My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

temperature.h 26KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #pragma once
  23. /**
  24. * temperature.h - temperature controller
  25. */
  26. #include "thermistor/thermistors.h"
  27. #include "../inc/MarlinConfig.h"
  28. #if ENABLED(AUTO_POWER_CONTROL)
  29. #include "../feature/power.h"
  30. #endif
  31. #ifndef SOFT_PWM_SCALE
  32. #define SOFT_PWM_SCALE 0
  33. #endif
  34. #if HOTENDS <= 1
  35. #define HOTEND_INDEX 0
  36. #define E_NAME
  37. #else
  38. #define HOTEND_INDEX e
  39. #define E_NAME e
  40. #endif
  41. // Identifiers for other heaters
  42. typedef enum : int8_t {
  43. INDEX_NONE = -5,
  44. H_PROBE, H_REDUNDANT, H_CHAMBER, H_BED,
  45. H_E0, H_E1, H_E2, H_E3, H_E4, H_E5, H_E6, H_E7
  46. } heater_ind_t;
  47. // PID storage
  48. typedef struct { float Kp, Ki, Kd; } PID_t;
  49. typedef struct { float Kp, Ki, Kd, Kc; } PIDC_t;
  50. typedef struct { float Kp, Ki, Kd, Kf; } PIDF_t;
  51. typedef struct { float Kp, Ki, Kd, Kc, Kf; } PIDCF_t;
  52. typedef
  53. #if BOTH(PID_EXTRUSION_SCALING, PID_FAN_SCALING)
  54. PIDCF_t
  55. #elif ENABLED(PID_EXTRUSION_SCALING)
  56. PIDC_t
  57. #elif ENABLED(PID_FAN_SCALING)
  58. PIDF_t
  59. #else
  60. PID_t
  61. #endif
  62. hotend_pid_t;
  63. #if ENABLED(PID_EXTRUSION_SCALING)
  64. typedef IF<(LPQ_MAX_LEN > 255), uint16_t, uint8_t>::type lpq_ptr_t;
  65. #endif
  66. #if ENABLED(PIDTEMP)
  67. #define _PID_Kp(H) Temperature::temp_hotend[H].pid.Kp
  68. #define _PID_Ki(H) Temperature::temp_hotend[H].pid.Ki
  69. #define _PID_Kd(H) Temperature::temp_hotend[H].pid.Kd
  70. #if ENABLED(PID_EXTRUSION_SCALING)
  71. #define _PID_Kc(H) Temperature::temp_hotend[H].pid.Kc
  72. #else
  73. #define _PID_Kc(H) 1
  74. #endif
  75. #if ENABLED(PID_FAN_SCALING)
  76. #define _PID_Kf(H) Temperature::temp_hotend[H].pid.Kf
  77. #else
  78. #define _PID_Kf(H) 0
  79. #endif
  80. #else
  81. #define _PID_Kp(H) NAN
  82. #define _PID_Ki(H) NAN
  83. #define _PID_Kd(H) NAN
  84. #define _PID_Kc(H) 1
  85. #endif
  86. #define PID_PARAM(F,H) _PID_##F(H)
  87. /**
  88. * States for ADC reading in the ISR
  89. */
  90. enum ADCSensorState : char {
  91. StartSampling,
  92. #if HAS_TEMP_ADC_0
  93. PrepareTemp_0, MeasureTemp_0,
  94. #endif
  95. #if HAS_HEATED_BED
  96. PrepareTemp_BED, MeasureTemp_BED,
  97. #endif
  98. #if HAS_TEMP_CHAMBER
  99. PrepareTemp_CHAMBER, MeasureTemp_CHAMBER,
  100. #endif
  101. #if HAS_TEMP_PROBE
  102. PrepareTemp_PROBE, MeasureTemp_PROBE,
  103. #endif
  104. #if HAS_TEMP_ADC_1
  105. PrepareTemp_1, MeasureTemp_1,
  106. #endif
  107. #if HAS_TEMP_ADC_2
  108. PrepareTemp_2, MeasureTemp_2,
  109. #endif
  110. #if HAS_TEMP_ADC_3
  111. PrepareTemp_3, MeasureTemp_3,
  112. #endif
  113. #if HAS_TEMP_ADC_4
  114. PrepareTemp_4, MeasureTemp_4,
  115. #endif
  116. #if HAS_TEMP_ADC_5
  117. PrepareTemp_5, MeasureTemp_5,
  118. #endif
  119. #if HAS_TEMP_ADC_6
  120. PrepareTemp_6, MeasureTemp_6,
  121. #endif
  122. #if HAS_TEMP_ADC_7
  123. PrepareTemp_7, MeasureTemp_7,
