inline void gcode_M92() {
  4386. LOOP_XYZE(i) {
  4387. if (code_seen(axis_codes[i])) {
  4388. if (i == E_AXIS) {
  4389. float value = code_value_per_axis_unit(i);
  4390. if (value < 20.0) {
  4391. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4392. planner.max_e_jerk *= factor;
  4393. planner.max_feedrate_mm_s[i] *= factor;
  4394. planner.max_acceleration_steps_per_s2[i] *= factor;
  4395. }
  4396. planner.axis_steps_per_mm[i] = value;
  4397. }
  4398. else {
  4399. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4400. }
  4401. }
  4402. }
  4403. planner.refresh_positioning();
  4404. }
  4405. /**
  4406. * Output the current position to serial
  4407. */
  4408. static void report_current_position() {
  4409. SERIAL_PROTOCOLPGM("X:");
  4410. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4411. SERIAL_PROTOCOLPGM(" Y:");
  4412. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4413. SERIAL_PROTOCOLPGM(" Z:");
  4414. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4415. SERIAL_PROTOCOLPGM(" E:");
  4416. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4417. stepper.report_positions();
  4418. #if ENABLED(SCARA)
  4419. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4420. SERIAL_PROTOCOL(delta[X_AXIS]);
  4421. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4422. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4423. SERIAL_EOL;
  4424. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4425. SERIAL_PROTOCOL(delta[X_AXIS]);
  4426. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4427. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90);
  4428. SERIAL_EOL;
  4429. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4430. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4431. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4432. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4433. SERIAL_EOL; SERIAL_EOL;
  4434. #endif
  4435. }
  4436. /**
  4437. * M114: Output current position to serial port
  4438. */
  4439. inline void gcode_M114() { report_current_position(); }
  4440. /**
  4441. * M115: Capabilities string
  4442. */
  4443. inline void gcode_M115() {
  4444. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4445. }
  4446. /**
  4447. * M117: Set LCD Status Message
  4448. */
  4449. inline void gcode_M117() {
  4450. lcd_setstatus(current_command_args);
  4451. }
  4452. /**
  4453. * M119: Output endstop states to serial output
  4454. */
  4455. inline void gcode_M119() { endstops.M119(); }
  4456. /**
  4457. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4458. */
  4459. inline void gcode_M120() { endstops.enable_globally(true); }
  4460. /**
  4461. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4462. */
  4463. inline void gcode_M121() { endstops.enable_globally(false); }
  4464. #if ENABLED(BLINKM)
  4465. /**
  4466. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4467. */
  4468. inline void gcode_M150() {
  4469. SendColors(
  4470. code_seen('R') ? code_value_byte() : 0,
  4471. code_seen('U') ? code_value_byte() : 0,
  4472. code_seen('B') ? code_value_byte() : 0
  4473. );
  4474. }
  4475. #endif // BLINKM
  4476. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4477. /**
  4478. * M155: Send data to a I2C slave device
  4479. *
  4480. * This is a PoC, the formating and arguments for the GCODE will
  4481. * change to be more compatible, the current proposal is:
  4482. *
  4483. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4484. *
  4485. * M155 B<byte-1 value in base 10>
  4486. * M155 B<byte-2 value in base 10>
  4487. * M155 B<byte-3 value in base 10>
  4488. *
  4489. * M155 S1 ; Send the buffered data and reset the buffer
  4490. * M155 R1 ; Reset the buffer without sending data
  4491. *
  4492. */
  4493. inline void gcode_M155() {
  4494. // Set the target address
  4495. if (code_seen('A')) i2c.address(code_value_byte());
  4496. // Add a new byte to the buffer
  4497. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4498. // Flush the buffer to the bus
  4499. if (code_seen('S')) i2c.send();
  4500. // Reset and rewind the buffer
  4501. else if (code_seen('R')) i2c.reset();
  4502. }
  4503. /**
  4504. * M156: Request X bytes from I2C slave device
  4505. *
  4506. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4507. */
  4508. inline void gcode_M156() {
  4509. if (code_seen('A')) i2c.address(code_value_byte());
  4510. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4511. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4512. i2c.relay(bytes);
  4513. }
  4514. else {
  4515. SERIAL_ERROR_START;
  4516. SERIAL_ERRORLN("Bad i2c request");
  4517. }
  4518. }
  4519. #endif // EXPERIMENTAL_I2CBUS
  4520. /**
  4521. * M200: Set filament diameter and set E axis units to cubic units
  4522. *
  4523. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4524. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4525. */
  4526. inline void gcode_M200() {
  4527. if (get_target_extruder_from_command(200)) return;
  4528. if (code_seen('D')) {
  4529. // setting any extruder filament size disables volumetric on the assumption that
  4530. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4531. // for all extruders
  4532. volumetric_enabled = (code_value_linear_units() != 0.0);
  4533. if (volumetric_enabled) {
  4534. filament_size[target_extruder] = code_value_linear_units();
  4535. // make sure all extruders have some sane value for the filament size
  4536. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4537. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4538. }
  4539. }
  4540. else {
  4541. //reserved for setting filament diameter via UFID or filament measuring device
  4542. return;
  4543. }
  4544. calculate_volumetric_multipliers();
  4545. }
  4546. /**
  4547. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4548. */
  4549. inline void gcode_M201() {
  4550. LOOP_XYZE(i) {
  4551. if (code_seen(axis_codes[i])) {
  4552. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4553. }
  4554. }
  4555. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4556. planner.reset_acceleration_rates();
  4557. }
  4558. #if 0 // Not used for Sprinter/grbl gen6
  4559. inline void gcode_M202() {
  4560. LOOP_XYZE(i) {
  4561. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4562. }
  4563. }
  4564. #endif
  4565. /**
  4566. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4567. */
  4568. inline void gcode_M203() {
  4569. LOOP_XYZE(i)
  4570. if (code_seen(axis_codes[i]))
  4571. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4572. }
  4573. /**
  4574. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4575. *
  4576. * P = Printing moves
  4577. * R = Retract only (no X, Y, Z) moves
  4578. * T = Travel (non printing) moves
  4579. *
  4580. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4581. */
  4582. inline void gcode_M204() {
  4583. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4584. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4585. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4586. }
  4587. if (code_seen('P')) {
  4588. planner.acceleration = code_value_linear_units();
  4589. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4590. }
  4591. if (code_seen('R')) {
  4592. planner.retract_acceleration = code_value_linear_units();
  4593. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4594. }
  4595. if (code_seen('T')) {
  4596. planner.travel_acceleration = code_value_linear_units();
  4597. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4598. }
  4599. }
  4600. /**
  4601. * M205: Set Advanced Settings
  4602. *
  4603. * S = Min Feed Rate (units/s)
  4604. * T = Min Travel Feed Rate (units/s)
  4605. * B = Min Segment Time (µs)
  4606. * X = Max XY Jerk (units/sec^2)
  4607. * Z = Max Z Jerk (units/sec^2)
  4608. * E = Max E Jerk (units/sec^2)
  4609. */
  4610. inline void gcode_M205() {
  4611. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4612. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4613. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4614. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4615. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4616. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4617. }
  4618. /**
  4619. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4620. */
  4621. inline void gcode_M206() {
  4622. LOOP_XYZ(i)
  4623. if (code_seen(axis_codes[i]))
  4624. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4625. #if ENABLED(SCARA)
  4626. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4627. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4628. #endif
  4629. SYNC_PLAN_POSITION_KINEMATIC();
  4630. report_current_position();
  4631. }
  4632. #if ENABLED(DELTA)
  4633. /**
  4634. * M665: Set delta configurations
  4635. *
  4636. * L = diagonal rod
  4637. * R = delta radius
  4638. * S = segments per second
  4639. * A = Alpha (Tower 1) diagonal rod trim
  4640. * B = Beta (Tower 2) diagonal rod trim
  4641. * C = Gamma (Tower 3) diagonal rod trim
  4642. */
  4643. inline void gcode_M665() {
  4644. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4645. if (code_seen('R')) delta_radius = code_value_linear_units();
  4646. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4647. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4648. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4649. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4650. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4651. }
  4652. /**
  4653. * M666: Set delta endstop adjustment
  4654. */
  4655. inline void gcode_M666() {
  4656. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4657. if (DEBUGGING(LEVELING)) {
  4658. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4659. }
  4660. #endif
  4661. LOOP_XYZ(i) {
  4662. if (code_seen(axis_codes[i])) {
  4663. endstop_adj[i] = code_value_axis_units(i);
  4664. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4665. if (DEBUGGING(LEVELING)) {
  4666. SERIAL_ECHOPGM("endstop_adj[");
  4667. SERIAL_ECHO(axis_codes[i]);
  4668. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4669. }
  4670. #endif
  4671. }
  4672. }
  4673. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4674. if (DEBUGGING(LEVELING)) {
  4675. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4676. }
  4677. #endif
  4678. }
  4679. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4680. /**
  4681. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4682. */
  4683. inline void gcode_M666() {
  4684. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4685. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4686. }
  4687. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4688. #if ENABLED(FWRETRACT)
  4689. /**
  4690. * M207: Set firmware retraction values
  4691. *
  4692. * S[+units] retract_length
  4693. * W[+units] retract_length_swap (multi-extruder)
  4694. * F[units/min] retract_feedrate_mm_s
  4695. * Z[units] retract_zlift
  4696. */
  4697. inline void gcode_M207() {
  4698. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4699. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4700. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4701. #if EXTRUDERS > 1
  4702. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4703. #endif
  4704. }
  4705. /**
  4706. * M208: Set firmware un-retraction values
  4707. *
  4708. * S[+units] retract_recover_length (in addition to M207 S*)
  4709. * W[+units] retract_recover_length_swap (multi-extruder)
  4710. * F[units/min] retract_recover_feedrate_mm_s
  4711. */
  4712. inline void gcode_M208() {
  4713. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4714. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4715. #if EXTRUDERS > 1
  4716. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4717. #endif
  4718. }
  4719. /**
  4720. * M209: Enable automatic retract (M209 S1)
  4721. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4722. */
  4723. inline void gcode_M209() {
  4724. if (code_seen('S')) {
  4725. autoretract_enabled = code_value_bool();
  4726. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4727. }
  4728. }
  4729. #endif // FWRETRACT
  4730. /**
  4731. * M211: Enable, Disable, and/or Report software endstops
  4732. *
  4733. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  4734. */
  4735. inline void gcode_M211() {
  4736. SERIAL_ECHO_START;
  4737. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4738. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  4739. #endif
  4740. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4741. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS ": ");
  4742. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  4743. #else
  4744. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS ": " MSG_OFF);
  4745. #endif
  4746. SERIAL_ECHOPGM(" " MSG_SOFT_MIN ": ");
  4747. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  4748. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  4749. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  4750. SERIAL_ECHOPGM(" " MSG_SOFT_MAX ": ");
  4751. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  4752. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  4753. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  4754. }
  4755. #if HOTENDS > 1
  4756. /**
  4757. * M218 - set hotend offset (in linear units)
  4758. *
  4759. * T<tool>
  4760. * X<xoffset>
  4761. * Y<yoffset>
  4762. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4763. */
  4764. inline void gcode_M218() {
  4765. if (get_target_extruder_from_command(218)) return;
  4766. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4767. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4768. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4769. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4770. #endif
  4771. SERIAL_ECHO_START;
  4772. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4773. HOTEND_LOOP() {
  4774. SERIAL_CHAR(' ');
  4775. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4776. SERIAL_CHAR(',');
  4777. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4778. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4779. SERIAL_CHAR(',');
  4780. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4781. #endif
  4782. }
  4783. SERIAL_EOL;
  4784. }
  4785. #endif // HOTENDS > 1
  4786. /**
  4787. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4788. */
  4789. inline void gcode_M220() {
  4790. if (code_seen('S')) feedrate_percentage = code_value_int();
  4791. }
  4792. /**
  4793. * M221: Set extrusion percentage (M221 T0 S95)
  4794. */
  4795. inline void gcode_M221() {
  4796. if (get_target_extruder_from_command(221)) return;
  4797. if (code_seen('S'))
  4798. flow_percentage[target_extruder] = code_value_int();
  4799. }
  4800. /**
  4801. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4802. */
  4803. inline void gcode_M226() {
  4804. if (code_seen('P')) {
  4805. int pin_number = code_value_int();
  4806. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4807. if (pin_state >= -1 && pin_state <= 1) {
  4808. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4809. if (sensitive_pins[i] == pin_number) {
  4810. pin_number = -1;
  4811. break;
  4812. }
  4813. }
  4814. if (pin_number > -1) {
  4815. int target = LOW;
  4816. stepper.synchronize();
  4817. pinMode(pin_number, INPUT);
  4818. switch (pin_state) {
  4819. case 1:
  4820. target = HIGH;
  4821. break;
  4822. case 0:
  4823. target = LOW;
  4824. break;
  4825. case -1:
  4826. target = !digitalRead(pin_number);
  4827. break;
  4828. }
  4829. while (digitalRead(pin_number) != target) idle();
  4830. } // pin_number > -1
  4831. } // pin_state -1 0 1
  4832. } // code_seen('P')
  4833. }
  4834. #if HAS_SERVOS
  4835. /**
  4836. * M280: Get or set servo position. P<index> [S<angle>]
  4837. */
  4838. inline void gcode_M280() {
  4839. if (!code_seen('P')) return;
  4840. int servo_index = code_value_int();
  4841. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4842. if (code_seen('S'))
  4843. MOVE_SERVO(servo_index, code_value_int());
  4844. else {
  4845. SERIAL_ECHO_START;
  4846. SERIAL_ECHOPGM(" Servo ");
  4847. SERIAL_ECHO(servo_index);
  4848. SERIAL_ECHOPGM(": ");
  4849. SERIAL_ECHOLN(servo[servo_index].read());
  4850. }
  4851. }
  4852. else {
  4853. SERIAL_ERROR_START;
  4854. SERIAL_ERROR("Servo ");
  4855. SERIAL_ERROR(servo_index);
  4856. SERIAL_ERRORLN(" out of range");
  4857. }
  4858. }
  4859. #endif // HAS_SERVOS
  4860. #if HAS_BUZZER
  4861. /**
  4862. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4863. */
  4864. inline void gcode_M300() {
  4865. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4866. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4867. // Limits the tone duration to 0-5 seconds.
