My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. Stepper stepper; // Singleton
  57. // public:
  58. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  59. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  60. bool Stepper::abort_on_endstop_hit = false;
  61. #endif
  62. #if ENABLED(Z_DUAL_ENDSTOPS)
  63. bool Stepper::performing_homing = false;
  64. #endif
  65. // private:
  66. unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  67. unsigned int Stepper::cleaning_buffer_counter = 0;
  68. #if ENABLED(Z_DUAL_ENDSTOPS)
  69. bool Stepper::locked_z_motor = false;
  70. bool Stepper::locked_z2_motor = false;
  71. #endif
  72. long Stepper::counter_X = 0,
  73. Stepper::counter_Y = 0,
  74. Stepper::counter_Z = 0,
  75. Stepper::counter_E = 0;
  76. volatile unsigned long Stepper::step_events_completed = 0; // The number of step events executed in the current block
  77. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  78. unsigned char Stepper::old_OCR0A;
  79. volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
  80. #if ENABLED(LIN_ADVANCE)
  81. volatile int Stepper::e_steps[E_STEPPERS];
  82. int Stepper::extruder_advance_k = LIN_ADVANCE_K,
  83. Stepper::final_estep_rate,
  84. Stepper::current_estep_rate[E_STEPPERS],
  85. Stepper::current_adv_steps[E_STEPPERS];
  86. #else
  87. long Stepper::e_steps[E_STEPPERS],
  88. Stepper::final_advance = 0,
  89. Stepper::old_advance = 0,
  90. Stepper::advance_rate,
  91. Stepper::advance;
  92. #endif
  93. #endif
  94. long Stepper::acceleration_time, Stepper::deceleration_time;
  95. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  96. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  97. #if ENABLED(MIXING_EXTRUDER)
  98. long Stepper::counter_M[MIXING_STEPPERS];
  99. #endif
  100. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  101. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  102. unsigned short Stepper::OCR1A_nominal;
  103. volatile long Stepper::endstops_trigsteps[XYZ];
  104. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  105. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  106. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  107. #elif ENABLED(DUAL_X_CARRIAGE)
  108. #define X_APPLY_DIR(v,ALWAYS) \
  109. if (extruder_duplication_enabled || ALWAYS) { \
  110. X_DIR_WRITE(v); \
  111. X2_DIR_WRITE(v); \
  112. } \
  113. else { \
  114. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  115. }
  116. #define X_APPLY_STEP(v,ALWAYS) \
  117. if (extruder_duplication_enabled || ALWAYS) { \
  118. X_STEP_WRITE(v); \
  119. X2_STEP_WRITE(v); \
  120. } \
  121. else { \
  122. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  123. }
  124. #else
  125. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  126. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  127. #endif
  128. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  129. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  130. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  131. #else
  132. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  133. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  134. #endif
  135. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  136. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  137. #if ENABLED(Z_DUAL_ENDSTOPS)
  138. #define Z_APPLY_STEP(v,Q) \
  139. if (performing_homing) { \
  140. if (Z_HOME_DIR > 0) {\
  141. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  142. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  143. } \
  144. else { \
  145. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  146. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  147. } \
  148. } \
  149. else { \
  150. Z_STEP_WRITE(v); \
  151. Z2_STEP_WRITE(v); \
  152. }
  153. #else
  154. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  155. #endif
  156. #else
  157. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  158. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  159. #endif
  160. #if DISABLED(MIXING_EXTRUDER)
  161. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  162. #endif
  163. // intRes = longIn1 * longIn2 >> 24
  164. // uses:
  165. // r26 to store 0
  166. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  167. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  168. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  169. // B0 A0 are bits 24-39 and are the returned value
  170. // C1 B1 A1 is longIn1
  171. // D2 C2 B2 A2 is longIn2
  172. //
  173. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  174. asm volatile ( \
  175. "clr r26 \n\t" \
  176. "mul %A1, %B2 \n\t" \
  177. "mov r27, r1 \n\t" \
  178. "mul %B1, %C2 \n\t" \
