1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
- /**
- * planner.cpp
- *
- * Buffer movement commands and manage the acceleration profile plan
- *
- * Derived from Grbl
- * Copyright (c) 2009-2011 Simen Svale Skogsrud
- *
- * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
- *
- *
- * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
- *
- * s == speed, a == acceleration, t == time, d == distance
- *
- * Basic definitions:
- * Speed[s_, a_, t_] := s + (a*t)
- * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
- *
- * Distance to reach a specific speed with a constant acceleration:
- * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
- * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
- *
- * Speed after a given distance of travel with constant acceleration:
- * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
- * m -> Sqrt[2 a d + s^2]
- *
- * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
- *
- * When to start braking (di) to reach a specified destination speed (s2) after accelerating
- * from initial speed s1 without ever stopping at a plateau:
- * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
- * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
- *
- * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
- *
- */
-
- #include "planner.h"
- #include "stepper.h"
- #include "temperature.h"
- #include "ultralcd.h"
- #include "language.h"
-
- #include "Marlin.h"
-
- #if ENABLED(MESH_BED_LEVELING)
- #include "mesh_bed_leveling.h"
- #endif
-
- Planner planner;
-
- // public:
-
- /**
- * A ring buffer of moves described in steps
- */
- block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
- volatile uint8_t Planner::block_buffer_head = 0; // Index of the next block to be pushed
- volatile uint8_t Planner::block_buffer_tail = 0;
-
- float Planner::max_feedrate_mm_s[NUM_AXIS], // Max speeds in mm per second
- Planner::axis_steps_per_mm[NUM_AXIS],
- Planner::steps_to_mm[NUM_AXIS];
-
- uint32_t Planner::max_acceleration_steps_per_s2[NUM_AXIS],
- Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
-
- millis_t Planner::min_segment_time;
- float Planner::min_feedrate_mm_s,
- Planner::acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
- Planner::retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
- Planner::travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
- Planner::max_jerk[XYZE], // The largest speed change requiring no acceleration
- Planner::min_travel_feedrate_mm_s;
-
- #if HAS_ABL
- bool Planner::abl_enabled = false; // Flag that auto bed leveling is enabled
- #endif
-
- #if ABL_PLANAR
- matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
- #endif
-
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- float Planner::z_fade_height = 0.0,
- Planner::inverse_z_fade_height = 0.0;
- #endif
-
- #if ENABLED(AUTOTEMP)
- float Planner::autotemp_max = 250,
- Planner::autotemp_min = 210,
- Planner::autotemp_factor = 0.1;
- bool Planner::autotemp_enabled = false;
- #endif
-
- // private:
-
- long Planner::position[NUM_AXIS] = { 0 };
-
- uint32_t Planner::cutoff_long;
-
- float Planner::previous_speed[NUM_AXIS],
- Planner::previous_nominal_speed;
-
- #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
- uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
- #endif // DISABLE_INACTIVE_EXTRUDER
-
- #ifdef XY_FREQUENCY_LIMIT
- // Old direction bits. Used for speed calculations
- unsigned char Planner::old_direction_bits = 0;
- // Segment times (in µs). Used for speed calculations
- long Planner::axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} };
- #endif
-
- #if ENABLED(LIN_ADVANCE)
- float Planner::extruder_advance_k = LIN_ADVANCE_K;
- float Planner::position_float[NUM_AXIS] = { 0 };
- #endif
-
- #if ENABLED(ENSURE_SMOOTH_MOVES)
- uint32_t Planner::block_buffer_runtime_us = 0;
- #endif
-
- /**
- * Class and Instance Methods
- */
-
- Planner::Planner() { init(); }
-
- void Planner::init() {
- block_buffer_head = block_buffer_tail = 0;
- ZERO(position);
- #if ENABLED(LIN_ADVANCE)
- ZERO(position_float);
- #endif
- ZERO(previous_speed);
- previous_nominal_speed = 0.0;
- #if ABL_PLANAR
- bed_level_matrix.set_to_identity();
- #endif
- }
-
- #define MINIMAL_STEP_RATE 120
-
- /**
- * Calculate trapezoid parameters, multiplying the entry- and exit-speeds
- * by the provided factors.
- */
- void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) {
- uint32_t initial_rate = ceil(block->nominal_rate * entry_factor),
- final_rate = ceil(block->nominal_rate * exit_factor); // (steps per second)
-
- // Limit minimal step rate (Otherwise the timer will overflow.)
- NOLESS(initial_rate, MINIMAL_STEP_RATE);
- NOLESS(final_rate, MINIMAL_STEP_RATE);
-
- int32_t accel = block->acceleration_steps_per_s2,
- accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
- decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)),
- plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
-
- // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
- // have to use intersection_distance() to calculate when to abort accel and start braking
- // in order to reach the final_rate exactly at the end of this block.
- if (plateau_steps < 0) {
- accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
- NOLESS(accelerate_steps, 0); // Check limits due to numerical round-off
- accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
- plateau_steps = 0;
- }
-
- // block->accelerate_until = accelerate_steps;
- // block->decelerate_after = accelerate_steps+plateau_steps;
-
- CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
- if (!TEST(block->flag, BLOCK_BIT_BUSY)) { // Don't update variables if block is busy.
- block->accelerate_until = accelerate_steps;
- block->decelerate_after = accelerate_steps + plateau_steps;
- block->initial_rate = initial_rate;
- block->final_rate = final_rate;
- #if ENABLED(ADVANCE)
- block->initial_advance = block->advance * sq(entry_factor);
- block->final_advance = block->advance * sq(exit_factor);
- #endif
- }
- CRITICAL_SECTION_END;
- }
-
- // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
- // This method will calculate the junction jerk as the euclidean distance between the nominal
- // velocities of the respective blocks.