  4868. NOMORE(duration, 5000);
  4869. BUZZ(duration, frequency);
  4870. }
  4871. #endif // HAS_BUZZER
  4872. #if ENABLED(PIDTEMP)
  4873. /**
  4874. * M301: Set PID parameters P I D (and optionally C, L)
  4875. *
  4876. * P[float] Kp term
  4877. * I[float] Ki term (unscaled)
  4878. * D[float] Kd term (unscaled)
  4879. *
  4880. * With PID_EXTRUSION_SCALING:
  4881. *
  4882. * C[float] Kc term
  4883. * L[float] LPQ length
  4884. */
  4885. inline void gcode_M301() {
  4886. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4887. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4888. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4889. if (e < HOTENDS) { // catch bad input value
  4890. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4891. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4892. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4893. #if ENABLED(PID_EXTRUSION_SCALING)
  4894. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4895. if (code_seen('L')) lpq_len = code_value_float();
  4896. NOMORE(lpq_len, LPQ_MAX_LEN);
  4897. #endif
  4898. thermalManager.updatePID();
  4899. SERIAL_ECHO_START;
  4900. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4901. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4902. SERIAL_ECHO(e);
  4903. #endif // PID_PARAMS_PER_HOTEND
  4904. SERIAL_ECHOPGM(" p:");
  4905. SERIAL_ECHO(PID_PARAM(Kp, e));
  4906. SERIAL_ECHOPGM(" i:");
  4907. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4908. SERIAL_ECHOPGM(" d:");
  4909. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4910. #if ENABLED(PID_EXTRUSION_SCALING)
  4911. SERIAL_ECHOPGM(" c:");
  4912. //Kc does not have scaling applied above, or in resetting defaults
  4913. SERIAL_ECHO(PID_PARAM(Kc, e));
  4914. #endif
  4915. SERIAL_EOL;
  4916. }
  4917. else {
  4918. SERIAL_ERROR_START;
  4919. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4920. }
  4921. }
  4922. #endif // PIDTEMP
  4923. #if ENABLED(PIDTEMPBED)
  4924. inline void gcode_M304() {
  4925. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4926. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4927. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4928. thermalManager.updatePID();
  4929. SERIAL_ECHO_START;
  4930. SERIAL_ECHOPGM(" p:");
  4931. SERIAL_ECHO(thermalManager.bedKp);
  4932. SERIAL_ECHOPGM(" i:");
  4933. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4934. SERIAL_ECHOPGM(" d:");
  4935. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4936. }
  4937. #endif // PIDTEMPBED
  4938. #if defined(CHDK) || HAS_PHOTOGRAPH
  4939. /**
  4940. * M240: Trigger a camera by emulating a Canon RC-1
  4941. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4942. */
  4943. inline void gcode_M240() {
  4944. #ifdef CHDK
  4945. OUT_WRITE(CHDK, HIGH);
  4946. chdkHigh = millis();
  4947. chdkActive = true;
  4948. #elif HAS_PHOTOGRAPH
  4949. const uint8_t NUM_PULSES = 16;
  4950. const float PULSE_LENGTH = 0.01524;
  4951. for (int i = 0; i < NUM_PULSES; i++) {
  4952. WRITE(PHOTOGRAPH_PIN, HIGH);
  4953. _delay_ms(PULSE_LENGTH);
  4954. WRITE(PHOTOGRAPH_PIN, LOW);
  4955. _delay_ms(PULSE_LENGTH);
  4956. }
  4957. delay(7.33);
  4958. for (int i = 0; i < NUM_PULSES; i++) {
  4959. WRITE(PHOTOGRAPH_PIN, HIGH);
  4960. _delay_ms(PULSE_LENGTH);
  4961. WRITE(PHOTOGRAPH_PIN, LOW);
  4962. _delay_ms(PULSE_LENGTH);
  4963. }
  4964. #endif // !CHDK && HAS_PHOTOGRAPH
  4965. }
  4966. #endif // CHDK || PHOTOGRAPH_PIN
  4967. #if HAS_LCD_CONTRAST
  4968. /**
  4969. * M250: Read and optionally set the LCD contrast
  4970. */
  4971. inline void gcode_M250() {
  4972. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4973. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4974. SERIAL_PROTOCOL(lcd_contrast);
  4975. SERIAL_EOL;
  4976. }
  4977. #endif // HAS_LCD_CONTRAST
  4978. #if ENABLED(PREVENT_COLD_EXTRUSION)
  4979. /**
  4980. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4981. *
  4982. * S<temperature> sets the minimum extrude temperature
  4983. * P<bool> enables (1) or disables (0) cold extrusion
  4984. *
  4985. * Examples:
  4986. *
  4987. * M302 ; report current cold extrusion state
  4988. * M302 P0 ; enable cold extrusion checking
  4989. * M302 P1 ; disables cold extrusion checking
  4990. * M302 S0 ; always allow extrusion (disables checking)
  4991. * M302 S170 ; only allow extrusion above 170
  4992. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4993. */
  4994. inline void gcode_M302() {
  4995. bool seen_S = code_seen('S');
  4996. if (seen_S) {
  4997. thermalManager.extrude_min_temp = code_value_temp_abs();
  4998. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4999. }
  5000. if (code_seen('P'))
  5001. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  5002. else if (!seen_S) {
  5003. // Report current state
  5004. SERIAL_ECHO_START;
  5005. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  5006. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  5007. SERIAL_ECHOLNPGM("C)");
  5008. }
  5009. }
  5010. #endif // PREVENT_COLD_EXTRUSION
  5011. /**
  5012. * M303: PID relay autotune
  5013. *
  5014. * S<temperature> sets the target temperature. (default 150C)
  5015. * E<extruder> (-1 for the bed) (default 0)
  5016. * C<cycles>
  5017. * U<bool> with a non-zero value will apply the result to current settings
  5018. */
  5019. inline void gcode_M303() {
  5020. #if HAS_PID_HEATING
  5021. int e = code_seen('E') ? code_value_int() : 0;
  5022. int c = code_seen('C') ? code_value_int() : 5;
  5023. bool u = code_seen('U') && code_value_bool();
  5024. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  5025. if (e >= 0 && e < HOTENDS)
  5026. target_extruder = e;
  5027. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  5028. thermalManager.PID_autotune(temp, e, c, u);
  5029. KEEPALIVE_STATE(IN_HANDLER);
  5030. #else
  5031. SERIAL_ERROR_START;
  5032. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  5033. #endif
  5034. }
  5035. #if ENABLED(SCARA)
  5036. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  5037. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  5038. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  5039. if (IsRunning()) {
  5040. //gcode_get_destination(); // For X Y Z E F
  5041. delta[X_AXIS] = delta_x;
  5042. delta[Y_AXIS] = delta_y;
  5043. forward_kinematics_SCARA(delta);
  5044. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  5045. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  5046. prepare_move_to_destination();
  5047. //ok_to_send();
  5048. return true;
  5049. }
  5050. return false;
  5051. }
  5052. /**
  5053. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5054. */
  5055. inline bool gcode_M360() {
  5056. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5057. return SCARA_move_to_cal(0, 120);
  5058. }
  5059. /**
  5060. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5061. */
  5062. inline bool gcode_M361() {
  5063. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5064. return SCARA_move_to_cal(90, 130);
  5065. }
  5066. /**
  5067. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5068. */
  5069. inline bool gcode_M362() {
  5070. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5071. return SCARA_move_to_cal(60, 180);
  5072. }
  5073. /**
  5074. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5075. */
  5076. inline bool gcode_M363() {
  5077. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5078. return SCARA_move_to_cal(50, 90);
  5079. }
  5080. /**
  5081. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5082. */
  5083. inline bool gcode_M364() {
  5084. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5085. return SCARA_move_to_cal(45, 135);
  5086. }
  5087. /**
  5088. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  5089. */
  5090. inline void gcode_M365() {
  5091. LOOP_XYZ(i)
  5092. if (code_seen(axis_codes[i]))
  5093. axis_scaling[i] = code_value_float();
  5094. }
  5095. #endif // SCARA
  5096. #if ENABLED(EXT_SOLENOID)
  5097. void enable_solenoid(uint8_t num) {
  5098. switch (num) {
  5099. case 0:
  5100. OUT_WRITE(SOL0_PIN, HIGH);
  5101. break;
  5102. #if HAS_SOLENOID_1
  5103. case 1:
  5104. OUT_WRITE(SOL1_PIN, HIGH);
  5105. break;
  5106. #endif
  5107. #if HAS_SOLENOID_2
  5108. case 2:
  5109. OUT_WRITE(SOL2_PIN, HIGH);
  5110. break;
  5111. #endif
  5112. #if HAS_SOLENOID_3
  5113. case 3:
  5114. OUT_WRITE(SOL3_PIN, HIGH);
  5115. break;
  5116. #endif
  5117. default:
  5118. SERIAL_ECHO_START;
  5119. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5120. break;
  5121. }
  5122. }
  5123. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5124. void disable_all_solenoids() {
  5125. OUT_WRITE(SOL0_PIN, LOW);
  5126. OUT_WRITE(SOL1_PIN, LOW);
  5127. OUT_WRITE(SOL2_PIN, LOW);
  5128. OUT_WRITE(SOL3_PIN, LOW);
  5129. }
  5130. /**
  5131. * M380: Enable solenoid on the active extruder
  5132. */
  5133. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5134. /**
  5135. * M381: Disable all solenoids
  5136. */
  5137. inline void gcode_M381() { disable_all_solenoids(); }
  5138. #endif // EXT_SOLENOID
  5139. /**
  5140. * M400: Finish all moves
  5141. */
  5142. inline void gcode_M400() { stepper.synchronize(); }
  5143. #if HAS_BED_PROBE
  5144. /**
  5145. * M401: Engage Z Servo endstop if available
  5146. */
  5147. inline void gcode_M401() { DEPLOY_PROBE(); }
  5148. /**
  5149. * M402: Retract Z Servo endstop if enabled
  5150. */
  5151. inline void gcode_M402() { STOW_PROBE(); }
  5152. #endif // HAS_BED_PROBE
  5153. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5154. /**
  5155. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5156. */
  5157. inline void gcode_M404() {
  5158. if (code_seen('W')) {
  5159. filament_width_nominal = code_value_linear_units();
  5160. }
  5161. else {
  5162. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5163. SERIAL_PROTOCOLLN(filament_width_nominal);
  5164. }
  5165. }
  5166. /**
  5167. * M405: Turn on filament sensor for control
  5168. */
  5169. inline void gcode_M405() {
  5170. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5171. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5172. if (code_seen('D')) meas_delay_cm = code_value_int();
  5173. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5174. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5175. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5176. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5177. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5178. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5179. }
  5180. filament_sensor = true;
  5181. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5182. //SERIAL_PROTOCOL(filament_width_meas);
  5183. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5184. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5185. }
  5186. /**
  5187. * M406: Turn off filament sensor for control
  5188. */
  5189. inline void gcode_M406() { filament_sensor = false; }
  5190. /**
  5191. * M407: Get measured filament diameter on serial output
  5192. */
  5193. inline void gcode_M407() {
  5194. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5195. SERIAL_PROTOCOLLN(filament_width_meas);
  5196. }
  5197. #endif // FILAMENT_WIDTH_SENSOR
  5198. void quickstop_stepper() {
  5199. stepper.quick_stop();
  5200. #if DISABLED(SCARA)
  5201. stepper.synchronize();
  5202. LOOP_XYZ(i) set_current_from_steppers_for_axis((AxisEnum)i);
  5203. SYNC_PLAN_POSITION_KINEMATIC();
  5204. #endif
  5205. }
  5206. #if ENABLED(MESH_BED_LEVELING)
  5207. /**
  5208. * M420: Enable/Disable Mesh Bed Leveling
  5209. */
  5210. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5211. /**
  5212. * M421: Set a single Mesh Bed Leveling Z coordinate
  5213. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5214. */
  5215. inline void gcode_M421() {
  5216. int8_t px = 0, py = 0;
  5217. float z = 0;
  5218. bool hasX, hasY, hasZ, hasI, hasJ;
  5219. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5220. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5221. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5222. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5223. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5224. if (hasX && hasY && hasZ) {
  5225. if (px >= 0 && py >= 0)
  5226. mbl.set_z(px, py, z);
  5227. else {
  5228. SERIAL_ERROR_START;
  5229. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5230. }
  5231. }
  5232. else if (hasI && hasJ && hasZ) {
  5233. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5234. mbl.set_z(px, py, z);
  5235. else {
  5236. SERIAL_ERROR_START;
  5237. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5238. }
  5239. }
  5240. else {
  5241. SERIAL_ERROR_START;
  5242. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5243. }
  5244. }
  5245. #endif
  5246. /**
  5247. * M428: Set home_offset based on the distance between the
  5248. * current_position and the nearest "reference point."