  179. "movw %A0, r0 \n\t" \
  180. "mul %C1, %C2 \n\t" \
  181. "add %B0, r0 \n\t" \
  182. "mul %C1, %B2 \n\t" \
  183. "add %A0, r0 \n\t" \
  184. "adc %B0, r1 \n\t" \
  185. "mul %A1, %C2 \n\t" \
  186. "add r27, r0 \n\t" \
  187. "adc %A0, r1 \n\t" \
  188. "adc %B0, r26 \n\t" \
  189. "mul %B1, %B2 \n\t" \
  190. "add r27, r0 \n\t" \
  191. "adc %A0, r1 \n\t" \
  192. "adc %B0, r26 \n\t" \
  193. "mul %C1, %A2 \n\t" \
  194. "add r27, r0 \n\t" \
  195. "adc %A0, r1 \n\t" \
  196. "adc %B0, r26 \n\t" \
  197. "mul %B1, %A2 \n\t" \
  198. "add r27, r1 \n\t" \
  199. "adc %A0, r26 \n\t" \
  200. "adc %B0, r26 \n\t" \
  201. "lsr r27 \n\t" \
  202. "adc %A0, r26 \n\t" \
  203. "adc %B0, r26 \n\t" \
  204. "mul %D2, %A1 \n\t" \
  205. "add %A0, r0 \n\t" \
  206. "adc %B0, r1 \n\t" \
  207. "mul %D2, %B1 \n\t" \
  208. "add %B0, r0 \n\t" \
  209. "clr r1 \n\t" \
  210. : \
  211. "=&r" (intRes) \
  212. : \
  213. "d" (longIn1), \
  214. "d" (longIn2) \
  215. : \
  216. "r26" , "r27" \
  217. )
  218. // Some useful constants
  219. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  220. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  221. /**
  222. * __________________________
  223. * /| |\ _________________ ^
  224. * / | | \ /| |\ |
  225. * / | | \ / | | \ s
  226. * / | | | | | \ p
  227. * / | | | | | \ e
  228. * +-----+------------------------+---+--+---------------+----+ e
  229. * | BLOCK 1 | BLOCK 2 | d
  230. *
  231. * time ----->
  232. *
  233. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  234. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  235. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  236. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  237. */
  238. void Stepper::wake_up() {
  239. // TCNT1 = 0;
  240. ENABLE_STEPPER_DRIVER_INTERRUPT();
  241. }
  242. /**
  243. * Set the stepper direction of each axis
  244. *
  245. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  246. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  247. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  248. */
  249. void Stepper::set_directions() {
  250. #define SET_STEP_DIR(AXIS) \
  251. if (motor_direction(AXIS ##_AXIS)) { \
  252. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  253. count_direction[AXIS ##_AXIS] = -1; \
  254. } \
  255. else { \
  256. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  257. count_direction[AXIS ##_AXIS] = 1; \
  258. }
  259. #if HAS_X_DIR
  260. SET_STEP_DIR(X); // A
  261. #endif
  262. #if HAS_Y_DIR
  263. SET_STEP_DIR(Y); // B
  264. #endif
  265. #if HAS_Z_DIR
  266. SET_STEP_DIR(Z); // C
  267. #endif
  268. #if DISABLED(ADVANCE)
  269. if (motor_direction(E_AXIS)) {
  270. REV_E_DIR();
  271. count_direction[E_AXIS] = -1;
  272. }
  273. else {
  274. NORM_E_DIR();
  275. count_direction[E_AXIS] = 1;
  276. }
  277. #endif //!ADVANCE
  278. }
  279. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  280. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  281. ISR(TIMER1_COMPA_vect) { Stepper::isr(); }
  282. void Stepper::isr() {
  283. if (cleaning_buffer_counter) {
  284. current_block = NULL;
  285. planner.discard_current_block();
  286. #ifdef SD_FINISHED_RELEASECOMMAND
  287. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  288. #endif
  289. cleaning_buffer_counter--;
  290. OCR1A = 200;
  291. return;
  292. }
  293. // If there is no current block, attempt to pop one from the buffer
  294. if (!current_block) {
  295. // Anything in the buffer?
  296. current_block = planner.get_current_block();
  297. if (current_block) {
  298. current_block->busy = true;
  299. trapezoid_generator_reset();
  300. // Initialize Bresenham counters to 1/2 the ceiling
  301. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  302. #if ENABLED(MIXING_EXTRUDER)
  303. MIXING_STEPPERS_LOOP(i)
  304. counter_M[i] = -(current_block->mix_event_count[i] >> 1);
  305. #endif
  306. step_events_completed = 0;
  307. #if ENABLED(Z_LATE_ENABLE)
  308. if (current_block->steps[Z_AXIS] > 0) {
  309. enable_z();
  310. OCR1A = 2000; //1ms wait
  311. return;
  312. }
  313. #endif
  314. // #if ENABLED(ADVANCE)
  315. // e_steps[TOOL_E_INDEX] = 0;
  316. // #endif
  317. }
  318. else {
  319. OCR1A = 2000; // 1kHz.
  320. }
  321. }
  322. if (current_block) {
  323. // Update endstops state, if enabled
  324. if (endstops.enabled
  325. #if HAS_BED_PROBE
  326. || endstops.z_probe_enabled
  327. #endif
  328. ) endstops.update();
  329. // Take multiple steps per interrupt (For high speed moves)
  330. for (int8_t i = 0; i < step_loops; i++) {
  331. #ifndef USBCON
  332. customizedSerial.checkRx(); // Check for serial chars.