- //inline float junction_jerk(block_t *before, block_t *after) {
- // return sqrt(
- // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
- //}
-
-
- // The kernel called by recalculate() when scanning the plan from last to first entry.
- void Planner::reverse_pass_kernel(block_t* const current, const block_t *next) {
- if (!current || !next) return;
- // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
- // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
- // check for maximum allowable speed reductions to ensure maximum possible planned speed.
- float max_entry_speed = current->max_entry_speed;
- if (current->entry_speed != max_entry_speed) {
- // If nominal length true, max junction speed is guaranteed to be reached. Only compute
- // for max allowable speed if block is decelerating and nominal length is false.
- current->entry_speed = (TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH) || max_entry_speed <= next->entry_speed)
- ? max_entry_speed
- : min(max_entry_speed, max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
- SBI(current->flag, BLOCK_BIT_RECALCULATE);
- }
- }
-
- /**
- * recalculate() needs to go over the current plan twice.
- * Once in reverse and once forward. This implements the reverse pass.
- */
- void Planner::reverse_pass() {
-
- if (movesplanned() > 3) {
-
- block_t* block[3] = { NULL, NULL, NULL };
-
- // Make a local copy of block_buffer_tail, because the interrupt can alter it
- // Is a critical section REALLY needed for a single byte change?
- //CRITICAL_SECTION_START;
- uint8_t tail = block_buffer_tail;
- //CRITICAL_SECTION_END
-
- uint8_t b = BLOCK_MOD(block_buffer_head - 3);
- while (b != tail) {
- if (block[0] && TEST(block[0]->flag, BLOCK_BIT_START_FROM_FULL_HALT)) break;
- b = prev_block_index(b);
- block[2] = block[1];
- block[1] = block[0];
- block[0] = &block_buffer[b];
- reverse_pass_kernel(block[1], block[2]);
- }
- }
- }
-
- // The kernel called by recalculate() when scanning the plan from first to last entry.
- void Planner::forward_pass_kernel(const block_t* previous, block_t* const current) {
- if (!previous) return;
-
- // If the previous block is an acceleration block, but it is not long enough to complete the
- // full speed change within the block, we need to adjust the entry speed accordingly. Entry
- // speeds have already been reset, maximized, and reverse planned by reverse planner.
- // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
- if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH)) {
- if (previous->entry_speed < current->entry_speed) {
- float entry_speed = min(current->entry_speed,
- max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
- // Check for junction speed change
- if (current->entry_speed != entry_speed) {
- current->entry_speed = entry_speed;
- SBI(current->flag, BLOCK_BIT_RECALCULATE);
- }
- }
- }
- }
-
- /**
- * recalculate() needs to go over the current plan twice.
- * Once in reverse and once forward. This implements the forward pass.
- */
- void Planner::forward_pass() {
- block_t* block[3] = { NULL, NULL, NULL };
-
- for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
- block[0] = block[1];
- block[1] = block[2];
- block[2] = &block_buffer[b];
- forward_pass_kernel(block[0], block[1]);
- }
- forward_pass_kernel(block[1], block[2]);
- }
-
- /**
- * Recalculate the trapezoid speed profiles for all blocks in the plan
- * according to the entry_factor for each junction. Must be called by
- * recalculate() after updating the blocks.
- */
- void Planner::recalculate_trapezoids() {
- int8_t block_index = block_buffer_tail;
- block_t *current, *next = NULL;
-
- while (block_index != block_buffer_head) {
- current = next;
- next = &block_buffer[block_index];
- if (current) {
- // Recalculate if current block entry or exit junction speed has changed.
- if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) {
- // NOTE: Entry and exit factors always > 0 by all previous logic operations.
- float nom = current->nominal_speed;
- calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
- CBI(current->flag, BLOCK_BIT_RECALCULATE); // Reset current only to ensure next trapezoid is computed
- }
- }
- block_index = next_block_index(block_index);
- }
- // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
- if (next) {
- float nom = next->nominal_speed;
- calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom);
- CBI(next->flag, BLOCK_BIT_RECALCULATE);
- }
- }
-
- /*
- * Recalculate the motion plan according to the following algorithm:
- *
- * 1. Go over every block in reverse order...
- *
- * Calculate a junction speed reduction (block_t.entry_factor) so:
- *
- * a. The junction jerk is within the set limit, and
- *
- * b. No speed reduction within one block requires faster
- * deceleration than the one, true constant acceleration.
- *
- * 2. Go over every block in chronological order...
- *
- * Dial down junction speed reduction values if:
- * a. The speed increase within one block would require faster
- * acceleration than the one, true constant acceleration.
- *
- * After that, all blocks will have an entry_factor allowing all speed changes to
- * be performed using only the one, true constant acceleration, and where no junction
- * jerk is jerkier than the set limit, Jerky. Finally it will:
- *
- * 3. Recalculate "trapezoids" for all blocks.