  5249. * If an axis is past center its endstop position
  5250. * is the reference-point. Otherwise it uses 0. This allows
  5251. * the Z offset to be set near the bed when using a max endstop.
  5252. *
  5253. * M428 can't be used more than 2cm away from 0 or an endstop.
  5254. *
  5255. * Use M206 to set these values directly.
  5256. */
  5257. inline void gcode_M428() {
  5258. bool err = false;
  5259. LOOP_XYZ(i) {
  5260. if (axis_homed[i]) {
  5261. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5262. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5263. if (diff > -20 && diff < 20) {
  5264. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5265. }
  5266. else {
  5267. SERIAL_ERROR_START;
  5268. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5269. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5270. BUZZ(200, 40);
  5271. err = true;
  5272. break;
  5273. }
  5274. }
  5275. }
  5276. if (!err) {
  5277. SYNC_PLAN_POSITION_KINEMATIC();
  5278. report_current_position();
  5279. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5280. BUZZ(200, 659);
  5281. BUZZ(200, 698);
  5282. }
  5283. }
  5284. /**
  5285. * M500: Store settings in EEPROM
  5286. */
  5287. inline void gcode_M500() {
  5288. Config_StoreSettings();
  5289. }
  5290. /**
  5291. * M501: Read settings from EEPROM
  5292. */
  5293. inline void gcode_M501() {
  5294. Config_RetrieveSettings();
  5295. }
  5296. /**
  5297. * M502: Revert to default settings
  5298. */
  5299. inline void gcode_M502() {
  5300. Config_ResetDefault();
  5301. }
  5302. /**
  5303. * M503: print settings currently in memory
  5304. */
  5305. inline void gcode_M503() {
  5306. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5307. }
  5308. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5309. /**
  5310. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5311. */
  5312. inline void gcode_M540() {
  5313. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5314. }
  5315. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5316. #if HAS_BED_PROBE
  5317. inline void gcode_M851() {
  5318. SERIAL_ECHO_START;
  5319. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5320. SERIAL_CHAR(' ');
  5321. if (code_seen('Z')) {
  5322. float value = code_value_axis_units(Z_AXIS);
  5323. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5324. zprobe_zoffset = value;
  5325. SERIAL_ECHO(zprobe_zoffset);
  5326. }
  5327. else {
  5328. SERIAL_ECHOPGM(MSG_Z_MIN);
  5329. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5330. SERIAL_CHAR(' ');
  5331. SERIAL_ECHOPGM(MSG_Z_MAX);
  5332. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5333. }
  5334. }
  5335. else {
  5336. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5337. }
  5338. SERIAL_EOL;
  5339. }
  5340. #endif // HAS_BED_PROBE
  5341. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5342. /**
  5343. * M600: Pause for filament change
  5344. *
  5345. * E[distance] - Retract the filament this far (negative value)
  5346. * Z[distance] - Move the Z axis by this distance
  5347. * X[position] - Move to this X position, with Y
  5348. * Y[position] - Move to this Y position, with X
  5349. * L[distance] - Retract distance for removal (manual reload)
  5350. *
  5351. * Default values are used for omitted arguments.
  5352. *
  5353. */
  5354. inline void gcode_M600() {
  5355. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5356. SERIAL_ERROR_START;
  5357. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5358. return;
  5359. }
  5360. // Show initial message and wait for synchronize steppers
  5361. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5362. stepper.synchronize();
  5363. float lastpos[NUM_AXIS];
  5364. // Save current position of all axes
  5365. LOOP_XYZE(i)
  5366. lastpos[i] = destination[i] = current_position[i];
  5367. // Define runplan for move axes
  5368. #if ENABLED(DELTA)
  5369. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5370. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5371. #else
  5372. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5373. #endif
  5374. KEEPALIVE_STATE(IN_HANDLER);
  5375. // Initial retract before move to filament change position
  5376. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5377. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5378. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5379. #endif
  5380. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5381. // Lift Z axis
  5382. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5383. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5384. FILAMENT_CHANGE_Z_ADD
  5385. #else
  5386. 0
  5387. #endif
  5388. ;
  5389. if (z_lift > 0) {
  5390. destination[Z_AXIS] += z_lift;
  5391. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5392. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5393. }
  5394. // Move XY axes to filament exchange position
  5395. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5396. #ifdef FILAMENT_CHANGE_X_POS
  5397. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5398. #endif
  5399. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5400. #ifdef FILAMENT_CHANGE_Y_POS
  5401. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5402. #endif
  5403. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5404. stepper.synchronize();
  5405. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5406. // Unload filament
  5407. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5408. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5409. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5410. #endif
  5411. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5412. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5413. stepper.synchronize();
  5414. disable_e0();
  5415. disable_e1();
  5416. disable_e2();
  5417. disable_e3();
  5418. delay(100);
  5419. #if HAS_BUZZER
  5420. millis_t next_tick = 0;
  5421. #endif
  5422. // Wait for filament insert by user and press button
  5423. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5424. while (!lcd_clicked()) {
  5425. #if HAS_BUZZER
  5426. millis_t ms = millis();
  5427. if (ms >= next_tick) {
  5428. BUZZ(300, 2000);
  5429. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5430. }
  5431. #endif
  5432. idle(true);
  5433. }
  5434. delay(100);
  5435. while (lcd_clicked()) idle(true);
  5436. delay(100);
  5437. // Show load message
  5438. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5439. // Load filament
  5440. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5441. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5442. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5443. #endif
  5444. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5445. stepper.synchronize();
  5446. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5447. do {
  5448. // Extrude filament to get into hotend
  5449. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5450. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5451. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5452. stepper.synchronize();
  5453. // Ask user if more filament should be extruded
  5454. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5455. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5456. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5457. KEEPALIVE_STATE(IN_HANDLER);
  5458. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5459. #endif
  5460. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5461. KEEPALIVE_STATE(IN_HANDLER);
  5462. // Set extruder to saved position
  5463. current_position[E_AXIS] = lastpos[E_AXIS];
  5464. destination[E_AXIS] = lastpos[E_AXIS];
  5465. planner.set_e_position_mm(current_position[E_AXIS]);
  5466. #if ENABLED(DELTA)
  5467. // Move XYZ to starting position, then E
  5468. inverse_kinematics(lastpos);
  5469. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5470. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5471. #else
  5472. // Move XY to starting position, then Z, then E
  5473. destination[X_AXIS] = lastpos[X_AXIS];
  5474. destination[Y_AXIS] = lastpos[Y_AXIS];
  5475. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5476. destination[Z_AXIS] = lastpos[Z_AXIS];
  5477. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5478. #endif
  5479. stepper.synchronize();
  5480. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5481. filament_ran_out = false;
  5482. #endif
  5483. // Show status screen
  5484. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5485. }
  5486. #endif // FILAMENT_CHANGE_FEATURE
  5487. #if ENABLED(DUAL_X_CARRIAGE)
  5488. /**
  5489. * M605: Set dual x-carriage movement mode
  5490. *
  5491. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5492. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5493. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5494. * units x-offset and an optional differential hotend temperature of
  5495. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5496. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5497. *
  5498. * Note: the X axis should be homed after changing dual x-carriage mode.
  5499. */
  5500. inline void gcode_M605() {
  5501. stepper.synchronize();
  5502. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5503. switch (dual_x_carriage_mode) {
  5504. case DXC_DUPLICATION_MODE:
  5505. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5506. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5507. SERIAL_ECHO_START;
  5508. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5509. SERIAL_CHAR(' ');
  5510. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5511. SERIAL_CHAR(',');
  5512. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5513. SERIAL_CHAR(' ');
  5514. SERIAL_ECHO(duplicate_extruder_x_offset);
  5515. SERIAL_CHAR(',');
  5516. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5517. break;
  5518. case DXC_FULL_CONTROL_MODE:
  5519. case DXC_AUTO_PARK_MODE:
  5520. break;
  5521. default:
  5522. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5523. break;
  5524. }
  5525. active_extruder_parked = false;
  5526. extruder_duplication_enabled = false;
  5527. delayed_move_time = 0;
  5528. }
  5529. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5530. inline void gcode_M605() {
  5531. stepper.synchronize();
  5532. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5533. SERIAL_ECHO_START;
  5534. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5535. }
  5536. #endif // M605
  5537. #if ENABLED(LIN_ADVANCE)
  5538. /**
  5539. * M905: Set advance factor
  5540. */
  5541. inline void gcode_M905() {
  5542. stepper.synchronize();
  5543. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5544. }
  5545. #endif
  5546. /**
  5547. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5548. */
  5549. inline void gcode_M907() {
  5550. #if HAS_DIGIPOTSS
  5551. LOOP_XYZE(i)
  5552. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5553. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5554. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5555. #endif
  5556. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5557. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5558. #endif
  5559. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5560. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5561. #endif
  5562. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5563. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5564. #endif
  5565. #if ENABLED(DIGIPOT_I2C)
  5566. // this one uses actual amps in floating point
  5567. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5568. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5569. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5570. #endif
  5571. #if ENABLED(DAC_STEPPER_CURRENT)
  5572. if (code_seen('S')) {
  5573. float dac_percent = code_value_float();
  5574. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5575. }
  5576. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5577. #endif
  5578. }
  5579. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5580. /**
  5581. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5582. */
  5583. inline void gcode_M908() {
  5584. #if HAS_DIGIPOTSS
  5585. stepper.digitalPotWrite(
  5586. code_seen('P') ? code_value_int() : 0,
  5587. code_seen('S') ? code_value_int() : 0
  5588. );
  5589. #endif
  5590. #ifdef DAC_STEPPER_CURRENT
  5591. dac_current_raw(
  5592. code_seen('P') ? code_value_byte() : -1,
  5593. code_seen('S') ? code_value_ushort() : 0
  5594. );
  5595. #endif
  5596. }
  5597. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5598. inline void gcode_M909() { dac_print_values(); }
  5599. inline void gcode_M910() { dac_commit_eeprom(); }
  5600. #endif
  5601. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5602. #if HAS_MICROSTEPS
  5603. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5604. inline void gcode_M350() {
  5605. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5606. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5607. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5608. stepper.microstep_readings();
  5609. }
  5610. /**
  5611. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5612. * S# determines MS1 or MS2, X# sets the pin high/low.