  124. #endif
  125. #if HAS_JOY_ADC_X
  126. PrepareJoy_X, MeasureJoy_X,
  127. #endif
  128. #if HAS_JOY_ADC_Y
  129. PrepareJoy_Y, MeasureJoy_Y,
  130. #endif
  131. #if HAS_JOY_ADC_Z
  132. PrepareJoy_Z, MeasureJoy_Z,
  133. #endif
  134. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  135. Prepare_FILWIDTH, Measure_FILWIDTH,
  136. #endif
  137. #if ENABLED(POWER_MONITOR_CURRENT)
  138. Prepare_POWER_MONITOR_CURRENT,
  139. Measure_POWER_MONITOR_CURRENT,
  140. #endif
  141. #if ENABLED(POWER_MONITOR_VOLTAGE)
  142. Prepare_POWER_MONITOR_VOLTAGE,
  143. Measure_POWER_MONITOR_VOLTAGE,
  144. #endif
  145. #if HAS_ADC_BUTTONS
  146. Prepare_ADC_KEY, Measure_ADC_KEY,
  147. #endif
  148. SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.
  149. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  150. };
  151. // Minimum number of Temperature::ISR loops between sensor readings.
  152. // Multiplied by 16 (OVERSAMPLENR) to obtain the total time to
  153. // get all oversampled sensor readings
  154. #define MIN_ADC_ISR_LOOPS 10
  155. #define ACTUAL_ADC_SAMPLES _MAX(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))
  156. #if HAS_PID_HEATING
  157. #define PID_K2 (1-float(PID_K1))
  158. #define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / TEMP_TIMER_FREQUENCY)
  159. // Apply the scale factors to the PID values
  160. #define scalePID_i(i) ( float(i) * PID_dT )
  161. #define unscalePID_i(i) ( float(i) / PID_dT )
  162. #define scalePID_d(d) ( float(d) / PID_dT )
  163. #define unscalePID_d(d) ( float(d) * PID_dT )
  164. #endif
  165. #if BOTH(HAS_LCD_MENU, G26_MESH_VALIDATION)
  166. #define G26_CLICK_CAN_CANCEL 1
  167. #endif
  168. // A temperature sensor
  169. typedef struct TempInfo {
  170. uint16_t acc;
  171. int16_t raw;
  172. float celsius;
  173. inline void reset() { acc = 0; }
  174. inline void sample(const uint16_t s) { acc += s; }
  175. inline void update() { raw = acc; }
  176. } temp_info_t;
  177. // A PWM heater with temperature sensor
  178. typedef struct HeaterInfo : public TempInfo {
  179. int16_t target;
  180. uint8_t soft_pwm_amount;
  181. } heater_info_t;
  182. // A heater with PID stabilization
  183. template<typename T>
  184. struct PIDHeaterInfo : public HeaterInfo {
  185. T pid; // Initialized by settings.load()
  186. };
  187. #if ENABLED(PIDTEMP)
  188. typedef struct PIDHeaterInfo<hotend_pid_t> hotend_info_t;
  189. #else
  190. typedef heater_info_t hotend_info_t;
  191. #endif
  192. #if HAS_HEATED_BED
  193. #if ENABLED(PIDTEMPBED)
  194. typedef struct PIDHeaterInfo<PID_t> bed_info_t;
  195. #else
  196. typedef heater_info_t bed_info_t;
  197. #endif
  198. #endif
  199. #if HAS_TEMP_PROBE
  200. typedef temp_info_t probe_info_t;
  201. #endif
  202. #if HAS_HEATED_CHAMBER
  203. typedef heater_info_t chamber_info_t;
  204. #elif HAS_TEMP_CHAMBER
  205. typedef temp_info_t chamber_info_t;
  206. #endif
  207. // Heater idle handling
  208. typedef struct {
  209. millis_t timeout_ms;
  210. bool timed_out;