- */
- void Planner::recalculate() {
- reverse_pass();
- forward_pass();
- recalculate_trapezoids();
- }
-
-
- #if ENABLED(AUTOTEMP)
-
- void Planner::getHighESpeed() {
- static float oldt = 0;
-
- if (!autotemp_enabled) return;
- if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
-
- float high = 0.0;
- for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
- block_t* block = &block_buffer[b];
- if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
- float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
- NOLESS(high, se);
- }
- }
-
- float t = autotemp_min + high * autotemp_factor;
- t = constrain(t, autotemp_min, autotemp_max);
- if (oldt > t) {
- t *= (1 - (AUTOTEMP_OLDWEIGHT));
- t += (AUTOTEMP_OLDWEIGHT) * oldt;
- }
- oldt = t;
- thermalManager.setTargetHotend(t, 0);
- }
-
- #endif //AUTOTEMP
-
- /**
- * Maintain fans, paste extruder pressure,
- */
- void Planner::check_axes_activity() {
- unsigned char axis_active[NUM_AXIS] = { 0 },
- tail_fan_speed[FAN_COUNT];
-
- #if FAN_COUNT > 0
- for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i];
- #endif
-
- #if ENABLED(BARICUDA)
- #if HAS_HEATER_1
- unsigned char tail_valve_pressure = baricuda_valve_pressure;
- #endif
- #if HAS_HEATER_2
- unsigned char tail_e_to_p_pressure = baricuda_e_to_p_pressure;
- #endif
- #endif
-
- if (blocks_queued()) {
-
- #if FAN_COUNT > 0
- for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i];
- #endif
-
- block_t* block;
-
- #if ENABLED(BARICUDA)
- block = &block_buffer[block_buffer_tail];
- #if HAS_HEATER_1
- tail_valve_pressure = block->valve_pressure;
- #endif
- #if HAS_HEATER_2
- tail_e_to_p_pressure = block->e_to_p_pressure;
- #endif
- #endif
-
- for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
- block = &block_buffer[b];
- LOOP_XYZE(i) if (block->steps[i]) axis_active[i]++;
- }
- }
- #if ENABLED(DISABLE_X)
- if (!axis_active[X_AXIS]) disable_x();
- #endif
- #if ENABLED(DISABLE_Y)
- if (!axis_active[Y_AXIS]) disable_y();
- #endif
- #if ENABLED(DISABLE_Z)
- if (!axis_active[Z_AXIS]) disable_z();
- #endif
- #if ENABLED(DISABLE_E)
- if (!axis_active[E_AXIS]) {
- disable_e0();
- disable_e1();
- disable_e2();
- disable_e3();
- }
- #endif
-
- #if FAN_COUNT > 0
-
- #if defined(FAN_MIN_PWM)
- #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
- #else
- #define CALC_FAN_SPEED(f) tail_fan_speed[f]
- #endif
-
- #ifdef FAN_KICKSTART_TIME
-
- static millis_t fan_kick_end[FAN_COUNT] = { 0 };
-
- #define KICKSTART_FAN(f) \
- if (tail_fan_speed[f]) { \
- millis_t ms = millis(); \
- if (fan_kick_end[f] == 0) { \
- fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
- tail_fan_speed[f] = 255; \
- } else { \
- if (PENDING(ms, fan_kick_end[f])) { \
- tail_fan_speed[f] = 255; \
- } \
- } \
- } else { \
- fan_kick_end[f] = 0; \
- }
-
- #if HAS_FAN0
- KICKSTART_FAN(0);
- #endif
- #if HAS_FAN1
- KICKSTART_FAN(1);
- #endif
- #if HAS_FAN2
- KICKSTART_FAN(2);
- #endif
-
- #endif //FAN_KICKSTART_TIME
-
- #if ENABLED(FAN_SOFT_PWM)
- #if HAS_FAN0
- thermalManager.fanSpeedSoftPwm[0] = CALC_FAN_SPEED(0);
- #endif
- #if HAS_FAN1
- thermalManager.fanSpeedSoftPwm[1] = CALC_FAN_SPEED(1);
- #endif
- #if HAS_FAN2
- thermalManager.fanSpeedSoftPwm[2] = CALC_FAN_SPEED(2);
- #endif
- #else
- #if HAS_FAN0
- analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
- #endif
- #if HAS_FAN1
- analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
- #endif
- #if HAS_FAN2
- analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
- #endif
- #endif
-
- #endif // FAN_COUNT > 0
-
- #if ENABLED(AUTOTEMP)
- getHighESpeed();
- #endif
-
- #if ENABLED(BARICUDA)
- #if HAS_HEATER_1
- analogWrite(HEATER_1_PIN, tail_valve_pressure);
- #endif
- #if HAS_HEATER_2
- analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
- #endif
- #endif
- }
-
- #if PLANNER_LEVELING
- /**
- * lx, ly, lz - logical (cartesian, not delta) positions in mm
- */
- void Planner::apply_leveling(float &lx, float &ly, float &lz) {
-
- #if HAS_ABL
- if (!abl_enabled) return;
- #endif
-
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- static float z_fade_factor = 1.0, last_raw_lz = -999.0;
- if (z_fade_height) {
- const float raw_lz = RAW_Z_POSITION(lz);
- if (raw_lz >= z_fade_height) return;
- if (last_raw_lz != raw_lz) {
- last_raw_lz = raw_lz;
- z_fade_factor = 1.0 - raw_lz * inverse_z_fade_height;
- }
- }
- else
- z_fade_factor = 1.0;
- #else
- constexpr float z_fade_factor = 1.0;
- #endif
-
- #if ENABLED(MESH_BED_LEVELING)
-
- if (mbl.active())
- lz += mbl.get_z(RAW_X_POSITION(lx), RAW_Y_POSITION(ly), z_fade_factor);
-
- #elif ABL_PLANAR
-
- float dx = RAW_X_POSITION(lx) - (X_TILT_FULCRUM),
- dy = RAW_Y_POSITION(ly) - (Y_TILT_FULCRUM),
- dz = RAW_Z_POSITION(lz);
-
- apply_rotation_xyz(bed_level_matrix, dx, dy, dz);
-
- lx = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM);
- ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
- lz = LOGICAL_Z_POSITION(dz);
-
- #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
-
- float tmp[XYZ] = { lx, ly, 0 };
- lz += bilinear_z_offset(tmp) * z_fade_factor;
-
- #endif
- }
-
- void Planner::unapply_leveling(float logical[XYZ]) {
-
- #if HAS_ABL
- if (!abl_enabled) return;
- #endif
-
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- if (z_fade_height && RAW_Z_POSITION(logical[Z_AXIS]) >= z_fade_height) return;
- #endif
-
- #if ENABLED(MESH_BED_LEVELING)
-
- if (mbl.active()) {
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- const float c = mbl.get_z(RAW_X_POSITION(logical[X_AXIS]), RAW_Y_POSITION(logical[Y_AXIS]), 1.0);
- logical[Z_AXIS] = (z_fade_height * (RAW_Z_POSITION(logical[Z_AXIS]) - c)) / (z_fade_height - c);
- #else
- logical[Z_AXIS] -= mbl.get_z(RAW_X_POSITION(logical[X_AXIS]), RAW_Y_POSITION(logical[Y_AXIS]));
- #endif
- }
-
- #elif ABL_PLANAR
-
- matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
-
- float dx = RAW_X_POSITION(logical[X_AXIS]) - (X_TILT_FULCRUM),
- dy = RAW_Y_POSITION(logical[Y_AXIS]) - (Y_TILT_FULCRUM),
- dz = RAW_Z_POSITION(logical[Z_AXIS]);
-
- apply_rotation_xyz(inverse, dx, dy, dz);
-
- logical[X_AXIS] = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM);
- logical[Y_AXIS] = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
- logical[Z_AXIS] = LOGICAL_Z_POSITION(dz);
-
- #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
-
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- const float c = bilinear_z_offset(logical);
- logical[Z_AXIS] = (z_fade_height * (RAW_Z_POSITION(logical[Z_AXIS]) - c)) / (z_fade_height - c);
- #else
- logical[Z_AXIS] -= bilinear_z_offset(logical);
- #endif
-
- #endif
- }
-
- #endif // PLANNER_LEVELING
-
- /**
- * Planner::_buffer_line
- *
- * Add a new linear movement to the buffer.