  333. #endif
  334. #if ENABLED(LIN_ADVANCE)
  335. counter_E += current_block->steps[E_AXIS];
  336. if (counter_E > 0) {
  337. counter_E -= current_block->step_event_count;
  338. #if DISABLED(MIXING_EXTRUDER)
  339. // Don't step E here for mixing extruder
  340. count_position[E_AXIS] += count_direction[E_AXIS];
  341. e_steps[TOOL_E_INDEX] += motor_direction(E_AXIS) ? -1 : 1;
  342. #endif
  343. }
  344. #if ENABLED(MIXING_EXTRUDER)
  345. // Step mixing steppers proportionally
  346. long dir = motor_direction(E_AXIS) ? -1 : 1;
  347. MIXING_STEPPERS_LOOP(j) {
  348. counter_m[j] += current_block->steps[E_AXIS];
  349. if (counter_m[j] > 0) {
  350. counter_m[j] -= current_block->mix_event_count[j];
  351. e_steps[j] += dir;
  352. }
  353. }
  354. #endif
  355. if (current_block->use_advance_lead) {
  356. int delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[TOOL_E_INDEX]) >> 9) - current_adv_steps[TOOL_E_INDEX];
  357. #if ENABLED(MIXING_EXTRUDER)
  358. // Mixing extruders apply advance lead proportionally
  359. MIXING_STEPPERS_LOOP(j) {
  360. int steps = delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  361. e_steps[j] += steps;
  362. current_adv_steps[j] += steps;
  363. }
  364. #else
  365. // For most extruders, advance the single E stepper
  366. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  367. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  368. #endif
  369. }
  370. #elif ENABLED(ADVANCE)
  371. // Always count the unified E axis
  372. counter_E += current_block->steps[E_AXIS];
  373. if (counter_E > 0) {
  374. counter_E -= current_block->step_event_count;
  375. #if DISABLED(MIXING_EXTRUDER)
  376. // Don't step E here for mixing extruder
  377. e_steps[TOOL_E_INDEX] += motor_direction(E_AXIS) ? -1 : 1;
  378. #endif
  379. }
  380. #if ENABLED(MIXING_EXTRUDER)
  381. // Step mixing steppers proportionally
  382. long dir = motor_direction(E_AXIS) ? -1 : 1;
  383. MIXING_STEPPERS_LOOP(j) {
  384. counter_m[j] += current_block->steps[E_AXIS];
  385. if (counter_m[j] > 0) {
  386. counter_m[j] -= current_block->mix_event_count[j];
  387. e_steps[j] += dir;
  388. }
  389. }
  390. #endif // MIXING_EXTRUDER
  391. #endif // ADVANCE or LIN_ADVANCE
  392. #define _COUNTER(AXIS) counter_## AXIS
  393. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  394. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  395. #define PULSE_START(AXIS) \
  396. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  397. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  398. #define PULSE_STOP(AXIS) \
  399. if (_COUNTER(AXIS) > 0) { \
  400. _COUNTER(AXIS) -= current_block->step_event_count; \
  401. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  402. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  403. }
  404. #if MINIMUM_STEPPER_PULSE > 0
  405. static uint32_t pulse_start;
  406. pulse_start = TCNT0;
  407. #endif
  408. #if HAS_X_STEP
  409. PULSE_START(X);
  410. #endif
  411. #if HAS_Y_STEP
  412. PULSE_START(Y);
  413. #endif
  414. #if HAS_Z_STEP
  415. PULSE_START(Z);
  416. #endif
  417. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  418. #if ENABLED(MIXING_EXTRUDER)
  419. // Keep updating the single E axis
  420. counter_E += current_block->steps[E_AXIS];
  421. // Tick the counters used for this mix
  422. MIXING_STEPPERS_LOOP(j) {
  423. // Step mixing steppers (proportionally)
  424. counter_M[j] += current_block->steps[E_AXIS];
  425. // Step when the counter goes over zero
  426. if (counter_M[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  427. }
  428. #else // !MIXING_EXTRUDER
  429. PULSE_START(E);
  430. #endif
  431. #endif // !ADVANCE && !LIN_ADVANCE
  432. #if MINIMUM_STEPPER_PULSE > 0
  433. #define CYCLES_EATEN_BY_CODE 10
  434. while ((uint32_t)(TCNT0 - pulse_start) < (MINIMUM_STEPPER_PULSE * (F_CPU / 1000000UL)) - CYCLES_EATEN_BY_CODE) { /* nada */ }
  435. #endif
  436. #if HAS_X_STEP
  437. PULSE_STOP(X);
  438. #endif
  439. #if HAS_Y_STEP
  440. PULSE_STOP(Y);
  441. #endif
  442. #if HAS_Z_STEP
  443. PULSE_STOP(Z);
  444. #endif
  445. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  446. #if ENABLED(MIXING_EXTRUDER)
  447. // Always step the single E axis
  448. if (counter_E > 0) {
  449. counter_E -= current_block->step_event_count;
