My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 437KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207 (Requires FWRETRACT)
  53. * G11 - Retract recover filament according to settings of M208 (Requires FWRETRACT)
  54. * G12 - Clean tool (Requires NOZZLE_CLEAN_FEATURE)
  55. * G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES)
  56. * G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)
  57. * G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
  58. * G20 - Set input units to inches (Requires INCH_MODE_SUPPORT)
  59. * G21 - Set input units to millimeters (Requires INCH_MODE_SUPPORT)
  60. * G26 - Mesh Validation Pattern (Requires UBL_G26_MESH_VALIDATION)
  61. * G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
  62. * G28 - Home one or more axes
  63. * G29 - Start or continue the bed leveling probe procedure (Requires bed leveling)
  64. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  65. * G31 - Dock sled (Z_PROBE_SLED only)
  66. * G32 - Undock sled (Z_PROBE_SLED only)
  67. * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
  68. * G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET)
  69. * G42 - Coordinated move to a mesh point (Requires AUTO_BED_LEVELING_UBL)
  70. * G90 - Use Absolute Coordinates
  71. * G91 - Use Relative Coordinates
  72. * G92 - Set current position to coordinates given
  73. *
  74. * "M" Codes
  75. *
  76. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  77. * M1 -> M0
  78. * M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
  79. * M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
  80. * M5 - Turn laser/spindle off
  81. * M17 - Enable/Power all stepper motors
  82. * M18 - Disable all stepper motors; same as M84
  83. * M20 - List SD card. (Requires SDSUPPORT)
  84. * M21 - Init SD card. (Requires SDSUPPORT)
  85. * M22 - Release SD card. (Requires SDSUPPORT)
  86. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  87. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  88. * M25 - Pause SD print. (Requires SDSUPPORT)
  89. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  90. * M27 - Report SD print status. (Requires SDSUPPORT)
  91. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  92. * M29 - Stop SD write. (Requires SDSUPPORT)
  93. * M30 - Delete file from SD: "M30 /path/file.gco"
  94. * M31 - Report time since last M109 or SD card start to serial.
  95. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  96. * Use P to run other files as sub-programs: "M32 P !filename#"
  97. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  98. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  99. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  100. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  101. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  102. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  103. * M75 - Start the print job timer.
  104. * M76 - Pause the print job timer.
  105. * M77 - Stop the print job timer.
  106. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  107. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
  108. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
  109. * M82 - Set E codes absolute (default).
  110. * M83 - Set E codes relative while in Absolute (G90) mode.
  111. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  112. * duration after which steppers should turn off. S0 disables the timeout.
  113. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  114. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  115. * M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
  116. * M104 - Set extruder target temp.
  117. * M105 - Report current temperatures.
  118. * M106 - Fan on.
  119. * M107 - Fan off.
  120. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  121. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  122. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  123. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  124. * M110 - Set the current line number. (Used by host printing)
  125. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  126. * M112 - Emergency stop.
  127. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  128. * M114 - Report current position.
  129. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  130. * M117 - Display a message on the controller screen. (Requires an LCD)
  131. * M118 - Display a message in the host console.
  132. * M119 - Report endstops status.
  133. * M120 - Enable endstops detection.
  134. * M121 - Disable endstops detection.
  135. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  136. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  137. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  138. * M128 - EtoP Open. (Requires BARICUDA)
  139. * M129 - EtoP Closed. (Requires BARICUDA)
  140. * M140 - Set bed target temp. S<temp>
  141. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  142. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  143. * M150 - Set Status LED Color as R<red> U<green> B<blue> P<bright>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, NEOPIXEL_LED, or PCA9632).
  144. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  145. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  146. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  147. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  148. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  149. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  150. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  151. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  152. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  153. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  154. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  155. * M205 - Set advanced settings. Current units apply:
  156. S<print> T<travel> minimum speeds
  157. B<minimum segment time>
  158. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  159. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  160. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  161. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  162. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  163. Every normal extrude-only move will be classified as retract depending on the direction.
  164. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  165. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  166. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  167. * M221 - Set Flow Percentage: "M221 S<percent>"
  168. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  169. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  170. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  171. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  172. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  173. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  174. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  175. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  176. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  177. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  178. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  179. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  180. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  181. * M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
  182. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  183. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  184. * M400 - Finish all moves.
  185. * M401 - Lower Z probe. (Requires a probe)
  186. * M402 - Raise Z probe. (Requires a probe)
  187. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  188. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  189. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  190. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  191. * M410 - Quickstop. Abort all planned moves.
  192. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  193. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  194. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  195. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  196. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  197. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  198. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  199. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  200. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
  201. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  202. * M666 - Set delta endstop adjustment. (Requires DELTA)
  203. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  204. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  205. * M860 - Report the position of position encoder modules.
  206. * M861 - Report the status of position encoder modules.
  207. * M862 - Perform an axis continuity test for position encoder modules.
  208. * M863 - Perform steps-per-mm calibration for position encoder modules.
  209. * M864 - Change position encoder module I2C address.
  210. * M865 - Check position encoder module firmware version.
  211. * M866 - Report or reset position encoder module error count.
  212. * M867 - Enable/disable or toggle error correction for position encoder modules.
  213. * M868 - Report or set position encoder module error correction threshold.
  214. * M869 - Report position encoder module error.
  215. * M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
  216. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  217. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  218. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  219. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  220. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  221. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  222. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  223. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  224. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  225. *
  226. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  227. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  228. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  229. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  230. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  231. *
  232. * ************ Custom codes - This can change to suit future G-code regulations
  233. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  234. * M999 - Restart after being stopped by error
  235. *
  236. * "T" Codes
  237. *
  238. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  239. *
  240. */
  241. #include "Marlin.h"
  242. #include "ultralcd.h"
  243. #include "planner.h"
  244. #include "stepper.h"
  245. #include "endstops.h"
  246. #include "temperature.h"
  247. #include "cardreader.h"
  248. #include "configuration_store.h"
  249. #include "language.h"
  250. #include "pins_arduino.h"
  251. #include "math.h"
  252. #include "nozzle.h"
  253. #include "duration_t.h"
  254. #include "types.h"
  255. #include "gcode.h"
  256. #if HAS_ABL
  257. #include "vector_3.h"
  258. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  259. #include "least_squares_fit.h"
  260. #endif
  261. #elif ENABLED(MESH_BED_LEVELING)
  262. #include "mesh_bed_leveling.h"
  263. #endif
  264. #if ENABLED(BEZIER_CURVE_SUPPORT)
  265. #include "planner_bezier.h"
  266. #endif
  267. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  268. #include "buzzer.h"
  269. #endif
  270. #if ENABLED(USE_WATCHDOG)
  271. #include "watchdog.h"
  272. #endif
  273. #if ENABLED(MAX7219_DEBUG)
  274. #include "Max7219_Debug_LEDs.h"
  275. #endif
  276. #if ENABLED(NEOPIXEL_LED)
  277. #include <Adafruit_NeoPixel.h>
  278. #endif
  279. #if ENABLED(BLINKM)
  280. #include "blinkm.h"
  281. #include "Wire.h"
  282. #endif
  283. #if ENABLED(PCA9632)
  284. #include "pca9632.h"
  285. #endif
  286. #if HAS_SERVOS
  287. #include "servo.h"
  288. #endif
  289. #if HAS_DIGIPOTSS
  290. #include <SPI.h>
  291. #endif
  292. #if ENABLED(DAC_STEPPER_CURRENT)
  293. #include "stepper_dac.h"
  294. #endif
  295. #if ENABLED(EXPERIMENTAL_I2CBUS)
  296. #include "twibus.h"
  297. #endif
  298. #if ENABLED(I2C_POSITION_ENCODERS)
  299. #include "I2CPositionEncoder.h"
  300. #endif
  301. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  302. #include "endstop_interrupts.h"
  303. #endif
  304. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  305. void gcode_M100();
  306. void M100_dump_routine(const char * const title, const char *start, const char *end);
  307. #endif
  308. #if ENABLED(SDSUPPORT)
  309. CardReader card;
  310. #endif
  311. #if ENABLED(EXPERIMENTAL_I2CBUS)
  312. TWIBus i2c;
  313. #endif
  314. #if ENABLED(G38_PROBE_TARGET)
  315. bool G38_move = false,
  316. G38_endstop_hit = false;
  317. #endif
  318. #if ENABLED(AUTO_BED_LEVELING_UBL)
  319. #include "ubl.h"
  320. extern bool defer_return_to_status;
  321. unified_bed_leveling ubl;
  322. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  323. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  324. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  325. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  326. || isnan(ubl.z_values[0][0]))
  327. #endif
  328. #if ENABLED(NEOPIXEL_LED)
  329. #if NEOPIXEL_TYPE == NEO_RGB || NEOPIXEL_TYPE == NEO_RBG || NEOPIXEL_TYPE == NEO_GRB || NEOPIXEL_TYPE == NEO_GBR || NEOPIXEL_TYPE == NEO_BRG || NEOPIXEL_TYPE == NEO_BGR
  330. #define NEO_WHITE 255, 255, 255
  331. #else
  332. #define NEO_WHITE 0, 0, 0, 255
  333. #endif
  334. #endif
  335. #if ENABLED(RGB_LED) || ENABLED(BLINKM) || ENABLED(PCA9632)
  336. #define LED_WHITE 255, 255, 255
  337. #elif ENABLED(RGBW_LED)
  338. #define LED_WHITE 0, 0, 0, 255
  339. #endif
  340. bool Running = true;
  341. uint8_t marlin_debug_flags = DEBUG_NONE;
  342. /**
  343. * Cartesian Current Position
  344. * Used to track the logical position as moves are queued.
  345. * Used by 'line_to_current_position' to do a move after changing it.
  346. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  347. */
  348. float current_position[XYZE] = { 0.0 };
  349. /**
  350. * Cartesian Destination
  351. * A temporary position, usually applied to 'current_position'.
  352. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  353. * 'line_to_destination' sets 'current_position' to 'destination'.
  354. */
  355. float destination[XYZE] = { 0.0 };
  356. /**
  357. * axis_homed
  358. * Flags that each linear axis was homed.
  359. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  360. *
  361. * axis_known_position
  362. * Flags that the position is known in each linear axis. Set when homed.
  363. * Cleared whenever a stepper powers off, potentially losing its position.
  364. */
  365. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  366. /**
  367. * GCode line number handling. Hosts may opt to include line numbers when
  368. * sending commands to Marlin, and lines will be checked for sequentiality.
  369. * M110 N<int> sets the current line number.
  370. */
  371. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  372. /**
  373. * GCode Command Queue
  374. * A simple ring buffer of BUFSIZE command strings.
  375. *
  376. * Commands are copied into this buffer by the command injectors
  377. * (immediate, serial, sd card) and they are processed sequentially by
  378. * the main loop. The process_next_command function parses the next
  379. * command and hands off execution to individual handler functions.
  380. */
  381. uint8_t commands_in_queue = 0; // Count of commands in the queue
  382. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  383. cmd_queue_index_w = 0; // Ring buffer write position
  384. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  385. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  386. #else // This can be collapsed back to the way it was soon.
  387. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  388. #endif
  389. /**
  390. * Next Injected Command pointer. NULL if no commands are being injected.
  391. * Used by Marlin internally to ensure that commands initiated from within
  392. * are enqueued ahead of any pending serial or sd card commands.
  393. */
  394. static const char *injected_commands_P = NULL;
  395. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  396. TempUnit input_temp_units = TEMPUNIT_C;
  397. #endif
  398. /**
  399. * Feed rates are often configured with mm/m
  400. * but the planner and stepper like mm/s units.
  401. */
  402. static const float homing_feedrate_mm_s[] PROGMEM = {
  403. #if ENABLED(DELTA)
  404. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  405. #else
  406. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  407. #endif
  408. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  409. };
  410. FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
  411. float feedrate_mm_s = MMM_TO_MMS(1500.0);
  412. static float saved_feedrate_mm_s;
  413. int16_t feedrate_percentage = 100, saved_feedrate_percentage,
  414. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  415. // Initialized by settings.load()
  416. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  417. volumetric_enabled;
  418. float filament_size[EXTRUDERS], volumetric_multiplier[EXTRUDERS];
  419. #if HAS_WORKSPACE_OFFSET
  420. #if HAS_POSITION_SHIFT
  421. // The distance that XYZ has been offset by G92. Reset by G28.
  422. float position_shift[XYZ] = { 0 };
  423. #endif
  424. #if HAS_HOME_OFFSET
  425. // This offset is added to the configured home position.
  426. // Set by M206, M428, or menu item. Saved to EEPROM.
  427. float home_offset[XYZ] = { 0 };
  428. #endif
  429. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  430. // The above two are combined to save on computes
  431. float workspace_offset[XYZ] = { 0 };
  432. #endif
  433. #endif
  434. // Software Endstops are based on the configured limits.
  435. #if HAS_SOFTWARE_ENDSTOPS
  436. bool soft_endstops_enabled = true;
  437. #endif
  438. float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
  439. soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
  440. #if FAN_COUNT > 0
  441. int16_t fanSpeeds[FAN_COUNT] = { 0 };
  442. #if ENABLED(PROBING_FANS_OFF)
  443. bool fans_paused = false;
  444. int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
  445. #endif
  446. #endif
  447. // The active extruder (tool). Set with T<extruder> command.
  448. uint8_t active_extruder = 0;
  449. // Relative Mode. Enable with G91, disable with G90.
  450. static bool relative_mode = false;
  451. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  452. volatile bool wait_for_heatup = true;
  453. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  454. #if HAS_RESUME_CONTINUE
  455. volatile bool wait_for_user = false;
  456. #endif
  457. const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
  458. // Number of characters read in the current line of serial input
  459. static int serial_count = 0;
  460. // Inactivity shutdown
  461. millis_t previous_cmd_ms = 0;
  462. static millis_t max_inactive_time = 0;
  463. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  464. // Print Job Timer
  465. #if ENABLED(PRINTCOUNTER)
  466. PrintCounter print_job_timer = PrintCounter();
  467. #else
  468. Stopwatch print_job_timer = Stopwatch();
  469. #endif
  470. // Buzzer - I2C on the LCD or a BEEPER_PIN
  471. #if ENABLED(LCD_USE_I2C_BUZZER)
  472. #define BUZZ(d,f) lcd_buzz(d, f)
  473. #elif PIN_EXISTS(BEEPER)
  474. Buzzer buzzer;
  475. #define BUZZ(d,f) buzzer.tone(d, f)
  476. #else
  477. #define BUZZ(d,f) NOOP
  478. #endif
  479. static uint8_t target_extruder;
  480. #if HAS_BED_PROBE
  481. float zprobe_zoffset; // Initialized by settings.load()
  482. #endif
  483. #if HAS_ABL
  484. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  485. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  486. #elif defined(XY_PROBE_SPEED)
  487. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  488. #else
  489. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  490. #endif
  491. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  492. #if ENABLED(DELTA)
  493. #define ADJUST_DELTA(V) \
  494. if (planner.leveling_active) { \
  495. const float zadj = bilinear_z_offset(V); \
  496. delta[A_AXIS] += zadj; \
  497. delta[B_AXIS] += zadj; \
  498. delta[C_AXIS] += zadj; \
  499. }
  500. #else
  501. #define ADJUST_DELTA(V) if (planner.leveling_active) { delta[Z_AXIS] += bilinear_z_offset(V); }
  502. #endif
  503. #elif IS_KINEMATIC
  504. #define ADJUST_DELTA(V) NOOP
  505. #endif
  506. #if ENABLED(Z_DUAL_ENDSTOPS)
  507. float z_endstop_adj;
  508. #endif
  509. // Extruder offsets
  510. #if HOTENDS > 1
  511. float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
  512. #endif
  513. #if HAS_Z_SERVO_ENDSTOP
  514. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  515. #endif
  516. #if ENABLED(BARICUDA)
  517. uint8_t baricuda_valve_pressure = 0,
  518. baricuda_e_to_p_pressure = 0;
  519. #endif
  520. #if ENABLED(FWRETRACT) // Initialized by settings.load()...
  521. bool autoretract_enabled, // M209 S - Autoretract switch
  522. retracted[EXTRUDERS] = { false }; // Which extruders are currently retracted
  523. float retract_length, // M207 S - G10 Retract length
  524. retract_feedrate_mm_s, // M207 F - G10 Retract feedrate
  525. retract_zlift, // M207 Z - G10 Retract hop size
  526. retract_recover_length, // M208 S - G11 Recover length
  527. retract_recover_feedrate_mm_s, // M208 F - G11 Recover feedrate
  528. swap_retract_length, // M207 W - G10 Swap Retract length
  529. swap_retract_recover_length, // M208 W - G11 Swap Recover length
  530. swap_retract_recover_feedrate_mm_s; // M208 R - G11 Swap Recover feedrate
  531. #if EXTRUDERS > 1
  532. bool retracted_swap[EXTRUDERS] = { false }; // Which extruders are swap-retracted
  533. #else
  534. constexpr bool retracted_swap[1] = { false };
  535. #endif
  536. #endif // FWRETRACT
  537. #if HAS_POWER_SWITCH
  538. bool powersupply_on =
  539. #if ENABLED(PS_DEFAULT_OFF)
  540. false
  541. #else
  542. true
  543. #endif
  544. ;
  545. #endif
  546. #if ENABLED(DELTA)
  547. float delta[ABC],
  548. endstop_adj[ABC] = { 0 };
  549. // Initialized by settings.load()
  550. float delta_radius,
  551. delta_tower_angle_trim[ABC],
  552. delta_tower[ABC][2],
  553. delta_diagonal_rod,
  554. delta_calibration_radius,
  555. delta_diagonal_rod_2_tower[ABC],
  556. delta_segments_per_second,
  557. delta_clip_start_height = Z_MAX_POS;
  558. float delta_safe_distance_from_top();
  559. #endif
  560. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  561. int bilinear_grid_spacing[2], bilinear_start[2];
  562. float bilinear_grid_factor[2],
  563. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  564. #endif
  565. #if IS_SCARA
  566. // Float constants for SCARA calculations
  567. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  568. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  569. L2_2 = sq(float(L2));
  570. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  571. delta[ABC];
  572. #endif
  573. float cartes[XYZ] = { 0 };
  574. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  575. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  576. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  577. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  578. uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM, // Distance delay setting
  579. measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  580. int8_t filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  581. #endif
  582. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  583. static bool filament_ran_out = false;
  584. #endif
  585. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  586. AdvancedPauseMenuResponse advanced_pause_menu_response;
  587. #endif
  588. #if ENABLED(MIXING_EXTRUDER)
  589. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  590. #if MIXING_VIRTUAL_TOOLS > 1
  591. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  592. #endif
  593. #endif
  594. static bool send_ok[BUFSIZE];
  595. #if HAS_SERVOS
  596. Servo servo[NUM_SERVOS];
  597. #define MOVE_SERVO(I, P) servo[I].move(P)
  598. #if HAS_Z_SERVO_ENDSTOP
  599. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  600. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  601. #endif
  602. #endif
  603. #ifdef CHDK
  604. millis_t chdkHigh = 0;
  605. bool chdkActive = false;
  606. #endif
  607. #ifdef AUTOMATIC_CURRENT_CONTROL
  608. bool auto_current_control = 0;
  609. #endif
  610. #if ENABLED(PID_EXTRUSION_SCALING)
  611. int lpq_len = 20;
  612. #endif
  613. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  614. MarlinBusyState busy_state = NOT_BUSY;
  615. static millis_t next_busy_signal_ms = 0;
  616. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  617. #else
  618. #define host_keepalive() NOOP
  619. #endif
  620. #if ENABLED(I2C_POSITION_ENCODERS)
  621. I2CPositionEncodersMgr I2CPEM;
  622. uint8_t blockBufferIndexRef = 0;
  623. millis_t lastUpdateMillis;
  624. #endif
  625. #if ENABLED(CNC_WORKSPACE_PLANES)
  626. static WorkspacePlane workspace_plane = PLANE_XY;
  627. #endif
  628. FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  629. FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  630. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  631. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  632. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  633. typedef void __void_##CONFIG##__
  634. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  635. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  636. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  637. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  638. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  639. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  640. /**
  641. * ***************************************************************************
  642. * ******************************** FUNCTIONS ********************************
  643. * ***************************************************************************
  644. */
  645. void stop();
  646. void get_available_commands();
  647. void process_next_command();
  648. void prepare_move_to_destination();
  649. void get_cartesian_from_steppers();
  650. void set_current_from_steppers_for_axis(const AxisEnum axis);
  651. #if ENABLED(ARC_SUPPORT)
  652. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  653. #endif
  654. #if ENABLED(BEZIER_CURVE_SUPPORT)
  655. void plan_cubic_move(const float offset[4]);
  656. #endif
  657. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  658. void report_current_position();
  659. void report_current_position_detail();
  660. #if ENABLED(DEBUG_LEVELING_FEATURE)
  661. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  662. serialprintPGM(prefix);
  663. SERIAL_CHAR('(');
  664. SERIAL_ECHO(x);
  665. SERIAL_ECHOPAIR(", ", y);
  666. SERIAL_ECHOPAIR(", ", z);
  667. SERIAL_CHAR(')');
  668. if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
  669. }
  670. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  671. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  672. }
  673. #if HAS_ABL
  674. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  675. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  676. }
  677. #endif
  678. #define DEBUG_POS(SUFFIX,VAR) do { \
  679. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
  680. #endif
  681. /**
  682. * sync_plan_position
  683. *
  684. * Set the planner/stepper positions directly from current_position with
  685. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  686. */
  687. void sync_plan_position() {
  688. #if ENABLED(DEBUG_LEVELING_FEATURE)
  689. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  690. #endif
  691. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  692. }
  693. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  694. #if IS_KINEMATIC
  695. inline void sync_plan_position_kinematic() {
  696. #if ENABLED(DEBUG_LEVELING_FEATURE)
  697. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  698. #endif
  699. planner.set_position_mm_kinematic(current_position);
  700. }
  701. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  702. #else
  703. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  704. #endif
  705. #if ENABLED(SDSUPPORT)
  706. #include "SdFatUtil.h"
  707. int freeMemory() { return SdFatUtil::FreeRam(); }
  708. #else
  709. extern "C" {
  710. extern char __bss_end;
  711. extern char __heap_start;
  712. extern void* __brkval;
  713. int freeMemory() {
  714. int free_memory;
  715. if ((int)__brkval == 0)
  716. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  717. else
  718. free_memory = ((int)&free_memory) - ((int)__brkval);
  719. return free_memory;
  720. }
  721. }
  722. #endif // !SDSUPPORT
  723. #if ENABLED(DIGIPOT_I2C)
  724. extern void digipot_i2c_set_current(uint8_t channel, float current);
  725. extern void digipot_i2c_init();
  726. #endif
  727. /**
  728. * Inject the next "immediate" command, when possible, onto the front of the queue.
  729. * Return true if any immediate commands remain to inject.
  730. */
  731. static bool drain_injected_commands_P() {
  732. if (injected_commands_P != NULL) {
  733. size_t i = 0;
  734. char c, cmd[30];
  735. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  736. cmd[sizeof(cmd) - 1] = '\0';
  737. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  738. cmd[i] = '\0';
  739. if (enqueue_and_echo_command(cmd)) // success?
  740. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  741. }
  742. return (injected_commands_P != NULL); // return whether any more remain
  743. }
  744. /**
  745. * Record one or many commands to run from program memory.
  746. * Aborts the current queue, if any.
  747. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  748. */
  749. void enqueue_and_echo_commands_P(const char * const pgcode) {
  750. injected_commands_P = pgcode;
  751. drain_injected_commands_P(); // first command executed asap (when possible)
  752. }
  753. /**
  754. * Clear the Marlin command queue
  755. */
  756. void clear_command_queue() {
  757. cmd_queue_index_r = cmd_queue_index_w;
  758. commands_in_queue = 0;
  759. }
  760. /**
  761. * Once a new command is in the ring buffer, call this to commit it
  762. */
  763. inline void _commit_command(bool say_ok) {
  764. send_ok[cmd_queue_index_w] = say_ok;
  765. if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
  766. commands_in_queue++;
  767. }
  768. /**
  769. * Copy a command from RAM into the main command buffer.
  770. * Return true if the command was successfully added.
  771. * Return false for a full buffer, or if the 'command' is a comment.
  772. */
  773. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  774. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  775. strcpy(command_queue[cmd_queue_index_w], cmd);
  776. _commit_command(say_ok);
  777. return true;
  778. }
  779. /**
  780. * Enqueue with Serial Echo
  781. */
  782. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  783. if (_enqueuecommand(cmd, say_ok)) {
  784. SERIAL_ECHO_START();
  785. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  786. SERIAL_CHAR('"');
  787. SERIAL_EOL();
  788. return true;
  789. }
  790. return false;
  791. }
  792. void setup_killpin() {
  793. #if HAS_KILL
  794. SET_INPUT_PULLUP(KILL_PIN);
  795. #endif
  796. }
  797. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  798. void setup_filrunoutpin() {
  799. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  800. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  801. #else
  802. SET_INPUT(FIL_RUNOUT_PIN);
  803. #endif
  804. }
  805. #endif
  806. void setup_powerhold() {
  807. #if HAS_SUICIDE
  808. OUT_WRITE(SUICIDE_PIN, HIGH);
  809. #endif
  810. #if HAS_POWER_SWITCH
  811. #if ENABLED(PS_DEFAULT_OFF)
  812. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  813. #else
  814. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  815. #endif
  816. #endif
  817. }
  818. void suicide() {
  819. #if HAS_SUICIDE
  820. OUT_WRITE(SUICIDE_PIN, LOW);
  821. #endif
  822. }
  823. void servo_init() {
  824. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  825. servo[0].attach(SERVO0_PIN);
  826. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  827. #endif
  828. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  829. servo[1].attach(SERVO1_PIN);
  830. servo[1].detach();
  831. #endif
  832. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  833. servo[2].attach(SERVO2_PIN);
  834. servo[2].detach();
  835. #endif
  836. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  837. servo[3].attach(SERVO3_PIN);
  838. servo[3].detach();
  839. #endif
  840. #if HAS_Z_SERVO_ENDSTOP
  841. /**
  842. * Set position of Z Servo Endstop
  843. *
  844. * The servo might be deployed and positioned too low to stow
  845. * when starting up the machine or rebooting the board.
  846. * There's no way to know where the nozzle is positioned until
  847. * homing has been done - no homing with z-probe without init!
  848. *
  849. */
  850. STOW_Z_SERVO();
  851. #endif
  852. }
  853. /**
  854. * Stepper Reset (RigidBoard, et.al.)
  855. */
  856. #if HAS_STEPPER_RESET
  857. void disableStepperDrivers() {
  858. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  859. }
  860. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  861. #endif
  862. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  863. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  864. i2c.receive(bytes);
  865. }
  866. void i2c_on_request() { // just send dummy data for now
  867. i2c.reply("Hello World!\n");
  868. }
  869. #endif
  870. #if HAS_COLOR_LEDS
  871. #if ENABLED(NEOPIXEL_LED)
  872. Adafruit_NeoPixel pixels(NEOPIXEL_PIXELS, NEOPIXEL_PIN, NEOPIXEL_TYPE + NEO_KHZ800);
  873. void set_neopixel_color(const uint32_t color) {
  874. for (uint16_t i = 0; i < pixels.numPixels(); ++i)
  875. pixels.setPixelColor(i, color);
  876. pixels.show();
  877. }
  878. void setup_neopixel() {
  879. pixels.setBrightness(NEOPIXEL_BRIGHTNESS); // 0 - 255 range
  880. pixels.begin();
  881. pixels.show(); // initialize to all off
  882. #if ENABLED(NEOPIXEL_STARTUP_TEST)
  883. delay(2000);
  884. set_neopixel_color(pixels.Color(255, 0, 0, 0)); // red
  885. delay(2000);
  886. set_neopixel_color(pixels.Color(0, 255, 0, 0)); // green
  887. delay(2000);
  888. set_neopixel_color(pixels.Color(0, 0, 255, 0)); // blue
  889. delay(2000);
  890. #endif
  891. set_neopixel_color(pixels.Color(NEO_WHITE)); // white
  892. }
  893. #endif // NEOPIXEL_LED
  894. void set_led_color(
  895. const uint8_t r, const uint8_t g, const uint8_t b
  896. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_LED)
  897. , const uint8_t w = 0
  898. #if ENABLED(NEOPIXEL_LED)
  899. , const uint8_t p = NEOPIXEL_BRIGHTNESS
  900. , bool isSequence = false
  901. #endif
  902. #endif
  903. ) {
  904. #if ENABLED(NEOPIXEL_LED)
  905. const uint32_t color = pixels.Color(r, g, b, w);
  906. static uint16_t nextLed = 0;
  907. pixels.setBrightness(p);
  908. if (!isSequence)
  909. set_neopixel_color(color);
  910. else {
  911. pixels.setPixelColor(nextLed, color);
  912. pixels.show();
  913. if (++nextLed >= pixels.numPixels()) nextLed = 0;
  914. return;
  915. }
  916. #endif
  917. #if ENABLED(BLINKM)
  918. // This variant uses i2c to send the RGB components to the device.
  919. SendColors(r, g, b);
  920. #endif
  921. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  922. // This variant uses 3 separate pins for the RGB components.
  923. // If the pins can do PWM then their intensity will be set.
  924. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  925. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  926. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  927. analogWrite(RGB_LED_R_PIN, r);
  928. analogWrite(RGB_LED_G_PIN, g);
  929. analogWrite(RGB_LED_B_PIN, b);
  930. #if ENABLED(RGBW_LED)
  931. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  932. analogWrite(RGB_LED_W_PIN, w);
  933. #endif
  934. #endif
  935. #if ENABLED(PCA9632)
  936. // Update I2C LED driver
  937. PCA9632_SetColor(r, g, b);
  938. #endif
  939. }
  940. #endif // HAS_COLOR_LEDS
  941. void gcode_line_error(const char* err, bool doFlush = true) {
  942. SERIAL_ERROR_START();
  943. serialprintPGM(err);
  944. SERIAL_ERRORLN(gcode_LastN);
  945. //Serial.println(gcode_N);
  946. if (doFlush) FlushSerialRequestResend();
  947. serial_count = 0;
  948. }
  949. /**
  950. * Get all commands waiting on the serial port and queue them.
  951. * Exit when the buffer is full or when no more characters are
  952. * left on the serial port.
  953. */
  954. inline void get_serial_commands() {
  955. static char serial_line_buffer[MAX_CMD_SIZE];
  956. static bool serial_comment_mode = false;
  957. // If the command buffer is empty for too long,
  958. // send "wait" to indicate Marlin is still waiting.
  959. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  960. static millis_t last_command_time = 0;
  961. const millis_t ms = millis();
  962. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  963. SERIAL_ECHOLNPGM(MSG_WAIT);
  964. last_command_time = ms;
  965. }
  966. #endif
  967. /**
  968. * Loop while serial characters are incoming and the queue is not full
  969. */
  970. int c;
  971. while (commands_in_queue < BUFSIZE && (c = MYSERIAL.read()) >= 0) {
  972. char serial_char = c;
  973. /**
  974. * If the character ends the line
  975. */
  976. if (serial_char == '\n' || serial_char == '\r') {
  977. serial_comment_mode = false; // end of line == end of comment
  978. if (!serial_count) continue; // skip empty lines
  979. serial_line_buffer[serial_count] = 0; // terminate string
  980. serial_count = 0; //reset buffer
  981. char* command = serial_line_buffer;
  982. while (*command == ' ') command++; // skip any leading spaces
  983. char *npos = (*command == 'N') ? command : NULL, // Require the N parameter to start the line
  984. *apos = strchr(command, '*');
  985. if (npos) {
  986. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  987. if (M110) {
  988. char* n2pos = strchr(command + 4, 'N');
  989. if (n2pos) npos = n2pos;
  990. }
  991. gcode_N = strtol(npos + 1, NULL, 10);
  992. if (gcode_N != gcode_LastN + 1 && !M110) {
  993. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  994. return;
  995. }
  996. if (apos) {
  997. byte checksum = 0, count = 0;
  998. while (command[count] != '*') checksum ^= command[count++];
  999. if (strtol(apos + 1, NULL, 10) != checksum) {
  1000. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  1001. return;
  1002. }
  1003. // if no errors, continue parsing
  1004. }
  1005. else {
  1006. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  1007. return;
  1008. }
  1009. gcode_LastN = gcode_N;
  1010. // if no errors, continue parsing
  1011. }
  1012. else if (apos) { // No '*' without 'N'
  1013. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  1014. return;
  1015. }
  1016. // Movement commands alert when stopped
  1017. if (IsStopped()) {
  1018. char* gpos = strchr(command, 'G');
  1019. if (gpos) {
  1020. const int codenum = strtol(gpos + 1, NULL, 10);
  1021. switch (codenum) {
  1022. case 0:
  1023. case 1:
  1024. case 2:
  1025. case 3:
  1026. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  1027. LCD_MESSAGEPGM(MSG_STOPPED);
  1028. break;
  1029. }
  1030. }
  1031. }
  1032. #if DISABLED(EMERGENCY_PARSER)
  1033. // If command was e-stop process now
  1034. if (strcmp(command, "M108") == 0) {
  1035. wait_for_heatup = false;
  1036. #if ENABLED(ULTIPANEL)
  1037. wait_for_user = false;
  1038. #endif
  1039. }
  1040. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  1041. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  1042. #endif
  1043. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  1044. last_command_time = ms;
  1045. #endif
  1046. // Add the command to the queue
  1047. _enqueuecommand(serial_line_buffer, true);
  1048. }
  1049. else if (serial_count >= MAX_CMD_SIZE - 1) {
  1050. // Keep fetching, but ignore normal characters beyond the max length
  1051. // The command will be injected when EOL is reached
  1052. }
  1053. else if (serial_char == '\\') { // Handle escapes
  1054. if ((c = MYSERIAL.read()) >= 0) {
  1055. // if we have one more character, copy it over
  1056. serial_char = c;
  1057. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1058. }
  1059. // otherwise do nothing
  1060. }
  1061. else { // it's not a newline, carriage return or escape char
  1062. if (serial_char == ';') serial_comment_mode = true;
  1063. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1064. }
  1065. } // queue has space, serial has data
  1066. }
  1067. #if ENABLED(SDSUPPORT)
  1068. /**
  1069. * Get commands from the SD Card until the command buffer is full
  1070. * or until the end of the file is reached. The special character '#'
  1071. * can also interrupt buffering.
  1072. */
  1073. inline void get_sdcard_commands() {
  1074. static bool stop_buffering = false,
  1075. sd_comment_mode = false;
  1076. if (!card.sdprinting) return;
  1077. /**
  1078. * '#' stops reading from SD to the buffer prematurely, so procedural
  1079. * macro calls are possible. If it occurs, stop_buffering is triggered
  1080. * and the buffer is run dry; this character _can_ occur in serial com
  1081. * due to checksums, however, no checksums are used in SD printing.
  1082. */
  1083. if (commands_in_queue == 0) stop_buffering = false;
  1084. uint16_t sd_count = 0;
  1085. bool card_eof = card.eof();
  1086. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1087. const int16_t n = card.get();
  1088. char sd_char = (char)n;
  1089. card_eof = card.eof();
  1090. if (card_eof || n == -1
  1091. || sd_char == '\n' || sd_char == '\r'
  1092. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1093. ) {
  1094. if (card_eof) {
  1095. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1096. card.printingHasFinished();
  1097. #if ENABLED(PRINTER_EVENT_LEDS)
  1098. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1099. set_led_color(0, 255, 0); // Green
  1100. #if HAS_RESUME_CONTINUE
  1101. enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
  1102. #else
  1103. safe_delay(1000);
  1104. #endif
  1105. set_led_color(0, 0, 0); // OFF
  1106. #endif
  1107. card.checkautostart(true);
  1108. }
  1109. else if (n == -1) {
  1110. SERIAL_ERROR_START();
  1111. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1112. }
  1113. if (sd_char == '#') stop_buffering = true;
  1114. sd_comment_mode = false; // for new command
  1115. if (!sd_count) continue; // skip empty lines (and comment lines)
  1116. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1117. sd_count = 0; // clear sd line buffer
  1118. _commit_command(false);
  1119. }
  1120. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1121. /**
  1122. * Keep fetching, but ignore normal characters beyond the max length
  1123. * The command will be injected when EOL is reached
  1124. */
  1125. }
  1126. else {
  1127. if (sd_char == ';') sd_comment_mode = true;
  1128. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1129. }
  1130. }
  1131. }
  1132. #endif // SDSUPPORT
  1133. /**
  1134. * Add to the circular command queue the next command from:
  1135. * - The command-injection queue (injected_commands_P)
  1136. * - The active serial input (usually USB)
  1137. * - The SD card file being actively printed
  1138. */
  1139. void get_available_commands() {
  1140. // if any immediate commands remain, don't get other commands yet
  1141. if (drain_injected_commands_P()) return;
  1142. get_serial_commands();
  1143. #if ENABLED(SDSUPPORT)
  1144. get_sdcard_commands();
  1145. #endif
  1146. }
  1147. /**
  1148. * Set target_extruder from the T parameter or the active_extruder
  1149. *
  1150. * Returns TRUE if the target is invalid
  1151. */
  1152. bool get_target_extruder_from_command(const uint16_t code) {
  1153. if (parser.seenval('T')) {
  1154. const int8_t e = parser.value_byte();
  1155. if (e >= EXTRUDERS) {
  1156. SERIAL_ECHO_START();
  1157. SERIAL_CHAR('M');
  1158. SERIAL_ECHO(code);
  1159. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);
  1160. return true;
  1161. }
  1162. target_extruder = e;
  1163. }
  1164. else
  1165. target_extruder = active_extruder;
  1166. return false;
  1167. }
  1168. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1169. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1170. #endif
  1171. #if ENABLED(DUAL_X_CARRIAGE)
  1172. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1173. static float x_home_pos(const int extruder) {
  1174. if (extruder == 0)
  1175. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1176. else
  1177. /**
  1178. * In dual carriage mode the extruder offset provides an override of the
  1179. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1180. * This allows soft recalibration of the second extruder home position
  1181. * without firmware reflash (through the M218 command).
  1182. */
  1183. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1184. }
  1185. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1186. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1187. static bool active_extruder_parked = false; // used in mode 1 & 2
  1188. static float raised_parked_position[XYZE]; // used in mode 1
  1189. static millis_t delayed_move_time = 0; // used in mode 1
  1190. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1191. static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
  1192. #endif // DUAL_X_CARRIAGE
  1193. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1194. /**
  1195. * Software endstops can be used to monitor the open end of
  1196. * an axis that has a hardware endstop on the other end. Or
  1197. * they can prevent axes from moving past endstops and grinding.
  1198. *
  1199. * To keep doing their job as the coordinate system changes,
  1200. * the software endstop positions must be refreshed to remain
  1201. * at the same positions relative to the machine.
  1202. */
  1203. void update_software_endstops(const AxisEnum axis) {
  1204. const float offs = 0.0
  1205. #if HAS_HOME_OFFSET
  1206. + home_offset[axis]
  1207. #endif
  1208. #if HAS_POSITION_SHIFT
  1209. + position_shift[axis]
  1210. #endif
  1211. ;
  1212. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1213. workspace_offset[axis] = offs;
  1214. #endif
  1215. #if ENABLED(DUAL_X_CARRIAGE)
  1216. if (axis == X_AXIS) {
  1217. // In Dual X mode hotend_offset[X] is T1's home position
  1218. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1219. if (active_extruder != 0) {
  1220. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1221. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1222. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1223. }
  1224. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1225. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1226. // but not so far to the right that T1 would move past the end
  1227. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1228. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1229. }
  1230. else {
  1231. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1232. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1233. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1234. }
  1235. }
  1236. #elif ENABLED(DELTA)
  1237. soft_endstop_min[axis] = base_min_pos(axis) + (axis == Z_AXIS ? 0 : offs);
  1238. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1239. #else
  1240. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1241. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1242. #endif
  1243. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1244. if (DEBUGGING(LEVELING)) {
  1245. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1246. #if HAS_HOME_OFFSET
  1247. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1248. #endif
  1249. #if HAS_POSITION_SHIFT
  1250. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1251. #endif
  1252. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1253. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1254. }
  1255. #endif
  1256. #if ENABLED(DELTA)
  1257. if (axis == Z_AXIS)
  1258. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1259. #endif
  1260. }
  1261. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1262. #if HAS_M206_COMMAND
  1263. /**
  1264. * Change the home offset for an axis, update the current
  1265. * position and the software endstops to retain the same
  1266. * relative distance to the new home.
  1267. *
  1268. * Since this changes the current_position, code should
  1269. * call sync_plan_position soon after this.
  1270. */
  1271. static void set_home_offset(const AxisEnum axis, const float v) {
  1272. current_position[axis] += v - home_offset[axis];
  1273. home_offset[axis] = v;
  1274. update_software_endstops(axis);
  1275. }
  1276. #endif // HAS_M206_COMMAND
  1277. /**
  1278. * Set an axis' current position to its home position (after homing).
  1279. *
  1280. * For Core and Cartesian robots this applies one-to-one when an
  1281. * individual axis has been homed.
  1282. *
  1283. * DELTA should wait until all homing is done before setting the XYZ
  1284. * current_position to home, because homing is a single operation.
  1285. * In the case where the axis positions are already known and previously
  1286. * homed, DELTA could home to X or Y individually by moving either one
  1287. * to the center. However, homing Z always homes XY and Z.
  1288. *
  1289. * SCARA should wait until all XY homing is done before setting the XY
  1290. * current_position to home, because neither X nor Y is at home until
  1291. * both are at home. Z can however be homed individually.
  1292. *
  1293. * Callers must sync the planner position after calling this!
  1294. */
  1295. static void set_axis_is_at_home(const AxisEnum axis) {
  1296. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1297. if (DEBUGGING(LEVELING)) {
  1298. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1299. SERIAL_CHAR(')');
  1300. SERIAL_EOL();
  1301. }
  1302. #endif
  1303. axis_known_position[axis] = axis_homed[axis] = true;
  1304. #if HAS_POSITION_SHIFT
  1305. position_shift[axis] = 0;
  1306. update_software_endstops(axis);
  1307. #endif
  1308. #if ENABLED(DUAL_X_CARRIAGE)
  1309. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1310. current_position[X_AXIS] = x_home_pos(active_extruder);
  1311. return;
  1312. }
  1313. #endif
  1314. #if ENABLED(MORGAN_SCARA)
  1315. /**
  1316. * Morgan SCARA homes XY at the same time
  1317. */
  1318. if (axis == X_AXIS || axis == Y_AXIS) {
  1319. float homeposition[XYZ];
  1320. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1321. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1322. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1323. /**
  1324. * Get Home position SCARA arm angles using inverse kinematics,
  1325. * and calculate homing offset using forward kinematics
  1326. */
  1327. inverse_kinematics(homeposition);
  1328. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1329. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1330. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1331. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1332. /**
  1333. * SCARA home positions are based on configuration since the actual
  1334. * limits are determined by the inverse kinematic transform.
  1335. */
  1336. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1337. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1338. }
  1339. else
  1340. #endif
  1341. {
  1342. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1343. }
  1344. /**
  1345. * Z Probe Z Homing? Account for the probe's Z offset.
  1346. */
  1347. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1348. if (axis == Z_AXIS) {
  1349. #if HOMING_Z_WITH_PROBE
  1350. current_position[Z_AXIS] -= zprobe_zoffset;
  1351. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1352. if (DEBUGGING(LEVELING)) {
  1353. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1354. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1355. }
  1356. #endif
  1357. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1358. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1359. #endif
  1360. }
  1361. #endif
  1362. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1363. if (DEBUGGING(LEVELING)) {
  1364. #if HAS_HOME_OFFSET
  1365. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1366. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1367. #endif
  1368. DEBUG_POS("", current_position);
  1369. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1370. SERIAL_CHAR(')');
  1371. SERIAL_EOL();
  1372. }
  1373. #endif
  1374. #if ENABLED(I2C_POSITION_ENCODERS)
  1375. I2CPEM.homed(axis);
  1376. #endif
  1377. }
  1378. /**
  1379. * Some planner shorthand inline functions
  1380. */
  1381. inline float get_homing_bump_feedrate(const AxisEnum axis) {
  1382. static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
  1383. uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
  1384. if (hbd < 1) {
  1385. hbd = 10;
  1386. SERIAL_ECHO_START();
  1387. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1388. }
  1389. return homing_feedrate(axis) / hbd;
  1390. }
  1391. /**
  1392. * Move the planner to the current position from wherever it last moved
  1393. * (or from wherever it has been told it is located).
  1394. */
  1395. inline void line_to_current_position() {
  1396. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1397. }
  1398. /**
  1399. * Move the planner to the position stored in the destination array, which is
  1400. * used by G0/G1/G2/G3/G5 and many other functions to set a destination.
  1401. */
  1402. inline void line_to_destination(const float fr_mm_s) {
  1403. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1404. }
  1405. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1406. inline void set_current_to_destination() { COPY(current_position, destination); }
  1407. inline void set_destination_to_current() { COPY(destination, current_position); }
  1408. #if IS_KINEMATIC
  1409. /**
  1410. * Calculate delta, start a line, and set current_position to destination
  1411. */
  1412. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1413. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1414. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1415. #endif
  1416. refresh_cmd_timeout();
  1417. #if UBL_DELTA
  1418. // ubl segmented line will do z-only moves in single segment
  1419. ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
  1420. #else
  1421. if ( current_position[X_AXIS] == destination[X_AXIS]
  1422. && current_position[Y_AXIS] == destination[Y_AXIS]
  1423. && current_position[Z_AXIS] == destination[Z_AXIS]
  1424. && current_position[E_AXIS] == destination[E_AXIS]
  1425. ) return;
  1426. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1427. #endif
  1428. set_current_to_destination();
  1429. }
  1430. #endif // IS_KINEMATIC
  1431. /**
  1432. * Plan a move to (X, Y, Z) and set the current_position
  1433. * The final current_position may not be the one that was requested
  1434. */
  1435. void do_blocking_move_to(const float &lx, const float &ly, const float &lz, const float &fr_mm_s/*=0.0*/) {
  1436. const float old_feedrate_mm_s = feedrate_mm_s;
  1437. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1438. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, lx, ly, lz);
  1439. #endif
  1440. #if ENABLED(DELTA)
  1441. if (!position_is_reachable_xy(lx, ly)) return;
  1442. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1443. set_destination_to_current(); // sync destination at the start
  1444. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1445. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1446. #endif
  1447. // when in the danger zone
  1448. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1449. if (lz > delta_clip_start_height) { // staying in the danger zone
  1450. destination[X_AXIS] = lx; // move directly (uninterpolated)
  1451. destination[Y_AXIS] = ly;
  1452. destination[Z_AXIS] = lz;
  1453. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1454. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1455. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1456. #endif
  1457. return;
  1458. }
  1459. else {
  1460. destination[Z_AXIS] = delta_clip_start_height;
  1461. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1462. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1463. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1464. #endif
  1465. }
  1466. }
  1467. if (lz > current_position[Z_AXIS]) { // raising?
  1468. destination[Z_AXIS] = lz;
  1469. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1470. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1471. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1472. #endif
  1473. }
  1474. destination[X_AXIS] = lx;
  1475. destination[Y_AXIS] = ly;
  1476. prepare_move_to_destination(); // set_current_to_destination
  1477. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1478. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1479. #endif
  1480. if (lz < current_position[Z_AXIS]) { // lowering?
  1481. destination[Z_AXIS] = lz;
  1482. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1483. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1484. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1485. #endif
  1486. }
  1487. #elif IS_SCARA
  1488. if (!position_is_reachable_xy(lx, ly)) return;
  1489. set_destination_to_current();
  1490. // If Z needs to raise, do it before moving XY
  1491. if (destination[Z_AXIS] < lz) {
  1492. destination[Z_AXIS] = lz;
  1493. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1494. }
  1495. destination[X_AXIS] = lx;
  1496. destination[Y_AXIS] = ly;
  1497. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1498. // If Z needs to lower, do it after moving XY
  1499. if (destination[Z_AXIS] > lz) {
  1500. destination[Z_AXIS] = lz;
  1501. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1502. }
  1503. #else
  1504. // If Z needs to raise, do it before moving XY
  1505. if (current_position[Z_AXIS] < lz) {
  1506. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1507. current_position[Z_AXIS] = lz;
  1508. line_to_current_position();
  1509. }
  1510. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1511. current_position[X_AXIS] = lx;
  1512. current_position[Y_AXIS] = ly;
  1513. line_to_current_position();
  1514. // If Z needs to lower, do it after moving XY
  1515. if (current_position[Z_AXIS] > lz) {
  1516. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1517. current_position[Z_AXIS] = lz;
  1518. line_to_current_position();
  1519. }
  1520. #endif
  1521. stepper.synchronize();
  1522. feedrate_mm_s = old_feedrate_mm_s;
  1523. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1524. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1525. #endif
  1526. }
  1527. void do_blocking_move_to_x(const float &lx, const float &fr_mm_s/*=0.0*/) {
  1528. do_blocking_move_to(lx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1529. }
  1530. void do_blocking_move_to_z(const float &lz, const float &fr_mm_s/*=0.0*/) {
  1531. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], lz, fr_mm_s);
  1532. }
  1533. void do_blocking_move_to_xy(const float &lx, const float &ly, const float &fr_mm_s/*=0.0*/) {
  1534. do_blocking_move_to(lx, ly, current_position[Z_AXIS], fr_mm_s);
  1535. }
  1536. //
  1537. // Prepare to do endstop or probe moves
  1538. // with custom feedrates.