- *
- * Leveling and kinematics should be applied ahead of calling this.
- *
- * a,b,c,e - target positions in mm or degrees
- * fr_mm_s - (target) speed of the move
- * extruder - target extruder
- */
- void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder) {
-
- // The target position of the tool in absolute steps
- // Calculate target position in absolute steps
- //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
- long target[XYZE] = {
- lround(a * axis_steps_per_mm[X_AXIS]),
- lround(b * axis_steps_per_mm[Y_AXIS]),
- lround(c * axis_steps_per_mm[Z_AXIS]),
- lround(e * axis_steps_per_mm[E_AXIS])
- };
-
- #if ENABLED(LIN_ADVANCE)
- float target_float[XYZE] = {a, b, c, e};
- float de_float = target_float[E_AXIS] - position_float[E_AXIS];
- float mm_D_float = sqrt(sq(target_float[X_AXIS] - position_float[X_AXIS]) + sq(target_float[Y_AXIS] - position_float[Y_AXIS]));
-
- memcpy(position_float, target_float, sizeof(position_float));
- #endif
-
- long da = target[X_AXIS] - position[X_AXIS],
- db = target[Y_AXIS] - position[Y_AXIS],
- dc = target[Z_AXIS] - position[Z_AXIS];
-
- /*
- SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s);
- SERIAL_CHAR(' ');
- #if IS_KINEMATIC
- SERIAL_ECHOPAIR("A:", a);
- SERIAL_ECHOPAIR(" (", da);
- SERIAL_ECHOPAIR(") B:", b);
- #else
- SERIAL_ECHOPAIR("X:", a);
- SERIAL_ECHOPAIR(" (", da);
- SERIAL_ECHOPAIR(") Y:", b);
- #endif
- SERIAL_ECHOPAIR(" (", db);
- #if ENABLED(DELTA)
- SERIAL_ECHOPAIR(") C:", c);
- #else
- SERIAL_ECHOPAIR(") Z:", c);
- #endif
- SERIAL_ECHOPAIR(" (", dc);
- SERIAL_CHAR(')');
- SERIAL_EOL;
- //*/
-
- // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
- if (DEBUGGING(DRYRUN)) position[E_AXIS] = target[E_AXIS];
-
- long de = target[E_AXIS] - position[E_AXIS];
-
- #if ENABLED(PREVENT_COLD_EXTRUSION)
- if (de) {
- if (thermalManager.tooColdToExtrude(extruder)) {
- position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
- de = 0; // no difference
- SERIAL_ECHO_START;
- SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
- }
- #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
- if (labs(de) > (int32_t)axis_steps_per_mm[E_AXIS] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
- position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
- de = 0; // no difference
- SERIAL_ECHO_START;
- SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
- }
- #endif
- }
- #endif
-
- // Compute direction bit-mask for this block
- uint8_t dm = 0;
- #if CORE_IS_XY
- if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
- if (db < 0) SBI(dm, Y_HEAD); // ...and Y
- if (dc < 0) SBI(dm, Z_AXIS);
- if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
- if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction
- #elif CORE_IS_XZ
- if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
- if (db < 0) SBI(dm, Y_AXIS);
- if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
- if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction
- if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
- #elif CORE_IS_YZ
- if (da < 0) SBI(dm, X_AXIS);
- if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
- if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
- if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction
- if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
- #else
- if (da < 0) SBI(dm, X_AXIS);
- if (db < 0) SBI(dm, Y_AXIS);
- if (dc < 0) SBI(dm, Z_AXIS);
- #endif
- if (de < 0) SBI(dm, E_AXIS);
-
- float esteps_float = de * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01;
- int32_t esteps = abs(esteps_float) + 0.5;
-
- // Calculate the buffer head after we push this byte
- int8_t next_buffer_head = next_block_index(block_buffer_head);
-
- // If the buffer is full: good! That means we are well ahead of the robot.
- // Rest here until there is room in the buffer.
