My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 121KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to coordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  106. // M112 - Emergency stop
  107. // M114 - Output current position to serial port
  108. // M115 - Capabilities string
  109. // M117 - display message
  110. // M119 - Output Endstop status to serial port
  111. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  112. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  113. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  114. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  115. // M140 - Set bed target temp
  116. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  117. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  118. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  119. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  120. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  121. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  122. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  123. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  124. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  125. // M206 - set additional homing offset
  126. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  127. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  128. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  129. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  130. // M220 S<factor in percent>- set speed factor override percentage
  131. // M221 S<factor in percent>- set extrude factor override percentage
  132. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  133. // M240 - Trigger a camera to take a photograph
  134. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  135. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  136. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  137. // M301 - Set PID parameters P I and D
  138. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  139. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  140. // M304 - Set bed PID parameters P I and D
  141. // M400 - Finish all moves
  142. // M401 - Lower z-probe if present
  143. // M402 - Raise z-probe if present
  144. // M500 - stores parameters in EEPROM
  145. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  146. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  147. // M503 - print the current settings (from memory not from EEPROM)
  148. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  149. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  150. // M665 - set delta configurations
  151. // M666 - set delta endstop adjustment
  152. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  153. // M907 - Set digital trimpot motor current using axis codes.
  154. // M908 - Control digital trimpot directly.
  155. // M350 - Set microstepping mode.
  156. // M351 - Toggle MS1 MS2 pins directly.
  157. // M928 - Start SD logging (M928 filename.g) - ended by M29
  158. // M999 - Restart after being stopped by error
  159. //Stepper Movement Variables
  160. //===========================================================================
  161. //=============================imported variables============================
  162. //===========================================================================
  163. //===========================================================================
  164. //=============================public variables=============================
  165. //===========================================================================
  166. #ifdef SDSUPPORT
  167. CardReader card;
  168. #endif
  169. float homing_feedrate[] = HOMING_FEEDRATE;
  170. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  171. int feedmultiply=100; //100->1 200->2
  172. int saved_feedmultiply;
  173. int extrudemultiply=100; //100->1 200->2
  174. int extruder_multiply[EXTRUDERS] = {100
  175. #if EXTRUDERS > 1
  176. , 100
  177. #if EXTRUDERS > 2
  178. , 100
  179. #endif
  180. #endif
  181. };
  182. float volumetric_multiplier[EXTRUDERS] = {1.0
  183. #if EXTRUDERS > 1
  184. , 1.0
  185. #if EXTRUDERS > 2
  186. , 1.0
  187. #endif
  188. #endif
  189. };
  190. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  191. float add_homeing[3]={0,0,0};
  192. #ifdef DELTA
  193. float endstop_adj[3]={0,0,0};
  194. #endif
  195. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  196. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  197. bool axis_known_position[3] = {false, false, false};
  198. float zprobe_zoffset;
  199. // Extruder offset
  200. #if EXTRUDERS > 1
  201. #ifndef DUAL_X_CARRIAGE
  202. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  203. #else
  204. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  205. #endif
  206. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  207. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  208. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  209. #endif
  210. };
  211. #endif
  212. uint8_t active_extruder = 0;
  213. int fanSpeed=0;
  214. #ifdef SERVO_ENDSTOPS
  215. int servo_endstops[] = SERVO_ENDSTOPS;
  216. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  217. #endif
  218. #ifdef BARICUDA
  219. int ValvePressure=0;
  220. int EtoPPressure=0;
  221. #endif
  222. #ifdef FWRETRACT
  223. bool autoretract_enabled=false;
  224. bool retracted=false;
  225. float retract_length = RETRACT_LENGTH;
  226. float retract_feedrate = RETRACT_FEEDRATE;
  227. float retract_zlift = RETRACT_ZLIFT;
  228. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  229. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  230. #endif
  231. #ifdef ULTIPANEL
  232. #ifdef PS_DEFAULT_OFF
  233. bool powersupply = false;
  234. #else
  235. bool powersupply = true;
  236. #endif
  237. #endif
  238. #ifdef DELTA
  239. float delta[3] = {0.0, 0.0, 0.0};
  240. #define SIN_60 0.8660254037844386
  241. #define COS_60 0.5
  242. // these are the default values, can be overriden with M665
  243. float delta_radius= DELTA_RADIUS;
  244. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  245. float delta_tower1_y= -COS_60*delta_radius;
  246. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  247. float delta_tower2_y= -COS_60*delta_radius;
  248. float delta_tower3_x= 0.0; // back middle tower
  249. float delta_tower3_y= delta_radius;
  250. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  251. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  252. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  253. #endif
  254. bool cancel_heatup = false ;
  255. //===========================================================================
  256. //=============================Private Variables=============================
  257. //===========================================================================
  258. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  259. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  260. static float offset[3] = {0.0, 0.0, 0.0};
  261. static bool home_all_axis = true;
  262. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  263. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  264. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  265. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  266. static bool fromsd[BUFSIZE];
  267. static int bufindr = 0;
  268. static int bufindw = 0;
  269. static int buflen = 0;
  270. //static int i = 0;
  271. static char serial_char;
  272. static int serial_count = 0;
  273. static boolean comment_mode = false;
  274. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  275. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  276. //static float tt = 0;
  277. //static float bt = 0;
  278. //Inactivity shutdown variables
  279. static unsigned long previous_millis_cmd = 0;
  280. static unsigned long max_inactive_time = 0;
  281. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  282. unsigned long starttime=0;
  283. unsigned long stoptime=0;
  284. static uint8_t tmp_extruder;
  285. bool Stopped=false;
  286. #if NUM_SERVOS > 0
  287. Servo servos[NUM_SERVOS];
  288. #endif
  289. bool CooldownNoWait = true;
  290. bool target_direction;
  291. //Insert variables if CHDK is defined
  292. #ifdef CHDK
  293. unsigned long chdkHigh = 0;
  294. boolean chdkActive = false;
  295. #endif
  296. //===========================================================================
  297. //=============================Routines======================================
  298. //===========================================================================
  299. void get_arc_coordinates();
  300. bool setTargetedHotend(int code);
  301. void serial_echopair_P(const char *s_P, float v)
  302. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  303. void serial_echopair_P(const char *s_P, double v)
  304. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  305. void serial_echopair_P(const char *s_P, unsigned long v)
  306. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  307. extern "C"{
  308. extern unsigned int __bss_end;
  309. extern unsigned int __heap_start;
  310. extern void *__brkval;
  311. int freeMemory() {
  312. int free_memory;
  313. if((int)__brkval == 0)
  314. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  315. else
  316. free_memory = ((int)&free_memory) - ((int)__brkval);
  317. return free_memory;
  318. }
  319. }
  320. //adds an command to the main command buffer
  321. //thats really done in a non-safe way.
  322. //needs overworking someday
  323. void enquecommand(const char *cmd)
  324. {
  325. if(buflen < BUFSIZE)
  326. {
  327. //this is dangerous if a mixing of serial and this happens
  328. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  329. SERIAL_ECHO_START;
  330. SERIAL_ECHOPGM("enqueing \"");
  331. SERIAL_ECHO(cmdbuffer[bufindw]);
  332. SERIAL_ECHOLNPGM("\"");
  333. bufindw= (bufindw + 1)%BUFSIZE;
  334. buflen += 1;
  335. }
  336. }
  337. void enquecommand_P(const char *cmd)
  338. {
  339. if(buflen < BUFSIZE)
  340. {
  341. //this is dangerous if a mixing of serial and this happens
  342. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  343. SERIAL_ECHO_START;
  344. SERIAL_ECHOPGM("enqueing \"");
  345. SERIAL_ECHO(cmdbuffer[bufindw]);
  346. SERIAL_ECHOLNPGM("\"");
  347. bufindw= (bufindw + 1)%BUFSIZE;
  348. buflen += 1;
  349. }
  350. }
  351. void setup_killpin()
  352. {
  353. #if defined(KILL_PIN) && KILL_PIN > -1
  354. pinMode(KILL_PIN,INPUT);
  355. WRITE(KILL_PIN,HIGH);
  356. #endif
  357. }
  358. void setup_photpin()
  359. {
  360. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  361. SET_OUTPUT(PHOTOGRAPH_PIN);
  362. WRITE(PHOTOGRAPH_PIN, LOW);
  363. #endif
  364. }
  365. void setup_powerhold()
  366. {
  367. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  368. SET_OUTPUT(SUICIDE_PIN);
  369. WRITE(SUICIDE_PIN, HIGH);
  370. #endif
  371. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  372. SET_OUTPUT(PS_ON_PIN);
  373. #if defined(PS_DEFAULT_OFF)
  374. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  375. #else
  376. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  377. #endif
  378. #endif
  379. }
  380. void suicide()
  381. {
  382. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  383. SET_OUTPUT(SUICIDE_PIN);
  384. WRITE(SUICIDE_PIN, LOW);
  385. #endif
  386. }
  387. void servo_init()
  388. {
  389. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  390. servos[0].attach(SERVO0_PIN);
  391. #endif
  392. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  393. servos[1].attach(SERVO1_PIN);
  394. #endif
  395. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  396. servos[2].attach(SERVO2_PIN);
  397. #endif
  398. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  399. servos[3].attach(SERVO3_PIN);
  400. #endif
  401. #if (NUM_SERVOS >= 5)
  402. #error "TODO: enter initalisation code for more servos"
  403. #endif
  404. // Set position of Servo Endstops that are defined
  405. #ifdef SERVO_ENDSTOPS
  406. for(int8_t i = 0; i < 3; i++)
  407. {
  408. if(servo_endstops[i] > -1) {
  409. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  410. }
  411. }
  412. #endif
  413. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  414. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  415. servos[servo_endstops[Z_AXIS]].detach();
  416. #endif
  417. }
  418. void setup()
  419. {
  420. setup_killpin();
  421. setup_powerhold();
  422. MYSERIAL.begin(BAUDRATE);
  423. SERIAL_PROTOCOLLNPGM("start");
  424. SERIAL_ECHO_START;
  425. // Check startup - does nothing if bootloader sets MCUSR to 0
  426. byte mcu = MCUSR;
  427. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  428. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  429. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  430. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  431. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  432. MCUSR=0;
  433. SERIAL_ECHOPGM(MSG_MARLIN);
  434. SERIAL_ECHOLNPGM(VERSION_STRING);
  435. #ifdef STRING_VERSION_CONFIG_H
  436. #ifdef STRING_CONFIG_H_AUTHOR
  437. SERIAL_ECHO_START;
  438. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  439. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  440. SERIAL_ECHOPGM(MSG_AUTHOR);
  441. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  442. SERIAL_ECHOPGM("Compiled: ");
  443. SERIAL_ECHOLNPGM(__DATE__);
  444. #endif
  445. #endif
  446. SERIAL_ECHO_START;
  447. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  448. SERIAL_ECHO(freeMemory());
  449. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  450. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  451. for(int8_t i = 0; i < BUFSIZE; i++)
  452. {
  453. fromsd[i] = false;
  454. }
  455. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  456. Config_RetrieveSettings();
  457. tp_init(); // Initialize temperature loop
  458. plan_init(); // Initialize planner;
  459. watchdog_init();
  460. st_init(); // Initialize stepper, this enables interrupts!