  5613. */
  5614. inline void gcode_M351() {
  5615. if (code_seen('S')) switch (code_value_byte()) {
  5616. case 1:
  5617. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5618. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5619. break;
  5620. case 2:
  5621. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5622. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5623. break;
  5624. }
  5625. stepper.microstep_readings();
  5626. }
  5627. #endif // HAS_MICROSTEPS
  5628. #if ENABLED(MIXING_EXTRUDER)
  5629. /**
  5630. * M163: Set a single mix factor for a mixing extruder
  5631. * This is called "weight" by some systems.
  5632. *
  5633. * S[index] The channel index to set
  5634. * P[float] The mix value
  5635. *
  5636. */
  5637. inline void gcode_M163() {
  5638. int mix_index = code_seen('S') ? code_value_int() : 0;
  5639. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5640. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5641. }
  5642. #if MIXING_VIRTUAL_TOOLS > 1
  5643. /**
  5644. * M164: Store the current mix factors as a virtual tool.
  5645. *
  5646. * S[index] The virtual tool to store
  5647. *
  5648. */
  5649. inline void gcode_M164() {
  5650. int tool_index = code_seen('S') ? code_value_int() : 0;
  5651. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5652. normalize_mix();
  5653. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5654. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5655. }
  5656. }
  5657. #endif
  5658. #if ENABLED(DIRECT_MIXING_IN_G1)
  5659. /**
  5660. * M165: Set multiple mix factors for a mixing extruder.
  5661. * Factors that are left out will be set to 0.
  5662. * All factors together must add up to 1.0.
  5663. *
  5664. * A[factor] Mix factor for extruder stepper 1
  5665. * B[factor] Mix factor for extruder stepper 2
  5666. * C[factor] Mix factor for extruder stepper 3
  5667. * D[factor] Mix factor for extruder stepper 4
  5668. * H[factor] Mix factor for extruder stepper 5
  5669. * I[factor] Mix factor for extruder stepper 6
  5670. *
  5671. */
  5672. inline void gcode_M165() { gcode_get_mix(); }
  5673. #endif
  5674. #endif // MIXING_EXTRUDER
  5675. /**
  5676. * M999: Restart after being stopped
  5677. *
  5678. * Default behaviour is to flush the serial buffer and request
  5679. * a resend to the host starting on the last N line received.
  5680. *
  5681. * Sending "M999 S1" will resume printing without flushing the
  5682. * existing command buffer.
  5683. *
  5684. */
  5685. inline void gcode_M999() {
  5686. Running = true;
  5687. lcd_reset_alert_level();
  5688. if (code_seen('S') && code_value_bool()) return;
  5689. // gcode_LastN = Stopped_gcode_LastN;
  5690. FlushSerialRequestResend();
  5691. }
  5692. #if ENABLED(SWITCHING_EXTRUDER)
  5693. inline void move_extruder_servo(uint8_t e) {
  5694. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5695. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5696. }
  5697. #endif
  5698. inline void invalid_extruder_error(const uint8_t &e) {
  5699. SERIAL_ECHO_START;
  5700. SERIAL_CHAR('T');
  5701. SERIAL_PROTOCOL_F(e, DEC);
  5702. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5703. }
  5704. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5705. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5706. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5707. invalid_extruder_error(tmp_extruder);
  5708. return;
  5709. }
  5710. // T0-Tnnn: Switch virtual tool by changing the mix
  5711. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5712. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5713. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5714. #if HOTENDS > 1
  5715. if (tmp_extruder >= EXTRUDERS) {
  5716. invalid_extruder_error(tmp_extruder);
  5717. return;
  5718. }
  5719. float old_feedrate_mm_s = feedrate_mm_s;
  5720. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5721. if (tmp_extruder != active_extruder) {
  5722. if (!no_move && axis_unhomed_error(true, true, true)) {
  5723. SERIAL_ECHOLNPGM("No move on toolchange");
  5724. no_move = true;
  5725. }
  5726. // Save current position to destination, for use later
  5727. set_destination_to_current();
  5728. #if ENABLED(DUAL_X_CARRIAGE)
  5729. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5730. if (DEBUGGING(LEVELING)) {
  5731. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5732. switch (dual_x_carriage_mode) {
  5733. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5734. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5735. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5736. }
  5737. }
  5738. #endif
  5739. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5740. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5741. ) {
  5742. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5743. if (DEBUGGING(LEVELING)) {
  5744. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5745. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5746. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5747. }
  5748. #endif
  5749. // Park old head: 1) raise 2) move to park position 3) lower
  5750. for (uint8_t i = 0; i < 3; i++)
  5751. planner.buffer_line(
  5752. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5753. current_position[Y_AXIS],
  5754. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5755. current_position[E_AXIS],
  5756. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5757. active_extruder
  5758. );
  5759. stepper.synchronize();
  5760. }
  5761. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5762. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5763. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5764. active_extruder = tmp_extruder;
  5765. // This function resets the max/min values - the current position may be overwritten below.
  5766. set_axis_is_at_home(X_AXIS);
  5767. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5768. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5769. #endif
  5770. switch (dual_x_carriage_mode) {
  5771. case DXC_FULL_CONTROL_MODE:
  5772. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5773. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5774. break;
  5775. case DXC_DUPLICATION_MODE:
  5776. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5777. if (active_extruder_parked)
  5778. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5779. else
  5780. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5781. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5782. extruder_duplication_enabled = false;
  5783. break;
  5784. default:
  5785. // record raised toolhead position for use by unpark
  5786. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5787. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5788. active_extruder_parked = true;
  5789. delayed_move_time = 0;
  5790. break;
  5791. }
  5792. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5793. if (DEBUGGING(LEVELING)) {
  5794. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5795. DEBUG_POS("New extruder (parked)", current_position);
  5796. }
  5797. #endif
  5798. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5799. #else // !DUAL_X_CARRIAGE
  5800. #if ENABLED(SWITCHING_EXTRUDER)
  5801. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5802. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5803. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5804. // Always raise by some amount
  5805. planner.buffer_line(
  5806. current_position[X_AXIS],
  5807. current_position[Y_AXIS],
  5808. current_position[Z_AXIS] + z_raise,
  5809. current_position[E_AXIS],
  5810. planner.max_feedrate_mm_s[Z_AXIS],
  5811. active_extruder
  5812. );
  5813. stepper.synchronize();
  5814. move_extruder_servo(active_extruder);
  5815. delay(500);
  5816. // Move back down, if needed
  5817. if (z_raise != z_diff) {
  5818. planner.buffer_line(
  5819. current_position[X_AXIS],
  5820. current_position[Y_AXIS],
  5821. current_position[Z_AXIS] + z_diff,
  5822. current_position[E_AXIS],
  5823. planner.max_feedrate_mm_s[Z_AXIS],
  5824. active_extruder
  5825. );
  5826. stepper.synchronize();
  5827. }
  5828. #endif
  5829. /**
  5830. * Set current_position to the position of the new nozzle.
  5831. * Offsets are based on linear distance, so we need to get
  5832. * the resulting position in coordinate space.
  5833. *
  5834. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5835. * - With mesh leveling, update Z for the new position
  5836. * - Otherwise, just use the raw linear distance
  5837. *
  5838. * Software endstops are altered here too. Consider a case where:
  5839. * E0 at X=0 ... E1 at X=10
  5840. * When we switch to E1 now X=10, but E1 can't move left.
  5841. * To express this we apply the change in XY to the software endstops.
  5842. * E1 can move farther right than E0, so the right limit is extended.
  5843. *
  5844. * Note that we don't adjust the Z software endstops. Why not?
  5845. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5846. * because the bed is 1mm lower at the new position. As long as
  5847. * the first nozzle is out of the way, the carriage should be
  5848. * allowed to move 1mm lower. This technically "breaks" the
  5849. * Z software endstop. But this is technically correct (and
  5850. * there is no viable alternative).
  5851. */
  5852. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5853. // Offset extruder, make sure to apply the bed level rotation matrix
  5854. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5855. hotend_offset[Y_AXIS][tmp_extruder],
  5856. 0),
  5857. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5858. hotend_offset[Y_AXIS][active_extruder],
  5859. 0),
  5860. offset_vec = tmp_offset_vec - act_offset_vec;
  5861. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5862. if (DEBUGGING(LEVELING)) {
  5863. tmp_offset_vec.debug("tmp_offset_vec");
  5864. act_offset_vec.debug("act_offset_vec");
  5865. offset_vec.debug("offset_vec (BEFORE)");
  5866. }
  5867. #endif
  5868. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5869. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5870. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5871. #endif
  5872. // Adjustments to the current position
  5873. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5874. current_position[Z_AXIS] += offset_vec.z;
  5875. #else // !AUTO_BED_LEVELING_FEATURE
  5876. float xydiff[2] = {
  5877. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5878. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5879. };
  5880. #if ENABLED(MESH_BED_LEVELING)
  5881. if (mbl.active()) {
  5882. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5883. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5884. #endif
  5885. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5886. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5887. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5888. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5889. if (DEBUGGING(LEVELING))
  5890. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  5891. #endif
  5892. }
  5893. #endif // MESH_BED_LEVELING
  5894. #endif // !AUTO_BED_LEVELING_FEATURE
  5895. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5896. if (DEBUGGING(LEVELING)) {
  5897. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5898. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5899. SERIAL_ECHOLNPGM(" }");
  5900. }
  5901. #endif
  5902. // The newly-selected extruder XY is actually at...
  5903. current_position[X_AXIS] += xydiff[X_AXIS];
  5904. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5905. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5906. position_shift[i] += xydiff[i];
  5907. update_software_endstops((AxisEnum)i);
  5908. }
  5909. // Set the new active extruder
  5910. active_extruder = tmp_extruder;
  5911. #endif // !DUAL_X_CARRIAGE
  5912. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5913. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5914. #endif
  5915. // Tell the planner the new "current position"
  5916. SYNC_PLAN_POSITION_KINEMATIC();
  5917. // Move to the "old position" (move the extruder into place)
  5918. if (!no_move && IsRunning()) {
  5919. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5920. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5921. #endif
  5922. prepare_move_to_destination();
  5923. }
  5924. } // (tmp_extruder != active_extruder)
  5925. stepper.synchronize();
  5926. #if ENABLED(EXT_SOLENOID)
  5927. disable_all_solenoids();
  5928. enable_solenoid_on_active_extruder();
  5929. #endif // EXT_SOLENOID
  5930. feedrate_mm_s = old_feedrate_mm_s;
  5931. #else // HOTENDS <= 1
  5932. // Set the new active extruder
  5933. active_extruder = tmp_extruder;
  5934. UNUSED(fr_mm_s);
  5935. UNUSED(no_move);
  5936. #endif // HOTENDS <= 1
  5937. SERIAL_ECHO_START;
  5938. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5939. SERIAL_PROTOCOLLN((int)active_extruder);
  5940. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5941. }
  5942. /**
  5943. * T0-T3: Switch tool, usually switching extruders
  5944. *
  5945. * F[units/min] Set the movement feedrate
  5946. * S1 Don't move the tool in XY after change
  5947. */
  5948. inline void gcode_T(uint8_t tmp_extruder) {
  5949. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5950. if (DEBUGGING(LEVELING)) {
  5951. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5952. SERIAL_ECHOLNPGM(")");
  5953. DEBUG_POS("BEFORE", current_position);
  5954. }
  5955. #endif
  5956. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  5957. tool_change(tmp_extruder);
  5958. #elif HOTENDS > 1
  5959. tool_change(
  5960. tmp_extruder,
  5961. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  5962. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  5963. );
  5964. #endif
  5965. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5966. if (DEBUGGING(LEVELING)) {
  5967. DEBUG_POS("AFTER", current_position);
  5968. SERIAL_ECHOLNPGM("<<< gcode_T");
  5969. }
  5970. #endif
  5971. }
  5972. /**
  5973. * Process a single command and dispatch it to its handler
  5974. * This is called from the main loop()
  5975. */
  5976. void process_next_command() {
  5977. current_command = command_queue[cmd_queue_index_r];
  5978. if (DEBUGGING(ECHO)) {
  5979. SERIAL_ECHO_START;
  5980. SERIAL_ECHOLN(current_command);
  5981. }
  5982. // Sanitize the current command:
  5983. // - Skip leading spaces
  5984. // - Bypass N[-0-9][0-9]*[ ]*
  5985. // - Overwrite * with nul to mark the end
  5986. while (*current_command == ' ') ++current_command;
  5987. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5988. current_command += 2; // skip N[-0-9]
  5989. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5990. while (*current_command == ' ') ++current_command; // skip [ ]*
  5991. }
  5992. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5993. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5994. char *cmd_ptr = current_command;
  5995. // Get the command code, which must be G, M, or T
  5996. char command_code = *cmd_ptr++;
  5997. // Skip spaces to get the numeric part
  5998. while (*cmd_ptr == ' ') cmd_ptr++;
  5999. uint16_t codenum = 0; // define ahead of goto
  6000. // Bail early if there's no code
  6001. bool code_is_good = NUMERIC(*cmd_ptr);
  6002. if (!code_is_good) goto ExitUnknownCommand;
  6003. // Get and skip the code number
  6004. do {
  6005. codenum = (codenum * 10) + (*cmd_ptr - '0');
  6006. cmd_ptr++;
  6007. } while (NUMERIC(*cmd_ptr));
  6008. // Skip all spaces to get to the first argument, or nul
  6009. while (*cmd_ptr == ' ') cmd_ptr++;
  6010. // The command's arguments (if any) start here, for sure!
