My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

G33.cpp 23KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "../../inc/MarlinConfig.h"
  23. #if ENABLED(DELTA_AUTO_CALIBRATION)
  24. #include "../gcode.h"
  25. #include "../../module/delta.h"
  26. #include "../../module/motion.h"
  27. #include "../../module/stepper.h"
  28. #include "../../module/endstops.h"
  29. #include "../../lcd/marlinui.h"
  30. #if HAS_BED_PROBE
  31. #include "../../module/probe.h"
  32. #endif
  33. #if HAS_MULTI_HOTEND
  34. #include "../../module/tool_change.h"
  35. #endif
  36. #if HAS_LEVELING
  37. #include "../../feature/bedlevel/bedlevel.h"
  38. #endif
  39. constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
  40. _4P_STEP = _7P_STEP * 2, // 4-point step
  41. NPP = _7P_STEP * 6; // number of calibration points on the radius
  42. enum CalEnum : char { // the 7 main calibration points - add definitions if needed
  43. CEN = 0,
  44. __A = 1,
  45. _AB = __A + _7P_STEP,
  46. __B = _AB + _7P_STEP,
  47. _BC = __B + _7P_STEP,
  48. __C = _BC + _7P_STEP,
  49. _CA = __C + _7P_STEP,
  50. };
  51. #define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)
  52. #define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N)
  53. #define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
  54. #define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
  55. #define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
  56. #define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
  57. #if ENABLED(HAS_MULTI_HOTEND)
  58. const uint8_t old_tool_index = active_extruder;
  59. #endif
  60. float lcd_probe_pt(const xy_pos_t &xy);
  61. void ac_home() {
  62. endstops.enable(true);
  63. home_delta();
  64. endstops.not_homing();
  65. }
  66. void ac_setup(const bool reset_bed) {
  67. TERN_(HAS_MULTI_HOTEND, tool_change(0, true));
  68. planner.synchronize();
  69. remember_feedrate_scaling_off();
  70. #if HAS_LEVELING
  71. if (reset_bed) reset_bed_level(); // After full calibration bed-level data is no longer valid
  72. #endif
  73. }
  74. void ac_cleanup(TERN_(HAS_MULTI_HOTEND, const uint8_t old_tool_index)) {
  75. TERN_(DELTA_HOME_TO_SAFE_ZONE, do_blocking_move_to_z(delta_clip_start_height));
  76. TERN_(HAS_BED_PROBE, probe.stow());
  77. restore_feedrate_and_scaling();
  78. TERN_(HAS_MULTI_HOTEND, tool_change(old_tool_index, true));
  79. }
  80. void print_signed_float(PGM_P const prefix, const_float_t f) {
  81. SERIAL_ECHOPGM(" ");
  82. SERIAL_ECHOPGM_P(prefix);
  83. SERIAL_CHAR(':');
  84. if (f >= 0) SERIAL_CHAR('+');
  85. SERIAL_ECHO_F(f, 2);
  86. }
  87. /**
  88. * - Print the delta settings
  89. */
  90. static void print_calibration_settings(const bool end_stops, const bool tower_angles) {
  91. SERIAL_ECHOPAIR(".Height:", delta_height);
  92. if (end_stops) {
  93. print_signed_float(PSTR("Ex"), delta_endstop_adj.a);
  94. print_signed_float(PSTR("Ey"), delta_endstop_adj.b);
  95. print_signed_float(PSTR("Ez"), delta_endstop_adj.c);
  96. }
  97. if (end_stops && tower_angles) {
  98. SERIAL_ECHOPAIR(" Radius:", delta_radius);
  99. SERIAL_EOL();
  100. SERIAL_CHAR('.');
  101. SERIAL_ECHO_SP(13);
  102. }
  103. if (tower_angles) {