  461. setup_photpin();
  462. servo_init();
  463. lcd_init();
  464. _delay_ms(1000); // wait 1sec to display the splash screen
  465. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  466. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  467. #endif
  468. #ifdef DIGIPOT_I2C
  469. digipot_i2c_init();
  470. #endif
  471. }
  472. void loop()
  473. {
  474. if(buflen < (BUFSIZE-1))
  475. get_command();
  476. #ifdef SDSUPPORT
  477. card.checkautostart(false);
  478. #endif
  479. if(buflen)
  480. {
  481. #ifdef SDSUPPORT
  482. if(card.saving)
  483. {
  484. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  485. {
  486. card.write_command(cmdbuffer[bufindr]);
  487. if(card.logging)
  488. {
  489. process_commands();
  490. }
  491. else
  492. {
  493. SERIAL_PROTOCOLLNPGM(MSG_OK);
  494. }
  495. }
  496. else
  497. {
  498. card.closefile();
  499. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  500. }
  501. }
  502. else
  503. {
  504. process_commands();
  505. }
  506. #else
  507. process_commands();
  508. #endif //SDSUPPORT
  509. buflen = (buflen-1);
  510. bufindr = (bufindr + 1)%BUFSIZE;
  511. }
  512. //check heater every n milliseconds
  513. manage_heater();
  514. manage_inactivity();
  515. checkHitEndstops();
  516. lcd_update();
  517. }
  518. void get_command()
  519. {
  520. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  521. serial_char = MYSERIAL.read();
  522. if(serial_char == '\n' ||
  523. serial_char == '\r' ||
  524. (serial_char == ':' && comment_mode == false) ||
  525. serial_count >= (MAX_CMD_SIZE - 1) )
  526. {
  527. if(!serial_count) { //if empty line
  528. comment_mode = false; //for new command
  529. return;
  530. }
  531. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  532. if(!comment_mode){
  533. comment_mode = false; //for new command
  534. fromsd[bufindw] = false;
  535. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  536. {
  537. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  538. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  539. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  540. SERIAL_ERROR_START;
  541. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  542. SERIAL_ERRORLN(gcode_LastN);
  543. //Serial.println(gcode_N);
  544. FlushSerialRequestResend();
  545. serial_count = 0;
  546. return;
  547. }
  548. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  549. {
  550. byte checksum = 0;
  551. byte count = 0;
  552. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  553. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  554. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  555. SERIAL_ERROR_START;
  556. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  557. SERIAL_ERRORLN(gcode_LastN);
  558. FlushSerialRequestResend();
  559. serial_count = 0;
  560. return;
  561. }
  562. //if no errors, continue parsing
  563. }
  564. else
  565. {
  566. SERIAL_ERROR_START;
  567. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  568. SERIAL_ERRORLN(gcode_LastN);
  569. FlushSerialRequestResend();
  570. serial_count = 0;
  571. return;
  572. }
  573. gcode_LastN = gcode_N;
  574. //if no errors, continue parsing
  575. }
  576. else // if we don't receive 'N' but still see '*'
  577. {
  578. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  579. {
  580. SERIAL_ERROR_START;
  581. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  582. SERIAL_ERRORLN(gcode_LastN);
  583. serial_count = 0;
  584. return;
  585. }
  586. }
  587. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  588. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  589. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  590. case 0:
  591. case 1:
  592. case 2:
  593. case 3:
  594. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  595. #ifdef SDSUPPORT
  596. if(card.saving)
  597. break;
  598. #endif //SDSUPPORT
  599. SERIAL_PROTOCOLLNPGM(MSG_OK);
  600. }
  601. else {
  602. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  603. LCD_MESSAGEPGM(MSG_STOPPED);
  604. }
  605. break;
  606. default:
  607. break;
  608. }
  609. }
  610. //If command was e-stop process now
  611. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  612. kill();
  613. bufindw = (bufindw + 1)%BUFSIZE;
  614. buflen += 1;
  615. }
  616. serial_count = 0; //clear buffer
  617. }
  618. else
  619. {
  620. if(serial_char == ';') comment_mode = true;
  621. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  622. }
  623. }
  624. #ifdef SDSUPPORT
  625. if(!card.sdprinting || serial_count!=0){
  626. return;
  627. }
  628. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  629. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  630. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  631. static bool stop_buffering=false;
  632. if(buflen==0) stop_buffering=false;
  633. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  634. int16_t n=card.get();
  635. serial_char = (char)n;
  636. if(serial_char == '\n' ||
  637. serial_char == '\r' ||
  638. (serial_char == '#' && comment_mode == false) ||
  639. (serial_char == ':' && comment_mode == false) ||
  640. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  641. {
  642. if(card.eof()){
  643. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  644. stoptime=millis();
  645. char time[30];
  646. unsigned long t=(stoptime-starttime)/1000;
  647. int hours, minutes;
  648. minutes=(t/60)%60;
  649. hours=t/60/60;
  650. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  651. SERIAL_ECHO_START;
  652. SERIAL_ECHOLN(time);
  653. lcd_setstatus(time);
  654. card.printingHasFinished();
  655. card.checkautostart(true);
  656. }
  657. if(serial_char=='#')
  658. stop_buffering=true;
  659. if(!serial_count)
  660. {
  661. comment_mode = false; //for new command
  662. return; //if empty line
  663. }
  664. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  665. // if(!comment_mode){
  666. fromsd[bufindw] = true;
  667. buflen += 1;
  668. bufindw = (bufindw + 1)%BUFSIZE;
  669. // }
  670. comment_mode = false; //for new command
  671. serial_count = 0; //clear buffer
  672. }
  673. else
  674. {
  675. if(serial_char == ';') comment_mode = true;
  676. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  677. }
  678. }
  679. #endif //SDSUPPORT
  680. }
  681. float code_value()
  682. {
  683. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  684. }
  685. long code_value_long()
  686. {
  687. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  688. }
  689. bool code_seen(char code)
  690. {
  691. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  692. return (strchr_pointer != NULL); //Return True if a character was found
  693. }
  694. #define DEFINE_PGM_READ_ANY(type, reader) \
  695. static inline type pgm_read_any(const type *p) \
  696. { return pgm_read_##reader##_near(p); }
  697. DEFINE_PGM_READ_ANY(float, float);
  698. DEFINE_PGM_READ_ANY(signed char, byte);
  699. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  700. static const PROGMEM type array##_P[3] = \
  701. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  702. static inline type array(int axis) \
  703. { return pgm_read_any(&array##_P[axis]); }
  704. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  705. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  706. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  707. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  708. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  709. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  710. #ifdef DUAL_X_CARRIAGE
  711. #if EXTRUDERS == 1 || defined(COREXY) \
  712. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  713. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  714. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  715. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  716. #endif
  717. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  718. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  719. #endif
  720. #define DXC_FULL_CONTROL_MODE 0
  721. #define DXC_AUTO_PARK_MODE 1
  722. #define DXC_DUPLICATION_MODE 2
  723. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  724. static float x_home_pos(int extruder) {
  725. if (extruder == 0)
  726. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  727. else
  728. // In dual carriage mode the extruder offset provides an override of the
  729. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  730. // This allow soft recalibration of the second extruder offset position without firmware reflash
  731. // (through the M218 command).
  732. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  733. }
  734. static int x_home_dir(int extruder) {
  735. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  736. }
  737. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  738. static bool active_extruder_parked = false; // used in mode 1 & 2
  739. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  740. static unsigned long delayed_move_time = 0; // used in mode 1
  741. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  742. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  743. bool extruder_duplication_enabled = false; // used in mode 2
  744. #endif //DUAL_X_CARRIAGE
  745. static void axis_is_at_home(int axis) {
  746. #ifdef DUAL_X_CARRIAGE
  747. if (axis == X_AXIS) {
  748. if (active_extruder != 0) {
  749. current_position[X_AXIS] = x_home_pos(active_extruder);
  750. min_pos[X_AXIS] = X2_MIN_POS;
  751. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  752. return;
  753. }
  754. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  755. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  756. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  757. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  758. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  759. return;
  760. }
  761. }
  762. #endif
  763. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  764. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  765. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  766. }
  767. #ifdef ENABLE_AUTO_BED_LEVELING
  768. #ifdef AUTO_BED_LEVELING_GRID
  769. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  770. {
  771. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  772. planeNormal.debug("planeNormal");
  773. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  774. //bedLevel.debug("bedLevel");
  775. //plan_bed_level_matrix.debug("bed level before");
  776. //vector_3 uncorrected_position = plan_get_position_mm();
  777. //uncorrected_position.debug("position before");
  778. vector_3 corrected_position = plan_get_position();
  779. // corrected_position.debug("position after");
  780. current_position[X_AXIS] = corrected_position.x;
  781. current_position[Y_AXIS] = corrected_position.y;
  782. current_position[Z_AXIS] = corrected_position.z;
  783. // but the bed at 0 so we don't go below it.
  784. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  785. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  786. }
  787. #else // not AUTO_BED_LEVELING_GRID
  788. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  789. plan_bed_level_matrix.set_to_identity();
  790. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  791. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  792. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  793. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  794. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  795. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  796. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  797. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  798. vector_3 corrected_position = plan_get_position();
  799. current_position[X_AXIS] = corrected_position.x;
  800. current_position[Y_AXIS] = corrected_position.y;
  801. current_position[Z_AXIS] = corrected_position.z;
  802. // put the bed at 0 so we don't go below it.
  803. current_position[Z_AXIS] = zprobe_zoffset;
  804. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  805. }
  806. #endif // AUTO_BED_LEVELING_GRID
  807. static void run_z_probe() {
  808. plan_bed_level_matrix.set_to_identity();
  809. feedrate = homing_feedrate[Z_AXIS];
  810. // move down until you find the bed
  811. float zPosition = -10;
  812. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  813. st_synchronize();
  814. // we have to let the planner know where we are right now as it is not where we said to go.