  450. count_position[E_AXIS] += count_direction[E_AXIS];
  451. }
  452. MIXING_STEPPERS_LOOP(j) {
  453. if (counter_M[j] > 0) {
  454. counter_M[j] -= current_block->mix_event_count[j];
  455. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  456. }
  457. }
  458. #else // !MIXING_EXTRUDER
  459. PULSE_STOP(E);
  460. #endif
  461. #endif // !ADVANCE && !LIN_ADVANCE
  462. step_events_completed++;
  463. if (step_events_completed >= current_block->step_event_count) break;
  464. }
  465. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  466. // If we have esteps to execute, fire the next ISR "now"
  467. if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
  468. #endif
  469. // Calculate new timer value
  470. unsigned short timer, step_rate;
  471. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  472. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  473. acc_step_rate += current_block->initial_rate;
  474. // upper limit
  475. NOMORE(acc_step_rate, current_block->nominal_rate);
  476. // step_rate to timer interval
  477. timer = calc_timer(acc_step_rate);
  478. OCR1A = timer;
  479. acceleration_time += timer;
  480. #if ENABLED(LIN_ADVANCE)
  481. if (current_block->use_advance_lead)
  482. current_estep_rate[TOOL_E_INDEX] = ((unsigned long)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
  483. if (current_block->use_advance_lead) {
  484. #if ENABLED(MIXING_EXTRUDER)
  485. MIXING_STEPPERS_LOOP(j)
  486. current_estep_rate[j] = ((unsigned long)acc_step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
  487. #else
  488. current_estep_rate[TOOL_E_INDEX] = ((unsigned long)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
  489. #endif
  490. }
  491. #elif ENABLED(ADVANCE)
  492. advance += advance_rate * step_loops;
  493. //NOLESS(advance, current_block->advance);
  494. long advance_whole = advance >> 8,
  495. advance_factor = advance_whole - old_advance;
  496. // Do E steps + advance steps
  497. #if ENABLED(MIXING_EXTRUDER)
  498. // ...for mixing steppers proportionally
  499. MIXING_STEPPERS_LOOP(j)
  500. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  501. #else
  502. // ...for the active extruder
  503. e_steps[TOOL_E_INDEX] += advance_factor;
  504. #endif
  505. old_advance = advance_whole;
  506. #endif // ADVANCE or LIN_ADVANCE
  507. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  508. eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
  509. #endif
  510. }
  511. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  512. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  513. if (step_rate <= acc_step_rate) { // Still decelerating?
  514. step_rate = acc_step_rate - step_rate;
  515. NOLESS(step_rate, current_block->final_rate);
  516. }
  517. else
  518. step_rate = current_block->final_rate;
  519. // step_rate to timer interval
  520. timer = calc_timer(step_rate);
  521. OCR1A = timer;
  522. deceleration_time += timer;
  523. #if ENABLED(LIN_ADVANCE)
  524. if (current_block->use_advance_lead) {
  525. #if ENABLED(MIXING_EXTRUDER)
  526. MIXING_STEPPERS_LOOP(j)
  527. current_estep_rate[j] = ((unsigned long)step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
  528. #else
  529. current_estep_rate[TOOL_E_INDEX] = ((unsigned long)step_rate * current_block->e_speed_multiplier8) >> 8;
  530. #endif
  531. }
  532. #elif ENABLED(ADVANCE)
  533. advance -= advance_rate * step_loops;
  534. NOLESS(advance, final_advance);
  535. // Do E steps + advance steps
  536. long advance_whole = advance >> 8,
  537. advance_factor = advance_whole - old_advance;
  538. #if ENABLED(MIXING_EXTRUDER)
  539. MIXING_STEPPERS_LOOP(j)
  540. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  541. #else
  542. e_steps[TOOL_E_INDEX] += advance_factor;
  543. #endif
  544. old_advance = advance_whole;
  545. #endif // ADVANCE or LIN_ADVANCE
  546. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  547. eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
  548. #endif
  549. }
  550. else {
  551. #if ENABLED(LIN_ADVANCE)
  552. if (current_block->use_advance_lead)
  553. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  554. eISR_Rate = (OCR1A_nominal >> 2) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
  555. #endif
  556. OCR1A = OCR1A_nominal;