  1539. //
  1540. // - Save current feedrates
  1541. // - Reset the rate multiplier
  1542. // - Reset the command timeout
  1543. // - Enable the endstops (for endstop moves)
  1544. //
  1545. static void setup_for_endstop_or_probe_move() {
  1546. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1547. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1548. #endif
  1549. saved_feedrate_mm_s = feedrate_mm_s;
  1550. saved_feedrate_percentage = feedrate_percentage;
  1551. feedrate_percentage = 100;
  1552. refresh_cmd_timeout();
  1553. }
  1554. static void clean_up_after_endstop_or_probe_move() {
  1555. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1556. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1557. #endif
  1558. feedrate_mm_s = saved_feedrate_mm_s;
  1559. feedrate_percentage = saved_feedrate_percentage;
  1560. refresh_cmd_timeout();
  1561. }
  1562. #if HAS_BED_PROBE
  1563. /**
  1564. * Raise Z to a minimum height to make room for a probe to move
  1565. */
  1566. inline void do_probe_raise(const float z_raise) {
  1567. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1568. if (DEBUGGING(LEVELING)) {
  1569. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1570. SERIAL_CHAR(')');
  1571. SERIAL_EOL();
  1572. }
  1573. #endif
  1574. float z_dest = z_raise;
  1575. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1576. if (z_dest > current_position[Z_AXIS])
  1577. do_blocking_move_to_z(z_dest);
  1578. }
  1579. #endif // HAS_BED_PROBE
  1580. #if HAS_AXIS_UNHOMED_ERR
  1581. bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
  1582. #if ENABLED(HOME_AFTER_DEACTIVATE)
  1583. const bool xx = x && !axis_known_position[X_AXIS],
  1584. yy = y && !axis_known_position[Y_AXIS],
  1585. zz = z && !axis_known_position[Z_AXIS];
  1586. #else
  1587. const bool xx = x && !axis_homed[X_AXIS],
  1588. yy = y && !axis_homed[Y_AXIS],
  1589. zz = z && !axis_homed[Z_AXIS];
  1590. #endif
  1591. if (xx || yy || zz) {
  1592. SERIAL_ECHO_START();
  1593. SERIAL_ECHOPGM(MSG_HOME " ");
  1594. if (xx) SERIAL_ECHOPGM(MSG_X);
  1595. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1596. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1597. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1598. #if ENABLED(ULTRA_LCD)
  1599. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1600. #endif
  1601. return true;
  1602. }
  1603. return false;
  1604. }
  1605. #endif // HAS_AXIS_UNHOMED_ERR
  1606. #if ENABLED(Z_PROBE_SLED)
  1607. #ifndef SLED_DOCKING_OFFSET
  1608. #define SLED_DOCKING_OFFSET 0
  1609. #endif
  1610. /**
  1611. * Method to dock/undock a sled designed by Charles Bell.
  1612. *
  1613. * stow[in] If false, move to MAX_X and engage the solenoid
  1614. * If true, move to MAX_X and release the solenoid
  1615. */
  1616. static void dock_sled(bool stow) {
  1617. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1618. if (DEBUGGING(LEVELING)) {
  1619. SERIAL_ECHOPAIR("dock_sled(", stow);
  1620. SERIAL_CHAR(')');
  1621. SERIAL_EOL();
  1622. }
  1623. #endif
  1624. // Dock sled a bit closer to ensure proper capturing
  1625. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1626. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1627. WRITE(SOL1_PIN, !stow); // switch solenoid
  1628. #endif
  1629. }
  1630. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1631. FORCE_INLINE void do_blocking_move_to(const float logical[XYZ], const float &fr_mm_s) {
  1632. do_blocking_move_to(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], fr_mm_s);
  1633. }
  1634. void run_deploy_moves_script() {
  1635. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1636. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1637. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1638. #endif
  1639. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1640. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1641. #endif
  1642. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1643. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1644. #endif
  1645. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1646. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1647. #endif
  1648. const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
  1649. do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1650. #endif
  1651. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1652. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1653. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1654. #endif
  1655. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1656. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1657. #endif
  1658. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1659. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1660. #endif
  1661. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1662. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1663. #endif
  1664. const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
  1665. do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1666. #endif
  1667. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1668. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1669. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1670. #endif
  1671. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1672. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1673. #endif
  1674. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1675. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1676. #endif
  1677. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1678. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1679. #endif
  1680. const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
  1681. do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1682. #endif
  1683. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1684. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1685. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1686. #endif
  1687. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1688. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1689. #endif
  1690. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1691. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1692. #endif
  1693. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1694. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1695. #endif
  1696. const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
  1697. do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1698. #endif
  1699. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1700. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1701. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1702. #endif
  1703. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1704. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1705. #endif
  1706. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1707. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1708. #endif
  1709. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1710. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1711. #endif
  1712. const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
  1713. do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1714. #endif
  1715. }
  1716. void run_stow_moves_script() {
  1717. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1718. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1719. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1720. #endif
  1721. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1722. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1723. #endif
  1724. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1725. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1726. #endif
  1727. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1728. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1729. #endif
  1730. const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
  1731. do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1732. #endif
  1733. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1734. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1735. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1736. #endif
  1737. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1738. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1739. #endif
  1740. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1741. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1742. #endif
  1743. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1744. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1745. #endif
  1746. const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
  1747. do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1748. #endif
  1749. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1750. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1751. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1752. #endif
  1753. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1754. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1755. #endif
  1756. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1757. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1758. #endif
  1759. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1760. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1761. #endif
  1762. const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
  1763. do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1764. #endif
  1765. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1766. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1767. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1768. #endif
  1769. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1770. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1771. #endif
  1772. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1773. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1774. #endif
  1775. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1776. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1777. #endif
  1778. const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
  1779. do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1780. #endif
  1781. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1782. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1783. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1784. #endif
  1785. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1786. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1787. #endif
  1788. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1789. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1790. #endif
  1791. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1792. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1793. #endif
  1794. const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
  1795. do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1796. #endif
  1797. }
  1798. #endif // Z_PROBE_ALLEN_KEY
  1799. #if ENABLED(PROBING_FANS_OFF)
  1800. void fans_pause(const bool p) {
  1801. if (p != fans_paused) {
  1802. fans_paused = p;
  1803. if (p)
  1804. for (uint8_t x = 0; x < FAN_COUNT; x++) {
  1805. paused_fanSpeeds[x] = fanSpeeds[x];
  1806. fanSpeeds[x] = 0;
  1807. }
  1808. else
  1809. for (uint8_t x = 0; x < FAN_COUNT; x++)
  1810. fanSpeeds[x] = paused_fanSpeeds[x];
  1811. }
  1812. }
  1813. #endif // PROBING_FANS_OFF
  1814. #if HAS_BED_PROBE
  1815. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1816. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1817. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1818. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1819. #else
  1820. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1821. #endif
  1822. #endif
  1823. #if QUIET_PROBING
  1824. void probing_pause(const bool p) {
  1825. #if ENABLED(PROBING_HEATERS_OFF)
  1826. thermalManager.pause(p);
  1827. #endif
  1828. #if ENABLED(PROBING_FANS_OFF)
  1829. fans_pause(p);
  1830. #endif
  1831. if (p) safe_delay(
  1832. #if DELAY_BEFORE_PROBING > 25
  1833. DELAY_BEFORE_PROBING
  1834. #else
  1835. 25
  1836. #endif
  1837. );
  1838. }
  1839. #endif // QUIET_PROBING
  1840. #if ENABLED(BLTOUCH)
  1841. void bltouch_command(int angle) {
  1842. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, angle); // Give the BL-Touch the command and wait
  1843. safe_delay(BLTOUCH_DELAY);
  1844. }
  1845. bool set_bltouch_deployed(const bool deploy) {
  1846. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1847. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1848. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1849. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1850. safe_delay(1500); // Wait for internal self-test to complete.
  1851. // (Measured completion time was 0.65 seconds
  1852. // after reset, deploy, and stow sequence)
  1853. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1854. SERIAL_ERROR_START();
  1855. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1856. stop(); // punt!
  1857. return true;
  1858. }
  1859. }
  1860. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1861. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1862. if (DEBUGGING(LEVELING)) {
  1863. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1864. SERIAL_CHAR(')');
  1865. SERIAL_EOL();
  1866. }
  1867. #endif
  1868. return false;
  1869. }
  1870. #endif // BLTOUCH
  1871. // returns false for ok and true for failure
  1872. bool set_probe_deployed(bool deploy) {
  1873. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1874. if (DEBUGGING(LEVELING)) {
  1875. DEBUG_POS("set_probe_deployed", current_position);
  1876. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1877. }
  1878. #endif
  1879. if (endstops.z_probe_enabled == deploy) return false;
  1880. // Make room for probe
  1881. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1882. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  1883. #if ENABLED(Z_PROBE_SLED)
  1884. #define _AUE_ARGS true, false, false
  1885. #else
  1886. #define _AUE_ARGS
  1887. #endif
  1888. if (axis_unhomed_error(_AUE_ARGS)) {
  1889. SERIAL_ERROR_START();
  1890. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1891. stop();
  1892. return true;
  1893. }
  1894. #endif
  1895. const float oldXpos = current_position[X_AXIS],
  1896. oldYpos = current_position[Y_AXIS];
  1897. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1898. // If endstop is already false, the Z probe is deployed
  1899. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1900. // Would a goto be less ugly?
  1901. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1902. // for a triggered when stowed manual probe.
  1903. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1904. // otherwise an Allen-Key probe can't be stowed.
  1905. #endif
  1906. #if ENABLED(SOLENOID_PROBE)
  1907. #if HAS_SOLENOID_1
  1908. WRITE(SOL1_PIN, deploy);
  1909. #endif
  1910. #elif ENABLED(Z_PROBE_SLED)
  1911. dock_sled(!deploy);
  1912. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1913. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[deploy ? 0 : 1]);
  1914. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1915. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1916. #endif
  1917. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1918. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1919. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1920. if (IsRunning()) {
  1921. SERIAL_ERROR_START();
  1922. SERIAL_ERRORLNPGM("Z-Probe failed");
  1923. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1924. }
  1925. stop();
  1926. return true;
  1927. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1928. #endif
  1929. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1930. endstops.enable_z_probe(deploy);
  1931. return false;
  1932. }
  1933. /**
  1934. * @brief Used by run_z_probe to do a single Z probe move.
  1935. *
  1936. * @param z Z destination
  1937. * @param fr_mm_s Feedrate in mm/s
  1938. * @return true to indicate an error
  1939. */
  1940. static bool do_probe_move(const float z, const float fr_mm_m) {
  1941. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1942. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1943. #endif
  1944. // Deploy BLTouch at the start of any probe
  1945. #if ENABLED(BLTOUCH)
  1946. if (set_bltouch_deployed(true)) return true;
  1947. #endif
  1948. #if QUIET_PROBING
  1949. probing_pause(true);
  1950. #endif
  1951. // Move down until probe triggered
  1952. do_blocking_move_to_z(z, MMM_TO_MMS(fr_mm_m));
  1953. // Check to see if the probe was triggered
  1954. const bool probe_triggered = TEST(Endstops::endstop_hit_bits,
  1955. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  1956. Z_MIN
  1957. #else
  1958. Z_MIN_PROBE
  1959. #endif
  1960. );
  1961. #if QUIET_PROBING
  1962. probing_pause(false);
  1963. #endif
  1964. // Retract BLTouch immediately after a probe if it was triggered
  1965. #if ENABLED(BLTOUCH)
  1966. if (probe_triggered && set_bltouch_deployed(false)) return true;
  1967. #endif
  1968. // Clear endstop flags
  1969. endstops.hit_on_purpose();
  1970. // Get Z where the steppers were interrupted
  1971. set_current_from_steppers_for_axis(Z_AXIS);
  1972. // Tell the planner where we actually are
  1973. SYNC_PLAN_POSITION_KINEMATIC();
  1974. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1975. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1976. #endif
  1977. return !probe_triggered;
  1978. }
  1979. /**
  1980. * @details Used by probe_pt to do a single Z probe.
  1981. * Leaves current_position[Z_AXIS] at the height where the probe triggered.
  1982. *
  1983. * @param short_move Flag for a shorter probe move towards the bed
  1984. * @return The raw Z position where the probe was triggered
  1985. */
  1986. static float run_z_probe(const bool short_move=true) {
  1987. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1988. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1989. #endif
  1990. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1991. refresh_cmd_timeout();
  1992. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1993. // Do a first probe at the fast speed
  1994. if (do_probe_move(-10, Z_PROBE_SPEED_FAST)) return NAN;
  1995. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1996. float first_probe_z = current_position[Z_AXIS];
  1997. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1998. #endif
  1999. // move up to make clearance for the probe
  2000. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2001. #else
  2002. // If the nozzle is above the travel height then
  2003. // move down quickly before doing the slow probe
  2004. float z = Z_CLEARANCE_DEPLOY_PROBE;
  2005. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  2006. if (z < current_position[Z_AXIS]) {
  2007. // If we don't make it to the z position (i.e. the probe triggered), move up to make clearance for the probe
  2008. if (!do_probe_move(z, Z_PROBE_SPEED_FAST))
  2009. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2010. }
  2011. #endif
  2012. // move down slowly to find bed
  2013. if (do_probe_move(-10 + (short_move ? 0 : -(Z_MAX_LENGTH)), Z_PROBE_SPEED_SLOW)) return NAN;
  2014. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2015. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  2016. #endif
  2017. // Debug: compare probe heights
  2018. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  2019. if (DEBUGGING(LEVELING)) {
  2020. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  2021. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  2022. }
  2023. #endif
  2024. return RAW_CURRENT_POSITION(Z) + zprobe_zoffset
  2025. #if ENABLED(DELTA)
  2026. + home_offset[Z_AXIS] // Account for delta height adjustment
  2027. #endif
  2028. ;
  2029. }
  2030. /**
  2031. * - Move to the given XY
  2032. * - Deploy the probe, if not already deployed
  2033. * - Probe the bed, get the Z position
  2034. * - Depending on the 'stow' flag
  2035. * - Stow the probe, or
  2036. * - Raise to the BETWEEN height
  2037. * - Return the probed Z position
  2038. */
  2039. float probe_pt(const float &lx, const float &ly, const bool stow, const uint8_t verbose_level, const bool printable=true) {
  2040. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2041. if (DEBUGGING(LEVELING)) {
  2042. SERIAL_ECHOPAIR(">>> probe_pt(", lx);
  2043. SERIAL_ECHOPAIR(", ", ly);
  2044. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  2045. SERIAL_ECHOLNPGM("stow)");
  2046. DEBUG_POS("", current_position);
  2047. }
  2048. #endif
  2049. const float nx = lx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ly - (Y_PROBE_OFFSET_FROM_EXTRUDER);
  2050. if (printable
  2051. ? !position_is_reachable_xy(nx, ny)
  2052. : !position_is_reachable_by_probe_xy(lx, ly)
  2053. ) return NAN;
  2054. const float old_feedrate_mm_s = feedrate_mm_s;
  2055. #if ENABLED(DELTA)
  2056. if (current_position[Z_AXIS] > delta_clip_start_height)
  2057. do_blocking_move_to_z(delta_clip_start_height);
  2058. #endif
  2059. #if HAS_SOFTWARE_ENDSTOPS
  2060. // Store the status of the soft endstops and disable if we're probing a non-printable location
  2061. static bool enable_soft_endstops = soft_endstops_enabled;
  2062. if (!printable) soft_endstops_enabled = false;
  2063. #endif
  2064. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  2065. // Move the probe to the given XY
  2066. do_blocking_move_to_xy(nx, ny);
  2067. float measured_z = NAN;
  2068. if (!DEPLOY_PROBE()) {
  2069. measured_z = run_z_probe(printable);
  2070. if (!stow)
  2071. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2072. else
  2073. if (STOW_PROBE()) measured_z = NAN;
  2074. }
  2075. #if HAS_SOFTWARE_ENDSTOPS
  2076. // Restore the soft endstop status
  2077. soft_endstops_enabled = enable_soft_endstops;
  2078. #endif
  2079. if (verbose_level > 2) {
  2080. SERIAL_PROTOCOLPGM("Bed X: ");
  2081. SERIAL_PROTOCOL_F(lx, 3);
  2082. SERIAL_PROTOCOLPGM(" Y: ");
  2083. SERIAL_PROTOCOL_F(ly, 3);
  2084. SERIAL_PROTOCOLPGM(" Z: ");
  2085. SERIAL_PROTOCOL_F(measured_z, 3);
  2086. SERIAL_EOL();
  2087. }
  2088. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2089. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2090. #endif
  2091. feedrate_mm_s = old_feedrate_mm_s;
  2092. if (isnan(measured_z)) {
  2093. LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);
  2094. SERIAL_ERROR_START();
  2095. SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED);
  2096. }
  2097. return measured_z;
  2098. }
  2099. #endif // HAS_BED_PROBE
  2100. #if HAS_LEVELING
  2101. bool leveling_is_valid() {
  2102. return
  2103. #if ENABLED(MESH_BED_LEVELING)
  2104. mbl.has_mesh
  2105. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2106. !!bilinear_grid_spacing[X_AXIS]
  2107. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2108. true
  2109. #else // 3POINT, LINEAR
  2110. true
  2111. #endif
  2112. ;
  2113. }
  2114. /**
  2115. * Turn bed leveling on or off, fixing the current
  2116. * position as-needed.
  2117. *
  2118. * Disable: Current position = physical position
  2119. * Enable: Current position = "unleveled" physical position
  2120. */
  2121. void set_bed_leveling_enabled(const bool enable/*=true*/) {
  2122. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2123. const bool can_change = (!enable || leveling_is_valid());
  2124. #else
  2125. constexpr bool can_change = true;
  2126. #endif
  2127. if (can_change && enable != planner.leveling_active) {
  2128. #if ENABLED(MESH_BED_LEVELING)
  2129. if (!enable)
  2130. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2131. const bool enabling = enable && leveling_is_valid();
  2132. planner.leveling_active = enabling;
  2133. if (enabling) planner.unapply_leveling(current_position);
  2134. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2135. #if PLANNER_LEVELING
  2136. if (planner.leveling_active) { // leveling from on to off
  2137. // change unleveled current_position to physical current_position without moving steppers.
  2138. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2139. planner.leveling_active = false; // disable only AFTER calling apply_leveling
  2140. }
  2141. else { // leveling from off to on
  2142. planner.leveling_active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
  2143. // change physical current_position to unleveled current_position without moving steppers.
  2144. planner.unapply_leveling(current_position);
  2145. }
  2146. #else
  2147. planner.leveling_active = enable; // just flip the bit, current_position will be wrong until next move.
  2148. #endif
  2149. #else // ABL
  2150. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2151. // Force bilinear_z_offset to re-calculate next time
  2152. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2153. (void)bilinear_z_offset(reset);
  2154. #endif
  2155. // Enable or disable leveling compensation in the planner
  2156. planner.leveling_active = enable;
  2157. if (!enable)
  2158. // When disabling just get the current position from the steppers.
  2159. // This will yield the smallest error when first converted back to steps.
  2160. set_current_from_steppers_for_axis(
  2161. #if ABL_PLANAR
  2162. ALL_AXES
  2163. #else
  2164. Z_AXIS
  2165. #endif
  2166. );
  2167. else
  2168. // When enabling, remove compensation from the current position,
  2169. // so compensation will give the right stepper counts.
  2170. planner.unapply_leveling(current_position);
  2171. #endif // ABL
  2172. }
  2173. }
  2174. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2175. void set_z_fade_height(const float zfh) {
  2176. const bool level_active = planner.leveling_active;
  2177. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2178. if (level_active) set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
  2179. #endif
  2180. planner.set_z_fade_height(zfh);
  2181. if (level_active) {
  2182. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2183. set_bed_leveling_enabled(true); // turn back on after changing fade height
  2184. #else
  2185. set_current_from_steppers_for_axis(
  2186. #if ABL_PLANAR
  2187. ALL_AXES
  2188. #else
  2189. Z_AXIS
  2190. #endif
  2191. );
  2192. #endif
  2193. }
  2194. }
  2195. #endif // LEVELING_FADE_HEIGHT
  2196. /**
  2197. * Reset calibration results to zero.
  2198. */
  2199. void reset_bed_level() {
  2200. set_bed_leveling_enabled(false);
  2201. #if ENABLED(MESH_BED_LEVELING)
  2202. if (leveling_is_valid()) {
  2203. mbl.reset();
  2204. mbl.has_mesh = false;
  2205. }
  2206. #else
  2207. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2208. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2209. #endif
  2210. #if ABL_PLANAR
  2211. planner.bed_level_matrix.set_to_identity();
  2212. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2213. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2214. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2215. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2216. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2217. z_values[x][y] = NAN;
  2218. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2219. ubl.reset();
  2220. #endif
  2221. #endif
  2222. }
  2223. #endif // HAS_LEVELING
  2224. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2225. /**
  2226. * Enable to produce output in JSON format suitable
  2227. * for SCAD or JavaScript mesh visualizers.
  2228. *
  2229. * Visualize meshes in OpenSCAD using the included script.
  2230. *
  2231. * buildroot/shared/scripts/MarlinMesh.scad
  2232. */
  2233. //#define SCAD_MESH_OUTPUT
  2234. /**
  2235. * Print calibration results for plotting or manual frame adjustment.
  2236. */
  2237. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2238. #ifndef SCAD_MESH_OUTPUT
  2239. for (uint8_t x = 0; x < sx; x++) {
  2240. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2241. SERIAL_PROTOCOLCHAR(' ');
  2242. SERIAL_PROTOCOL((int)x);
  2243. }
  2244. SERIAL_EOL();
  2245. #endif
  2246. #ifdef SCAD_MESH_OUTPUT
  2247. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2248. #endif
  2249. for (uint8_t y = 0; y < sy; y++) {
  2250. #ifdef SCAD_MESH_OUTPUT
  2251. SERIAL_PROTOCOLPGM(" ["); // open sub-array
  2252. #else
  2253. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2254. SERIAL_PROTOCOL((int)y);
  2255. #endif
  2256. for (uint8_t x = 0; x < sx; x++) {
  2257. SERIAL_PROTOCOLCHAR(' ');
  2258. const float offset = fn(x, y);
  2259. if (!isnan(offset)) {
  2260. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2261. SERIAL_PROTOCOL_F(offset, precision);
  2262. }
  2263. else {
  2264. #ifdef SCAD_MESH_OUTPUT
  2265. for (uint8_t i = 3; i < precision + 3; i++)
  2266. SERIAL_PROTOCOLCHAR(' ');
  2267. SERIAL_PROTOCOLPGM("NAN");
  2268. #else
  2269. for (uint8_t i = 0; i < precision + 3; i++)
  2270. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2271. #endif
  2272. }
  2273. #ifdef SCAD_MESH_OUTPUT
  2274. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2275. #endif
  2276. }
  2277. #ifdef SCAD_MESH_OUTPUT
  2278. SERIAL_PROTOCOLCHAR(' ');
  2279. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2280. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2281. #endif
  2282. SERIAL_EOL();
  2283. }
  2284. #ifdef SCAD_MESH_OUTPUT
  2285. SERIAL_PROTOCOLPGM("];"); // close 2D array
  2286. #endif
  2287. SERIAL_EOL();
  2288. }
  2289. #endif
  2290. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2291. /**
  2292. * Extrapolate a single point from its neighbors
  2293. */
  2294. static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  2295. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2296. if (DEBUGGING(LEVELING)) {
  2297. SERIAL_ECHOPGM("Extrapolate [");
  2298. if (x < 10) SERIAL_CHAR(' ');
  2299. SERIAL_ECHO((int)x);
  2300. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2301. SERIAL_CHAR(' ');
  2302. if (y < 10) SERIAL_CHAR(' ');
  2303. SERIAL_ECHO((int)y);
  2304. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2305. SERIAL_CHAR(']');
  2306. }
  2307. #endif
  2308. if (!isnan(z_values[x][y])) {
  2309. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2310. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2311. #endif
  2312. return; // Don't overwrite good values.
  2313. }
  2314. SERIAL_EOL();
  2315. // Get X neighbors, Y neighbors, and XY neighbors
  2316. const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
  2317. float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
  2318. b1 = z_values[x ][y1], b2 = z_values[x ][y2],
  2319. c1 = z_values[x1][y1], c2 = z_values[x2][y2];
  2320. // Treat far unprobed points as zero, near as equal to far
  2321. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2322. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2323. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2324. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2325. // Take the average instead of the median
  2326. z_values[x][y] = (a + b + c) / 3.0;
  2327. // Median is robust (ignores outliers).
  2328. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2329. // : ((c < b) ? b : (a < c) ? a : c);
  2330. }
  2331. //Enable this if your SCARA uses 180° of total area
  2332. //#define EXTRAPOLATE_FROM_EDGE
  2333. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2334. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2335. #define HALF_IN_X
  2336. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2337. #define HALF_IN_Y
  2338. #endif
  2339. #endif
  2340. /**
  2341. * Fill in the unprobed points (corners of circular print surface)
  2342. * using linear extrapolation, away from the center.
  2343. */
  2344. static void extrapolate_unprobed_bed_level() {
  2345. #ifdef HALF_IN_X
  2346. constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2347. #else
  2348. constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2349. ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
  2350. xlen = ctrx1;
  2351. #endif
  2352. #ifdef HALF_IN_Y
  2353. constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2354. #else
  2355. constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2356. ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
  2357. ylen = ctry1;
  2358. #endif
  2359. for (uint8_t xo = 0; xo <= xlen; xo++)
  2360. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2361. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2362. #ifndef HALF_IN_X
  2363. const uint8_t x1 = ctrx1 - xo;
  2364. #endif
  2365. #ifndef HALF_IN_Y
  2366. const uint8_t y1 = ctry1 - yo;
  2367. #ifndef HALF_IN_X
  2368. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2369. #endif
  2370. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2371. #endif
  2372. #ifndef HALF_IN_X
  2373. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2374. #endif
  2375. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2376. }
  2377. }
  2378. static void print_bilinear_leveling_grid() {
  2379. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2380. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2381. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2382. );
  2383. }
  2384. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2385. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2386. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2387. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2388. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2389. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2390. int bilinear_grid_spacing_virt[2] = { 0 };
  2391. float bilinear_grid_factor_virt[2] = { 0 };
  2392. static void print_bilinear_leveling_grid_virt() {
  2393. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2394. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2395. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2396. );
  2397. }
  2398. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2399. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2400. uint8_t ep = 0, ip = 1;
  2401. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2402. if (x) {
  2403. ep = GRID_MAX_POINTS_X - 1;
  2404. ip = GRID_MAX_POINTS_X - 2;
  2405. }
  2406. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2407. return LINEAR_EXTRAPOLATION(
  2408. z_values[ep][y - 1],
  2409. z_values[ip][y - 1]
  2410. );
  2411. else
  2412. return LINEAR_EXTRAPOLATION(
  2413. bed_level_virt_coord(ep + 1, y),
  2414. bed_level_virt_coord(ip + 1, y)
  2415. );
  2416. }
  2417. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2418. if (y) {
  2419. ep = GRID_MAX_POINTS_Y - 1;
  2420. ip = GRID_MAX_POINTS_Y - 2;
  2421. }
  2422. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2423. return LINEAR_EXTRAPOLATION(
  2424. z_values[x - 1][ep],
  2425. z_values[x - 1][ip]
  2426. );
  2427. else
  2428. return LINEAR_EXTRAPOLATION(
  2429. bed_level_virt_coord(x, ep + 1),
  2430. bed_level_virt_coord(x, ip + 1)
  2431. );
  2432. }
  2433. return z_values[x - 1][y - 1];
  2434. }
  2435. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2436. return (
  2437. p[i-1] * -t * sq(1 - t)
  2438. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2439. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2440. - p[i+2] * sq(t) * (1 - t)
  2441. ) * 0.5;
  2442. }
  2443. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2444. float row[4], column[4];
  2445. for (uint8_t i = 0; i < 4; i++) {
  2446. for (uint8_t j = 0; j < 4; j++) {
  2447. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2448. }
  2449. row[i] = bed_level_virt_cmr(column, 1, ty);
  2450. }
  2451. return bed_level_virt_cmr(row, 1, tx);
  2452. }
  2453. void bed_level_virt_interpolate() {
  2454. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2455. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2456. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2457. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2458. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2459. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2460. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2461. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2462. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2463. continue;
  2464. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2465. bed_level_virt_2cmr(
  2466. x + 1,
  2467. y + 1,
  2468. (float)tx / (BILINEAR_SUBDIVISIONS),
  2469. (float)ty / (BILINEAR_SUBDIVISIONS)
  2470. );
  2471. }
  2472. }
  2473. #endif // ABL_BILINEAR_SUBDIVISION
  2474. // Refresh after other values have been updated
  2475. void refresh_bed_level() {
  2476. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2477. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2478. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2479. bed_level_virt_interpolate();
  2480. #endif
  2481. }
  2482. #endif // AUTO_BED_LEVELING_BILINEAR
  2483. /**
  2484. * Home an individual linear axis
  2485. */
  2486. static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
  2487. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2488. if (DEBUGGING(LEVELING)) {
  2489. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2490. SERIAL_ECHOPAIR(", ", distance);
  2491. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2492. SERIAL_CHAR(')');
  2493. SERIAL_EOL();
  2494. }
  2495. #endif
  2496. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2497. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2498. if (deploy_bltouch) set_bltouch_deployed(true);
  2499. #endif
  2500. #if QUIET_PROBING
  2501. if (axis == Z_AXIS) probing_pause(true);
  2502. #endif
  2503. // Tell the planner we're at Z=0
  2504. current_position[axis] = 0;
  2505. #if IS_SCARA
  2506. SYNC_PLAN_POSITION_KINEMATIC();
  2507. current_position[axis] = distance;
  2508. inverse_kinematics(current_position);
  2509. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2510. #else
  2511. sync_plan_position();
  2512. current_position[axis] = distance;
  2513. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2514. #endif
  2515. stepper.synchronize();
  2516. #if QUIET_PROBING
  2517. if (axis == Z_AXIS) probing_pause(false);
  2518. #endif
  2519. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2520. if (deploy_bltouch) set_bltouch_deployed(false);
  2521. #endif
  2522. endstops.hit_on_purpose();
  2523. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2524. if (DEBUGGING(LEVELING)) {
  2525. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2526. SERIAL_CHAR(')');
  2527. SERIAL_EOL();
  2528. }
  2529. #endif
  2530. }
  2531. /**
  2532. * TMC2130 specific sensorless homing using stallGuard2.
  2533. * stallGuard2 only works when in spreadCycle mode.
  2534. * spreadCycle and stealthChop are mutually exclusive.
  2535. */
  2536. #if ENABLED(SENSORLESS_HOMING)
  2537. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2538. #if ENABLED(STEALTHCHOP)
  2539. if (enable) {
  2540. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2541. st.stealthChop(0);
  2542. }
  2543. else {
  2544. st.coolstep_min_speed(0);
  2545. st.stealthChop(1);
  2546. }
  2547. #endif
  2548. st.diag1_stall(enable ? 1 : 0);
  2549. }
  2550. #endif
  2551. /**
  2552. * Home an individual "raw axis" to its endstop.
  2553. * This applies to XYZ on Cartesian and Core robots, and
  2554. * to the individual ABC steppers on DELTA and SCARA.
  2555. *
  2556. * At the end of the procedure the axis is marked as
  2557. * homed and the current position of that axis is updated.
  2558. * Kinematic robots should wait till all axes are homed
  2559. * before updating the current position.
  2560. */
  2561. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2562. static void homeaxis(const AxisEnum axis) {
  2563. #if IS_SCARA
  2564. // Only Z homing (with probe) is permitted
  2565. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2566. #else
  2567. #define CAN_HOME(A) \
  2568. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2569. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2570. #endif
  2571. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2572. if (DEBUGGING(LEVELING)) {
  2573. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2574. SERIAL_CHAR(')');
  2575. SERIAL_EOL();
  2576. }
  2577. #endif
  2578. const int axis_home_dir =
  2579. #if ENABLED(DUAL_X_CARRIAGE)
  2580. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2581. #endif
  2582. home_dir(axis);
  2583. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2584. #if HOMING_Z_WITH_PROBE
  2585. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2586. #endif
  2587. // Set a flag for Z motor locking
  2588. #if ENABLED(Z_DUAL_ENDSTOPS)
  2589. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2590. #endif
  2591. // Disable stealthChop if used. Enable diag1 pin on driver.
  2592. #if ENABLED(SENSORLESS_HOMING)
  2593. #if ENABLED(X_IS_TMC2130)
  2594. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2595. #endif
  2596. #if ENABLED(Y_IS_TMC2130)
  2597. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2598. #endif
  2599. #endif
  2600. // Fast move towards endstop until triggered
  2601. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2602. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2603. #endif
  2604. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2605. // When homing Z with probe respect probe clearance
  2606. const float bump = axis_home_dir * (
  2607. #if HOMING_Z_WITH_PROBE
  2608. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2609. #endif
  2610. home_bump_mm(axis)
  2611. );
  2612. // If a second homing move is configured...
  2613. if (bump) {
  2614. // Move away from the endstop by the axis HOME_BUMP_MM
  2615. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2616. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2617. #endif
  2618. do_homing_move(axis, -bump);
  2619. // Slow move towards endstop until triggered
  2620. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2621. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2622. #endif
  2623. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2624. }
  2625. #if ENABLED(Z_DUAL_ENDSTOPS)
  2626. if (axis == Z_AXIS) {
  2627. float adj = FABS(z_endstop_adj);
  2628. bool lockZ1;
  2629. if (axis_home_dir > 0) {
  2630. adj = -adj;
  2631. lockZ1 = (z_endstop_adj > 0);
  2632. }
  2633. else
  2634. lockZ1 = (z_endstop_adj < 0);
  2635. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2636. // Move to the adjusted endstop height
  2637. do_homing_move(axis, adj);
  2638. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2639. stepper.set_homing_flag(false);
  2640. } // Z_AXIS
  2641. #endif
  2642. #if IS_SCARA
  2643. set_axis_is_at_home(axis);
  2644. SYNC_PLAN_POSITION_KINEMATIC();
  2645. #elif ENABLED(DELTA)
  2646. // Delta has already moved all three towers up in G28
  2647. // so here it re-homes each tower in turn.
  2648. // Delta homing treats the axes as normal linear axes.
  2649. // retrace by the amount specified in endstop_adj + additional 0.1mm in order to have minimum steps
  2650. if (endstop_adj[axis] * Z_HOME_DIR <= 0) {
  2651. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2652. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2653. #endif
  2654. do_homing_move(axis, endstop_adj[axis] - 0.1 * Z_HOME_DIR);
  2655. }
  2656. #else
  2657. // For cartesian/core machines,
  2658. // set the axis to its home position
  2659. set_axis_is_at_home(axis);
  2660. sync_plan_position();
  2661. destination[axis] = current_position[axis];
  2662. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2663. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2664. #endif
  2665. #endif
  2666. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2667. #if ENABLED(SENSORLESS_HOMING)
  2668. #if ENABLED(X_IS_TMC2130)
  2669. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2670. #endif
  2671. #if ENABLED(Y_IS_TMC2130)
  2672. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2673. #endif
  2674. #endif
  2675. // Put away the Z probe
  2676. #if HOMING_Z_WITH_PROBE
  2677. if (axis == Z_AXIS && STOW_PROBE()) return;
  2678. #endif
  2679. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2680. if (DEBUGGING(LEVELING)) {
  2681. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2682. SERIAL_CHAR(')');
  2683. SERIAL_EOL();
  2684. }
  2685. #endif
  2686. } // homeaxis()
  2687. #if ENABLED(FWRETRACT)
  2688. /**
  2689. * Retract or recover according to firmware settings
  2690. *
  2691. * This function handles retract/recover moves for G10 and G11,
  2692. * plus auto-retract moves sent from G0/G1 when E-only moves are done.
  2693. *
  2694. * To simplify the logic, doubled retract/recover moves are ignored.
  2695. *
  2696. * Note: Z lift is done transparently to the planner. Aborting
  2697. * a print between G10 and G11 may corrupt the Z position.
  2698. *
  2699. * Note: Auto-retract will apply the set Z hop in addition to any Z hop
  2700. * included in the G-code. Use M207 Z0 to to prevent double hop.
  2701. */
  2702. void retract(const bool retracting
  2703. #if EXTRUDERS > 1
  2704. , bool swapping = false
  2705. #endif
  2706. ) {
  2707. static float hop_height, // Remember where the Z height started
  2708. hop_amount = 0.0; // Total amount lifted, for use in recover
  2709. // Simply never allow two retracts or recovers in a row
  2710. if (retracted[active_extruder] == retracting) return;
  2711. #if EXTRUDERS < 2
  2712. bool swapping = false;
  2713. #endif
  2714. if (!retracting) swapping = retracted_swap[active_extruder];
  2715. /* // debugging
  2716. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2717. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2718. SERIAL_ECHOLNPAIR("active extruder ", active_extruder);
  2719. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2720. SERIAL_ECHOPAIR("retracted[", i);
  2721. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2722. SERIAL_ECHOPAIR("retracted_swap[", i);
  2723. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2724. }
  2725. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2726. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2727. //*/
  2728. const bool has_zhop = retract_zlift > 0.01; // Is there a hop set?
  2729. const float old_feedrate_mm_s = feedrate_mm_s;
  2730. const int16_t old_flow = flow_percentage[active_extruder];
  2731. // Don't apply flow multiplication to retract/recover
  2732. flow_percentage[active_extruder] = 100;
  2733. // The current position will be the destination for E and Z moves
  2734. set_destination_to_current();
  2735. stepper.synchronize(); // Wait for all moves to finish
  2736. if (retracting) {
  2737. // Remember the Z height since G-code may include its own Z-hop
  2738. // For best results turn off Z hop if G-code already includes it
  2739. hop_height = destination[Z_AXIS];
  2740. // Retract by moving from a faux E position back to the current E position
  2741. feedrate_mm_s = retract_feedrate_mm_s;
  2742. current_position[E_AXIS] += (swapping ? swap_retract_length : retract_length) / volumetric_multiplier[active_extruder];
  2743. sync_plan_position_e();
  2744. prepare_move_to_destination();
  2745. // Is a Z hop set, and has the hop not yet been done?
  2746. if (has_zhop) {
  2747. hop_amount += retract_zlift; // Carriage is raised for retraction hop
  2748. current_position[Z_AXIS] -= retract_zlift; // Pretend current pos is lower. Next move raises Z.
  2749. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2750. prepare_move_to_destination(); // Raise up to the old current pos
  2751. }
  2752. }
  2753. else {
  2754. // If a hop was done and Z hasn't changed, undo the Z hop
  2755. if (hop_amount && NEAR(hop_height, destination[Z_AXIS])) {
  2756. current_position[Z_AXIS] += hop_amount; // Pretend current pos is higher. Next move lowers Z.
  2757. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2758. prepare_move_to_destination(); // Lower to the old current pos
  2759. hop_amount = 0.0;
  2760. }
  2761. // A retract multiplier has been added here to get faster swap recovery
  2762. feedrate_mm_s = swapping ? swap_retract_recover_feedrate_mm_s : retract_recover_feedrate_mm_s;
  2763. const float move_e = swapping ? swap_retract_length + swap_retract_recover_length : retract_length + retract_recover_length;
  2764. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2765. sync_plan_position_e();
  2766. prepare_move_to_destination(); // Recover E
  2767. }
  2768. // Restore flow and feedrate
  2769. flow_percentage[active_extruder] = old_flow;
  2770. feedrate_mm_s = old_feedrate_mm_s;
  2771. // The active extruder is now retracted or recovered
  2772. retracted[active_extruder] = retracting;
  2773. // If swap retract/recover then update the retracted_swap flag too
  2774. #if EXTRUDERS > 1
  2775. if (swapping) retracted_swap[active_extruder] = retracting;
  2776. #endif
  2777. /* // debugging
  2778. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2779. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2780. SERIAL_ECHOLNPAIR("active_extruder ", active_extruder);
  2781. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2782. SERIAL_ECHOPAIR("retracted[", i);
  2783. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2784. SERIAL_ECHOPAIR("retracted_swap[", i);
  2785. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2786. }
  2787. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2788. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2789. //*/
  2790. } // retract()
  2791. #endif // FWRETRACT
  2792. #if ENABLED(MIXING_EXTRUDER)
  2793. void normalize_mix() {
  2794. float mix_total = 0.0;
  2795. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2796. // Scale all values if they don't add up to ~1.0
  2797. if (!NEAR(mix_total, 1.0)) {
  2798. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2799. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2800. }
  2801. }
  2802. #if ENABLED(DIRECT_MIXING_IN_G1)
  2803. // Get mixing parameters from the GCode
  2804. // The total "must" be 1.0 (but it will be normalized)
  2805. // If no mix factors are given, the old mix is preserved
  2806. void gcode_get_mix() {
  2807. const char* mixing_codes = "ABCDHI";
  2808. byte mix_bits = 0;
  2809. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2810. if (parser.seenval(mixing_codes[i])) {
  2811. SBI(mix_bits, i);
  2812. float v = parser.value_float();
  2813. NOLESS(v, 0.0);
  2814. mixing_factor[i] = RECIPROCAL(v);
  2815. }
  2816. }
  2817. // If any mixing factors were included, clear the rest
  2818. // If none were included, preserve the last mix
  2819. if (mix_bits) {
  2820. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2821. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2822. normalize_mix();
  2823. }
  2824. }
  2825. #endif
  2826. #endif
  2827. /**
  2828. * ***************************************************************************
  2829. * ***************************** G-CODE HANDLING *****************************
  2830. * ***************************************************************************
  2831. */
  2832. /**
  2833. * Set XYZE destination and feedrate from the current GCode command
  2834. *
  2835. * - Set destination from included axis codes
  2836. * - Set to current for missing axis codes
  2837. * - Set the feedrate, if included
  2838. */
  2839. void gcode_get_destination() {
  2840. LOOP_XYZE(i) {
  2841. if (parser.seen(axis_codes[i]))
  2842. destination[i] = parser.value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2843. else
  2844. destination[i] = current_position[i];
  2845. }
  2846. if (parser.linearval('F') > 0.0)
  2847. feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
  2848. #if ENABLED(PRINTCOUNTER)
  2849. if (!DEBUGGING(DRYRUN))
  2850. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2851. #endif
  2852. // Get ABCDHI mixing factors
  2853. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2854. gcode_get_mix();
  2855. #endif
  2856. }
  2857. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2858. /**
  2859. * Output a "busy" message at regular intervals
  2860. * while the machine is not accepting commands.
  2861. */
  2862. void host_keepalive() {
  2863. const millis_t ms = millis();
  2864. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2865. if (PENDING(ms, next_busy_signal_ms)) return;
  2866. switch (busy_state) {
  2867. case IN_HANDLER:
  2868. case IN_PROCESS:
  2869. SERIAL_ECHO_START();
  2870. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2871. break;
  2872. case PAUSED_FOR_USER:
  2873. SERIAL_ECHO_START();
  2874. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2875. break;
  2876. case PAUSED_FOR_INPUT:
  2877. SERIAL_ECHO_START();
  2878. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2879. break;
  2880. default:
  2881. break;
  2882. }
  2883. }
  2884. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2885. }
  2886. #endif // HOST_KEEPALIVE_FEATURE
  2887. /**************************************************
  2888. ***************** GCode Handlers *****************
  2889. **************************************************/
  2890. /**
  2891. * G0, G1: Coordinated movement of X Y Z E axes
  2892. */
  2893. inline void gcode_G0_G1(
  2894. #if IS_SCARA
  2895. bool fast_move=false
  2896. #endif
  2897. ) {
  2898. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2899. if (axis_unhomed_error()) return;
  2900. #endif
  2901. if (IsRunning()) {
  2902. gcode_get_destination(); // For X Y Z E F
  2903. #if ENABLED(FWRETRACT)
  2904. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  2905. // When M209 Autoretract is enabled, convert E-only moves to firmware retract/recover moves
  2906. if (autoretract_enabled && parser.seen('E') && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z'))) {
  2907. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2908. // Is this a retract or recover move?
  2909. if (WITHIN(FABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && retracted[active_extruder] == (echange > 0.0)) {
  2910. current_position[E_AXIS] = destination[E_AXIS]; // Hide a G1-based retract/recover from calculations
  2911. sync_plan_position_e(); // AND from the planner
  2912. return retract(echange < 0.0); // Firmware-based retract/recover (double-retract ignored)
  2913. }
  2914. }
  2915. }
  2916. #endif // FWRETRACT
  2917. #if IS_SCARA
  2918. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2919. #else
  2920. prepare_move_to_destination();
  2921. #endif
  2922. }
  2923. }
  2924. /**
  2925. * G2: Clockwise Arc
  2926. * G3: Counterclockwise Arc
  2927. *
  2928. * This command has two forms: IJ-form and R-form.
  2929. *
  2930. * - I specifies an X offset. J specifies a Y offset.
  2931. * At least one of the IJ parameters is required.
  2932. * X and Y can be omitted to do a complete circle.
  2933. * The given XY is not error-checked. The arc ends
  2934. * based on the angle of the destination.
  2935. * Mixing I or J with R will throw an error.
  2936. *
  2937. * - R specifies the radius. X or Y is required.
  2938. * Omitting both X and Y will throw an error.
  2939. * X or Y must differ from the current XY.
  2940. * Mixing R with I or J will throw an error.
  2941. *
  2942. * - P specifies the number of full circles to do
  2943. * before the specified arc move.
  2944. *
  2945. * Examples:
  2946. *
  2947. * G2 I10 ; CW circle centered at X+10
  2948. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2949. */
  2950. #if ENABLED(ARC_SUPPORT)
  2951. inline void gcode_G2_G3(bool clockwise) {
  2952. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2953. if (axis_unhomed_error()) return;
  2954. #endif
  2955. if (IsRunning()) {
  2956. #if ENABLED(SF_ARC_FIX)
  2957. const bool relative_mode_backup = relative_mode;
  2958. relative_mode = true;
  2959. #endif
  2960. gcode_get_destination();
  2961. #if ENABLED(SF_ARC_FIX)
  2962. relative_mode = relative_mode_backup;
  2963. #endif
  2964. float arc_offset[2] = { 0.0, 0.0 };
  2965. if (parser.seenval('R')) {
  2966. const float r = parser.value_linear_units(),
  2967. p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
  2968. p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
  2969. if (r && (p2 != p1 || q2 != q1)) {
  2970. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2971. dx = p2 - p1, dy = q2 - q1, // X and Y differences
  2972. d = HYPOT(dx, dy), // Linear distance between the points
  2973. h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2974. mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
  2975. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2976. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2977. arc_offset[0] = cx - p1;
  2978. arc_offset[1] = cy - q1;
  2979. }
  2980. }
  2981. else {
  2982. if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
  2983. if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
  2984. }
  2985. if (arc_offset[0] || arc_offset[1]) {
  2986. #if ENABLED(ARC_P_CIRCLES)
  2987. // P indicates number of circles to do
  2988. int8_t circles_to_do = parser.byteval('P');
  2989. if (!WITHIN(circles_to_do, 0, 100)) {
  2990. SERIAL_ERROR_START();
  2991. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2992. }
  2993. while (circles_to_do--)
  2994. plan_arc(current_position, arc_offset, clockwise);
  2995. #endif
  2996. // Send the arc to the planner
  2997. plan_arc(destination, arc_offset, clockwise);
  2998. refresh_cmd_timeout();
  2999. }
  3000. else {
  3001. // Bad arguments
  3002. SERIAL_ERROR_START();
  3003. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  3004. }
  3005. }
  3006. }
  3007. #endif // ARC_SUPPORT
  3008. void dwell(millis_t time) {
  3009. refresh_cmd_timeout();
  3010. time += previous_cmd_ms;
  3011. while (PENDING(millis(), time)) idle();
  3012. }
  3013. /**
  3014. * G4: Dwell S<seconds> or P<milliseconds>
  3015. */
  3016. inline void gcode_G4() {
  3017. millis_t dwell_ms = 0;
  3018. if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
  3019. if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
  3020. stepper.synchronize();
  3021. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  3022. dwell(dwell_ms);
  3023. }
  3024. #if ENABLED(BEZIER_CURVE_SUPPORT)
  3025. /**
  3026. * Parameters interpreted according to:
  3027. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  3028. * However I, J omission is not supported at this point; all
  3029. * parameters can be omitted and default to zero.