  815. zPosition = st_get_position_mm(Z_AXIS);
  816. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  817. // move up the retract distance
  818. zPosition += home_retract_mm(Z_AXIS);
  819. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  820. st_synchronize();
  821. // move back down slowly to find bed
  822. feedrate = homing_feedrate[Z_AXIS]/4;
  823. zPosition -= home_retract_mm(Z_AXIS) * 2;
  824. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  825. st_synchronize();
  826. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  827. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  828. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  829. }
  830. static void do_blocking_move_to(float x, float y, float z) {
  831. float oldFeedRate = feedrate;
  832. feedrate = XY_TRAVEL_SPEED;
  833. current_position[X_AXIS] = x;
  834. current_position[Y_AXIS] = y;
  835. current_position[Z_AXIS] = z;
  836. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  837. st_synchronize();
  838. feedrate = oldFeedRate;
  839. }
  840. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  841. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  842. }
  843. static void setup_for_endstop_move() {
  844. saved_feedrate = feedrate;
  845. saved_feedmultiply = feedmultiply;
  846. feedmultiply = 100;
  847. previous_millis_cmd = millis();
  848. enable_endstops(true);
  849. }
  850. static void clean_up_after_endstop_move() {
  851. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  852. enable_endstops(false);
  853. #endif
  854. feedrate = saved_feedrate;
  855. feedmultiply = saved_feedmultiply;
  856. previous_millis_cmd = millis();
  857. }
  858. static void engage_z_probe() {
  859. // Engage Z Servo endstop if enabled
  860. #ifdef SERVO_ENDSTOPS
  861. if (servo_endstops[Z_AXIS] > -1) {
  862. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  863. servos[servo_endstops[Z_AXIS]].attach(0);
  864. #endif
  865. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  866. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  867. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  868. servos[servo_endstops[Z_AXIS]].detach();
  869. #endif
  870. }
  871. #endif
  872. }
  873. static void retract_z_probe() {
  874. // Retract Z Servo endstop if enabled
  875. #ifdef SERVO_ENDSTOPS
  876. if (servo_endstops[Z_AXIS] > -1) {
  877. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  878. servos[servo_endstops[Z_AXIS]].attach(0);
  879. #endif
  880. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  881. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  882. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  883. servos[servo_endstops[Z_AXIS]].detach();
  884. #endif
  885. }
  886. #endif
  887. }
  888. /// Probe bed height at position (x,y), returns the measured z value
  889. static float probe_pt(float x, float y, float z_before) {
  890. // move to right place
  891. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  892. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  893. engage_z_probe(); // Engage Z Servo endstop if available
  894. run_z_probe();
  895. float measured_z = current_position[Z_AXIS];
  896. retract_z_probe();
  897. SERIAL_PROTOCOLPGM(MSG_BED);
  898. SERIAL_PROTOCOLPGM(" x: ");
  899. SERIAL_PROTOCOL(x);
  900. SERIAL_PROTOCOLPGM(" y: ");
  901. SERIAL_PROTOCOL(y);
  902. SERIAL_PROTOCOLPGM(" z: ");
  903. SERIAL_PROTOCOL(measured_z);
  904. SERIAL_PROTOCOLPGM("\n");
  905. return measured_z;
  906. }
  907. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  908. static void homeaxis(int axis) {
  909. #define HOMEAXIS_DO(LETTER) \
  910. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  911. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  912. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  913. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  914. 0) {
  915. int axis_home_dir = home_dir(axis);
  916. #ifdef DUAL_X_CARRIAGE
  917. if (axis == X_AXIS)
  918. axis_home_dir = x_home_dir(active_extruder);
  919. #endif
  920. current_position[axis] = 0;
  921. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  922. // Engage Servo endstop if enabled
  923. #ifdef SERVO_ENDSTOPS
  924. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  925. if (axis==Z_AXIS) {
  926. engage_z_probe();
  927. }
  928. else
  929. #endif
  930. if (servo_endstops[axis] > -1) {
  931. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  932. }
  933. #endif
  934. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  935. feedrate = homing_feedrate[axis];
  936. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  937. st_synchronize();
  938. current_position[axis] = 0;
  939. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  940. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  941. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  942. st_synchronize();
  943. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  944. #ifdef DELTA
  945. feedrate = homing_feedrate[axis]/10;
  946. #else
  947. feedrate = homing_feedrate[axis]/2 ;
  948. #endif
  949. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  950. st_synchronize();
  951. #ifdef DELTA
  952. // retrace by the amount specified in endstop_adj
  953. if (endstop_adj[axis] * axis_home_dir < 0) {
  954. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  955. destination[axis] = endstop_adj[axis];
  956. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  957. st_synchronize();
  958. }
  959. #endif
  960. axis_is_at_home(axis);
  961. destination[axis] = current_position[axis];
  962. feedrate = 0.0;
  963. endstops_hit_on_purpose();
  964. axis_known_position[axis] = true;
  965. // Retract Servo endstop if enabled
  966. #ifdef SERVO_ENDSTOPS
  967. if (servo_endstops[axis] > -1) {
  968. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  969. }
  970. #endif
  971. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  972. if (axis==Z_AXIS) retract_z_probe();
  973. #endif
  974. }
  975. }
  976. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  977. void refresh_cmd_timeout(void)
  978. {
  979. previous_millis_cmd = millis();
  980. }
  981. #ifdef FWRETRACT
  982. void retract(bool retracting) {
  983. if(retracting && !retracted) {
  984. destination[X_AXIS]=current_position[X_AXIS];
  985. destination[Y_AXIS]=current_position[Y_AXIS];
  986. destination[Z_AXIS]=current_position[Z_AXIS];
  987. destination[E_AXIS]=current_position[E_AXIS];
  988. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  989. plan_set_e_position(current_position[E_AXIS]);
  990. float oldFeedrate = feedrate;
  991. feedrate=retract_feedrate*60;
  992. retracted=true;
  993. prepare_move();
  994. current_position[Z_AXIS]-=retract_zlift;
  995. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  996. prepare_move();
  997. feedrate = oldFeedrate;
  998. } else if(!retracting && retracted) {
  999. destination[X_AXIS]=current_position[X_AXIS];
  1000. destination[Y_AXIS]=current_position[Y_AXIS];
  1001. destination[Z_AXIS]=current_position[Z_AXIS];
  1002. destination[E_AXIS]=current_position[E_AXIS];
  1003. current_position[Z_AXIS]+=retract_zlift;
  1004. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1005. //prepare_move();
  1006. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1007. plan_set_e_position(current_position[E_AXIS]);
  1008. float oldFeedrate = feedrate;
  1009. feedrate=retract_recover_feedrate*60;
  1010. retracted=false;
  1011. prepare_move();
  1012. feedrate = oldFeedrate;
  1013. }
  1014. } //retract
  1015. #endif //FWRETRACT
  1016. void process_commands()
  1017. {
  1018. unsigned long codenum; //throw away variable
  1019. char *starpos = NULL;
  1020. #ifdef ENABLE_AUTO_BED_LEVELING
  1021. float x_tmp, y_tmp, z_tmp, real_z;
  1022. #endif
  1023. if(code_seen('G'))
  1024. {
  1025. switch((int)code_value())
  1026. {
  1027. case 0: // G0 -> G1
  1028. case 1: // G1
  1029. if(Stopped == false) {
  1030. get_coordinates(); // For X Y Z E F
  1031. #ifdef FWRETRACT
  1032. if(autoretract_enabled)
  1033. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1034. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1035. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1036. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1037. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1038. retract(!retracted);
  1039. return;
  1040. }
  1041. }
  1042. #endif //FWRETRACT
  1043. prepare_move();
  1044. //ClearToSend();
  1045. return;
  1046. }
  1047. break;
  1048. case 2: // G2 - CW ARC
  1049. if(Stopped == false) {
  1050. get_arc_coordinates();
  1051. prepare_arc_move(true);
  1052. return;
  1053. }
  1054. break;
  1055. case 3: // G3 - CCW ARC
  1056. if(Stopped == false) {
  1057. get_arc_coordinates();
  1058. prepare_arc_move(false);
  1059. return;
  1060. }
  1061. break;
  1062. case 4: // G4 dwell
  1063. LCD_MESSAGEPGM(MSG_DWELL);
  1064. codenum = 0;
  1065. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1066. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1067. st_synchronize();
  1068. codenum += millis(); // keep track of when we started waiting
  1069. previous_millis_cmd = millis();
  1070. while(millis() < codenum ){
  1071. manage_heater();
  1072. manage_inactivity();
  1073. lcd_update();
  1074. }
  1075. break;
  1076. #ifdef FWRETRACT
  1077. case 10: // G10 retract
  1078. retract(true);
  1079. break;
  1080. case 11: // G11 retract_recover
  1081. retract(false);
  1082. break;
  1083. #endif //FWRETRACT
  1084. case 28: //G28 Home all Axis one at a time
  1085. #ifdef ENABLE_AUTO_BED_LEVELING
  1086. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1087. #endif //ENABLE_AUTO_BED_LEVELING
  1088. saved_feedrate = feedrate;
  1089. saved_feedmultiply = feedmultiply;
  1090. feedmultiply = 100;
  1091. previous_millis_cmd = millis();
  1092. enable_endstops(true);
  1093. for(int8_t i=0; i < NUM_AXIS; i++) {
  1094. destination[i] = current_position[i];
  1095. }
  1096. feedrate = 0.0;
  1097. #ifdef DELTA
  1098. // A delta can only safely home all axis at the same time
  1099. // all axis have to home at the same time
  1100. // Move all carriages up together until the first endstop is hit.
  1101. current_position[X_AXIS] = 0;
  1102. current_position[Y_AXIS] = 0;
  1103. current_position[Z_AXIS] = 0;
  1104. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1105. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1106. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1107. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1108. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1109. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1110. st_synchronize();
  1111. endstops_hit_on_purpose();
  1112. current_position[X_AXIS] = destination[X_AXIS];
  1113. current_position[Y_AXIS] = destination[Y_AXIS];
  1114. current_position[Z_AXIS] = destination[Z_AXIS];
  1115. // take care of back off and rehome now we are all at the top
  1116. HOMEAXIS(X);
  1117. HOMEAXIS(Y);
  1118. HOMEAXIS(Z);
  1119. calculate_delta(current_position);
  1120. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1121. #else // NOT DELTA
  1122. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1123. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1124. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1125. HOMEAXIS(Z);
  1126. }
  1127. #endif
  1128. #ifdef QUICK_HOME
  1129. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1130. {
  1131. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1132. #ifndef DUAL_X_CARRIAGE
  1133. int x_axis_home_dir = home_dir(X_AXIS);
  1134. #else
  1135. int x_axis_home_dir = x_home_dir(active_extruder);
  1136. extruder_duplication_enabled = false;
  1137. #endif
  1138. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1139. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1140. feedrate = homing_feedrate[X_AXIS];
  1141. if(homing_feedrate[Y_AXIS]<feedrate)
  1142. feedrate = homing_feedrate[Y_AXIS];
  1143. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1144. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1145. } else {
  1146. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1147. }
  1148. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1149. st_synchronize();
  1150. axis_is_at_home(X_AXIS);
  1151. axis_is_at_home(Y_AXIS);
  1152. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1153. destination[X_AXIS] = current_position[X_AXIS];
  1154. destination[Y_AXIS] = current_position[Y_AXIS];
  1155. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1156. feedrate = 0.0;
  1157. st_synchronize();
  1158. endstops_hit_on_purpose();
  1159. current_position[X_AXIS] = destination[X_AXIS];
  1160. current_position[Y_AXIS] = destination[Y_AXIS];
  1161. current_position[Z_AXIS] = destination[Z_AXIS];
  1162. }
  1163. #endif
  1164. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1165. {
  1166. #ifdef DUAL_X_CARRIAGE
  1167. int tmp_extruder = active_extruder;
  1168. extruder_duplication_enabled = false;
  1169. active_extruder = !active_extruder;
  1170. HOMEAXIS(X);
  1171. inactive_extruder_x_pos = current_position[X_AXIS];
  1172. active_extruder = tmp_extruder;
  1173. HOMEAXIS(X);
  1174. // reset state used by the different modes
  1175. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1176. delayed_move_time = 0;
  1177. active_extruder_parked = true;
  1178. #else
  1179. HOMEAXIS(X);
  1180. #endif
  1181. }
  1182. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1183. HOMEAXIS(Y);
  1184. }
  1185. if(code_seen(axis_codes[X_AXIS]))
  1186. {
  1187. if(code_value_long() != 0) {
  1188. current_position[X_AXIS]=code_value()+add_homeing[0];
  1189. }
  1190. }
  1191. if(code_seen(axis_codes[Y_AXIS])) {
  1192. if(code_value_long() != 0) {
  1193. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1194. }
  1195. }
  1196. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1197. #ifndef Z_SAFE_HOMING
  1198. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1199. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1200. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1201. feedrate = max_feedrate[Z_AXIS];
  1202. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1203. st_synchronize();
  1204. #endif
  1205. HOMEAXIS(Z);
  1206. }
  1207. #else // Z Safe mode activated.
  1208. if(home_all_axis) {
  1209. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1210. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1211. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1212. feedrate = XY_TRAVEL_SPEED;
  1213. current_position[Z_AXIS] = 0;
  1214. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1215. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1216. st_synchronize();
  1217. current_position[X_AXIS] = destination[X_AXIS];
  1218. current_position[Y_AXIS] = destination[Y_AXIS];
  1219. HOMEAXIS(Z);
  1220. }
  1221. // Let's see if X and Y are homed and probe is inside bed area.