  557. // ensure we're running at the correct step rate, even if we just came off an acceleration
  558. step_loops = step_loops_nominal;
  559. }
  560. OCR1A = (OCR1A < (TCNT1 + 16)) ? (TCNT1 + 16) : OCR1A;
  561. // If current block is finished, reset pointer
  562. if (step_events_completed >= current_block->step_event_count) {
  563. current_block = NULL;
  564. planner.discard_current_block();
  565. }
  566. }
  567. }
  568. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  569. // Timer interrupt for E. e_steps is set in the main routine;
  570. // Timer 0 is shared with millies
  571. ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); }
  572. void Stepper::advance_isr() {
  573. old_OCR0A += eISR_Rate;
  574. OCR0A = old_OCR0A;
  575. #define STEP_E_ONCE(INDEX) \
  576. if (e_steps[INDEX] != 0) { \
  577. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  578. if (e_steps[INDEX] < 0) { \
  579. E## INDEX ##_DIR_WRITE(INVERT_E## INDEX ##_DIR); \
  580. e_steps[INDEX]++; \
  581. } \
  582. else { \
  583. E## INDEX ##_DIR_WRITE(!INVERT_E## INDEX ##_DIR); \
  584. e_steps[INDEX]--; \
  585. } \
  586. E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \
  587. }
  588. // Step all E steppers that have steps
  589. for (uint8_t i = 0; i < step_loops; i++) {
  590. STEP_E_ONCE(0);
  591. #if E_STEPPERS > 1
  592. STEP_E_ONCE(1);
  593. #if E_STEPPERS > 2
  594. STEP_E_ONCE(2);
  595. #if E_STEPPERS > 3
  596. STEP_E_ONCE(3);
  597. #endif
  598. #endif
  599. #endif
  600. }
  601. }
  602. #endif // ADVANCE or LIN_ADVANCE
  603. void Stepper::init() {
  604. digipot_init(); //Initialize Digipot Motor Current
  605. microstep_init(); //Initialize Microstepping Pins
  606. // initialise TMC Steppers
  607. #if ENABLED(HAVE_TMCDRIVER)
  608. tmc_init();
  609. #endif
  610. // initialise L6470 Steppers
  611. #if ENABLED(HAVE_L6470DRIVER)
  612. L6470_init();
  613. #endif
  614. // Initialize Dir Pins
  615. #if HAS_X_DIR
  616. X_DIR_INIT;
  617. #endif
  618. #if HAS_X2_DIR
  619. X2_DIR_INIT;
  620. #endif
  621. #if HAS_Y_DIR
  622. Y_DIR_INIT;
  623. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  624. Y2_DIR_INIT;
  625. #endif
  626. #endif
  627. #if HAS_Z_DIR
  628. Z_DIR_INIT;
  629. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  630. Z2_DIR_INIT;
  631. #endif
  632. #endif
  633. #if HAS_E0_DIR
  634. E0_DIR_INIT;
  635. #endif
  636. #if HAS_E1_DIR
  637. E1_DIR_INIT;
  638. #endif
  639. #if HAS_E2_DIR
  640. E2_DIR_INIT;
  641. #endif
  642. #if HAS_E3_DIR
  643. E3_DIR_INIT;
  644. #endif
  645. //Initialize Enable Pins - steppers default to disabled.
  646. #if HAS_X_ENABLE
  647. X_ENABLE_INIT;
  648. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  649. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  650. X2_ENABLE_INIT;
  651. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  652. #endif
  653. #endif
  654. #if HAS_Y_ENABLE
  655. Y_ENABLE_INIT;
  656. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  657. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  658. Y2_ENABLE_INIT;
  659. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  660. #endif
  661. #endif
  662. #if HAS_Z_ENABLE
  663. Z_ENABLE_INIT;
  664. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  665. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  666. Z2_ENABLE_INIT;
  667. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  668. #endif
  669. #endif
  670. #if HAS_E0_ENABLE
  671. E0_ENABLE_INIT;
  672. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  673. #endif
  674. #if HAS_E1_ENABLE
  675. E1_ENABLE_INIT;
  676. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  677. #endif
  678. #if HAS_E2_ENABLE
  679. E2_ENABLE_INIT;
  680. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  681. #endif
  682. #if HAS_E3_ENABLE
  683. E3_ENABLE_INIT;
  684. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  685. #endif
  686. //
  687. // Init endstops and pullups here
  688. //
  689. endstops.init();
  690. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  691. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  692. #define _DISABLE(axis) disable_## axis()
  693. #define AXIS_INIT(axis, AXIS, PIN) \
  694. _STEP_INIT(AXIS); \
  695. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  696. _DISABLE(axis)