  3030. */
  3031. /**
  3032. * G5: Cubic B-spline
  3033. */
  3034. inline void gcode_G5() {
  3035. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  3036. if (axis_unhomed_error()) return;
  3037. #endif
  3038. if (IsRunning()) {
  3039. #if ENABLED(CNC_WORKSPACE_PLANES)
  3040. if (workspace_plane != PLANE_XY) {
  3041. SERIAL_ERROR_START();
  3042. SERIAL_ERRORLNPGM(MSG_ERR_BAD_PLANE_MODE);
  3043. return;
  3044. }
  3045. #endif
  3046. gcode_get_destination();
  3047. const float offset[] = {
  3048. parser.linearval('I'),
  3049. parser.linearval('J'),
  3050. parser.linearval('P'),
  3051. parser.linearval('Q')
  3052. };
  3053. plan_cubic_move(offset);
  3054. }
  3055. }
  3056. #endif // BEZIER_CURVE_SUPPORT
  3057. #if ENABLED(FWRETRACT)
  3058. /**
  3059. * G10 - Retract filament according to settings of M207
  3060. */
  3061. inline void gcode_G10() {
  3062. #if EXTRUDERS > 1
  3063. const bool rs = parser.boolval('S');
  3064. retracted_swap[active_extruder] = rs; // Use 'S' for swap, default to false
  3065. #endif
  3066. retract(true
  3067. #if EXTRUDERS > 1
  3068. , rs
  3069. #endif
  3070. );
  3071. }
  3072. /**
  3073. * G11 - Recover filament according to settings of M208
  3074. */
  3075. inline void gcode_G11() { retract(false); }
  3076. #endif // FWRETRACT
  3077. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  3078. /**
  3079. * G12: Clean the nozzle
  3080. */
  3081. inline void gcode_G12() {
  3082. // Don't allow nozzle cleaning without homing first
  3083. if (axis_unhomed_error()) return;
  3084. const uint8_t pattern = parser.ushortval('P', 0),
  3085. strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
  3086. objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
  3087. const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
  3088. Nozzle::clean(pattern, strokes, radius, objects);
  3089. }
  3090. #endif
  3091. #if ENABLED(CNC_WORKSPACE_PLANES)
  3092. void report_workspace_plane() {
  3093. SERIAL_ECHO_START();
  3094. SERIAL_ECHOPGM("Workspace Plane ");
  3095. serialprintPGM(workspace_plane == PLANE_YZ ? PSTR("YZ\n") : workspace_plane == PLANE_ZX ? PSTR("ZX\n") : PSTR("XY\n"));
  3096. }
  3097. /**
  3098. * G17: Select Plane XY
  3099. * G18: Select Plane ZX
  3100. * G19: Select Plane YZ
  3101. */
  3102. inline void gcode_G17() { workspace_plane = PLANE_XY; }
  3103. inline void gcode_G18() { workspace_plane = PLANE_ZX; }
  3104. inline void gcode_G19() { workspace_plane = PLANE_YZ; }
  3105. #endif // CNC_WORKSPACE_PLANES
  3106. #if ENABLED(INCH_MODE_SUPPORT)
  3107. /**
  3108. * G20: Set input mode to inches
  3109. */
  3110. inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
  3111. /**
  3112. * G21: Set input mode to millimeters
  3113. */
  3114. inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
  3115. #endif
  3116. #if ENABLED(NOZZLE_PARK_FEATURE)
  3117. /**
  3118. * G27: Park the nozzle
  3119. */
  3120. inline void gcode_G27() {
  3121. // Don't allow nozzle parking without homing first
  3122. if (axis_unhomed_error()) return;
  3123. Nozzle::park(parser.ushortval('P'));
  3124. }
  3125. #endif // NOZZLE_PARK_FEATURE
  3126. #if ENABLED(QUICK_HOME)
  3127. static void quick_home_xy() {
  3128. // Pretend the current position is 0,0
  3129. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3130. sync_plan_position();
  3131. const int x_axis_home_dir =
  3132. #if ENABLED(DUAL_X_CARRIAGE)
  3133. x_home_dir(active_extruder)
  3134. #else
  3135. home_dir(X_AXIS)
  3136. #endif
  3137. ;
  3138. const float mlx = max_length(X_AXIS),
  3139. mly = max_length(Y_AXIS),
  3140. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  3141. fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
  3142. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  3143. endstops.hit_on_purpose(); // clear endstop hit flags
  3144. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3145. }
  3146. #endif // QUICK_HOME
  3147. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3148. void log_machine_info() {
  3149. SERIAL_ECHOPGM("Machine Type: ");
  3150. #if ENABLED(DELTA)
  3151. SERIAL_ECHOLNPGM("Delta");
  3152. #elif IS_SCARA
  3153. SERIAL_ECHOLNPGM("SCARA");
  3154. #elif IS_CORE
  3155. SERIAL_ECHOLNPGM("Core");
  3156. #else
  3157. SERIAL_ECHOLNPGM("Cartesian");
  3158. #endif
  3159. SERIAL_ECHOPGM("Probe: ");
  3160. #if ENABLED(PROBE_MANUALLY)
  3161. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  3162. #elif ENABLED(FIX_MOUNTED_PROBE)
  3163. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  3164. #elif ENABLED(BLTOUCH)
  3165. SERIAL_ECHOLNPGM("BLTOUCH");
  3166. #elif HAS_Z_SERVO_ENDSTOP
  3167. SERIAL_ECHOLNPGM("SERVO PROBE");
  3168. #elif ENABLED(Z_PROBE_SLED)
  3169. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3170. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3171. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3172. #else
  3173. SERIAL_ECHOLNPGM("NONE");
  3174. #endif
  3175. #if HAS_BED_PROBE
  3176. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3177. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3178. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3179. #if X_PROBE_OFFSET_FROM_EXTRUDER > 0
  3180. SERIAL_ECHOPGM(" (Right");
  3181. #elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
  3182. SERIAL_ECHOPGM(" (Left");
  3183. #elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
  3184. SERIAL_ECHOPGM(" (Middle");
  3185. #else
  3186. SERIAL_ECHOPGM(" (Aligned With");
  3187. #endif
  3188. #if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
  3189. SERIAL_ECHOPGM("-Back");
  3190. #elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
  3191. SERIAL_ECHOPGM("-Front");
  3192. #elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
  3193. SERIAL_ECHOPGM("-Center");
  3194. #endif
  3195. if (zprobe_zoffset < 0)
  3196. SERIAL_ECHOPGM(" & Below");
  3197. else if (zprobe_zoffset > 0)
  3198. SERIAL_ECHOPGM(" & Above");
  3199. else
  3200. SERIAL_ECHOPGM(" & Same Z as");
  3201. SERIAL_ECHOLNPGM(" Nozzle)");
  3202. #endif
  3203. #if HAS_ABL
  3204. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3205. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3206. SERIAL_ECHOPGM("LINEAR");
  3207. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3208. SERIAL_ECHOPGM("BILINEAR");
  3209. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3210. SERIAL_ECHOPGM("3POINT");
  3211. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3212. SERIAL_ECHOPGM("UBL");
  3213. #endif
  3214. if (planner.leveling_active) {
  3215. SERIAL_ECHOLNPGM(" (enabled)");
  3216. #if ABL_PLANAR
  3217. const float diff[XYZ] = {
  3218. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3219. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3220. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3221. };
  3222. SERIAL_ECHOPGM("ABL Adjustment X");
  3223. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3224. SERIAL_ECHO(diff[X_AXIS]);
  3225. SERIAL_ECHOPGM(" Y");
  3226. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3227. SERIAL_ECHO(diff[Y_AXIS]);
  3228. SERIAL_ECHOPGM(" Z");
  3229. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3230. SERIAL_ECHO(diff[Z_AXIS]);
  3231. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3232. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3233. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3234. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3235. #endif
  3236. }
  3237. else
  3238. SERIAL_ECHOLNPGM(" (disabled)");
  3239. SERIAL_EOL();
  3240. #elif ENABLED(MESH_BED_LEVELING)
  3241. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3242. if (planner.leveling_active) {
  3243. float lz = current_position[Z_AXIS];
  3244. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  3245. SERIAL_ECHOLNPGM(" (enabled)");
  3246. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  3247. }
  3248. else
  3249. SERIAL_ECHOPGM(" (disabled)");
  3250. SERIAL_EOL();
  3251. #endif // MESH_BED_LEVELING
  3252. }
  3253. #endif // DEBUG_LEVELING_FEATURE
  3254. #if ENABLED(DELTA)
  3255. /**
  3256. * A delta can only safely home all axes at the same time
  3257. * This is like quick_home_xy() but for 3 towers.
  3258. */
  3259. inline bool home_delta() {
  3260. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3261. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3262. #endif
  3263. // Init the current position of all carriages to 0,0,0
  3264. ZERO(current_position);
  3265. sync_plan_position();
  3266. // Move all carriages together linearly until an endstop is hit.
  3267. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (DELTA_HEIGHT + home_offset[Z_AXIS] + 10);
  3268. feedrate_mm_s = homing_feedrate(X_AXIS);
  3269. line_to_current_position();
  3270. stepper.synchronize();
  3271. // If an endstop was not hit, then damage can occur if homing is continued.
  3272. // This can occur if the delta height (DELTA_HEIGHT + home_offset[Z_AXIS]) is
  3273. // not set correctly.
  3274. if (!(Endstops::endstop_hit_bits & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)))) {
  3275. LCD_MESSAGEPGM(MSG_ERR_HOMING_FAILED);
  3276. SERIAL_ERROR_START();
  3277. SERIAL_ERRORLNPGM(MSG_ERR_HOMING_FAILED);
  3278. return false;
  3279. }
  3280. endstops.hit_on_purpose(); // clear endstop hit flags
  3281. // At least one carriage has reached the top.
  3282. // Now re-home each carriage separately.
  3283. HOMEAXIS(A);
  3284. HOMEAXIS(B);
  3285. HOMEAXIS(C);
  3286. // Set all carriages to their home positions
  3287. // Do this here all at once for Delta, because
  3288. // XYZ isn't ABC. Applying this per-tower would
  3289. // give the impression that they are the same.
  3290. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3291. SYNC_PLAN_POSITION_KINEMATIC();
  3292. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3293. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3294. #endif
  3295. return true;
  3296. }
  3297. #endif // DELTA
  3298. #if ENABLED(Z_SAFE_HOMING)
  3299. inline void home_z_safely() {
  3300. // Disallow Z homing if X or Y are unknown
  3301. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3302. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3303. SERIAL_ECHO_START();
  3304. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3305. return;
  3306. }
  3307. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3308. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3309. #endif
  3310. SYNC_PLAN_POSITION_KINEMATIC();
  3311. /**
  3312. * Move the Z probe (or just the nozzle) to the safe homing point
  3313. */
  3314. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3315. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3316. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3317. #if HOMING_Z_WITH_PROBE
  3318. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3319. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3320. #endif
  3321. if (position_is_reachable_xy(destination[X_AXIS], destination[Y_AXIS])) {
  3322. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3323. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3324. #endif
  3325. // This causes the carriage on Dual X to unpark
  3326. #if ENABLED(DUAL_X_CARRIAGE)
  3327. active_extruder_parked = false;
  3328. #endif
  3329. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3330. HOMEAXIS(Z);
  3331. }
  3332. else {
  3333. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3334. SERIAL_ECHO_START();
  3335. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3336. }
  3337. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3338. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3339. #endif
  3340. }
  3341. #endif // Z_SAFE_HOMING
  3342. #if ENABLED(PROBE_MANUALLY)
  3343. bool g29_in_progress = false;
  3344. #else
  3345. constexpr bool g29_in_progress = false;
  3346. #endif
  3347. /**
  3348. * G28: Home all axes according to settings
  3349. *
  3350. * Parameters
  3351. *
  3352. * None Home to all axes with no parameters.
  3353. * With QUICK_HOME enabled XY will home together, then Z.
  3354. *
  3355. * Cartesian parameters
  3356. *
  3357. * X Home to the X endstop
  3358. * Y Home to the Y endstop
  3359. * Z Home to the Z endstop
  3360. *
  3361. */
  3362. inline void gcode_G28(const bool always_home_all) {
  3363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3364. if (DEBUGGING(LEVELING)) {
  3365. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3366. log_machine_info();
  3367. }
  3368. #endif
  3369. // Wait for planner moves to finish!
  3370. stepper.synchronize();
  3371. // Cancel the active G29 session
  3372. #if ENABLED(PROBE_MANUALLY)
  3373. g29_in_progress = false;
  3374. #endif
  3375. // Disable the leveling matrix before homing
  3376. #if HAS_LEVELING
  3377. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3378. const bool ubl_state_at_entry = planner.leveling_active;
  3379. #endif
  3380. set_bed_leveling_enabled(false);
  3381. #endif
  3382. #if ENABLED(CNC_WORKSPACE_PLANES)
  3383. workspace_plane = PLANE_XY;
  3384. #endif
  3385. // Always home with tool 0 active
  3386. #if HOTENDS > 1
  3387. const uint8_t old_tool_index = active_extruder;
  3388. tool_change(0, 0, true);
  3389. #endif
  3390. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3391. extruder_duplication_enabled = false;
  3392. #endif
  3393. setup_for_endstop_or_probe_move();
  3394. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3395. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3396. #endif
  3397. endstops.enable(true); // Enable endstops for next homing move
  3398. #if ENABLED(DELTA)
  3399. home_delta();
  3400. UNUSED(always_home_all);
  3401. #else // NOT DELTA
  3402. const bool homeX = always_home_all || parser.seen('X'),
  3403. homeY = always_home_all || parser.seen('Y'),
  3404. homeZ = always_home_all || parser.seen('Z'),
  3405. home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3406. set_destination_to_current();
  3407. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3408. if (home_all || homeZ) {
  3409. HOMEAXIS(Z);
  3410. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3411. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3412. #endif
  3413. }
  3414. #else
  3415. if (home_all || homeX || homeY) {
  3416. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3417. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3418. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3419. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3420. if (DEBUGGING(LEVELING))
  3421. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3422. #endif
  3423. do_blocking_move_to_z(destination[Z_AXIS]);
  3424. }
  3425. }
  3426. #endif
  3427. #if ENABLED(QUICK_HOME)
  3428. if (home_all || (homeX && homeY)) quick_home_xy();
  3429. #endif
  3430. #if ENABLED(HOME_Y_BEFORE_X)
  3431. // Home Y
  3432. if (home_all || homeY) {
  3433. HOMEAXIS(Y);
  3434. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3435. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3436. #endif
  3437. }
  3438. #endif
  3439. // Home X
  3440. if (home_all || homeX) {
  3441. #if ENABLED(DUAL_X_CARRIAGE)
  3442. // Always home the 2nd (right) extruder first
  3443. active_extruder = 1;
  3444. HOMEAXIS(X);
  3445. // Remember this extruder's position for later tool change
  3446. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3447. // Home the 1st (left) extruder
  3448. active_extruder = 0;
  3449. HOMEAXIS(X);
  3450. // Consider the active extruder to be parked
  3451. COPY(raised_parked_position, current_position);
  3452. delayed_move_time = 0;
  3453. active_extruder_parked = true;
  3454. #else
  3455. HOMEAXIS(X);
  3456. #endif
  3457. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3458. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3459. #endif
  3460. }
  3461. #if DISABLED(HOME_Y_BEFORE_X)
  3462. // Home Y
  3463. if (home_all || homeY) {
  3464. HOMEAXIS(Y);
  3465. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3466. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3467. #endif
  3468. }
  3469. #endif
  3470. // Home Z last if homing towards the bed
  3471. #if Z_HOME_DIR < 0
  3472. if (home_all || homeZ) {
  3473. #if ENABLED(Z_SAFE_HOMING)
  3474. home_z_safely();
  3475. #else
  3476. HOMEAXIS(Z);
  3477. #endif
  3478. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3479. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position);
  3480. #endif
  3481. } // home_all || homeZ
  3482. #endif // Z_HOME_DIR < 0
  3483. SYNC_PLAN_POSITION_KINEMATIC();
  3484. #endif // !DELTA (gcode_G28)
  3485. endstops.not_homing();
  3486. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3487. // move to a height where we can use the full xy-area
  3488. do_blocking_move_to_z(delta_clip_start_height);
  3489. #endif
  3490. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3491. set_bed_leveling_enabled(ubl_state_at_entry);
  3492. #endif
  3493. clean_up_after_endstop_or_probe_move();
  3494. // Restore the active tool after homing
  3495. #if HOTENDS > 1
  3496. tool_change(old_tool_index, 0,
  3497. #if ENABLED(PARKING_EXTRUDER)
  3498. false // fetch the previous toolhead
  3499. #else
  3500. true
  3501. #endif
  3502. );
  3503. #endif
  3504. lcd_refresh();
  3505. report_current_position();
  3506. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3507. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3508. #endif
  3509. } // G28
  3510. void home_all_axes() { gcode_G28(true); }
  3511. #if HAS_PROBING_PROCEDURE
  3512. void out_of_range_error(const char* p_edge) {
  3513. SERIAL_PROTOCOLPGM("?Probe ");
  3514. serialprintPGM(p_edge);
  3515. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3516. }
  3517. #endif
  3518. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3519. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3520. extern bool lcd_wait_for_move;
  3521. #endif
  3522. inline void _manual_goto_xy(const float &x, const float &y) {
  3523. const float old_feedrate_mm_s = feedrate_mm_s;
  3524. #if MANUAL_PROBE_HEIGHT > 0
  3525. const float prev_z = current_position[Z_AXIS];
  3526. feedrate_mm_s = homing_feedrate(Z_AXIS);
  3527. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MANUAL_PROBE_HEIGHT);
  3528. line_to_current_position();
  3529. #endif
  3530. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3531. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3532. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3533. line_to_current_position();
  3534. #if MANUAL_PROBE_HEIGHT > 0
  3535. feedrate_mm_s = homing_feedrate(Z_AXIS);
  3536. current_position[Z_AXIS] = prev_z; // move back to the previous Z.
  3537. line_to_current_position();
  3538. #endif
  3539. feedrate_mm_s = old_feedrate_mm_s;
  3540. stepper.synchronize();
  3541. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3542. lcd_wait_for_move = false;
  3543. #endif
  3544. }
  3545. #endif
  3546. #if ENABLED(MESH_BED_LEVELING)
  3547. // Save 130 bytes with non-duplication of PSTR
  3548. void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3549. void mbl_mesh_report() {
  3550. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3551. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3552. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3553. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3554. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3555. );
  3556. }
  3557. void mesh_probing_done() {
  3558. mbl.has_mesh = true;
  3559. home_all_axes();
  3560. set_bed_leveling_enabled(true);
  3561. #if ENABLED(MESH_G28_REST_ORIGIN)
  3562. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3563. set_destination_to_current();
  3564. line_to_destination(homing_feedrate(Z_AXIS));
  3565. stepper.synchronize();
  3566. #endif
  3567. }
  3568. /**
  3569. * G29: Mesh-based Z probe, probes a grid and produces a
  3570. * mesh to compensate for variable bed height
  3571. *
  3572. * Parameters With MESH_BED_LEVELING:
  3573. *
  3574. * S0 Produce a mesh report
  3575. * S1 Start probing mesh points
  3576. * S2 Probe the next mesh point
  3577. * S3 Xn Yn Zn.nn Manually modify a single point
  3578. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3579. * S5 Reset and disable mesh
  3580. *
  3581. * The S0 report the points as below
  3582. *
  3583. * +----> X-axis 1-n
  3584. * |
  3585. * |
  3586. * v Y-axis 1-n
  3587. *
  3588. */
  3589. inline void gcode_G29() {
  3590. static int mbl_probe_index = -1;
  3591. #if HAS_SOFTWARE_ENDSTOPS
  3592. static bool enable_soft_endstops;
  3593. #endif
  3594. const MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
  3595. if (!WITHIN(state, 0, 5)) {
  3596. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3597. return;
  3598. }
  3599. int8_t px, py;
  3600. switch (state) {
  3601. case MeshReport:
  3602. if (leveling_is_valid()) {
  3603. SERIAL_PROTOCOLLNPAIR("State: ", planner.leveling_active ? MSG_ON : MSG_OFF);
  3604. mbl_mesh_report();
  3605. }
  3606. else
  3607. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3608. break;
  3609. case MeshStart:
  3610. mbl.reset();
  3611. mbl_probe_index = 0;
  3612. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3613. break;
  3614. case MeshNext:
  3615. if (mbl_probe_index < 0) {
  3616. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3617. return;
  3618. }
  3619. // For each G29 S2...
  3620. if (mbl_probe_index == 0) {
  3621. #if HAS_SOFTWARE_ENDSTOPS
  3622. // For the initial G29 S2 save software endstop state
  3623. enable_soft_endstops = soft_endstops_enabled;
  3624. #endif
  3625. }
  3626. else {
  3627. // For G29 S2 after adjusting Z.
  3628. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3629. #if HAS_SOFTWARE_ENDSTOPS
  3630. soft_endstops_enabled = enable_soft_endstops;
  3631. #endif
  3632. }
  3633. // If there's another point to sample, move there with optional lift.
  3634. if (mbl_probe_index < GRID_MAX_POINTS) {
  3635. mbl.zigzag(mbl_probe_index, px, py);
  3636. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3637. #if HAS_SOFTWARE_ENDSTOPS
  3638. // Disable software endstops to allow manual adjustment
  3639. // If G29 is not completed, they will not be re-enabled
  3640. soft_endstops_enabled = false;
  3641. #endif
  3642. mbl_probe_index++;
  3643. }
  3644. else {
  3645. // One last "return to the bed" (as originally coded) at completion
  3646. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3647. line_to_current_position();
  3648. stepper.synchronize();
  3649. // After recording the last point, activate home and activate
  3650. mbl_probe_index = -1;
  3651. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3652. BUZZ(100, 659);
  3653. BUZZ(100, 698);
  3654. mesh_probing_done();
  3655. }
  3656. break;
  3657. case MeshSet:
  3658. if (parser.seenval('X')) {
  3659. px = parser.value_int() - 1;
  3660. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3661. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3662. return;
  3663. }
  3664. }
  3665. else {
  3666. SERIAL_CHAR('X'); echo_not_entered();
  3667. return;
  3668. }
  3669. if (parser.seenval('Y')) {
  3670. py = parser.value_int() - 1;
  3671. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3672. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3673. return;
  3674. }
  3675. }
  3676. else {
  3677. SERIAL_CHAR('Y'); echo_not_entered();
  3678. return;
  3679. }
  3680. if (parser.seenval('Z')) {
  3681. mbl.z_values[px][py] = parser.value_linear_units();
  3682. }
  3683. else {
  3684. SERIAL_CHAR('Z'); echo_not_entered();
  3685. return;
  3686. }
  3687. break;
  3688. case MeshSetZOffset:
  3689. if (parser.seenval('Z')) {
  3690. mbl.z_offset = parser.value_linear_units();
  3691. }
  3692. else {
  3693. SERIAL_CHAR('Z'); echo_not_entered();
  3694. return;
  3695. }
  3696. break;
  3697. case MeshReset:
  3698. reset_bed_level();
  3699. break;
  3700. } // switch(state)
  3701. report_current_position();
  3702. }
  3703. #elif OLDSCHOOL_ABL
  3704. #if ABL_GRID
  3705. #if ENABLED(PROBE_Y_FIRST)
  3706. #define PR_OUTER_VAR xCount
  3707. #define PR_OUTER_END abl_grid_points_x
  3708. #define PR_INNER_VAR yCount
  3709. #define PR_INNER_END abl_grid_points_y
  3710. #else
  3711. #define PR_OUTER_VAR yCount
  3712. #define PR_OUTER_END abl_grid_points_y
  3713. #define PR_INNER_VAR xCount
  3714. #define PR_INNER_END abl_grid_points_x
  3715. #endif
  3716. #endif
  3717. /**
  3718. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3719. * Will fail if the printer has not been homed with G28.
  3720. *
  3721. * Enhanced G29 Auto Bed Leveling Probe Routine
  3722. *
  3723. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3724. * or alter the bed level data. Useful to check the topology
  3725. * after a first run of G29.
  3726. *
  3727. * J Jettison current bed leveling data
  3728. *
  3729. * V Set the verbose level (0-4). Example: "G29 V3"
  3730. *
  3731. * Parameters With LINEAR leveling only:
  3732. *
  3733. * P Set the size of the grid that will be probed (P x P points).
  3734. * Example: "G29 P4"
  3735. *
  3736. * X Set the X size of the grid that will be probed (X x Y points).
  3737. * Example: "G29 X7 Y5"
  3738. *
  3739. * Y Set the Y size of the grid that will be probed (X x Y points).
  3740. *
  3741. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3742. * This is useful for manual bed leveling and finding flaws in the bed (to
  3743. * assist with part placement).
  3744. * Not supported by non-linear delta printer bed leveling.
  3745. *
  3746. * Parameters With LINEAR and BILINEAR leveling only:
  3747. *
  3748. * S Set the XY travel speed between probe points (in units/min)
  3749. *
  3750. * F Set the Front limit of the probing grid
  3751. * B Set the Back limit of the probing grid
  3752. * L Set the Left limit of the probing grid
  3753. * R Set the Right limit of the probing grid
  3754. *
  3755. * Parameters with DEBUG_LEVELING_FEATURE only:
  3756. *
  3757. * C Make a totally fake grid with no actual probing.
  3758. * For use in testing when no probing is possible.
  3759. *
  3760. * Parameters with BILINEAR leveling only:
  3761. *
  3762. * Z Supply an additional Z probe offset
  3763. *
  3764. * Extra parameters with PROBE_MANUALLY:
  3765. *
  3766. * To do manual probing simply repeat G29 until the procedure is complete.
  3767. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3768. *
  3769. * Q Query leveling and G29 state
  3770. *
  3771. * A Abort current leveling procedure
  3772. *
  3773. * Extra parameters with BILINEAR only:
  3774. *
  3775. * W Write a mesh point. (If G29 is idle.)
  3776. * I X index for mesh point
  3777. * J Y index for mesh point
  3778. * X X for mesh point, overrides I
  3779. * Y Y for mesh point, overrides J
  3780. * Z Z for mesh point. Otherwise, raw current Z.
  3781. *
  3782. * Without PROBE_MANUALLY:
  3783. *
  3784. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3785. * Include "E" to engage/disengage the Z probe for each sample.
  3786. * There's no extra effect if you have a fixed Z probe.
  3787. *
  3788. */
  3789. inline void gcode_G29() {
  3790. // G29 Q is also available if debugging
  3791. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3792. const bool query = parser.seen('Q');
  3793. const uint8_t old_debug_flags = marlin_debug_flags;
  3794. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3795. if (DEBUGGING(LEVELING)) {
  3796. DEBUG_POS(">>> gcode_G29", current_position);
  3797. log_machine_info();
  3798. }
  3799. marlin_debug_flags = old_debug_flags;
  3800. #if DISABLED(PROBE_MANUALLY)
  3801. if (query) return;
  3802. #endif
  3803. #endif
  3804. #if ENABLED(PROBE_MANUALLY)
  3805. const bool seenA = parser.seen('A'), seenQ = parser.seen('Q'), no_action = seenA || seenQ;
  3806. #endif
  3807. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3808. const bool faux = parser.boolval('C');
  3809. #elif ENABLED(PROBE_MANUALLY)
  3810. const bool faux = no_action;
  3811. #else
  3812. bool constexpr faux = false;
  3813. #endif
  3814. // Don't allow auto-leveling without homing first
  3815. if (axis_unhomed_error()) return;
  3816. // Define local vars 'static' for manual probing, 'auto' otherwise
  3817. #if ENABLED(PROBE_MANUALLY)
  3818. #define ABL_VAR static
  3819. #else
  3820. #define ABL_VAR
  3821. #endif
  3822. ABL_VAR int verbose_level;
  3823. ABL_VAR float xProbe, yProbe, measured_z;
  3824. ABL_VAR bool dryrun, abl_should_enable;
  3825. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3826. ABL_VAR int abl_probe_index;
  3827. #endif
  3828. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3829. ABL_VAR bool enable_soft_endstops = true;
  3830. #endif
  3831. #if ABL_GRID
  3832. #if ENABLED(PROBE_MANUALLY)
  3833. ABL_VAR uint8_t PR_OUTER_VAR;
  3834. ABL_VAR int8_t PR_INNER_VAR;
  3835. #endif
  3836. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3837. ABL_VAR float xGridSpacing = 0, yGridSpacing = 0;
  3838. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3839. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3840. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3841. ABL_VAR bool do_topography_map;
  3842. #else // Bilinear
  3843. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3844. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3845. #endif
  3846. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3847. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3848. ABL_VAR int abl2;
  3849. #else // Bilinear
  3850. int constexpr abl2 = GRID_MAX_POINTS;
  3851. #endif
  3852. #endif
  3853. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3854. ABL_VAR float zoffset;
  3855. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3856. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3857. ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
  3858. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  3859. mean;
  3860. #endif
  3861. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3862. int constexpr abl2 = 3;
  3863. // Probe at 3 arbitrary points
  3864. ABL_VAR vector_3 points[3] = {
  3865. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3866. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3867. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3868. };
  3869. #endif // AUTO_BED_LEVELING_3POINT
  3870. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3871. struct linear_fit_data lsf_results;
  3872. incremental_LSF_reset(&lsf_results);
  3873. #endif
  3874. /**
  3875. * On the initial G29 fetch command parameters.
  3876. */
  3877. if (!g29_in_progress) {
  3878. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3879. abl_probe_index = -1;
  3880. #endif
  3881. abl_should_enable = planner.leveling_active;
  3882. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3883. if (parser.seen('W')) {
  3884. if (!leveling_is_valid()) {
  3885. SERIAL_ERROR_START();
  3886. SERIAL_ERRORLNPGM("No bilinear grid");
  3887. return;
  3888. }
  3889. const float z = parser.floatval('Z', RAW_CURRENT_POSITION(Z));
  3890. if (!WITHIN(z, -10, 10)) {
  3891. SERIAL_ERROR_START();
  3892. SERIAL_ERRORLNPGM("Bad Z value");
  3893. return;
  3894. }
  3895. const float x = parser.floatval('X', NAN),
  3896. y = parser.floatval('Y', NAN);
  3897. int8_t i = parser.byteval('I', -1),
  3898. j = parser.byteval('J', -1);
  3899. if (!isnan(x) && !isnan(y)) {
  3900. // Get nearest i / j from x / y
  3901. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3902. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3903. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3904. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3905. }
  3906. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3907. set_bed_leveling_enabled(false);
  3908. z_values[i][j] = z;
  3909. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3910. bed_level_virt_interpolate();
  3911. #endif
  3912. set_bed_leveling_enabled(abl_should_enable);
  3913. }
  3914. return;
  3915. } // parser.seen('W')
  3916. #endif
  3917. #if HAS_LEVELING
  3918. // Jettison bed leveling data
  3919. if (parser.seen('J')) {
  3920. reset_bed_level();
  3921. return;
  3922. }
  3923. #endif
  3924. verbose_level = parser.intval('V');
  3925. if (!WITHIN(verbose_level, 0, 4)) {
  3926. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  3927. return;
  3928. }
  3929. dryrun = parser.boolval('D')
  3930. #if ENABLED(PROBE_MANUALLY)
  3931. || no_action
  3932. #endif
  3933. ;
  3934. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3935. do_topography_map = verbose_level > 2 || parser.boolval('T');
  3936. // X and Y specify points in each direction, overriding the default
  3937. // These values may be saved with the completed mesh
  3938. abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);
  3939. abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);
  3940. if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
  3941. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3942. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3943. return;
  3944. }
  3945. abl2 = abl_grid_points_x * abl_grid_points_y;
  3946. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3947. zoffset = parser.linearval('Z');
  3948. #endif
  3949. #if ABL_GRID
  3950. xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
  3951. left_probe_bed_position = (int)parser.linearval('L', LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION));
  3952. right_probe_bed_position = (int)parser.linearval('R', LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION));
  3953. front_probe_bed_position = (int)parser.linearval('F', LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION));
  3954. back_probe_bed_position = (int)parser.linearval('B', LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION));
  3955. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3956. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3957. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3958. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3959. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3960. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3961. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3962. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3963. if (left_out || right_out || front_out || back_out) {
  3964. if (left_out) {
  3965. out_of_range_error(PSTR("(L)eft"));
  3966. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3967. }
  3968. if (right_out) {
  3969. out_of_range_error(PSTR("(R)ight"));
  3970. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3971. }
  3972. if (front_out) {
  3973. out_of_range_error(PSTR("(F)ront"));
  3974. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3975. }
  3976. if (back_out) {
  3977. out_of_range_error(PSTR("(B)ack"));
  3978. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3979. }
  3980. return;
  3981. }
  3982. // probe at the points of a lattice grid
  3983. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3984. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3985. #endif // ABL_GRID
  3986. if (verbose_level > 0) {
  3987. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3988. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3989. }
  3990. stepper.synchronize();
  3991. // Disable auto bed leveling during G29
  3992. planner.leveling_active = false;
  3993. if (!dryrun) {
  3994. // Re-orient the current position without leveling
  3995. // based on where the steppers are positioned.
  3996. set_current_from_steppers_for_axis(ALL_AXES);
  3997. // Sync the planner to where the steppers stopped
  3998. SYNC_PLAN_POSITION_KINEMATIC();
  3999. }
  4000. #if HAS_BED_PROBE
  4001. // Deploy the probe. Probe will raise if needed.
  4002. if (DEPLOY_PROBE()) {
  4003. planner.leveling_active = abl_should_enable;
  4004. return;
  4005. }
  4006. #endif
  4007. if (!faux) setup_for_endstop_or_probe_move();
  4008. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4009. #if ENABLED(PROBE_MANUALLY)
  4010. if (!no_action)
  4011. #endif
  4012. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  4013. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  4014. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  4015. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  4016. ) {
  4017. if (dryrun) {
  4018. // Before reset bed level, re-enable to correct the position
  4019. planner.leveling_active = abl_should_enable;
  4020. }
  4021. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  4022. reset_bed_level();
  4023. // Initialize a grid with the given dimensions
  4024. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  4025. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  4026. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  4027. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  4028. // Can't re-enable (on error) until the new grid is written
  4029. abl_should_enable = false;
  4030. }
  4031. #endif // AUTO_BED_LEVELING_BILINEAR
  4032. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  4033. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4034. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  4035. #endif
  4036. // Probe at 3 arbitrary points
  4037. points[0].z = points[1].z = points[2].z = 0;
  4038. #endif // AUTO_BED_LEVELING_3POINT
  4039. } // !g29_in_progress
  4040. #if ENABLED(PROBE_MANUALLY)
  4041. // For manual probing, get the next index to probe now.
  4042. // On the first probe this will be incremented to 0.
  4043. if (!no_action) {
  4044. ++abl_probe_index;
  4045. g29_in_progress = true;
  4046. }
  4047. // Abort current G29 procedure, go back to idle state
  4048. if (seenA && g29_in_progress) {
  4049. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  4050. #if HAS_SOFTWARE_ENDSTOPS
  4051. soft_endstops_enabled = enable_soft_endstops;
  4052. #endif
  4053. planner.leveling_active = abl_should_enable;
  4054. g29_in_progress = false;
  4055. #if ENABLED(LCD_BED_LEVELING)
  4056. lcd_wait_for_move = false;
  4057. #endif
  4058. }
  4059. // Query G29 status
  4060. if (verbose_level || seenQ) {
  4061. SERIAL_PROTOCOLPGM("Manual G29 ");
  4062. if (g29_in_progress) {
  4063. SERIAL_PROTOCOLPAIR("point ", min(abl_probe_index + 1, abl2));
  4064. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  4065. }
  4066. else
  4067. SERIAL_PROTOCOLLNPGM("idle");
  4068. }
  4069. if (no_action) return;
  4070. if (abl_probe_index == 0) {
  4071. // For the initial G29 save software endstop state
  4072. #if HAS_SOFTWARE_ENDSTOPS
  4073. enable_soft_endstops = soft_endstops_enabled;
  4074. #endif
  4075. }
  4076. else {
  4077. // For G29 after adjusting Z.
  4078. // Save the previous Z before going to the next point
  4079. measured_z = current_position[Z_AXIS];
  4080. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4081. mean += measured_z;
  4082. eqnBVector[abl_probe_index] = measured_z;
  4083. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4084. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4085. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4086. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4087. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4088. z_values[xCount][yCount] = measured_z + zoffset;
  4089. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4090. if (DEBUGGING(LEVELING)) {
  4091. SERIAL_PROTOCOLPAIR("Save X", xCount);
  4092. SERIAL_PROTOCOLPAIR(" Y", yCount);
  4093. SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
  4094. }
  4095. #endif
  4096. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4097. points[abl_probe_index].z = measured_z;
  4098. #endif
  4099. }
  4100. //
  4101. // If there's another point to sample, move there with optional lift.
  4102. //
  4103. #if ABL_GRID
  4104. // Skip any unreachable points
  4105. while (abl_probe_index < abl2) {
  4106. // Set xCount, yCount based on abl_probe_index, with zig-zag
  4107. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  4108. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  4109. // Probe in reverse order for every other row/column
  4110. bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
  4111. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  4112. const float xBase = xCount * xGridSpacing + left_probe_bed_position,
  4113. yBase = yCount * yGridSpacing + front_probe_bed_position;
  4114. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4115. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4116. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4117. indexIntoAB[xCount][yCount] = abl_probe_index;
  4118. #endif
  4119. // Keep looping till a reachable point is found
  4120. if (position_is_reachable_xy(xProbe, yProbe)) break;
  4121. ++abl_probe_index;
  4122. }
  4123. // Is there a next point to move to?
  4124. if (abl_probe_index < abl2) {
  4125. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  4126. #if HAS_SOFTWARE_ENDSTOPS
  4127. // Disable software endstops to allow manual adjustment
  4128. // If G29 is not completed, they will not be re-enabled
  4129. soft_endstops_enabled = false;
  4130. #endif
  4131. return;
  4132. }
  4133. else {
  4134. // Leveling done! Fall through to G29 finishing code below
  4135. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  4136. // Re-enable software endstops, if needed
  4137. #if HAS_SOFTWARE_ENDSTOPS
  4138. soft_endstops_enabled = enable_soft_endstops;
  4139. #endif
  4140. }
  4141. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4142. // Probe at 3 arbitrary points
  4143. if (abl_probe_index < 3) {
  4144. xProbe = LOGICAL_X_POSITION(points[abl_probe_index].x);
  4145. yProbe = LOGICAL_Y_POSITION(points[abl_probe_index].y);
  4146. #if HAS_SOFTWARE_ENDSTOPS
  4147. // Disable software endstops to allow manual adjustment
  4148. // If G29 is not completed, they will not be re-enabled
  4149. soft_endstops_enabled = false;
  4150. #endif
  4151. return;
  4152. }
  4153. else {
  4154. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  4155. // Re-enable software endstops, if needed
  4156. #if HAS_SOFTWARE_ENDSTOPS
  4157. soft_endstops_enabled = enable_soft_endstops;
  4158. #endif
  4159. if (!dryrun) {
  4160. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4161. if (planeNormal.z < 0) {
  4162. planeNormal.x *= -1;
  4163. planeNormal.y *= -1;
  4164. planeNormal.z *= -1;
  4165. }
  4166. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4167. // Can't re-enable (on error) until the new grid is written
  4168. abl_should_enable = false;
  4169. }
  4170. }
  4171. #endif // AUTO_BED_LEVELING_3POINT
  4172. #else // !PROBE_MANUALLY
  4173. {
  4174. const bool stow_probe_after_each = parser.boolval('E');
  4175. #if ABL_GRID
  4176. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  4177. // Outer loop is Y with PROBE_Y_FIRST disabled
  4178. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
  4179. int8_t inStart, inStop, inInc;
  4180. if (zig) { // away from origin
  4181. inStart = 0;
  4182. inStop = PR_INNER_END;
  4183. inInc = 1;
  4184. }
  4185. else { // towards origin
  4186. inStart = PR_INNER_END - 1;
  4187. inStop = -1;
  4188. inInc = -1;
  4189. }
  4190. zig ^= true; // zag
  4191. // Inner loop is Y with PROBE_Y_FIRST enabled
  4192. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  4193. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  4194. yBase = front_probe_bed_position + yGridSpacing * yCount;
  4195. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4196. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4197. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4198. indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
  4199. #endif
  4200. #if IS_KINEMATIC
  4201. // Avoid probing outside the round or hexagonal area
  4202. if (!position_is_reachable_by_probe_xy(xProbe, yProbe)) continue;
  4203. #endif
  4204. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4205. if (isnan(measured_z)) {
  4206. planner.leveling_active = abl_should_enable;
  4207. break;
  4208. }
  4209. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4210. mean += measured_z;
  4211. eqnBVector[abl_probe_index] = measured_z;
  4212. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4213. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4214. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4215. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4216. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4217. z_values[xCount][yCount] = measured_z + zoffset;
  4218. #endif
  4219. abl_should_enable = false;
  4220. idle();
  4221. } // inner
  4222. } // outer
  4223. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4224. // Probe at 3 arbitrary points
  4225. for (uint8_t i = 0; i < 3; ++i) {
  4226. // Retain the last probe position
  4227. xProbe = LOGICAL_X_POSITION(points[i].x);
  4228. yProbe = LOGICAL_Y_POSITION(points[i].y);
  4229. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4230. if (isnan(measured_z)) {
  4231. planner.leveling_active = abl_should_enable;
  4232. break;
  4233. }
  4234. points[i].z = measured_z;
  4235. }
  4236. if (!dryrun && !isnan(measured_z)) {
  4237. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4238. if (planeNormal.z < 0) {
  4239. planeNormal.x *= -1;
  4240. planeNormal.y *= -1;
  4241. planeNormal.z *= -1;
  4242. }
  4243. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4244. // Can't re-enable (on error) until the new grid is written
  4245. abl_should_enable = false;
  4246. }
  4247. #endif // AUTO_BED_LEVELING_3POINT
  4248. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4249. if (STOW_PROBE()) {
  4250. planner.leveling_active = abl_should_enable;
  4251. measured_z = NAN;
  4252. }
  4253. }
  4254. #endif // !PROBE_MANUALLY
  4255. //
  4256. // G29 Finishing Code
  4257. //
  4258. // Unless this is a dry run, auto bed leveling will
  4259. // definitely be enabled after this point.
  4260. //
  4261. // If code above wants to continue leveling, it should
  4262. // return or loop before this point.
  4263. //
  4264. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4265. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4266. #endif
  4267. #if ENABLED(PROBE_MANUALLY)
  4268. g29_in_progress = false;
  4269. #if ENABLED(LCD_BED_LEVELING)
  4270. lcd_wait_for_move = false;
  4271. #endif
  4272. #endif
  4273. // Calculate leveling, print reports, correct the position
  4274. if (!isnan(measured_z)) {
  4275. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4276. if (!dryrun) extrapolate_unprobed_bed_level();
  4277. print_bilinear_leveling_grid();
  4278. refresh_bed_level();
  4279. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4280. print_bilinear_leveling_grid_virt();
  4281. #endif
  4282. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4283. // For LINEAR leveling calculate matrix, print reports, correct the position
  4284. /**
  4285. * solve the plane equation ax + by + d = z
  4286. * A is the matrix with rows [x y 1] for all the probed points
  4287. * B is the vector of the Z positions
  4288. * the normal vector to the plane is formed by the coefficients of the
  4289. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4290. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4291. */
  4292. float plane_equation_coefficients[3];
  4293. finish_incremental_LSF(&lsf_results);
  4294. plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
  4295. plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.
  4296. plane_equation_coefficients[2] = -lsf_results.D;
  4297. mean /= abl2;
  4298. if (verbose_level) {
  4299. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4300. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4301. SERIAL_PROTOCOLPGM(" b: ");
  4302. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4303. SERIAL_PROTOCOLPGM(" d: ");
  4304. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4305. SERIAL_EOL();
  4306. if (verbose_level > 2) {
  4307. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4308. SERIAL_PROTOCOL_F(mean, 8);
  4309. SERIAL_EOL();
  4310. }
  4311. }
  4312. // Create the matrix but don't correct the position yet
  4313. if (!dryrun)
  4314. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4315. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
  4316. );
  4317. // Show the Topography map if enabled
  4318. if (do_topography_map) {
  4319. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4320. " +--- BACK --+\n"
  4321. " | |\n"
  4322. " L | (+) | R\n"
  4323. " E | | I\n"
  4324. " F | (-) N (+) | G\n"
  4325. " T | | H\n"
  4326. " | (-) | T\n"
  4327. " | |\n"
  4328. " O-- FRONT --+\n"
  4329. " (0,0)");
  4330. float min_diff = 999;
  4331. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4332. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4333. int ind = indexIntoAB[xx][yy];
  4334. float diff = eqnBVector[ind] - mean,
  4335. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4336. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4337. z_tmp = 0;
  4338. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4339. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4340. if (diff >= 0.0)
  4341. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4342. else
  4343. SERIAL_PROTOCOLCHAR(' ');
  4344. SERIAL_PROTOCOL_F(diff, 5);
  4345. } // xx
  4346. SERIAL_EOL();
  4347. } // yy
  4348. SERIAL_EOL();
  4349. if (verbose_level > 3) {
  4350. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4351. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4352. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4353. int ind = indexIntoAB[xx][yy];
  4354. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4355. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4356. z_tmp = 0;
  4357. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4358. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4359. if (diff >= 0.0)
  4360. SERIAL_PROTOCOLPGM(" +");
  4361. // Include + for column alignment
  4362. else
  4363. SERIAL_PROTOCOLCHAR(' ');
  4364. SERIAL_PROTOCOL_F(diff, 5);
  4365. } // xx
  4366. SERIAL_EOL();
  4367. } // yy
  4368. SERIAL_EOL();
  4369. }
  4370. } //do_topography_map
  4371. #endif // AUTO_BED_LEVELING_LINEAR
  4372. #if ABL_PLANAR
  4373. // For LINEAR and 3POINT leveling correct the current position
  4374. if (verbose_level > 0)
  4375. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  4376. if (!dryrun) {
  4377. //
  4378. // Correct the current XYZ position based on the tilted plane.
  4379. //
  4380. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4381. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4382. #endif
  4383. float converted[XYZ];
  4384. COPY(converted, current_position);
  4385. planner.leveling_active = true;
  4386. planner.unapply_leveling(converted); // use conversion machinery
  4387. planner.leveling_active = false;
  4388. // Use the last measured distance to the bed, if possible
  4389. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4390. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4391. ) {
  4392. const float simple_z = current_position[Z_AXIS] - measured_z;
  4393. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4394. if (DEBUGGING(LEVELING)) {
  4395. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4396. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4397. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4398. }
  4399. #endif
  4400. converted[Z_AXIS] = simple_z;
  4401. }
  4402. // The rotated XY and corrected Z are now current_position
  4403. COPY(current_position, converted);
  4404. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4405. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4406. #endif
  4407. }
  4408. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4409. if (!dryrun) {
  4410. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4411. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4412. #endif
  4413. // Unapply the offset because it is going to be immediately applied
  4414. // and cause compensation movement in Z
  4415. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4416. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4417. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4418. #endif
  4419. }
  4420. #endif // ABL_PLANAR
  4421. #ifdef Z_PROBE_END_SCRIPT
  4422. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4423. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4424. #endif
  4425. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4426. stepper.synchronize();
  4427. #endif
  4428. // Auto Bed Leveling is complete! Enable if possible.
  4429. planner.leveling_active = dryrun ? abl_should_enable : true;
  4430. } // !isnan(measured_z)
  4431. // Restore state after probing
  4432. if (!faux) clean_up_after_endstop_or_probe_move();
  4433. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4434. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4435. #endif
  4436. report_current_position();
  4437. KEEPALIVE_STATE(IN_HANDLER);
  4438. if (planner.leveling_active)
  4439. SYNC_PLAN_POSITION_KINEMATIC();
  4440. }
  4441. #endif // OLDSCHOOL_ABL
  4442. #if HAS_BED_PROBE
  4443. /**
  4444. * G30: Do a single Z probe at the current XY
  4445. *
  4446. * Parameters:
  4447. *
  4448. * X Probe X position (default current X)
  4449. * Y Probe Y position (default current Y)
  4450. * S0 Leave the probe deployed
  4451. */
  4452. inline void gcode_G30() {
  4453. const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
  4454. ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
  4455. if (!position_is_reachable_by_probe_xy(xpos, ypos)) return;
  4456. // Disable leveling so the planner won't mess with us
  4457. #if HAS_LEVELING
  4458. set_bed_leveling_enabled(false);
  4459. #endif
  4460. setup_for_endstop_or_probe_move();
  4461. const float measured_z = probe_pt(xpos, ypos, parser.boolval('S', true), 1);
  4462. if (!isnan(measured_z)) {
  4463. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4464. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4465. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4466. }
  4467. clean_up_after_endstop_or_probe_move();
  4468. report_current_position();
  4469. }
  4470. #if ENABLED(Z_PROBE_SLED)
  4471. /**
  4472. * G31: Deploy the Z probe
  4473. */
  4474. inline void gcode_G31() { DEPLOY_PROBE(); }
  4475. /**
  4476. * G32: Stow the Z probe
  4477. */
  4478. inline void gcode_G32() { STOW_PROBE(); }
  4479. #endif // Z_PROBE_SLED
  4480. #endif // HAS_BED_PROBE
  4481. #if PROBE_SELECTED
  4482. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4483. /**
  4484. * G33 - Delta '1-4-7-point' Auto-Calibration
  4485. * Calibrate height, endstops, delta radius, and tower angles.
  4486. *
  4487. * Parameters:
  4488. *
  4489. * Pn Number of probe points:
  4490. *
  4491. * P0 No probe. Normalize only.
  4492. * P1 Probe center and set height only.
  4493. * P2 Probe center and towers. Set height, endstops, and delta radius.
  4494. * P3 Probe all positions: center, towers and opposite towers. Set all.
  4495. * P4-P7 Probe all positions at different locations and average them.
  4496. *
  4497. * T0 Don't calibrate tower angle corrections
  4498. *
  4499. * Cn.nn Calibration precision; when omitted calibrates to maximum precision
  4500. *
  4501. * Fn Force to run at least n iterations and takes the best result
  4502. *
  4503. * Vn Verbose level:
  4504. *
  4505. * V0 Dry-run mode. Report settings and probe results. No calibration.