  1222. if(code_seen(axis_codes[Z_AXIS])) {
  1223. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1224. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1225. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1226. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1227. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1228. current_position[Z_AXIS] = 0;
  1229. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1230. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1231. feedrate = max_feedrate[Z_AXIS];
  1232. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1233. st_synchronize();
  1234. HOMEAXIS(Z);
  1235. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1236. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1237. SERIAL_ECHO_START;
  1238. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1239. } else {
  1240. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1241. SERIAL_ECHO_START;
  1242. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1243. }
  1244. }
  1245. #endif
  1246. #endif
  1247. if(code_seen(axis_codes[Z_AXIS])) {
  1248. if(code_value_long() != 0) {
  1249. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1250. }
  1251. }
  1252. #ifdef ENABLE_AUTO_BED_LEVELING
  1253. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1254. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1255. }
  1256. #endif
  1257. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1258. #endif // else DELTA
  1259. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1260. enable_endstops(false);
  1261. #endif
  1262. feedrate = saved_feedrate;
  1263. feedmultiply = saved_feedmultiply;
  1264. previous_millis_cmd = millis();
  1265. endstops_hit_on_purpose();
  1266. break;
  1267. #ifdef ENABLE_AUTO_BED_LEVELING
  1268. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1269. {
  1270. #if Z_MIN_PIN == -1
  1271. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1272. #endif
  1273. // Prevent user from running a G29 without first homing in X and Y
  1274. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1275. {
  1276. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1277. SERIAL_ECHO_START;
  1278. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1279. break; // abort G29, since we don't know where we are
  1280. }
  1281. st_synchronize();
  1282. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1283. //vector_3 corrected_position = plan_get_position_mm();
  1284. //corrected_position.debug("position before G29");
  1285. plan_bed_level_matrix.set_to_identity();
  1286. vector_3 uncorrected_position = plan_get_position();
  1287. //uncorrected_position.debug("position durring G29");
  1288. current_position[X_AXIS] = uncorrected_position.x;
  1289. current_position[Y_AXIS] = uncorrected_position.y;
  1290. current_position[Z_AXIS] = uncorrected_position.z;
  1291. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1292. setup_for_endstop_move();
  1293. feedrate = homing_feedrate[Z_AXIS];
  1294. #ifdef AUTO_BED_LEVELING_GRID
  1295. // probe at the points of a lattice grid
  1296. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1297. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1298. // solve the plane equation ax + by + d = z
  1299. // A is the matrix with rows [x y 1] for all the probed points
  1300. // B is the vector of the Z positions
  1301. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1302. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1303. // "A" matrix of the linear system of equations
  1304. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1305. // "B" vector of Z points
  1306. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1307. int probePointCounter = 0;
  1308. bool zig = true;
  1309. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1310. {
  1311. int xProbe, xInc;
  1312. if (zig)
  1313. {
  1314. xProbe = LEFT_PROBE_BED_POSITION;
  1315. //xEnd = RIGHT_PROBE_BED_POSITION;
  1316. xInc = xGridSpacing;
  1317. zig = false;
  1318. } else // zag
  1319. {
  1320. xProbe = RIGHT_PROBE_BED_POSITION;
  1321. //xEnd = LEFT_PROBE_BED_POSITION;
  1322. xInc = -xGridSpacing;
  1323. zig = true;
  1324. }
  1325. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1326. {
  1327. float z_before;
  1328. if (probePointCounter == 0)
  1329. {
  1330. // raise before probing
  1331. z_before = Z_RAISE_BEFORE_PROBING;
  1332. } else
  1333. {
  1334. // raise extruder
  1335. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1336. }
  1337. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1338. eqnBVector[probePointCounter] = measured_z;
  1339. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1340. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1341. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1342. probePointCounter++;
  1343. xProbe += xInc;
  1344. }
  1345. }
  1346. clean_up_after_endstop_move();
  1347. // solve lsq problem
  1348. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1349. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1350. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1351. SERIAL_PROTOCOLPGM(" b: ");
  1352. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1353. SERIAL_PROTOCOLPGM(" d: ");
  1354. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1355. set_bed_level_equation_lsq(plane_equation_coefficients);
  1356. free(plane_equation_coefficients);
  1357. #else // AUTO_BED_LEVELING_GRID not defined
  1358. // Probe at 3 arbitrary points
  1359. // probe 1
  1360. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1361. // probe 2
  1362. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1363. // probe 3
  1364. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1365. clean_up_after_endstop_move();
  1366. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1367. #endif // AUTO_BED_LEVELING_GRID
  1368. st_synchronize();
  1369. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1370. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1371. // When the bed is uneven, this height must be corrected.
  1372. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1373. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1374. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1375. z_tmp = current_position[Z_AXIS];
  1376. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1377. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1378. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1379. }
  1380. break;
  1381. case 30: // G30 Single Z Probe
  1382. {
  1383. engage_z_probe(); // Engage Z Servo endstop if available
  1384. st_synchronize();
  1385. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1386. setup_for_endstop_move();
  1387. feedrate = homing_feedrate[Z_AXIS];
  1388. run_z_probe();
  1389. SERIAL_PROTOCOLPGM(MSG_BED);
  1390. SERIAL_PROTOCOLPGM(" X: ");
  1391. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1392. SERIAL_PROTOCOLPGM(" Y: ");
  1393. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1394. SERIAL_PROTOCOLPGM(" Z: ");
  1395. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1396. SERIAL_PROTOCOLPGM("\n");
  1397. clean_up_after_endstop_move();
  1398. retract_z_probe(); // Retract Z Servo endstop if available
  1399. }
  1400. break;
  1401. #endif // ENABLE_AUTO_BED_LEVELING
  1402. case 90: // G90
  1403. relative_mode = false;
  1404. break;
  1405. case 91: // G91
  1406. relative_mode = true;
  1407. break;
  1408. case 92: // G92
  1409. if(!code_seen(axis_codes[E_AXIS]))
  1410. st_synchronize();
  1411. for(int8_t i=0; i < NUM_AXIS; i++) {
  1412. if(code_seen(axis_codes[i])) {
  1413. if(i == E_AXIS) {
  1414. current_position[i] = code_value();
  1415. plan_set_e_position(current_position[E_AXIS]);
  1416. }
  1417. else {
  1418. current_position[i] = code_value()+add_homeing[i];
  1419. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1420. }
  1421. }
  1422. }
  1423. break;
  1424. }
  1425. }
  1426. else if(code_seen('M'))
  1427. {
  1428. switch( (int)code_value() )
  1429. {
  1430. #ifdef ULTIPANEL
  1431. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1432. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1433. {
  1434. LCD_MESSAGEPGM(MSG_USERWAIT);
  1435. codenum = 0;
  1436. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1437. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1438. st_synchronize();
  1439. previous_millis_cmd = millis();
  1440. if (codenum > 0){
  1441. codenum += millis(); // keep track of when we started waiting
  1442. while(millis() < codenum && !lcd_clicked()){
  1443. manage_heater();
  1444. manage_inactivity();
  1445. lcd_update();
  1446. }
  1447. }else{
  1448. while(!lcd_clicked()){
  1449. manage_heater();
  1450. manage_inactivity();
  1451. lcd_update();
  1452. }
  1453. }
  1454. LCD_MESSAGEPGM(MSG_RESUMING);
  1455. }
  1456. break;
  1457. #endif
  1458. case 17:
  1459. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1460. enable_x();
  1461. enable_y();
  1462. enable_z();
  1463. enable_e0();
  1464. enable_e1();
  1465. enable_e2();
  1466. break;
  1467. #ifdef SDSUPPORT
  1468. case 20: // M20 - list SD card
  1469. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1470. card.ls();
  1471. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1472. break;
  1473. case 21: // M21 - init SD card
  1474. card.initsd();
  1475. break;
  1476. case 22: //M22 - release SD card
  1477. card.release();
  1478. break;
  1479. case 23: //M23 - Select file
  1480. starpos = (strchr(strchr_pointer + 4,'*'));
  1481. if(starpos!=NULL)
  1482. *(starpos-1)='\0';
  1483. card.openFile(strchr_pointer + 4,true);
  1484. break;
  1485. case 24: //M24 - Start SD print
  1486. card.startFileprint();
  1487. starttime=millis();
  1488. break;
  1489. case 25: //M25 - Pause SD print
  1490. card.pauseSDPrint();
  1491. break;
  1492. case 26: //M26 - Set SD index
  1493. if(card.cardOK && code_seen('S')) {
  1494. card.setIndex(code_value_long());
  1495. }
  1496. break;
  1497. case 27: //M27 - Get SD status
  1498. card.getStatus();
  1499. break;
  1500. case 28: //M28 - Start SD write
  1501. starpos = (strchr(strchr_pointer + 4,'*'));
  1502. if(starpos != NULL){
  1503. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1504. strchr_pointer = strchr(npos,' ') + 1;
  1505. *(starpos-1) = '\0';
  1506. }
  1507. card.openFile(strchr_pointer+4,false);
  1508. break;
  1509. case 29: //M29 - Stop SD write
  1510. //processed in write to file routine above
  1511. //card,saving = false;
  1512. break;
  1513. case 30: //M30 <filename> Delete File
  1514. if (card.cardOK){
  1515. card.closefile();
  1516. starpos = (strchr(strchr_pointer + 4,'*'));
  1517. if(starpos != NULL){
  1518. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1519. strchr_pointer = strchr(npos,' ') + 1;
  1520. *(starpos-1) = '\0';
  1521. }
  1522. card.removeFile(strchr_pointer + 4);
  1523. }
  1524. break;
  1525. case 32: //M32 - Select file and start SD print
  1526. {
  1527. if(card.sdprinting) {
  1528. st_synchronize();
  1529. }
  1530. starpos = (strchr(strchr_pointer + 4,'*'));
  1531. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1532. if(namestartpos==NULL)
  1533. {
  1534. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1535. }
  1536. else
  1537. namestartpos++; //to skip the '!'
  1538. if(starpos!=NULL)
  1539. *(starpos-1)='\0';
  1540. bool call_procedure=(code_seen('P'));
  1541. if(strchr_pointer>namestartpos)
  1542. call_procedure=false; //false alert, 'P' found within filename
  1543. if( card.cardOK )
  1544. {
  1545. card.openFile(namestartpos,true,!call_procedure);
  1546. if(code_seen('S'))
  1547. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1548. card.setIndex(code_value_long());
  1549. card.startFileprint();
  1550. if(!call_procedure)
  1551. starttime=millis(); //procedure calls count as normal print time.
  1552. }
  1553. } break;
  1554. case 928: //M928 - Start SD write
  1555. starpos = (strchr(strchr_pointer + 5,'*'));
  1556. if(starpos != NULL){
  1557. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1558. strchr_pointer = strchr(npos,' ') + 1;
  1559. *(starpos-1) = '\0';
  1560. }
  1561. card.openLogFile(strchr_pointer+5);
  1562. break;
  1563. #endif //SDSUPPORT
  1564. case 31: //M31 take time since the start of the SD print or an M109 command
  1565. {
  1566. stoptime=millis();
  1567. char time[30];
  1568. unsigned long t=(stoptime-starttime)/1000;
  1569. int sec,min;
  1570. min=t/60;
  1571. sec=t%60;
  1572. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1573. SERIAL_ECHO_START;
  1574. SERIAL_ECHOLN(time);
  1575. lcd_setstatus(time);
  1576. autotempShutdown();
  1577. }
  1578. break;
  1579. case 42: //M42 -Change pin status via gcode
  1580. if (code_seen('S'))
  1581. {
  1582. int pin_status = code_value();
  1583. int pin_number = LED_PIN;
  1584. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1585. pin_number = code_value();
  1586. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1587. {
  1588. if (sensitive_pins[i] == pin_number)
  1589. {
  1590. pin_number = -1;
  1591. break;
  1592. }
  1593. }
  1594. #if defined(FAN_PIN) && FAN_PIN > -1
  1595. if (pin_number == FAN_PIN)
  1596. fanSpeed = pin_status;
  1597. #endif
  1598. if (pin_number > -1)
  1599. {
  1600. pinMode(pin_number, OUTPUT);
  1601. digitalWrite(pin_number, pin_status);
  1602. analogWrite(pin_number, pin_status);
  1603. }
  1604. }
  1605. break;
  1606. case 104: // M104
  1607. if(setTargetedHotend(104)){
  1608. break;
  1609. }
  1610. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1611. #ifdef DUAL_X_CARRIAGE
  1612. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1613. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1614. #endif
  1615. setWatch();
  1616. break;
  1617. case 112: // M112 -Emergency Stop
  1618. kill();
  1619. break;
  1620. case 140: // M140 set bed temp
  1621. if (code_seen('S')) setTargetBed(code_value());
  1622. break;
  1623. case 105 : // M105
  1624. if(setTargetedHotend(105)){
  1625. break;
  1626. }
  1627. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1628. SERIAL_PROTOCOLPGM("ok T:");
  1629. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1630. SERIAL_PROTOCOLPGM(" /");
  1631. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1632. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1633. SERIAL_PROTOCOLPGM(" B:");
  1634. SERIAL_PROTOCOL_F(degBed(),1);
  1635. SERIAL_PROTOCOLPGM(" /");
  1636. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1637. #endif //TEMP_BED_PIN
  1638. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1639. SERIAL_PROTOCOLPGM(" T");
  1640. SERIAL_PROTOCOL(cur_extruder);
  1641. SERIAL_PROTOCOLPGM(":");
  1642. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1643. SERIAL_PROTOCOLPGM(" /");
  1644. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1645. }
  1646. #else
  1647. SERIAL_ERROR_START;
  1648. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1649. #endif
  1650. SERIAL_PROTOCOLPGM(" @:");
  1651. #ifdef EXTRUDER_WATTS
  1652. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1653. SERIAL_PROTOCOLPGM("W");
  1654. #else
  1655. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1656. #endif
  1657. SERIAL_PROTOCOLPGM(" B@:");
  1658. #ifdef BED_WATTS
  1659. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1660. SERIAL_PROTOCOLPGM("W");
  1661. #else
  1662. SERIAL_PROTOCOL(getHeaterPower(-1));
  1663. #endif
  1664. #ifdef SHOW_TEMP_ADC_VALUES
  1665. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1666. SERIAL_PROTOCOLPGM(" ADC B:");
  1667. SERIAL_PROTOCOL_F(degBed(),1);
  1668. SERIAL_PROTOCOLPGM("C->");
  1669. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1670. #endif
  1671. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1672. SERIAL_PROTOCOLPGM(" T");
  1673. SERIAL_PROTOCOL(cur_extruder);
  1674. SERIAL_PROTOCOLPGM(":");
  1675. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1676. SERIAL_PROTOCOLPGM("C->");
  1677. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1678. }
  1679. #endif
  1680. SERIAL_PROTOCOLLN("");
  1681. return;
  1682. break;
  1683. case 109:
  1684. {// M109 - Wait for extruder heater to reach target.