  211. inline void update(const millis_t &ms) { if (!timed_out && timeout_ms && ELAPSED(ms, timeout_ms)) timed_out = true; }
  212. inline void start(const millis_t &ms) { timeout_ms = millis() + ms; timed_out = false; }
  213. inline void reset() { timeout_ms = 0; timed_out = false; }
  214. inline void expire() { start(0); }
  215. } hotend_idle_t;
  216. // Heater watch handling
  217. template <int INCREASE, int HYSTERESIS, millis_t PERIOD>
  218. struct HeaterWatch {
  219. uint16_t target;
  220. millis_t next_ms;
  221. inline bool elapsed(const millis_t &ms) { return next_ms && ELAPSED(ms, next_ms); }
  222. inline bool elapsed() { return elapsed(millis()); }
  223. inline void restart(const int16_t curr, const int16_t tgt) {
  224. if (tgt) {
  225. const int16_t newtarget = curr + INCREASE;
  226. if (newtarget < tgt - HYSTERESIS - 1) {
  227. target = newtarget;
  228. next_ms = millis() + SEC_TO_MS(PERIOD);
  229. return;
  230. }
  231. }
  232. next_ms = 0;
  233. }
  234. };
  235. #if WATCH_HOTENDS
  236. typedef struct HeaterWatch<WATCH_TEMP_INCREASE, TEMP_HYSTERESIS, WATCH_TEMP_PERIOD> hotend_watch_t;
  237. #endif
  238. #if WATCH_BED
  239. typedef struct HeaterWatch<WATCH_BED_TEMP_INCREASE, TEMP_BED_HYSTERESIS, WATCH_BED_TEMP_PERIOD> bed_watch_t;
  240. #endif
  241. #if WATCH_CHAMBER
  242. typedef struct HeaterWatch<WATCH_CHAMBER_TEMP_INCREASE, TEMP_CHAMBER_HYSTERESIS, WATCH_CHAMBER_TEMP_PERIOD> chamber_watch_t;
  243. #endif
  244. // Temperature sensor read value ranges
  245. typedef struct { int16_t raw_min, raw_max; } raw_range_t;
  246. typedef struct { int16_t mintemp, maxtemp; } celsius_range_t;
  247. typedef struct { int16_t raw_min, raw_max, mintemp, maxtemp; } temp_range_t;
  248. #define THERMISTOR_ABS_ZERO_C -273.15f // bbbbrrrrr cold !
  249. #define THERMISTOR_RESISTANCE_NOMINAL_C 25.0f // mmmmm comfortable
  250. #if HAS_USER_THERMISTORS
  251. enum CustomThermistorIndex : uint8_t {
  252. #if ENABLED(HEATER_0_USER_THERMISTOR)
  253. CTI_HOTEND_0,
  254. #endif
  255. #if ENABLED(HEATER_1_USER_THERMISTOR)
  256. CTI_HOTEND_1,
  257. #endif
  258. #if ENABLED(HEATER_2_USER_THERMISTOR)
  259. CTI_HOTEND_2,
  260. #endif
  261. #if ENABLED(HEATER_3_USER_THERMISTOR)
  262. CTI_HOTEND_3,
  263. #endif
  264. #if ENABLED(HEATER_4_USER_THERMISTOR)
  265. CTI_HOTEND_4,
  266. #endif
  267. #if ENABLED(HEATER_5_USER_THERMISTOR)
  268. CTI_HOTEND_5,
  269. #endif
  270. #if ENABLED(HEATER_BED_USER_THERMISTOR)
  271. CTI_BED,
  272. #endif
  273. #if ENABLED(HEATER_PROBE_USER_THERMISTOR)
  274. CTI_PROBE,
  275. #endif
  276. #if ENABLED(HEATER_CHAMBER_USER_THERMISTOR)
  277. CTI_CHAMBER,
  278. #endif
  279. USER_THERMISTORS
  280. };
  281. // User-defined thermistor
  282. typedef struct {
  283. bool pre_calc; // true if pre-calculations update needed
  284. float sh_c_coeff, // Steinhart-Hart C coefficient .. defaults to '0.0'
  285. sh_alpha,
  286. series_res,
  287. res_25, res_25_recip,
  288. res_25_log,
  289. beta, beta_recip;
  290. } user_thermistor_t;
  291. #endif
  292. class Temperature {
  293. public:
  294. #if HAS_HOTEND