  4506. * V1 Report settings
  4507. * V2 Report settings and probe results
  4508. *
  4509. * E Engage the probe for each point
  4510. */
  4511. void print_signed_float(const char * const prefix, const float &f) {
  4512. SERIAL_PROTOCOLPGM(" ");
  4513. serialprintPGM(prefix);
  4514. SERIAL_PROTOCOLCHAR(':');
  4515. if (f >= 0) SERIAL_CHAR('+');
  4516. SERIAL_PROTOCOL_F(f, 2);
  4517. }
  4518. void print_G33_settings(const bool end_stops, const bool tower_angles) {
  4519. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4520. if (end_stops) {
  4521. print_signed_float(PSTR(" Ex"), endstop_adj[A_AXIS]);
  4522. print_signed_float(PSTR("Ey"), endstop_adj[B_AXIS]);
  4523. print_signed_float(PSTR("Ez"), endstop_adj[C_AXIS]);
  4524. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4525. }
  4526. SERIAL_EOL();
  4527. if (tower_angles) {
  4528. SERIAL_PROTOCOLPGM(".Tower angle : ");
  4529. print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
  4530. print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
  4531. print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
  4532. SERIAL_EOL();
  4533. }
  4534. }
  4535. void G33_cleanup(
  4536. #if HOTENDS > 1
  4537. const uint8_t old_tool_index
  4538. #endif
  4539. ) {
  4540. #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  4541. do_blocking_move_to_z(delta_clip_start_height);
  4542. #endif
  4543. STOW_PROBE();
  4544. clean_up_after_endstop_or_probe_move();
  4545. #if HOTENDS > 1
  4546. tool_change(old_tool_index, 0, true);
  4547. #endif
  4548. }
  4549. inline void gcode_G33() {
  4550. const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
  4551. if (!WITHIN(probe_points, 0, 7)) {
  4552. SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-7).");
  4553. return;
  4554. }
  4555. const int8_t verbose_level = parser.byteval('V', 1);
  4556. if (!WITHIN(verbose_level, 0, 2)) {
  4557. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2).");
  4558. return;
  4559. }
  4560. const float calibration_precision = parser.floatval('C');
  4561. if (calibration_precision < 0) {
  4562. SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0).");
  4563. return;
  4564. }
  4565. const int8_t force_iterations = parser.intval('F', 0);
  4566. if (!WITHIN(force_iterations, 0, 30)) {
  4567. SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
  4568. return;
  4569. }
  4570. const bool towers_set = parser.boolval('T', true),
  4571. stow_after_each = parser.boolval('E'),
  4572. _0p_calibration = probe_points == 0,
  4573. _1p_calibration = probe_points == 1,
  4574. _4p_calibration = probe_points == 2,
  4575. _4p_towers_points = _4p_calibration && towers_set,
  4576. _4p_opposite_points = _4p_calibration && !towers_set,
  4577. _7p_calibration = probe_points >= 3 || _0p_calibration,
  4578. _7p_half_circle = probe_points == 3,
  4579. _7p_double_circle = probe_points == 5,
  4580. _7p_triple_circle = probe_points == 6,
  4581. _7p_quadruple_circle = probe_points == 7,
  4582. _7p_multi_circle = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle,
  4583. _7p_intermed_points = _7p_calibration && !_7p_half_circle;
  4584. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4585. const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
  4586. dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
  4587. int8_t iterations = 0;
  4588. float test_precision,
  4589. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4590. zero_std_dev_old = zero_std_dev,
  4591. zero_std_dev_min = zero_std_dev,
  4592. e_old[ABC] = {
  4593. endstop_adj[A_AXIS],
  4594. endstop_adj[B_AXIS],
  4595. endstop_adj[C_AXIS]
  4596. },
  4597. dr_old = delta_radius,
  4598. zh_old = home_offset[Z_AXIS],
  4599. ta_old[ABC] = {
  4600. delta_tower_angle_trim[A_AXIS],
  4601. delta_tower_angle_trim[B_AXIS],
  4602. delta_tower_angle_trim[C_AXIS]
  4603. };
  4604. if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
  4605. const float circles = (_7p_quadruple_circle ? 1.5 :
  4606. _7p_triple_circle ? 1.0 :
  4607. _7p_double_circle ? 0.5 : 0),
  4608. r = (1 + circles * 0.1) * delta_calibration_radius;
  4609. for (uint8_t axis = 1; axis < 13; ++axis) {
  4610. const float a = RADIANS(180 + 30 * axis);
  4611. if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) {
  4612. SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
  4613. return;
  4614. }
  4615. }
  4616. }
  4617. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4618. stepper.synchronize();
  4619. #if HAS_LEVELING
  4620. reset_bed_level(); // After calibration bed-level data is no longer valid
  4621. #endif
  4622. #if HOTENDS > 1
  4623. const uint8_t old_tool_index = active_extruder;
  4624. tool_change(0, 0, true);
  4625. #define G33_CLEANUP() G33_cleanup(old_tool_index)
  4626. #else
  4627. #define G33_CLEANUP() G33_cleanup()
  4628. #endif
  4629. setup_for_endstop_or_probe_move();
  4630. endstops.enable(true);
  4631. if (!_0p_calibration) {
  4632. if (!home_delta())
  4633. return;
  4634. endstops.not_homing();
  4635. }
  4636. // print settings
  4637. const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
  4638. serialprintPGM(checkingac);
  4639. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4640. SERIAL_EOL();
  4641. lcd_setstatusPGM(checkingac);
  4642. print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
  4643. do {
  4644. float z_at_pt[13] = { 0.0 };
  4645. test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
  4646. iterations++;
  4647. // Probe the points
  4648. if (!_0p_calibration){
  4649. if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
  4650. #if ENABLED(PROBE_MANUALLY)
  4651. z_at_pt[0] += lcd_probe_pt(0, 0);
  4652. #else
  4653. z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
  4654. if (isnan(z_at_pt[0])) return G33_CLEANUP();
  4655. #endif
  4656. }
  4657. if (_7p_calibration) { // probe extra center points
  4658. for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
  4659. const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
  4660. #if ENABLED(PROBE_MANUALLY)
  4661. z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
  4662. #else
  4663. z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
  4664. if (isnan(z_at_pt[0])) return G33_CLEANUP();
  4665. #endif
  4666. }
  4667. z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
  4668. }
  4669. if (!_1p_calibration) { // probe the radius
  4670. bool zig_zag = true;
  4671. const uint8_t start = _4p_opposite_points ? 3 : 1,
  4672. step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
  4673. for (uint8_t axis = start; axis < 13; axis += step) {
  4674. const float zigadd = (zig_zag ? 0.5 : 0.0),
  4675. offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
  4676. _7p_triple_circle ? zigadd + 0.5 :
  4677. _7p_double_circle ? zigadd : 0;
  4678. for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
  4679. const float a = RADIANS(180 + 30 * axis),
  4680. r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
  4681. #if ENABLED(PROBE_MANUALLY)
  4682. z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
  4683. #else
  4684. z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
  4685. if (isnan(z_at_pt[axis])) return G33_CLEANUP();
  4686. #endif
  4687. }
  4688. zig_zag = !zig_zag;
  4689. z_at_pt[axis] /= (2 * offset_circles + 1);
  4690. }
  4691. }
  4692. if (_7p_intermed_points) // average intermediates to tower and opposites
  4693. for (uint8_t axis = 1; axis < 13; axis += 2)
  4694. z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
  4695. }
  4696. float S1 = z_at_pt[0],
  4697. S2 = sq(z_at_pt[0]);
  4698. int16_t N = 1;
  4699. if (!_1p_calibration) // std dev from zero plane
  4700. for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) {
  4701. S1 += z_at_pt[axis];
  4702. S2 += sq(z_at_pt[axis]);
  4703. N++;
  4704. }
  4705. zero_std_dev_old = zero_std_dev;
  4706. zero_std_dev = round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4707. // Solve matrices
  4708. if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
  4709. if (zero_std_dev < zero_std_dev_min) {
  4710. COPY(e_old, endstop_adj);
  4711. dr_old = delta_radius;
  4712. zh_old = home_offset[Z_AXIS];
  4713. COPY(ta_old, delta_tower_angle_trim);
  4714. }
  4715. float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
  4716. const float r_diff = delta_radius - delta_calibration_radius,
  4717. h_factor = (1.00 + r_diff * 0.001) / 6.0, // 1.02 for r_diff = 20mm
  4718. r_factor = (-(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff))) / 6.0, // 2.25 for r_diff = 20mm
  4719. a_factor = (66.66 / delta_calibration_radius) / (iterations == 1 ? 16.0 : 2.0); // 0.83 for cal_rd = 80mm (Slow down on 1st iteration)
  4720. #define ZP(N,I) ((N) * z_at_pt[I])
  4721. #define Z6(I) ZP(6, I)
  4722. #define Z4(I) ZP(4, I)
  4723. #define Z2(I) ZP(2, I)
  4724. #define Z1(I) ZP(1, I)
  4725. #if ENABLED(PROBE_MANUALLY)
  4726. test_precision = 0.00; // forced end
  4727. #endif
  4728. switch (probe_points) {
  4729. case 0:
  4730. #if DISABLED(PROBE_MANUALLY)
  4731. test_precision = 0.00; // forced end
  4732. #endif
  4733. break;
  4734. case 1:
  4735. #if DISABLED(PROBE_MANUALLY)
  4736. test_precision = 0.00; // forced end
  4737. #endif
  4738. LOOP_XYZ(axis) e_delta[axis] = Z1(0);
  4739. break;
  4740. case 2:
  4741. if (towers_set) {
  4742. e_delta[A_AXIS] = (Z6(0) + Z4(1) - Z2(5) - Z2(9)) * h_factor;
  4743. e_delta[B_AXIS] = (Z6(0) - Z2(1) + Z4(5) - Z2(9)) * h_factor;
  4744. e_delta[C_AXIS] = (Z6(0) - Z2(1) - Z2(5) + Z4(9)) * h_factor;
  4745. r_delta = (Z6(0) - Z2(1) - Z2(5) - Z2(9)) * r_factor;
  4746. }
  4747. else {
  4748. e_delta[A_AXIS] = (Z6(0) - Z4(7) + Z2(11) + Z2(3)) * h_factor;
  4749. e_delta[B_AXIS] = (Z6(0) + Z2(7) - Z4(11) + Z2(3)) * h_factor;
  4750. e_delta[C_AXIS] = (Z6(0) + Z2(7) + Z2(11) - Z4(3)) * h_factor;
  4751. r_delta = (Z6(0) - Z2(7) - Z2(11) - Z2(3)) * r_factor;
  4752. }
  4753. break;
  4754. default:
  4755. e_delta[A_AXIS] = (Z6(0) + Z2(1) - Z1(5) - Z1(9) - Z2(7) + Z1(11) + Z1(3)) * h_factor;
  4756. e_delta[B_AXIS] = (Z6(0) - Z1(1) + Z2(5) - Z1(9) + Z1(7) - Z2(11) + Z1(3)) * h_factor;
  4757. e_delta[C_AXIS] = (Z6(0) - Z1(1) - Z1(5) + Z2(9) + Z1(7) + Z1(11) - Z2(3)) * h_factor;
  4758. r_delta = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor;
  4759. if (towers_set) {
  4760. t_delta[A_AXIS] = ( - Z2(5) + Z2(9) - Z2(11) + Z2(3)) * a_factor;
  4761. t_delta[B_AXIS] = ( Z2(1) - Z2(9) + Z2(7) - Z2(3)) * a_factor;
  4762. t_delta[C_AXIS] = (-Z2(1) + Z2(5) - Z2(7) + Z2(11) ) * a_factor;
  4763. e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
  4764. e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
  4765. e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;
  4766. }
  4767. break;
  4768. }
  4769. LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
  4770. delta_radius += r_delta;
  4771. LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
  4772. }
  4773. else if (zero_std_dev >= test_precision) { // step one back
  4774. COPY(endstop_adj, e_old);
  4775. delta_radius = dr_old;
  4776. home_offset[Z_AXIS] = zh_old;
  4777. COPY(delta_tower_angle_trim, ta_old);
  4778. }
  4779. if (verbose_level != 0) { // !dry run
  4780. // normalise angles to least squares
  4781. float a_sum = 0.0;
  4782. LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
  4783. LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
  4784. // adjust delta_height and endstops by the max amount
  4785. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  4786. home_offset[Z_AXIS] -= z_temp;
  4787. LOOP_XYZ(axis) endstop_adj[axis] -= z_temp;
  4788. }
  4789. recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
  4790. NOMORE(zero_std_dev_min, zero_std_dev);
  4791. // print report
  4792. if (verbose_level != 1) {
  4793. SERIAL_PROTOCOLPGM(". ");
  4794. print_signed_float(PSTR("c"), z_at_pt[0]);
  4795. if (_4p_towers_points || _7p_calibration) {
  4796. print_signed_float(PSTR(" x"), z_at_pt[1]);
  4797. print_signed_float(PSTR(" y"), z_at_pt[5]);
  4798. print_signed_float(PSTR(" z"), z_at_pt[9]);
  4799. }
  4800. if (!_4p_opposite_points) SERIAL_EOL();
  4801. if ((_4p_opposite_points) || _7p_calibration) {
  4802. if (_7p_calibration) {
  4803. SERIAL_CHAR('.');
  4804. SERIAL_PROTOCOL_SP(13);
  4805. }
  4806. print_signed_float(PSTR(" yz"), z_at_pt[7]);
  4807. print_signed_float(PSTR("zx"), z_at_pt[11]);
  4808. print_signed_float(PSTR("xy"), z_at_pt[3]);
  4809. SERIAL_EOL();
  4810. }
  4811. }
  4812. if (verbose_level != 0) { // !dry run
  4813. if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
  4814. SERIAL_PROTOCOLPGM("Calibration OK");
  4815. SERIAL_PROTOCOL_SP(36);
  4816. #if DISABLED(PROBE_MANUALLY)
  4817. if (zero_std_dev >= test_precision && !_1p_calibration)
  4818. SERIAL_PROTOCOLPGM("rolling back.");
  4819. else
  4820. #endif
  4821. {
  4822. SERIAL_PROTOCOLPGM("std dev:");
  4823. SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
  4824. }
  4825. SERIAL_EOL();
  4826. char mess[21];
  4827. sprintf_P(mess, PSTR("Calibration sd:"));
  4828. if (zero_std_dev_min < 1)
  4829. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
  4830. else
  4831. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
  4832. lcd_setstatus(mess);
  4833. print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
  4834. serialprintPGM(save_message);
  4835. SERIAL_EOL();
  4836. }
  4837. else { // !end iterations
  4838. char mess[15];
  4839. if (iterations < 31)
  4840. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  4841. else
  4842. sprintf_P(mess, PSTR("No convergence"));
  4843. SERIAL_PROTOCOL(mess);
  4844. SERIAL_PROTOCOL_SP(36);
  4845. SERIAL_PROTOCOLPGM("std dev:");
  4846. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4847. SERIAL_EOL();
  4848. lcd_setstatus(mess);
  4849. print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
  4850. }
  4851. }
  4852. else { // dry run
  4853. const char *enddryrun = PSTR("End DRY-RUN");
  4854. serialprintPGM(enddryrun);
  4855. SERIAL_PROTOCOL_SP(39);
  4856. SERIAL_PROTOCOLPGM("std dev:");
  4857. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4858. SERIAL_EOL();
  4859. char mess[21];
  4860. sprintf_P(mess, enddryrun);
  4861. sprintf_P(&mess[11], PSTR(" sd:"));
  4862. if (zero_std_dev < 1)
  4863. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
  4864. else
  4865. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
  4866. lcd_setstatus(mess);
  4867. }
  4868. endstops.enable(true);
  4869. home_delta();
  4870. endstops.not_homing();
  4871. }
  4872. while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
  4873. G33_CLEANUP();
  4874. }
  4875. #endif // DELTA_AUTO_CALIBRATION
  4876. #endif // PROBE_SELECTED
  4877. #if ENABLED(G38_PROBE_TARGET)
  4878. static bool G38_run_probe() {
  4879. bool G38_pass_fail = false;
  4880. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4881. // Get direction of move and retract
  4882. float retract_mm[XYZ];
  4883. LOOP_XYZ(i) {
  4884. float dist = destination[i] - current_position[i];
  4885. retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4886. }
  4887. #endif
  4888. stepper.synchronize(); // wait until the machine is idle
  4889. // Move until destination reached or target hit
  4890. endstops.enable(true);
  4891. G38_move = true;
  4892. G38_endstop_hit = false;
  4893. prepare_move_to_destination();
  4894. stepper.synchronize();
  4895. G38_move = false;
  4896. endstops.hit_on_purpose();
  4897. set_current_from_steppers_for_axis(ALL_AXES);
  4898. SYNC_PLAN_POSITION_KINEMATIC();
  4899. if (G38_endstop_hit) {
  4900. G38_pass_fail = true;
  4901. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4902. // Move away by the retract distance
  4903. set_destination_to_current();
  4904. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4905. endstops.enable(false);
  4906. prepare_move_to_destination();
  4907. stepper.synchronize();
  4908. feedrate_mm_s /= 4;
  4909. // Bump the target more slowly
  4910. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4911. endstops.enable(true);
  4912. G38_move = true;
  4913. prepare_move_to_destination();
  4914. stepper.synchronize();
  4915. G38_move = false;
  4916. set_current_from_steppers_for_axis(ALL_AXES);
  4917. SYNC_PLAN_POSITION_KINEMATIC();
  4918. #endif
  4919. }
  4920. endstops.hit_on_purpose();
  4921. endstops.not_homing();
  4922. return G38_pass_fail;
  4923. }
  4924. /**
  4925. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4926. * G38.3 - probe toward workpiece, stop on contact
  4927. *
  4928. * Like G28 except uses Z min probe for all axes
  4929. */
  4930. inline void gcode_G38(bool is_38_2) {
  4931. // Get X Y Z E F
  4932. gcode_get_destination();
  4933. setup_for_endstop_or_probe_move();
  4934. // If any axis has enough movement, do the move
  4935. LOOP_XYZ(i)
  4936. if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4937. if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate((AxisEnum)i);
  4938. // If G38.2 fails throw an error
  4939. if (!G38_run_probe() && is_38_2) {
  4940. SERIAL_ERROR_START();
  4941. SERIAL_ERRORLNPGM("Failed to reach target");
  4942. }
  4943. break;
  4944. }
  4945. clean_up_after_endstop_or_probe_move();
  4946. }
  4947. #endif // G38_PROBE_TARGET
  4948. #if HAS_MESH
  4949. /**
  4950. * G42: Move X & Y axes to mesh coordinates (I & J)
  4951. */
  4952. inline void gcode_G42() {
  4953. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  4954. if (axis_unhomed_error()) return;
  4955. #endif
  4956. if (IsRunning()) {
  4957. const bool hasI = parser.seenval('I');
  4958. const int8_t ix = hasI ? parser.value_int() : 0;
  4959. const bool hasJ = parser.seenval('J');
  4960. const int8_t iy = hasJ ? parser.value_int() : 0;
  4961. if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
  4962. SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
  4963. return;
  4964. }
  4965. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4966. #define _GET_MESH_X(I) bilinear_start[X_AXIS] + I * bilinear_grid_spacing[X_AXIS]
  4967. #define _GET_MESH_Y(J) bilinear_start[Y_AXIS] + J * bilinear_grid_spacing[Y_AXIS]
  4968. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  4969. #define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
  4970. #define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
  4971. #elif ENABLED(MESH_BED_LEVELING)
  4972. #define _GET_MESH_X(I) mbl.index_to_xpos[I]
  4973. #define _GET_MESH_Y(J) mbl.index_to_ypos[J]
  4974. #endif
  4975. set_destination_to_current();
  4976. if (hasI) destination[X_AXIS] = LOGICAL_X_POSITION(_GET_MESH_X(ix));
  4977. if (hasJ) destination[Y_AXIS] = LOGICAL_Y_POSITION(_GET_MESH_Y(iy));
  4978. if (parser.boolval('P')) {
  4979. if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  4980. if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  4981. }
  4982. const float fval = parser.linearval('F');
  4983. if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);
  4984. // SCARA kinematic has "safe" XY raw moves
  4985. #if IS_SCARA
  4986. prepare_uninterpolated_move_to_destination();
  4987. #else
  4988. prepare_move_to_destination();
  4989. #endif
  4990. }
  4991. }
  4992. #endif // HAS_MESH
  4993. /**
  4994. * G92: Set current position to given X Y Z E
  4995. */
  4996. inline void gcode_G92() {
  4997. bool didXYZ = false,
  4998. didE = parser.seenval('E');
  4999. if (!didE) stepper.synchronize();
  5000. LOOP_XYZE(i) {
  5001. if (parser.seenval(axis_codes[i])) {
  5002. #if IS_SCARA
  5003. current_position[i] = parser.value_axis_units((AxisEnum)i);
  5004. if (i != E_AXIS) didXYZ = true;
  5005. #else
  5006. #if HAS_POSITION_SHIFT
  5007. const float p = current_position[i];
  5008. #endif
  5009. const float v = parser.value_axis_units((AxisEnum)i);
  5010. current_position[i] = v;
  5011. if (i != E_AXIS) {
  5012. didXYZ = true;
  5013. #if HAS_POSITION_SHIFT
  5014. position_shift[i] += v - p; // Offset the coordinate space
  5015. update_software_endstops((AxisEnum)i);
  5016. #if ENABLED(I2C_POSITION_ENCODERS)
  5017. I2CPEM.encoders[I2CPEM.idx_from_axis((AxisEnum)i)].set_axis_offset(position_shift[i]);
  5018. #endif
  5019. #endif
  5020. }
  5021. #endif
  5022. }
  5023. }
  5024. if (didXYZ)
  5025. SYNC_PLAN_POSITION_KINEMATIC();
  5026. else if (didE)
  5027. sync_plan_position_e();
  5028. report_current_position();
  5029. }
  5030. #if HAS_RESUME_CONTINUE
  5031. /**
  5032. * M0: Unconditional stop - Wait for user button press on LCD
  5033. * M1: Conditional stop - Wait for user button press on LCD
  5034. */
  5035. inline void gcode_M0_M1() {
  5036. const char * const args = parser.string_arg;
  5037. millis_t ms = 0;
  5038. bool hasP = false, hasS = false;
  5039. if (parser.seenval('P')) {
  5040. ms = parser.value_millis(); // milliseconds to wait
  5041. hasP = ms > 0;
  5042. }
  5043. if (parser.seenval('S')) {
  5044. ms = parser.value_millis_from_seconds(); // seconds to wait
  5045. hasS = ms > 0;
  5046. }
  5047. #if ENABLED(ULTIPANEL)
  5048. if (!hasP && !hasS && args && *args)
  5049. lcd_setstatus(args, true);
  5050. else {
  5051. LCD_MESSAGEPGM(MSG_USERWAIT);
  5052. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  5053. dontExpireStatus();
  5054. #endif
  5055. }
  5056. #else
  5057. if (!hasP && !hasS && args && *args) {
  5058. SERIAL_ECHO_START();
  5059. SERIAL_ECHOLN(args);
  5060. }
  5061. #endif
  5062. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5063. wait_for_user = true;
  5064. stepper.synchronize();
  5065. refresh_cmd_timeout();
  5066. if (ms > 0) {
  5067. ms += previous_cmd_ms; // wait until this time for a click
  5068. while (PENDING(millis(), ms) && wait_for_user) idle();
  5069. }
  5070. else {
  5071. #if ENABLED(ULTIPANEL)
  5072. if (lcd_detected()) {
  5073. while (wait_for_user) idle();
  5074. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  5075. }
  5076. #else
  5077. while (wait_for_user) idle();
  5078. #endif
  5079. }
  5080. wait_for_user = false;
  5081. KEEPALIVE_STATE(IN_HANDLER);
  5082. }
  5083. #endif // HAS_RESUME_CONTINUE
  5084. #if ENABLED(SPINDLE_LASER_ENABLE)
  5085. /**
  5086. * M3: Spindle Clockwise
  5087. * M4: Spindle Counter-clockwise
  5088. *
  5089. * S0 turns off spindle.
  5090. *
  5091. * If no speed PWM output is defined then M3/M4 just turns it on.
  5092. *
  5093. * At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
  5094. * Hardware PWM is required. ISRs are too slow.
  5095. *
  5096. * NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
  5097. * No other settings give a PWM signal that goes from 0 to 5 volts.
  5098. *
  5099. * The system automatically sets WGM to Mode 1, so no special
  5100. * initialization is needed.
  5101. *
  5102. * WGM bits for timer 2 are automatically set by the system to
  5103. * Mode 1. This produces an acceptable 0 to 5 volt signal.
  5104. * No special initialization is needed.
  5105. *
  5106. * NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
  5107. * factors for timers 2, 3, 4, and 5 are acceptable.
  5108. *
  5109. * SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
  5110. * the spindle/laser during power-up or when connecting to the host
  5111. * (usually goes through a reset which sets all I/O pins to tri-state)
  5112. *
  5113. * PWM duty cycle goes from 0 (off) to 255 (always on).
  5114. */
  5115. // Wait for spindle to come up to speed
  5116. inline void delay_for_power_up() { dwell(SPINDLE_LASER_POWERUP_DELAY); }
  5117. // Wait for spindle to stop turning
  5118. inline void delay_for_power_down() { dwell(SPINDLE_LASER_POWERDOWN_DELAY); }
  5119. /**
  5120. * ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
  5121. *
  5122. * it accepts inputs of 0-255
  5123. */
  5124. inline void ocr_val_mode() {
  5125. uint8_t spindle_laser_power = parser.value_byte();
  5126. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5127. if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
  5128. analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
  5129. }
  5130. inline void gcode_M3_M4(bool is_M3) {
  5131. stepper.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
  5132. #if SPINDLE_DIR_CHANGE
  5133. const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
  5134. if (SPINDLE_STOP_ON_DIR_CHANGE \
  5135. && READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
  5136. && READ(SPINDLE_DIR_PIN) != rotation_dir
  5137. ) {
  5138. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
  5139. delay_for_power_down();
  5140. }
  5141. WRITE(SPINDLE_DIR_PIN, rotation_dir);
  5142. #endif
  5143. /**
  5144. * Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
  5145. * Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
  5146. * Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
  5147. */
  5148. #if ENABLED(SPINDLE_LASER_PWM)
  5149. if (parser.seen('O')) ocr_val_mode();
  5150. else {
  5151. const float spindle_laser_power = parser.floatval('S');
  5152. if (spindle_laser_power == 0) {
  5153. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
  5154. delay_for_power_down();
  5155. }
  5156. else {
  5157. int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
  5158. NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
  5159. if (spindle_laser_power <= SPEED_POWER_MIN)
  5160. ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // minimum setting
  5161. if (spindle_laser_power >= SPEED_POWER_MAX)
  5162. ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // limit to max RPM
  5163. if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
  5164. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5165. analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
  5166. delay_for_power_up();
  5167. }
  5168. }
  5169. #else
  5170. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
  5171. delay_for_power_up();
  5172. #endif
  5173. }
  5174. /**
  5175. * M5 turn off spindle
  5176. */
  5177. inline void gcode_M5() {
  5178. stepper.synchronize();
  5179. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
  5180. delay_for_power_down();
  5181. }
  5182. #endif // SPINDLE_LASER_ENABLE
  5183. /**
  5184. * M17: Enable power on all stepper motors
  5185. */
  5186. inline void gcode_M17() {
  5187. LCD_MESSAGEPGM(MSG_NO_MOVE);
  5188. enable_all_steppers();
  5189. }
  5190. #if IS_KINEMATIC
  5191. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  5192. #else
  5193. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  5194. #endif
  5195. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  5196. static float resume_position[XYZE];
  5197. static bool move_away_flag = false;
  5198. #if ENABLED(SDSUPPORT)
  5199. static bool sd_print_paused = false;
  5200. #endif
  5201. static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
  5202. static millis_t next_buzz = 0;
  5203. static int8_t runout_beep = 0;
  5204. if (init) next_buzz = runout_beep = 0;
  5205. const millis_t ms = millis();
  5206. if (ELAPSED(ms, next_buzz)) {
  5207. if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
  5208. next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400);
  5209. BUZZ(300, 2000);
  5210. runout_beep++;
  5211. }
  5212. }
  5213. }
  5214. static void ensure_safe_temperature() {
  5215. bool heaters_heating = true;
  5216. wait_for_heatup = true; // M108 will clear this
  5217. while (wait_for_heatup && heaters_heating) {
  5218. idle();
  5219. heaters_heating = false;
  5220. HOTEND_LOOP() {
  5221. if (thermalManager.degTargetHotend(e) && abs(thermalManager.degHotend(e) - thermalManager.degTargetHotend(e)) > TEMP_HYSTERESIS) {
  5222. heaters_heating = true;
  5223. #if ENABLED(ULTIPANEL)
  5224. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  5225. #endif
  5226. break;
  5227. }
  5228. }
  5229. }
  5230. }
  5231. static bool pause_print(const float &retract, const float &z_lift, const float &x_pos, const float &y_pos,
  5232. const float &unload_length = 0 , const int8_t max_beep_count = 0, const bool show_lcd = false
  5233. ) {
  5234. if (move_away_flag) return false; // already paused
  5235. if (!DEBUGGING(DRYRUN) && (unload_length != 0 || retract != 0)) {
  5236. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5237. if (!thermalManager.allow_cold_extrude &&
  5238. thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) {
  5239. SERIAL_ERROR_START();
  5240. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5241. return false;
  5242. }
  5243. #endif
  5244. ensure_safe_temperature(); // wait for extruder to heat up before unloading
  5245. }
  5246. // Indicate that the printer is paused
  5247. move_away_flag = true;
  5248. // Pause the print job and timer
  5249. #if ENABLED(SDSUPPORT)
  5250. if (card.sdprinting) {
  5251. card.pauseSDPrint();
  5252. sd_print_paused = true;
  5253. }
  5254. #endif
  5255. print_job_timer.pause();
  5256. // Show initial message and wait for synchronize steppers
  5257. if (show_lcd) {
  5258. #if ENABLED(ULTIPANEL)
  5259. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT);
  5260. #endif
  5261. }
  5262. // Save current position
  5263. stepper.synchronize();
  5264. COPY(resume_position, current_position);
  5265. if (retract) {
  5266. // Initial retract before move to filament change position
  5267. set_destination_to_current();
  5268. destination[E_AXIS] += retract;
  5269. RUNPLAN(PAUSE_PARK_RETRACT_FEEDRATE);
  5270. stepper.synchronize();
  5271. }
  5272. // Lift Z axis
  5273. if (z_lift > 0)
  5274. do_blocking_move_to_z(current_position[Z_AXIS] + z_lift, PAUSE_PARK_Z_FEEDRATE);
  5275. // Move XY axes to filament exchange position
  5276. do_blocking_move_to_xy(x_pos, y_pos, PAUSE_PARK_XY_FEEDRATE);
  5277. if (unload_length != 0) {
  5278. if (show_lcd) {
  5279. #if ENABLED(ULTIPANEL)
  5280. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD);
  5281. idle();
  5282. #endif
  5283. }
  5284. // Unload filament
  5285. set_destination_to_current();
  5286. destination[E_AXIS] += unload_length;
  5287. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5288. stepper.synchronize();
  5289. }
  5290. if (show_lcd) {
  5291. #if ENABLED(ULTIPANEL)
  5292. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5293. #endif
  5294. }
  5295. #if HAS_BUZZER
  5296. filament_change_beep(max_beep_count, true);
  5297. #endif
  5298. idle();
  5299. // Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
  5300. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
  5301. disable_e_steppers();
  5302. safe_delay(100);
  5303. #endif
  5304. // Start the heater idle timers
  5305. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5306. HOTEND_LOOP()
  5307. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5308. return true;
  5309. }
  5310. static void wait_for_filament_reload(const int8_t max_beep_count = 0) {
  5311. bool nozzle_timed_out = false;
  5312. // Wait for filament insert by user and press button
  5313. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5314. wait_for_user = true; // LCD click or M108 will clear this
  5315. while (wait_for_user) {
  5316. #if HAS_BUZZER
  5317. filament_change_beep(max_beep_count);
  5318. #endif
  5319. // If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
  5320. // re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
  5321. if (!nozzle_timed_out)
  5322. HOTEND_LOOP()
  5323. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5324. if (nozzle_timed_out) {
  5325. #if ENABLED(ULTIPANEL)
  5326. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  5327. #endif
  5328. // Wait for LCD click or M108
  5329. while (wait_for_user) idle(true);
  5330. // Re-enable the heaters if they timed out
  5331. HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
  5332. // Wait for the heaters to reach the target temperatures
  5333. ensure_safe_temperature();
  5334. #if ENABLED(ULTIPANEL)
  5335. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5336. #endif
  5337. // Start the heater idle timers
  5338. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5339. HOTEND_LOOP()
  5340. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5341. wait_for_user = true; /* Wait for user to load filament */
  5342. nozzle_timed_out = false;
  5343. #if HAS_BUZZER
  5344. filament_change_beep(max_beep_count, true);
  5345. #endif
  5346. }
  5347. idle(true);
  5348. }
  5349. KEEPALIVE_STATE(IN_HANDLER);
  5350. }
  5351. static void resume_print(const float &load_length = 0, const float &initial_extrude_length = 0, const int8_t max_beep_count = 0) {
  5352. bool nozzle_timed_out = false;
  5353. if (!move_away_flag) return;
  5354. // Re-enable the heaters if they timed out
  5355. HOTEND_LOOP() {
  5356. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5357. thermalManager.reset_heater_idle_timer(e);
  5358. }
  5359. if (nozzle_timed_out) ensure_safe_temperature();
  5360. #if HAS_BUZZER
  5361. filament_change_beep(max_beep_count, true);
  5362. #endif
  5363. set_destination_to_current();
  5364. if (load_length != 0) {
  5365. #if ENABLED(ULTIPANEL)
  5366. // Show "insert filament"
  5367. if (nozzle_timed_out)
  5368. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5369. #endif
  5370. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5371. wait_for_user = true; // LCD click or M108 will clear this
  5372. while (wait_for_user && nozzle_timed_out) {
  5373. #if HAS_BUZZER
  5374. filament_change_beep(max_beep_count);
  5375. #endif
  5376. idle(true);
  5377. }
  5378. KEEPALIVE_STATE(IN_HANDLER);
  5379. #if ENABLED(ULTIPANEL)
  5380. // Show "load" message
  5381. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD);
  5382. #endif
  5383. // Load filament
  5384. destination[E_AXIS] += load_length;
  5385. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5386. stepper.synchronize();
  5387. }
  5388. #if ENABLED(ULTIPANEL) && ADVANCED_PAUSE_EXTRUDE_LENGTH > 0
  5389. float extrude_length = initial_extrude_length;
  5390. do {
  5391. if (extrude_length > 0) {
  5392. // "Wait for filament extrude"
  5393. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_EXTRUDE);
  5394. // Extrude filament to get into hotend
  5395. destination[E_AXIS] += extrude_length;
  5396. RUNPLAN(ADVANCED_PAUSE_EXTRUDE_FEEDRATE);
  5397. stepper.synchronize();
  5398. }
  5399. // Show "Extrude More" / "Resume" menu and wait for reply
  5400. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5401. wait_for_user = false;
  5402. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION);
  5403. while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
  5404. KEEPALIVE_STATE(IN_HANDLER);
  5405. extrude_length = ADVANCED_PAUSE_EXTRUDE_LENGTH;
  5406. // Keep looping if "Extrude More" was selected
  5407. } while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE);
  5408. #endif
  5409. #if ENABLED(ULTIPANEL)
  5410. // "Wait for print to resume"
  5411. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
  5412. #endif
  5413. // Set extruder to saved position
  5414. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  5415. planner.set_e_position_mm(current_position[E_AXIS]);
  5416. // Move XY to starting position, then Z
  5417. do_blocking_move_to_xy(resume_position[X_AXIS], resume_position[Y_AXIS], PAUSE_PARK_XY_FEEDRATE);
  5418. do_blocking_move_to_z(resume_position[Z_AXIS], PAUSE_PARK_Z_FEEDRATE);
  5419. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5420. filament_ran_out = false;
  5421. #endif
  5422. #if ENABLED(ULTIPANEL)
  5423. // Show status screen
  5424. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
  5425. #endif
  5426. #if ENABLED(SDSUPPORT)
  5427. if (sd_print_paused) {
  5428. card.startFileprint();
  5429. sd_print_paused = false;
  5430. }
  5431. #endif
  5432. move_away_flag = false;
  5433. }
  5434. #endif // ADVANCED_PAUSE_FEATURE
  5435. #if ENABLED(SDSUPPORT)
  5436. /**
  5437. * M20: List SD card to serial output
  5438. */
  5439. inline void gcode_M20() {
  5440. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  5441. card.ls();
  5442. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  5443. }
  5444. /**
  5445. * M21: Init SD Card
  5446. */
  5447. inline void gcode_M21() { card.initsd(); }
  5448. /**
  5449. * M22: Release SD Card
  5450. */
  5451. inline void gcode_M22() { card.release(); }
  5452. /**
  5453. * M23: Open a file
  5454. */
  5455. inline void gcode_M23() {
  5456. // Simplify3D includes the size, so zero out all spaces (#7227)
  5457. for (char *fn = parser.string_arg; *fn; ++fn) if (*fn == ' ') *fn = '\0';
  5458. card.openFile(parser.string_arg, true);
  5459. }
  5460. /**
  5461. * M24: Start or Resume SD Print
  5462. */
  5463. inline void gcode_M24() {
  5464. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5465. resume_print();
  5466. #endif
  5467. card.startFileprint();
  5468. print_job_timer.start();
  5469. }
  5470. /**
  5471. * M25: Pause SD Print
  5472. */
  5473. inline void gcode_M25() {
  5474. card.pauseSDPrint();
  5475. print_job_timer.pause();
  5476. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5477. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  5478. #endif
  5479. }
  5480. /**
  5481. * M26: Set SD Card file index
  5482. */
  5483. inline void gcode_M26() {
  5484. if (card.cardOK && parser.seenval('S'))
  5485. card.setIndex(parser.value_long());
  5486. }
  5487. /**
  5488. * M27: Get SD Card status
  5489. */
  5490. inline void gcode_M27() { card.getStatus(); }
  5491. /**
  5492. * M28: Start SD Write
  5493. */
  5494. inline void gcode_M28() { card.openFile(parser.string_arg, false); }
  5495. /**
  5496. * M29: Stop SD Write
  5497. * Processed in write to file routine above
  5498. */
  5499. inline void gcode_M29() {
  5500. // card.saving = false;
  5501. }
  5502. /**
  5503. * M30 <filename>: Delete SD Card file
  5504. */
  5505. inline void gcode_M30() {
  5506. if (card.cardOK) {
  5507. card.closefile();
  5508. card.removeFile(parser.string_arg);
  5509. }
  5510. }
  5511. #endif // SDSUPPORT
  5512. /**
  5513. * M31: Get the time since the start of SD Print (or last M109)
  5514. */
  5515. inline void gcode_M31() {
  5516. char buffer[21];
  5517. duration_t elapsed = print_job_timer.duration();
  5518. elapsed.toString(buffer);
  5519. lcd_setstatus(buffer);
  5520. SERIAL_ECHO_START();
  5521. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  5522. }
  5523. #if ENABLED(SDSUPPORT)
  5524. /**
  5525. * M32: Select file and start SD Print
  5526. */
  5527. inline void gcode_M32() {
  5528. if (card.sdprinting)
  5529. stepper.synchronize();
  5530. char* namestartpos = parser.string_arg;
  5531. const bool call_procedure = parser.boolval('P');
  5532. if (card.cardOK) {
  5533. card.openFile(namestartpos, true, call_procedure);
  5534. if (parser.seenval('S'))
  5535. card.setIndex(parser.value_long());
  5536. card.startFileprint();
  5537. // Procedure calls count as normal print time.
  5538. if (!call_procedure) print_job_timer.start();
  5539. }
  5540. }
  5541. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5542. /**
  5543. * M33: Get the long full path of a file or folder
  5544. *
  5545. * Parameters:
  5546. * <dospath> Case-insensitive DOS-style path to a file or folder
  5547. *
  5548. * Example:
  5549. * M33 miscel~1/armchair/armcha~1.gco
  5550. *
  5551. * Output:
  5552. * /Miscellaneous/Armchair/Armchair.gcode
  5553. */
  5554. inline void gcode_M33() {
  5555. card.printLongPath(parser.string_arg);
  5556. }
  5557. #endif
  5558. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  5559. /**
  5560. * M34: Set SD Card Sorting Options
  5561. */
  5562. inline void gcode_M34() {
  5563. if (parser.seen('S')) card.setSortOn(parser.value_bool());
  5564. if (parser.seenval('F')) {
  5565. const int v = parser.value_long();
  5566. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  5567. }
  5568. //if (parser.seen('R')) card.setSortReverse(parser.value_bool());
  5569. }
  5570. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  5571. /**
  5572. * M928: Start SD Write
  5573. */
  5574. inline void gcode_M928() {
  5575. card.openLogFile(parser.string_arg);
  5576. }
  5577. #endif // SDSUPPORT
  5578. /**
  5579. * Sensitive pin test for M42, M226
  5580. */
  5581. static bool pin_is_protected(const int8_t pin) {
  5582. static const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
  5583. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  5584. if (pin == (int8_t)pgm_read_byte(&sensitive_pins[i])) return true;
  5585. return false;
  5586. }
  5587. /**
  5588. * M42: Change pin status via GCode
  5589. *
  5590. * P<pin> Pin number (LED if omitted)
  5591. * S<byte> Pin status from 0 - 255
  5592. */
  5593. inline void gcode_M42() {
  5594. if (!parser.seenval('S')) return;
  5595. const byte pin_status = parser.value_byte();
  5596. const int pin_number = parser.intval('P', LED_PIN);
  5597. if (pin_number < 0) return;
  5598. if (pin_is_protected(pin_number)) {
  5599. SERIAL_ERROR_START();
  5600. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  5601. return;
  5602. }
  5603. pinMode(pin_number, OUTPUT);
  5604. digitalWrite(pin_number, pin_status);
  5605. analogWrite(pin_number, pin_status);
  5606. #if FAN_COUNT > 0
  5607. switch (pin_number) {
  5608. #if HAS_FAN0
  5609. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  5610. #endif
  5611. #if HAS_FAN1
  5612. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  5613. #endif
  5614. #if HAS_FAN2
  5615. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  5616. #endif
  5617. }
  5618. #endif
  5619. }
  5620. #if ENABLED(PINS_DEBUGGING)
  5621. #include "pinsDebug.h"
  5622. inline void toggle_pins() {
  5623. const bool I_flag = parser.boolval('I');
  5624. const int repeat = parser.intval('R', 1),
  5625. start = parser.intval('S'),
  5626. end = parser.intval('E', NUM_DIGITAL_PINS - 1),
  5627. wait = parser.intval('W', 500);
  5628. for (uint8_t pin = start; pin <= end; pin++) {
  5629. //report_pin_state_extended(pin, I_flag, false);
  5630. if (!I_flag && pin_is_protected(pin)) {
  5631. report_pin_state_extended(pin, I_flag, true, "Untouched ");
  5632. SERIAL_EOL();
  5633. }
  5634. else {
  5635. report_pin_state_extended(pin, I_flag, true, "Pulsing ");
  5636. #if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
  5637. if (pin == TEENSY_E2) {
  5638. SET_OUTPUT(TEENSY_E2);
  5639. for (int16_t j = 0; j < repeat; j++) {
  5640. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5641. WRITE(TEENSY_E2, HIGH); safe_delay(wait);
  5642. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5643. }
  5644. }
  5645. else if (pin == TEENSY_E3) {
  5646. SET_OUTPUT(TEENSY_E3);
  5647. for (int16_t j = 0; j < repeat; j++) {
  5648. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5649. WRITE(TEENSY_E3, HIGH); safe_delay(wait);
  5650. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5651. }
  5652. }
  5653. else
  5654. #endif
  5655. {
  5656. pinMode(pin, OUTPUT);
  5657. for (int16_t j = 0; j < repeat; j++) {
  5658. digitalWrite(pin, 0); safe_delay(wait);
  5659. digitalWrite(pin, 1); safe_delay(wait);
  5660. digitalWrite(pin, 0); safe_delay(wait);
  5661. }
  5662. }
  5663. }
  5664. SERIAL_EOL();
  5665. }
  5666. SERIAL_ECHOLNPGM("Done.");
  5667. } // toggle_pins
  5668. inline void servo_probe_test() {
  5669. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  5670. SERIAL_ERROR_START();
  5671. SERIAL_ERRORLNPGM("SERVO not setup");
  5672. #elif !HAS_Z_SERVO_ENDSTOP
  5673. SERIAL_ERROR_START();
  5674. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  5675. #else // HAS_Z_SERVO_ENDSTOP
  5676. const uint8_t probe_index = parser.byteval('P', Z_ENDSTOP_SERVO_NR);
  5677. SERIAL_PROTOCOLLNPGM("Servo probe test");
  5678. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  5679. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  5680. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  5681. bool probe_inverting;
  5682. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  5683. #define PROBE_TEST_PIN Z_MIN_PIN
  5684. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  5685. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  5686. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  5687. #if Z_MIN_ENDSTOP_INVERTING
  5688. SERIAL_PROTOCOLLNPGM("true");
  5689. #else
  5690. SERIAL_PROTOCOLLNPGM("false");
  5691. #endif
  5692. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  5693. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  5694. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  5695. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  5696. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  5697. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  5698. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  5699. SERIAL_PROTOCOLLNPGM("true");
  5700. #else
  5701. SERIAL_PROTOCOLLNPGM("false");
  5702. #endif
  5703. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  5704. #endif
  5705. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  5706. SET_INPUT_PULLUP(PROBE_TEST_PIN);
  5707. bool deploy_state, stow_state;
  5708. for (uint8_t i = 0; i < 4; i++) {
  5709. MOVE_SERVO(probe_index, z_servo_angle[0]); //deploy
  5710. safe_delay(500);
  5711. deploy_state = READ(PROBE_TEST_PIN);
  5712. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  5713. safe_delay(500);
  5714. stow_state = READ(PROBE_TEST_PIN);
  5715. }
  5716. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  5717. refresh_cmd_timeout();
  5718. if (deploy_state != stow_state) {
  5719. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  5720. if (deploy_state) {
  5721. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  5722. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  5723. }
  5724. else {
  5725. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  5726. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  5727. }
  5728. #if ENABLED(BLTOUCH)
  5729. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  5730. #endif
  5731. }
  5732. else { // measure active signal length
  5733. MOVE_SERVO(probe_index, z_servo_angle[0]); // deploy
  5734. safe_delay(500);
  5735. SERIAL_PROTOCOLLNPGM("please trigger probe");
  5736. uint16_t probe_counter = 0;
  5737. // Allow 30 seconds max for operator to trigger probe
  5738. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  5739. safe_delay(2);
  5740. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  5741. refresh_cmd_timeout();
  5742. if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered
  5743. for (probe_counter = 1; probe_counter < 50 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter)
  5744. safe_delay(2);
  5745. if (probe_counter == 50)
  5746. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  5747. else if (probe_counter >= 2)
  5748. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  5749. else
  5750. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  5751. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  5752. } // pulse detected
  5753. } // for loop waiting for trigger
  5754. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  5755. } // measure active signal length
  5756. #endif
  5757. } // servo_probe_test
  5758. /**
  5759. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  5760. *
  5761. * M43 - report name and state of pin(s)
  5762. * P<pin> Pin to read or watch. If omitted, reads all pins.
  5763. * I Flag to ignore Marlin's pin protection.
  5764. *
  5765. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  5766. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  5767. * I Flag to ignore Marlin's pin protection.
  5768. *
  5769. * M43 E<bool> - Enable / disable background endstop monitoring
  5770. * - Machine continues to operate
  5771. * - Reports changes to endstops
  5772. * - Toggles LED_PIN when an endstop changes
  5773. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  5774. *
  5775. * M43 T - Toggle pin(s) and report which pin is being toggled
  5776. * S<pin> - Start Pin number. If not given, will default to 0
  5777. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  5778. * I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
  5779. * R - Repeat pulses on each pin this number of times before continueing to next pin
  5780. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  5781. *
  5782. * M43 S - Servo probe test
  5783. * P<index> - Probe index (optional - defaults to 0
  5784. */
  5785. inline void gcode_M43() {
  5786. if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test
  5787. toggle_pins();
  5788. return;
  5789. }
  5790. // Enable or disable endstop monitoring
  5791. if (parser.seen('E')) {
  5792. endstop_monitor_flag = parser.value_bool();
  5793. SERIAL_PROTOCOLPGM("endstop monitor ");
  5794. serialprintPGM(endstop_monitor_flag ? PSTR("en") : PSTR("dis"));
  5795. SERIAL_PROTOCOLLNPGM("abled");
  5796. return;
  5797. }
  5798. if (parser.seen('S')) {
  5799. servo_probe_test();
  5800. return;
  5801. }
  5802. // Get the range of pins to test or watch
  5803. const uint8_t first_pin = parser.byteval('P'),
  5804. last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  5805. if (first_pin > last_pin) return;
  5806. const bool ignore_protection = parser.boolval('I');
  5807. // Watch until click, M108, or reset
  5808. if (parser.boolval('W')) {
  5809. SERIAL_PROTOCOLLNPGM("Watching pins");
  5810. byte pin_state[last_pin - first_pin + 1];
  5811. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5812. if (pin_is_protected(pin) && !ignore_protection) continue;
  5813. pinMode(pin, INPUT_PULLUP);
  5814. delay(1);
  5815. /*
  5816. if (IS_ANALOG(pin))
  5817. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  5818. else
  5819. //*/
  5820. pin_state[pin - first_pin] = digitalRead(pin);
  5821. }
  5822. #if HAS_RESUME_CONTINUE
  5823. wait_for_user = true;
  5824. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5825. #endif
  5826. for (;;) {
  5827. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5828. if (pin_is_protected(pin) && !ignore_protection) continue;
  5829. const byte val =
  5830. /*
  5831. IS_ANALOG(pin)
  5832. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  5833. :
  5834. //*/
  5835. digitalRead(pin);
  5836. if (val != pin_state[pin - first_pin]) {
  5837. report_pin_state_extended(pin, ignore_protection, false);
  5838. pin_state[pin - first_pin] = val;
  5839. }
  5840. }
  5841. #if HAS_RESUME_CONTINUE
  5842. if (!wait_for_user) {
  5843. KEEPALIVE_STATE(IN_HANDLER);
  5844. break;
  5845. }
  5846. #endif
  5847. safe_delay(200);
  5848. }
  5849. return;
  5850. }
  5851. // Report current state of selected pin(s)
  5852. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  5853. report_pin_state_extended(pin, ignore_protection, true);
  5854. }
  5855. #endif // PINS_DEBUGGING
  5856. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5857. /**
  5858. * M48: Z probe repeatability measurement function.