  1685. if(setTargetedHotend(109)){
  1686. break;
  1687. }
  1688. LCD_MESSAGEPGM(MSG_HEATING);
  1689. #ifdef AUTOTEMP
  1690. autotemp_enabled=false;
  1691. #endif
  1692. if (code_seen('S')) {
  1693. setTargetHotend(code_value(), tmp_extruder);
  1694. #ifdef DUAL_X_CARRIAGE
  1695. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1696. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1697. #endif
  1698. CooldownNoWait = true;
  1699. } else if (code_seen('R')) {
  1700. setTargetHotend(code_value(), tmp_extruder);
  1701. #ifdef DUAL_X_CARRIAGE
  1702. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1703. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1704. #endif
  1705. CooldownNoWait = false;
  1706. }
  1707. #ifdef AUTOTEMP
  1708. if (code_seen('S')) autotemp_min=code_value();
  1709. if (code_seen('B')) autotemp_max=code_value();
  1710. if (code_seen('F'))
  1711. {
  1712. autotemp_factor=code_value();
  1713. autotemp_enabled=true;
  1714. }
  1715. #endif
  1716. setWatch();
  1717. codenum = millis();
  1718. /* See if we are heating up or cooling down */
  1719. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1720. cancel_heatup = false;
  1721. #ifdef TEMP_RESIDENCY_TIME
  1722. long residencyStart;
  1723. residencyStart = -1;
  1724. /* continue to loop until we have reached the target temp
  1725. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1726. while((!cancel_heatup)&&((residencyStart == -1) ||
  1727. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  1728. #else
  1729. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1730. #endif //TEMP_RESIDENCY_TIME
  1731. if( (millis() - codenum) > 1000UL )
  1732. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1733. SERIAL_PROTOCOLPGM("T:");
  1734. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1735. SERIAL_PROTOCOLPGM(" E:");
  1736. SERIAL_PROTOCOL((int)tmp_extruder);
  1737. #ifdef TEMP_RESIDENCY_TIME
  1738. SERIAL_PROTOCOLPGM(" W:");
  1739. if(residencyStart > -1)
  1740. {
  1741. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1742. SERIAL_PROTOCOLLN( codenum );
  1743. }
  1744. else
  1745. {
  1746. SERIAL_PROTOCOLLN( "?" );
  1747. }
  1748. #else
  1749. SERIAL_PROTOCOLLN("");
  1750. #endif
  1751. codenum = millis();
  1752. }
  1753. manage_heater();
  1754. manage_inactivity();
  1755. lcd_update();
  1756. #ifdef TEMP_RESIDENCY_TIME
  1757. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1758. or when current temp falls outside the hysteresis after target temp was reached */
  1759. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1760. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1761. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1762. {
  1763. residencyStart = millis();
  1764. }
  1765. #endif //TEMP_RESIDENCY_TIME
  1766. }
  1767. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1768. starttime=millis();
  1769. previous_millis_cmd = millis();
  1770. }
  1771. break;
  1772. case 190: // M190 - Wait for bed heater to reach target.
  1773. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1774. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1775. if (code_seen('S')) {
  1776. setTargetBed(code_value());
  1777. CooldownNoWait = true;
  1778. } else if (code_seen('R')) {
  1779. setTargetBed(code_value());
  1780. CooldownNoWait = false;
  1781. }
  1782. codenum = millis();
  1783. cancel_heatup = false;
  1784. target_direction = isHeatingBed(); // true if heating, false if cooling
  1785. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1786. {
  1787. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1788. {
  1789. float tt=degHotend(active_extruder);
  1790. SERIAL_PROTOCOLPGM("T:");
  1791. SERIAL_PROTOCOL(tt);
  1792. SERIAL_PROTOCOLPGM(" E:");
  1793. SERIAL_PROTOCOL((int)active_extruder);
  1794. SERIAL_PROTOCOLPGM(" B:");
  1795. SERIAL_PROTOCOL_F(degBed(),1);
  1796. SERIAL_PROTOCOLLN("");
  1797. codenum = millis();
  1798. }
  1799. manage_heater();
  1800. manage_inactivity();
  1801. lcd_update();
  1802. }
  1803. LCD_MESSAGEPGM(MSG_BED_DONE);
  1804. previous_millis_cmd = millis();
  1805. #endif
  1806. break;
  1807. #if defined(FAN_PIN) && FAN_PIN > -1
  1808. case 106: //M106 Fan On
  1809. if (code_seen('S')){
  1810. fanSpeed=constrain(code_value(),0,255);
  1811. }
  1812. else {
  1813. fanSpeed=255;
  1814. }
  1815. break;
  1816. case 107: //M107 Fan Off
  1817. fanSpeed = 0;
  1818. break;
  1819. #endif //FAN_PIN
  1820. #ifdef BARICUDA
  1821. // PWM for HEATER_1_PIN
  1822. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1823. case 126: //M126 valve open
  1824. if (code_seen('S')){
  1825. ValvePressure=constrain(code_value(),0,255);
  1826. }
  1827. else {
  1828. ValvePressure=255;
  1829. }
  1830. break;
  1831. case 127: //M127 valve closed
  1832. ValvePressure = 0;
  1833. break;
  1834. #endif //HEATER_1_PIN
  1835. // PWM for HEATER_2_PIN
  1836. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1837. case 128: //M128 valve open
  1838. if (code_seen('S')){
  1839. EtoPPressure=constrain(code_value(),0,255);
  1840. }
  1841. else {
  1842. EtoPPressure=255;
  1843. }
  1844. break;
  1845. case 129: //M129 valve closed
  1846. EtoPPressure = 0;
  1847. break;
  1848. #endif //HEATER_2_PIN
  1849. #endif
  1850. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1851. case 80: // M80 - Turn on Power Supply
  1852. SET_OUTPUT(PS_ON_PIN); //GND
  1853. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1854. // If you have a switch on suicide pin, this is useful
  1855. // if you want to start another print with suicide feature after
  1856. // a print without suicide...
  1857. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1858. SET_OUTPUT(SUICIDE_PIN);
  1859. WRITE(SUICIDE_PIN, HIGH);
  1860. #endif
  1861. #ifdef ULTIPANEL
  1862. powersupply = true;
  1863. LCD_MESSAGEPGM(WELCOME_MSG);
  1864. lcd_update();
  1865. #endif
  1866. break;
  1867. #endif
  1868. case 81: // M81 - Turn off Power Supply
  1869. disable_heater();
  1870. st_synchronize();
  1871. disable_e0();
  1872. disable_e1();
  1873. disable_e2();
  1874. finishAndDisableSteppers();
  1875. fanSpeed = 0;
  1876. delay(1000); // Wait a little before to switch off
  1877. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1878. st_synchronize();
  1879. suicide();
  1880. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1881. SET_OUTPUT(PS_ON_PIN);
  1882. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1883. #endif
  1884. #ifdef ULTIPANEL
  1885. powersupply = false;
  1886. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1887. lcd_update();
  1888. #endif
  1889. break;
  1890. case 82:
  1891. axis_relative_modes[3] = false;
  1892. break;
  1893. case 83:
  1894. axis_relative_modes[3] = true;
  1895. break;
  1896. case 18: //compatibility
  1897. case 84: // M84
  1898. if(code_seen('S')){
  1899. stepper_inactive_time = code_value() * 1000;
  1900. }
  1901. else
  1902. {
  1903. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  1904. if(all_axis)
  1905. {
  1906. st_synchronize();
  1907. disable_e0();
  1908. disable_e1();
  1909. disable_e2();
  1910. finishAndDisableSteppers();
  1911. }
  1912. else
  1913. {
  1914. st_synchronize();
  1915. if(code_seen('X')) disable_x();
  1916. if(code_seen('Y')) disable_y();
  1917. if(code_seen('Z')) disable_z();
  1918. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1919. if(code_seen('E')) {
  1920. disable_e0();
  1921. disable_e1();
  1922. disable_e2();
  1923. }
  1924. #endif
  1925. }
  1926. }
  1927. break;
  1928. case 85: // M85
  1929. if(code_seen('S')) {
  1930. max_inactive_time = code_value() * 1000;
  1931. }
  1932. break;
  1933. case 92: // M92
  1934. for(int8_t i=0; i < NUM_AXIS; i++)
  1935. {
  1936. if(code_seen(axis_codes[i]))
  1937. {
  1938. if(i == 3) { // E
  1939. float value = code_value();
  1940. if(value < 20.0) {
  1941. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1942. max_e_jerk *= factor;
  1943. max_feedrate[i] *= factor;
  1944. axis_steps_per_sqr_second[i] *= factor;
  1945. }
  1946. axis_steps_per_unit[i] = value;
  1947. }
  1948. else {
  1949. axis_steps_per_unit[i] = code_value();
  1950. }
  1951. }
  1952. }
  1953. break;
  1954. case 115: // M115
  1955. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1956. break;
  1957. case 117: // M117 display message
  1958. starpos = (strchr(strchr_pointer + 5,'*'));
  1959. if(starpos!=NULL)
  1960. *(starpos-1)='\0';
  1961. lcd_setstatus(strchr_pointer + 5);
  1962. break;
  1963. case 114: // M114
  1964. SERIAL_PROTOCOLPGM("X:");
  1965. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1966. SERIAL_PROTOCOLPGM(" Y:");
  1967. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1968. SERIAL_PROTOCOLPGM(" Z:");
  1969. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1970. SERIAL_PROTOCOLPGM(" E:");
  1971. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1972. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1973. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1974. SERIAL_PROTOCOLPGM(" Y:");
  1975. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1976. SERIAL_PROTOCOLPGM(" Z:");
  1977. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1978. SERIAL_PROTOCOLLN("");
  1979. break;
  1980. case 120: // M120
  1981. enable_endstops(false) ;
  1982. break;
  1983. case 121: // M121
  1984. enable_endstops(true) ;
  1985. break;
  1986. case 119: // M119
  1987. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1988. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1989. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1990. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1991. #endif
  1992. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1993. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1994. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1995. #endif
  1996. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1997. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1998. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1999. #endif
  2000. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2001. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2002. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2003. #endif
  2004. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2005. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2006. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2007. #endif
  2008. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2009. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2010. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2011. #endif
  2012. break;
  2013. //TODO: update for all axis, use for loop
  2014. #ifdef BLINKM
  2015. case 150: // M150
  2016. {
  2017. byte red;
  2018. byte grn;
  2019. byte blu;
  2020. if(code_seen('R')) red = code_value();
  2021. if(code_seen('U')) grn = code_value();
  2022. if(code_seen('B')) blu = code_value();
  2023. SendColors(red,grn,blu);
  2024. }
  2025. break;
  2026. #endif //BLINKM
  2027. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2028. {
  2029. float area = .0;
  2030. float radius = .0;
  2031. if(code_seen('D')) {
  2032. radius = (float)code_value() * .5;
  2033. if(radius == 0) {
  2034. area = 1;
  2035. } else {
  2036. area = M_PI * pow(radius, 2);
  2037. }
  2038. } else {
  2039. //reserved for setting filament diameter via UFID or filament measuring device
  2040. break;
  2041. }