  295. #define HOTEND_TEMPS (HOTENDS + ENABLED(TEMP_SENSOR_1_AS_REDUNDANT))
  296. static hotend_info_t temp_hotend[HOTEND_TEMPS];
  297. static const int16_t heater_maxtemp[HOTENDS];
  298. #endif
  299. TERN_(HAS_HEATED_BED, static bed_info_t temp_bed);
  300. TERN_(HAS_TEMP_PROBE, static probe_info_t temp_probe);
  301. TERN_(HAS_TEMP_CHAMBER, static chamber_info_t temp_chamber);
  302. TERN_(AUTO_POWER_E_FANS, static uint8_t autofan_speed[HOTENDS]);
  303. TERN_(AUTO_POWER_CHAMBER_FAN, static uint8_t chamberfan_speed);
  304. #if ENABLED(FAN_SOFT_PWM)
  305. static uint8_t soft_pwm_amount_fan[FAN_COUNT],
  306. soft_pwm_count_fan[FAN_COUNT];
  307. #endif
  308. #if ENABLED(PREVENT_COLD_EXTRUSION)
  309. static bool allow_cold_extrude;
  310. static int16_t extrude_min_temp;
  311. FORCE_INLINE static bool tooCold(const int16_t temp) { return allow_cold_extrude ? false : temp < extrude_min_temp; }
  312. FORCE_INLINE static bool tooColdToExtrude(const uint8_t E_NAME) {
  313. return tooCold(degHotend(HOTEND_INDEX));
  314. }
  315. FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t E_NAME) {
  316. return tooCold(degTargetHotend(HOTEND_INDEX));
  317. }
  318. #else
  319. FORCE_INLINE static bool tooColdToExtrude(const uint8_t) { return false; }
  320. FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t) { return false; }
  321. #endif
  322. FORCE_INLINE static bool hotEnoughToExtrude(const uint8_t e) { return !tooColdToExtrude(e); }
  323. FORCE_INLINE static bool targetHotEnoughToExtrude(const uint8_t e) { return !targetTooColdToExtrude(e); }
  324. #if HEATER_IDLE_HANDLER
  325. static hotend_idle_t hotend_idle[HOTENDS];
  326. TERN_(HAS_HEATED_BED, static hotend_idle_t bed_idle);
  327. TERN_(HAS_HEATED_CHAMBER, static hotend_idle_t chamber_idle);
  328. #endif
  329. private:
  330. TERN_(EARLY_WATCHDOG, static bool inited); // If temperature controller is running
  331. static volatile bool raw_temps_ready;
  332. TERN_(WATCH_HOTENDS, static hotend_watch_t watch_hotend[HOTENDS]);
  333. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  334. static uint16_t redundant_temperature_raw;
  335. static float redundant_temperature;
  336. #endif
  337. #if ENABLED(PID_EXTRUSION_SCALING)
  338. static int32_t last_e_position, lpq[LPQ_MAX_LEN];
  339. static lpq_ptr_t lpq_ptr;
  340. #endif
  341. TERN_(HAS_HOTEND, static temp_range_t temp_range[HOTENDS]);
  342. #if HAS_HEATED_BED
  343. TERN_(WATCH_BED, static bed_watch_t watch_bed);
  344. TERN(PIDTEMPBED,,static millis_t next_bed_check_ms);
  345. #ifdef BED_MINTEMP
  346. static int16_t mintemp_raw_BED;
  347. #endif
  348. #ifdef BED_MAXTEMP
  349. static int16_t maxtemp_raw_BED;
  350. #endif
  351. #endif
  352. #if HAS_HEATED_CHAMBER
  353. TERN_(WATCH_CHAMBER, static chamber_watch_t watch_chamber);
  354. static millis_t next_chamber_check_ms;
  355. #ifdef CHAMBER_MINTEMP
  356. static int16_t mintemp_raw_CHAMBER;
  357. #endif
  358. #ifdef CHAMBER_MAXTEMP
  359. static int16_t maxtemp_raw_CHAMBER;
  360. #endif
  361. #endif