  5859. *
  5860. * Usage:
  5861. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  5862. * P = Number of sampled points (4-50, default 10)
  5863. * X = Sample X position
  5864. * Y = Sample Y position
  5865. * V = Verbose level (0-4, default=1)
  5866. * E = Engage Z probe for each reading
  5867. * L = Number of legs of movement before probe
  5868. * S = Schizoid (Or Star if you prefer)
  5869. *
  5870. * This function assumes the bed has been homed. Specifically, that a G28 command
  5871. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  5872. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  5873. * regenerated.
  5874. */
  5875. inline void gcode_M48() {
  5876. if (axis_unhomed_error()) return;
  5877. const int8_t verbose_level = parser.byteval('V', 1);
  5878. if (!WITHIN(verbose_level, 0, 4)) {
  5879. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  5880. return;
  5881. }
  5882. if (verbose_level > 0)
  5883. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  5884. const int8_t n_samples = parser.byteval('P', 10);
  5885. if (!WITHIN(n_samples, 4, 50)) {
  5886. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  5887. return;
  5888. }
  5889. const bool stow_probe_after_each = parser.boolval('E');
  5890. float X_current = current_position[X_AXIS],
  5891. Y_current = current_position[Y_AXIS];
  5892. const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
  5893. Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5894. #if DISABLED(DELTA)
  5895. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  5896. out_of_range_error(PSTR("X"));
  5897. return;
  5898. }
  5899. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  5900. out_of_range_error(PSTR("Y"));
  5901. return;
  5902. }
  5903. #else
  5904. if (!position_is_reachable_by_probe_xy(X_probe_location, Y_probe_location)) {
  5905. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  5906. return;
  5907. }
  5908. #endif
  5909. bool seen_L = parser.seen('L');
  5910. uint8_t n_legs = seen_L ? parser.value_byte() : 0;
  5911. if (n_legs > 15) {
  5912. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  5913. return;
  5914. }
  5915. if (n_legs == 1) n_legs = 2;
  5916. const bool schizoid_flag = parser.boolval('S');
  5917. if (schizoid_flag && !seen_L) n_legs = 7;
  5918. /**
  5919. * Now get everything to the specified probe point So we can safely do a
  5920. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  5921. * we don't want to use that as a starting point for each probe.
  5922. */
  5923. if (verbose_level > 2)
  5924. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  5925. // Disable bed level correction in M48 because we want the raw data when we probe
  5926. #if HAS_LEVELING
  5927. const bool was_enabled = planner.leveling_active;
  5928. set_bed_leveling_enabled(false);
  5929. #endif
  5930. setup_for_endstop_or_probe_move();
  5931. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  5932. // Move to the first point, deploy, and probe
  5933. const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  5934. bool probing_good = !isnan(t);
  5935. if (probing_good) {
  5936. randomSeed(millis());
  5937. for (uint8_t n = 0; n < n_samples; n++) {
  5938. if (n_legs) {
  5939. const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  5940. float angle = random(0.0, 360.0);
  5941. const float radius = random(
  5942. #if ENABLED(DELTA)
  5943. 0.1250000000 * (DELTA_PROBEABLE_RADIUS),
  5944. 0.3333333333 * (DELTA_PROBEABLE_RADIUS)
  5945. #else
  5946. 5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
  5947. #endif
  5948. );
  5949. if (verbose_level > 3) {
  5950. SERIAL_ECHOPAIR("Starting radius: ", radius);
  5951. SERIAL_ECHOPAIR(" angle: ", angle);
  5952. SERIAL_ECHOPGM(" Direction: ");
  5953. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  5954. SERIAL_ECHOLNPGM("Clockwise");
  5955. }
  5956. for (uint8_t l = 0; l < n_legs - 1; l++) {
  5957. double delta_angle;
  5958. if (schizoid_flag)
  5959. // The points of a 5 point star are 72 degrees apart. We need to
  5960. // skip a point and go to the next one on the star.
  5961. delta_angle = dir * 2.0 * 72.0;
  5962. else
  5963. // If we do this line, we are just trying to move further
  5964. // around the circle.
  5965. delta_angle = dir * (float) random(25, 45);
  5966. angle += delta_angle;
  5967. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  5968. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  5969. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  5970. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  5971. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  5972. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  5973. #if DISABLED(DELTA)
  5974. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  5975. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  5976. #else
  5977. // If we have gone out too far, we can do a simple fix and scale the numbers
  5978. // back in closer to the origin.
  5979. while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
  5980. X_current *= 0.8;
  5981. Y_current *= 0.8;
  5982. if (verbose_level > 3) {
  5983. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  5984. SERIAL_ECHOLNPAIR(", ", Y_current);
  5985. }
  5986. }
  5987. #endif
  5988. if (verbose_level > 3) {
  5989. SERIAL_PROTOCOLPGM("Going to:");
  5990. SERIAL_ECHOPAIR(" X", X_current);
  5991. SERIAL_ECHOPAIR(" Y", Y_current);
  5992. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  5993. }
  5994. do_blocking_move_to_xy(X_current, Y_current);
  5995. } // n_legs loop
  5996. } // n_legs
  5997. // Probe a single point
  5998. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  5999. // Break the loop if the probe fails
  6000. probing_good = !isnan(sample_set[n]);
  6001. if (!probing_good) break;
  6002. /**
  6003. * Get the current mean for the data points we have so far
  6004. */
  6005. double sum = 0.0;
  6006. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  6007. mean = sum / (n + 1);
  6008. NOMORE(min, sample_set[n]);
  6009. NOLESS(max, sample_set[n]);
  6010. /**
  6011. * Now, use that mean to calculate the standard deviation for the
  6012. * data points we have so far
  6013. */
  6014. sum = 0.0;
  6015. for (uint8_t j = 0; j <= n; j++)
  6016. sum += sq(sample_set[j] - mean);
  6017. sigma = SQRT(sum / (n + 1));
  6018. if (verbose_level > 0) {
  6019. if (verbose_level > 1) {
  6020. SERIAL_PROTOCOL(n + 1);
  6021. SERIAL_PROTOCOLPGM(" of ");
  6022. SERIAL_PROTOCOL((int)n_samples);
  6023. SERIAL_PROTOCOLPGM(": z: ");
  6024. SERIAL_PROTOCOL_F(sample_set[n], 3);
  6025. if (verbose_level > 2) {
  6026. SERIAL_PROTOCOLPGM(" mean: ");
  6027. SERIAL_PROTOCOL_F(mean, 4);
  6028. SERIAL_PROTOCOLPGM(" sigma: ");
  6029. SERIAL_PROTOCOL_F(sigma, 6);
  6030. SERIAL_PROTOCOLPGM(" min: ");
  6031. SERIAL_PROTOCOL_F(min, 3);
  6032. SERIAL_PROTOCOLPGM(" max: ");
  6033. SERIAL_PROTOCOL_F(max, 3);
  6034. SERIAL_PROTOCOLPGM(" range: ");
  6035. SERIAL_PROTOCOL_F(max-min, 3);
  6036. }
  6037. SERIAL_EOL();
  6038. }
  6039. }
  6040. } // n_samples loop
  6041. }
  6042. STOW_PROBE();
  6043. if (probing_good) {
  6044. SERIAL_PROTOCOLLNPGM("Finished!");
  6045. if (verbose_level > 0) {
  6046. SERIAL_PROTOCOLPGM("Mean: ");
  6047. SERIAL_PROTOCOL_F(mean, 6);
  6048. SERIAL_PROTOCOLPGM(" Min: ");
  6049. SERIAL_PROTOCOL_F(min, 3);
  6050. SERIAL_PROTOCOLPGM(" Max: ");
  6051. SERIAL_PROTOCOL_F(max, 3);
  6052. SERIAL_PROTOCOLPGM(" Range: ");
  6053. SERIAL_PROTOCOL_F(max-min, 3);
  6054. SERIAL_EOL();
  6055. }
  6056. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  6057. SERIAL_PROTOCOL_F(sigma, 6);
  6058. SERIAL_EOL();
  6059. SERIAL_EOL();
  6060. }
  6061. clean_up_after_endstop_or_probe_move();
  6062. // Re-enable bed level correction if it had been on
  6063. #if HAS_LEVELING
  6064. set_bed_leveling_enabled(was_enabled);
  6065. #endif
  6066. report_current_position();
  6067. }
  6068. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6069. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  6070. inline void gcode_M49() {
  6071. ubl.g26_debug_flag ^= true;
  6072. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  6073. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  6074. }
  6075. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  6076. /**
  6077. * M75: Start print timer
  6078. */
  6079. inline void gcode_M75() { print_job_timer.start(); }
  6080. /**
  6081. * M76: Pause print timer
  6082. */
  6083. inline void gcode_M76() { print_job_timer.pause(); }
  6084. /**
  6085. * M77: Stop print timer
  6086. */
  6087. inline void gcode_M77() { print_job_timer.stop(); }
  6088. #if ENABLED(PRINTCOUNTER)
  6089. /**
  6090. * M78: Show print statistics
  6091. */
  6092. inline void gcode_M78() {
  6093. // "M78 S78" will reset the statistics
  6094. if (parser.intval('S') == 78)
  6095. print_job_timer.initStats();
  6096. else
  6097. print_job_timer.showStats();
  6098. }
  6099. #endif
  6100. /**
  6101. * M104: Set hot end temperature
  6102. */
  6103. inline void gcode_M104() {
  6104. if (get_target_extruder_from_command(104)) return;
  6105. if (DEBUGGING(DRYRUN)) return;
  6106. #if ENABLED(SINGLENOZZLE)
  6107. if (target_extruder != active_extruder) return;
  6108. #endif
  6109. if (parser.seenval('S')) {
  6110. const int16_t temp = parser.value_celsius();
  6111. thermalManager.setTargetHotend(temp, target_extruder);
  6112. #if ENABLED(DUAL_X_CARRIAGE)
  6113. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6114. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6115. #endif
  6116. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6117. /**
  6118. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  6119. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  6120. * standby mode, for instance in a dual extruder setup, without affecting
  6121. * the running print timer.
  6122. */
  6123. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6124. print_job_timer.stop();
  6125. LCD_MESSAGEPGM(WELCOME_MSG);
  6126. }
  6127. #endif
  6128. if (parser.value_celsius() > thermalManager.degHotend(target_extruder))
  6129. lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6130. }
  6131. #if ENABLED(AUTOTEMP)
  6132. planner.autotemp_M104_M109();
  6133. #endif
  6134. }
  6135. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6136. void print_heater_state(const float &c, const float &t,
  6137. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6138. const float r,
  6139. #endif
  6140. const int8_t e=-2
  6141. ) {
  6142. #if !(HAS_TEMP_BED && HAS_TEMP_HOTEND) && HOTENDS <= 1
  6143. UNUSED(e);
  6144. #endif
  6145. SERIAL_PROTOCOLCHAR(' ');
  6146. SERIAL_PROTOCOLCHAR(
  6147. #if HAS_TEMP_BED && HAS_TEMP_HOTEND
  6148. e == -1 ? 'B' : 'T'
  6149. #elif HAS_TEMP_HOTEND
  6150. 'T'
  6151. #else
  6152. 'B'
  6153. #endif
  6154. );
  6155. #if HOTENDS > 1
  6156. if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e);
  6157. #endif
  6158. SERIAL_PROTOCOLCHAR(':');
  6159. SERIAL_PROTOCOL(c);
  6160. SERIAL_PROTOCOLPAIR(" /" , t);
  6161. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6162. SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR);
  6163. SERIAL_PROTOCOLCHAR(')');
  6164. #endif
  6165. }
  6166. void print_heaterstates() {
  6167. #if HAS_TEMP_HOTEND
  6168. print_heater_state(thermalManager.degHotend(target_extruder), thermalManager.degTargetHotend(target_extruder)
  6169. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6170. , thermalManager.rawHotendTemp(target_extruder)
  6171. #endif
  6172. );
  6173. #endif
  6174. #if HAS_TEMP_BED
  6175. print_heater_state(thermalManager.degBed(), thermalManager.degTargetBed(),
  6176. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6177. thermalManager.rawBedTemp(),
  6178. #endif
  6179. -1 // BED
  6180. );
  6181. #endif
  6182. #if HOTENDS > 1
  6183. HOTEND_LOOP() print_heater_state(thermalManager.degHotend(e), thermalManager.degTargetHotend(e),
  6184. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6185. thermalManager.rawHotendTemp(e),
  6186. #endif
  6187. e
  6188. );
  6189. #endif
  6190. SERIAL_PROTOCOLPGM(" @:");
  6191. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  6192. #if HAS_TEMP_BED
  6193. SERIAL_PROTOCOLPGM(" B@:");
  6194. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  6195. #endif
  6196. #if HOTENDS > 1
  6197. HOTEND_LOOP() {
  6198. SERIAL_PROTOCOLPAIR(" @", e);
  6199. SERIAL_PROTOCOLCHAR(':');
  6200. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  6201. }
  6202. #endif
  6203. }
  6204. #endif
  6205. /**
  6206. * M105: Read hot end and bed temperature
  6207. */
  6208. inline void gcode_M105() {
  6209. if (get_target_extruder_from_command(105)) return;
  6210. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6211. SERIAL_PROTOCOLPGM(MSG_OK);
  6212. print_heaterstates();
  6213. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  6214. SERIAL_ERROR_START();
  6215. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  6216. #endif
  6217. SERIAL_EOL();
  6218. }
  6219. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  6220. static uint8_t auto_report_temp_interval;
  6221. static millis_t next_temp_report_ms;
  6222. /**
  6223. * M155: Set temperature auto-report interval. M155 S<seconds>
  6224. */
  6225. inline void gcode_M155() {
  6226. if (parser.seenval('S')) {
  6227. auto_report_temp_interval = parser.value_byte();
  6228. NOMORE(auto_report_temp_interval, 60);
  6229. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6230. }
  6231. }
  6232. inline void auto_report_temperatures() {
  6233. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  6234. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6235. print_heaterstates();
  6236. SERIAL_EOL();
  6237. }
  6238. }
  6239. #endif // AUTO_REPORT_TEMPERATURES
  6240. #if FAN_COUNT > 0
  6241. /**
  6242. * M106: Set Fan Speed
  6243. *
  6244. * S<int> Speed between 0-255
  6245. * P<index> Fan index, if more than one fan
  6246. */
  6247. inline void gcode_M106() {
  6248. uint16_t s = parser.ushortval('S', 255);
  6249. NOMORE(s, 255);
  6250. const uint8_t p = parser.byteval('P', 0);
  6251. if (p < FAN_COUNT) fanSpeeds[p] = s;
  6252. }
  6253. /**
  6254. * M107: Fan Off
  6255. */
  6256. inline void gcode_M107() {
  6257. const uint16_t p = parser.ushortval('P');
  6258. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  6259. }
  6260. #endif // FAN_COUNT > 0
  6261. #if DISABLED(EMERGENCY_PARSER)
  6262. /**
  6263. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  6264. */
  6265. inline void gcode_M108() { wait_for_heatup = false; }
  6266. /**
  6267. * M112: Emergency Stop
  6268. */
  6269. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  6270. /**
  6271. * M410: Quickstop - Abort all planned moves
  6272. *
  6273. * This will stop the carriages mid-move, so most likely they
  6274. * will be out of sync with the stepper position after this.
  6275. */
  6276. inline void gcode_M410() { quickstop_stepper(); }
  6277. #endif
  6278. /**
  6279. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  6280. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  6281. */
  6282. #ifndef MIN_COOLING_SLOPE_DEG
  6283. #define MIN_COOLING_SLOPE_DEG 1.50
  6284. #endif
  6285. #ifndef MIN_COOLING_SLOPE_TIME
  6286. #define MIN_COOLING_SLOPE_TIME 60
  6287. #endif
  6288. inline void gcode_M109() {
  6289. if (get_target_extruder_from_command(109)) return;
  6290. if (DEBUGGING(DRYRUN)) return;
  6291. #if ENABLED(SINGLENOZZLE)
  6292. if (target_extruder != active_extruder) return;
  6293. #endif
  6294. const bool no_wait_for_cooling = parser.seenval('S');
  6295. if (no_wait_for_cooling || parser.seenval('R')) {
  6296. const int16_t temp = parser.value_celsius();
  6297. thermalManager.setTargetHotend(temp, target_extruder);
  6298. #if ENABLED(DUAL_X_CARRIAGE)
  6299. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6300. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6301. #endif
  6302. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6303. /**
  6304. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  6305. * standby mode, (e.g., in a dual extruder setup) without affecting
  6306. * the running print timer.
  6307. */
  6308. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6309. print_job_timer.stop();
  6310. LCD_MESSAGEPGM(WELCOME_MSG);
  6311. }
  6312. else
  6313. print_job_timer.start();
  6314. #endif
  6315. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6316. }
  6317. else return;
  6318. #if ENABLED(AUTOTEMP)
  6319. planner.autotemp_M104_M109();
  6320. #endif
  6321. #if TEMP_RESIDENCY_TIME > 0
  6322. millis_t residency_start_ms = 0;
  6323. // Loop until the temperature has stabilized
  6324. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  6325. #else
  6326. // Loop until the temperature is very close target
  6327. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  6328. #endif
  6329. float target_temp = -1.0, old_temp = 9999.0;
  6330. bool wants_to_cool = false;
  6331. wait_for_heatup = true;
  6332. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6333. #if DISABLED(BUSY_WHILE_HEATING)
  6334. KEEPALIVE_STATE(NOT_BUSY);
  6335. #endif
  6336. #if ENABLED(PRINTER_EVENT_LEDS)
  6337. const float start_temp = thermalManager.degHotend(target_extruder);
  6338. uint8_t old_blue = 0;
  6339. #endif
  6340. do {
  6341. // Target temperature might be changed during the loop
  6342. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  6343. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  6344. target_temp = thermalManager.degTargetHotend(target_extruder);
  6345. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6346. if (no_wait_for_cooling && wants_to_cool) break;
  6347. }
  6348. now = millis();
  6349. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  6350. next_temp_ms = now + 1000UL;
  6351. print_heaterstates();
  6352. #if TEMP_RESIDENCY_TIME > 0
  6353. SERIAL_PROTOCOLPGM(" W:");
  6354. if (residency_start_ms)
  6355. SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6356. else
  6357. SERIAL_PROTOCOLCHAR('?');
  6358. #endif
  6359. SERIAL_EOL();
  6360. }
  6361. idle();
  6362. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6363. const float temp = thermalManager.degHotend(target_extruder);
  6364. #if ENABLED(PRINTER_EVENT_LEDS)
  6365. // Gradually change LED strip from violet to red as nozzle heats up
  6366. if (!wants_to_cool) {
  6367. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  6368. if (blue != old_blue) {
  6369. old_blue = blue;
  6370. set_led_color(255, 0, blue
  6371. #if ENABLED(NEOPIXEL_LED)
  6372. , 0
  6373. , pixels.getBrightness()
  6374. #if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
  6375. , true
  6376. #endif
  6377. #endif
  6378. );
  6379. }
  6380. }
  6381. #endif
  6382. #if TEMP_RESIDENCY_TIME > 0
  6383. const float temp_diff = FABS(target_temp - temp);
  6384. if (!residency_start_ms) {
  6385. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  6386. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  6387. }
  6388. else if (temp_diff > TEMP_HYSTERESIS) {
  6389. // Restart the timer whenever the temperature falls outside the hysteresis.
  6390. residency_start_ms = now;
  6391. }
  6392. #endif
  6393. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  6394. if (wants_to_cool) {
  6395. // break after MIN_COOLING_SLOPE_TIME seconds
  6396. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  6397. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6398. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  6399. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  6400. old_temp = temp;
  6401. }
  6402. }
  6403. } while (wait_for_heatup && TEMP_CONDITIONS);
  6404. if (wait_for_heatup) {
  6405. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  6406. #if ENABLED(PRINTER_EVENT_LEDS)
  6407. #if ENABLED(RGB_LED) || ENABLED(BLINKM) || ENABLED(PCA9632) || ENABLED(RGBW_LED)
  6408. set_led_color(LED_WHITE);
  6409. #endif
  6410. #if ENABLED(NEOPIXEL_LED)
  6411. set_neopixel_color(pixels.Color(NEO_WHITE));
  6412. #endif
  6413. #endif
  6414. }
  6415. #if DISABLED(BUSY_WHILE_HEATING)
  6416. KEEPALIVE_STATE(IN_HANDLER);
  6417. #endif
  6418. }
  6419. #if HAS_TEMP_BED
  6420. #ifndef MIN_COOLING_SLOPE_DEG_BED
  6421. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  6422. #endif
  6423. #ifndef MIN_COOLING_SLOPE_TIME_BED
  6424. #define MIN_COOLING_SLOPE_TIME_BED 60
  6425. #endif
  6426. /**
  6427. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  6428. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  6429. */
  6430. inline void gcode_M190() {
  6431. if (DEBUGGING(DRYRUN)) return;
  6432. LCD_MESSAGEPGM(MSG_BED_HEATING);
  6433. const bool no_wait_for_cooling = parser.seenval('S');
  6434. if (no_wait_for_cooling || parser.seenval('R')) {
  6435. thermalManager.setTargetBed(parser.value_celsius());
  6436. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6437. if (parser.value_celsius() > BED_MINTEMP)
  6438. print_job_timer.start();
  6439. #endif
  6440. }
  6441. else return;
  6442. #if TEMP_BED_RESIDENCY_TIME > 0
  6443. millis_t residency_start_ms = 0;
  6444. // Loop until the temperature has stabilized
  6445. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  6446. #else
  6447. // Loop until the temperature is very close target
  6448. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  6449. #endif
  6450. float target_temp = -1.0, old_temp = 9999.0;
  6451. bool wants_to_cool = false;
  6452. wait_for_heatup = true;
  6453. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6454. #if DISABLED(BUSY_WHILE_HEATING)
  6455. KEEPALIVE_STATE(NOT_BUSY);
  6456. #endif
  6457. target_extruder = active_extruder; // for print_heaterstates
  6458. #if ENABLED(PRINTER_EVENT_LEDS)
  6459. const float start_temp = thermalManager.degBed();
  6460. uint8_t old_red = 255;
  6461. #endif
  6462. do {
  6463. // Target temperature might be changed during the loop
  6464. if (target_temp != thermalManager.degTargetBed()) {
  6465. wants_to_cool = thermalManager.isCoolingBed();
  6466. target_temp = thermalManager.degTargetBed();
  6467. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6468. if (no_wait_for_cooling && wants_to_cool) break;
  6469. }
  6470. now = millis();
  6471. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  6472. next_temp_ms = now + 1000UL;
  6473. print_heaterstates();
  6474. #if TEMP_BED_RESIDENCY_TIME > 0
  6475. SERIAL_PROTOCOLPGM(" W:");
  6476. if (residency_start_ms)
  6477. SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6478. else
  6479. SERIAL_PROTOCOLCHAR('?');
  6480. #endif
  6481. SERIAL_EOL();
  6482. }
  6483. idle();
  6484. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6485. const float temp = thermalManager.degBed();
  6486. #if ENABLED(PRINTER_EVENT_LEDS)
  6487. // Gradually change LED strip from blue to violet as bed heats up
  6488. if (!wants_to_cool) {
  6489. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  6490. if (red != old_red) {
  6491. old_red = red;
  6492. set_led_color(red, 0, 255
  6493. #if ENABLED(NEOPIXEL_LED)
  6494. , 0, pixels.getBrightness()
  6495. #if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
  6496. , true
  6497. #endif
  6498. #endif
  6499. );
  6500. }
  6501. }
  6502. #endif
  6503. #if TEMP_BED_RESIDENCY_TIME > 0
  6504. const float temp_diff = FABS(target_temp - temp);
  6505. if (!residency_start_ms) {
  6506. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  6507. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  6508. }
  6509. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  6510. // Restart the timer whenever the temperature falls outside the hysteresis.
  6511. residency_start_ms = now;
  6512. }
  6513. #endif // TEMP_BED_RESIDENCY_TIME > 0
  6514. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  6515. if (wants_to_cool) {
  6516. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  6517. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  6518. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6519. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  6520. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  6521. old_temp = temp;
  6522. }
  6523. }
  6524. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  6525. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  6526. #if DISABLED(BUSY_WHILE_HEATING)
  6527. KEEPALIVE_STATE(IN_HANDLER);
  6528. #endif
  6529. }
  6530. #endif // HAS_TEMP_BED
  6531. /**
  6532. * M110: Set Current Line Number
  6533. */
  6534. inline void gcode_M110() {
  6535. if (parser.seenval('N')) gcode_LastN = parser.value_long();
  6536. }
  6537. /**
  6538. * M111: Set the debug level
  6539. */
  6540. inline void gcode_M111() {
  6541. if (parser.seen('S')) marlin_debug_flags = parser.byteval('S');
  6542. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO,
  6543. str_debug_2[] PROGMEM = MSG_DEBUG_INFO,
  6544. str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS,
  6545. str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN,
  6546. str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION
  6547. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6548. , str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING
  6549. #endif
  6550. ;
  6551. const static char* const debug_strings[] PROGMEM = {
  6552. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
  6553. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6554. , str_debug_32
  6555. #endif
  6556. };
  6557. SERIAL_ECHO_START();
  6558. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  6559. if (marlin_debug_flags) {
  6560. uint8_t comma = 0;
  6561. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  6562. if (TEST(marlin_debug_flags, i)) {
  6563. if (comma++) SERIAL_CHAR(',');
  6564. serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
  6565. }
  6566. }
  6567. }
  6568. else {
  6569. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  6570. }
  6571. SERIAL_EOL();
  6572. }
  6573. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6574. /**
  6575. * M113: Get or set Host Keepalive interval (0 to disable)
  6576. *
  6577. * S<seconds> Optional. Set the keepalive interval.
  6578. */
  6579. inline void gcode_M113() {
  6580. if (parser.seenval('S')) {
  6581. host_keepalive_interval = parser.value_byte();
  6582. NOMORE(host_keepalive_interval, 60);
  6583. }
  6584. else {
  6585. SERIAL_ECHO_START();
  6586. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  6587. }
  6588. }
  6589. #endif
  6590. #if ENABLED(BARICUDA)
  6591. #if HAS_HEATER_1
  6592. /**
  6593. * M126: Heater 1 valve open
  6594. */
  6595. inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
  6596. /**
  6597. * M127: Heater 1 valve close
  6598. */
  6599. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  6600. #endif
  6601. #if HAS_HEATER_2
  6602. /**
  6603. * M128: Heater 2 valve open
  6604. */
  6605. inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
  6606. /**
  6607. * M129: Heater 2 valve close
  6608. */
  6609. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  6610. #endif
  6611. #endif // BARICUDA
  6612. /**
  6613. * M140: Set bed temperature
  6614. */
  6615. inline void gcode_M140() {
  6616. if (DEBUGGING(DRYRUN)) return;
  6617. if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());
  6618. }
  6619. #if ENABLED(ULTIPANEL)
  6620. /**
  6621. * M145: Set the heatup state for a material in the LCD menu
  6622. *
  6623. * S<material> (0=PLA, 1=ABS)
  6624. * H<hotend temp>
  6625. * B<bed temp>
  6626. * F<fan speed>
  6627. */
  6628. inline void gcode_M145() {
  6629. const uint8_t material = (uint8_t)parser.intval('S');
  6630. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  6631. SERIAL_ERROR_START();
  6632. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  6633. }
  6634. else {
  6635. int v;
  6636. if (parser.seenval('H')) {
  6637. v = parser.value_int();
  6638. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  6639. }
  6640. if (parser.seenval('F')) {
  6641. v = parser.value_int();
  6642. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  6643. }
  6644. #if TEMP_SENSOR_BED != 0
  6645. if (parser.seenval('B')) {
  6646. v = parser.value_int();
  6647. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  6648. }
  6649. #endif
  6650. }
  6651. }
  6652. #endif // ULTIPANEL
  6653. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6654. /**
  6655. * M149: Set temperature units
  6656. */
  6657. inline void gcode_M149() {
  6658. if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);
  6659. else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);
  6660. else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);
  6661. }
  6662. #endif
  6663. #if HAS_POWER_SWITCH
  6664. /**
  6665. * M80 : Turn on the Power Supply
  6666. * M80 S : Report the current state and exit
  6667. */
  6668. inline void gcode_M80() {
  6669. // S: Report the current power supply state and exit
  6670. if (parser.seen('S')) {
  6671. serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
  6672. return;
  6673. }
  6674. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
  6675. /**
  6676. * If you have a switch on suicide pin, this is useful
  6677. * if you want to start another print with suicide feature after
  6678. * a print without suicide...
  6679. */
  6680. #if HAS_SUICIDE
  6681. OUT_WRITE(SUICIDE_PIN, HIGH);
  6682. #endif
  6683. #if ENABLED(HAVE_TMC2130)
  6684. delay(100);
  6685. tmc2130_init(); // Settings only stick when the driver has power
  6686. #endif
  6687. powersupply_on = true;
  6688. #if ENABLED(ULTIPANEL)
  6689. LCD_MESSAGEPGM(WELCOME_MSG);
  6690. #endif
  6691. }
  6692. #endif // HAS_POWER_SWITCH
  6693. /**
  6694. * M81: Turn off Power, including Power Supply, if there is one.
  6695. *
  6696. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  6697. */
  6698. inline void gcode_M81() {
  6699. thermalManager.disable_all_heaters();
  6700. stepper.finish_and_disable();
  6701. #if FAN_COUNT > 0
  6702. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  6703. #if ENABLED(PROBING_FANS_OFF)
  6704. fans_paused = false;
  6705. ZERO(paused_fanSpeeds);
  6706. #endif
  6707. #endif
  6708. safe_delay(1000); // Wait 1 second before switching off
  6709. #if HAS_SUICIDE
  6710. stepper.synchronize();
  6711. suicide();
  6712. #elif HAS_POWER_SWITCH
  6713. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  6714. powersupply_on = false;
  6715. #endif
  6716. #if ENABLED(ULTIPANEL)
  6717. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  6718. #endif
  6719. }
  6720. /**
  6721. * M82: Set E codes absolute (default)
  6722. */
  6723. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  6724. /**
  6725. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  6726. */
  6727. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  6728. /**
  6729. * M18, M84: Disable stepper motors
  6730. */
  6731. inline void gcode_M18_M84() {
  6732. if (parser.seenval('S')) {
  6733. stepper_inactive_time = parser.value_millis_from_seconds();
  6734. }
  6735. else {
  6736. bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E')));
  6737. if (all_axis) {
  6738. stepper.finish_and_disable();
  6739. }
  6740. else {
  6741. stepper.synchronize();
  6742. if (parser.seen('X')) disable_X();
  6743. if (parser.seen('Y')) disable_Y();
  6744. if (parser.seen('Z')) disable_Z();
  6745. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only enable on boards that have separate ENABLE_PINS
  6746. if (parser.seen('E')) disable_e_steppers();
  6747. #endif
  6748. }
  6749. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  6750. ubl_lcd_map_control = defer_return_to_status = false;
  6751. #endif
  6752. }
  6753. }
  6754. /**
  6755. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  6756. */
  6757. inline void gcode_M85() {
  6758. if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
  6759. }
  6760. /**
  6761. * Multi-stepper support for M92, M201, M203
  6762. */
  6763. #if ENABLED(DISTINCT_E_FACTORS)
  6764. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  6765. #define TARGET_EXTRUDER target_extruder
  6766. #else
  6767. #define GET_TARGET_EXTRUDER(CMD) NOOP
  6768. #define TARGET_EXTRUDER 0
  6769. #endif
  6770. /**
  6771. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  6772. * (Follows the same syntax as G92)
  6773. *
  6774. * With multiple extruders use T to specify which one.
  6775. */
  6776. inline void gcode_M92() {
  6777. GET_TARGET_EXTRUDER(92);
  6778. LOOP_XYZE(i) {
  6779. if (parser.seen(axis_codes[i])) {
  6780. if (i == E_AXIS) {
  6781. const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
  6782. if (value < 20.0) {
  6783. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  6784. planner.max_jerk[E_AXIS] *= factor;
  6785. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  6786. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  6787. }
  6788. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  6789. }
  6790. else {
  6791. planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
  6792. }
  6793. }
  6794. }
  6795. planner.refresh_positioning();
  6796. }
  6797. /**
  6798. * Output the current position to serial
  6799. */
  6800. void report_current_position() {
  6801. SERIAL_PROTOCOLPGM("X:");
  6802. SERIAL_PROTOCOL(current_position[X_AXIS]);
  6803. SERIAL_PROTOCOLPGM(" Y:");
  6804. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  6805. SERIAL_PROTOCOLPGM(" Z:");
  6806. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  6807. SERIAL_PROTOCOLPGM(" E:");
  6808. SERIAL_PROTOCOL(current_position[E_AXIS]);
  6809. stepper.report_positions();
  6810. #if IS_SCARA
  6811. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  6812. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  6813. SERIAL_EOL();
  6814. #endif
  6815. }
  6816. #ifdef M114_DETAIL
  6817. void report_xyze(const float pos[XYZE], const uint8_t n = 4, const uint8_t precision = 3) {
  6818. char str[12];
  6819. for (uint8_t i = 0; i < n; i++) {
  6820. SERIAL_CHAR(' ');
  6821. SERIAL_CHAR(axis_codes[i]);
  6822. SERIAL_CHAR(':');
  6823. SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
  6824. }
  6825. SERIAL_EOL();
  6826. }
  6827. inline void report_xyz(const float pos[XYZ]) { report_xyze(pos, 3); }
  6828. void report_current_position_detail() {
  6829. stepper.synchronize();
  6830. SERIAL_PROTOCOLPGM("\nLogical:");
  6831. report_xyze(current_position);
  6832. SERIAL_PROTOCOLPGM("Raw: ");
  6833. const float raw[XYZ] = { RAW_X_POSITION(current_position[X_AXIS]), RAW_Y_POSITION(current_position[Y_AXIS]), RAW_Z_POSITION(current_position[Z_AXIS]) };
  6834. report_xyz(raw);
  6835. SERIAL_PROTOCOLPGM("Leveled:");
  6836. float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  6837. planner.apply_leveling(leveled);
  6838. report_xyz(leveled);
  6839. SERIAL_PROTOCOLPGM("UnLevel:");
  6840. float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
  6841. planner.unapply_leveling(unleveled);
  6842. report_xyz(unleveled);
  6843. #if IS_KINEMATIC
  6844. #if IS_SCARA
  6845. SERIAL_PROTOCOLPGM("ScaraK: ");
  6846. #else
  6847. SERIAL_PROTOCOLPGM("DeltaK: ");
  6848. #endif
  6849. inverse_kinematics(leveled); // writes delta[]
  6850. report_xyz(delta);
  6851. #endif
  6852. SERIAL_PROTOCOLPGM("Stepper:");
  6853. const float step_count[XYZE] = { stepper.position(X_AXIS), stepper.position(Y_AXIS), stepper.position(Z_AXIS), stepper.position(E_AXIS) };
  6854. report_xyze(step_count, 4, 0);
  6855. #if IS_SCARA
  6856. const float deg[XYZ] = {
  6857. stepper.get_axis_position_degrees(A_AXIS),
  6858. stepper.get_axis_position_degrees(B_AXIS)
  6859. };
  6860. SERIAL_PROTOCOLPGM("Degrees:");
  6861. report_xyze(deg, 2);
  6862. #endif
  6863. SERIAL_PROTOCOLPGM("FromStp:");
  6864. get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)
  6865. const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
  6866. report_xyze(from_steppers);
  6867. const float diff[XYZE] = {
  6868. from_steppers[X_AXIS] - leveled[X_AXIS],
  6869. from_steppers[Y_AXIS] - leveled[Y_AXIS],
  6870. from_steppers[Z_AXIS] - leveled[Z_AXIS],
  6871. from_steppers[E_AXIS] - current_position[E_AXIS]
  6872. };
  6873. SERIAL_PROTOCOLPGM("Differ: ");
  6874. report_xyze(diff);
  6875. }
  6876. #endif // M114_DETAIL
  6877. /**
  6878. * M114: Report current position to host
  6879. */
  6880. inline void gcode_M114() {
  6881. #ifdef M114_DETAIL
  6882. if (parser.seen('D')) {
  6883. report_current_position_detail();
  6884. return;
  6885. }
  6886. #endif
  6887. stepper.synchronize();
  6888. report_current_position();
  6889. }
  6890. /**
  6891. * M115: Capabilities string
  6892. */
  6893. inline void gcode_M115() {
  6894. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  6895. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  6896. // EEPROM (M500, M501)
  6897. #if ENABLED(EEPROM_SETTINGS)
  6898. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  6899. #else
  6900. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  6901. #endif
  6902. // AUTOREPORT_TEMP (M155)
  6903. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  6904. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  6905. #else
  6906. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  6907. #endif
  6908. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  6909. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  6910. // Print Job timer M75, M76, M77
  6911. SERIAL_PROTOCOLLNPGM("Cap:PRINT_JOB:1");
  6912. // AUTOLEVEL (G29)
  6913. #if HAS_ABL
  6914. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  6915. #else
  6916. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  6917. #endif
  6918. // Z_PROBE (G30)
  6919. #if HAS_BED_PROBE
  6920. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  6921. #else
  6922. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  6923. #endif
  6924. // MESH_REPORT (M420 V)
  6925. #if HAS_LEVELING
  6926. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  6927. #else
  6928. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  6929. #endif
  6930. // SOFTWARE_POWER (M80, M81)
  6931. #if HAS_POWER_SWITCH
  6932. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  6933. #else
  6934. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  6935. #endif
  6936. // CASE LIGHTS (M355)
  6937. #if HAS_CASE_LIGHT
  6938. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  6939. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  6940. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1");
  6941. }
  6942. else
  6943. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  6944. #else
  6945. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  6946. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  6947. #endif
  6948. // EMERGENCY_PARSER (M108, M112, M410)
  6949. #if ENABLED(EMERGENCY_PARSER)
  6950. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  6951. #else
  6952. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  6953. #endif
  6954. #endif // EXTENDED_CAPABILITIES_REPORT
  6955. }
  6956. /**
  6957. * M117: Set LCD Status Message
  6958. */
  6959. inline void gcode_M117() { lcd_setstatus(parser.string_arg); }
  6960. /**
  6961. * M118: Display a message in the host console.
  6962. *
  6963. * A Append '// ' for an action command, as in OctoPrint
  6964. * E Have the host 'echo:' the text
  6965. */
  6966. inline void gcode_M118() {
  6967. if (parser.boolval('E')) SERIAL_ECHO_START();
  6968. if (parser.boolval('A')) SERIAL_ECHOPGM("// ");
  6969. SERIAL_ECHOLN(parser.string_arg);
  6970. }
  6971. /**
  6972. * M119: Output endstop states to serial output
  6973. */
  6974. inline void gcode_M119() { endstops.M119(); }
  6975. /**
  6976. * M120: Enable endstops and set non-homing endstop state to "enabled"
  6977. */
  6978. inline void gcode_M120() { endstops.enable_globally(true); }
  6979. /**
  6980. * M121: Disable endstops and set non-homing endstop state to "disabled"
  6981. */
  6982. inline void gcode_M121() { endstops.enable_globally(false); }
  6983. #if ENABLED(PARK_HEAD_ON_PAUSE)
  6984. /**
  6985. * M125: Store current position and move to filament change position.
  6986. * Called on pause (by M25) to prevent material leaking onto the
  6987. * object. On resume (M24) the head will be moved back and the
  6988. * print will resume.
  6989. *
  6990. * If Marlin is compiled without SD Card support, M125 can be
  6991. * used directly to pause the print and move to park position,
  6992. * resuming with a button click or M108.
  6993. *
  6994. * L = override retract length
  6995. * X = override X
  6996. * Y = override Y
  6997. * Z = override Z raise
  6998. */
  6999. inline void gcode_M125() {
  7000. // Initial retract before move to filament change position
  7001. const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  7002. #ifdef PAUSE_PARK_RETRACT_LENGTH
  7003. - (PAUSE_PARK_RETRACT_LENGTH)
  7004. #endif
  7005. ;
  7006. // Lift Z axis
  7007. const float z_lift = parser.linearval('Z')
  7008. #ifdef PAUSE_PARK_Z_ADD
  7009. + PAUSE_PARK_Z_ADD
  7010. #endif
  7011. ;
  7012. // Move XY axes to filament change position or given position
  7013. const float x_pos = parser.linearval('X')
  7014. #ifdef PAUSE_PARK_X_POS
  7015. + PAUSE_PARK_X_POS
  7016. #endif
  7017. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7018. + (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0)
  7019. #endif
  7020. ;
  7021. const float y_pos = parser.linearval('Y')
  7022. #ifdef PAUSE_PARK_Y_POS
  7023. + PAUSE_PARK_Y_POS
  7024. #endif
  7025. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7026. + (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0)
  7027. #endif
  7028. ;
  7029. #if DISABLED(SDSUPPORT)
  7030. const bool job_running = print_job_timer.isRunning();
  7031. #endif
  7032. if (pause_print(retract, z_lift, x_pos, y_pos)) {
  7033. #if DISABLED(SDSUPPORT)
  7034. // Wait for lcd click or M108
  7035. wait_for_filament_reload();
  7036. // Return to print position and continue
  7037. resume_print();
  7038. if (job_running) print_job_timer.start();
  7039. #endif
  7040. }
  7041. }
  7042. #endif // PARK_HEAD_ON_PAUSE
  7043. #if HAS_COLOR_LEDS
  7044. /**
  7045. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  7046. * and Brightness - Use P (for NEOPIXEL only)
  7047. *
  7048. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  7049. * If brightness is left out, no value changed
  7050. *
  7051. * Examples:
  7052. *
  7053. * M150 R255 ; Turn LED red
  7054. * M150 R255 U127 ; Turn LED orange (PWM only)
  7055. * M150 ; Turn LED off
  7056. * M150 R U B ; Turn LED white
  7057. * M150 W ; Turn LED white using a white LED
  7058. * M150 P127 ; Set LED 50% brightness
  7059. * M150 P ; Set LED full brightness
  7060. */
  7061. inline void gcode_M150() {
  7062. set_led_color(
  7063. parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7064. parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7065. parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  7066. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_LED)
  7067. , parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  7068. #if ENABLED(NEOPIXEL_LED)
  7069. , parser.seen('P') ? (parser.has_value() ? parser.value_byte() : 255) : pixels.getBrightness()
  7070. #endif
  7071. #endif
  7072. );
  7073. }
  7074. #endif // HAS_COLOR_LEDS
  7075. /**
  7076. * M200: Set filament diameter and set E axis units to cubic units
  7077. *
  7078. * T<extruder> - Optional extruder number. Current extruder if omitted.
  7079. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  7080. */
  7081. inline void gcode_M200() {
  7082. if (get_target_extruder_from_command(200)) return;
  7083. if (parser.seen('D')) {
  7084. // setting any extruder filament size disables volumetric on the assumption that
  7085. // slicers either generate in extruder values as cubic mm or as as filament feeds
  7086. // for all extruders
  7087. volumetric_enabled = (parser.value_linear_units() != 0.0);
  7088. if (volumetric_enabled) {
  7089. filament_size[target_extruder] = parser.value_linear_units();
  7090. // make sure all extruders have some sane value for the filament size
  7091. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7092. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  7093. }
  7094. }
  7095. calculate_volumetric_multipliers();
  7096. }
  7097. /**
  7098. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  7099. *
  7100. * With multiple extruders use T to specify which one.
  7101. */
  7102. inline void gcode_M201() {
  7103. GET_TARGET_EXTRUDER(201);
  7104. LOOP_XYZE(i) {
  7105. if (parser.seen(axis_codes[i])) {
  7106. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7107. planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
  7108. }
  7109. }
  7110. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  7111. planner.reset_acceleration_rates();
  7112. }
  7113. #if 0 // Not used for Sprinter/grbl gen6
  7114. inline void gcode_M202() {
  7115. LOOP_XYZE(i) {
  7116. if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  7117. }
  7118. }
  7119. #endif
  7120. /**
  7121. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  7122. *
  7123. * With multiple extruders use T to specify which one.
  7124. */
  7125. inline void gcode_M203() {
  7126. GET_TARGET_EXTRUDER(203);
  7127. LOOP_XYZE(i)
  7128. if (parser.seen(axis_codes[i])) {
  7129. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7130. planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
  7131. }
  7132. }
  7133. /**
  7134. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  7135. *
  7136. * P = Printing moves
  7137. * R = Retract only (no X, Y, Z) moves
  7138. * T = Travel (non printing) moves
  7139. *
  7140. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  7141. */
  7142. inline void gcode_M204() {
  7143. if (parser.seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  7144. planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
  7145. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  7146. }
  7147. if (parser.seen('P')) {
  7148. planner.acceleration = parser.value_linear_units();
  7149. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  7150. }
  7151. if (parser.seen('R')) {
  7152. planner.retract_acceleration = parser.value_linear_units();
  7153. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  7154. }
  7155. if (parser.seen('T')) {
  7156. planner.travel_acceleration = parser.value_linear_units();
  7157. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  7158. }
  7159. }
  7160. /**
  7161. * M205: Set Advanced Settings
  7162. *
  7163. * S = Min Feed Rate (units/s)
  7164. * T = Min Travel Feed Rate (units/s)
  7165. * B = Min Segment Time (µs)
  7166. * X = Max X Jerk (units/sec^2)
  7167. * Y = Max Y Jerk (units/sec^2)
  7168. * Z = Max Z Jerk (units/sec^2)
  7169. * E = Max E Jerk (units/sec^2)
  7170. */
  7171. inline void gcode_M205() {
  7172. if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
  7173. if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
  7174. if (parser.seen('B')) planner.min_segment_time = parser.value_millis();
  7175. if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
  7176. if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
  7177. if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units();
  7178. if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
  7179. }
  7180. #if HAS_M206_COMMAND
  7181. /**
  7182. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  7183. *
  7184. * *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
  7185. * *** M206 for SCARA will remain enabled in 1.1.x for compatibility.
  7186. * *** In the next 1.2 release, it will simply be disabled by default.
  7187. */
  7188. inline void gcode_M206() {
  7189. LOOP_XYZ(i)
  7190. if (parser.seen(axis_codes[i]))
  7191. set_home_offset((AxisEnum)i, parser.value_linear_units());
  7192. #if ENABLED(MORGAN_SCARA)
  7193. if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_linear_units()); // Theta
  7194. if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_linear_units()); // Psi
  7195. #endif
  7196. SYNC_PLAN_POSITION_KINEMATIC();
  7197. report_current_position();
  7198. }
  7199. #endif // HAS_M206_COMMAND
  7200. #if ENABLED(DELTA)
  7201. /**
  7202. * M665: Set delta configurations
  7203. *
  7204. * H = delta height
  7205. * L = diagonal rod
  7206. * R = delta radius
  7207. * S = segments per second
  7208. * B = delta calibration radius
  7209. * X = Alpha (Tower 1) angle trim
  7210. * Y = Beta (Tower 2) angle trim
  7211. * Z = Rotate A and B by this angle
  7212. */
  7213. inline void gcode_M665() {
  7214. if (parser.seen('H')) {
  7215. home_offset[Z_AXIS] = parser.value_linear_units() - DELTA_HEIGHT;
  7216. update_software_endstops(Z_AXIS);
  7217. }
  7218. if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
  7219. if (parser.seen('R')) delta_radius = parser.value_linear_units();
  7220. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7221. if (parser.seen('B')) delta_calibration_radius = parser.value_float();
  7222. if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
  7223. if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
  7224. if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();
  7225. recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
  7226. }
  7227. /**
  7228. * M666: Set delta endstop adjustment
  7229. */
  7230. inline void gcode_M666() {
  7231. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7232. if (DEBUGGING(LEVELING)) {
  7233. SERIAL_ECHOLNPGM(">>> gcode_M666");
  7234. }
  7235. #endif
  7236. LOOP_XYZ(i) {
  7237. if (parser.seen(axis_codes[i])) {
  7238. if (parser.value_linear_units() * Z_HOME_DIR <= 0)
  7239. endstop_adj[i] = parser.value_linear_units();
  7240. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7241. if (DEBUGGING(LEVELING)) {
  7242. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  7243. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  7244. }
  7245. #endif
  7246. }
  7247. }
  7248. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7249. if (DEBUGGING(LEVELING)) {
  7250. SERIAL_ECHOLNPGM("<<< gcode_M666");
  7251. }
  7252. #endif
  7253. }
  7254. #elif IS_SCARA
  7255. /**
  7256. * M665: Set SCARA settings
  7257. *
  7258. * Parameters:
  7259. *
  7260. * S[segments-per-second] - Segments-per-second
  7261. * P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
  7262. * T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
  7263. *
  7264. * A, P, and X are all aliases for the shoulder angle
  7265. * B, T, and Y are all aliases for the elbow angle
  7266. */
  7267. inline void gcode_M665() {
  7268. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7269. const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
  7270. const uint8_t sumAPX = hasA + hasP + hasX;
  7271. if (sumAPX == 1)
  7272. home_offset[A_AXIS] = parser.value_float();
  7273. else if (sumAPX > 1) {
  7274. SERIAL_ERROR_START();
  7275. SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
  7276. return;
  7277. }
  7278. const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
  7279. const uint8_t sumBTY = hasB + hasT + hasY;
  7280. if (sumBTY == 1)
  7281. home_offset[B_AXIS] = parser.value_float();
  7282. else if (sumBTY > 1) {
  7283. SERIAL_ERROR_START();
  7284. SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
  7285. return;
  7286. }
  7287. }
  7288. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  7289. /**
  7290. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  7291. */
  7292. inline void gcode_M666() {
  7293. if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units();
  7294. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  7295. }
  7296. #endif // !DELTA && Z_DUAL_ENDSTOPS
  7297. #if ENABLED(FWRETRACT)
  7298. /**
  7299. * M207: Set firmware retraction values
  7300. *
  7301. * S[+units] retract_length
  7302. * W[+units] swap_retract_length (multi-extruder)
  7303. * F[units/min] retract_feedrate_mm_s
  7304. * Z[units] retract_zlift
  7305. */
  7306. inline void gcode_M207() {
  7307. if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS);
  7308. if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7309. if (parser.seen('Z')) retract_zlift = parser.value_linear_units();
  7310. if (parser.seen('W')) swap_retract_length = parser.value_axis_units(E_AXIS);
  7311. }
  7312. /**
  7313. * M208: Set firmware un-retraction values
  7314. *
  7315. * S[+units] retract_recover_length (in addition to M207 S*)
  7316. * W[+units] swap_retract_recover_length (multi-extruder)
  7317. * F[units/min] retract_recover_feedrate_mm_s
  7318. * R[units/min] swap_retract_recover_feedrate_mm_s
  7319. */
  7320. inline void gcode_M208() {
  7321. if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS);
  7322. if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7323. if (parser.seen('R')) swap_retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7324. if (parser.seen('W')) swap_retract_recover_length = parser.value_axis_units(E_AXIS);
  7325. }
  7326. /**
  7327. * M209: Enable automatic retract (M209 S1)
  7328. * For slicers that don't support G10/11, reversed extrude-only
  7329. * moves will be classified as retraction.