  2042. tmp_extruder = active_extruder;
  2043. if(code_seen('T')) {
  2044. tmp_extruder = code_value();
  2045. if(tmp_extruder >= EXTRUDERS) {
  2046. SERIAL_ECHO_START;
  2047. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2048. break;
  2049. }
  2050. }
  2051. volumetric_multiplier[tmp_extruder] = 1 / area;
  2052. }
  2053. break;
  2054. case 201: // M201
  2055. for(int8_t i=0; i < NUM_AXIS; i++)
  2056. {
  2057. if(code_seen(axis_codes[i]))
  2058. {
  2059. max_acceleration_units_per_sq_second[i] = code_value();
  2060. }
  2061. }
  2062. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2063. reset_acceleration_rates();
  2064. break;
  2065. #if 0 // Not used for Sprinter/grbl gen6
  2066. case 202: // M202
  2067. for(int8_t i=0; i < NUM_AXIS; i++) {
  2068. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2069. }
  2070. break;
  2071. #endif
  2072. case 203: // M203 max feedrate mm/sec
  2073. for(int8_t i=0; i < NUM_AXIS; i++) {
  2074. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2075. }
  2076. break;
  2077. case 204: // M204 acclereration S normal moves T filmanent only moves
  2078. {
  2079. if(code_seen('S')) acceleration = code_value() ;
  2080. if(code_seen('T')) retract_acceleration = code_value() ;
  2081. }
  2082. break;
  2083. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2084. {
  2085. if(code_seen('S')) minimumfeedrate = code_value();
  2086. if(code_seen('T')) mintravelfeedrate = code_value();
  2087. if(code_seen('B')) minsegmenttime = code_value() ;
  2088. if(code_seen('X')) max_xy_jerk = code_value() ;
  2089. if(code_seen('Z')) max_z_jerk = code_value() ;
  2090. if(code_seen('E')) max_e_jerk = code_value() ;
  2091. }
  2092. break;
  2093. case 206: // M206 additional homeing offset
  2094. for(int8_t i=0; i < 3; i++)
  2095. {
  2096. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2097. }
  2098. break;
  2099. #ifdef DELTA
  2100. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2101. if(code_seen('L')) {
  2102. delta_diagonal_rod= code_value();
  2103. }
  2104. if(code_seen('R')) {
  2105. delta_radius= code_value();
  2106. }
  2107. if(code_seen('S')) {
  2108. delta_segments_per_second= code_value();
  2109. }
  2110. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2111. break;
  2112. case 666: // M666 set delta endstop adjustemnt
  2113. for(int8_t i=0; i < 3; i++)
  2114. {
  2115. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2116. }
  2117. break;
  2118. #endif
  2119. #ifdef FWRETRACT
  2120. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2121. {
  2122. if(code_seen('S'))
  2123. {
  2124. retract_length = code_value() ;
  2125. }
  2126. if(code_seen('F'))
  2127. {
  2128. retract_feedrate = code_value()/60 ;
  2129. }
  2130. if(code_seen('Z'))
  2131. {
  2132. retract_zlift = code_value() ;
  2133. }
  2134. }break;
  2135. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2136. {
  2137. if(code_seen('S'))
  2138. {
  2139. retract_recover_length = code_value() ;
  2140. }
  2141. if(code_seen('F'))
  2142. {
  2143. retract_recover_feedrate = code_value()/60 ;
  2144. }
  2145. }break;
  2146. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2147. {
  2148. if(code_seen('S'))
  2149. {
  2150. int t= code_value() ;
  2151. switch(t)
  2152. {
  2153. case 0: autoretract_enabled=false;retracted=false;break;
  2154. case 1: autoretract_enabled=true;retracted=false;break;
  2155. default:
  2156. SERIAL_ECHO_START;
  2157. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2158. SERIAL_ECHO(cmdbuffer[bufindr]);
  2159. SERIAL_ECHOLNPGM("\"");
  2160. }
  2161. }
  2162. }break;
  2163. #endif // FWRETRACT
  2164. #if EXTRUDERS > 1
  2165. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2166. {
  2167. if(setTargetedHotend(218)){
  2168. break;
  2169. }
  2170. if(code_seen('X'))
  2171. {
  2172. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2173. }
  2174. if(code_seen('Y'))
  2175. {
  2176. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2177. }
  2178. #ifdef DUAL_X_CARRIAGE
  2179. if(code_seen('Z'))
  2180. {
  2181. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2182. }
  2183. #endif
  2184. SERIAL_ECHO_START;
  2185. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2186. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2187. {
  2188. SERIAL_ECHO(" ");
  2189. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2190. SERIAL_ECHO(",");
  2191. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2192. #ifdef DUAL_X_CARRIAGE
  2193. SERIAL_ECHO(",");
  2194. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2195. #endif
  2196. }
  2197. SERIAL_ECHOLN("");
  2198. }break;
  2199. #endif
  2200. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2201. {
  2202. if(code_seen('S'))
  2203. {
  2204. feedmultiply = code_value() ;
  2205. }
  2206. }
  2207. break;
  2208. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2209. {
  2210. if(code_seen('S'))
  2211. {
  2212. int tmp_code = code_value();
  2213. if (code_seen('T'))
  2214. {
  2215. if(setTargetedHotend(221)){
  2216. break;
  2217. }
  2218. extruder_multiply[tmp_extruder] = tmp_code;
  2219. }
  2220. else
  2221. {
  2222. extrudemultiply = tmp_code ;
  2223. }
  2224. }
  2225. }
  2226. break;
  2227. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2228. {
  2229. if(code_seen('P')){
  2230. int pin_number = code_value(); // pin number
  2231. int pin_state = -1; // required pin state - default is inverted
  2232. if(code_seen('S')) pin_state = code_value(); // required pin state
  2233. if(pin_state >= -1 && pin_state <= 1){
  2234. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2235. {
  2236. if (sensitive_pins[i] == pin_number)
  2237. {
  2238. pin_number = -1;
  2239. break;
  2240. }
  2241. }
  2242. if (pin_number > -1)
  2243. {
  2244. st_synchronize();
  2245. pinMode(pin_number, INPUT);
  2246. int target;
  2247. switch(pin_state){
  2248. case 1:
  2249. target = HIGH;
  2250. break;
  2251. case 0:
  2252. target = LOW;
  2253. break;
  2254. case -1:
  2255. target = !digitalRead(pin_number);
  2256. break;
  2257. }
  2258. while(digitalRead(pin_number) != target){
  2259. manage_heater();
  2260. manage_inactivity();
  2261. lcd_update();
  2262. }
  2263. }
  2264. }
  2265. }
  2266. }
  2267. break;
  2268. #if NUM_SERVOS > 0
  2269. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2270. {
  2271. int servo_index = -1;
  2272. int servo_position = 0;
  2273. if (code_seen('P'))
  2274. servo_index = code_value();
  2275. if (code_seen('S')) {
  2276. servo_position = code_value();
  2277. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2278. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2279. servos[servo_index].attach(0);
  2280. #endif
  2281. servos[servo_index].write(servo_position);
  2282. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2283. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2284. servos[servo_index].detach();
  2285. #endif
  2286. }
  2287. else {
  2288. SERIAL_ECHO_START;
  2289. SERIAL_ECHO("Servo ");
  2290. SERIAL_ECHO(servo_index);
  2291. SERIAL_ECHOLN(" out of range");
  2292. }
  2293. }
  2294. else if (servo_index >= 0) {
  2295. SERIAL_PROTOCOL(MSG_OK);
  2296. SERIAL_PROTOCOL(" Servo ");
  2297. SERIAL_PROTOCOL(servo_index);
  2298. SERIAL_PROTOCOL(": ");
  2299. SERIAL_PROTOCOL(servos[servo_index].read());
  2300. SERIAL_PROTOCOLLN("");
  2301. }
  2302. }
  2303. break;
  2304. #endif // NUM_SERVOS > 0
  2305. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2306. case 300: // M300
  2307. {
  2308. int beepS = code_seen('S') ? code_value() : 110;
  2309. int beepP = code_seen('P') ? code_value() : 1000;
  2310. if (beepS > 0)
  2311. {
  2312. #if BEEPER > 0
  2313. tone(BEEPER, beepS);
  2314. delay(beepP);
  2315. noTone(BEEPER);
  2316. #elif defined(ULTRALCD)
  2317. lcd_buzz(beepS, beepP);
  2318. #elif defined(LCD_USE_I2C_BUZZER)
  2319. lcd_buzz(beepP, beepS);
  2320. #endif
  2321. }
  2322. else
  2323. {
  2324. delay(beepP);
  2325. }
  2326. }
  2327. break;
  2328. #endif // M300
  2329. #ifdef PIDTEMP
  2330. case 301: // M301
  2331. {
  2332. if(code_seen('P')) Kp = code_value();
  2333. if(code_seen('I')) Ki = scalePID_i(code_value());
  2334. if(code_seen('D')) Kd = scalePID_d(code_value());
  2335. #ifdef PID_ADD_EXTRUSION_RATE
  2336. if(code_seen('C')) Kc = code_value();
  2337. #endif
  2338. updatePID();
  2339. SERIAL_PROTOCOL(MSG_OK);
  2340. SERIAL_PROTOCOL(" p:");
  2341. SERIAL_PROTOCOL(Kp);
  2342. SERIAL_PROTOCOL(" i:");
  2343. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2344. SERIAL_PROTOCOL(" d:");
  2345. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2346. #ifdef PID_ADD_EXTRUSION_RATE
  2347. SERIAL_PROTOCOL(" c:");
  2348. //Kc does not have scaling applied above, or in resetting defaults
  2349. SERIAL_PROTOCOL(Kc);
  2350. #endif
  2351. SERIAL_PROTOCOLLN("");
  2352. }
  2353. break;
  2354. #endif //PIDTEMP
  2355. #ifdef PIDTEMPBED
  2356. case 304: // M304
  2357. {
  2358. if(code_seen('P')) bedKp = code_value();
  2359. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2360. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2361. updatePID();
  2362. SERIAL_PROTOCOL(MSG_OK);
  2363. SERIAL_PROTOCOL(" p:");
  2364. SERIAL_PROTOCOL(bedKp);
  2365. SERIAL_PROTOCOL(" i:");
  2366. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2367. SERIAL_PROTOCOL(" d:");
  2368. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2369. SERIAL_PROTOCOLLN("");
  2370. }
  2371. break;
  2372. #endif //PIDTEMP
  2373. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2374. {
  2375. #ifdef CHDK
  2376. SET_OUTPUT(CHDK);
  2377. WRITE(CHDK, HIGH);
  2378. chdkHigh = millis();
  2379. chdkActive = true;
  2380. #else
  2381. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2382. const uint8_t NUM_PULSES=16;
  2383. const float PULSE_LENGTH=0.01524;
  2384. for(int i=0; i < NUM_PULSES; i++) {
  2385. WRITE(PHOTOGRAPH_PIN, HIGH);
  2386. _delay_ms(PULSE_LENGTH);
  2387. WRITE(PHOTOGRAPH_PIN, LOW);
  2388. _delay_ms(PULSE_LENGTH);
  2389. }
  2390. delay(7.33);
  2391. for(int i=0; i < NUM_PULSES; i++) {
  2392. WRITE(PHOTOGRAPH_PIN, HIGH);
  2393. _delay_ms(PULSE_LENGTH);
  2394. WRITE(PHOTOGRAPH_PIN, LOW);
  2395. _delay_ms(PULSE_LENGTH);
  2396. }
  2397. #endif
  2398. #endif //chdk end if
  2399. }
  2400. break;
  2401. #ifdef DOGLCD
  2402. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2403. {
  2404. if (code_seen('C')) {
  2405. lcd_setcontrast( ((int)code_value())&63 );
  2406. }
  2407. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2408. SERIAL_PROTOCOL(lcd_contrast);
  2409. SERIAL_PROTOCOLLN("");
  2410. }
  2411. break;
  2412. #endif
  2413. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2414. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2415. {
  2416. float temp = .0;
  2417. if (code_seen('S')) temp=code_value();
  2418. set_extrude_min_temp(temp);
  2419. }
  2420. break;
  2421. #endif
  2422. case 303: // M303 PID autotune
  2423. {
  2424. float temp = 150.0;
  2425. int e=0;
  2426. int c=5;
  2427. if (code_seen('E')) e=code_value();
  2428. if (e<0)
  2429. temp=70;
  2430. if (code_seen('S')) temp=code_value();
  2431. if (code_seen('C')) c=code_value();
  2432. PID_autotune(temp, e, c);
  2433. }
  2434. break;
  2435. case 400: // M400 finish all moves
  2436. {
  2437. st_synchronize();
  2438. }
  2439. break;