  104. print_signed_float(PSTR("Tx"), delta_tower_angle_trim.a);
  105. print_signed_float(PSTR("Ty"), delta_tower_angle_trim.b);
  106. print_signed_float(PSTR("Tz"), delta_tower_angle_trim.c);
  107. }
  108. if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
  109. SERIAL_ECHOPAIR(" Radius:", delta_radius);
  110. }
  111. SERIAL_EOL();
  112. }
  113. /**
  114. * - Print the probe results
  115. */
  116. static void print_calibration_results(const float z_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
  117. SERIAL_ECHOPGM(". ");
  118. print_signed_float(PSTR("c"), z_pt[CEN]);
  119. if (tower_points) {
  120. print_signed_float(PSTR(" x"), z_pt[__A]);
  121. print_signed_float(PSTR(" y"), z_pt[__B]);
  122. print_signed_float(PSTR(" z"), z_pt[__C]);
  123. }
  124. if (tower_points && opposite_points) {
  125. SERIAL_EOL();
  126. SERIAL_CHAR('.');
  127. SERIAL_ECHO_SP(13);
  128. }
  129. if (opposite_points) {
  130. print_signed_float(PSTR("yz"), z_pt[_BC]);
  131. print_signed_float(PSTR("zx"), z_pt[_CA]);
  132. print_signed_float(PSTR("xy"), z_pt[_AB]);
  133. }
  134. SERIAL_EOL();
  135. }
  136. /**
  137. * - Calculate the standard deviation from the zero plane
  138. */
  139. static float std_dev_points(float z_pt[NPP + 1], const bool _0p_cal, const bool _1p_cal, const bool _4p_cal, const bool _4p_opp) {
  140. if (!_0p_cal) {
  141. float S2 = sq(z_pt[CEN]);
  142. int16_t N = 1;
  143. if (!_1p_cal) { // std dev from zero plane
  144. LOOP_CAL_ACT(rad, _4p_cal, _4p_opp) {
  145. S2 += sq(z_pt[rad]);
  146. N++;
  147. }
  148. return LROUND(SQRT(S2 / N) * 1000.0f) / 1000.0f + 0.00001f;
  149. }
  150. }
  151. return 0.00001f;
  152. }
  153. /**
  154. * - Probe a point
  155. */
  156. static float calibration_probe(const xy_pos_t &xy, const bool stow) {
  157. #if HAS_BED_PROBE
  158. return probe.probe_at_point(xy, stow ? PROBE_PT_STOW : PROBE_PT_RAISE, 0, true, false);
  159. #else
  160. UNUSED(stow);
  161. return lcd_probe_pt(xy);
  162. #endif
  163. }
  164. /**
  165. * - Probe a grid
  166. */
  167. static bool probe_calibration_points(float z_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
  168. const bool _0p_calibration = probe_points == 0,
  169. _1p_calibration = probe_points == 1 || probe_points == -1,
  170. _4p_calibration = probe_points == 2,
  171. _4p_opposite_points = _4p_calibration && !towers_set,
  172. _7p_calibration = probe_points >= 3,
  173. _7p_no_intermediates = probe_points == 3,
  174. _7p_1_intermediates = probe_points == 4,
  175. _7p_2_intermediates = probe_points == 5,
  176. _7p_4_intermediates = probe_points == 6,
  177. _7p_6_intermediates = probe_points == 7,
  178. _7p_8_intermediates = probe_points == 8,
  179. _7p_11_intermediates = probe_points == 9,
  180. _7p_14_intermediates = probe_points == 10,
  181. _7p_intermed_points = probe_points >= 4,
  182. _7p_6_center = probe_points >= 5 && probe_points <= 7,
  183. _7p_9_center = probe_points >= 8;
  184. LOOP_CAL_ALL(rad) z_pt[rad] = 0.0f;
  185. if (!_0p_calibration) {
  186. const float dcr = delta_calibration_radius();
  187. if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
  188. const xy_pos_t center{0};
  189. z_pt[CEN] += calibration_probe(center, stow_after_each);