- while (block_buffer_tail == next_buffer_head) idle();
-
- // Prepare to set up new block
- block_t* block = &block_buffer[block_buffer_head];
-
- // Clear all flags, including the "busy" bit
- block->flag = 0;
-
- // Set direction bits
- block->direction_bits = dm;
-
- // Number of steps for each axis
- // See http://www.corexy.com/theory.html
- #if CORE_IS_XY
- block->steps[A_AXIS] = labs(da + db);
- block->steps[B_AXIS] = labs(da - db);
- block->steps[Z_AXIS] = labs(dc);
- #elif CORE_IS_XZ
- block->steps[A_AXIS] = labs(da + dc);
- block->steps[Y_AXIS] = labs(db);
- block->steps[C_AXIS] = labs(da - dc);
- #elif CORE_IS_YZ
- block->steps[X_AXIS] = labs(da);
- block->steps[B_AXIS] = labs(db + dc);
- block->steps[C_AXIS] = labs(db - dc);
- #else
- // default non-h-bot planning
- block->steps[X_AXIS] = labs(da);
- block->steps[Y_AXIS] = labs(db);
- block->steps[Z_AXIS] = labs(dc);
- #endif
-
- block->steps[E_AXIS] = esteps;
- block->step_event_count = MAX4(block->steps[X_AXIS], block->steps[Y_AXIS], block->steps[Z_AXIS], esteps);
-
- // Bail if this is a zero-length block
- if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return;
-
- // For a mixing extruder, get a magnified step_event_count for each
- #if ENABLED(MIXING_EXTRUDER)
- for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
- block->mix_event_count[i] = mixing_factor[i] * block->step_event_count;
- #endif
-
- #if FAN_COUNT > 0
- for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
- #endif
-
- #if ENABLED(BARICUDA)
- block->valve_pressure = baricuda_valve_pressure;
- block->e_to_p_pressure = baricuda_e_to_p_pressure;
- #endif
-
- block->active_extruder = extruder;
-
- //enable active axes
- #if CORE_IS_XY
- if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
- enable_x();
- enable_y();
- }
- #if DISABLED(Z_LATE_ENABLE)
- if (block->steps[Z_AXIS]) enable_z();
- #endif
- #elif CORE_IS_XZ
- if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
- enable_x();
- enable_z();
- }
- if (block->steps[Y_AXIS]) enable_y();
- #elif CORE_IS_YZ
- if (block->steps[B_AXIS] || block->steps[C_AXIS]) {
- enable_y();
- enable_z();
- }
- if (block->steps[X_AXIS]) enable_x();
- #else
- if (block->steps[X_AXIS]) enable_x();
- if (block->steps[Y_AXIS]) enable_y();
- #if DISABLED(Z_LATE_ENABLE)
- if (block->steps[Z_AXIS]) enable_z();
- #endif
- #endif
-
- // Enable extruder(s)
- if (esteps) {
-
- #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
-
- for (int8_t i = 0; i < EXTRUDERS; i++)
- if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
-
- switch(extruder) {
- case 0:
- enable_e0();
- #if ENABLED(DUAL_X_CARRIAGE)
- if (extruder_duplication_enabled) {
- enable_e1();
- g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
- }
- #endif
- g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
- #if EXTRUDERS > 1
- if (g_uc_extruder_last_move[1] == 0) disable_e1();
- #if EXTRUDERS > 2
- if (g_uc_extruder_last_move[2] == 0) disable_e2();
- #if EXTRUDERS > 3
- if (g_uc_extruder_last_move[3] == 0) disable_e3();
- #endif
- #endif
- #endif
- break;
- #if EXTRUDERS > 1
- case 1:
- enable_e1();
- g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
- if (g_uc_extruder_last_move[0] == 0) disable_e0();
- #if EXTRUDERS > 2
- if (g_uc_extruder_last_move[2] == 0) disable_e2();
- #if EXTRUDERS > 3
- if (g_uc_extruder_last_move[3] == 0) disable_e3();
- #endif
- #endif
- break;
- #if EXTRUDERS > 2
- case 2:
- enable_e2();
- g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
- if (g_uc_extruder_last_move[0] == 0) disable_e0();
- if (g_uc_extruder_last_move[1] == 0) disable_e1();
- #if EXTRUDERS > 3
- if (g_uc_extruder_last_move[3] == 0) disable_e3();
- #endif
- break;
- #if EXTRUDERS > 3
- case 3:
- enable_e3();
- g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
- if (g_uc_extruder_last_move[0] == 0) disable_e0();
- if (g_uc_extruder_last_move[1] == 0) disable_e1();
- if (g_uc_extruder_last_move[2] == 0) disable_e2();
- break;
- #endif // EXTRUDERS > 3
- #endif // EXTRUDERS > 2
- #endif // EXTRUDERS > 1
- }
- #else
- enable_e0();
- enable_e1();
- enable_e2();
- enable_e3();
- #endif
- }
-
- if (esteps)
- NOLESS(fr_mm_s, min_feedrate_mm_s);
- else
- NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
-
- /**
- * This part of the code calculates the total length of the movement.
- * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
- * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
- * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
- * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
- * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
- */
- #if IS_CORE
- float delta_mm[7];
- #if CORE_IS_XY
- delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
- delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
- delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
- delta_mm[A_AXIS] = (da + db) * steps_to_mm[A_AXIS];
- delta_mm[B_AXIS] = CORESIGN(da - db) * steps_to_mm[B_AXIS];
- #elif CORE_IS_XZ
- delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
- delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
- delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
- delta_mm[A_AXIS] = (da + dc) * steps_to_mm[A_AXIS];
- delta_mm[C_AXIS] = CORESIGN(da - dc) * steps_to_mm[C_AXIS];
- #elif CORE_IS_YZ
- delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
- delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
- delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
- delta_mm[B_AXIS] = (db + dc) * steps_to_mm[B_AXIS];
- delta_mm[C_AXIS] = CORESIGN(db - dc) * steps_to_mm[C_AXIS];
- #endif
- #else
- float delta_mm[4];
- delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
- delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
- delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
- #endif
- delta_mm[E_AXIS] = esteps_float * steps_to_mm[E_AXIS];
-
- if (block->steps[X_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Y_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Z_AXIS] < MIN_STEPS_PER_SEGMENT) {
- block->millimeters = fabs(delta_mm[E_AXIS]);
- }
- else {
- block->millimeters = sqrt(
- #if CORE_IS_XY
- sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
- #elif CORE_IS_XZ
- sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
- #elif CORE_IS_YZ
- sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
- #else
- sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
- #endif
- );
- }
- float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
-
- // Calculate moves/second for this move. No divide by zero due to previous checks.