  2440. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2441. case 401:
  2442. {
  2443. engage_z_probe(); // Engage Z Servo endstop if available
  2444. }
  2445. break;
  2446. case 402:
  2447. {
  2448. retract_z_probe(); // Retract Z Servo endstop if enabled
  2449. }
  2450. break;
  2451. #endif
  2452. case 500: // M500 Store settings in EEPROM
  2453. {
  2454. Config_StoreSettings();
  2455. }
  2456. break;
  2457. case 501: // M501 Read settings from EEPROM
  2458. {
  2459. Config_RetrieveSettings();
  2460. }
  2461. break;
  2462. case 502: // M502 Revert to default settings
  2463. {
  2464. Config_ResetDefault();
  2465. }
  2466. break;
  2467. case 503: // M503 print settings currently in memory
  2468. {
  2469. Config_PrintSettings();
  2470. }
  2471. break;
  2472. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2473. case 540:
  2474. {
  2475. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2476. }
  2477. break;
  2478. #endif
  2479. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2480. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  2481. {
  2482. float value;
  2483. if (code_seen('Z'))
  2484. {
  2485. value = code_value();
  2486. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  2487. {
  2488. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  2489. SERIAL_ECHO_START;
  2490. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  2491. SERIAL_PROTOCOLLN("");
  2492. }
  2493. else
  2494. {
  2495. SERIAL_ECHO_START;
  2496. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  2497. SERIAL_ECHOPGM(MSG_Z_MIN);
  2498. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  2499. SERIAL_ECHOPGM(MSG_Z_MAX);
  2500. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  2501. SERIAL_PROTOCOLLN("");
  2502. }
  2503. }
  2504. else
  2505. {
  2506. SERIAL_ECHO_START;
  2507. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  2508. SERIAL_ECHO(-zprobe_zoffset);
  2509. SERIAL_PROTOCOLLN("");
  2510. }
  2511. break;
  2512. }
  2513. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2514. #ifdef FILAMENTCHANGEENABLE
  2515. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2516. {
  2517. float target[4];
  2518. float lastpos[4];
  2519. target[X_AXIS]=current_position[X_AXIS];
  2520. target[Y_AXIS]=current_position[Y_AXIS];
  2521. target[Z_AXIS]=current_position[Z_AXIS];
  2522. target[E_AXIS]=current_position[E_AXIS];
  2523. lastpos[X_AXIS]=current_position[X_AXIS];
  2524. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2525. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2526. lastpos[E_AXIS]=current_position[E_AXIS];
  2527. //retract by E
  2528. if(code_seen('E'))
  2529. {
  2530. target[E_AXIS]+= code_value();
  2531. }
  2532. else
  2533. {
  2534. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2535. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2536. #endif
  2537. }
  2538. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2539. //lift Z
  2540. if(code_seen('Z'))
  2541. {
  2542. target[Z_AXIS]+= code_value();
  2543. }
  2544. else
  2545. {
  2546. #ifdef FILAMENTCHANGE_ZADD
  2547. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2548. #endif
  2549. }
  2550. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2551. //move xy
  2552. if(code_seen('X'))
  2553. {
  2554. target[X_AXIS]+= code_value();
  2555. }
  2556. else
  2557. {
  2558. #ifdef FILAMENTCHANGE_XPOS
  2559. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2560. #endif
  2561. }
  2562. if(code_seen('Y'))
  2563. {
  2564. target[Y_AXIS]= code_value();
  2565. }
  2566. else
  2567. {
  2568. #ifdef FILAMENTCHANGE_YPOS
  2569. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2570. #endif
  2571. }
  2572. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2573. if(code_seen('L'))
  2574. {
  2575. target[E_AXIS]+= code_value();
  2576. }
  2577. else
  2578. {
  2579. #ifdef FILAMENTCHANGE_FINALRETRACT
  2580. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2581. #endif
  2582. }
  2583. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2584. //finish moves
  2585. st_synchronize();
  2586. //disable extruder steppers so filament can be removed
  2587. disable_e0();
  2588. disable_e1();
  2589. disable_e2();
  2590. delay(100);
  2591. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2592. uint8_t cnt=0;
  2593. while(!lcd_clicked()){
  2594. cnt++;
  2595. manage_heater();
  2596. manage_inactivity();
  2597. lcd_update();
  2598. if(cnt==0)
  2599. {
  2600. #if BEEPER > 0
  2601. SET_OUTPUT(BEEPER);
  2602. WRITE(BEEPER,HIGH);
  2603. delay(3);
  2604. WRITE(BEEPER,LOW);
  2605. delay(3);
  2606. #else
  2607. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2608. lcd_buzz(1000/6,100);
  2609. #else
  2610. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2611. #endif
  2612. #endif
  2613. }
  2614. }
  2615. //return to normal
  2616. if(code_seen('L'))
  2617. {
  2618. target[E_AXIS]+= -code_value();
  2619. }
  2620. else
  2621. {
  2622. #ifdef FILAMENTCHANGE_FINALRETRACT
  2623. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2624. #endif
  2625. }
  2626. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2627. plan_set_e_position(current_position[E_AXIS]);
  2628. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2629. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2630. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2631. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2632. }
  2633. break;
  2634. #endif //FILAMENTCHANGEENABLE
  2635. #ifdef DUAL_X_CARRIAGE
  2636. case 605: // Set dual x-carriage movement mode:
  2637. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2638. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2639. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2640. // millimeters x-offset and an optional differential hotend temperature of
  2641. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2642. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2643. //
  2644. // Note: the X axis should be homed after changing dual x-carriage mode.
  2645. {
  2646. st_synchronize();
  2647. if (code_seen('S'))
  2648. dual_x_carriage_mode = code_value();
  2649. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2650. {
  2651. if (code_seen('X'))
  2652. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2653. if (code_seen('R'))
  2654. duplicate_extruder_temp_offset = code_value();
  2655. SERIAL_ECHO_START;
  2656. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2657. SERIAL_ECHO(" ");
  2658. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2659. SERIAL_ECHO(",");
  2660. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2661. SERIAL_ECHO(" ");
  2662. SERIAL_ECHO(duplicate_extruder_x_offset);
  2663. SERIAL_ECHO(",");
  2664. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2665. }
  2666. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2667. {
  2668. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2669. }
  2670. active_extruder_parked = false;
  2671. extruder_duplication_enabled = false;
  2672. delayed_move_time = 0;
  2673. }
  2674. break;
  2675. #endif //DUAL_X_CARRIAGE
  2676. case 907: // M907 Set digital trimpot motor current using axis codes.
  2677. {
  2678. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2679. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2680. if(code_seen('B')) digipot_current(4,code_value());
  2681. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2682. #endif
  2683. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2684. if(code_seen('X')) digipot_current(0, code_value());
  2685. #endif
  2686. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2687. if(code_seen('Z')) digipot_current(1, code_value());
  2688. #endif
  2689. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2690. if(code_seen('E')) digipot_current(2, code_value());
  2691. #endif
  2692. #ifdef DIGIPOT_I2C
  2693. // this one uses actual amps in floating point
  2694. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2695. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2696. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2697. #endif
  2698. }
  2699. break;
  2700. case 908: // M908 Control digital trimpot directly.
  2701. {
  2702. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2703. uint8_t channel,current;
  2704. if(code_seen('P')) channel=code_value();
  2705. if(code_seen('S')) current=code_value();
  2706. digitalPotWrite(channel, current);
  2707. #endif
  2708. }
  2709. break;
  2710. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2711. {
  2712. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2713. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2714. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2715. if(code_seen('B')) microstep_mode(4,code_value());
  2716. microstep_readings();
  2717. #endif
  2718. }
  2719. break;
  2720. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2721. {
  2722. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2723. if(code_seen('S')) switch((int)code_value())
  2724. {
  2725. case 1:
  2726. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2727. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2728. break;
  2729. case 2:
  2730. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2731. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2732. break;
  2733. }
  2734. microstep_readings();
  2735. #endif
  2736. }
  2737. break;
  2738. case 999: // M999: Restart after being stopped
  2739. Stopped = false;
  2740. lcd_reset_alert_level();
  2741. gcode_LastN = Stopped_gcode_LastN;
  2742. FlushSerialRequestResend();
  2743. break;
  2744. }
  2745. }
  2746. else if(code_seen('T'))
  2747. {
  2748. tmp_extruder = code_value();
  2749. if(tmp_extruder >= EXTRUDERS) {
  2750. SERIAL_ECHO_START;
  2751. SERIAL_ECHO("T");
  2752. SERIAL_ECHO(tmp_extruder);
  2753. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2754. }
  2755. else {
  2756. boolean make_move = false;
  2757. if(code_seen('F')) {
  2758. make_move = true;
  2759. next_feedrate = code_value();
  2760. if(next_feedrate > 0.0) {
  2761. feedrate = next_feedrate;
  2762. }
  2763. }
  2764. #if EXTRUDERS > 1
  2765. if(tmp_extruder != active_extruder) {
  2766. // Save current position to return to after applying extruder offset
  2767. memcpy(destination, current_position, sizeof(destination));
  2768. #ifdef DUAL_X_CARRIAGE
  2769. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2770. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2771. {
  2772. // Park old head: 1) raise 2) move to park position 3) lower
  2773. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2774. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2775. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2776. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2777. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2778. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2779. st_synchronize();
  2780. }
  2781. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2782. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2783. extruder_offset[Y_AXIS][active_extruder] +
  2784. extruder_offset[Y_AXIS][tmp_extruder];
  2785. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2786. extruder_offset[Z_AXIS][active_extruder] +
  2787. extruder_offset[Z_AXIS][tmp_extruder];
  2788. active_extruder = tmp_extruder;
  2789. // This function resets the max/min values - the current position may be overwritten below.