  190. if (ISNAN(z_pt[CEN])) return false;
  191. }
  192. if (_7p_calibration) { // probe extra center points
  193. const float start = _7p_9_center ? float(_CA) + _7P_STEP / 3.0f : _7p_6_center ? float(_CA) : float(__C),
  194. steps = _7p_9_center ? _4P_STEP / 3.0f : _7p_6_center ? _7P_STEP : _4P_STEP;
  195. I_LOOP_CAL_PT(rad, start, steps) {
  196. const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
  197. r = dcr * 0.1;
  198. const xy_pos_t vec = { cos(a), sin(a) };
  199. z_pt[CEN] += calibration_probe(vec * r, stow_after_each);
  200. if (ISNAN(z_pt[CEN])) return false;
  201. }
  202. z_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
  203. }
  204. if (!_1p_calibration) { // probe the radius
  205. const CalEnum start = _4p_opposite_points ? _AB : __A;
  206. const float steps = _7p_14_intermediates ? _7P_STEP / 15.0f : // 15r * 6 + 10c = 100
  207. _7p_11_intermediates ? _7P_STEP / 12.0f : // 12r * 6 + 9c = 81
  208. _7p_8_intermediates ? _7P_STEP / 9.0f : // 9r * 6 + 10c = 64
  209. _7p_6_intermediates ? _7P_STEP / 7.0f : // 7r * 6 + 7c = 49
  210. _7p_4_intermediates ? _7P_STEP / 5.0f : // 5r * 6 + 6c = 36
  211. _7p_2_intermediates ? _7P_STEP / 3.0f : // 3r * 6 + 7c = 25
  212. _7p_1_intermediates ? _7P_STEP / 2.0f : // 2r * 6 + 4c = 16
  213. _7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
  214. _4P_STEP; // .5r * 6 + 1c = 4
  215. bool zig_zag = true;
  216. F_LOOP_CAL_PT(rad, start, _7p_9_center ? steps * 3 : steps) {
  217. const int8_t offset = _7p_9_center ? 2 : 0;
  218. for (int8_t circle = 0; circle <= offset; circle++) {
  219. const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
  220. r = dcr * (1 - 0.1 * (zig_zag ? offset - circle : circle)),
  221. interpol = FMOD(rad, 1);
  222. const xy_pos_t vec = { cos(a), sin(a) };
  223. const float z_temp = calibration_probe(vec * r, stow_after_each);
  224. if (ISNAN(z_temp)) return false;
  225. // split probe point to neighbouring calibration points
  226. z_pt[uint8_t(LROUND(rad - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
  227. z_pt[uint8_t(LROUND(rad - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
  228. }
  229. zig_zag = !zig_zag;
  230. }
  231. if (_7p_intermed_points)
  232. LOOP_CAL_RAD(rad)
  233. z_pt[rad] /= _7P_STEP / steps;
  234. do_blocking_move_to_xy(0.0f, 0.0f);
  235. }
  236. }
  237. return true;
  238. }
  239. /**
  240. * kinematics routines and auto tune matrix scaling parameters:
  241. * see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for
  242. * - formulae for approximative forward kinematics in the end-stop displacement matrix
  243. * - definition of the matrix scaling parameters
  244. */
  245. static void reverse_kinematics_probe_points(float z_pt[NPP + 1], abc_float_t mm_at_pt_axis[NPP + 1]) {
  246. xyz_pos_t pos{0};
  247. const float dcr = delta_calibration_radius();
  248. LOOP_CAL_ALL(rad) {
  249. const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
  250. r = (rad == CEN ? 0.0f : dcr);
  251. pos.set(cos(a) * r, sin(a) * r, z_pt[rad]);
  252. inverse_kinematics(pos);
  253. mm_at_pt_axis[rad] = delta;
  254. }
  255. }
  256. static void forward_kinematics_probe_points(abc_float_t mm_at_pt_axis[NPP + 1], float z_pt[NPP + 1]) {