  7330. */
  7331. inline void gcode_M209() {
  7332. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  7333. if (parser.seen('S')) {
  7334. autoretract_enabled = parser.value_bool();
  7335. for (uint8_t i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  7336. }
  7337. }
  7338. }
  7339. #endif // FWRETRACT
  7340. /**
  7341. * M211: Enable, Disable, and/or Report software endstops
  7342. *
  7343. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  7344. */
  7345. inline void gcode_M211() {
  7346. SERIAL_ECHO_START();
  7347. #if HAS_SOFTWARE_ENDSTOPS
  7348. if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
  7349. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7350. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  7351. #else
  7352. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7353. SERIAL_ECHOPGM(MSG_OFF);
  7354. #endif
  7355. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  7356. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  7357. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  7358. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  7359. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  7360. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  7361. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  7362. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  7363. }
  7364. #if HOTENDS > 1
  7365. /**
  7366. * M218 - set hotend offset (in linear units)
  7367. *
  7368. * T<tool>
  7369. * X<xoffset>
  7370. * Y<yoffset>
  7371. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
  7372. */
  7373. inline void gcode_M218() {
  7374. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  7375. if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
  7376. if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
  7377. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7378. if (parser.seenval('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
  7379. #endif
  7380. SERIAL_ECHO_START();
  7381. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7382. HOTEND_LOOP() {
  7383. SERIAL_CHAR(' ');
  7384. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  7385. SERIAL_CHAR(',');
  7386. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  7387. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7388. SERIAL_CHAR(',');
  7389. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  7390. #endif
  7391. }
  7392. SERIAL_EOL();
  7393. }
  7394. #endif // HOTENDS > 1
  7395. /**
  7396. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  7397. */
  7398. inline void gcode_M220() {
  7399. if (parser.seenval('S')) feedrate_percentage = parser.value_int();
  7400. }
  7401. /**
  7402. * M221: Set extrusion percentage (M221 T0 S95)
  7403. */
  7404. inline void gcode_M221() {
  7405. if (get_target_extruder_from_command(221)) return;
  7406. if (parser.seenval('S'))
  7407. flow_percentage[target_extruder] = parser.value_int();
  7408. }
  7409. /**
  7410. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  7411. */
  7412. inline void gcode_M226() {
  7413. if (parser.seen('P')) {
  7414. const int pin_number = parser.value_int(),
  7415. pin_state = parser.intval('S', -1); // required pin state - default is inverted
  7416. if (WITHIN(pin_state, -1, 1) && pin_number > -1 && !pin_is_protected(pin_number)) {
  7417. int target = LOW;
  7418. stepper.synchronize();
  7419. pinMode(pin_number, INPUT);
  7420. switch (pin_state) {
  7421. case 1:
  7422. target = HIGH;
  7423. break;
  7424. case 0:
  7425. target = LOW;
  7426. break;
  7427. case -1:
  7428. target = !digitalRead(pin_number);
  7429. break;
  7430. }
  7431. while (digitalRead(pin_number) != target) idle();
  7432. } // pin_state -1 0 1 && pin_number > -1
  7433. } // parser.seen('P')
  7434. }
  7435. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7436. /**
  7437. * M260: Send data to a I2C slave device
  7438. *
  7439. * This is a PoC, the formating and arguments for the GCODE will
  7440. * change to be more compatible, the current proposal is:
  7441. *
  7442. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  7443. *
  7444. * M260 B<byte-1 value in base 10>
  7445. * M260 B<byte-2 value in base 10>
  7446. * M260 B<byte-3 value in base 10>
  7447. *
  7448. * M260 S1 ; Send the buffered data and reset the buffer
  7449. * M260 R1 ; Reset the buffer without sending data
  7450. *
  7451. */
  7452. inline void gcode_M260() {
  7453. // Set the target address
  7454. if (parser.seen('A')) i2c.address(parser.value_byte());
  7455. // Add a new byte to the buffer
  7456. if (parser.seen('B')) i2c.addbyte(parser.value_byte());
  7457. // Flush the buffer to the bus
  7458. if (parser.seen('S')) i2c.send();
  7459. // Reset and rewind the buffer
  7460. else if (parser.seen('R')) i2c.reset();
  7461. }
  7462. /**
  7463. * M261: Request X bytes from I2C slave device
  7464. *
  7465. * Usage: M261 A<slave device address base 10> B<number of bytes>
  7466. */
  7467. inline void gcode_M261() {
  7468. if (parser.seen('A')) i2c.address(parser.value_byte());
  7469. uint8_t bytes = parser.byteval('B', 1);
  7470. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  7471. i2c.relay(bytes);
  7472. }
  7473. else {
  7474. SERIAL_ERROR_START();
  7475. SERIAL_ERRORLN("Bad i2c request");
  7476. }
  7477. }
  7478. #endif // EXPERIMENTAL_I2CBUS
  7479. #if HAS_SERVOS
  7480. /**
  7481. * M280: Get or set servo position. P<index> [S<angle>]
  7482. */
  7483. inline void gcode_M280() {
  7484. if (!parser.seen('P')) return;
  7485. const int servo_index = parser.value_int();
  7486. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  7487. if (parser.seen('S'))
  7488. MOVE_SERVO(servo_index, parser.value_int());
  7489. else {
  7490. SERIAL_ECHO_START();
  7491. SERIAL_ECHOPAIR(" Servo ", servo_index);
  7492. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  7493. }
  7494. }
  7495. else {
  7496. SERIAL_ERROR_START();
  7497. SERIAL_ECHOPAIR("Servo ", servo_index);
  7498. SERIAL_ECHOLNPGM(" out of range");
  7499. }
  7500. }
  7501. #endif // HAS_SERVOS
  7502. #if HAS_BUZZER
  7503. /**
  7504. * M300: Play beep sound S<frequency Hz> P<duration ms>
  7505. */
  7506. inline void gcode_M300() {
  7507. uint16_t const frequency = parser.ushortval('S', 260);
  7508. uint16_t duration = parser.ushortval('P', 1000);
  7509. // Limits the tone duration to 0-5 seconds.
  7510. NOMORE(duration, 5000);
  7511. BUZZ(duration, frequency);
  7512. }
  7513. #endif // HAS_BUZZER
  7514. #if ENABLED(PIDTEMP)
  7515. /**
  7516. * M301: Set PID parameters P I D (and optionally C, L)
  7517. *
  7518. * P[float] Kp term
  7519. * I[float] Ki term (unscaled)
  7520. * D[float] Kd term (unscaled)
  7521. *
  7522. * With PID_EXTRUSION_SCALING:
  7523. *
  7524. * C[float] Kc term
  7525. * L[float] LPQ length
  7526. */
  7527. inline void gcode_M301() {
  7528. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  7529. // default behaviour (omitting E parameter) is to update for extruder 0 only
  7530. const uint8_t e = parser.byteval('E'); // extruder being updated
  7531. if (e < HOTENDS) { // catch bad input value
  7532. if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
  7533. if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
  7534. if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
  7535. #if ENABLED(PID_EXTRUSION_SCALING)
  7536. if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
  7537. if (parser.seen('L')) lpq_len = parser.value_float();
  7538. NOMORE(lpq_len, LPQ_MAX_LEN);
  7539. #endif
  7540. thermalManager.updatePID();
  7541. SERIAL_ECHO_START();
  7542. #if ENABLED(PID_PARAMS_PER_HOTEND)
  7543. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  7544. #endif // PID_PARAMS_PER_HOTEND
  7545. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  7546. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  7547. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  7548. #if ENABLED(PID_EXTRUSION_SCALING)
  7549. //Kc does not have scaling applied above, or in resetting defaults
  7550. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  7551. #endif
  7552. SERIAL_EOL();
  7553. }
  7554. else {
  7555. SERIAL_ERROR_START();
  7556. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  7557. }
  7558. }
  7559. #endif // PIDTEMP
  7560. #if ENABLED(PIDTEMPBED)
  7561. inline void gcode_M304() {
  7562. if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
  7563. if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
  7564. if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
  7565. thermalManager.updatePID();
  7566. SERIAL_ECHO_START();
  7567. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  7568. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  7569. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  7570. }
  7571. #endif // PIDTEMPBED
  7572. #if defined(CHDK) || HAS_PHOTOGRAPH
  7573. /**
  7574. * M240: Trigger a camera by emulating a Canon RC-1
  7575. * See http://www.doc-diy.net/photo/rc-1_hacked/
  7576. */
  7577. inline void gcode_M240() {
  7578. #ifdef CHDK
  7579. OUT_WRITE(CHDK, HIGH);
  7580. chdkHigh = millis();
  7581. chdkActive = true;
  7582. #elif HAS_PHOTOGRAPH
  7583. const uint8_t NUM_PULSES = 16;
  7584. const float PULSE_LENGTH = 0.01524;
  7585. for (int i = 0; i < NUM_PULSES; i++) {
  7586. WRITE(PHOTOGRAPH_PIN, HIGH);
  7587. _delay_ms(PULSE_LENGTH);
  7588. WRITE(PHOTOGRAPH_PIN, LOW);
  7589. _delay_ms(PULSE_LENGTH);
  7590. }
  7591. delay(7.33);
  7592. for (int i = 0; i < NUM_PULSES; i++) {
  7593. WRITE(PHOTOGRAPH_PIN, HIGH);
  7594. _delay_ms(PULSE_LENGTH);
  7595. WRITE(PHOTOGRAPH_PIN, LOW);
  7596. _delay_ms(PULSE_LENGTH);
  7597. }
  7598. #endif // !CHDK && HAS_PHOTOGRAPH
  7599. }
  7600. #endif // CHDK || PHOTOGRAPH_PIN
  7601. #if HAS_LCD_CONTRAST
  7602. /**
  7603. * M250: Read and optionally set the LCD contrast
  7604. */
  7605. inline void gcode_M250() {
  7606. if (parser.seen('C')) set_lcd_contrast(parser.value_int());
  7607. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  7608. SERIAL_PROTOCOL(lcd_contrast);
  7609. SERIAL_EOL();
  7610. }
  7611. #endif // HAS_LCD_CONTRAST
  7612. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7613. /**
  7614. * M302: Allow cold extrudes, or set the minimum extrude temperature
  7615. *
  7616. * S<temperature> sets the minimum extrude temperature
  7617. * P<bool> enables (1) or disables (0) cold extrusion
  7618. *
  7619. * Examples:
  7620. *
  7621. * M302 ; report current cold extrusion state
  7622. * M302 P0 ; enable cold extrusion checking
  7623. * M302 P1 ; disables cold extrusion checking
  7624. * M302 S0 ; always allow extrusion (disables checking)
  7625. * M302 S170 ; only allow extrusion above 170
  7626. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  7627. */
  7628. inline void gcode_M302() {
  7629. const bool seen_S = parser.seen('S');
  7630. if (seen_S) {
  7631. thermalManager.extrude_min_temp = parser.value_celsius();
  7632. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  7633. }
  7634. if (parser.seen('P'))
  7635. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
  7636. else if (!seen_S) {
  7637. // Report current state
  7638. SERIAL_ECHO_START();
  7639. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  7640. SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
  7641. SERIAL_ECHOLNPGM("C)");
  7642. }
  7643. }
  7644. #endif // PREVENT_COLD_EXTRUSION
  7645. /**
  7646. * M303: PID relay autotune
  7647. *
  7648. * S<temperature> sets the target temperature. (default 150C)
  7649. * E<extruder> (-1 for the bed) (default 0)
  7650. * C<cycles>
  7651. * U<bool> with a non-zero value will apply the result to current settings
  7652. */
  7653. inline void gcode_M303() {
  7654. #if HAS_PID_HEATING
  7655. const int e = parser.intval('E'), c = parser.intval('C', 5);
  7656. const bool u = parser.boolval('U');
  7657. int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);
  7658. if (WITHIN(e, 0, HOTENDS - 1))
  7659. target_extruder = e;
  7660. #if DISABLED(BUSY_WHILE_HEATING)
  7661. KEEPALIVE_STATE(NOT_BUSY);
  7662. #endif
  7663. thermalManager.PID_autotune(temp, e, c, u);
  7664. #if DISABLED(BUSY_WHILE_HEATING)
  7665. KEEPALIVE_STATE(IN_HANDLER);
  7666. #endif
  7667. #else
  7668. SERIAL_ERROR_START();
  7669. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  7670. #endif
  7671. }
  7672. #if ENABLED(MORGAN_SCARA)
  7673. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  7674. if (IsRunning()) {
  7675. forward_kinematics_SCARA(delta_a, delta_b);
  7676. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  7677. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  7678. destination[Z_AXIS] = current_position[Z_AXIS];
  7679. prepare_move_to_destination();
  7680. return true;
  7681. }
  7682. return false;
  7683. }
  7684. /**
  7685. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  7686. */
  7687. inline bool gcode_M360() {
  7688. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  7689. return SCARA_move_to_cal(0, 120);
  7690. }
  7691. /**
  7692. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  7693. */
  7694. inline bool gcode_M361() {
  7695. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  7696. return SCARA_move_to_cal(90, 130);
  7697. }
  7698. /**
  7699. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  7700. */
  7701. inline bool gcode_M362() {
  7702. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  7703. return SCARA_move_to_cal(60, 180);
  7704. }
  7705. /**
  7706. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  7707. */
  7708. inline bool gcode_M363() {
  7709. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  7710. return SCARA_move_to_cal(50, 90);
  7711. }
  7712. /**
  7713. * M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
  7714. */
  7715. inline bool gcode_M364() {
  7716. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  7717. return SCARA_move_to_cal(45, 135);
  7718. }
  7719. #endif // SCARA
  7720. #if ENABLED(EXT_SOLENOID)
  7721. void enable_solenoid(const uint8_t num) {
  7722. switch (num) {
  7723. case 0:
  7724. OUT_WRITE(SOL0_PIN, HIGH);
  7725. break;
  7726. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  7727. case 1:
  7728. OUT_WRITE(SOL1_PIN, HIGH);
  7729. break;
  7730. #endif
  7731. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  7732. case 2:
  7733. OUT_WRITE(SOL2_PIN, HIGH);
  7734. break;
  7735. #endif
  7736. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  7737. case 3:
  7738. OUT_WRITE(SOL3_PIN, HIGH);
  7739. break;
  7740. #endif
  7741. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  7742. case 4:
  7743. OUT_WRITE(SOL4_PIN, HIGH);
  7744. break;
  7745. #endif
  7746. default:
  7747. SERIAL_ECHO_START();
  7748. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  7749. break;
  7750. }
  7751. }
  7752. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  7753. void disable_all_solenoids() {
  7754. OUT_WRITE(SOL0_PIN, LOW);
  7755. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  7756. OUT_WRITE(SOL1_PIN, LOW);
  7757. #endif
  7758. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  7759. OUT_WRITE(SOL2_PIN, LOW);
  7760. #endif
  7761. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  7762. OUT_WRITE(SOL3_PIN, LOW);
  7763. #endif
  7764. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  7765. OUT_WRITE(SOL4_PIN, LOW);
  7766. #endif
  7767. }
  7768. /**
  7769. * M380: Enable solenoid on the active extruder
  7770. */
  7771. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  7772. /**
  7773. * M381: Disable all solenoids
  7774. */
  7775. inline void gcode_M381() { disable_all_solenoids(); }
  7776. #endif // EXT_SOLENOID
  7777. /**
  7778. * M400: Finish all moves
  7779. */
  7780. inline void gcode_M400() { stepper.synchronize(); }
  7781. #if HAS_BED_PROBE
  7782. /**
  7783. * M401: Engage Z Servo endstop if available
  7784. */
  7785. inline void gcode_M401() { DEPLOY_PROBE(); }
  7786. /**
  7787. * M402: Retract Z Servo endstop if enabled
  7788. */
  7789. inline void gcode_M402() { STOW_PROBE(); }
  7790. #endif // HAS_BED_PROBE
  7791. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7792. /**
  7793. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  7794. */
  7795. inline void gcode_M404() {
  7796. if (parser.seen('W')) {
  7797. filament_width_nominal = parser.value_linear_units();
  7798. }
  7799. else {
  7800. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  7801. SERIAL_PROTOCOLLN(filament_width_nominal);
  7802. }
  7803. }
  7804. /**
  7805. * M405: Turn on filament sensor for control
  7806. */
  7807. inline void gcode_M405() {
  7808. // This is technically a linear measurement, but since it's quantized to centimeters and is a different
  7809. // unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
  7810. if (parser.seen('D')) {
  7811. meas_delay_cm = parser.value_byte();
  7812. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  7813. }
  7814. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  7815. const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  7816. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  7817. measurement_delay[i] = temp_ratio;
  7818. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  7819. }
  7820. filament_sensor = true;
  7821. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7822. //SERIAL_PROTOCOL(filament_width_meas);
  7823. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  7824. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  7825. }
  7826. /**
  7827. * M406: Turn off filament sensor for control
  7828. */
  7829. inline void gcode_M406() {
  7830. filament_sensor = false;
  7831. calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
  7832. }
  7833. /**
  7834. * M407: Get measured filament diameter on serial output
  7835. */
  7836. inline void gcode_M407() {
  7837. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7838. SERIAL_PROTOCOLLN(filament_width_meas);
  7839. }
  7840. #endif // FILAMENT_WIDTH_SENSOR
  7841. void quickstop_stepper() {
  7842. stepper.quick_stop();
  7843. stepper.synchronize();
  7844. set_current_from_steppers_for_axis(ALL_AXES);
  7845. SYNC_PLAN_POSITION_KINEMATIC();
  7846. }
  7847. #if HAS_LEVELING
  7848. /**
  7849. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  7850. *
  7851. * S[bool] Turns leveling on or off
  7852. * Z[height] Sets the Z fade height (0 or none to disable)
  7853. * V[bool] Verbose - Print the leveling grid
  7854. *
  7855. * With AUTO_BED_LEVELING_UBL only:
  7856. *
  7857. * L[index] Load UBL mesh from index (0 is default)
  7858. */
  7859. inline void gcode_M420() {
  7860. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7861. // L to load a mesh from the EEPROM
  7862. if (parser.seen('L')) {
  7863. #if ENABLED(EEPROM_SETTINGS)
  7864. const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.storage_slot;
  7865. const int16_t a = settings.calc_num_meshes();
  7866. if (!a) {
  7867. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  7868. return;
  7869. }
  7870. if (!WITHIN(storage_slot, 0, a - 1)) {
  7871. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  7872. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  7873. return;
  7874. }
  7875. settings.load_mesh(storage_slot);
  7876. ubl.storage_slot = storage_slot;
  7877. #else
  7878. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  7879. return;
  7880. #endif
  7881. }
  7882. // L to load a mesh from the EEPROM
  7883. if (parser.seen('L') || parser.seen('V')) {
  7884. ubl.display_map(0); // Currently only supports one map type
  7885. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  7886. SERIAL_ECHOLNPAIR("ubl.storage_slot = ", ubl.storage_slot);
  7887. }
  7888. #endif // AUTO_BED_LEVELING_UBL
  7889. // V to print the matrix or mesh
  7890. if (parser.seen('V')) {
  7891. #if ABL_PLANAR
  7892. planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
  7893. #else
  7894. if (leveling_is_valid()) {
  7895. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7896. print_bilinear_leveling_grid();
  7897. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7898. print_bilinear_leveling_grid_virt();
  7899. #endif
  7900. #elif ENABLED(MESH_BED_LEVELING)
  7901. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  7902. mbl_mesh_report();
  7903. #endif
  7904. }
  7905. #endif
  7906. }
  7907. const bool to_enable = parser.boolval('S');
  7908. if (parser.seen('S'))
  7909. set_bed_leveling_enabled(to_enable);
  7910. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7911. if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units());
  7912. #endif
  7913. const bool new_status = planner.leveling_active;
  7914. if (to_enable && !new_status) {
  7915. SERIAL_ERROR_START();
  7916. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  7917. }
  7918. SERIAL_ECHO_START();
  7919. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  7920. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7921. SERIAL_ECHO_START();
  7922. SERIAL_ECHOPGM("Fade Height ");
  7923. if (planner.z_fade_height > 0.0)
  7924. SERIAL_ECHOLN(planner.z_fade_height);
  7925. else
  7926. SERIAL_ECHOLNPGM(MSG_OFF);
  7927. #endif
  7928. }
  7929. #endif
  7930. #if ENABLED(MESH_BED_LEVELING)
  7931. /**
  7932. * M421: Set a single Mesh Bed Leveling Z coordinate
  7933. *
  7934. * Usage:
  7935. * M421 X<linear> Y<linear> Z<linear>
  7936. * M421 X<linear> Y<linear> Q<offset>
  7937. * M421 I<xindex> J<yindex> Z<linear>
  7938. * M421 I<xindex> J<yindex> Q<offset>
  7939. */
  7940. inline void gcode_M421() {
  7941. const bool hasX = parser.seen('X'), hasI = parser.seen('I');
  7942. const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(RAW_X_POSITION(parser.value_linear_units())) : -1;
  7943. const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
  7944. const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(RAW_Y_POSITION(parser.value_linear_units())) : -1;
  7945. const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
  7946. if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
  7947. SERIAL_ERROR_START();
  7948. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7949. }
  7950. else if (ix < 0 || iy < 0) {
  7951. SERIAL_ERROR_START();
  7952. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7953. }
  7954. else
  7955. mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
  7956. }
  7957. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7958. /**
  7959. * M421: Set a single Mesh Bed Leveling Z coordinate
  7960. *
  7961. * Usage:
  7962. * M421 I<xindex> J<yindex> Z<linear>
  7963. * M421 I<xindex> J<yindex> Q<offset>
  7964. */
  7965. inline void gcode_M421() {
  7966. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  7967. const bool hasI = ix >= 0,
  7968. hasJ = iy >= 0,
  7969. hasZ = parser.seen('Z'),
  7970. hasQ = !hasZ && parser.seen('Q');
  7971. if (!hasI || !hasJ || !(hasZ || hasQ)) {
  7972. SERIAL_ERROR_START();
  7973. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7974. }
  7975. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  7976. SERIAL_ERROR_START();
  7977. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7978. }
  7979. else {
  7980. z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
  7981. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7982. bed_level_virt_interpolate();
  7983. #endif
  7984. }
  7985. }
  7986. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  7987. /**
  7988. * M421: Set a single Mesh Bed Leveling Z coordinate
  7989. *
  7990. * Usage:
  7991. * M421 I<xindex> J<yindex> Z<linear>
  7992. * M421 I<xindex> J<yindex> Q<offset>
  7993. * M421 C Z<linear>
  7994. * M421 C Q<offset>
  7995. */
  7996. inline void gcode_M421() {
  7997. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  7998. const bool hasI = ix >= 0,
  7999. hasJ = iy >= 0,
  8000. hasC = parser.seen('C'),
  8001. hasZ = parser.seen('Z'),
  8002. hasQ = !hasZ && parser.seen('Q');
  8003. if (hasC) {
  8004. const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
  8005. ix = location.x_index;
  8006. iy = location.y_index;
  8007. }
  8008. if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
  8009. SERIAL_ERROR_START();
  8010. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8011. }
  8012. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  8013. SERIAL_ERROR_START();
  8014. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8015. }
  8016. else
  8017. ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
  8018. }
  8019. #endif // AUTO_BED_LEVELING_UBL
  8020. #if HAS_M206_COMMAND
  8021. /**
  8022. * M428: Set home_offset based on the distance between the
  8023. * current_position and the nearest "reference point."
  8024. * If an axis is past center its endstop position
  8025. * is the reference-point. Otherwise it uses 0. This allows
  8026. * the Z offset to be set near the bed when using a max endstop.
  8027. *
  8028. * M428 can't be used more than 2cm away from 0 or an endstop.
  8029. *
  8030. * Use M206 to set these values directly.
  8031. */
  8032. inline void gcode_M428() {
  8033. bool err = false;
  8034. LOOP_XYZ(i) {
  8035. if (axis_homed[i]) {
  8036. const float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  8037. diff = base - RAW_POSITION(current_position[i], i);
  8038. if (WITHIN(diff, -20, 20)) {
  8039. set_home_offset((AxisEnum)i, diff);
  8040. }
  8041. else {
  8042. SERIAL_ERROR_START();
  8043. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  8044. LCD_ALERTMESSAGEPGM("Err: Too far!");
  8045. BUZZ(200, 40);
  8046. err = true;
  8047. break;
  8048. }
  8049. }
  8050. }
  8051. if (!err) {
  8052. SYNC_PLAN_POSITION_KINEMATIC();
  8053. report_current_position();
  8054. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  8055. BUZZ(100, 659);
  8056. BUZZ(100, 698);
  8057. }
  8058. }
  8059. #endif // HAS_M206_COMMAND
  8060. /**
  8061. * M500: Store settings in EEPROM
  8062. */
  8063. inline void gcode_M500() {
  8064. (void)settings.save();
  8065. }
  8066. /**
  8067. * M501: Read settings from EEPROM
  8068. */
  8069. inline void gcode_M501() {
  8070. (void)settings.load();
  8071. }
  8072. /**
  8073. * M502: Revert to default settings
  8074. */
  8075. inline void gcode_M502() {
  8076. (void)settings.reset();
  8077. }
  8078. #if DISABLED(DISABLE_M503)
  8079. /**
  8080. * M503: print settings currently in memory
  8081. */
  8082. inline void gcode_M503() {
  8083. (void)settings.report(!parser.boolval('S', true));
  8084. }
  8085. #endif
  8086. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8087. /**
  8088. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  8089. */
  8090. inline void gcode_M540() {
  8091. if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool();
  8092. }
  8093. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  8094. #if HAS_BED_PROBE
  8095. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  8096. static float last_zoffset = NAN;
  8097. if (!isnan(last_zoffset)) {
  8098. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
  8099. const float diff = zprobe_zoffset - last_zoffset;
  8100. #endif
  8101. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8102. // Correct bilinear grid for new probe offset
  8103. if (diff) {
  8104. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  8105. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  8106. z_values[x][y] -= diff;
  8107. }
  8108. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8109. bed_level_virt_interpolate();
  8110. #endif
  8111. #endif
  8112. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  8113. if (!no_babystep && planner.leveling_active)
  8114. thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS]));
  8115. #else
  8116. UNUSED(no_babystep);
  8117. #endif
  8118. #if ENABLED(DELTA) // correct the delta_height
  8119. home_offset[Z_AXIS] -= diff;
  8120. #endif
  8121. }
  8122. last_zoffset = zprobe_zoffset;
  8123. }
  8124. inline void gcode_M851() {
  8125. SERIAL_ECHO_START();
  8126. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  8127. if (parser.seen('Z')) {
  8128. const float value = parser.value_linear_units();
  8129. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  8130. zprobe_zoffset = value;
  8131. refresh_zprobe_zoffset();
  8132. SERIAL_ECHO(zprobe_zoffset);
  8133. }
  8134. else
  8135. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  8136. }
  8137. else
  8138. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  8139. SERIAL_EOL();
  8140. }
  8141. #endif // HAS_BED_PROBE
  8142. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  8143. /**
  8144. * M600: Pause for filament change
  8145. *
  8146. * E[distance] - Retract the filament this far (negative value)
  8147. * Z[distance] - Move the Z axis by this distance
  8148. * X[position] - Move to this X position, with Y
  8149. * Y[position] - Move to this Y position, with X
  8150. * U[distance] - Retract distance for removal (negative value) (manual reload)
  8151. * L[distance] - Extrude distance for insertion (positive value) (manual reload)
  8152. * B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
  8153. *
  8154. * Default values are used for omitted arguments.
  8155. *
  8156. */
  8157. inline void gcode_M600() {
  8158. #if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
  8159. // Don't allow filament change without homing first
  8160. if (axis_unhomed_error()) home_all_axes();
  8161. #endif
  8162. // Initial retract before move to filament change position
  8163. const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
  8164. #ifdef PAUSE_PARK_RETRACT_LENGTH
  8165. - (PAUSE_PARK_RETRACT_LENGTH)
  8166. #endif
  8167. ;
  8168. // Lift Z axis
  8169. const float z_lift = parser.linearval('Z', 0
  8170. #ifdef PAUSE_PARK_Z_ADD
  8171. + PAUSE_PARK_Z_ADD
  8172. #endif
  8173. );
  8174. // Move XY axes to filament exchange position
  8175. const float x_pos = parser.linearval('X', 0
  8176. #ifdef PAUSE_PARK_X_POS
  8177. + PAUSE_PARK_X_POS
  8178. #endif
  8179. );
  8180. const float y_pos = parser.linearval('Y', 0
  8181. #ifdef PAUSE_PARK_Y_POS
  8182. + PAUSE_PARK_Y_POS
  8183. #endif
  8184. );
  8185. // Unload filament
  8186. const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0
  8187. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  8188. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  8189. #endif
  8190. ;
  8191. // Load filament
  8192. const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  8193. #ifdef FILAMENT_CHANGE_LOAD_LENGTH
  8194. + FILAMENT_CHANGE_LOAD_LENGTH
  8195. #endif
  8196. ;
  8197. const int beep_count = parser.intval('B',
  8198. #ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8199. FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8200. #else
  8201. -1
  8202. #endif
  8203. );
  8204. const bool job_running = print_job_timer.isRunning();
  8205. if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) {
  8206. wait_for_filament_reload(beep_count);
  8207. resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count);
  8208. }
  8209. // Resume the print job timer if it was running
  8210. if (job_running) print_job_timer.start();
  8211. }
  8212. #endif // ADVANCED_PAUSE_FEATURE
  8213. #if ENABLED(MK2_MULTIPLEXER)
  8214. inline void select_multiplexed_stepper(const uint8_t e) {
  8215. stepper.synchronize();
  8216. disable_e_steppers();
  8217. WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  8218. WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  8219. WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);
  8220. safe_delay(100);
  8221. }
  8222. /**
  8223. * M702: Unload all extruders
  8224. */
  8225. inline void gcode_M702() {
  8226. for (uint8_t s = 0; s < E_STEPPERS; s++) {
  8227. select_multiplexed_stepper(e);
  8228. // TODO: standard unload filament function
  8229. // MK2 firmware behavior:
  8230. // - Make sure temperature is high enough
  8231. // - Raise Z to at least 15 to make room
  8232. // - Extrude 1cm of filament in 1 second
  8233. // - Under 230C quickly purge ~12mm, over 230C purge ~10mm
  8234. // - Change E max feedrate to 80, eject the filament from the tube. Sync.
  8235. // - Restore E max feedrate to 50
  8236. }
  8237. // Go back to the last active extruder
  8238. select_multiplexed_stepper(active_extruder);
  8239. disable_e_steppers();
  8240. }
  8241. #endif // MK2_MULTIPLEXER
  8242. #if ENABLED(DUAL_X_CARRIAGE)
  8243. /**
  8244. * M605: Set dual x-carriage movement mode
  8245. *
  8246. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  8247. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  8248. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  8249. * units x-offset and an optional differential hotend temperature of
  8250. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  8251. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  8252. *
  8253. * Note: the X axis should be homed after changing dual x-carriage mode.
  8254. */
  8255. inline void gcode_M605() {
  8256. stepper.synchronize();
  8257. if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
  8258. switch (dual_x_carriage_mode) {
  8259. case DXC_FULL_CONTROL_MODE:
  8260. case DXC_AUTO_PARK_MODE:
  8261. break;
  8262. case DXC_DUPLICATION_MODE:
  8263. if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
  8264. if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
  8265. SERIAL_ECHO_START();
  8266. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  8267. SERIAL_CHAR(' ');
  8268. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  8269. SERIAL_CHAR(',');
  8270. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  8271. SERIAL_CHAR(' ');
  8272. SERIAL_ECHO(duplicate_extruder_x_offset);
  8273. SERIAL_CHAR(',');
  8274. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  8275. break;
  8276. default:
  8277. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  8278. break;
  8279. }
  8280. active_extruder_parked = false;
  8281. extruder_duplication_enabled = false;
  8282. delayed_move_time = 0;
  8283. }
  8284. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  8285. inline void gcode_M605() {
  8286. stepper.synchronize();
  8287. extruder_duplication_enabled = parser.intval('S') == (int)DXC_DUPLICATION_MODE;
  8288. SERIAL_ECHO_START();
  8289. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  8290. }
  8291. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  8292. #if ENABLED(LIN_ADVANCE)
  8293. /**
  8294. * M900: Set and/or Get advance K factor and WH/D ratio
  8295. *
  8296. * K<factor> Set advance K factor
  8297. * R<ratio> Set ratio directly (overrides WH/D)
  8298. * W<width> H<height> D<diam> Set ratio from WH/D
  8299. */
  8300. inline void gcode_M900() {
  8301. stepper.synchronize();
  8302. const float newK = parser.floatval('K', -1);
  8303. if (newK >= 0) planner.extruder_advance_k = newK;
  8304. float newR = parser.floatval('R', -1);
  8305. if (newR < 0) {
  8306. const float newD = parser.floatval('D', -1),
  8307. newW = parser.floatval('W', -1),
  8308. newH = parser.floatval('H', -1);
  8309. if (newD >= 0 && newW >= 0 && newH >= 0)
  8310. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  8311. }
  8312. if (newR >= 0) planner.advance_ed_ratio = newR;
  8313. SERIAL_ECHO_START();
  8314. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  8315. SERIAL_ECHOPGM(" E/D=");
  8316. const float ratio = planner.advance_ed_ratio;
  8317. if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
  8318. SERIAL_EOL();
  8319. }
  8320. #endif // LIN_ADVANCE
  8321. #if ENABLED(HAVE_TMC2130)
  8322. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  8323. SERIAL_CHAR(name);
  8324. SERIAL_ECHOPGM(" axis driver current: ");
  8325. SERIAL_ECHOLN(st.getCurrent());
  8326. }
  8327. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  8328. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  8329. tmc2130_get_current(st, name);
  8330. }
  8331. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  8332. SERIAL_CHAR(name);
  8333. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  8334. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  8335. SERIAL_EOL();
  8336. }
  8337. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  8338. st.clear_otpw();
  8339. SERIAL_CHAR(name);
  8340. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  8341. }
  8342. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  8343. SERIAL_CHAR(name);
  8344. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  8345. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  8346. }
  8347. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  8348. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  8349. tmc2130_get_pwmthrs(st, name, spmm);
  8350. }
  8351. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  8352. SERIAL_CHAR(name);
  8353. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  8354. SERIAL_ECHOLN(st.sgt());
  8355. }
  8356. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  8357. st.sgt(sgt_val);
  8358. tmc2130_get_sgt(st, name);
  8359. }
  8360. /**
  8361. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8362. * Report driver currents when no axis specified
  8363. *
  8364. * S1: Enable automatic current control
  8365. * S0: Disable
  8366. */
  8367. inline void gcode_M906() {
  8368. uint16_t values[XYZE];
  8369. LOOP_XYZE(i)
  8370. values[i] = parser.intval(axis_codes[i]);
  8371. #if ENABLED(X_IS_TMC2130)
  8372. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  8373. else tmc2130_get_current(stepperX, 'X');
  8374. #endif
  8375. #if ENABLED(Y_IS_TMC2130)
  8376. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  8377. else tmc2130_get_current(stepperY, 'Y');
  8378. #endif
  8379. #if ENABLED(Z_IS_TMC2130)
  8380. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  8381. else tmc2130_get_current(stepperZ, 'Z');
  8382. #endif
  8383. #if ENABLED(E0_IS_TMC2130)
  8384. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  8385. else tmc2130_get_current(stepperE0, 'E');
  8386. #endif
  8387. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  8388. if (parser.seen('S')) auto_current_control = parser.value_bool();
  8389. #endif
  8390. }
  8391. /**
  8392. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  8393. * The flag is held by the library and persist until manually cleared by M912
  8394. */
  8395. inline void gcode_M911() {
  8396. const bool reportX = parser.seen('X'), reportY = parser.seen('Y'), reportZ = parser.seen('Z'), reportE = parser.seen('E'),
  8397. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  8398. #if ENABLED(X_IS_TMC2130)
  8399. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  8400. #endif
  8401. #if ENABLED(Y_IS_TMC2130)
  8402. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  8403. #endif
  8404. #if ENABLED(Z_IS_TMC2130)
  8405. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  8406. #endif
  8407. #if ENABLED(E0_IS_TMC2130)
  8408. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  8409. #endif
  8410. }
  8411. /**
  8412. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  8413. */
  8414. inline void gcode_M912() {
  8415. const bool clearX = parser.seen('X'), clearY = parser.seen('Y'), clearZ = parser.seen('Z'), clearE = parser.seen('E'),
  8416. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  8417. #if ENABLED(X_IS_TMC2130)
  8418. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  8419. #endif
  8420. #if ENABLED(Y_IS_TMC2130)
  8421. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  8422. #endif
  8423. #if ENABLED(Z_IS_TMC2130)
  8424. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  8425. #endif
  8426. #if ENABLED(E0_IS_TMC2130)
  8427. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  8428. #endif
  8429. }
  8430. /**
  8431. * M913: Set HYBRID_THRESHOLD speed.
  8432. */
  8433. #if ENABLED(HYBRID_THRESHOLD)
  8434. inline void gcode_M913() {
  8435. uint16_t values[XYZE];
  8436. LOOP_XYZE(i)
  8437. values[i] = parser.intval(axis_codes[i]);
  8438. #if ENABLED(X_IS_TMC2130)
  8439. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  8440. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  8441. #endif
  8442. #if ENABLED(Y_IS_TMC2130)
  8443. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  8444. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  8445. #endif
  8446. #if ENABLED(Z_IS_TMC2130)
  8447. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  8448. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  8449. #endif
  8450. #if ENABLED(E0_IS_TMC2130)
  8451. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  8452. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  8453. #endif
  8454. }
  8455. #endif // HYBRID_THRESHOLD
  8456. /**
  8457. * M914: Set SENSORLESS_HOMING sensitivity.
  8458. */
  8459. #if ENABLED(SENSORLESS_HOMING)
  8460. inline void gcode_M914() {
  8461. #if ENABLED(X_IS_TMC2130)
  8462. if (parser.seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', parser.value_int());
  8463. else tmc2130_get_sgt(stepperX, 'X');
  8464. #endif
  8465. #if ENABLED(Y_IS_TMC2130)
  8466. if (parser.seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', parser.value_int());
  8467. else tmc2130_get_sgt(stepperY, 'Y');
  8468. #endif
  8469. }
  8470. #endif // SENSORLESS_HOMING
  8471. #endif // HAVE_TMC2130
  8472. /**
  8473. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  8474. */
  8475. inline void gcode_M907() {
  8476. #if HAS_DIGIPOTSS
  8477. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
  8478. if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
  8479. if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
  8480. #elif HAS_MOTOR_CURRENT_PWM
  8481. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  8482. if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
  8483. #endif
  8484. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  8485. if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
  8486. #endif
  8487. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  8488. if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
  8489. #endif
  8490. #endif
  8491. #if ENABLED(DIGIPOT_I2C)
  8492. // this one uses actual amps in floating point
  8493. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
  8494. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  8495. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
  8496. #endif
  8497. #if ENABLED(DAC_STEPPER_CURRENT)
  8498. if (parser.seen('S')) {
  8499. const float dac_percent = parser.value_float();
  8500. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  8501. }
  8502. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
  8503. #endif
  8504. }
  8505. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8506. /**
  8507. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  8508. */
  8509. inline void gcode_M908() {
  8510. #if HAS_DIGIPOTSS
  8511. stepper.digitalPotWrite(
  8512. parser.intval('P'),
  8513. parser.intval('S')
  8514. );
  8515. #endif
  8516. #ifdef DAC_STEPPER_CURRENT
  8517. dac_current_raw(
  8518. parser.byteval('P', -1),
  8519. parser.ushortval('S', 0)
  8520. );
  8521. #endif
  8522. }
  8523. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8524. inline void gcode_M909() { dac_print_values(); }
  8525. inline void gcode_M910() { dac_commit_eeprom(); }
  8526. #endif
  8527. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8528. #if HAS_MICROSTEPS
  8529. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8530. inline void gcode_M350() {
  8531. if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
  8532. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
  8533. if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
  8534. stepper.microstep_readings();
  8535. }
  8536. /**
  8537. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  8538. * S# determines MS1 or MS2, X# sets the pin high/low.
  8539. */
  8540. inline void gcode_M351() {
  8541. if (parser.seenval('S')) switch (parser.value_byte()) {
  8542. case 1:
  8543. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
  8544. if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
  8545. break;
  8546. case 2:
  8547. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
  8548. if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());
  8549. break;
  8550. }
  8551. stepper.microstep_readings();
  8552. }
  8553. #endif // HAS_MICROSTEPS
  8554. #if HAS_CASE_LIGHT
  8555. #ifndef INVERT_CASE_LIGHT
  8556. #define INVERT_CASE_LIGHT false
  8557. #endif
  8558. uint8_t case_light_brightness; // LCD routine wants INT
  8559. bool case_light_on;
  8560. void update_case_light() {
  8561. pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode
  8562. if (case_light_on) {
  8563. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  8564. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness);
  8565. }
  8566. else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH);
  8567. }
  8568. else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
  8569. }
  8570. #endif // HAS_CASE_LIGHT
  8571. /**
  8572. * M355: Turn case light on/off and set brightness
  8573. *
  8574. * P<byte> Set case light brightness (PWM pin required - ignored otherwise)
  8575. *
  8576. * S<bool> Set case light on/off
  8577. *
  8578. * When S turns on the light on a PWM pin then the current brightness level is used/restored
  8579. *
  8580. * M355 P200 S0 turns off the light & sets the brightness level
  8581. * M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
  8582. */
  8583. inline void gcode_M355() {
  8584. #if HAS_CASE_LIGHT
  8585. uint8_t args = 0;
  8586. if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();
  8587. if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();
  8588. if (args) update_case_light();
  8589. // always report case light status
  8590. SERIAL_ECHO_START();
  8591. if (!case_light_on) {
  8592. SERIAL_ECHOLN("Case light: off");
  8593. }
  8594. else {
  8595. if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on");
  8596. else SERIAL_ECHOLNPAIR("Case light: ", (int)case_light_brightness);
  8597. }
  8598. #else
  8599. SERIAL_ERROR_START();
  8600. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  8601. #endif // HAS_CASE_LIGHT
  8602. }
  8603. #if ENABLED(MIXING_EXTRUDER)
  8604. /**
  8605. * M163: Set a single mix factor for a mixing extruder
  8606. * This is called "weight" by some systems.
  8607. *
  8608. * S[index] The channel index to set
  8609. * P[float] The mix value
  8610. *
  8611. */
  8612. inline void gcode_M163() {
  8613. const int mix_index = parser.intval('S');
  8614. if (mix_index < MIXING_STEPPERS) {
  8615. float mix_value = parser.floatval('P');
  8616. NOLESS(mix_value, 0.0);
  8617. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  8618. }
  8619. }
  8620. #if MIXING_VIRTUAL_TOOLS > 1
  8621. /**
  8622. * M164: Store the current mix factors as a virtual tool.
  8623. *
  8624. * S[index] The virtual tool to store
  8625. *
  8626. */
  8627. inline void gcode_M164() {
  8628. const int tool_index = parser.intval('S');
  8629. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  8630. normalize_mix();
  8631. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8632. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  8633. }
  8634. }
  8635. #endif
  8636. #if ENABLED(DIRECT_MIXING_IN_G1)
  8637. /**
  8638. * M165: Set multiple mix factors for a mixing extruder.
  8639. * Factors that are left out will be set to 0.
  8640. * All factors together must add up to 1.0.
  8641. *
  8642. * A[factor] Mix factor for extruder stepper 1
  8643. * B[factor] Mix factor for extruder stepper 2
  8644. * C[factor] Mix factor for extruder stepper 3
  8645. * D[factor] Mix factor for extruder stepper 4
  8646. * H[factor] Mix factor for extruder stepper 5
  8647. * I[factor] Mix factor for extruder stepper 6
  8648. *
  8649. */
  8650. inline void gcode_M165() { gcode_get_mix(); }
  8651. #endif
  8652. #endif // MIXING_EXTRUDER
  8653. /**
  8654. * M999: Restart after being stopped
  8655. *
  8656. * Default behaviour is to flush the serial buffer and request
  8657. * a resend to the host starting on the last N line received.
  8658. *
  8659. * Sending "M999 S1" will resume printing without flushing the
  8660. * existing command buffer.
  8661. *
  8662. */
  8663. inline void gcode_M999() {
  8664. Running = true;
  8665. lcd_reset_alert_level();
  8666. if (parser.boolval('S')) return;
  8667. // gcode_LastN = Stopped_gcode_LastN;
  8668. FlushSerialRequestResend();
  8669. }
  8670. #if ENABLED(SWITCHING_EXTRUDER)
  8671. #if EXTRUDERS > 3
  8672. #define REQ_ANGLES 4
  8673. #define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
  8674. #else
  8675. #define REQ_ANGLES 2
  8676. #define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
  8677. #endif
  8678. inline void move_extruder_servo(const uint8_t e) {
  8679. constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  8680. static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
  8681. stepper.synchronize();
  8682. #if EXTRUDERS & 1
  8683. if (e < EXTRUDERS - 1)
  8684. #endif
  8685. {
  8686. MOVE_SERVO(_SERVO_NR, angles[e]);
  8687. safe_delay(500);
  8688. }
  8689. }
  8690. #endif // SWITCHING_EXTRUDER
  8691. #if ENABLED(SWITCHING_NOZZLE)
  8692. inline void move_nozzle_servo(const uint8_t e) {
  8693. const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  8694. stepper.synchronize();
  8695. MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
  8696. safe_delay(500);
  8697. }
  8698. #endif
  8699. inline void invalid_extruder_error(const uint8_t e) {
  8700. SERIAL_ECHO_START();
  8701. SERIAL_CHAR('T');
  8702. SERIAL_ECHO_F(e, DEC);
  8703. SERIAL_CHAR(' ');
  8704. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  8705. }
  8706. #if ENABLED(PARKING_EXTRUDER)
  8707. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  8708. #define PE_MAGNET_ON_STATE !PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  8709. #else
  8710. #define PE_MAGNET_ON_STATE PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  8711. #endif
  8712. void pe_set_magnet(const uint8_t extruder_num, const uint8_t state) {
  8713. switch (extruder_num) {
  8714. case 1: OUT_WRITE(SOL1_PIN, state); break;
  8715. default: OUT_WRITE(SOL0_PIN, state); break;
  8716. }
  8717. #if PARKING_EXTRUDER_SOLENOIDS_DELAY > 0
  8718. dwell(PARKING_EXTRUDER_SOLENOIDS_DELAY);
  8719. #endif
  8720. }
  8721. inline void pe_activate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, PE_MAGNET_ON_STATE); }
  8722. inline void pe_deactivate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, !PE_MAGNET_ON_STATE); }
  8723. #endif // PARKING_EXTRUDER
  8724. #if HAS_FANMUX
  8725. void fanmux_switch(const uint8_t e) {
  8726. WRITE(FANMUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  8727. #if PIN_EXISTS(FANMUX1)
  8728. WRITE(FANMUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  8729. #if PIN_EXISTS(FANMUX2)
  8730. WRITE(FANMUX2, TEST(e, 2) ? HIGH : LOW);
  8731. #endif
  8732. #endif
  8733. }
  8734. FORCE_INLINE void fanmux_init(void){
  8735. SET_OUTPUT(FANMUX0_PIN);
  8736. #if PIN_EXISTS(FANMUX1)
  8737. SET_OUTPUT(FANMUX1_PIN);
  8738. #if PIN_EXISTS(FANMUX2)
  8739. SET_OUTPUT(FANMUX2_PIN);
  8740. #endif
  8741. #endif
  8742. fanmux_switch(0);
  8743. }
  8744. #endif // HAS_FANMUX
  8745. /**
  8746. * Perform a tool-change, which may result in moving the
  8747. * previous tool out of the way and the new tool into place.