  362. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  363. static uint8_t consecutive_low_temperature_error[HOTENDS];
  364. #endif
  365. #ifdef MILLISECONDS_PREHEAT_TIME
  366. static millis_t preheat_end_time[HOTENDS];
  367. #endif
  368. TERN_(HAS_AUTO_FAN, static millis_t next_auto_fan_check_ms);
  369. TERN_(PROBING_HEATERS_OFF, static bool paused);
  370. public:
  371. #if HAS_ADC_BUTTONS
  372. static uint32_t current_ADCKey_raw;
  373. static uint8_t ADCKey_count;
  374. #endif
  375. TERN_(PID_EXTRUSION_SCALING, static int16_t lpq_len);
  376. /**
  377. * Instance Methods
  378. */
  379. void init();
  380. /**
  381. * Static (class) methods
  382. */
  383. #if HAS_USER_THERMISTORS
  384. static user_thermistor_t user_thermistor[USER_THERMISTORS];
  385. static void log_user_thermistor(const uint8_t t_index, const bool eprom=false);
  386. static void reset_user_thermistors();
  387. static float user_thermistor_to_deg_c(const uint8_t t_index, const int raw);
  388. static bool set_pull_up_res(int8_t t_index, float value) {
  389. //if (!WITHIN(t_index, 0, USER_THERMISTORS - 1)) return false;
  390. if (!WITHIN(value, 1, 1000000)) return false;
  391. user_thermistor[t_index].series_res = value;
  392. return true;
  393. }
  394. static bool set_res25(int8_t t_index, float value) {
  395. if (!WITHIN(value, 1, 10000000)) return false;
  396. user_thermistor[t_index].res_25 = value;
  397. user_thermistor[t_index].pre_calc = true;
  398. return true;
  399. }
  400. static bool set_beta(int8_t t_index, float value) {
  401. if (!WITHIN(value, 1, 1000000)) return false;
  402. user_thermistor[t_index].beta = value;
  403. user_thermistor[t_index].pre_calc = true;
  404. return true;
  405. }
  406. static bool set_sh_coeff(int8_t t_index, float value) {
  407. if (!WITHIN(value, -0.01f, 0.01f)) return false;
  408. user_thermistor[t_index].sh_c_coeff = value;
  409. user_thermistor[t_index].pre_calc = true;
  410. return true;
  411. }
  412. #endif
  413. #if HAS_HOTEND
  414. static float analog_to_celsius_hotend(const int raw, const uint8_t e);
  415. #endif
  416. #if HAS_HEATED_BED
  417. static float analog_to_celsius_bed(const int raw);
  418. #endif
  419. #if HAS_TEMP_PROBE
  420. static float analog_to_celsius_probe(const int raw);
  421. #endif
  422. #if HAS_TEMP_CHAMBER
  423. static float analog_to_celsius_chamber(const int raw);
  424. #endif
  425. #if HAS_FAN
  426. static uint8_t fan_speed[FAN_COUNT];
  427. #define FANS_LOOP(I) LOOP_L_N(I, FAN_COUNT)
  428. static void set_fan_speed(const uint8_t target, const uint16_t speed);
  429. static void report_fan_speed(const uint8_t target);
  430. #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
  431. static bool fans_paused;
  432. static uint8_t saved_fan_speed[FAN_COUNT];
  433. #endif
  434. static constexpr inline uint8_t fanPercent(const uint8_t speed) { return ui8_to_percent(speed); }
  435. TERN_(ADAPTIVE_FAN_SLOWING, static uint8_t fan_speed_scaler[FAN_COUNT]);
  436. static inline uint8_t scaledFanSpeed(const uint8_t target, const uint8_t fs) {