  697. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  698. // Initialize Step Pins
  699. #if HAS_X_STEP
  700. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  701. X2_STEP_INIT;
  702. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  703. #endif
  704. AXIS_INIT(x, X, X);
  705. #endif
  706. #if HAS_Y_STEP
  707. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  708. Y2_STEP_INIT;
  709. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  710. #endif
  711. AXIS_INIT(y, Y, Y);
  712. #endif
  713. #if HAS_Z_STEP
  714. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  715. Z2_STEP_INIT;
  716. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  717. #endif
  718. AXIS_INIT(z, Z, Z);
  719. #endif
  720. #if HAS_E0_STEP
  721. E_AXIS_INIT(0);
  722. #endif
  723. #if HAS_E1_STEP
  724. E_AXIS_INIT(1);
  725. #endif
  726. #if HAS_E2_STEP
  727. E_AXIS_INIT(2);
  728. #endif
  729. #if HAS_E3_STEP
  730. E_AXIS_INIT(3);
  731. #endif
  732. // waveform generation = 0100 = CTC
  733. CBI(TCCR1B, WGM13);
  734. SBI(TCCR1B, WGM12);
  735. CBI(TCCR1A, WGM11);
  736. CBI(TCCR1A, WGM10);
  737. // output mode = 00 (disconnected)
  738. TCCR1A &= ~(3 << COM1A0);
  739. TCCR1A &= ~(3 << COM1B0);
  740. // Set the timer pre-scaler
  741. // Generally we use a divider of 8, resulting in a 2MHz timer
  742. // frequency on a 16MHz MCU. If you are going to change this, be
  743. // sure to regenerate speed_lookuptable.h with
  744. // create_speed_lookuptable.py
  745. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  746. OCR1A = 0x4000;
  747. TCNT1 = 0;
  748. ENABLE_STEPPER_DRIVER_INTERRUPT();
  749. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  750. for (int i = 0; i < E_STEPPERS; i++) {
  751. e_steps[i] = 0;
  752. #if ENABLED(LIN_ADVANCE)
  753. current_adv_steps[i] = 0;
  754. #endif
  755. }
  756. #if defined(TCCR0A) && defined(WGM01)
  757. CBI(TCCR0A, WGM01);
  758. CBI(TCCR0A, WGM00);
  759. #endif
  760. SBI(TIMSK0, OCIE0A);
  761. #endif // ADVANCE or LIN_ADVANCE
  762. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  763. sei();
  764. set_directions(); // Init directions to last_direction_bits = 0
  765. }
  766. /**
  767. * Block until all buffered steps are executed
  768. */
  769. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  770. /**
  771. * Set the stepper positions directly in steps
  772. *
  773. * The input is based on the typical per-axis XYZ steps.
  774. * For CORE machines XYZ needs to be translated to ABC.
  775. *
  776. * This allows get_axis_position_mm to correctly
  777. * derive the current XYZ position later on.
  778. */
  779. void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) {
  780. CRITICAL_SECTION_START;
  781. #if ENABLED(COREXY)
  782. // corexy positioning
  783. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  784. count_position[A_AXIS] = x + y;
  785. count_position[B_AXIS] = x - y;
  786. count_position[Z_AXIS] = z;
  787. #elif ENABLED(COREXZ)
  788. // corexz planning
  789. count_position[A_AXIS] = x + z;
  790. count_position[Y_AXIS] = y;
  791. count_position[C_AXIS] = x - z;
  792. #elif ENABLED(COREYZ)
  793. // coreyz planning
  794. count_position[X_AXIS] = x;
  795. count_position[B_AXIS] = y + z;
  796. count_position[C_AXIS] = y - z;
  797. #else
  798. // default non-h-bot planning
  799. count_position[X_AXIS] = x;
  800. count_position[Y_AXIS] = y;
  801. count_position[Z_AXIS] = z;
  802. #endif
  803. count_position[E_AXIS] = e;
  804. CRITICAL_SECTION_END;
  805. }
  806. void Stepper::set_e_position(const long& e) {
  807. CRITICAL_SECTION_START;
  808. count_position[E_AXIS] = e;
  809. CRITICAL_SECTION_END;
  810. }
  811. /**
  812. * Get a stepper's position in steps.
  813. */
  814. long Stepper::position(AxisEnum axis) {
  815. CRITICAL_SECTION_START;
  816. long count_pos = count_position[axis];
  817. CRITICAL_SECTION_END;
  818. return count_pos;
  819. }
  820. /**
  821. * Get an axis position according to stepper position(s)
  822. * For CORE machines apply translation from ABC to XYZ.
  823. */
  824. float Stepper::get_axis_position_mm(AxisEnum axis) {
  825. float axis_steps;
  826. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  827. // Requesting one of the "core" axes?