  6011. current_command_args = cmd_ptr;
  6012. KEEPALIVE_STATE(IN_HANDLER);
  6013. // Handle a known G, M, or T
  6014. switch (command_code) {
  6015. case 'G': switch (codenum) {
  6016. // G0, G1
  6017. case 0:
  6018. case 1:
  6019. gcode_G0_G1();
  6020. break;
  6021. // G2, G3
  6022. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  6023. case 2: // G2 - CW ARC
  6024. case 3: // G3 - CCW ARC
  6025. gcode_G2_G3(codenum == 2);
  6026. break;
  6027. #endif
  6028. // G4 Dwell
  6029. case 4:
  6030. gcode_G4();
  6031. break;
  6032. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6033. // G5
  6034. case 5: // G5 - Cubic B_spline
  6035. gcode_G5();
  6036. break;
  6037. #endif // BEZIER_CURVE_SUPPORT
  6038. #if ENABLED(FWRETRACT)
  6039. case 10: // G10: retract
  6040. case 11: // G11: retract_recover
  6041. gcode_G10_G11(codenum == 10);
  6042. break;
  6043. #endif // FWRETRACT
  6044. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  6045. case 12:
  6046. gcode_G12(); // G12: Nozzle Clean
  6047. break;
  6048. #endif // NOZZLE_CLEAN_FEATURE
  6049. #if ENABLED(INCH_MODE_SUPPORT)
  6050. case 20: //G20: Inch Mode
  6051. gcode_G20();
  6052. break;
  6053. case 21: //G21: MM Mode
  6054. gcode_G21();
  6055. break;
  6056. #endif // INCH_MODE_SUPPORT
  6057. #if ENABLED(NOZZLE_PARK_FEATURE)
  6058. case 27: // G27: Nozzle Park
  6059. gcode_G27();
  6060. break;
  6061. #endif // NOZZLE_PARK_FEATURE
  6062. case 28: // G28: Home all axes, one at a time
  6063. gcode_G28();
  6064. break;
  6065. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  6066. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6067. gcode_G29();
  6068. break;
  6069. #endif // AUTO_BED_LEVELING_FEATURE
  6070. #if HAS_BED_PROBE
  6071. case 30: // G30 Single Z probe
  6072. gcode_G30();
  6073. break;
  6074. #if ENABLED(Z_PROBE_SLED)
  6075. case 31: // G31: dock the sled
  6076. gcode_G31();
  6077. break;
  6078. case 32: // G32: undock the sled
  6079. gcode_G32();
  6080. break;
  6081. #endif // Z_PROBE_SLED
  6082. #endif // HAS_BED_PROBE
  6083. case 90: // G90
  6084. relative_mode = false;
  6085. break;
  6086. case 91: // G91
  6087. relative_mode = true;
  6088. break;
  6089. case 92: // G92
  6090. gcode_G92();
  6091. break;
  6092. }
  6093. break;
  6094. case 'M': switch (codenum) {
  6095. #if ENABLED(ULTIPANEL)
  6096. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6097. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6098. gcode_M0_M1();
  6099. break;
  6100. #endif // ULTIPANEL
  6101. case 17:
  6102. gcode_M17();
  6103. break;
  6104. #if ENABLED(SDSUPPORT)
  6105. case 20: // M20 - list SD card
  6106. gcode_M20(); break;
  6107. case 21: // M21 - init SD card
  6108. gcode_M21(); break;
  6109. case 22: //M22 - release SD card
  6110. gcode_M22(); break;
  6111. case 23: //M23 - Select file
  6112. gcode_M23(); break;
  6113. case 24: //M24 - Start SD print
  6114. gcode_M24(); break;
  6115. case 25: //M25 - Pause SD print
  6116. gcode_M25(); break;
  6117. case 26: //M26 - Set SD index
  6118. gcode_M26(); break;
  6119. case 27: //M27 - Get SD status
  6120. gcode_M27(); break;
  6121. case 28: //M28 - Start SD write
  6122. gcode_M28(); break;
  6123. case 29: //M29 - Stop SD write
  6124. gcode_M29(); break;
  6125. case 30: //M30 <filename> Delete File
  6126. gcode_M30(); break;
  6127. case 32: //M32 - Select file and start SD print
  6128. gcode_M32(); break;
  6129. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6130. case 33: //M33 - Get the long full path to a file or folder
  6131. gcode_M33(); break;
  6132. #endif // LONG_FILENAME_HOST_SUPPORT
  6133. case 928: //M928 - Start SD write
  6134. gcode_M928(); break;
  6135. #endif //SDSUPPORT
  6136. case 31: //M31 take time since the start of the SD print or an M109 command
  6137. gcode_M31();
  6138. break;
  6139. case 42: //M42 -Change pin status via gcode
  6140. gcode_M42();
  6141. break;
  6142. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6143. case 48: // M48 Z probe repeatability
  6144. gcode_M48();
  6145. break;
  6146. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6147. case 75: // Start print timer
  6148. gcode_M75();
  6149. break;
  6150. case 76: // Pause print timer
  6151. gcode_M76();
  6152. break;
  6153. case 77: // Stop print timer
  6154. gcode_M77();
  6155. break;
  6156. #if ENABLED(PRINTCOUNTER)
  6157. case 78: // Show print statistics
  6158. gcode_M78();
  6159. break;
  6160. #endif
  6161. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6162. case 100:
  6163. gcode_M100();
  6164. break;
  6165. #endif
  6166. case 104: // M104
  6167. gcode_M104();
  6168. break;
  6169. case 110: // M110: Set Current Line Number
  6170. gcode_M110();
  6171. break;
  6172. case 111: // M111: Set debug level
  6173. gcode_M111();
  6174. break;
  6175. #if DISABLED(EMERGENCY_PARSER)
  6176. case 108: // M108: Cancel Waiting
  6177. gcode_M108();
  6178. break;
  6179. case 112: // M112: Emergency Stop
  6180. gcode_M112();
  6181. break;
  6182. case 410: // M410 quickstop - Abort all the planned moves.
  6183. gcode_M410();
  6184. break;
  6185. #endif
  6186. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6187. case 113: // M113: Set Host Keepalive interval
  6188. gcode_M113();
  6189. break;
  6190. #endif
  6191. case 140: // M140: Set bed temp
  6192. gcode_M140();
  6193. break;
  6194. case 105: // M105: Read current temperature
  6195. gcode_M105();
  6196. KEEPALIVE_STATE(NOT_BUSY);
  6197. return; // "ok" already printed
  6198. case 109: // M109: Wait for temperature
  6199. gcode_M109();
  6200. break;
  6201. #if HAS_TEMP_BED
  6202. case 190: // M190: Wait for bed heater to reach target
  6203. gcode_M190();
  6204. break;
  6205. #endif // HAS_TEMP_BED
  6206. #if FAN_COUNT > 0
  6207. case 106: // M106: Fan On
  6208. gcode_M106();
  6209. break;
  6210. case 107: // M107: Fan Off
  6211. gcode_M107();
  6212. break;
  6213. #endif // FAN_COUNT > 0
  6214. #if ENABLED(BARICUDA)
  6215. // PWM for HEATER_1_PIN
  6216. #if HAS_HEATER_1
  6217. case 126: // M126: valve open
  6218. gcode_M126();
  6219. break;
  6220. case 127: // M127: valve closed
  6221. gcode_M127();
  6222. break;
  6223. #endif // HAS_HEATER_1
  6224. // PWM for HEATER_2_PIN
  6225. #if HAS_HEATER_2
  6226. case 128: // M128: valve open
  6227. gcode_M128();
  6228. break;
  6229. case 129: // M129: valve closed
  6230. gcode_M129();
  6231. break;
  6232. #endif // HAS_HEATER_2
  6233. #endif // BARICUDA
  6234. #if HAS_POWER_SWITCH
  6235. case 80: // M80: Turn on Power Supply
  6236. gcode_M80();
  6237. break;
  6238. #endif // HAS_POWER_SWITCH
  6239. case 81: // M81: Turn off Power, including Power Supply, if possible
  6240. gcode_M81();
  6241. break;
  6242. case 82:
  6243. gcode_M82();
  6244. break;
  6245. case 83:
  6246. gcode_M83();
  6247. break;
  6248. case 18: // (for compatibility)
  6249. case 84: // M84
  6250. gcode_M18_M84();
  6251. break;
  6252. case 85: // M85
  6253. gcode_M85();
  6254. break;
  6255. case 92: // M92: Set the steps-per-unit for one or more axes
  6256. gcode_M92();
  6257. break;
  6258. case 115: // M115: Report capabilities
  6259. gcode_M115();
  6260. break;
  6261. case 117: // M117: Set LCD message text, if possible
  6262. gcode_M117();
  6263. break;
  6264. case 114: // M114: Report current position
  6265. gcode_M114();
  6266. break;
  6267. case 120: // M120: Enable endstops
  6268. gcode_M120();
  6269. break;
  6270. case 121: // M121: Disable endstops
  6271. gcode_M121();
  6272. break;
  6273. case 119: // M119: Report endstop states
  6274. gcode_M119();
  6275. break;
  6276. #if ENABLED(ULTIPANEL)
  6277. case 145: // M145: Set material heatup parameters
  6278. gcode_M145();
  6279. break;
  6280. #endif
  6281. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6282. case 149:
  6283. gcode_M149();
  6284. break;
  6285. #endif
  6286. #if ENABLED(BLINKM)
  6287. case 150: // M150
  6288. gcode_M150();
  6289. break;
  6290. #endif //BLINKM
  6291. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6292. case 155:
  6293. gcode_M155();
  6294. break;
  6295. case 156:
  6296. gcode_M156();
  6297. break;
  6298. #endif //EXPERIMENTAL_I2CBUS
  6299. #if ENABLED(MIXING_EXTRUDER)
  6300. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6301. gcode_M163();
  6302. break;
  6303. #if MIXING_VIRTUAL_TOOLS > 1
  6304. case 164: // M164 S<int> save current mix as a virtual extruder
  6305. gcode_M164();
  6306. break;
  6307. #endif
  6308. #if ENABLED(DIRECT_MIXING_IN_G1)
  6309. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6310. gcode_M165();
  6311. break;
  6312. #endif
  6313. #endif
  6314. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6315. gcode_M200();
  6316. break;
  6317. case 201: // M201
  6318. gcode_M201();
  6319. break;
  6320. #if 0 // Not used for Sprinter/grbl gen6
  6321. case 202: // M202
  6322. gcode_M202();
  6323. break;
  6324. #endif
  6325. case 203: // M203 max feedrate units/sec
  6326. gcode_M203();
  6327. break;
  6328. case 204: // M204 acclereration S normal moves T filmanent only moves
  6329. gcode_M204();
  6330. break;
  6331. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6332. gcode_M205();
  6333. break;
  6334. case 206: // M206 additional homing offset
  6335. gcode_M206();
  6336. break;
  6337. #if ENABLED(DELTA)
  6338. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6339. gcode_M665();
  6340. break;
  6341. #endif
  6342. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6343. case 666: // M666 set delta / dual endstop adjustment
  6344. gcode_M666();
  6345. break;
  6346. #endif
  6347. #if ENABLED(FWRETRACT)
  6348. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6349. gcode_M207();
  6350. break;
  6351. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6352. gcode_M208();
  6353. break;
  6354. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6355. gcode_M209();
  6356. break;
  6357. #endif // FWRETRACT
  6358. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6359. gcode_M211();
  6360. break;
  6361. #if HOTENDS > 1
  6362. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6363. gcode_M218();
  6364. break;
  6365. #endif
  6366. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6367. gcode_M220();
  6368. break;
  6369. case 221: // M221 - Set Flow Percentage: S<percent>
  6370. gcode_M221();
  6371. break;
  6372. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6373. gcode_M226();
  6374. break;
  6375. #if HAS_SERVOS
  6376. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6377. gcode_M280();
  6378. break;
  6379. #endif // HAS_SERVOS
  6380. #if HAS_BUZZER
  6381. case 300: // M300 - Play beep tone
  6382. gcode_M300();
  6383. break;
  6384. #endif // HAS_BUZZER
  6385. #if ENABLED(PIDTEMP)
  6386. case 301: // M301
  6387. gcode_M301();
  6388. break;
  6389. #endif // PIDTEMP
  6390. #if ENABLED(PIDTEMPBED)
  6391. case 304: // M304
  6392. gcode_M304();
  6393. break;
  6394. #endif // PIDTEMPBED
  6395. #if defined(CHDK) || HAS_PHOTOGRAPH
  6396. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6397. gcode_M240();
  6398. break;
  6399. #endif // CHDK || PHOTOGRAPH_PIN
  6400. #if HAS_LCD_CONTRAST
  6401. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6402. gcode_M250();
  6403. break;
  6404. #endif // HAS_LCD_CONTRAST
  6405. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6406. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6407. gcode_M302();
  6408. break;
  6409. #endif // PREVENT_COLD_EXTRUSION
  6410. case 303: // M303 PID autotune