  437. UNUSED(target); // Potentially unused!
  438. return (fs * uint16_t(
  439. #if ENABLED(ADAPTIVE_FAN_SLOWING)
  440. fan_speed_scaler[target]
  441. #else
  442. 128
  443. #endif
  444. )) >> 7;
  445. }
  446. static inline uint8_t scaledFanSpeed(const uint8_t target) {
  447. return scaledFanSpeed(target, fan_speed[target]);
  448. }
  449. #if ENABLED(EXTRA_FAN_SPEED)
  450. static uint8_t old_fan_speed[FAN_COUNT], new_fan_speed[FAN_COUNT];
  451. static void set_temp_fan_speed(const uint8_t fan, const uint16_t tmp_temp);
  452. #endif
  453. #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
  454. void set_fans_paused(const bool p);
  455. #endif
  456. #endif // HAS_FAN
  457. static inline void zero_fan_speeds() {
  458. #if HAS_FAN
  459. FANS_LOOP(i) set_fan_speed(i, 0);
  460. #endif
  461. }
  462. /**
  463. * Called from the Temperature ISR
  464. */
  465. static void readings_ready();
  466. static void tick();
  467. /**
  468. * Call periodically to manage heaters
  469. */
  470. static void manage_heater() _O2; // Added _O2 to work around a compiler error
  471. /**
  472. * Preheating hotends
  473. */
  474. #ifdef MILLISECONDS_PREHEAT_TIME
  475. static bool is_preheating(const uint8_t E_NAME) {
  476. return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
  477. }
  478. static void start_preheat_time(const uint8_t E_NAME) {
  479. preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
  480. }
  481. static void reset_preheat_time(const uint8_t E_NAME) {
  482. preheat_end_time[HOTEND_INDEX] = 0;
  483. }
  484. #else
  485. #define is_preheating(n) (false)
  486. #endif
  487. //high level conversion routines, for use outside of temperature.cpp
  488. //inline so that there is no performance decrease.
  489. //deg=degreeCelsius
  490. FORCE_INLINE static float degHotend(const uint8_t E_NAME) {
  491. return TERN0(HAS_HOTEND, temp_hotend[HOTEND_INDEX].celsius);
  492. }
  493. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  494. FORCE_INLINE static int16_t rawHotendTemp(const uint8_t E_NAME) {
  495. return TERN0(HAS_HOTEND, temp_hotend[HOTEND_INDEX].raw);
  496. }
  497. #endif
  498. FORCE_INLINE static int16_t degTargetHotend(const uint8_t E_NAME) {
  499. return TERN0(HAS_HOTEND, temp_hotend[HOTEND_INDEX].target);
  500. }
  501. #if WATCH_HOTENDS
  502. static void start_watching_hotend(const uint8_t e=0);
  503. #else
  504. static inline void start_watching_hotend(const uint8_t=0) {}
  505. #endif
  506. #if HAS_HOTEND
  507. static void setTargetHotend(const int16_t celsius, const uint8_t E_NAME) {
  508. const uint8_t ee = HOTEND_INDEX;
  509. #ifdef MILLISECONDS_PREHEAT_TIME
  510. if (celsius == 0)
  511. reset_preheat_time(ee);
  512. else if (temp_hotend[ee].target == 0)
  513. start_preheat_time(ee);
  514. #endif
  515. TERN_(AUTO_POWER_CONTROL, powerManager.power_on());
  516. temp_hotend[ee].target = _MIN(celsius, temp_range[ee].maxtemp - HOTEND_OVERSHOOT);
  517. start_watching_hotend(ee);
  518. }
  519. FORCE_INLINE static bool isHeatingHotend(const uint8_t E_NAME) {
  520. return temp_hotend[HOTEND_INDEX].target > temp_hotend[HOTEND_INDEX].celsius;
  521. }
  522. FORCE_INLINE static bool isCoolingHotend(const uint8_t E_NAME) {
  523. return temp_hotend[HOTEND_INDEX].target < temp_hotend[HOTEND_INDEX].celsius;
  524. }
  525. #if HAS_TEMP_HOTEND
  526. static bool wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling=true
  527. #if G26_CLICK_CAN_CANCEL
  528. , const bool click_to_cancel=false
  529. #endif
  530. );
  531. #endif
  532. FORCE_INLINE static bool still_heating(const uint8_t e) {
  533. return degTargetHotend(e) > TEMP_HYSTERESIS && ABS(degHotend(e) - degTargetHotend(e)) > TEMP_HYSTERESIS;
  534. }
  535. FORCE_INLINE static bool degHotendNear(const uint8_t e, const float &temp) {