  8748. */
  8749. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  8750. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  8751. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  8752. return invalid_extruder_error(tmp_extruder);
  8753. // T0-Tnnn: Switch virtual tool by changing the mix
  8754. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  8755. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  8756. #else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8757. if (tmp_extruder >= EXTRUDERS)
  8758. return invalid_extruder_error(tmp_extruder);
  8759. #if HOTENDS > 1
  8760. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  8761. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  8762. if (tmp_extruder != active_extruder) {
  8763. if (!no_move && axis_unhomed_error()) {
  8764. no_move = true;
  8765. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8766. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("No move on toolchange");
  8767. #endif
  8768. }
  8769. // Save current position to destination, for use later
  8770. set_destination_to_current();
  8771. #if ENABLED(DUAL_X_CARRIAGE)
  8772. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8773. if (DEBUGGING(LEVELING)) {
  8774. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  8775. switch (dual_x_carriage_mode) {
  8776. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  8777. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  8778. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  8779. }
  8780. }
  8781. #endif
  8782. const float xhome = x_home_pos(active_extruder);
  8783. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  8784. && IsRunning()
  8785. && (delayed_move_time || current_position[X_AXIS] != xhome)
  8786. ) {
  8787. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  8788. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8789. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  8790. #endif
  8791. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8792. if (DEBUGGING(LEVELING)) {
  8793. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  8794. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  8795. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  8796. }
  8797. #endif
  8798. // Park old head: 1) raise 2) move to park position 3) lower
  8799. for (uint8_t i = 0; i < 3; i++)
  8800. planner.buffer_line(
  8801. i == 0 ? current_position[X_AXIS] : xhome,
  8802. current_position[Y_AXIS],
  8803. i == 2 ? current_position[Z_AXIS] : raised_z,
  8804. current_position[E_AXIS],
  8805. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  8806. active_extruder
  8807. );
  8808. stepper.synchronize();
  8809. }
  8810. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  8811. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  8812. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  8813. // Activate the new extruder ahead of calling set_axis_is_at_home!
  8814. active_extruder = tmp_extruder;
  8815. // This function resets the max/min values - the current position may be overwritten below.
  8816. set_axis_is_at_home(X_AXIS);
  8817. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8818. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  8819. #endif
  8820. // Only when auto-parking are carriages safe to move
  8821. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  8822. switch (dual_x_carriage_mode) {
  8823. case DXC_FULL_CONTROL_MODE:
  8824. // New current position is the position of the activated extruder
  8825. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  8826. // Save the inactive extruder's position (from the old current_position)
  8827. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  8828. break;
  8829. case DXC_AUTO_PARK_MODE:
  8830. // record raised toolhead position for use by unpark
  8831. COPY(raised_parked_position, current_position);
  8832. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  8833. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8834. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8835. #endif
  8836. active_extruder_parked = true;
  8837. delayed_move_time = 0;
  8838. break;
  8839. case DXC_DUPLICATION_MODE:
  8840. // If the new extruder is the left one, set it "parked"
  8841. // This triggers the second extruder to move into the duplication position
  8842. active_extruder_parked = (active_extruder == 0);
  8843. if (active_extruder_parked)
  8844. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  8845. else
  8846. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  8847. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  8848. extruder_duplication_enabled = false;
  8849. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8850. if (DEBUGGING(LEVELING)) {
  8851. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  8852. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  8853. }
  8854. #endif
  8855. break;
  8856. }
  8857. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8858. if (DEBUGGING(LEVELING)) {
  8859. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  8860. DEBUG_POS("New extruder (parked)", current_position);
  8861. }
  8862. #endif
  8863. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  8864. #else // !DUAL_X_CARRIAGE
  8865. #if ENABLED(PARKING_EXTRUDER) // Dual Parking extruder
  8866. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  8867. float z_raise = 0;
  8868. if (!no_move) {
  8869. const float parkingposx[] = PARKING_EXTRUDER_PARKING_X,
  8870. midpos = ((parkingposx[1] - parkingposx[0])/2) + parkingposx[0] + hotend_offset[X_AXIS][active_extruder],
  8871. grabpos = parkingposx[tmp_extruder] + hotend_offset[X_AXIS][active_extruder]
  8872. + (tmp_extruder == 0 ? -(PARKING_EXTRUDER_GRAB_DISTANCE) : PARKING_EXTRUDER_GRAB_DISTANCE);
  8873. /**
  8874. * Steps:
  8875. * 1. Raise Z-Axis to give enough clearance
  8876. * 2. Move to park position of old extruder
  8877. * 3. Disengage magnetic field, wait for delay
  8878. * 4. Move near new extruder
  8879. * 5. Engage magnetic field for new extruder
  8880. * 6. Move to parking incl. offset of new extruder
  8881. * 7. Lower Z-Axis
  8882. */
  8883. // STEP 1
  8884. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8885. SERIAL_ECHOLNPGM("Starting Autopark");
  8886. if (DEBUGGING(LEVELING)) DEBUG_POS("current position:", current_position);
  8887. #endif
  8888. z_raise = PARKING_EXTRUDER_SECURITY_RAISE;
  8889. current_position[Z_AXIS] += z_raise;
  8890. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8891. SERIAL_ECHOLNPGM("(1) Raise Z-Axis ");
  8892. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving to Raised Z-Position", current_position);
  8893. #endif
  8894. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  8895. stepper.synchronize();
  8896. // STEP 2
  8897. current_position[X_AXIS] = parkingposx[active_extruder] + hotend_offset[X_AXIS][active_extruder];
  8898. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8899. SERIAL_ECHOLNPAIR("(2) Park extruder ", active_extruder);
  8900. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving ParkPos", current_position);
  8901. #endif
  8902. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  8903. stepper.synchronize();
  8904. // STEP 3
  8905. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8906. SERIAL_ECHOLNPGM("(3) Disengage magnet ");
  8907. #endif
  8908. pe_deactivate_magnet(active_extruder);
  8909. // STEP 4
  8910. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8911. SERIAL_ECHOLNPGM("(4) Move to position near new extruder");
  8912. #endif
  8913. current_position[X_AXIS] += (active_extruder == 0 ? 10 : -10); // move 10mm away from parked extruder
  8914. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8915. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving away from parked extruder", current_position);
  8916. #endif
  8917. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  8918. stepper.synchronize();
  8919. // STEP 5
  8920. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8921. SERIAL_ECHOLNPGM("(5) Engage magnetic field");
  8922. #endif
  8923. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  8924. pe_activate_magnet(active_extruder); //just save power for inverted magnets
  8925. #endif
  8926. pe_activate_magnet(tmp_extruder);
  8927. // STEP 6
  8928. current_position[X_AXIS] = grabpos + (tmp_extruder == 0 ? (+10) : (-10));
  8929. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  8930. current_position[X_AXIS] = grabpos;
  8931. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8932. SERIAL_ECHOLNPAIR("(6) Unpark extruder ", tmp_extruder);
  8933. if (DEBUGGING(LEVELING)) DEBUG_POS("Move UnparkPos", current_position);
  8934. #endif
  8935. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS]/2, active_extruder);
  8936. stepper.synchronize();
  8937. // Step 7
  8938. current_position[X_AXIS] = midpos - hotend_offset[X_AXIS][tmp_extruder];
  8939. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8940. SERIAL_ECHOLNPGM("(7) Move midway between hotends");
  8941. if (DEBUGGING(LEVELING)) DEBUG_POS("Move midway to new extruder", current_position);
  8942. #endif
  8943. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  8944. stepper.synchronize();
  8945. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8946. SERIAL_ECHOLNPGM("Autopark done.");
  8947. #endif
  8948. }
  8949. else { // nomove == true
  8950. // Only engage magnetic field for new extruder
  8951. pe_activate_magnet(tmp_extruder);
  8952. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  8953. pe_activate_magnet(active_extruder); // Just save power for inverted magnets
  8954. #endif
  8955. }
  8956. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][tmp_extruder] - hotend_offset[Z_AXIS][active_extruder]; // Apply Zoffset
  8957. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8958. if (DEBUGGING(LEVELING)) DEBUG_POS("Applying Z-offset", current_position);
  8959. #endif
  8960. #endif // dualParking extruder
  8961. #if ENABLED(SWITCHING_NOZZLE)
  8962. #define DONT_SWITCH (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR)
  8963. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  8964. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  8965. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  8966. // Always raise by some amount (destination copied from current_position earlier)
  8967. current_position[Z_AXIS] += z_raise;
  8968. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  8969. move_nozzle_servo(tmp_extruder);
  8970. #endif
  8971. /**
  8972. * Set current_position to the position of the new nozzle.
  8973. * Offsets are based on linear distance, so we need to get
  8974. * the resulting position in coordinate space.
  8975. *
  8976. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  8977. * - With mesh leveling, update Z for the new position
  8978. * - Otherwise, just use the raw linear distance
  8979. *
  8980. * Software endstops are altered here too. Consider a case where:
  8981. * E0 at X=0 ... E1 at X=10
  8982. * When we switch to E1 now X=10, but E1 can't move left.
  8983. * To express this we apply the change in XY to the software endstops.
  8984. * E1 can move farther right than E0, so the right limit is extended.
  8985. *
  8986. * Note that we don't adjust the Z software endstops. Why not?
  8987. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  8988. * because the bed is 1mm lower at the new position. As long as
  8989. * the first nozzle is out of the way, the carriage should be
  8990. * allowed to move 1mm lower. This technically "breaks" the
  8991. * Z software endstop. But this is technically correct (and
  8992. * there is no viable alternative).
  8993. */
  8994. #if ABL_PLANAR
  8995. // Offset extruder, make sure to apply the bed level rotation matrix
  8996. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  8997. hotend_offset[Y_AXIS][tmp_extruder],
  8998. 0),
  8999. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  9000. hotend_offset[Y_AXIS][active_extruder],
  9001. 0),
  9002. offset_vec = tmp_offset_vec - act_offset_vec;
  9003. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9004. if (DEBUGGING(LEVELING)) {
  9005. tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
  9006. act_offset_vec.debug(PSTR("act_offset_vec"));
  9007. offset_vec.debug(PSTR("offset_vec (BEFORE)"));
  9008. }
  9009. #endif
  9010. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  9011. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9012. if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
  9013. #endif
  9014. // Adjustments to the current position
  9015. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  9016. current_position[Z_AXIS] += offset_vec.z;
  9017. #else // !ABL_PLANAR
  9018. const float xydiff[2] = {
  9019. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  9020. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  9021. };
  9022. #if ENABLED(MESH_BED_LEVELING)
  9023. if (planner.leveling_active) {
  9024. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9025. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  9026. #endif
  9027. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  9028. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  9029. z1 = current_position[Z_AXIS], z2 = z1;
  9030. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  9031. planner.apply_leveling(x2, y2, z2);
  9032. current_position[Z_AXIS] += z2 - z1;
  9033. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9034. if (DEBUGGING(LEVELING))
  9035. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  9036. #endif
  9037. }
  9038. #endif // MESH_BED_LEVELING
  9039. #endif // !HAS_ABL
  9040. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9041. if (DEBUGGING(LEVELING)) {
  9042. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  9043. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  9044. SERIAL_ECHOLNPGM(" }");
  9045. }
  9046. #endif
  9047. // The newly-selected extruder XY is actually at...
  9048. current_position[X_AXIS] += xydiff[X_AXIS];
  9049. current_position[Y_AXIS] += xydiff[Y_AXIS];
  9050. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) || ENABLED(PARKING_EXTRUDER)
  9051. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  9052. #if HAS_POSITION_SHIFT
  9053. position_shift[i] += xydiff[i];
  9054. #endif
  9055. update_software_endstops((AxisEnum)i);
  9056. }
  9057. #endif
  9058. // Set the new active extruder
  9059. active_extruder = tmp_extruder;
  9060. #endif // !DUAL_X_CARRIAGE
  9061. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9062. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  9063. #endif
  9064. // Tell the planner the new "current position"
  9065. SYNC_PLAN_POSITION_KINEMATIC();
  9066. // Move to the "old position" (move the extruder into place)
  9067. if (!no_move && IsRunning()) {
  9068. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9069. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  9070. #endif
  9071. prepare_move_to_destination();
  9072. }
  9073. #if ENABLED(SWITCHING_NOZZLE)
  9074. // Move back down, if needed. (Including when the new tool is higher.)
  9075. if (z_raise != z_diff) {
  9076. destination[Z_AXIS] += z_diff;
  9077. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  9078. prepare_move_to_destination();
  9079. }
  9080. #endif
  9081. } // (tmp_extruder != active_extruder)
  9082. stepper.synchronize();
  9083. #if ENABLED(EXT_SOLENOID) && !ENABLED(PARKING_EXTRUDER)
  9084. disable_all_solenoids();
  9085. enable_solenoid_on_active_extruder();
  9086. #endif // EXT_SOLENOID
  9087. feedrate_mm_s = old_feedrate_mm_s;
  9088. #else // HOTENDS <= 1
  9089. UNUSED(fr_mm_s);
  9090. UNUSED(no_move);
  9091. #if ENABLED(MK2_MULTIPLEXER)
  9092. if (tmp_extruder >= E_STEPPERS)
  9093. return invalid_extruder_error(tmp_extruder);
  9094. select_multiplexed_stepper(tmp_extruder);
  9095. #endif
  9096. // Set the new active extruder
  9097. active_extruder = tmp_extruder;
  9098. #endif // HOTENDS <= 1
  9099. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  9100. stepper.synchronize();
  9101. move_extruder_servo(active_extruder);
  9102. #endif
  9103. #if HAS_FANMUX
  9104. fanmux_switch(active_extruder);
  9105. #endif
  9106. SERIAL_ECHO_START();
  9107. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  9108. #endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  9109. }
  9110. /**
  9111. * T0-T3: Switch tool, usually switching extruders
  9112. *
  9113. * F[units/min] Set the movement feedrate
  9114. * S1 Don't move the tool in XY after change
  9115. */
  9116. inline void gcode_T(const uint8_t tmp_extruder) {
  9117. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9118. if (DEBUGGING(LEVELING)) {
  9119. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  9120. SERIAL_CHAR(')');
  9121. SERIAL_EOL();
  9122. DEBUG_POS("BEFORE", current_position);
  9123. }
  9124. #endif
  9125. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  9126. tool_change(tmp_extruder);
  9127. #elif HOTENDS > 1
  9128. tool_change(
  9129. tmp_extruder,
  9130. MMM_TO_MMS(parser.linearval('F')),
  9131. (tmp_extruder == active_extruder) || parser.boolval('S')
  9132. );
  9133. #endif
  9134. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9135. if (DEBUGGING(LEVELING)) {
  9136. DEBUG_POS("AFTER", current_position);
  9137. SERIAL_ECHOLNPGM("<<< gcode_T");
  9138. }
  9139. #endif
  9140. }
  9141. /**
  9142. * Process a single command and dispatch it to its handler
  9143. * This is called from the main loop()
  9144. */
  9145. void process_next_command() {
  9146. char * const current_command = command_queue[cmd_queue_index_r];
  9147. if (DEBUGGING(ECHO)) {
  9148. SERIAL_ECHO_START();
  9149. SERIAL_ECHOLN(current_command);
  9150. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  9151. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  9152. M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
  9153. #endif
  9154. }
  9155. KEEPALIVE_STATE(IN_HANDLER);
  9156. // Parse the next command in the queue
  9157. parser.parse(current_command);
  9158. // Handle a known G, M, or T
  9159. switch (parser.command_letter) {
  9160. case 'G': switch (parser.codenum) {
  9161. // G0, G1
  9162. case 0:
  9163. case 1:
  9164. #if IS_SCARA
  9165. gcode_G0_G1(parser.codenum == 0);
  9166. #else
  9167. gcode_G0_G1();
  9168. #endif
  9169. break;
  9170. // G2, G3
  9171. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  9172. case 2: // G2: CW ARC
  9173. case 3: // G3: CCW ARC
  9174. gcode_G2_G3(parser.codenum == 2);
  9175. break;
  9176. #endif
  9177. // G4 Dwell
  9178. case 4:
  9179. gcode_G4();
  9180. break;
  9181. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9182. case 5: // G5: Cubic B_spline
  9183. gcode_G5();
  9184. break;
  9185. #endif // BEZIER_CURVE_SUPPORT
  9186. #if ENABLED(FWRETRACT)
  9187. case 10: // G10: retract
  9188. gcode_G10();
  9189. break;
  9190. case 11: // G11: retract_recover
  9191. gcode_G11();
  9192. break;
  9193. #endif // FWRETRACT
  9194. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  9195. case 12:
  9196. gcode_G12(); // G12: Nozzle Clean
  9197. break;
  9198. #endif // NOZZLE_CLEAN_FEATURE
  9199. #if ENABLED(CNC_WORKSPACE_PLANES)
  9200. case 17: // G17: Select Plane XY
  9201. gcode_G17();
  9202. break;
  9203. case 18: // G18: Select Plane ZX
  9204. gcode_G18();
  9205. break;
  9206. case 19: // G19: Select Plane YZ
  9207. gcode_G19();
  9208. break;
  9209. #endif // CNC_WORKSPACE_PLANES
  9210. #if ENABLED(INCH_MODE_SUPPORT)
  9211. case 20: // G20: Inch Mode
  9212. gcode_G20();
  9213. break;
  9214. case 21: // G21: MM Mode
  9215. gcode_G21();
  9216. break;
  9217. #endif // INCH_MODE_SUPPORT
  9218. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  9219. case 26: // G26: Mesh Validation Pattern generation
  9220. gcode_G26();
  9221. break;
  9222. #endif // AUTO_BED_LEVELING_UBL
  9223. #if ENABLED(NOZZLE_PARK_FEATURE)
  9224. case 27: // G27: Nozzle Park
  9225. gcode_G27();
  9226. break;
  9227. #endif // NOZZLE_PARK_FEATURE
  9228. case 28: // G28: Home all axes, one at a time
  9229. gcode_G28(false);
  9230. break;
  9231. #if HAS_LEVELING
  9232. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  9233. // or provides access to the UBL System if enabled.
  9234. gcode_G29();
  9235. break;
  9236. #endif // HAS_LEVELING
  9237. #if HAS_BED_PROBE
  9238. case 30: // G30 Single Z probe
  9239. gcode_G30();
  9240. break;
  9241. #if ENABLED(Z_PROBE_SLED)
  9242. case 31: // G31: dock the sled
  9243. gcode_G31();
  9244. break;
  9245. case 32: // G32: undock the sled
  9246. gcode_G32();
  9247. break;
  9248. #endif // Z_PROBE_SLED
  9249. #endif // HAS_BED_PROBE
  9250. #if PROBE_SELECTED
  9251. #if ENABLED(DELTA_AUTO_CALIBRATION)
  9252. case 33: // G33: Delta Auto-Calibration
  9253. gcode_G33();
  9254. break;
  9255. #endif // DELTA_AUTO_CALIBRATION
  9256. #endif // PROBE_SELECTED
  9257. #if ENABLED(G38_PROBE_TARGET)
  9258. case 38: // G38.2 & G38.3
  9259. if (parser.subcode == 2 || parser.subcode == 3)
  9260. gcode_G38(parser.subcode == 2);
  9261. break;
  9262. #endif
  9263. case 90: // G90
  9264. relative_mode = false;
  9265. break;
  9266. case 91: // G91
  9267. relative_mode = true;
  9268. break;
  9269. case 92: // G92
  9270. gcode_G92();
  9271. break;
  9272. #if HAS_MESH
  9273. case 42:
  9274. gcode_G42();
  9275. break;
  9276. #endif
  9277. #if ENABLED(DEBUG_GCODE_PARSER)
  9278. case 800:
  9279. parser.debug(); // GCode Parser Test for G
  9280. break;
  9281. #endif
  9282. }
  9283. break;
  9284. case 'M': switch (parser.codenum) {
  9285. #if HAS_RESUME_CONTINUE
  9286. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  9287. case 1: // M1: Conditional stop - Wait for user button press on LCD
  9288. gcode_M0_M1();
  9289. break;
  9290. #endif // ULTIPANEL
  9291. #if ENABLED(SPINDLE_LASER_ENABLE)
  9292. case 3:
  9293. gcode_M3_M4(true); // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
  9294. break; // synchronizes with movement commands
  9295. case 4:
  9296. gcode_M3_M4(false); // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
  9297. break; // synchronizes with movement commands
  9298. case 5:
  9299. gcode_M5(); // M5 - turn spindle/laser off
  9300. break; // synchronizes with movement commands
  9301. #endif
  9302. case 17: // M17: Enable all stepper motors
  9303. gcode_M17();
  9304. break;
  9305. #if ENABLED(SDSUPPORT)
  9306. case 20: // M20: list SD card
  9307. gcode_M20(); break;
  9308. case 21: // M21: init SD card
  9309. gcode_M21(); break;
  9310. case 22: // M22: release SD card
  9311. gcode_M22(); break;
  9312. case 23: // M23: Select file
  9313. gcode_M23(); break;
  9314. case 24: // M24: Start SD print
  9315. gcode_M24(); break;
  9316. case 25: // M25: Pause SD print
  9317. gcode_M25(); break;
  9318. case 26: // M26: Set SD index
  9319. gcode_M26(); break;
  9320. case 27: // M27: Get SD status
  9321. gcode_M27(); break;
  9322. case 28: // M28: Start SD write
  9323. gcode_M28(); break;
  9324. case 29: // M29: Stop SD write
  9325. gcode_M29(); break;
  9326. case 30: // M30 <filename> Delete File
  9327. gcode_M30(); break;
  9328. case 32: // M32: Select file and start SD print
  9329. gcode_M32(); break;
  9330. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  9331. case 33: // M33: Get the long full path to a file or folder
  9332. gcode_M33(); break;
  9333. #endif
  9334. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  9335. case 34: // M34: Set SD card sorting options
  9336. gcode_M34(); break;
  9337. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  9338. case 928: // M928: Start SD write
  9339. gcode_M928(); break;
  9340. #endif // SDSUPPORT
  9341. case 31: // M31: Report time since the start of SD print or last M109
  9342. gcode_M31(); break;
  9343. case 42: // M42: Change pin state
  9344. gcode_M42(); break;
  9345. #if ENABLED(PINS_DEBUGGING)
  9346. case 43: // M43: Read pin state
  9347. gcode_M43(); break;
  9348. #endif
  9349. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  9350. case 48: // M48: Z probe repeatability test
  9351. gcode_M48();
  9352. break;
  9353. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  9354. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  9355. case 49: // M49: Turn on or off G26 debug flag for verbose output
  9356. gcode_M49();
  9357. break;
  9358. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  9359. case 75: // M75: Start print timer
  9360. gcode_M75(); break;
  9361. case 76: // M76: Pause print timer
  9362. gcode_M76(); break;
  9363. case 77: // M77: Stop print timer
  9364. gcode_M77(); break;
  9365. #if ENABLED(PRINTCOUNTER)
  9366. case 78: // M78: Show print statistics
  9367. gcode_M78(); break;
  9368. #endif
  9369. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  9370. case 100: // M100: Free Memory Report
  9371. gcode_M100();
  9372. break;
  9373. #endif
  9374. case 104: // M104: Set hot end temperature
  9375. gcode_M104();
  9376. break;
  9377. case 110: // M110: Set Current Line Number
  9378. gcode_M110();
  9379. break;
  9380. case 111: // M111: Set debug level
  9381. gcode_M111();
  9382. break;
  9383. #if DISABLED(EMERGENCY_PARSER)
  9384. case 108: // M108: Cancel Waiting
  9385. gcode_M108();
  9386. break;
  9387. case 112: // M112: Emergency Stop
  9388. gcode_M112();
  9389. break;
  9390. case 410: // M410 quickstop - Abort all the planned moves.
  9391. gcode_M410();
  9392. break;
  9393. #endif
  9394. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  9395. case 113: // M113: Set Host Keepalive interval
  9396. gcode_M113();
  9397. break;
  9398. #endif
  9399. case 140: // M140: Set bed temperature
  9400. gcode_M140();
  9401. break;
  9402. case 105: // M105: Report current temperature
  9403. gcode_M105();
  9404. KEEPALIVE_STATE(NOT_BUSY);
  9405. return; // "ok" already printed
  9406. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9407. case 155: // M155: Set temperature auto-report interval
  9408. gcode_M155();
  9409. break;
  9410. #endif
  9411. case 109: // M109: Wait for hotend temperature to reach target
  9412. gcode_M109();
  9413. break;
  9414. #if HAS_TEMP_BED
  9415. case 190: // M190: Wait for bed temperature to reach target
  9416. gcode_M190();
  9417. break;
  9418. #endif // HAS_TEMP_BED
  9419. #if FAN_COUNT > 0
  9420. case 106: // M106: Fan On
  9421. gcode_M106();
  9422. break;
  9423. case 107: // M107: Fan Off
  9424. gcode_M107();
  9425. break;
  9426. #endif // FAN_COUNT > 0
  9427. #if ENABLED(PARK_HEAD_ON_PAUSE)
  9428. case 125: // M125: Store current position and move to filament change position
  9429. gcode_M125(); break;
  9430. #endif
  9431. #if ENABLED(BARICUDA)
  9432. // PWM for HEATER_1_PIN
  9433. #if HAS_HEATER_1
  9434. case 126: // M126: valve open
  9435. gcode_M126();
  9436. break;
  9437. case 127: // M127: valve closed
  9438. gcode_M127();
  9439. break;
  9440. #endif // HAS_HEATER_1
  9441. // PWM for HEATER_2_PIN
  9442. #if HAS_HEATER_2
  9443. case 128: // M128: valve open
  9444. gcode_M128();
  9445. break;
  9446. case 129: // M129: valve closed
  9447. gcode_M129();
  9448. break;
  9449. #endif // HAS_HEATER_2
  9450. #endif // BARICUDA
  9451. #if HAS_POWER_SWITCH
  9452. case 80: // M80: Turn on Power Supply
  9453. gcode_M80();
  9454. break;
  9455. #endif // HAS_POWER_SWITCH
  9456. case 81: // M81: Turn off Power, including Power Supply, if possible
  9457. gcode_M81();
  9458. break;
  9459. case 82: // M82: Set E axis normal mode (same as other axes)
  9460. gcode_M82();
  9461. break;
  9462. case 83: // M83: Set E axis relative mode
  9463. gcode_M83();
  9464. break;
  9465. case 18: // M18 => M84
  9466. case 84: // M84: Disable all steppers or set timeout
  9467. gcode_M18_M84();
  9468. break;
  9469. case 85: // M85: Set inactivity stepper shutdown timeout
  9470. gcode_M85();
  9471. break;
  9472. case 92: // M92: Set the steps-per-unit for one or more axes
  9473. gcode_M92();
  9474. break;
  9475. case 114: // M114: Report current position
  9476. gcode_M114();
  9477. break;
  9478. case 115: // M115: Report capabilities
  9479. gcode_M115();
  9480. break;
  9481. case 117: // M117: Set LCD message text, if possible
  9482. gcode_M117();
  9483. break;
  9484. case 118: // M118: Display a message in the host console
  9485. gcode_M118();
  9486. break;
  9487. case 119: // M119: Report endstop states
  9488. gcode_M119();
  9489. break;
  9490. case 120: // M120: Enable endstops
  9491. gcode_M120();
  9492. break;
  9493. case 121: // M121: Disable endstops
  9494. gcode_M121();
  9495. break;
  9496. #if ENABLED(ULTIPANEL)
  9497. case 145: // M145: Set material heatup parameters
  9498. gcode_M145();
  9499. break;
  9500. #endif
  9501. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  9502. case 149: // M149: Set temperature units
  9503. gcode_M149();
  9504. break;
  9505. #endif
  9506. #if HAS_COLOR_LEDS
  9507. case 150: // M150: Set Status LED Color
  9508. gcode_M150();
  9509. break;
  9510. #endif // HAS_COLOR_LEDS
  9511. #if ENABLED(MIXING_EXTRUDER)
  9512. case 163: // M163: Set a component weight for mixing extruder
  9513. gcode_M163();
  9514. break;
  9515. #if MIXING_VIRTUAL_TOOLS > 1
  9516. case 164: // M164: Save current mix as a virtual extruder
  9517. gcode_M164();
  9518. break;
  9519. #endif
  9520. #if ENABLED(DIRECT_MIXING_IN_G1)
  9521. case 165: // M165: Set multiple mix weights
  9522. gcode_M165();
  9523. break;
  9524. #endif
  9525. #endif
  9526. case 200: // M200: Set filament diameter, E to cubic units
  9527. gcode_M200();
  9528. break;
  9529. case 201: // M201: Set max acceleration for print moves (units/s^2)
  9530. gcode_M201();
  9531. break;
  9532. #if 0 // Not used for Sprinter/grbl gen6
  9533. case 202: // M202
  9534. gcode_M202();
  9535. break;
  9536. #endif
  9537. case 203: // M203: Set max feedrate (units/sec)
  9538. gcode_M203();
  9539. break;
  9540. case 204: // M204: Set acceleration
  9541. gcode_M204();
  9542. break;
  9543. case 205: // M205: Set advanced settings
  9544. gcode_M205();
  9545. break;
  9546. #if HAS_M206_COMMAND
  9547. case 206: // M206: Set home offsets
  9548. gcode_M206();
  9549. break;
  9550. #endif
  9551. #if ENABLED(DELTA)
  9552. case 665: // M665: Set delta configurations
  9553. gcode_M665();
  9554. break;
  9555. #endif
  9556. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  9557. case 666: // M666: Set delta or dual endstop adjustment
  9558. gcode_M666();
  9559. break;
  9560. #endif
  9561. #if ENABLED(FWRETRACT)
  9562. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  9563. gcode_M207();
  9564. break;
  9565. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  9566. gcode_M208();
  9567. break;
  9568. case 209: // M209: Turn Automatic Retract Detection on/off
  9569. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) gcode_M209();
  9570. break;
  9571. #endif // FWRETRACT
  9572. case 211: // M211: Enable, Disable, and/or Report software endstops
  9573. gcode_M211();
  9574. break;
  9575. #if HOTENDS > 1
  9576. case 218: // M218: Set a tool offset
  9577. gcode_M218();
  9578. break;
  9579. #endif
  9580. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  9581. gcode_M220();
  9582. break;
  9583. case 221: // M221: Set Flow Percentage
  9584. gcode_M221();
  9585. break;
  9586. case 226: // M226: Wait until a pin reaches a state
  9587. gcode_M226();
  9588. break;
  9589. #if HAS_SERVOS
  9590. case 280: // M280: Set servo position absolute
  9591. gcode_M280();
  9592. break;
  9593. #endif // HAS_SERVOS
  9594. #if HAS_BUZZER
  9595. case 300: // M300: Play beep tone
  9596. gcode_M300();
  9597. break;
  9598. #endif // HAS_BUZZER
  9599. #if ENABLED(PIDTEMP)
  9600. case 301: // M301: Set hotend PID parameters
  9601. gcode_M301();
  9602. break;
  9603. #endif // PIDTEMP
  9604. #if ENABLED(PIDTEMPBED)
  9605. case 304: // M304: Set bed PID parameters
  9606. gcode_M304();
  9607. break;
  9608. #endif // PIDTEMPBED
  9609. #if defined(CHDK) || HAS_PHOTOGRAPH
  9610. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  9611. gcode_M240();
  9612. break;
  9613. #endif // CHDK || PHOTOGRAPH_PIN
  9614. #if HAS_LCD_CONTRAST
  9615. case 250: // M250: Set LCD contrast
  9616. gcode_M250();
  9617. break;
  9618. #endif // HAS_LCD_CONTRAST
  9619. #if ENABLED(EXPERIMENTAL_I2CBUS)
  9620. case 260: // M260: Send data to an i2c slave
  9621. gcode_M260();
  9622. break;
  9623. case 261: // M261: Request data from an i2c slave
  9624. gcode_M261();
  9625. break;
  9626. #endif // EXPERIMENTAL_I2CBUS
  9627. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9628. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  9629. gcode_M302();
  9630. break;
  9631. #endif // PREVENT_COLD_EXTRUSION
  9632. case 303: // M303: PID autotune
  9633. gcode_M303();
  9634. break;
  9635. #if ENABLED(MORGAN_SCARA)
  9636. case 360: // M360: SCARA Theta pos1
  9637. if (gcode_M360()) return;
  9638. break;
  9639. case 361: // M361: SCARA Theta pos2
  9640. if (gcode_M361()) return;
  9641. break;
  9642. case 362: // M362: SCARA Psi pos1
  9643. if (gcode_M362()) return;
  9644. break;
  9645. case 363: // M363: SCARA Psi pos2
  9646. if (gcode_M363()) return;
  9647. break;
  9648. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  9649. if (gcode_M364()) return;
  9650. break;
  9651. #endif // SCARA
  9652. case 400: // M400: Finish all moves
  9653. gcode_M400();
  9654. break;
  9655. #if HAS_BED_PROBE
  9656. case 401: // M401: Deploy probe
  9657. gcode_M401();
  9658. break;
  9659. case 402: // M402: Stow probe
  9660. gcode_M402();
  9661. break;
  9662. #endif // HAS_BED_PROBE
  9663. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  9664. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  9665. gcode_M404();
  9666. break;
  9667. case 405: // M405: Turn on filament sensor for control
  9668. gcode_M405();
  9669. break;
  9670. case 406: // M406: Turn off filament sensor for control
  9671. gcode_M406();
  9672. break;
  9673. case 407: // M407: Display measured filament diameter
  9674. gcode_M407();
  9675. break;
  9676. #endif // FILAMENT_WIDTH_SENSOR
  9677. #if HAS_LEVELING
  9678. case 420: // M420: Enable/Disable Bed Leveling
  9679. gcode_M420();
  9680. break;
  9681. #endif
  9682. #if HAS_MESH
  9683. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  9684. gcode_M421();
  9685. break;
  9686. #endif
  9687. #if HAS_M206_COMMAND
  9688. case 428: // M428: Apply current_position to home_offset
  9689. gcode_M428();
  9690. break;
  9691. #endif
  9692. case 500: // M500: Store settings in EEPROM
  9693. gcode_M500();
  9694. break;
  9695. case 501: // M501: Read settings from EEPROM
  9696. gcode_M501();
  9697. break;
  9698. case 502: // M502: Revert to default settings
  9699. gcode_M502();
  9700. break;
  9701. #if DISABLED(DISABLE_M503)
  9702. case 503: // M503: print settings currently in memory
  9703. gcode_M503();
  9704. break;
  9705. #endif
  9706. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  9707. case 540: // M540: Set abort on endstop hit for SD printing
  9708. gcode_M540();
  9709. break;
  9710. #endif
  9711. #if HAS_BED_PROBE
  9712. case 851: // M851: Set Z Probe Z Offset
  9713. gcode_M851();
  9714. break;
  9715. #endif // HAS_BED_PROBE
  9716. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  9717. case 600: // M600: Pause for filament change
  9718. gcode_M600();
  9719. break;
  9720. #endif // ADVANCED_PAUSE_FEATURE
  9721. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  9722. case 605: // M605: Set Dual X Carriage movement mode
  9723. gcode_M605();
  9724. break;
  9725. #endif // DUAL_X_CARRIAGE
  9726. #if ENABLED(MK2_MULTIPLEXER)
  9727. case 702: // M702: Unload all extruders
  9728. gcode_M702();
  9729. break;
  9730. #endif
  9731. #if ENABLED(LIN_ADVANCE)
  9732. case 900: // M900: Set advance K factor.
  9733. gcode_M900();
  9734. break;
  9735. #endif
  9736. #if ENABLED(HAVE_TMC2130)
  9737. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  9738. gcode_M906();
  9739. break;
  9740. #endif
  9741. case 907: // M907: Set digital trimpot motor current using axis codes.
  9742. gcode_M907();
  9743. break;
  9744. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  9745. case 908: // M908: Control digital trimpot directly.
  9746. gcode_M908();
  9747. break;
  9748. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  9749. case 909: // M909: Print digipot/DAC current value
  9750. gcode_M909();
  9751. break;
  9752. case 910: // M910: Commit digipot/DAC value to external EEPROM
  9753. gcode_M910();
  9754. break;
  9755. #endif
  9756. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  9757. #if ENABLED(HAVE_TMC2130)
  9758. case 911: // M911: Report TMC2130 prewarn triggered flags
  9759. gcode_M911();
  9760. break;
  9761. case 912: // M911: Clear TMC2130 prewarn triggered flags
  9762. gcode_M912();
  9763. break;
  9764. #if ENABLED(HYBRID_THRESHOLD)
  9765. case 913: // M913: Set HYBRID_THRESHOLD speed.
  9766. gcode_M913();
  9767. break;
  9768. #endif
  9769. #if ENABLED(SENSORLESS_HOMING)
  9770. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  9771. gcode_M914();
  9772. break;
  9773. #endif
  9774. #endif
  9775. #if HAS_MICROSTEPS
  9776. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  9777. gcode_M350();
  9778. break;
  9779. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  9780. gcode_M351();
  9781. break;
  9782. #endif // HAS_MICROSTEPS
  9783. case 355: // M355 set case light brightness
  9784. gcode_M355();
  9785. break;
  9786. #if ENABLED(DEBUG_GCODE_PARSER)
  9787. case 800:
  9788. parser.debug(); // GCode Parser Test for M
  9789. break;
  9790. #endif
  9791. #if ENABLED(I2C_POSITION_ENCODERS)
  9792. case 860: // M860 Report encoder module position
  9793. gcode_M860();
  9794. break;
  9795. case 861: // M861 Report encoder module status
  9796. gcode_M861();
  9797. break;
  9798. case 862: // M862 Perform axis test
  9799. gcode_M862();
  9800. break;
  9801. case 863: // M863 Calibrate steps/mm
  9802. gcode_M863();
  9803. break;
  9804. case 864: // M864 Change module address
  9805. gcode_M864();
  9806. break;
  9807. case 865: // M865 Check module firmware version
  9808. gcode_M865();
  9809. break;
  9810. case 866: // M866 Report axis error count
  9811. gcode_M866();
  9812. break;
  9813. case 867: // M867 Toggle error correction
  9814. gcode_M867();
  9815. break;
  9816. case 868: // M868 Set error correction threshold
  9817. gcode_M868();
  9818. break;
  9819. case 869: // M869 Report axis error
  9820. gcode_M869();
  9821. break;
  9822. #endif // I2C_POSITION_ENCODERS
  9823. case 999: // M999: Restart after being Stopped
  9824. gcode_M999();
  9825. break;
  9826. }
  9827. break;
  9828. case 'T':
  9829. gcode_T(parser.codenum);
  9830. break;
  9831. default: parser.unknown_command_error();
  9832. }
  9833. KEEPALIVE_STATE(NOT_BUSY);
  9834. ok_to_send();
  9835. }
  9836. /**
  9837. * Send a "Resend: nnn" message to the host to
  9838. * indicate that a command needs to be re-sent.
  9839. */
  9840. void FlushSerialRequestResend() {
  9841. //char command_queue[cmd_queue_index_r][100]="Resend:";
  9842. MYSERIAL.flush();
  9843. SERIAL_PROTOCOLPGM(MSG_RESEND);
  9844. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  9845. ok_to_send();
  9846. }
  9847. /**
  9848. * Send an "ok" message to the host, indicating
  9849. * that a command was successfully processed.
  9850. *
  9851. * If ADVANCED_OK is enabled also include:
  9852. * N<int> Line number of the command, if any
  9853. * P<int> Planner space remaining
  9854. * B<int> Block queue space remaining
  9855. */
  9856. void ok_to_send() {
  9857. refresh_cmd_timeout();
  9858. if (!send_ok[cmd_queue_index_r]) return;
  9859. SERIAL_PROTOCOLPGM(MSG_OK);
  9860. #if ENABLED(ADVANCED_OK)
  9861. char* p = command_queue[cmd_queue_index_r];
  9862. if (*p == 'N') {
  9863. SERIAL_PROTOCOL(' ');
  9864. SERIAL_ECHO(*p++);
  9865. while (NUMERIC_SIGNED(*p))
  9866. SERIAL_ECHO(*p++);
  9867. }
  9868. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  9869. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  9870. #endif
  9871. SERIAL_EOL();
  9872. }
  9873. #if HAS_SOFTWARE_ENDSTOPS
  9874. /**
  9875. * Constrain the given coordinates to the software endstops.
  9876. */
  9877. /**
  9878. * Constrain the given coordinates to the software endstops.
  9879. *
  9880. * NOTE: This will only apply to Z on DELTA and SCARA. XY is
  9881. * constrained to a circle on these kinematic systems.
  9882. */
  9883. void clamp_to_software_endstops(float target[XYZ]) {
  9884. if (!soft_endstops_enabled) return;
  9885. #if ENABLED(MIN_SOFTWARE_ENDSTOP_X)
  9886. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  9887. #endif
  9888. #if ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
  9889. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  9890. #endif
  9891. #if ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
  9892. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  9893. #endif
  9894. #if ENABLED(MAX_SOFTWARE_ENDSTOP_X)
  9895. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  9896. #endif
  9897. #if ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
  9898. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  9899. #endif
  9900. #if ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
  9901. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  9902. #endif
  9903. }
  9904. #endif
  9905. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9906. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  9907. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  9908. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  9909. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  9910. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  9911. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  9912. #else
  9913. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  9914. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  9915. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  9916. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  9917. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  9918. #endif
  9919. // Get the Z adjustment for non-linear bed leveling
  9920. float bilinear_z_offset(const float logical[XYZ]) {
  9921. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  9922. last_x = -999.999, last_y = -999.999;
  9923. // Whole units for the grid line indices. Constrained within bounds.
  9924. static int8_t gridx, gridy, nextx, nexty,
  9925. last_gridx = -99, last_gridy = -99;
  9926. // XY relative to the probed area
  9927. const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
  9928. y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
  9929. #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
  9930. // Keep using the last grid box
  9931. #define FAR_EDGE_OR_BOX 2
  9932. #else
  9933. // Just use the grid far edge
  9934. #define FAR_EDGE_OR_BOX 1
  9935. #endif
  9936. if (last_x != x) {
  9937. last_x = x;
  9938. ratio_x = x * ABL_BG_FACTOR(X_AXIS);
  9939. const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
  9940. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  9941. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  9942. // Beyond the grid maintain height at grid edges
  9943. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  9944. #endif
  9945. gridx = gx;
  9946. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  9947. }
  9948. if (last_y != y || last_gridx != gridx) {
  9949. if (last_y != y) {
  9950. last_y = y;
  9951. ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
  9952. const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
  9953. ratio_y -= gy;
  9954. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  9955. // Beyond the grid maintain height at grid edges
  9956. NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
  9957. #endif
  9958. gridy = gy;
  9959. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  9960. }
  9961. if (last_gridx != gridx || last_gridy != gridy) {
  9962. last_gridx = gridx;
  9963. last_gridy = gridy;
  9964. // Z at the box corners
  9965. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  9966. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  9967. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  9968. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  9969. }
  9970. // Bilinear interpolate. Needed since y or gridx has changed.
  9971. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  9972. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  9973. D = R - L;
  9974. }
  9975. const float offset = L + ratio_x * D; // the offset almost always changes
  9976. /*
  9977. static float last_offset = 0;
  9978. if (FABS(last_offset - offset) > 0.2) {
  9979. SERIAL_ECHOPGM("Sudden Shift at ");
  9980. SERIAL_ECHOPAIR("x=", x);
  9981. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  9982. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  9983. SERIAL_ECHOPAIR(" y=", y);
  9984. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  9985. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  9986. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  9987. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  9988. SERIAL_ECHOPAIR(" z1=", z1);
  9989. SERIAL_ECHOPAIR(" z2=", z2);
  9990. SERIAL_ECHOPAIR(" z3=", z3);
  9991. SERIAL_ECHOLNPAIR(" z4=", z4);
  9992. SERIAL_ECHOPAIR(" L=", L);
  9993. SERIAL_ECHOPAIR(" R=", R);
  9994. SERIAL_ECHOLNPAIR(" offset=", offset);
  9995. }
  9996. last_offset = offset;
  9997. //*/
  9998. return offset;
  9999. }
  10000. #endif // AUTO_BED_LEVELING_BILINEAR
  10001. #if ENABLED(DELTA)
  10002. /**
  10003. * Recalculate factors used for delta kinematics whenever
  10004. * settings have been changed (e.g., by M665).
  10005. */
  10006. void recalc_delta_settings(float radius, float diagonal_rod, float tower_angle_trim[ABC]) {
  10007. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  10008. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  10009. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
  10010. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
  10011. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
  10012. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
  10013. delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]); // back middle tower
  10014. delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]);
  10015. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
  10016. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
  10017. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
  10018. }
  10019. #if ENABLED(DELTA_FAST_SQRT)
  10020. /**
  10021. * Fast inverse sqrt from Quake III Arena
  10022. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  10023. */
  10024. float Q_rsqrt(float number) {
  10025. long i;
  10026. float x2, y;
  10027. const float threehalfs = 1.5f;
  10028. x2 = number * 0.5f;
  10029. y = number;
  10030. i = * ( long * ) &y; // evil floating point bit level hacking
  10031. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  10032. y = * ( float * ) &i;
  10033. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  10034. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  10035. return y;
  10036. }
  10037. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  10038. #else
  10039. #define _SQRT(n) SQRT(n)
  10040. #endif
  10041. /**
  10042. * Delta Inverse Kinematics
  10043. *
  10044. * Calculate the tower positions for a given logical
  10045. * position, storing the result in the delta[] array.
  10046. *
  10047. * This is an expensive calculation, requiring 3 square
  10048. * roots per segmented linear move, and strains the limits
  10049. * of a Mega2560 with a Graphical Display.
  10050. *
  10051. * Suggested optimizations include:
  10052. *
  10053. * - Disable the home_offset (M206) and/or position_shift (G92)
  10054. * features to remove up to 12 float additions.
  10055. *
  10056. * - Use a fast-inverse-sqrt function and add the reciprocal.
  10057. * (see above)
  10058. */
  10059. // Macro to obtain the Z position of an individual tower
  10060. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  10061. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  10062. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  10063. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  10064. ) \
  10065. )
  10066. #define DELTA_RAW_IK() do { \
  10067. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  10068. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  10069. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  10070. }while(0)
  10071. #define DELTA_LOGICAL_IK() do { \
  10072. const float raw[XYZ] = { \
  10073. RAW_X_POSITION(logical[X_AXIS]), \
  10074. RAW_Y_POSITION(logical[Y_AXIS]), \
  10075. RAW_Z_POSITION(logical[Z_AXIS]) \
  10076. }; \
  10077. DELTA_RAW_IK(); \
  10078. }while(0)
  10079. #define DELTA_DEBUG() do { \
  10080. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  10081. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  10082. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  10083. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  10084. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  10085. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  10086. }while(0)
  10087. void inverse_kinematics(const float logical[XYZ]) {
  10088. DELTA_LOGICAL_IK();
  10089. // DELTA_DEBUG();
  10090. }
  10091. /**
  10092. * Calculate the highest Z position where the
  10093. * effector has the full range of XY motion.
  10094. */
  10095. float delta_safe_distance_from_top() {
  10096. float cartesian[XYZ] = {
  10097. LOGICAL_X_POSITION(0),
  10098. LOGICAL_Y_POSITION(0),
  10099. LOGICAL_Z_POSITION(0)
  10100. };
  10101. inverse_kinematics(cartesian);
  10102. float distance = delta[A_AXIS];
  10103. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  10104. inverse_kinematics(cartesian);
  10105. return FABS(distance - delta[A_AXIS]);
  10106. }
  10107. /**
  10108. * Delta Forward Kinematics
  10109. *
  10110. * See the Wikipedia article "Trilateration"
  10111. * https://en.wikipedia.org/wiki/Trilateration
  10112. *
  10113. * Establish a new coordinate system in the plane of the
  10114. * three carriage points. This system has its origin at
  10115. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  10116. * plane with a Z component of zero.
  10117. * We will define unit vectors in this coordinate system
  10118. * in our original coordinate system. Then when we calculate
  10119. * the Xnew, Ynew and Znew values, we can translate back into
  10120. * the original system by moving along those unit vectors
  10121. * by the corresponding values.
  10122. *
  10123. * Variable names matched to Marlin, c-version, and avoid the
  10124. * use of any vector library.
  10125. *
  10126. * by Andreas Hardtung 2016-06-07
  10127. * based on a Java function from "Delta Robot Kinematics V3"
  10128. * by Steve Graves
  10129. *
  10130. * The result is stored in the cartes[] array.
  10131. */
  10132. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  10133. // Create a vector in old coordinates along x axis of new coordinate
  10134. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  10135. // Get the Magnitude of vector.
  10136. float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  10137. // Create unit vector by dividing by magnitude.
  10138. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  10139. // Get the vector from the origin of the new system to the third point.
  10140. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  10141. // Use the dot product to find the component of this vector on the X axis.
  10142. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  10143. // Create a vector along the x axis that represents the x component of p13.
  10144. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  10145. // Subtract the X component from the original vector leaving only Y. We use the
  10146. // variable that will be the unit vector after we scale it.