  6411. gcode_M303();
  6412. break;
  6413. #if ENABLED(SCARA)
  6414. case 360: // M360 SCARA Theta pos1
  6415. if (gcode_M360()) return;
  6416. break;
  6417. case 361: // M361 SCARA Theta pos2
  6418. if (gcode_M361()) return;
  6419. break;
  6420. case 362: // M362 SCARA Psi pos1
  6421. if (gcode_M362()) return;
  6422. break;
  6423. case 363: // M363 SCARA Psi pos2
  6424. if (gcode_M363()) return;
  6425. break;
  6426. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6427. if (gcode_M364()) return;
  6428. break;
  6429. case 365: // M365 Set SCARA scaling for X Y Z
  6430. gcode_M365();
  6431. break;
  6432. #endif // SCARA
  6433. case 400: // M400 finish all moves
  6434. gcode_M400();
  6435. break;
  6436. #if HAS_BED_PROBE
  6437. case 401:
  6438. gcode_M401();
  6439. break;
  6440. case 402:
  6441. gcode_M402();
  6442. break;
  6443. #endif // HAS_BED_PROBE
  6444. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6445. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6446. gcode_M404();
  6447. break;
  6448. case 405: //M405 Turn on filament sensor for control
  6449. gcode_M405();
  6450. break;
  6451. case 406: //M406 Turn off filament sensor for control
  6452. gcode_M406();
  6453. break;
  6454. case 407: //M407 Display measured filament diameter
  6455. gcode_M407();
  6456. break;
  6457. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6458. #if ENABLED(MESH_BED_LEVELING)
  6459. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6460. gcode_M420();
  6461. break;
  6462. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6463. gcode_M421();
  6464. break;
  6465. #endif
  6466. case 428: // M428 Apply current_position to home_offset
  6467. gcode_M428();
  6468. break;
  6469. case 500: // M500 Store settings in EEPROM
  6470. gcode_M500();
  6471. break;
  6472. case 501: // M501 Read settings from EEPROM
  6473. gcode_M501();
  6474. break;
  6475. case 502: // M502 Revert to default settings
  6476. gcode_M502();
  6477. break;
  6478. case 503: // M503 print settings currently in memory
  6479. gcode_M503();
  6480. break;
  6481. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6482. case 540:
  6483. gcode_M540();
  6484. break;
  6485. #endif
  6486. #if HAS_BED_PROBE
  6487. case 851:
  6488. gcode_M851();
  6489. break;
  6490. #endif // HAS_BED_PROBE
  6491. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6492. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6493. gcode_M600();
  6494. break;
  6495. #endif // FILAMENT_CHANGE_FEATURE
  6496. #if ENABLED(DUAL_X_CARRIAGE)
  6497. case 605:
  6498. gcode_M605();
  6499. break;
  6500. #endif // DUAL_X_CARRIAGE
  6501. #if ENABLED(LIN_ADVANCE)
  6502. case 905: // M905 Set advance factor.
  6503. gcode_M905();
  6504. break;
  6505. #endif
  6506. case 907: // M907 Set digital trimpot motor current using axis codes.
  6507. gcode_M907();
  6508. break;
  6509. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6510. case 908: // M908 Control digital trimpot directly.
  6511. gcode_M908();
  6512. break;
  6513. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6514. case 909: // M909 Print digipot/DAC current value
  6515. gcode_M909();
  6516. break;
  6517. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6518. gcode_M910();
  6519. break;
  6520. #endif
  6521. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6522. #if HAS_MICROSTEPS
  6523. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6524. gcode_M350();
  6525. break;
  6526. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6527. gcode_M351();
  6528. break;
  6529. #endif // HAS_MICROSTEPS
  6530. case 999: // M999: Restart after being Stopped
  6531. gcode_M999();
  6532. break;
  6533. }
  6534. break;
  6535. case 'T':
  6536. gcode_T(codenum);
  6537. break;
  6538. default: code_is_good = false;
  6539. }
  6540. KEEPALIVE_STATE(NOT_BUSY);
  6541. ExitUnknownCommand:
  6542. // Still unknown command? Throw an error
  6543. if (!code_is_good) unknown_command_error();
  6544. ok_to_send();
  6545. }
  6546. void FlushSerialRequestResend() {
  6547. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6548. MYSERIAL.flush();
  6549. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6550. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6551. ok_to_send();
  6552. }
  6553. void ok_to_send() {
  6554. refresh_cmd_timeout();
  6555. if (!send_ok[cmd_queue_index_r]) return;
  6556. SERIAL_PROTOCOLPGM(MSG_OK);
  6557. #if ENABLED(ADVANCED_OK)
  6558. char* p = command_queue[cmd_queue_index_r];
  6559. if (*p == 'N') {
  6560. SERIAL_PROTOCOL(' ');
  6561. SERIAL_ECHO(*p++);
  6562. while (NUMERIC_SIGNED(*p))
  6563. SERIAL_ECHO(*p++);
  6564. }
  6565. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6566. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6567. #endif
  6568. SERIAL_EOL;
  6569. }
  6570. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6571. void clamp_to_software_endstops(float target[XYZ]) {
  6572. #if ENABLED(min_software_endstops)
  6573. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6574. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6575. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6576. #endif
  6577. #if ENABLED(max_software_endstops)
  6578. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6579. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6580. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6581. #endif
  6582. }
  6583. #endif
  6584. #if ENABLED(DELTA)
  6585. void recalc_delta_settings(float radius, float diagonal_rod) {
  6586. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6587. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6588. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6589. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6590. delta_tower3_x = 0.0; // back middle tower
  6591. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6592. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6593. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6594. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6595. }
  6596. void inverse_kinematics(const float in_cartesian[XYZ]) {
  6597. const float cartesian[XYZ] = {
  6598. RAW_X_POSITION(in_cartesian[X_AXIS]),
  6599. RAW_Y_POSITION(in_cartesian[Y_AXIS]),
  6600. RAW_Z_POSITION(in_cartesian[Z_AXIS])
  6601. };
  6602. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6603. - sq(delta_tower1_x - cartesian[X_AXIS])
  6604. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6605. ) + cartesian[Z_AXIS];
  6606. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6607. - sq(delta_tower2_x - cartesian[X_AXIS])
  6608. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6609. ) + cartesian[Z_AXIS];
  6610. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6611. - sq(delta_tower3_x - cartesian[X_AXIS])
  6612. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6613. ) + cartesian[Z_AXIS];
  6614. /**
  6615. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6616. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6617. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6618. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6619. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6620. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6621. */
  6622. }
  6623. float delta_safe_distance_from_top() {
  6624. float cartesian[XYZ] = {
  6625. LOGICAL_X_POSITION(0),
  6626. LOGICAL_Y_POSITION(0),
  6627. LOGICAL_Z_POSITION(0)
  6628. };
  6629. inverse_kinematics(cartesian);
  6630. float distance = delta[TOWER_3];
  6631. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6632. inverse_kinematics(cartesian);
  6633. return abs(distance - delta[TOWER_3]);
  6634. }
  6635. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6636. //As discussed in Wikipedia "Trilateration"
  6637. //we are establishing a new coordinate
  6638. //system in the plane of the three carriage points.
  6639. //This system will have the origin at tower1 and
  6640. //tower2 is on the x axis. tower3 is in the X-Y
  6641. //plane with a Z component of zero. We will define unit
  6642. //vectors in this coordinate system in our original
  6643. //coordinate system. Then when we calculate the
  6644. //Xnew, Ynew and Znew values, we can translate back into
  6645. //the original system by moving along those unit vectors
  6646. //by the corresponding values.
  6647. // https://en.wikipedia.org/wiki/Trilateration
  6648. // Variable names matched to Marlin, c-version
  6649. // and avoiding a vector library
  6650. // by Andreas Hardtung 2016-06-7
  6651. // based on a Java function from
  6652. // "Delta Robot Kinematics by Steve Graves" V3
  6653. // Result is in cartesian_position[].
  6654. //Create a vector in old coordinates along x axis of new coordinate
  6655. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6656. //Get the Magnitude of vector.
  6657. float d = sqrt( p12[0]*p12[0] + p12[1]*p12[1] + p12[2]*p12[2] );
  6658. //Create unit vector by dividing by magnitude.
  6659. float ex[3] = { p12[0]/d, p12[1]/d, p12[2]/d };
  6660. //Now find vector from the origin of the new system to the third point.
  6661. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6662. //Now use dot product to find the component of this vector on the X axis.
  6663. float i = ex[0]*p13[0] + ex[1]*p13[1] + ex[2]*p13[2];
  6664. //Now create a vector along the x axis that represents the x component of p13.
  6665. float iex[3] = { ex[0]*i, ex[1]*i, ex[2]*i };
  6666. //Now subtract the X component away from the original vector leaving only the Y component. We use the
  6667. //variable that will be the unit vector after we scale it.
  6668. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2]};
  6669. //The magnitude of Y component
  6670. float j = sqrt(sq(ey[0]) + sq(ey[1]) + sq(ey[2]));
  6671. //Now make vector a unit vector
  6672. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6673. //The cross product of the unit x and y is the unit z
  6674. //float[] ez = vectorCrossProd(ex, ey);
  6675. float ez[3] = { ex[1]*ey[2] - ex[2]*ey[1], ex[2]*ey[0] - ex[0]*ey[2], ex[0]*ey[1] - ex[1]*ey[0] };
  6676. //Now we have the d, i and j values defined in Wikipedia.
  6677. //We can plug them into the equations defined in
  6678. //Wikipedia for Xnew, Ynew and Znew
  6679. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + d*d)/(d*2);
  6680. float Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + i*i + j*j)/2 - i*Xnew) /j;
  6681. float Znew = sqrt(delta_diagonal_rod_2_tower_1 - Xnew*Xnew - Ynew*Ynew);
  6682. //Now we can start from the origin in the old coords and
  6683. //add vectors in the old coords that represent the
  6684. //Xnew, Ynew and Znew to find the point in the old system
  6685. cartesian_position[X_AXIS] = delta_tower1_x + ex[0]*Xnew + ey[0]*Ynew - ez[0]*Znew;
  6686. cartesian_position[Y_AXIS] = delta_tower1_y + ex[1]*Xnew + ey[1]*Ynew - ez[1]*Znew;
  6687. cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew;
  6688. };
  6689. void forward_kinematics_DELTA(float point[ABC]) {
  6690. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  6691. }
  6692. void set_cartesian_from_steppers() {
  6693. forward_kinematics_DELTA(stepper.get_axis_position_mm(A_AXIS),
  6694. stepper.get_axis_position_mm(B_AXIS),
  6695. stepper.get_axis_position_mm(C_AXIS));
  6696. }
  6697. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6698. // Adjust print surface height by linear interpolation over the bed_level array.
  6699. void adjust_delta(float cartesian[XYZ]) {
  6700. if (delta_grid_spacing[X_AXIS] == 0 || delta_grid_spacing[Y_AXIS] == 0) return; // G29 not done!