  828. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  829. CRITICAL_SECTION_START;
  830. long pos1 = count_position[CORE_AXIS_1],
  831. pos2 = count_position[CORE_AXIS_2];
  832. CRITICAL_SECTION_END;
  833. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  834. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  835. axis_steps = (pos1 + ((axis == CORE_AXIS_1) ? pos2 : -pos2)) * 0.5f;
  836. }
  837. else
  838. axis_steps = position(axis);
  839. #else
  840. axis_steps = position(axis);
  841. #endif
  842. return axis_steps * planner.steps_to_mm[axis];
  843. }
  844. void Stepper::finish_and_disable() {
  845. synchronize();
  846. disable_all_steppers();
  847. }
  848. void Stepper::quick_stop() {
  849. cleaning_buffer_counter = 5000;
  850. DISABLE_STEPPER_DRIVER_INTERRUPT();
  851. while (planner.blocks_queued()) planner.discard_current_block();
  852. current_block = NULL;
  853. ENABLE_STEPPER_DRIVER_INTERRUPT();
  854. }
  855. void Stepper::endstop_triggered(AxisEnum axis) {
  856. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  857. float axis_pos = count_position[axis];
  858. if (axis == CORE_AXIS_1)
  859. axis_pos = (axis_pos + count_position[CORE_AXIS_2]) * 0.5;
  860. else if (axis == CORE_AXIS_2)
  861. axis_pos = (count_position[CORE_AXIS_1] - axis_pos) * 0.5;
  862. endstops_trigsteps[axis] = axis_pos;
  863. #else // !COREXY && !COREXZ && !COREYZ
  864. endstops_trigsteps[axis] = count_position[axis];
  865. #endif // !COREXY && !COREXZ && !COREYZ
  866. kill_current_block();
  867. }
  868. void Stepper::report_positions() {
  869. CRITICAL_SECTION_START;
  870. long xpos = count_position[X_AXIS],
  871. ypos = count_position[Y_AXIS],
  872. zpos = count_position[Z_AXIS];
  873. CRITICAL_SECTION_END;
  874. #if ENABLED(COREXY) || ENABLED(COREXZ)
  875. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  876. #else
  877. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  878. #endif
  879. SERIAL_PROTOCOL(xpos);
  880. #if ENABLED(COREXY) || ENABLED(COREYZ)
  881. SERIAL_PROTOCOLPGM(" B:");
  882. #else
  883. SERIAL_PROTOCOLPGM(" Y:");
  884. #endif
  885. SERIAL_PROTOCOL(ypos);
  886. #if ENABLED(COREXZ) || ENABLED(COREYZ)
  887. SERIAL_PROTOCOLPGM(" C:");
  888. #else
  889. SERIAL_PROTOCOLPGM(" Z:");
  890. #endif
  891. SERIAL_PROTOCOL(zpos);
  892. SERIAL_EOL;
  893. }
  894. #if ENABLED(BABYSTEPPING)
  895. // MUST ONLY BE CALLED BY AN ISR,
  896. // No other ISR should ever interrupt this!
  897. void Stepper::babystep(const uint8_t axis, const bool direction) {
  898. #define _ENABLE(axis) enable_## axis()
  899. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  900. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  901. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  902. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  903. _ENABLE(axis); \
  904. uint8_t old_pin = _READ_DIR(AXIS); \
  905. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  906. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  907. delayMicroseconds(2); \
  908. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  909. _APPLY_DIR(AXIS, old_pin); \
  910. }
  911. switch (axis) {
  912. case X_AXIS:
  913. BABYSTEP_AXIS(x, X, false);
  914. break;
  915. case Y_AXIS:
  916. BABYSTEP_AXIS(y, Y, false);
  917. break;
  918. case Z_AXIS: {
  919. #if DISABLED(DELTA)
  920. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  921. #else // DELTA
  922. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  923. enable_x();
  924. enable_y();
  925. enable_z();
  926. uint8_t old_x_dir_pin = X_DIR_READ,
  927. old_y_dir_pin = Y_DIR_READ,
  928. old_z_dir_pin = Z_DIR_READ;
  929. //setup new step
  930. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  931. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  932. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  933. //perform step
  934. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  935. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  936. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  937. delayMicroseconds(2);
  938. X_STEP_WRITE(INVERT_X_STEP_PIN);
  939. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  940. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  941. //get old pin state back.