  10147. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  10148. // The magnitude of Y component
  10149. float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  10150. // Convert to a unit vector
  10151. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  10152. // The cross product of the unit x and y is the unit z
  10153. // float[] ez = vectorCrossProd(ex, ey);
  10154. float ez[3] = {
  10155. ex[1] * ey[2] - ex[2] * ey[1],
  10156. ex[2] * ey[0] - ex[0] * ey[2],
  10157. ex[0] * ey[1] - ex[1] * ey[0]
  10158. };
  10159. // We now have the d, i and j values defined in Wikipedia.
  10160. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  10161. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  10162. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  10163. Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  10164. // Start from the origin of the old coordinates and add vectors in the
  10165. // old coords that represent the Xnew, Ynew and Znew to find the point
  10166. // in the old system.
  10167. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  10168. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  10169. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  10170. }
  10171. void forward_kinematics_DELTA(float point[ABC]) {
  10172. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  10173. }
  10174. #endif // DELTA
  10175. /**
  10176. * Get the stepper positions in the cartes[] array.
  10177. * Forward kinematics are applied for DELTA and SCARA.
  10178. *
  10179. * The result is in the current coordinate space with
  10180. * leveling applied. The coordinates need to be run through
  10181. * unapply_leveling to obtain the "ideal" coordinates
  10182. * suitable for current_position, etc.
  10183. */
  10184. void get_cartesian_from_steppers() {
  10185. #if ENABLED(DELTA)
  10186. forward_kinematics_DELTA(
  10187. stepper.get_axis_position_mm(A_AXIS),
  10188. stepper.get_axis_position_mm(B_AXIS),
  10189. stepper.get_axis_position_mm(C_AXIS)
  10190. );
  10191. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  10192. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  10193. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  10194. #elif IS_SCARA
  10195. forward_kinematics_SCARA(
  10196. stepper.get_axis_position_degrees(A_AXIS),
  10197. stepper.get_axis_position_degrees(B_AXIS)
  10198. );
  10199. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  10200. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  10201. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  10202. #else
  10203. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  10204. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  10205. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  10206. #endif
  10207. }
  10208. /**
  10209. * Set the current_position for an axis based on
  10210. * the stepper positions, removing any leveling that
  10211. * may have been applied.
  10212. */
  10213. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  10214. get_cartesian_from_steppers();
  10215. #if PLANNER_LEVELING
  10216. planner.unapply_leveling(cartes);
  10217. #endif
  10218. if (axis == ALL_AXES)
  10219. COPY(current_position, cartes);
  10220. else
  10221. current_position[axis] = cartes[axis];
  10222. }
  10223. #if ENABLED(MESH_BED_LEVELING)
  10224. /**
  10225. * Prepare a mesh-leveled linear move in a Cartesian setup,
  10226. * splitting the move where it crosses mesh borders.
  10227. */
  10228. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  10229. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
  10230. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
  10231. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  10232. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  10233. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  10234. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  10235. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  10236. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  10237. if (cx1 == cx2 && cy1 == cy2) {
  10238. // Start and end on same mesh square
  10239. line_to_destination(fr_mm_s);
  10240. set_current_to_destination();
  10241. return;
  10242. }
  10243. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  10244. float normalized_dist, end[XYZE];
  10245. // Split at the left/front border of the right/top square
  10246. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  10247. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  10248. COPY(end, destination);
  10249. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  10250. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10251. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  10252. CBI(x_splits, gcx);
  10253. }
  10254. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10255. COPY(end, destination);
  10256. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  10257. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10258. destination[X_AXIS] = MBL_SEGMENT_END(X);
  10259. CBI(y_splits, gcy);
  10260. }
  10261. else {
  10262. // Already split on a border
  10263. line_to_destination(fr_mm_s);
  10264. set_current_to_destination();
  10265. return;
  10266. }
  10267. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  10268. destination[E_AXIS] = MBL_SEGMENT_END(E);
  10269. // Do the split and look for more borders
  10270. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10271. // Restore destination from stack
  10272. COPY(destination, end);
  10273. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10274. }
  10275. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  10276. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  10277. /**
  10278. * Prepare a bilinear-leveled linear move on Cartesian,
  10279. * splitting the move where it crosses grid borders.
  10280. */
  10281. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  10282. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  10283. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  10284. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  10285. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  10286. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  10287. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  10288. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  10289. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  10290. if (cx1 == cx2 && cy1 == cy2) {
  10291. // Start and end on same mesh square
  10292. line_to_destination(fr_mm_s);
  10293. set_current_to_destination();
  10294. return;
  10295. }
  10296. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  10297. float normalized_dist, end[XYZE];
  10298. // Split at the left/front border of the right/top square
  10299. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  10300. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  10301. COPY(end, destination);
  10302. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  10303. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10304. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  10305. CBI(x_splits, gcx);
  10306. }
  10307. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10308. COPY(end, destination);
  10309. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  10310. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10311. destination[X_AXIS] = LINE_SEGMENT_END(X);
  10312. CBI(y_splits, gcy);
  10313. }
  10314. else {
  10315. // Already split on a border
  10316. line_to_destination(fr_mm_s);
  10317. set_current_to_destination();
  10318. return;
  10319. }
  10320. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  10321. destination[E_AXIS] = LINE_SEGMENT_END(E);
  10322. // Do the split and look for more borders
  10323. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10324. // Restore destination from stack
  10325. COPY(destination, end);
  10326. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10327. }
  10328. #endif // AUTO_BED_LEVELING_BILINEAR
  10329. #if IS_KINEMATIC && !UBL_DELTA
  10330. /**
  10331. * Prepare a linear move in a DELTA or SCARA setup.
  10332. *
  10333. * This calls planner.buffer_line several times, adding
  10334. * small incremental moves for DELTA or SCARA.
  10335. */
  10336. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  10337. // Get the top feedrate of the move in the XY plane
  10338. const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  10339. // If the move is only in Z/E don't split up the move
  10340. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  10341. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  10342. return false;
  10343. }
  10344. // Fail if attempting move outside printable radius
  10345. if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) return true;
  10346. // Get the cartesian distances moved in XYZE
  10347. const float difference[XYZE] = {
  10348. ltarget[X_AXIS] - current_position[X_AXIS],
  10349. ltarget[Y_AXIS] - current_position[Y_AXIS],
  10350. ltarget[Z_AXIS] - current_position[Z_AXIS],
  10351. ltarget[E_AXIS] - current_position[E_AXIS]
  10352. };
  10353. // Get the linear distance in XYZ
  10354. float cartesian_mm = SQRT(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  10355. // If the move is very short, check the E move distance
  10356. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(difference[E_AXIS]);
  10357. // No E move either? Game over.
  10358. if (UNEAR_ZERO(cartesian_mm)) return true;
  10359. // Minimum number of seconds to move the given distance
  10360. const float seconds = cartesian_mm / _feedrate_mm_s;
  10361. // The number of segments-per-second times the duration
  10362. // gives the number of segments
  10363. uint16_t segments = delta_segments_per_second * seconds;
  10364. // For SCARA minimum segment size is 0.25mm
  10365. #if IS_SCARA
  10366. NOMORE(segments, cartesian_mm * 4);
  10367. #endif
  10368. // At least one segment is required
  10369. NOLESS(segments, 1);
  10370. // The approximate length of each segment
  10371. const float inv_segments = 1.0 / float(segments),
  10372. segment_distance[XYZE] = {
  10373. difference[X_AXIS] * inv_segments,
  10374. difference[Y_AXIS] * inv_segments,
  10375. difference[Z_AXIS] * inv_segments,
  10376. difference[E_AXIS] * inv_segments
  10377. };
  10378. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  10379. // SERIAL_ECHOPAIR(" seconds=", seconds);
  10380. // SERIAL_ECHOLNPAIR(" segments=", segments);
  10381. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10382. // SCARA needs to scale the feed rate from mm/s to degrees/s
  10383. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  10384. feed_factor = inv_segment_length * _feedrate_mm_s;
  10385. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  10386. oldB = stepper.get_axis_position_degrees(B_AXIS);
  10387. #endif
  10388. // Get the logical current position as starting point
  10389. float logical[XYZE];
  10390. COPY(logical, current_position);
  10391. // Drop one segment so the last move is to the exact target.
  10392. // If there's only 1 segment, loops will be skipped entirely.
  10393. --segments;
  10394. // Calculate and execute the segments
  10395. for (uint16_t s = segments + 1; --s;) {
  10396. LOOP_XYZE(i) logical[i] += segment_distance[i];
  10397. #if ENABLED(DELTA)
  10398. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  10399. #else
  10400. inverse_kinematics(logical);
  10401. #endif
  10402. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  10403. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10404. // For SCARA scale the feed rate from mm/s to degrees/s
  10405. // Use ratio between the length of the move and the larger angle change
  10406. const float adiff = abs(delta[A_AXIS] - oldA),
  10407. bdiff = abs(delta[B_AXIS] - oldB);
  10408. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10409. oldA = delta[A_AXIS];
  10410. oldB = delta[B_AXIS];
  10411. #else
  10412. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  10413. #endif
  10414. }
  10415. // Since segment_distance is only approximate,
  10416. // the final move must be to the exact destination.
  10417. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10418. // For SCARA scale the feed rate from mm/s to degrees/s
  10419. // With segments > 1 length is 1 segment, otherwise total length
  10420. inverse_kinematics(ltarget);
  10421. ADJUST_DELTA(ltarget);
  10422. const float adiff = abs(delta[A_AXIS] - oldA),
  10423. bdiff = abs(delta[B_AXIS] - oldB);
  10424. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10425. #else
  10426. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  10427. #endif
  10428. return false;
  10429. }
  10430. #else // !IS_KINEMATIC || UBL_DELTA
  10431. /**
  10432. * Prepare a linear move in a Cartesian setup.
  10433. * If Mesh Bed Leveling is enabled, perform a mesh move.
  10434. *
  10435. * Returns true if current_position[] was set to destination[]
  10436. */
  10437. inline bool prepare_move_to_destination_cartesian() {
  10438. if (current_position[X_AXIS] != destination[X_AXIS] || current_position[Y_AXIS] != destination[Y_AXIS]) {
  10439. const float fr_scaled = MMS_SCALED(feedrate_mm_s);
  10440. #if HAS_MESH
  10441. if (planner.leveling_active) {
  10442. #if ENABLED(AUTO_BED_LEVELING_UBL)
  10443. ubl.line_to_destination_cartesian(fr_scaled, active_extruder);
  10444. #elif ENABLED(MESH_BED_LEVELING)
  10445. mesh_line_to_destination(fr_scaled);
  10446. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10447. bilinear_line_to_destination(fr_scaled);
  10448. #endif
  10449. return true;
  10450. }
  10451. #endif // HAS_MESH
  10452. line_to_destination(fr_scaled);
  10453. }
  10454. else
  10455. line_to_destination();
  10456. return false;
  10457. }
  10458. #endif // !IS_KINEMATIC || UBL_DELTA
  10459. #if ENABLED(DUAL_X_CARRIAGE)
  10460. /**
  10461. * Prepare a linear move in a dual X axis setup
  10462. */
  10463. inline bool prepare_move_to_destination_dualx() {
  10464. if (active_extruder_parked) {
  10465. switch (dual_x_carriage_mode) {
  10466. case DXC_FULL_CONTROL_MODE:
  10467. break;
  10468. case DXC_AUTO_PARK_MODE:
  10469. if (current_position[E_AXIS] == destination[E_AXIS]) {
  10470. // This is a travel move (with no extrusion)
  10471. // Skip it, but keep track of the current position
  10472. // (so it can be used as the start of the next non-travel move)
  10473. if (delayed_move_time != 0xFFFFFFFFUL) {
  10474. set_current_to_destination();
  10475. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  10476. delayed_move_time = millis();
  10477. return true;
  10478. }
  10479. }
  10480. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  10481. for (uint8_t i = 0; i < 3; i++)
  10482. planner.buffer_line(
  10483. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  10484. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  10485. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  10486. current_position[E_AXIS],
  10487. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  10488. active_extruder
  10489. );
  10490. delayed_move_time = 0;
  10491. active_extruder_parked = false;
  10492. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10493. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  10494. #endif
  10495. break;
  10496. case DXC_DUPLICATION_MODE:
  10497. if (active_extruder == 0) {
  10498. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10499. if (DEBUGGING(LEVELING)) {
  10500. SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
  10501. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  10502. }
  10503. #endif
  10504. // move duplicate extruder into correct duplication position.
  10505. planner.set_position_mm(
  10506. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  10507. current_position[Y_AXIS],
  10508. current_position[Z_AXIS],
  10509. current_position[E_AXIS]
  10510. );
  10511. planner.buffer_line(
  10512. current_position[X_AXIS] + duplicate_extruder_x_offset,
  10513. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  10514. planner.max_feedrate_mm_s[X_AXIS], 1
  10515. );
  10516. SYNC_PLAN_POSITION_KINEMATIC();
  10517. stepper.synchronize();
  10518. extruder_duplication_enabled = true;
  10519. active_extruder_parked = false;
  10520. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10521. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  10522. #endif
  10523. }
  10524. else {
  10525. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10526. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  10527. #endif
  10528. }
  10529. break;
  10530. }
  10531. }
  10532. return prepare_move_to_destination_cartesian();
  10533. }
  10534. #endif // DUAL_X_CARRIAGE
  10535. /**
  10536. * Prepare a single move and get ready for the next one
  10537. *
  10538. * This may result in several calls to planner.buffer_line to
  10539. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  10540. */
  10541. void prepare_move_to_destination() {
  10542. clamp_to_software_endstops(destination);
  10543. refresh_cmd_timeout();
  10544. #if ENABLED(PREVENT_COLD_EXTRUSION)
  10545. if (!DEBUGGING(DRYRUN)) {
  10546. if (destination[E_AXIS] != current_position[E_AXIS]) {
  10547. if (thermalManager.tooColdToExtrude(active_extruder)) {
  10548. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10549. SERIAL_ECHO_START();
  10550. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  10551. }
  10552. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  10553. if (destination[E_AXIS] - current_position[E_AXIS] > EXTRUDE_MAXLENGTH) {
  10554. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10555. SERIAL_ECHO_START();
  10556. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  10557. }
  10558. #endif
  10559. }
  10560. }
  10561. #endif
  10562. if (
  10563. #if UBL_DELTA // Also works for CARTESIAN (smaller segments follow mesh more closely)
  10564. ubl.prepare_segmented_line_to(destination, feedrate_mm_s)
  10565. #elif IS_KINEMATIC
  10566. prepare_kinematic_move_to(destination)
  10567. #elif ENABLED(DUAL_X_CARRIAGE)
  10568. prepare_move_to_destination_dualx()
  10569. #else
  10570. prepare_move_to_destination_cartesian()
  10571. #endif
  10572. ) return;
  10573. set_current_to_destination();
  10574. }
  10575. #if ENABLED(ARC_SUPPORT)
  10576. #if N_ARC_CORRECTION < 1
  10577. #undef N_ARC_CORRECTION
  10578. #define N_ARC_CORRECTION 1
  10579. #endif
  10580. /**
  10581. * Plan an arc in 2 dimensions
  10582. *
  10583. * The arc is approximated by generating many small linear segments.
  10584. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  10585. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  10586. * larger segments will tend to be more efficient. Your slicer should have
  10587. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  10588. */
  10589. void plan_arc(
  10590. float logical[XYZE], // Destination position
  10591. float *offset, // Center of rotation relative to current_position
  10592. uint8_t clockwise // Clockwise?
  10593. ) {
  10594. #if ENABLED(CNC_WORKSPACE_PLANES)
  10595. AxisEnum p_axis, q_axis, l_axis;
  10596. switch (workspace_plane) {
  10597. case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
  10598. case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
  10599. case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
  10600. }
  10601. #else
  10602. constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
  10603. #endif
  10604. // Radius vector from center to current location
  10605. float r_P = -offset[0], r_Q = -offset[1];
  10606. const float radius = HYPOT(r_P, r_Q),
  10607. center_P = current_position[p_axis] - r_P,
  10608. center_Q = current_position[q_axis] - r_Q,
  10609. rt_X = logical[p_axis] - center_P,
  10610. rt_Y = logical[q_axis] - center_Q,
  10611. linear_travel = logical[l_axis] - current_position[l_axis],
  10612. extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
  10613. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  10614. float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
  10615. if (angular_travel < 0) angular_travel += RADIANS(360);
  10616. if (clockwise) angular_travel -= RADIANS(360);
  10617. // Make a circle if the angular rotation is 0 and the target is current position
  10618. if (angular_travel == 0 && current_position[p_axis] == logical[p_axis] && current_position[q_axis] == logical[q_axis])
  10619. angular_travel = RADIANS(360);
  10620. const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
  10621. if (mm_of_travel < 0.001) return;
  10622. uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
  10623. if (segments == 0) segments = 1;
  10624. /**
  10625. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  10626. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  10627. * r_T = [cos(phi) -sin(phi);
  10628. * sin(phi) cos(phi)] * r ;
  10629. *
  10630. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  10631. * defined from the circle center to the initial position. Each line segment is formed by successive
  10632. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  10633. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  10634. * all double numbers are single precision on the Arduino. (True double precision will not have
  10635. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  10636. * tool precision in some cases. Therefore, arc path correction is implemented.
  10637. *
  10638. * Small angle approximation may be used to reduce computation overhead further. This approximation
  10639. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  10640. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  10641. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  10642. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  10643. * issue for CNC machines with the single precision Arduino calculations.
  10644. *
  10645. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  10646. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  10647. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  10648. * This is important when there are successive arc motions.
  10649. */
  10650. // Vector rotation matrix values
  10651. float arc_target[XYZE];
  10652. const float theta_per_segment = angular_travel / segments,
  10653. linear_per_segment = linear_travel / segments,
  10654. extruder_per_segment = extruder_travel / segments,
  10655. sin_T = theta_per_segment,
  10656. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  10657. // Initialize the linear axis
  10658. arc_target[l_axis] = current_position[l_axis];
  10659. // Initialize the extruder axis
  10660. arc_target[E_AXIS] = current_position[E_AXIS];
  10661. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  10662. millis_t next_idle_ms = millis() + 200UL;
  10663. #if N_ARC_CORRECTION > 1
  10664. int8_t arc_recalc_count = N_ARC_CORRECTION;
  10665. #endif
  10666. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  10667. thermalManager.manage_heater();
  10668. if (ELAPSED(millis(), next_idle_ms)) {
  10669. next_idle_ms = millis() + 200UL;
  10670. idle();
  10671. }
  10672. #if N_ARC_CORRECTION > 1
  10673. if (--arc_recalc_count) {
  10674. // Apply vector rotation matrix to previous r_P / 1
  10675. const float r_new_Y = r_P * sin_T + r_Q * cos_T;
  10676. r_P = r_P * cos_T - r_Q * sin_T;
  10677. r_Q = r_new_Y;
  10678. }
  10679. else
  10680. #endif
  10681. {
  10682. #if N_ARC_CORRECTION > 1
  10683. arc_recalc_count = N_ARC_CORRECTION;
  10684. #endif
  10685. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  10686. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  10687. // To reduce stuttering, the sin and cos could be computed at different times.
  10688. // For now, compute both at the same time.
  10689. const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
  10690. r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
  10691. r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
  10692. }
  10693. // Update arc_target location
  10694. arc_target[p_axis] = center_P + r_P;
  10695. arc_target[q_axis] = center_Q + r_Q;
  10696. arc_target[l_axis] += linear_per_segment;
  10697. arc_target[E_AXIS] += extruder_per_segment;
  10698. clamp_to_software_endstops(arc_target);
  10699. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  10700. }
  10701. // Ensure last segment arrives at target location.
  10702. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  10703. // As far as the parser is concerned, the position is now == target. In reality the
  10704. // motion control system might still be processing the action and the real tool position
  10705. // in any intermediate location.
  10706. set_current_to_destination();
  10707. } // plan_arc
  10708. #endif // ARC_SUPPORT
  10709. #if ENABLED(BEZIER_CURVE_SUPPORT)
  10710. void plan_cubic_move(const float offset[4]) {
  10711. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  10712. // As far as the parser is concerned, the position is now == destination. In reality the
  10713. // motion control system might still be processing the action and the real tool position
  10714. // in any intermediate location.
  10715. set_current_to_destination();
  10716. }
  10717. #endif // BEZIER_CURVE_SUPPORT
  10718. #if ENABLED(USE_CONTROLLER_FAN)
  10719. void controllerFan() {
  10720. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  10721. nextMotorCheck = 0; // Last time the state was checked
  10722. const millis_t ms = millis();
  10723. if (ELAPSED(ms, nextMotorCheck)) {
  10724. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  10725. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
  10726. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  10727. #if E_STEPPERS > 1
  10728. || E1_ENABLE_READ == E_ENABLE_ON
  10729. #if HAS_X2_ENABLE
  10730. || X2_ENABLE_READ == X_ENABLE_ON
  10731. #endif
  10732. #if E_STEPPERS > 2
  10733. || E2_ENABLE_READ == E_ENABLE_ON
  10734. #if E_STEPPERS > 3
  10735. || E3_ENABLE_READ == E_ENABLE_ON
  10736. #if E_STEPPERS > 4
  10737. || E4_ENABLE_READ == E_ENABLE_ON
  10738. #endif // E_STEPPERS > 4
  10739. #endif // E_STEPPERS > 3
  10740. #endif // E_STEPPERS > 2
  10741. #endif // E_STEPPERS > 1
  10742. ) {
  10743. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  10744. }
  10745. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  10746. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  10747. // allows digital or PWM fan output to be used (see M42 handling)
  10748. WRITE(CONTROLLER_FAN_PIN, speed);
  10749. analogWrite(CONTROLLER_FAN_PIN, speed);
  10750. }
  10751. }
  10752. #endif // USE_CONTROLLER_FAN
  10753. #if ENABLED(MORGAN_SCARA)
  10754. /**
  10755. * Morgan SCARA Forward Kinematics. Results in cartes[].
  10756. * Maths and first version by QHARLEY.
  10757. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  10758. */
  10759. void forward_kinematics_SCARA(const float &a, const float &b) {
  10760. float a_sin = sin(RADIANS(a)) * L1,
  10761. a_cos = cos(RADIANS(a)) * L1,
  10762. b_sin = sin(RADIANS(b)) * L2,
  10763. b_cos = cos(RADIANS(b)) * L2;
  10764. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  10765. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  10766. /*
  10767. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  10768. SERIAL_ECHOPAIR(" b=", b);
  10769. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  10770. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  10771. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  10772. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  10773. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  10774. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  10775. //*/
  10776. }
  10777. /**
  10778. * Morgan SCARA Inverse Kinematics. Results in delta[].
  10779. *
  10780. * See http://forums.reprap.org/read.php?185,283327
  10781. *
  10782. * Maths and first version by QHARLEY.
  10783. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  10784. */
  10785. void inverse_kinematics(const float logical[XYZ]) {
  10786. static float C2, S2, SK1, SK2, THETA, PSI;
  10787. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  10788. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  10789. if (L1 == L2)
  10790. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  10791. else
  10792. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  10793. S2 = SQRT(1 - sq(C2));
  10794. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  10795. SK1 = L1 + L2 * C2;
  10796. // Rotated Arm2 gives the distance from Arm1 to Arm2
  10797. SK2 = L2 * S2;
  10798. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  10799. THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
  10800. // Angle of Arm2
  10801. PSI = ATAN2(S2, C2);
  10802. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  10803. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  10804. delta[C_AXIS] = logical[Z_AXIS];
  10805. /*
  10806. DEBUG_POS("SCARA IK", logical);
  10807. DEBUG_POS("SCARA IK", delta);
  10808. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  10809. SERIAL_ECHOPAIR(",", sy);
  10810. SERIAL_ECHOPAIR(" C2=", C2);
  10811. SERIAL_ECHOPAIR(" S2=", S2);
  10812. SERIAL_ECHOPAIR(" Theta=", THETA);
  10813. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  10814. //*/
  10815. }
  10816. #endif // MORGAN_SCARA
  10817. #if ENABLED(TEMP_STAT_LEDS)
  10818. static bool red_led = false;
  10819. static millis_t next_status_led_update_ms = 0;
  10820. void handle_status_leds(void) {
  10821. if (ELAPSED(millis(), next_status_led_update_ms)) {
  10822. next_status_led_update_ms += 500; // Update every 0.5s
  10823. float max_temp = 0.0;
  10824. #if HAS_TEMP_BED
  10825. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  10826. #endif
  10827. HOTEND_LOOP()
  10828. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  10829. const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  10830. if (new_led != red_led) {
  10831. red_led = new_led;
  10832. #if PIN_EXISTS(STAT_LED_RED)
  10833. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  10834. #if PIN_EXISTS(STAT_LED_BLUE)
  10835. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  10836. #endif
  10837. #else
  10838. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  10839. #endif
  10840. }
  10841. }
  10842. }
  10843. #endif
  10844. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10845. void handle_filament_runout() {
  10846. if (!filament_ran_out) {
  10847. filament_ran_out = true;
  10848. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  10849. stepper.synchronize();
  10850. }
  10851. }
  10852. #endif // FILAMENT_RUNOUT_SENSOR
  10853. #if ENABLED(FAST_PWM_FAN)
  10854. void setPwmFrequency(uint8_t pin, int val) {
  10855. val &= 0x07;
  10856. switch (digitalPinToTimer(pin)) {
  10857. #ifdef TCCR0A
  10858. #if !AVR_AT90USB1286_FAMILY
  10859. case TIMER0A:
  10860. #endif
  10861. case TIMER0B:
  10862. //_SET_CS(0, val);
  10863. break;
  10864. #endif
  10865. #ifdef TCCR1A
  10866. case TIMER1A:
  10867. case TIMER1B:
  10868. //_SET_CS(1, val);
  10869. break;
  10870. #endif
  10871. #ifdef TCCR2
  10872. case TIMER2:
  10873. case TIMER2:
  10874. _SET_CS(2, val);
  10875. break;
  10876. #endif
  10877. #ifdef TCCR2A
  10878. case TIMER2A:
  10879. case TIMER2B:
  10880. _SET_CS(2, val);
  10881. break;
  10882. #endif
  10883. #ifdef TCCR3A
  10884. case TIMER3A:
  10885. case TIMER3B:
  10886. case TIMER3C:
  10887. _SET_CS(3, val);
  10888. break;
  10889. #endif
  10890. #ifdef TCCR4A
  10891. case TIMER4A:
  10892. case TIMER4B:
  10893. case TIMER4C:
  10894. _SET_CS(4, val);
  10895. break;
  10896. #endif
  10897. #ifdef TCCR5A
  10898. case TIMER5A:
  10899. case TIMER5B:
  10900. case TIMER5C:
  10901. _SET_CS(5, val);
  10902. break;
  10903. #endif
  10904. }
  10905. }
  10906. #endif // FAST_PWM_FAN
  10907. float calculate_volumetric_multiplier(const float diameter) {
  10908. if (!volumetric_enabled || diameter == 0) return 1.0;
  10909. return 1.0 / (M_PI * sq(diameter * 0.5));
  10910. }
  10911. void calculate_volumetric_multipliers() {
  10912. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  10913. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  10914. }
  10915. void enable_all_steppers() {
  10916. enable_X();
  10917. enable_Y();
  10918. enable_Z();
  10919. enable_E0();
  10920. enable_E1();
  10921. enable_E2();
  10922. enable_E3();
  10923. enable_E4();
  10924. }
  10925. void disable_e_steppers() {
  10926. disable_E0();
  10927. disable_E1();
  10928. disable_E2();
  10929. disable_E3();
  10930. disable_E4();
  10931. }
  10932. void disable_all_steppers() {
  10933. disable_X();
  10934. disable_Y();
  10935. disable_Z();
  10936. disable_e_steppers();
  10937. }
  10938. #if ENABLED(HAVE_TMC2130)
  10939. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  10940. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  10941. const bool is_otpw = st.checkOT();
  10942. // Report if a warning was triggered
  10943. static bool previous_otpw = false;
  10944. if (is_otpw && !previous_otpw) {
  10945. char timestamp[10];
  10946. duration_t elapsed = print_job_timer.duration();
  10947. const bool has_days = (elapsed.value > 60*60*24L);
  10948. (void)elapsed.toDigital(timestamp, has_days);
  10949. SERIAL_ECHO(timestamp);
  10950. SERIAL_ECHOPGM(": ");
  10951. SERIAL_ECHO(axisID);
  10952. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  10953. }
  10954. previous_otpw = is_otpw;
  10955. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  10956. // Return if user has not enabled current control start with M906 S1.
  10957. if (!auto_current_control) return;
  10958. /**
  10959. * Decrease current if is_otpw is true.
  10960. * Bail out if driver is disabled.
  10961. * Increase current if OTPW has not been triggered yet.
  10962. */
  10963. uint16_t current = st.getCurrent();
  10964. if (is_otpw) {
  10965. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  10966. #if ENABLED(REPORT_CURRENT_CHANGE)
  10967. SERIAL_ECHO(axisID);
  10968. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  10969. #endif
  10970. }
  10971. else if (!st.isEnabled())
  10972. return;
  10973. else if (!is_otpw && !st.getOTPW()) {
  10974. current += CURRENT_STEP;
  10975. if (current <= AUTO_ADJUST_MAX) {
  10976. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  10977. #if ENABLED(REPORT_CURRENT_CHANGE)
  10978. SERIAL_ECHO(axisID);
  10979. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  10980. #endif
  10981. }
  10982. }
  10983. SERIAL_EOL();
  10984. #endif
  10985. }
  10986. void checkOverTemp() {
  10987. static millis_t next_cOT = 0;
  10988. if (ELAPSED(millis(), next_cOT)) {
  10989. next_cOT = millis() + 5000;
  10990. #if ENABLED(X_IS_TMC2130)
  10991. automatic_current_control(stepperX, "X");
  10992. #endif
  10993. #if ENABLED(Y_IS_TMC2130)
  10994. automatic_current_control(stepperY, "Y");
  10995. #endif
  10996. #if ENABLED(Z_IS_TMC2130)
  10997. automatic_current_control(stepperZ, "Z");
  10998. #endif
  10999. #if ENABLED(X2_IS_TMC2130)
  11000. automatic_current_control(stepperX2, "X2");
  11001. #endif
  11002. #if ENABLED(Y2_IS_TMC2130)
  11003. automatic_current_control(stepperY2, "Y2");
  11004. #endif
  11005. #if ENABLED(Z2_IS_TMC2130)
  11006. automatic_current_control(stepperZ2, "Z2");
  11007. #endif
  11008. #if ENABLED(E0_IS_TMC2130)
  11009. automatic_current_control(stepperE0, "E0");
  11010. #endif
  11011. #if ENABLED(E1_IS_TMC2130)
  11012. automatic_current_control(stepperE1, "E1");
  11013. #endif
  11014. #if ENABLED(E2_IS_TMC2130)
  11015. automatic_current_control(stepperE2, "E2");
  11016. #endif
  11017. #if ENABLED(E3_IS_TMC2130)
  11018. automatic_current_control(stepperE3, "E3");
  11019. #endif
  11020. #if ENABLED(E4_IS_TMC2130)
  11021. automatic_current_control(stepperE4, "E4");
  11022. #endif
  11023. }
  11024. }
  11025. #endif // HAVE_TMC2130
  11026. /**
  11027. * Manage several activities:
  11028. * - Check for Filament Runout
  11029. * - Keep the command buffer full
  11030. * - Check for maximum inactive time between commands
  11031. * - Check for maximum inactive time between stepper commands
  11032. * - Check if pin CHDK needs to go LOW
  11033. * - Check for KILL button held down
  11034. * - Check for HOME button held down
  11035. * - Check if cooling fan needs to be switched on
  11036. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  11037. */
  11038. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  11039. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11040. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  11041. handle_filament_runout();
  11042. #endif
  11043. if (commands_in_queue < BUFSIZE) get_available_commands();
  11044. const millis_t ms = millis();
  11045. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  11046. SERIAL_ERROR_START();
  11047. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
  11048. kill(PSTR(MSG_KILLED));
  11049. }
  11050. // Prevent steppers timing-out in the middle of M600
  11051. #if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
  11052. #define MOVE_AWAY_TEST !move_away_flag
  11053. #else
  11054. #define MOVE_AWAY_TEST true
  11055. #endif
  11056. if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  11057. && !ignore_stepper_queue && !planner.blocks_queued()) {
  11058. #if ENABLED(DISABLE_INACTIVE_X)
  11059. disable_X();
  11060. #endif
  11061. #if ENABLED(DISABLE_INACTIVE_Y)
  11062. disable_Y();
  11063. #endif
  11064. #if ENABLED(DISABLE_INACTIVE_Z)
  11065. disable_Z();
  11066. #endif
  11067. #if ENABLED(DISABLE_INACTIVE_E)
  11068. disable_e_steppers();
  11069. #endif
  11070. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  11071. ubl_lcd_map_control = defer_return_to_status = false;
  11072. #endif
  11073. }
  11074. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  11075. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  11076. chdkActive = false;
  11077. WRITE(CHDK, LOW);
  11078. }
  11079. #endif
  11080. #if HAS_KILL
  11081. // Check if the kill button was pressed and wait just in case it was an accidental
  11082. // key kill key press
  11083. // -------------------------------------------------------------------------------
  11084. static int killCount = 0; // make the inactivity button a bit less responsive
  11085. const int KILL_DELAY = 750;
  11086. if (!READ(KILL_PIN))
  11087. killCount++;
  11088. else if (killCount > 0)
  11089. killCount--;
  11090. // Exceeded threshold and we can confirm that it was not accidental
  11091. // KILL the machine
  11092. // ----------------------------------------------------------------
  11093. if (killCount >= KILL_DELAY) {
  11094. SERIAL_ERROR_START();
  11095. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  11096. kill(PSTR(MSG_KILLED));
  11097. }
  11098. #endif
  11099. #if HAS_HOME
  11100. // Check to see if we have to home, use poor man's debouncer
  11101. // ---------------------------------------------------------
  11102. static int homeDebounceCount = 0; // poor man's debouncing count
  11103. const int HOME_DEBOUNCE_DELAY = 2500;
  11104. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  11105. if (!homeDebounceCount) {
  11106. enqueue_and_echo_commands_P(PSTR("G28"));
  11107. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  11108. }
  11109. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  11110. homeDebounceCount++;
  11111. else
  11112. homeDebounceCount = 0;
  11113. }
  11114. #endif
  11115. #if ENABLED(USE_CONTROLLER_FAN)
  11116. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  11117. #endif
  11118. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  11119. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  11120. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  11121. #if ENABLED(SWITCHING_EXTRUDER)
  11122. const bool oldstatus = E0_ENABLE_READ;
  11123. enable_E0();
  11124. #else // !SWITCHING_EXTRUDER
  11125. bool oldstatus;
  11126. switch (active_extruder) {
  11127. default: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  11128. #if E_STEPPERS > 1
  11129. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  11130. #if E_STEPPERS > 2
  11131. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  11132. #if E_STEPPERS > 3
  11133. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  11134. #if E_STEPPERS > 4
  11135. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  11136. #endif // E_STEPPERS > 4
  11137. #endif // E_STEPPERS > 3
  11138. #endif // E_STEPPERS > 2
  11139. #endif // E_STEPPERS > 1
  11140. }
  11141. #endif // !SWITCHING_EXTRUDER
  11142. previous_cmd_ms = ms; // refresh_cmd_timeout()
  11143. const float olde = current_position[E_AXIS];
  11144. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  11145. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  11146. current_position[E_AXIS] = olde;
  11147. planner.set_e_position_mm(olde);
  11148. stepper.synchronize();
  11149. #if ENABLED(SWITCHING_EXTRUDER)
  11150. E0_ENABLE_WRITE(oldstatus);
  11151. #else
  11152. switch (active_extruder) {
  11153. case 0: E0_ENABLE_WRITE(oldstatus); break;
  11154. #if E_STEPPERS > 1
  11155. case 1: E1_ENABLE_WRITE(oldstatus); break;
  11156. #if E_STEPPERS > 2
  11157. case 2: E2_ENABLE_WRITE(oldstatus); break;
  11158. #if E_STEPPERS > 3
  11159. case 3: E3_ENABLE_WRITE(oldstatus); break;
  11160. #if E_STEPPERS > 4
  11161. case 4: E4_ENABLE_WRITE(oldstatus); break;
  11162. #endif // E_STEPPERS > 4
  11163. #endif // E_STEPPERS > 3
  11164. #endif // E_STEPPERS > 2
  11165. #endif // E_STEPPERS > 1
  11166. }
  11167. #endif // !SWITCHING_EXTRUDER
  11168. }
  11169. #endif // EXTRUDER_RUNOUT_PREVENT
  11170. #if ENABLED(DUAL_X_CARRIAGE)
  11171. // handle delayed move timeout
  11172. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  11173. // travel moves have been received so enact them
  11174. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  11175. set_destination_to_current();
  11176. prepare_move_to_destination();
  11177. }
  11178. #endif
  11179. #if ENABLED(TEMP_STAT_LEDS)
  11180. handle_status_leds();
  11181. #endif
  11182. #if ENABLED(HAVE_TMC2130)
  11183. checkOverTemp();
  11184. #endif
  11185. planner.check_axes_activity();
  11186. }
  11187. /**
  11188. * Standard idle routine keeps the machine alive
  11189. */
  11190. void idle(
  11191. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  11192. bool no_stepper_sleep/*=false*/
  11193. #endif
  11194. ) {
  11195. #if ENABLED(MAX7219_DEBUG)
  11196. Max7219_idle_tasks();
  11197. #endif // MAX7219_DEBUG
  11198. lcd_update();
  11199. host_keepalive();
  11200. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  11201. auto_report_temperatures();
  11202. #endif
  11203. manage_inactivity(
  11204. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  11205. no_stepper_sleep
  11206. #endif
  11207. );
  11208. thermalManager.manage_heater();
  11209. #if ENABLED(PRINTCOUNTER)
  11210. print_job_timer.tick();
  11211. #endif
  11212. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  11213. buzzer.tick();
  11214. #endif
  11215. #if ENABLED(I2C_POSITION_ENCODERS)
  11216. if (planner.blocks_queued() &&
  11217. ( (blockBufferIndexRef != planner.block_buffer_head) ||
  11218. ((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
  11219. blockBufferIndexRef = planner.block_buffer_head;
  11220. I2CPEM.update();
  11221. lastUpdateMillis = millis();
  11222. }
  11223. #endif
  11224. }
  11225. /**
  11226. * Kill all activity and lock the machine.
  11227. * After this the machine will need to be reset.
  11228. */
  11229. void kill(const char* lcd_msg) {
  11230. SERIAL_ERROR_START();
  11231. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  11232. thermalManager.disable_all_heaters();
  11233. disable_all_steppers();
  11234. #if ENABLED(ULTRA_LCD)
  11235. kill_screen(lcd_msg);
  11236. #else
  11237. UNUSED(lcd_msg);
  11238. #endif
  11239. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  11240. cli(); // Stop interrupts
  11241. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  11242. thermalManager.disable_all_heaters(); //turn off heaters again
  11243. #ifdef ACTION_ON_KILL
  11244. SERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL);
  11245. #endif
  11246. #if HAS_POWER_SWITCH
  11247. SET_INPUT(PS_ON_PIN);
  11248. #endif
  11249. suicide();
  11250. while (1) {
  11251. #if ENABLED(USE_WATCHDOG)
  11252. watchdog_reset();
  11253. #endif
  11254. } // Wait for reset
  11255. }
  11256. /**
  11257. * Turn off heaters and stop the print in progress
  11258. * After a stop the machine may be resumed with M999
  11259. */
  11260. void stop() {
  11261. thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
  11262. #if ENABLED(PROBING_FANS_OFF)
  11263. if (fans_paused) fans_pause(false); // put things back the way they were
  11264. #endif
  11265. if (IsRunning()) {
  11266. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  11267. SERIAL_ERROR_START();
  11268. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  11269. LCD_MESSAGEPGM(MSG_STOPPED);
  11270. safe_delay(350); // allow enough time for messages to get out before stopping
  11271. Running = false;
  11272. }
  11273. }
  11274. /**
  11275. * Marlin entry-point: Set up before the program loop
  11276. * - Set up the kill pin, filament runout, power hold
  11277. * - Start the serial port
  11278. * - Print startup messages and diagnostics
  11279. * - Get EEPROM or default settings
  11280. * - Initialize managers for:
  11281. * • temperature
  11282. * • planner
  11283. * • watchdog
  11284. * • stepper
  11285. * • photo pin
  11286. * • servos
  11287. * • LCD controller
  11288. * • Digipot I2C
  11289. * • Z probe sled
  11290. * • status LEDs
  11291. */
  11292. void setup() {
  11293. #if ENABLED(MAX7219_DEBUG)
  11294. Max7219_init();
  11295. #endif
  11296. #ifdef DISABLE_JTAG
  11297. // Disable JTAG on AT90USB chips to free up pins for IO
  11298. MCUCR = 0x80;
  11299. MCUCR = 0x80;
  11300. #endif
  11301. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11302. setup_filrunoutpin();
  11303. #endif
  11304. setup_killpin();
  11305. setup_powerhold();
  11306. #if HAS_STEPPER_RESET
  11307. disableStepperDrivers();
  11308. #endif
  11309. MYSERIAL.begin(BAUDRATE);
  11310. SERIAL_PROTOCOLLNPGM("start");
  11311. SERIAL_ECHO_START();
  11312. // Check startup - does nothing if bootloader sets MCUSR to 0
  11313. byte mcu = MCUSR;
  11314. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  11315. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  11316. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  11317. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  11318. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  11319. MCUSR = 0;
  11320. SERIAL_ECHOPGM(MSG_MARLIN);
  11321. SERIAL_CHAR(' ');
  11322. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  11323. SERIAL_EOL();
  11324. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  11325. SERIAL_ECHO_START();
  11326. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  11327. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  11328. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  11329. SERIAL_ECHO_START();
  11330. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  11331. #endif
  11332. SERIAL_ECHO_START();
  11333. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  11334. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  11335. // Send "ok" after commands by default
  11336. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  11337. // Load data from EEPROM if available (or use defaults)
  11338. // This also updates variables in the planner, elsewhere
  11339. (void)settings.load();
  11340. #if HAS_M206_COMMAND
  11341. // Initialize current position based on home_offset
  11342. COPY(current_position, home_offset);
  11343. #else
  11344. ZERO(current_position);
  11345. #endif
  11346. // Vital to init stepper/planner equivalent for current_position
  11347. SYNC_PLAN_POSITION_KINEMATIC();
  11348. thermalManager.init(); // Initialize temperature loop
  11349. #if ENABLED(USE_WATCHDOG)
  11350. watchdog_init();
  11351. #endif
  11352. stepper.init(); // Initialize stepper, this enables interrupts!
  11353. servo_init();
  11354. #if HAS_PHOTOGRAPH
  11355. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  11356. #endif
  11357. #if HAS_CASE_LIGHT
  11358. case_light_on = CASE_LIGHT_DEFAULT_ON;
  11359. case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
  11360. update_case_light();
  11361. #endif
  11362. #if ENABLED(SPINDLE_LASER_ENABLE)
  11363. OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
  11364. #if SPINDLE_DIR_CHANGE
  11365. OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
  11366. #endif
  11367. #if ENABLED(SPINDLE_LASER_PWM)
  11368. SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
  11369. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
  11370. #endif
  11371. #endif
  11372. #if HAS_BED_PROBE
  11373. endstops.enable_z_probe(false);
  11374. #endif
  11375. #if ENABLED(USE_CONTROLLER_FAN)
  11376. SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
  11377. #endif
  11378. #if HAS_STEPPER_RESET
  11379. enableStepperDrivers();
  11380. #endif
  11381. #if ENABLED(DIGIPOT_I2C)
  11382. digipot_i2c_init();
  11383. #endif
  11384. #if ENABLED(DAC_STEPPER_CURRENT)
  11385. dac_init();
  11386. #endif
  11387. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  11388. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  11389. #endif
  11390. #if HAS_HOME
  11391. SET_INPUT_PULLUP(HOME_PIN);
  11392. #endif
  11393. #if PIN_EXISTS(STAT_LED_RED)
  11394. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  11395. #endif
  11396. #if PIN_EXISTS(STAT_LED_BLUE)
  11397. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  11398. #endif
  11399. #if ENABLED(NEOPIXEL_LED)
  11400. SET_OUTPUT(NEOPIXEL_PIN);
  11401. setup_neopixel();
  11402. #endif
  11403. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  11404. SET_OUTPUT(RGB_LED_R_PIN);
  11405. SET_OUTPUT(RGB_LED_G_PIN);
  11406. SET_OUTPUT(RGB_LED_B_PIN);
  11407. #if ENABLED(RGBW_LED)
  11408. SET_OUTPUT(RGB_LED_W_PIN);
  11409. #endif
  11410. #endif
  11411. #if ENABLED(MK2_MULTIPLEXER)
  11412. SET_OUTPUT(E_MUX0_PIN);
  11413. SET_OUTPUT(E_MUX1_PIN);
  11414. SET_OUTPUT(E_MUX2_PIN);
  11415. #endif
  11416. #if HAS_FANMUX
  11417. fanmux_init();
  11418. #endif
  11419. lcd_init();
  11420. #ifndef CUSTOM_BOOTSCREEN_TIMEOUT
  11421. #define CUSTOM_BOOTSCREEN_TIMEOUT 2500
  11422. #endif
  11423. #if ENABLED(SHOW_BOOTSCREEN)
  11424. #if ENABLED(DOGLCD) // On DOGM the first bootscreen is already drawn
  11425. #if ENABLED(SHOW_CUSTOM_BOOTSCREEN)
  11426. safe_delay(CUSTOM_BOOTSCREEN_TIMEOUT); // Custom boot screen pause
  11427. lcd_bootscreen(); // Show Marlin boot screen
  11428. #endif
  11429. safe_delay(BOOTSCREEN_TIMEOUT); // Pause
  11430. #elif ENABLED(ULTRA_LCD)
  11431. lcd_bootscreen();
  11432. #if DISABLED(SDSUPPORT)
  11433. lcd_init();
  11434. #endif
  11435. #endif
  11436. #endif
  11437. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  11438. // Initialize mixing to 100% color 1
  11439. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11440. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  11441. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  11442. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11443. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  11444. #endif
  11445. #if ENABLED(BLTOUCH)
  11446. // Make sure any BLTouch error condition is cleared
  11447. bltouch_command(BLTOUCH_RESET);
  11448. set_bltouch_deployed(true);
  11449. set_bltouch_deployed(false);
  11450. #endif
  11451. #if ENABLED(I2C_POSITION_ENCODERS)
  11452. I2CPEM.init();
  11453. #endif
  11454. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  11455. i2c.onReceive(i2c_on_receive);
  11456. i2c.onRequest(i2c_on_request);
  11457. #endif
  11458. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  11459. setup_endstop_interrupts();
  11460. #endif
  11461. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  11462. move_extruder_servo(0); // Initialize extruder servo
  11463. #endif
  11464. #if ENABLED(SWITCHING_NOZZLE)
  11465. move_nozzle_servo(0); // Initialize nozzle servo
  11466. #endif
  11467. #if ENABLED(PARKING_EXTRUDER)
  11468. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  11469. pe_activate_magnet(0);
  11470. pe_activate_magnet(1);
  11471. #else
  11472. pe_deactivate_magnet(0);
  11473. pe_deactivate_magnet(1);
  11474. #endif
  11475. #endif
  11476. #if ENABLED(MKS_12864OLED)
  11477. SET_OUTPUT(LCD_PINS_DC);
  11478. OUT_WRITE(LCD_PINS_RS, LOW);
  11479. delay(1000);
  11480. WRITE(LCD_PINS_RS, HIGH);
  11481. #endif
  11482. }
  11483. /**
  11484. * The main Marlin program loop
  11485. *
  11486. * - Save or log commands to SD
  11487. * - Process available commands (if not saving)
  11488. * - Call heater manager
  11489. * - Call inactivity manager
  11490. * - Call endstop manager
  11491. * - Call LCD update
  11492. */
  11493. void loop() {
  11494. if (commands_in_queue < BUFSIZE) get_available_commands();
  11495. #if ENABLED(SDSUPPORT)
  11496. card.checkautostart(false);
  11497. #endif
  11498. if (commands_in_queue) {
  11499. #if ENABLED(SDSUPPORT)
  11500. if (card.saving) {
  11501. char* command = command_queue[cmd_queue_index_r];
  11502. if (strstr_P(command, PSTR("M29"))) {
  11503. // M29 closes the file
  11504. card.closefile();
  11505. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  11506. #if ENABLED(SERIAL_STATS_DROPPED_RX)
  11507. SERIAL_ECHOLNPAIR("Dropped bytes: ", customizedSerial.dropped());
  11508. #endif
  11509. #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
  11510. SERIAL_ECHOLNPAIR("Max RX Queue Size: ", customizedSerial.rxMaxEnqueued());
  11511. #endif
  11512. ok_to_send();
  11513. }
  11514. else {
  11515. // Write the string from the read buffer to SD
  11516. card.write_command(command);
  11517. if (card.logging)
  11518. process_next_command(); // The card is saving because it's logging
  11519. else
  11520. ok_to_send();
  11521. }
  11522. }
  11523. else
  11524. process_next_command();
  11525. #else
  11526. process_next_command();
  11527. #endif // SDSUPPORT
  11528. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  11529. if (commands_in_queue) {
  11530. --commands_in_queue;
  11531. if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
  11532. }
  11533. }
  11534. endstops.report_state();
  11535. idle();
  11536. }