- float inverse_mm_s = fr_mm_s * inverse_millimeters;
-
- int moves_queued = movesplanned();
-
- // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
- #if ENABLED(SLOWDOWN)
- // Segment time im micro seconds
- unsigned long segment_time = lround(1000000.0 / inverse_mm_s);
- if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2) {
- if (segment_time < min_segment_time) {
- // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
- inverse_mm_s = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued));
- #if defined(XY_FREQUENCY_LIMIT) || ENABLED(ENSURE_SMOOTH_MOVES)
- segment_time = lround(1000000.0 / inverse_mm_s);
- #endif
- }
- }
- #endif
-
- #if ENABLED(ENSURE_SMOOTH_MOVES)
- #if DISABLED(SLOWDOWN)
- unsigned long segment_time = lround(1000000.0 / inverse_mm_s);
- #endif
- if (segment_time < (MIN_BLOCK_TIME) * 1000UL) {
- // buffer will be draining, set to MIN_BLOCK_TIME.
- inverse_mm_s = 1000000.0 / (1000.0 * (MIN_BLOCK_TIME));
- segment_time = (MIN_BLOCK_TIME) * 1000UL;
- }
- block->segment_time = segment_time;
- block_buffer_runtime_us += segment_time;
- #endif
-
- block->nominal_speed = block->millimeters * inverse_mm_s; // (mm/sec) Always > 0
- block->nominal_rate = ceil(block->step_event_count * inverse_mm_s); // (step/sec) Always > 0
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- static float filwidth_e_count = 0, filwidth_delay_dist = 0;
-
- //FMM update ring buffer used for delay with filament measurements
- if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) { //only for extruder with filament sensor and if ring buffer is initialized
-
- const int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
-
- // increment counters with next move in e axis
- filwidth_e_count += delta_mm[E_AXIS];
- filwidth_delay_dist += delta_mm[E_AXIS];
-
- // Only get new measurements on forward E movement
- if (filwidth_e_count > 0.0001) {
-
- // Loop the delay distance counter (modulus by the mm length)
- while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
-
- // Convert into an index into the measurement array
- filwidth_delay_index[0] = (int)(filwidth_delay_dist * 0.1 + 0.0001);
-
- // If the index has changed (must have gone forward)...
- if (filwidth_delay_index[0] != filwidth_delay_index[1]) {
- filwidth_e_count = 0; // Reset the E movement counter
- int8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
- do {
- filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot
- measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement
- } while (filwidth_delay_index[0] != filwidth_delay_index[1]); // More slots to fill?
- }
- }
- }
- #endif
-
- // Calculate and limit speed in mm/sec for each axis
- float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed
- LOOP_XYZE(i) {
- float cs = fabs(current_speed[i] = delta_mm[i] * inverse_mm_s);
- if (cs > max_feedrate_mm_s[i]) NOMORE(speed_factor, max_feedrate_mm_s[i] / cs);
- }
-
- // Max segment time in µs.
- #ifdef XY_FREQUENCY_LIMIT
-
- // Check and limit the xy direction change frequency
- unsigned char direction_change = block->direction_bits ^ old_direction_bits;
- old_direction_bits = block->direction_bits;
- segment_time = lround((float)segment_time / speed_factor);
-
- long xs0 = axis_segment_time[X_AXIS][0],
- xs1 = axis_segment_time[X_AXIS][1],
- xs2 = axis_segment_time[X_AXIS][2],
- ys0 = axis_segment_time[Y_AXIS][0],
- ys1 = axis_segment_time[Y_AXIS][1],
- ys2 = axis_segment_time[Y_AXIS][2];
-
- if (TEST(direction_change, X_AXIS)) {
- xs2 = axis_segment_time[X_AXIS][2] = xs1;
- xs1 = axis_segment_time[X_AXIS][1] = xs0;
- xs0 = 0;
- }
- xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
-
- if (TEST(direction_change, Y_AXIS)) {
- ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
- ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
- ys0 = 0;
- }
- ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
-
- long max_x_segment_time = MAX3(xs0, xs1, xs2),
- max_y_segment_time = MAX3(ys0, ys1, ys2),
- min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
- if (min_xy_segment_time < MAX_FREQ_TIME) {
- float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME);
- NOMORE(speed_factor, low_sf);
- }
- #endif // XY_FREQUENCY_LIMIT
-
- // Correct the speed
- if (speed_factor < 1.0) {
- LOOP_XYZE(i) current_speed[i] *= speed_factor;
- block->nominal_speed *= speed_factor;
- block->nominal_rate *= speed_factor;
- }
-
- // Compute and limit the acceleration rate for the trapezoid generator.