  257. const float r_quot = delta_calibration_radius() / delta_radius;
  258. #define ZPP(N,I,A) (((1.0f + r_quot * (N)) / 3.0f) * mm_at_pt_axis[I].A)
  259. #define Z00(I, A) ZPP( 0, I, A)
  260. #define Zp1(I, A) ZPP(+1, I, A)
  261. #define Zm1(I, A) ZPP(-1, I, A)
  262. #define Zp2(I, A) ZPP(+2, I, A)
  263. #define Zm2(I, A) ZPP(-2, I, A)
  264. z_pt[CEN] = Z00(CEN, a) + Z00(CEN, b) + Z00(CEN, c);
  265. z_pt[__A] = Zp2(__A, a) + Zm1(__A, b) + Zm1(__A, c);
  266. z_pt[__B] = Zm1(__B, a) + Zp2(__B, b) + Zm1(__B, c);
  267. z_pt[__C] = Zm1(__C, a) + Zm1(__C, b) + Zp2(__C, c);
  268. z_pt[_BC] = Zm2(_BC, a) + Zp1(_BC, b) + Zp1(_BC, c);
  269. z_pt[_CA] = Zp1(_CA, a) + Zm2(_CA, b) + Zp1(_CA, c);
  270. z_pt[_AB] = Zp1(_AB, a) + Zp1(_AB, b) + Zm2(_AB, c);
  271. }
  272. static void calc_kinematics_diff_probe_points(float z_pt[NPP + 1], abc_float_t delta_e, const float delta_r, abc_float_t delta_t) {
  273. const float z_center = z_pt[CEN];
  274. abc_float_t diff_mm_at_pt_axis[NPP + 1], new_mm_at_pt_axis[NPP + 1];
  275. reverse_kinematics_probe_points(z_pt, diff_mm_at_pt_axis);
  276. delta_radius += delta_r;
  277. delta_tower_angle_trim += delta_t;
  278. recalc_delta_settings();
  279. reverse_kinematics_probe_points(z_pt, new_mm_at_pt_axis);
  280. LOOP_CAL_ALL(rad) diff_mm_at_pt_axis[rad] -= new_mm_at_pt_axis[rad] + delta_e;
  281. forward_kinematics_probe_points(diff_mm_at_pt_axis, z_pt);
  282. LOOP_CAL_RAD(rad) z_pt[rad] -= z_pt[CEN] - z_center;
  283. z_pt[CEN] = z_center;
  284. delta_radius -= delta_r;
  285. delta_tower_angle_trim -= delta_t;
  286. recalc_delta_settings();
  287. }
  288. static float auto_tune_h() {
  289. const float r_quot = delta_calibration_radius() / delta_radius;
  290. return RECIPROCAL(r_quot / (2.0f / 3.0f)); // (2/3)/CR
  291. }
  292. static float auto_tune_r() {
  293. constexpr float diff = 0.01f, delta_r = diff;
  294. float r_fac = 0.0f, z_pt[NPP + 1] = { 0.0f };
  295. abc_float_t delta_e = { 0.0f }, delta_t = { 0.0f };
  296. calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);
  297. r_fac = -(z_pt[__A] + z_pt[__B] + z_pt[__C] + z_pt[_BC] + z_pt[_CA] + z_pt[_AB]) / 6.0f;
  298. r_fac = diff / r_fac / 3.0f; // 1/(3*delta_Z)
  299. return r_fac;
  300. }
  301. static float auto_tune_a() {
  302. constexpr float diff = 0.01f, delta_r = 0.0f;
  303. float a_fac = 0.0f, z_pt[NPP + 1] = { 0.0f };
  304. abc_float_t delta_e = { 0.0f }, delta_t = { 0.0f };
  305. delta_t.reset();
  306. LOOP_XYZ(axis) {
  307. delta_t[axis] = diff;
  308. calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);
  309. delta_t[axis] = 0;
  310. a_fac += z_pt[uint8_t((axis * _4P_STEP) - _7P_STEP + NPP) % NPP + 1] / 6.0f;
  311. a_fac -= z_pt[uint8_t((axis * _4P_STEP) + 1 + _7P_STEP)] / 6.0f;
  312. }
  313. a_fac = diff / a_fac / 3.0f; // 1/(3*delta_Z)
  314. return a_fac;
  315. }
  316. /**
  317. * G33 - Delta '1-4-7-point' Auto-Calibration
  318. * Calibrate height, z_offset, endstops, delta radius, and tower angles.
  319. *
  320. * Parameters:
  321. *
  322. * Pn Number of probe points:
  323. * P0 Normalizes calibration.
  324. * P1 Calibrates height only with center probe.
  325. * P2 Probe center and towers. Calibrate height, endstops and delta radius.