  536. return ABS(degHotend(e) - temp) < (TEMP_HYSTERESIS);
  537. }
  538. #endif // HOTENDS
  539. #if HAS_HEATED_BED
  540. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  541. FORCE_INLINE static int16_t rawBedTemp() { return temp_bed.raw; }
  542. #endif
  543. FORCE_INLINE static float degBed() { return temp_bed.celsius; }
  544. FORCE_INLINE static int16_t degTargetBed() { return temp_bed.target; }
  545. FORCE_INLINE static bool isHeatingBed() { return temp_bed.target > temp_bed.celsius; }
  546. FORCE_INLINE static bool isCoolingBed() { return temp_bed.target < temp_bed.celsius; }
  547. #if WATCH_BED
  548. static void start_watching_bed();
  549. #else
  550. static inline void start_watching_bed() {}
  551. #endif
  552. static void setTargetBed(const int16_t celsius) {
  553. TERN_(AUTO_POWER_CONTROL, powerManager.power_on());
  554. temp_bed.target =
  555. #ifdef BED_MAXTEMP
  556. _MIN(celsius, BED_MAX_TARGET)
  557. #else
  558. celsius
  559. #endif
  560. ;
  561. start_watching_bed();
  562. }
  563. static bool wait_for_bed(const bool no_wait_for_cooling=true
  564. #if G26_CLICK_CAN_CANCEL
  565. , const bool click_to_cancel=false
  566. #endif
  567. );
  568. static void wait_for_bed_heating();
  569. FORCE_INLINE static bool degBedNear(const float &temp) {
  570. return ABS(degBed() - temp) < (TEMP_BED_HYSTERESIS);
  571. }
  572. #endif // HAS_HEATED_BED
  573. #if HAS_TEMP_PROBE
  574. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  575. FORCE_INLINE static int16_t rawProbeTemp() { return temp_probe.raw; }
  576. #endif
  577. FORCE_INLINE static float degProbe() { return temp_probe.celsius; }
  578. #endif
  579. #if WATCH_PROBE
  580. static void start_watching_probe();
  581. #else
  582. static inline void start_watching_probe() {}
  583. #endif
  584. #if HAS_TEMP_CHAMBER
  585. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  586. FORCE_INLINE static int16_t rawChamberTemp() { return temp_chamber.raw; }
  587. #endif
  588. FORCE_INLINE static float degChamber() { return temp_chamber.celsius; }
  589. #if HAS_HEATED_CHAMBER
  590. FORCE_INLINE static int16_t degTargetChamber() { return temp_chamber.target; }
  591. FORCE_INLINE static bool isHeatingChamber() { return temp_chamber.target > temp_chamber.celsius; }
  592. FORCE_INLINE static bool isCoolingChamber() { return temp_chamber.target < temp_chamber.celsius; }
  593. static bool wait_for_chamber(const bool no_wait_for_cooling=true);
  594. #endif
  595. #endif // HAS_TEMP_CHAMBER
  596. #if WATCH_CHAMBER
  597. static void start_watching_chamber();
  598. #else
  599. static inline void start_watching_chamber() {}
  600. #endif
  601. #if HAS_HEATED_CHAMBER
  602. static void setTargetChamber(const int16_t celsius) {
  603. temp_chamber.target =
  604. #ifdef CHAMBER_MAXTEMP
  605. _MIN(celsius, CHAMBER_MAXTEMP - 10)
  606. #else
  607. celsius
  608. #endif
  609. ;
  610. start_watching_chamber();
  611. }
  612. #endif // HAS_HEATED_CHAMBER
  613. /**
  614. * The software PWM power for a heater
  615. */
  616. static int16_t getHeaterPower(const heater_ind_t heater);
  617. /**
  618. * Switch off all heaters, set all target temperatures to 0
  619. */
  620. static void disable_all_heaters();
  621. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  622. /**
  623. * Methods to check if heaters are enabled, indicating an active job
  624. */
  625. static bool over_autostart_threshold();
  626. static void check_timer_autostart(const bool can_start, const bool can_stop);
  627. #endif
  628. /**
  629. * Perform auto-tuning for hotend or bed in response to M303
  630. */
  631. #if HAS_PID_HEATING
  632. static void PID_autotune(const float &target, const heater_ind_t hotend, const int8_t ncycles, const bool set_result=false);