- float steps_per_mm = block->step_event_count * inverse_millimeters;
- uint32_t accel;
- if (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) {
- // convert to: acceleration steps/sec^2
- accel = ceil(retract_acceleration * steps_per_mm);
- }
- else {
- #define LIMIT_ACCEL_LONG(AXIS) do{ \
- if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS] < accel) { \
- const uint32_t comp = max_acceleration_steps_per_s2[AXIS] * block->step_event_count; \
- if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \
- } \
- }while(0)
-
- #define LIMIT_ACCEL_FLOAT(AXIS) do{ \
- if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS] < accel) { \
- const float comp = (float)max_acceleration_steps_per_s2[AXIS] * (float)block->step_event_count; \
- if ((float)accel * (float)block->steps[AXIS] > comp) accel = comp / (float)block->steps[AXIS]; \
- } \
- }while(0)
-
- // Start with print or travel acceleration
- accel = ceil((esteps ? acceleration : travel_acceleration) * steps_per_mm);
-
- // Limit acceleration per axis
- if (block->step_event_count <= cutoff_long){
- LIMIT_ACCEL_LONG(X_AXIS);
- LIMIT_ACCEL_LONG(Y_AXIS);
- LIMIT_ACCEL_LONG(Z_AXIS);
- LIMIT_ACCEL_LONG(E_AXIS);
- } else {
- LIMIT_ACCEL_FLOAT(X_AXIS);
- LIMIT_ACCEL_FLOAT(Y_AXIS);
- LIMIT_ACCEL_FLOAT(Z_AXIS);
- LIMIT_ACCEL_FLOAT(E_AXIS);
- }
- }
- block->acceleration_steps_per_s2 = accel;
- block->acceleration = accel / steps_per_mm;
- block->acceleration_rate = (long)(accel * 16777216.0 / ((F_CPU) * 0.125)); // * 8.388608
-
- // Initial limit on the segment entry velocity
- float vmax_junction;
-
- #if 0 // Use old jerk for now
-
- float junction_deviation = 0.1;
-
- // Compute path unit vector
- double unit_vec[XYZ] = {
- delta_mm[X_AXIS] * inverse_millimeters,
- delta_mm[Y_AXIS] * inverse_millimeters,
- delta_mm[Z_AXIS] * inverse_millimeters
- };
-
- /*
- Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
-
- Let a circle be tangent to both previous and current path line segments, where the junction
- deviation is defined as the distance from the junction to the closest edge of the circle,
- collinear with the circle center.
-
- The circular segment joining the two paths represents the path of centripetal acceleration.
- Solve for max velocity based on max acceleration about the radius of the circle, defined
- indirectly by junction deviation.
-
- This may be also viewed as path width or max_jerk in the previous grbl version. This approach
- does not actually deviate from path, but used as a robust way to compute cornering speeds, as
- it takes into account the nonlinearities of both the junction angle and junction velocity.
- */
-
- vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
-
- // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
- if (block_buffer_head != block_buffer_tail && previous_nominal_speed > 0.0) {
- // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
- // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
- float cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
- - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
- - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
- // Skip and use default max junction speed for 0 degree acute junction.
- if (cos_theta < 0.95) {
- vmax_junction = min(previous_nominal_speed, block->nominal_speed);
- // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
- if (cos_theta > -0.95) {
- // Compute maximum junction velocity based on maximum acceleration and junction deviation
- float sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
- NOMORE(vmax_junction, sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
- }
- }
- }
- #endif
-
- /**
- * Adapted from Prusa MKS firmware
- *
- * Start with a safe speed (from which the machine may halt to stop immediately).
- */
-
- // Exit speed limited by a jerk to full halt of a previous last segment
- static float previous_safe_speed;
-
- float safe_speed = block->nominal_speed;
- bool limited = false;
- LOOP_XYZE(i) {
- float jerk = fabs(current_speed[i]);
- if (jerk > max_jerk[i]) {
- // The actual jerk is lower if it has been limited by the XY jerk.
- if (limited) {
- // Spare one division by a following gymnastics:
- // Instead of jerk *= safe_speed / block->nominal_speed,
- // multiply max_jerk[i] by the divisor.
- jerk *= safe_speed;
- float mjerk = max_jerk[i] * block->nominal_speed;
- if (jerk > mjerk) safe_speed *= mjerk / jerk;
- }
- else {
- safe_speed = max_jerk[i];
- limited = true;
- }
- }
- }
-
- if (moves_queued > 1 && previous_nominal_speed > 0.0001) {
- // Estimate a maximum velocity allowed at a joint of two successive segments.
- // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
- // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
-
- // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
- bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
- float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
- // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
- vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
- // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
- float v_factor = 1.f;
- limited = false;
- // Now limit the jerk in all axes.
- LOOP_XYZE(axis) {
- // Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
- float v_exit = previous_speed[axis], v_entry = current_speed[axis];
- if (prev_speed_larger) v_exit *= smaller_speed_factor;
- if (limited) {
- v_exit *= v_factor;
- v_entry *= v_factor;
- }
- // Calculate jerk depending on whether the axis is coasting in the same direction or reversing.
- float jerk =
- (v_exit > v_entry) ?
- ((v_entry > 0.f || v_exit < 0.f) ?
- // coasting
- (v_exit - v_entry) :
- // axis reversal
- max(v_exit, -v_entry)) :
- // v_exit <= v_entry
- ((v_entry < 0.f || v_exit > 0.f) ?
- // coasting
- (v_entry - v_exit) :
- // axis reversal
- max(-v_exit, v_entry));
- if (jerk > max_jerk[axis]) {
- v_factor *= max_jerk[axis] / jerk;
- limited = true;
- }
- }
- if (limited) vmax_junction *= v_factor;
- // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
- // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
- float vmax_junction_threshold = vmax_junction * 0.99f;
- if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
- // Not coasting. The machine will stop and start the movements anyway,
- // better to start the segment from start.
- SBI(block->flag, BLOCK_BIT_START_FROM_FULL_HALT);
- vmax_junction = safe_speed;
- }
- }
- else {
- SBI(block->flag, BLOCK_BIT_START_FROM_FULL_HALT);
- vmax_junction = safe_speed;
- }
-
- // Max entry speed of this block equals the max exit speed of the previous block.
- block->max_entry_speed = vmax_junction;
-
- // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
- float v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
- block->entry_speed = min(vmax_junction, v_allowable);
-
- // Initialize planner efficiency flags
- // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
- // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
- // the current block and next block junction speeds are guaranteed to always be at their maximum
- // junction speeds in deceleration and acceleration, respectively. This is due to how the current
- // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
- // the reverse and forward planners, the corresponding block junction speed will always be at the
- // the maximum junction speed and may always be ignored for any speed reduction checks.