  6701. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6702. float h1 = 0.001 - half, h2 = half - 0.001,
  6703. grid_x = max(h1, min(h2, RAW_X_POSITION(cartesian[X_AXIS]) / delta_grid_spacing[X_AXIS])),
  6704. grid_y = max(h1, min(h2, RAW_Y_POSITION(cartesian[Y_AXIS]) / delta_grid_spacing[Y_AXIS]));
  6705. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6706. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6707. z1 = bed_level[floor_x + half][floor_y + half],
  6708. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6709. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6710. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6711. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6712. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6713. offset = (1 - ratio_x) * left + ratio_x * right;
  6714. delta[X_AXIS] += offset;
  6715. delta[Y_AXIS] += offset;
  6716. delta[Z_AXIS] += offset;
  6717. /**
  6718. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6719. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6720. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6721. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6722. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6723. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6724. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6725. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6726. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6727. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6728. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6729. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6730. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6731. */
  6732. }
  6733. #endif // AUTO_BED_LEVELING_FEATURE
  6734. #endif // DELTA
  6735. void set_current_from_steppers_for_axis(AxisEnum axis) {
  6736. #if ENABLED(DELTA)
  6737. set_cartesian_from_steppers();
  6738. current_position[axis] = LOGICAL_POSITION(cartesian_position[axis], axis);
  6739. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  6740. vector_3 pos = planner.adjusted_position();
  6741. current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
  6742. #else
  6743. current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
  6744. #endif
  6745. }
  6746. #if ENABLED(MESH_BED_LEVELING)
  6747. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6748. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6749. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6750. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6751. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6752. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6753. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6754. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6755. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6756. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6757. if (cx1 == cx2 && cy1 == cy2) {
  6758. // Start and end on same mesh square
  6759. line_to_destination(fr_mm_s);
  6760. set_current_to_destination();
  6761. return;
  6762. }
  6763. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6764. float normalized_dist, end[NUM_AXIS];
  6765. // Split at the left/front border of the right/top square
  6766. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6767. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6768. memcpy(end, destination, sizeof(end));
  6769. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6770. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6771. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6772. CBI(x_splits, gcx);
  6773. }
  6774. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6775. memcpy(end, destination, sizeof(end));
  6776. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6777. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6778. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6779. CBI(y_splits, gcy);
  6780. }
  6781. else {
  6782. // Already split on a border
  6783. line_to_destination(fr_mm_s);
  6784. set_current_to_destination();
  6785. return;
  6786. }
  6787. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6788. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6789. // Do the split and look for more borders
  6790. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6791. // Restore destination from stack
  6792. memcpy(destination, end, sizeof(end));
  6793. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6794. }
  6795. #endif // MESH_BED_LEVELING
  6796. #if ENABLED(DELTA) || ENABLED(SCARA)
  6797. inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
  6798. float difference[NUM_AXIS];
  6799. LOOP_XYZE(i) difference[i] = target[i] - current_position[i];
  6800. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6801. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6802. if (cartesian_mm < 0.000001) return false;
  6803. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  6804. float seconds = cartesian_mm / _feedrate_mm_s;
  6805. int steps = max(1, int(delta_segments_per_second * seconds));
  6806. float inv_steps = 1.0/steps;
  6807. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6808. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6809. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6810. for (int s = 1; s <= steps; s++) {
  6811. float fraction = float(s) * inv_steps;
  6812. LOOP_XYZE(i)
  6813. target[i] = current_position[i] + difference[i] * fraction;
  6814. inverse_kinematics(target);
  6815. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  6816. if (!bed_leveling_in_progress) adjust_delta(target);
  6817. #endif
  6818. //DEBUG_POS("prepare_kinematic_move_to", target);
  6819. //DEBUG_POS("prepare_kinematic_move_to", delta);
  6820. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
  6821. }
  6822. return true;
  6823. }
  6824. #endif // DELTA || SCARA
  6825. #if ENABLED(DUAL_X_CARRIAGE)
  6826. inline bool prepare_move_to_destination_dualx() {
  6827. if (active_extruder_parked) {
  6828. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6829. // move duplicate extruder into correct duplication position.
  6830. planner.set_position_mm(
  6831. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  6832. current_position[Y_AXIS],
  6833. current_position[Z_AXIS],
  6834. current_position[E_AXIS]
  6835. );
  6836. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6837. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  6838. SYNC_PLAN_POSITION_KINEMATIC();
  6839. stepper.synchronize();
  6840. extruder_duplication_enabled = true;
  6841. active_extruder_parked = false;
  6842. }
  6843. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6844. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6845. // This is a travel move (with no extrusion)
  6846. // Skip it, but keep track of the current position
  6847. // (so it can be used as the start of the next non-travel move)
  6848. if (delayed_move_time != 0xFFFFFFFFUL) {
  6849. set_current_to_destination();
  6850. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6851. delayed_move_time = millis();
  6852. return false;
  6853. }
  6854. }
  6855. delayed_move_time = 0;
  6856. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6857. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6858. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6859. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6860. active_extruder_parked = false;
  6861. }
  6862. }
  6863. return true;
  6864. }
  6865. #endif // DUAL_X_CARRIAGE
  6866. #if DISABLED(DELTA) && DISABLED(SCARA)
  6867. inline bool prepare_move_to_destination_cartesian() {
  6868. // Do not use feedrate_percentage for E or Z only moves
  6869. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6870. line_to_destination();
  6871. }
  6872. else {
  6873. #if ENABLED(MESH_BED_LEVELING)
  6874. if (mbl.active()) {
  6875. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  6876. return false;
  6877. }
  6878. else
  6879. #endif
  6880. line_to_destination(MMS_SCALED(feedrate_mm_s));
  6881. }
  6882. return true;
  6883. }
  6884. #endif // !DELTA && !SCARA
  6885. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6886. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6887. if (DEBUGGING(DRYRUN)) return;
  6888. float de = dest_e - curr_e;
  6889. if (de) {
  6890. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6891. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6892. SERIAL_ECHO_START;
  6893. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6894. }
  6895. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6896. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6897. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6898. SERIAL_ECHO_START;
  6899. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6900. }
  6901. #endif
  6902. }
  6903. }
  6904. #endif // PREVENT_COLD_EXTRUSION
  6905. /**
  6906. * Prepare a single move and get ready for the next one
  6907. *
  6908. * (This may call planner.buffer_line several times to put
  6909. * smaller moves into the planner for DELTA or SCARA.)
  6910. */
  6911. void prepare_move_to_destination() {
  6912. clamp_to_software_endstops(destination);
  6913. refresh_cmd_timeout();
  6914. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6915. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6916. #endif
  6917. #if ENABLED(DELTA) || ENABLED(SCARA)
  6918. if (!prepare_kinematic_move_to(destination)) return;
  6919. #else
  6920. #if ENABLED(DUAL_X_CARRIAGE)
  6921. if (!prepare_move_to_destination_dualx()) return;
  6922. #endif
  6923. if (!prepare_move_to_destination_cartesian()) return;
  6924. #endif
  6925. set_current_to_destination();
  6926. }
  6927. #if ENABLED(ARC_SUPPORT)
  6928. /**
  6929. * Plan an arc in 2 dimensions
  6930. *
  6931. * The arc is approximated by generating many small linear segments.
  6932. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6933. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6934. * larger segments will tend to be more efficient. Your slicer should have
  6935. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6936. */
  6937. void plan_arc(
  6938. float target[NUM_AXIS], // Destination position
  6939. float* offset, // Center of rotation relative to current_position
  6940. uint8_t clockwise // Clockwise?
  6941. ) {
  6942. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  6943. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6944. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6945. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6946. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6947. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6948. r_Y = -offset[Y_AXIS],
  6949. rt_X = target[X_AXIS] - center_X,
  6950. rt_Y = target[Y_AXIS] - center_Y;
  6951. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6952. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6953. if (angular_travel < 0) angular_travel += RADIANS(360);
  6954. if (clockwise) angular_travel -= RADIANS(360);
  6955. // Make a circle if the angular rotation is 0
  6956. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6957. angular_travel += RADIANS(360);
  6958. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  6959. if (mm_of_travel < 0.001) return;
  6960. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6961. if (segments == 0) segments = 1;
  6962. float theta_per_segment = angular_travel / segments;
  6963. float linear_per_segment = linear_travel / segments;
  6964. float extruder_per_segment = extruder_travel / segments;
  6965. /**
  6966. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6967. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6968. * r_T = [cos(phi) -sin(phi);
  6969. * sin(phi) cos(phi] * r ;
  6970. *
  6971. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6972. * defined from the circle center to the initial position. Each line segment is formed by successive
  6973. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6974. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6975. * all double numbers are single precision on the Arduino. (True double precision will not have
  6976. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6977. * tool precision in some cases. Therefore, arc path correction is implemented.
  6978. *
  6979. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6980. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6981. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6982. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6983. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6984. * issue for CNC machines with the single precision Arduino calculations.
  6985. *
  6986. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6987. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6988. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6989. * This is important when there are successive arc motions.
  6990. */
  6991. // Vector rotation matrix values
  6992. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  6993. float sin_T = theta_per_segment;
  6994. float arc_target[NUM_AXIS];
  6995. float sin_Ti, cos_Ti, r_new_Y;
  6996. uint16_t i;
  6997. int8_t count = 0;
  6998. // Initialize the linear axis
  6999. arc_target[Z_AXIS] = current_position[Z_AXIS];
  7000. // Initialize the extruder axis
  7001. arc_target[E_AXIS] = current_position[E_AXIS];
  7002. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  7003. millis_t next_idle_ms = millis() + 200UL;
  7004. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  7005. thermalManager.manage_heater();
  7006. millis_t now = millis();
  7007. if (ELAPSED(now, next_idle_ms)) {
  7008. next_idle_ms = now + 200UL;
  7009. idle();
  7010. }
  7011. if (++count < N_ARC_CORRECTION) {
  7012. // Apply vector rotation matrix to previous r_X / 1
  7013. r_new_Y = r_X * sin_T + r_Y * cos_T;
  7014. r_X = r_X * cos_T - r_Y * sin_T;
  7015. r_Y = r_new_Y;
  7016. }
  7017. else {
  7018. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  7019. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  7020. // To reduce stuttering, the sin and cos could be computed at different times.
  7021. // For now, compute both at the same time.
  7022. cos_Ti = cos(i * theta_per_segment);
  7023. sin_Ti = sin(i * theta_per_segment);
  7024. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  7025. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  7026. count = 0;
  7027. }
  7028. // Update arc_target location
  7029. arc_target[X_AXIS] = center_X + r_X;
  7030. arc_target[Y_AXIS] = center_Y + r_Y;
  7031. arc_target[Z_AXIS] += linear_per_segment;
  7032. arc_target[E_AXIS] += extruder_per_segment;
  7033. clamp_to_software_endstops(arc_target);
  7034. #if ENABLED(DELTA) || ENABLED(SCARA)
  7035. inverse_kinematics(arc_target);
  7036. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  7037. adjust_delta(arc_target);
  7038. #endif
  7039. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7040. #else
  7041. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7042. #endif
  7043. }
  7044. // Ensure last segment arrives at target location.
  7045. #if ENABLED(DELTA) || ENABLED(SCARA)
  7046. inverse_kinematics(target);
  7047. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  7048. adjust_delta(target);
  7049. #endif
  7050. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  7051. #else
  7052. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  7053. #endif
  7054. // As far as the parser is concerned, the position is now == target. In reality the
  7055. // motion control system might still be processing the action and the real tool position
  7056. // in any intermediate location.
  7057. set_current_to_destination();
  7058. }
  7059. #endif
  7060. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7061. void plan_cubic_move(const float offset[4]) {
  7062. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7063. // As far as the parser is concerned, the position is now == target. In reality the
  7064. // motion control system might still be processing the action and the real tool position
  7065. // in any intermediate location.
  7066. set_current_to_destination();
  7067. }
  7068. #endif // BEZIER_CURVE_SUPPORT
  7069. #if HAS_CONTROLLERFAN
  7070. void controllerFan() {
  7071. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7072. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7073. millis_t ms = millis();
  7074. if (ELAPSED(ms, nextMotorCheck)) {
  7075. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7076. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7077. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7078. #if E_STEPPERS > 1
  7079. || E1_ENABLE_READ == E_ENABLE_ON
  7080. #if HAS_X2_ENABLE
  7081. || X2_ENABLE_READ == X_ENABLE_ON
  7082. #endif
  7083. #if E_STEPPERS > 2
  7084. || E2_ENABLE_READ == E_ENABLE_ON
  7085. #if E_STEPPERS > 3
  7086. || E3_ENABLE_READ == E_ENABLE_ON
  7087. #endif
  7088. #endif
  7089. #endif
  7090. ) {
  7091. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7092. }
  7093. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7094. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7095. // allows digital or PWM fan output to be used (see M42 handling)
  7096. digitalWrite(CONTROLLERFAN_PIN, speed);
  7097. analogWrite(CONTROLLERFAN_PIN, speed);
  7098. }
  7099. }
  7100. #endif // HAS_CONTROLLERFAN
  7101. #if ENABLED(SCARA)
  7102. void forward_kinematics_SCARA(float f_scara[ABC]) {
  7103. // Perform forward kinematics, and place results in delta[]
  7104. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  7105. float x_sin, x_cos, y_sin, y_cos;
  7106. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  7107. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  7108. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  7109. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  7110. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  7111. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  7112. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  7113. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  7114. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  7115. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  7116. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  7117. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  7118. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  7119. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  7120. }
  7121. void inverse_kinematics(const float cartesian[XYZ]) {
  7122. // Inverse kinematics.