  942. X_DIR_WRITE(old_x_dir_pin);
  943. Y_DIR_WRITE(old_y_dir_pin);
  944. Z_DIR_WRITE(old_z_dir_pin);
  945. #endif
  946. } break;
  947. default: break;
  948. }
  949. }
  950. #endif //BABYSTEPPING
  951. /**
  952. * Software-controlled Stepper Motor Current
  953. */
  954. #if HAS_DIGIPOTSS
  955. // From Arduino DigitalPotControl example
  956. void Stepper::digitalPotWrite(int address, int value) {
  957. digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  958. SPI.transfer(address); // send in the address and value via SPI:
  959. SPI.transfer(value);
  960. digitalWrite(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  961. //delay(10);
  962. }
  963. #endif //HAS_DIGIPOTSS
  964. void Stepper::digipot_init() {
  965. #if HAS_DIGIPOTSS
  966. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  967. SPI.begin();
  968. pinMode(DIGIPOTSS_PIN, OUTPUT);
  969. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  970. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  971. digipot_current(i, digipot_motor_current[i]);
  972. }
  973. #endif
  974. #if HAS_MOTOR_CURRENT_PWM
  975. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  976. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  977. digipot_current(0, motor_current_setting[0]);
  978. #endif
  979. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  980. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  981. digipot_current(1, motor_current_setting[1]);
  982. #endif
  983. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  984. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  985. digipot_current(2, motor_current_setting[2]);
  986. #endif
  987. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  988. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  989. #endif
  990. }
  991. void Stepper::digipot_current(uint8_t driver, int current) {
  992. #if HAS_DIGIPOTSS
  993. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  994. digitalPotWrite(digipot_ch[driver], current);
  995. #elif HAS_MOTOR_CURRENT_PWM
  996. #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  997. switch (driver) {
  998. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  999. case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
  1000. #endif
  1001. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1002. case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
  1003. #endif
  1004. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1005. case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
  1006. #endif
  1007. }
  1008. #else
  1009. UNUSED(driver);
  1010. UNUSED(current);
  1011. #endif
  1012. }
  1013. void Stepper::microstep_init() {
  1014. #if HAS_MICROSTEPS_E1
  1015. pinMode(E1_MS1_PIN, OUTPUT);
  1016. pinMode(E1_MS2_PIN, OUTPUT);
  1017. #endif
  1018. #if HAS_MICROSTEPS
  1019. pinMode(X_MS1_PIN, OUTPUT);
  1020. pinMode(X_MS2_PIN, OUTPUT);
  1021. pinMode(Y_MS1_PIN, OUTPUT);
  1022. pinMode(Y_MS2_PIN, OUTPUT);
  1023. pinMode(Z_MS1_PIN, OUTPUT);
  1024. pinMode(Z_MS2_PIN, OUTPUT);
  1025. pinMode(E0_MS1_PIN, OUTPUT);
  1026. pinMode(E0_MS2_PIN, OUTPUT);
  1027. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1028. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1029. microstep_mode(i, microstep_modes[i]);
  1030. #endif
  1031. }
  1032. /**
  1033. * Software-controlled Microstepping
  1034. */
  1035. void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1036. if (ms1 >= 0) switch (driver) {
  1037. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1038. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1039. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1040. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1041. #if HAS_MICROSTEPS_E1
  1042. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1043. #endif
  1044. }
  1045. if (ms2 >= 0) switch (driver) {
  1046. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1047. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1048. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1049. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1050. #if PIN_EXISTS(E1_MS2)
  1051. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1052. #endif
  1053. }
  1054. }
  1055. void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1056. switch (stepping_mode) {
  1057. case 1: microstep_ms(driver, MICROSTEP1); break;
  1058. case 2: microstep_ms(driver, MICROSTEP2); break;
  1059. case 4: microstep_ms(driver, MICROSTEP4); break;
  1060. case 8: microstep_ms(driver, MICROSTEP8); break;
  1061. case 16: microstep_ms(driver, MICROSTEP16); break;
  1062. }
  1063. }
  1064. void Stepper::microstep_readings() {
  1065. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1066. SERIAL_PROTOCOLPGM("X: ");
  1067. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1068. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1069. SERIAL_PROTOCOLPGM("Y: ");
  1070. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1071. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1072. SERIAL_PROTOCOLPGM("Z: ");
  1073. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1074. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1075. SERIAL_PROTOCOLPGM("E0: ");
  1076. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1077. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1078. #if HAS_MICROSTEPS_E1
  1079. SERIAL_PROTOCOLPGM("E1: ");
  1080. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1081. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1082. #endif
  1083. }
  1084. #if ENABLED(LIN_ADVANCE)
  1085. void Stepper::advance_M905(const float &k) {
  1086. if (k >= 0) extruder_advance_k = k;
  1087. SERIAL_ECHO_START;
  1088. SERIAL_ECHOPAIR("Advance factor: ", extruder_advance_k);
  1089. SERIAL_EOL;
  1090. }
  1091. #endif // LIN_ADVANCE