- block->flag |= BLOCK_FLAG_RECALCULATE | (block->nominal_speed <= v_allowable ? BLOCK_FLAG_NOMINAL_LENGTH : 0);
-
- // Update previous path unit_vector and nominal speed
- memcpy(previous_speed, current_speed, sizeof(previous_speed));
- previous_nominal_speed = block->nominal_speed;
- previous_safe_speed = safe_speed;
-
- #if ENABLED(LIN_ADVANCE)
-
- // Don't use LIN_ADVANCE for blocks if:
- // !block->steps[E_AXIS]: We don't have E steps todo (Travel move)
- // !block->steps[X_AXIS] && !block->steps[Y_AXIS]: We don't have a movement in XY direction (Retract / Prime moves)
- // extruder_advance_k == 0.0: There is no advance factor set
- // block->steps[E_AXIS] == block->step_event_count: A problem occurs when there's a very tiny move before a retract.
- // In this case, the retract and the move will be executed together.
- // This leads to an enormous number of advance steps due to a huge e_acceleration.
- // The math is correct, but you don't want a retract move done with advance!
- // de_float <= 0.0: Extruder is running in reverse direction (for example during "Wipe while retracting" (Slic3r) or "Combing" (Cura) movements)
- if (!esteps || (!block->steps[X_AXIS] && !block->steps[Y_AXIS]) || extruder_advance_k == 0.0 || (uint32_t)esteps == block->step_event_count || de_float <= 0.0) {
- block->use_advance_lead = false;
- }
- else {
- block->use_advance_lead = true;
- block->abs_adv_steps_multiplier8 = lround(extruder_advance_k * (de_float / mm_D_float) * block->nominal_speed / (float)block->nominal_rate * axis_steps_per_mm[E_AXIS] * 256.0);
- }
-
- #elif ENABLED(ADVANCE)
-
- // Calculate advance rate
- if (!esteps || (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS])) {
- block->advance_rate = 0;
- block->advance = 0;
- }
- else {
- long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2);
- float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * HYPOT(current_speed[E_AXIS], EXTRUSION_AREA) * 256;
- block->advance = advance;
- block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
- }
- /**
- SERIAL_ECHO_START;
- SERIAL_ECHOPGM("advance :");
- SERIAL_ECHO(block->advance/256.0);
- SERIAL_ECHOPGM("advance rate :");
- SERIAL_ECHOLN(block->advance_rate/256.0);
- */
-
- #endif // ADVANCE or LIN_ADVANCE
-
- calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
-
- // Move buffer head
- block_buffer_head = next_buffer_head;
-
- // Update the position (only when a move was queued)
- memcpy(position, target, sizeof(position));
-
- recalculate();
-
- stepper.wake_up();
-
- } // buffer_line()
-
- /**
- * Directly set the planner XYZ position (and stepper positions)
- * converting mm (or angles for SCARA) into steps.
- *
- * On CORE machines stepper ABC will be translated from the given XYZ.
- */
-
- void Planner::_set_position_mm(const float &a, const float &b, const float &c, const float &e) {
- long na = position[X_AXIS] = lround(a * axis_steps_per_mm[X_AXIS]),
- nb = position[Y_AXIS] = lround(b * axis_steps_per_mm[Y_AXIS]),
- nc = position[Z_AXIS] = lround(c * axis_steps_per_mm[Z_AXIS]),
- ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
- stepper.set_position(na, nb, nc, ne);
- previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
-
- ZERO(previous_speed);
- }
-
- void Planner::set_position_mm_kinematic(const float position[NUM_AXIS]) {
- #if PLANNER_LEVELING
- float pos[XYZ] = { position[X_AXIS], position[Y_AXIS], position[Z_AXIS] };
- apply_leveling(pos);
- #else
- const float * const pos = position;
- #endif
- #if IS_KINEMATIC
- inverse_kinematics(pos);
- _set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], position[E_AXIS]);
- #else
- _set_position_mm(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], position[E_AXIS]);
- #endif
- }
-
-
- /**
- * Sync from the stepper positions. (e.g., after an interrupted move)
- */
- void Planner::sync_from_steppers() {
- LOOP_XYZE(i) position[i] = stepper.position((AxisEnum)i);
- }
-
- /**
- * Setters for planner position (also setting stepper position).
- */
- void Planner::set_position_mm(const AxisEnum axis, const float& v) {
- position[axis] = lround(v * axis_steps_per_mm[axis]);
- stepper.set_position(axis, v);
- previous_speed[axis] = 0.0;
- }
-
- // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
- void Planner::reset_acceleration_rates() {
- uint32_t highest_rate = 1;
- LOOP_XYZE(i) {
- max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
- NOLESS(highest_rate, max_acceleration_steps_per_s2[i]);
- }
- cutoff_long = 4294967295UL / highest_rate;
- }
-
- // Recalculate position, steps_to_mm if axis_steps_per_mm changes!
- void Planner::refresh_positioning() {
- LOOP_XYZE(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i];
- set_position_mm_kinematic(current_position);
- reset_acceleration_rates();
- }
-
- #if ENABLED(AUTOTEMP)
-
- void Planner::autotemp_M104_M109() {
- autotemp_enabled = code_seen('F');
- if (autotemp_enabled) autotemp_factor = code_value_temp_diff();
- if (code_seen('S')) autotemp_min = code_value_temp_abs();
- if (code_seen('B')) autotemp_max = code_value_temp_abs();
- }
-
- #endif
-
- #if ENABLED(LIN_ADVANCE)
-
- void Planner::advance_M905(const float &k) {
- if (k >= 0.0) extruder_advance_k = k;
- SERIAL_ECHO_START;
- SERIAL_ECHOPAIR("Advance factor: ", extruder_advance_k);
- SERIAL_EOL;
- }
-
- #endif
|