  633. #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
  634. static bool adaptive_fan_slowing;
  635. #elif ENABLED(ADAPTIVE_FAN_SLOWING)
  636. static constexpr bool adaptive_fan_slowing = true;
  637. #endif
  638. /**
  639. * Update the temp manager when PID values change
  640. */
  641. #if ENABLED(PIDTEMP)
  642. FORCE_INLINE static void updatePID() {
  643. TERN_(PID_EXTRUSION_SCALING, last_e_position = 0);
  644. }
  645. #endif
  646. #endif
  647. #if ENABLED(PROBING_HEATERS_OFF)
  648. static void pause(const bool p);
  649. FORCE_INLINE static bool is_paused() { return paused; }
  650. #endif
  651. #if HEATER_IDLE_HANDLER
  652. static void reset_hotend_idle_timer(const uint8_t E_NAME) {
  653. hotend_idle[HOTEND_INDEX].reset();
  654. start_watching_hotend(HOTEND_INDEX);
  655. }
  656. #if HAS_HEATED_BED
  657. static void reset_bed_idle_timer() {
  658. bed_idle.reset();
  659. start_watching_bed();
  660. }
  661. #endif
  662. #endif // HEATER_IDLE_HANDLER
  663. #if HAS_TEMP_SENSOR
  664. static void print_heater_states(const uint8_t target_extruder
  665. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  666. , const bool include_r=false
  667. #endif
  668. );
  669. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  670. static uint8_t auto_report_temp_interval;
  671. static millis_t next_temp_report_ms;
  672. static void auto_report_temperatures();
  673. static inline void set_auto_report_interval(uint8_t v) {
  674. NOMORE(v, 60);
  675. auto_report_temp_interval = v;
  676. next_temp_report_ms = millis() + 1000UL * v;
  677. }
  678. #endif
  679. #endif
  680. TERN_(HAS_DISPLAY, static void set_heating_message(const uint8_t e));
  681. #if HAS_LCD_MENU
  682. static void lcd_preheat(const int16_t e, const int8_t indh, const int8_t indb);
  683. #endif
  684. private:
  685. static void update_raw_temperatures();
  686. static void updateTemperaturesFromRawValues();
  687. #define HAS_MAX6675 EITHER(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675)
  688. #if HAS_MAX6675
  689. #if BOTH(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675)
  690. #define COUNT_6675 2
  691. #else
  692. #define COUNT_6675 1
  693. #endif
  694. #if COUNT_6675 > 1
  695. #define READ_MAX6675(N) read_max6675(N)
  696. #else
  697. #define READ_MAX6675(N) read_max6675()
  698. #endif
  699. static int read_max6675(
  700. #if COUNT_6675 > 1
  701. const uint8_t hindex=0
  702. #endif
  703. );
  704. #endif
  705. static void checkExtruderAutoFans();
  706. static float get_pid_output_hotend(const uint8_t e);
  707. TERN_(PIDTEMPBED, static float get_pid_output_bed());
  708. TERN_(HAS_HEATED_CHAMBER, static float get_pid_output_chamber());
  709. static void _temp_error(const heater_ind_t e, PGM_P const serial_msg, PGM_P const lcd_msg);
  710. static void min_temp_error(const heater_ind_t e);
  711. static void max_temp_error(const heater_ind_t e);
  712. #define HAS_THERMAL_PROTECTION (EITHER(THERMAL_PROTECTION_HOTENDS, THERMAL_PROTECTION_CHAMBER) || HAS_THERMALLY_PROTECTED_BED)
  713. #if HAS_THERMAL_PROTECTION
  714. enum TRState : char { TRInactive, TRFirstHeating, TRStable, TRRunaway };
  715. typedef struct {
  716. millis_t timer = 0;
  717. TRState state = TRInactive;
  718. } tr_state_machine_t;
  719. TERN_(THERMAL_PROTECTION_HOTENDS, static tr_state_machine_t tr_state_machine[HOTENDS]);
  720. TERN_(HAS_THERMALLY_PROTECTED_BED, static tr_state_machine_t tr_state_machine_bed);
  721. TERN_(THERMAL_PROTECTION_CHAMBER, static tr_state_machine_t tr_state_machine_chamber);
  722. static void thermal_runaway_protection(tr_state_machine_t &state, const float &current, const float &target, const heater_ind_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc);
  723. #endif // HAS_THERMAL_PROTECTION
  724. };
  725. extern Temperature thermalManager;