  326. * P3 Probe all positions: center, towers and opposite towers. Calibrate all.
  327. * P4-P10 Probe all positions at different intermediate locations and average them.
  328. *
  329. * T Don't calibrate tower angle corrections
  330. *
  331. * Cn.nn Calibration precision; when omitted calibrates to maximum precision
  332. *
  333. * Fn Force to run at least n iterations and take the best result
  334. *
  335. * Vn Verbose level:
  336. * V0 Dry-run mode. Report settings and probe results. No calibration.
  337. * V1 Report start and end settings only
  338. * V2 Report settings at each iteration
  339. * V3 Report settings and probe results
  340. *
  341. * E Engage the probe for each point
  342. */
  343. void GcodeSuite::G33() {
  344. const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
  345. if (!WITHIN(probe_points, 0, 10)) {
  346. SERIAL_ECHOLNPGM("?(P)oints implausible (0-10).");
  347. return;
  348. }
  349. const bool towers_set = !parser.seen('T');
  350. const float calibration_precision = parser.floatval('C', 0.0f);
  351. if (calibration_precision < 0) {
  352. SERIAL_ECHOLNPGM("?(C)alibration precision implausible (>=0).");
  353. return;
  354. }
  355. const int8_t force_iterations = parser.intval('F', 0);
  356. if (!WITHIN(force_iterations, 0, 30)) {
  357. SERIAL_ECHOLNPGM("?(F)orce iteration implausible (0-30).");
  358. return;
  359. }
  360. const int8_t verbose_level = parser.byteval('V', 1);
  361. if (!WITHIN(verbose_level, 0, 3)) {
  362. SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-3).");
  363. return;
  364. }
  365. const bool stow_after_each = parser.seen('E');
  366. const bool _0p_calibration = probe_points == 0,
  367. _1p_calibration = probe_points == 1 || probe_points == -1,
  368. _4p_calibration = probe_points == 2,
  369. _4p_opposite_points = _4p_calibration && !towers_set,
  370. _7p_9_center = probe_points >= 8,
  371. _tower_results = (_4p_calibration && towers_set) || probe_points >= 3,
  372. _opposite_results = (_4p_calibration && !towers_set) || probe_points >= 3,
  373. _endstop_results = probe_points != 1 && probe_points != -1 && probe_points != 0,
  374. _angle_results = probe_points >= 3 && towers_set;
  375. int8_t iterations = 0;
  376. float test_precision,
  377. zero_std_dev = (verbose_level ? 999.0f : 0.0f), // 0.0 in dry-run mode : forced end
  378. zero_std_dev_min = zero_std_dev,
  379. zero_std_dev_old = zero_std_dev,
  380. h_factor, r_factor, a_factor,
  381. r_old = delta_radius,
  382. h_old = delta_height;
  383. abc_pos_t e_old = delta_endstop_adj, a_old = delta_tower_angle_trim;
  384. SERIAL_ECHOLNPGM("G33 Auto Calibrate");
  385. const float dcr = delta_calibration_radius();
  386. if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
  387. LOOP_CAL_RAD(axis) {
  388. const float a = RADIANS(210 + (360 / NPP) * (axis - 1));
  389. if (!position_is_reachable(cos(a) * dcr, sin(a) * dcr)) {
  390. SERIAL_ECHOLNPGM("?Bed calibration radius implausible.");
  391. return;
  392. }
  393. }
  394. }
  395. // Report settings
  396. PGM_P const checkingac = PSTR("Checking... AC");
  397. SERIAL_ECHOPGM_P(checkingac);
  398. if (verbose_level == 0) SERIAL_ECHOPGM(" (DRY-RUN)");
  399. SERIAL_EOL();
  400. ui.set_status_P(checkingac);
  401. print_calibration_settings(_endstop_results, _angle_results);
  402. ac_setup(!_0p_calibration && !_1p_calibration);