  7123. // Perform SCARA IK and place results in delta[].
  7124. // The maths and first version were done by QHARLEY.
  7125. // Integrated, tweaked by Joachim Cerny in June 2014.
  7126. float SCARA_pos[2];
  7127. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  7128. SCARA_pos[X_AXIS] = RAW_X_POSITION(cartesian[X_AXIS]) * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  7129. SCARA_pos[Y_AXIS] = RAW_Y_POSITION(cartesian[Y_AXIS]) * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  7130. #if (Linkage_1 == Linkage_2)
  7131. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  7132. #else
  7133. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  7134. #endif
  7135. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  7136. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  7137. SCARA_K2 = Linkage_2 * SCARA_S2;
  7138. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  7139. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  7140. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  7141. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  7142. delta[Z_AXIS] = RAW_Z_POSITION(cartesian[Z_AXIS]);
  7143. /**
  7144. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  7145. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  7146. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  7147. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  7148. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  7149. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  7150. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  7151. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  7152. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  7153. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  7154. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  7155. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  7156. SERIAL_EOL;
  7157. */
  7158. }
  7159. #endif // SCARA
  7160. #if ENABLED(TEMP_STAT_LEDS)
  7161. static bool red_led = false;
  7162. static millis_t next_status_led_update_ms = 0;
  7163. void handle_status_leds(void) {
  7164. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7165. next_status_led_update_ms += 500; // Update every 0.5s
  7166. float max_temp = 0.0;
  7167. #if HAS_TEMP_BED
  7168. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7169. #endif
  7170. HOTEND_LOOP() {
  7171. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7172. }
  7173. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7174. if (new_led != red_led) {
  7175. red_led = new_led;
  7176. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7177. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7178. }
  7179. }
  7180. }
  7181. #endif
  7182. void enable_all_steppers() {
  7183. enable_x();
  7184. enable_y();
  7185. enable_z();
  7186. enable_e0();
  7187. enable_e1();
  7188. enable_e2();
  7189. enable_e3();
  7190. }
  7191. void disable_all_steppers() {
  7192. disable_x();
  7193. disable_y();
  7194. disable_z();
  7195. disable_e0();
  7196. disable_e1();
  7197. disable_e2();
  7198. disable_e3();
  7199. }
  7200. /**
  7201. * Standard idle routine keeps the machine alive
  7202. */
  7203. void idle(
  7204. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7205. bool no_stepper_sleep/*=false*/
  7206. #endif
  7207. ) {
  7208. lcd_update();
  7209. host_keepalive();
  7210. manage_inactivity(
  7211. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7212. no_stepper_sleep
  7213. #endif
  7214. );
  7215. thermalManager.manage_heater();
  7216. #if ENABLED(PRINTCOUNTER)
  7217. print_job_timer.tick();
  7218. #endif
  7219. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7220. buzzer.tick();
  7221. #endif
  7222. }
  7223. /**
  7224. * Manage several activities:
  7225. * - Check for Filament Runout
  7226. * - Keep the command buffer full
  7227. * - Check for maximum inactive time between commands
  7228. * - Check for maximum inactive time between stepper commands
  7229. * - Check if pin CHDK needs to go LOW
  7230. * - Check for KILL button held down
  7231. * - Check for HOME button held down
  7232. * - Check if cooling fan needs to be switched on
  7233. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7234. */
  7235. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7236. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7237. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7238. handle_filament_runout();
  7239. #endif
  7240. if (commands_in_queue < BUFSIZE) get_available_commands();
  7241. millis_t ms = millis();
  7242. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7243. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7244. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7245. #if ENABLED(DISABLE_INACTIVE_X)
  7246. disable_x();
  7247. #endif
  7248. #if ENABLED(DISABLE_INACTIVE_Y)
  7249. disable_y();
  7250. #endif
  7251. #if ENABLED(DISABLE_INACTIVE_Z)
  7252. disable_z();
  7253. #endif
  7254. #if ENABLED(DISABLE_INACTIVE_E)
  7255. disable_e0();
  7256. disable_e1();
  7257. disable_e2();
  7258. disable_e3();
  7259. #endif
  7260. }
  7261. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7262. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7263. chdkActive = false;
  7264. WRITE(CHDK, LOW);
  7265. }
  7266. #endif
  7267. #if HAS_KILL
  7268. // Check if the kill button was pressed and wait just in case it was an accidental
  7269. // key kill key press
  7270. // -------------------------------------------------------------------------------
  7271. static int killCount = 0; // make the inactivity button a bit less responsive
  7272. const int KILL_DELAY = 750;
  7273. if (!READ(KILL_PIN))
  7274. killCount++;
  7275. else if (killCount > 0)
  7276. killCount--;
  7277. // Exceeded threshold and we can confirm that it was not accidental
  7278. // KILL the machine
  7279. // ----------------------------------------------------------------
  7280. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7281. #endif
  7282. #if HAS_HOME
  7283. // Check to see if we have to home, use poor man's debouncer
  7284. // ---------------------------------------------------------
  7285. static int homeDebounceCount = 0; // poor man's debouncing count
  7286. const int HOME_DEBOUNCE_DELAY = 2500;
  7287. if (!READ(HOME_PIN)) {
  7288. if (!homeDebounceCount) {
  7289. enqueue_and_echo_commands_P(PSTR("G28"));
  7290. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7291. }
  7292. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7293. homeDebounceCount++;
  7294. else
  7295. homeDebounceCount = 0;
  7296. }
  7297. #endif
  7298. #if HAS_CONTROLLERFAN
  7299. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7300. #endif
  7301. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7302. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7303. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7304. #if ENABLED(SWITCHING_EXTRUDER)
  7305. bool oldstatus = E0_ENABLE_READ;
  7306. enable_e0();
  7307. #else // !SWITCHING_EXTRUDER
  7308. bool oldstatus;
  7309. switch (active_extruder) {
  7310. case 0:
  7311. oldstatus = E0_ENABLE_READ;
  7312. enable_e0();
  7313. break;
  7314. #if E_STEPPERS > 1
  7315. case 1:
  7316. oldstatus = E1_ENABLE_READ;
  7317. enable_e1();
  7318. break;
  7319. #if E_STEPPERS > 2
  7320. case 2:
  7321. oldstatus = E2_ENABLE_READ;
  7322. enable_e2();
  7323. break;
  7324. #if E_STEPPERS > 3
  7325. case 3:
  7326. oldstatus = E3_ENABLE_READ;
  7327. enable_e3();
  7328. break;
  7329. #endif
  7330. #endif
  7331. #endif
  7332. }
  7333. #endif // !SWITCHING_EXTRUDER
  7334. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  7335. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7336. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) * planner.steps_to_mm[E_AXIS],
  7337. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED) * (EXTRUDER_RUNOUT_ESTEPS) * planner.steps_to_mm[E_AXIS], active_extruder);
  7338. current_position[E_AXIS] = oldepos;
  7339. destination[E_AXIS] = oldedes;
  7340. planner.set_e_position_mm(oldepos);
  7341. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7342. stepper.synchronize();
  7343. #if ENABLED(SWITCHING_EXTRUDER)
  7344. E0_ENABLE_WRITE(oldstatus);
  7345. #else
  7346. switch (active_extruder) {
  7347. case 0:
  7348. E0_ENABLE_WRITE(oldstatus);
  7349. break;
  7350. #if E_STEPPERS > 1
  7351. case 1:
  7352. E1_ENABLE_WRITE(oldstatus);
  7353. break;
  7354. #if E_STEPPERS > 2
  7355. case 2:
  7356. E2_ENABLE_WRITE(oldstatus);
  7357. break;
  7358. #if E_STEPPERS > 3
  7359. case 3:
  7360. E3_ENABLE_WRITE(oldstatus);
  7361. break;
  7362. #endif
  7363. #endif
  7364. #endif
  7365. }
  7366. #endif // !SWITCHING_EXTRUDER
  7367. }
  7368. #endif // EXTRUDER_RUNOUT_PREVENT
  7369. #if ENABLED(DUAL_X_CARRIAGE)
  7370. // handle delayed move timeout
  7371. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7372. // travel moves have been received so enact them
  7373. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7374. set_destination_to_current();
  7375. prepare_move_to_destination();
  7376. }
  7377. #endif
  7378. #if ENABLED(TEMP_STAT_LEDS)
  7379. handle_status_leds();
  7380. #endif
  7381. planner.check_axes_activity();
  7382. }
  7383. void kill(const char* lcd_msg) {
  7384. SERIAL_ERROR_START;
  7385. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7386. #if ENABLED(ULTRA_LCD)
  7387. kill_screen(lcd_msg);
  7388. #else
  7389. UNUSED(lcd_msg);
  7390. #endif
  7391. delay(500); // Wait a short time
  7392. cli(); // Stop interrupts
  7393. thermalManager.disable_all_heaters();
  7394. disable_all_steppers();
  7395. #if HAS_POWER_SWITCH
  7396. pinMode(PS_ON_PIN, INPUT);
  7397. #endif
  7398. suicide();
  7399. while (1) {
  7400. #if ENABLED(USE_WATCHDOG)
  7401. watchdog_reset();
  7402. #endif
  7403. } // Wait for reset
  7404. }
  7405. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7406. void handle_filament_runout() {
  7407. if (!filament_ran_out) {
  7408. filament_ran_out = true;
  7409. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7410. stepper.synchronize();
  7411. }
  7412. }
  7413. #endif // FILAMENT_RUNOUT_SENSOR
  7414. #if ENABLED(FAST_PWM_FAN)
  7415. void setPwmFrequency(uint8_t pin, int val) {
  7416. val &= 0x07;
  7417. switch (digitalPinToTimer(pin)) {
  7418. #if defined(TCCR0A)
  7419. case TIMER0A:
  7420. case TIMER0B:
  7421. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7422. // TCCR0B |= val;
  7423. break;
  7424. #endif
  7425. #if defined(TCCR1A)
  7426. case TIMER1A:
  7427. case TIMER1B:
  7428. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7429. // TCCR1B |= val;
  7430. break;
  7431. #endif
  7432. #if defined(TCCR2)
  7433. case TIMER2:
  7434. case TIMER2:
  7435. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7436. TCCR2 |= val;
  7437. break;
  7438. #endif
  7439. #if defined(TCCR2A)
  7440. case TIMER2A:
  7441. case TIMER2B:
  7442. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7443. TCCR2B |= val;
  7444. break;
  7445. #endif
  7446. #if defined(TCCR3A)
  7447. case TIMER3A:
  7448. case TIMER3B:
  7449. case TIMER3C:
  7450. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7451. TCCR3B |= val;
  7452. break;
  7453. #endif
  7454. #if defined(TCCR4A)
  7455. case TIMER4A:
  7456. case TIMER4B:
  7457. case TIMER4C:
  7458. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7459. TCCR4B |= val;
  7460. break;
  7461. #endif
  7462. #if defined(TCCR5A)
  7463. case TIMER5A:
  7464. case TIMER5B:
  7465. case TIMER5C:
  7466. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7467. TCCR5B |= val;
  7468. break;
  7469. #endif
  7470. }
  7471. }
  7472. #endif // FAST_PWM_FAN
  7473. void stop() {
  7474. thermalManager.disable_all_heaters();
  7475. if (IsRunning()) {
  7476. Running = false;
  7477. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7478. SERIAL_ERROR_START;
  7479. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7480. LCD_MESSAGEPGM(MSG_STOPPED);
  7481. }
  7482. }
  7483. float calculate_volumetric_multiplier(float diameter) {
  7484. if (!volumetric_enabled || diameter == 0) return 1.0;
  7485. float d2 = diameter * 0.5;
  7486. return 1.0 / (M_PI * d2 * d2);
  7487. }
  7488. void calculate_volumetric_multipliers() {
  7489. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7490. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7491. }