  403. if (!_0p_calibration) ac_home();
  404. do { // start iterations
  405. float z_at_pt[NPP + 1] = { 0.0f };
  406. test_precision = zero_std_dev_old != 999.0f ? (zero_std_dev + zero_std_dev_old) / 2.0f : zero_std_dev;
  407. iterations++;
  408. // Probe the points
  409. zero_std_dev_old = zero_std_dev;
  410. if (!probe_calibration_points(z_at_pt, probe_points, towers_set, stow_after_each)) {
  411. SERIAL_ECHOLNPGM("Correct delta settings with M665 and M666");
  412. return ac_cleanup(TERN_(HAS_MULTI_HOTEND, old_tool_index));
  413. }
  414. zero_std_dev = std_dev_points(z_at_pt, _0p_calibration, _1p_calibration, _4p_calibration, _4p_opposite_points);
  415. // Solve matrices
  416. if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
  417. #if !HAS_BED_PROBE
  418. test_precision = 0.0f; // forced end
  419. #endif
  420. if (zero_std_dev < zero_std_dev_min) {
  421. // set roll-back point
  422. e_old = delta_endstop_adj;
  423. r_old = delta_radius;
  424. h_old = delta_height;
  425. a_old = delta_tower_angle_trim;
  426. }
  427. abc_float_t e_delta = { 0.0f }, t_delta = { 0.0f };
  428. float r_delta = 0.0f;
  429. /**
  430. * convergence matrices:
  431. * see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for
  432. * - definition of the matrix scaling parameters
  433. * - matrices for 4 and 7 point calibration
  434. */
  435. #define ZP(N,I) ((N) * z_at_pt[I] / 4.0f) // 4.0 = divider to normalize to integers
  436. #define Z12(I) ZP(12, I)
  437. #define Z4(I) ZP(4, I)
  438. #define Z2(I) ZP(2, I)
  439. #define Z1(I) ZP(1, I)
  440. #define Z0(I) ZP(0, I)
  441. // calculate factors
  442. if (_7p_9_center) calibration_radius_factor = 0.9f;
  443. h_factor = auto_tune_h();
  444. r_factor = auto_tune_r();
  445. a_factor = auto_tune_a();
  446. calibration_radius_factor = 1.0f;
  447. switch (probe_points) {
  448. case 0:
  449. test_precision = 0.0f; // forced end
  450. break;
  451. case 1:
  452. test_precision = 0.0f; // forced end
  453. LOOP_XYZ(axis) e_delta[axis] = +Z4(CEN);
  454. break;
  455. case 2:
  456. if (towers_set) { // see 4 point calibration (towers) matrix
  457. e_delta.set((+Z4(__A) -Z2(__B) -Z2(__C)) * h_factor +Z4(CEN),
  458. (-Z2(__A) +Z4(__B) -Z2(__C)) * h_factor +Z4(CEN),
  459. (-Z2(__A) -Z2(__B) +Z4(__C)) * h_factor +Z4(CEN));
  460. r_delta = (+Z4(__A) +Z4(__B) +Z4(__C) -Z12(CEN)) * r_factor;
  461. }
  462. else { // see 4 point calibration (opposites) matrix
  463. e_delta.set((-Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor +Z4(CEN),
  464. (+Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor +Z4(CEN),
  465. (+Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor +Z4(CEN));
  466. r_delta = (+Z4(_BC) +Z4(_CA) +Z4(_AB) -Z12(CEN)) * r_factor;
  467. }
  468. break;
  469. default: // see 7 point calibration (towers & opposites) matrix
  470. e_delta.set((+Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor +Z4(CEN),
  471. (-Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor +Z4(CEN),
  472. (-Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor +Z4(CEN));
  473. r_delta = (+Z2(__A) +Z2(__B) +Z2(__C) +Z2(_BC) +Z2(_CA) +Z2(_AB) -Z12(CEN)) * r_factor;
  474. if (towers_set) { // see 7 point tower angle calibration (towers & opposites) matrix
  475. t_delta.set((+Z0(__A) -Z4(__B) +Z4(__C) +Z0(_BC) -Z4(_CA) +Z4(_AB) +Z0(CEN)) * a_factor,
  476. (+Z4(__A) +Z0(__B) -Z4(__C) +Z4(_BC) +Z0(_CA) -Z4(_AB) +Z0(CEN)) * a_factor,
  477. (-Z4(__A) +Z4(__B) +Z0(__C) -Z4(_BC) +Z4(_CA) +Z0(_AB) +Z0(CEN)) * a_factor);
  478. }
  479. break;
  480. }
  481. delta_endstop_adj += e_delta;
  482. delta_radius += r_delta;
  483. delta_tower_angle_trim += t_delta;
  484. }
  485. else if (zero_std_dev >= test_precision) {
  486. // roll back
  487. delta_endstop_adj = e_old;
  488. delta_radius = r_old;
  489. delta_height = h_old;
  490. delta_tower_angle_trim = a_old;
  491. }
  492. if (verbose_level != 0) { // !dry run
  493. // Normalize angles to least-squares
  494. if (_angle_results) {
  495. float a_sum = 0.0f;
  496. LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
  497. LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0f;
  498. }
  499. // adjust delta_height and endstops by the max amount
  500. const float z_temp = _MAX(delta_endstop_adj.a, delta_endstop_adj.b, delta_endstop_adj.c);
  501. delta_height -= z_temp;
  502. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  503. }
  504. recalc_delta_settings();
  505. NOMORE(zero_std_dev_min, zero_std_dev);
  506. // print report
  507. if (verbose_level == 3)
  508. print_calibration_results(z_at_pt, _tower_results, _opposite_results);
  509. if (verbose_level != 0) { // !dry run
  510. if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
  511. SERIAL_ECHOPGM("Calibration OK");
  512. SERIAL_ECHO_SP(32);
  513. #if HAS_BED_PROBE
  514. if (zero_std_dev >= test_precision && !_1p_calibration && !_0p_calibration)
  515. SERIAL_ECHOPGM("rolling back.");
  516. else
  517. #endif
  518. {
  519. SERIAL_ECHOPAIR_F("std dev:", zero_std_dev_min, 3);
  520. }
  521. SERIAL_EOL();
  522. char mess[21];
  523. strcpy_P(mess, PSTR("Calibration sd:"));
  524. if (zero_std_dev_min < 1)
  525. sprintf_P(&mess[15], PSTR("0.%03i"), (int)LROUND(zero_std_dev_min * 1000.0f));
  526. else
  527. sprintf_P(&mess[15], PSTR("%03i.x"), (int)LROUND(zero_std_dev_min));
  528. ui.set_status(mess);
  529. print_calibration_settings(_endstop_results, _angle_results);
  530. SERIAL_ECHOLNPGM("Save with M500 and/or copy to Configuration.h");
  531. }
  532. else { // !end iterations
  533. char mess[15];
  534. if (iterations < 31)
  535. sprintf_P(mess, PSTR("Iteration : %02i"), (unsigned int)iterations);
  536. else
  537. strcpy_P(mess, PSTR("No convergence"));
  538. SERIAL_ECHO(mess);
  539. SERIAL_ECHO_SP(32);
  540. SERIAL_ECHOLNPAIR_F("std dev:", zero_std_dev, 3);
  541. ui.set_status(mess);
  542. if (verbose_level > 1)
  543. print_calibration_settings(_endstop_results, _angle_results);
  544. }
  545. }
  546. else { // dry run
  547. PGM_P const enddryrun = PSTR("End DRY-RUN");
  548. SERIAL_ECHOPGM_P(enddryrun);
  549. SERIAL_ECHO_SP(35);
  550. SERIAL_ECHOLNPAIR_F("std dev:", zero_std_dev, 3);
  551. char mess[21];
  552. strcpy_P(mess, enddryrun);
  553. strcpy_P(&mess[11], PSTR(" sd:"));
  554. if (zero_std_dev < 1)
  555. sprintf_P(&mess[15], PSTR("0.%03i"), (int)LROUND(zero_std_dev * 1000.0f));
  556. else
  557. sprintf_P(&mess[15], PSTR("%03i.x"), (int)LROUND(zero_std_dev));
  558. ui.set_status(mess);
  559. }
  560. ac_home();
  561. }
  562. while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
  563. ac_cleanup(TERN_(HAS_MULTI_HOTEND, old_tool_index));
  564. }
  565. #endif // DELTA_AUTO_CALIBRATION