  2790. axis_is_at_home(X_AXIS);
  2791. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2792. {
  2793. current_position[X_AXIS] = inactive_extruder_x_pos;
  2794. inactive_extruder_x_pos = destination[X_AXIS];
  2795. }
  2796. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2797. {
  2798. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2799. if (active_extruder == 0 || active_extruder_parked)
  2800. current_position[X_AXIS] = inactive_extruder_x_pos;
  2801. else
  2802. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2803. inactive_extruder_x_pos = destination[X_AXIS];
  2804. extruder_duplication_enabled = false;
  2805. }
  2806. else
  2807. {
  2808. // record raised toolhead position for use by unpark
  2809. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2810. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2811. active_extruder_parked = true;
  2812. delayed_move_time = 0;
  2813. }
  2814. #else
  2815. // Offset extruder (only by XY)
  2816. int i;
  2817. for(i = 0; i < 2; i++) {
  2818. current_position[i] = current_position[i] -
  2819. extruder_offset[i][active_extruder] +
  2820. extruder_offset[i][tmp_extruder];
  2821. }
  2822. // Set the new active extruder and position
  2823. active_extruder = tmp_extruder;
  2824. #endif //else DUAL_X_CARRIAGE
  2825. #ifdef DELTA
  2826. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  2827. //sent position to plan_set_position();
  2828. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  2829. #else
  2830. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2831. #endif
  2832. // Move to the old position if 'F' was in the parameters
  2833. if(make_move && Stopped == false) {
  2834. prepare_move();
  2835. }
  2836. }
  2837. #endif
  2838. SERIAL_ECHO_START;
  2839. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2840. SERIAL_PROTOCOLLN((int)active_extruder);
  2841. }
  2842. }
  2843. else
  2844. {
  2845. SERIAL_ECHO_START;
  2846. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2847. SERIAL_ECHO(cmdbuffer[bufindr]);
  2848. SERIAL_ECHOLNPGM("\"");
  2849. }
  2850. ClearToSend();
  2851. }
  2852. void FlushSerialRequestResend()
  2853. {
  2854. //char cmdbuffer[bufindr][100]="Resend:";
  2855. MYSERIAL.flush();
  2856. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2857. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2858. ClearToSend();
  2859. }
  2860. void ClearToSend()
  2861. {
  2862. previous_millis_cmd = millis();
  2863. #ifdef SDSUPPORT
  2864. if(fromsd[bufindr])
  2865. return;
  2866. #endif //SDSUPPORT
  2867. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2868. }
  2869. void get_coordinates()
  2870. {
  2871. bool seen[4]={false,false,false,false};
  2872. for(int8_t i=0; i < NUM_AXIS; i++) {
  2873. if(code_seen(axis_codes[i]))
  2874. {
  2875. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2876. seen[i]=true;
  2877. }
  2878. else destination[i] = current_position[i]; //Are these else lines really needed?
  2879. }
  2880. if(code_seen('F')) {
  2881. next_feedrate = code_value();
  2882. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2883. }
  2884. }
  2885. void get_arc_coordinates()
  2886. {
  2887. #ifdef SF_ARC_FIX
  2888. bool relative_mode_backup = relative_mode;
  2889. relative_mode = true;
  2890. #endif
  2891. get_coordinates();
  2892. #ifdef SF_ARC_FIX
  2893. relative_mode=relative_mode_backup;
  2894. #endif
  2895. if(code_seen('I')) {
  2896. offset[0] = code_value();
  2897. }
  2898. else {
  2899. offset[0] = 0.0;
  2900. }
  2901. if(code_seen('J')) {
  2902. offset[1] = code_value();
  2903. }
  2904. else {
  2905. offset[1] = 0.0;
  2906. }
  2907. }
  2908. void clamp_to_software_endstops(float target[3])
  2909. {
  2910. if (min_software_endstops) {
  2911. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2912. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2913. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2914. }
  2915. if (max_software_endstops) {
  2916. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2917. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2918. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2919. }
  2920. }
  2921. #ifdef DELTA
  2922. void recalc_delta_settings(float radius, float diagonal_rod)
  2923. {
  2924. delta_tower1_x= -SIN_60*radius; // front left tower
  2925. delta_tower1_y= -COS_60*radius;
  2926. delta_tower2_x= SIN_60*radius; // front right tower
  2927. delta_tower2_y= -COS_60*radius;
  2928. delta_tower3_x= 0.0; // back middle tower
  2929. delta_tower3_y= radius;
  2930. delta_diagonal_rod_2= sq(diagonal_rod);
  2931. }
  2932. void calculate_delta(float cartesian[3])
  2933. {
  2934. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  2935. - sq(delta_tower1_x-cartesian[X_AXIS])
  2936. - sq(delta_tower1_y-cartesian[Y_AXIS])
  2937. ) + cartesian[Z_AXIS];
  2938. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  2939. - sq(delta_tower2_x-cartesian[X_AXIS])
  2940. - sq(delta_tower2_y-cartesian[Y_AXIS])
  2941. ) + cartesian[Z_AXIS];
  2942. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  2943. - sq(delta_tower3_x-cartesian[X_AXIS])
  2944. - sq(delta_tower3_y-cartesian[Y_AXIS])
  2945. ) + cartesian[Z_AXIS];
  2946. /*
  2947. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2948. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2949. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2950. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2951. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2952. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2953. */
  2954. }
  2955. #endif
  2956. void prepare_move()
  2957. {
  2958. clamp_to_software_endstops(destination);
  2959. previous_millis_cmd = millis();
  2960. #ifdef DELTA
  2961. float difference[NUM_AXIS];
  2962. for (int8_t i=0; i < NUM_AXIS; i++) {
  2963. difference[i] = destination[i] - current_position[i];
  2964. }
  2965. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2966. sq(difference[Y_AXIS]) +
  2967. sq(difference[Z_AXIS]));
  2968. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2969. if (cartesian_mm < 0.000001) { return; }
  2970. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2971. int steps = max(1, int(delta_segments_per_second * seconds));
  2972. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2973. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2974. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2975. for (int s = 1; s <= steps; s++) {
  2976. float fraction = float(s) / float(steps);
  2977. for(int8_t i=0; i < NUM_AXIS; i++) {
  2978. destination[i] = current_position[i] + difference[i] * fraction;
  2979. }
  2980. calculate_delta(destination);
  2981. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2982. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2983. active_extruder);
  2984. }
  2985. #else
  2986. #ifdef DUAL_X_CARRIAGE
  2987. if (active_extruder_parked)
  2988. {
  2989. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2990. {
  2991. // move duplicate extruder into correct duplication position.
  2992. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2993. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2994. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2995. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2996. st_synchronize();
  2997. extruder_duplication_enabled = true;
  2998. active_extruder_parked = false;
  2999. }
  3000. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3001. {
  3002. if (current_position[E_AXIS] == destination[E_AXIS])
  3003. {
  3004. // this is a travel move - skit it but keep track of current position (so that it can later
  3005. // be used as start of first non-travel move)
  3006. if (delayed_move_time != 0xFFFFFFFFUL)
  3007. {
  3008. memcpy(current_position, destination, sizeof(current_position));
  3009. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3010. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3011. delayed_move_time = millis();
  3012. return;
  3013. }
  3014. }
  3015. delayed_move_time = 0;
  3016. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3017. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3018. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3019. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3021. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3022. active_extruder_parked = false;
  3023. }
  3024. }
  3025. #endif //DUAL_X_CARRIAGE
  3026. // Do not use feedmultiply for E or Z only moves
  3027. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3028. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3029. }
  3030. else {
  3031. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3032. }
  3033. #endif //else DELTA
  3034. for(int8_t i=0; i < NUM_AXIS; i++) {
  3035. current_position[i] = destination[i];
  3036. }
  3037. }
  3038. void prepare_arc_move(char isclockwise) {
  3039. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3040. // Trace the arc
  3041. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3042. // As far as the parser is concerned, the position is now == target. In reality the
  3043. // motion control system might still be processing the action and the real tool position
  3044. // in any intermediate location.
  3045. for(int8_t i=0; i < NUM_AXIS; i++) {
  3046. current_position[i] = destination[i];
  3047. }
  3048. previous_millis_cmd = millis();
  3049. }
  3050. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3051. #if defined(FAN_PIN)
  3052. #if CONTROLLERFAN_PIN == FAN_PIN
  3053. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3054. #endif
  3055. #endif
  3056. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3057. unsigned long lastMotorCheck = 0;
  3058. void controllerFan()
  3059. {
  3060. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3061. {
  3062. lastMotorCheck = millis();
  3063. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3064. #if EXTRUDERS > 2
  3065. || !READ(E2_ENABLE_PIN)
  3066. #endif
  3067. #if EXTRUDER > 1
  3068. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3069. || !READ(X2_ENABLE_PIN)
  3070. #endif
  3071. || !READ(E1_ENABLE_PIN)
  3072. #endif
  3073. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3074. {
  3075. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3076. }
  3077. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3078. {
  3079. digitalWrite(CONTROLLERFAN_PIN, 0);
  3080. analogWrite(CONTROLLERFAN_PIN, 0);
  3081. }
  3082. else
  3083. {
  3084. // allows digital or PWM fan output to be used (see M42 handling)
  3085. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3086. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3087. }
  3088. }
  3089. }
  3090. #endif
  3091. #ifdef TEMP_STAT_LEDS
  3092. static bool blue_led = false;
  3093. static bool red_led = false;
  3094. static uint32_t stat_update = 0;
  3095. void handle_status_leds(void) {
  3096. float max_temp = 0.0;
  3097. if(millis() > stat_update) {
  3098. stat_update += 500; // Update every 0.5s
  3099. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3100. max_temp = max(max_temp, degHotend(cur_extruder));
  3101. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3102. }
  3103. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3104. max_temp = max(max_temp, degTargetBed());
  3105. max_temp = max(max_temp, degBed());
  3106. #endif
  3107. if((max_temp > 55.0) && (red_led == false)) {
  3108. digitalWrite(STAT_LED_RED, 1);
  3109. digitalWrite(STAT_LED_BLUE, 0);
  3110. red_led = true;
  3111. blue_led = false;
  3112. }
  3113. if((max_temp < 54.0) && (blue_led == false)) {
  3114. digitalWrite(STAT_LED_RED, 0);
  3115. digitalWrite(STAT_LED_BLUE, 1);
  3116. red_led = false;
  3117. blue_led = true;
  3118. }
  3119. }
  3120. }
  3121. #endif
  3122. void manage_inactivity()
  3123. {
  3124. if(buflen < (BUFSIZE-1))
  3125. get_command();
  3126. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3127. if(max_inactive_time)
  3128. kill();
  3129. if(stepper_inactive_time) {
  3130. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3131. {
  3132. if(blocks_queued() == false) {
  3133. disable_x();
  3134. disable_y();
  3135. disable_z();
  3136. disable_e0();
  3137. disable_e1();
  3138. disable_e2();
  3139. }
  3140. }
  3141. }
  3142. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3143. if (chdkActive)
  3144. {
  3145. chdkActive = false;
  3146. if (millis()-chdkHigh < CHDK_DELAY) return;
  3147. WRITE(CHDK, LOW);
  3148. }
  3149. #endif
  3150. #if defined(KILL_PIN) && KILL_PIN > -1
  3151. if( 0 == READ(KILL_PIN) )
  3152. kill();
  3153. #endif
  3154. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3155. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3156. #endif
  3157. #ifdef EXTRUDER_RUNOUT_PREVENT
  3158. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3159. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3160. {
  3161. bool oldstatus=READ(E0_ENABLE_PIN);
  3162. enable_e0();
  3163. float oldepos=current_position[E_AXIS];
  3164. float oldedes=destination[E_AXIS];
  3165. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3166. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3167. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3168. current_position[E_AXIS]=oldepos;
  3169. destination[E_AXIS]=oldedes;
  3170. plan_set_e_position(oldepos);
  3171. previous_millis_cmd=millis();
  3172. st_synchronize();
  3173. WRITE(E0_ENABLE_PIN,oldstatus);
  3174. }
  3175. #endif
  3176. #if defined(DUAL_X_CARRIAGE)
  3177. // handle delayed move timeout
  3178. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3179. {
  3180. // travel moves have been received so enact them
  3181. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3182. memcpy(destination,current_position,sizeof(destination));
  3183. prepare_move();
  3184. }
  3185. #endif
  3186. #ifdef TEMP_STAT_LEDS
  3187. handle_status_leds();
  3188. #endif
  3189. check_axes_activity();
  3190. }
  3191. void kill()
  3192. {
  3193. cli(); // Stop interrupts
  3194. disable_heater();
  3195. disable_x();
  3196. disable_y();
  3197. disable_z();
  3198. disable_e0();
  3199. disable_e1();
  3200. disable_e2();
  3201. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3202. pinMode(PS_ON_PIN,INPUT);
  3203. #endif
  3204. SERIAL_ERROR_START;
  3205. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3206. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3207. suicide();
  3208. while(1) { /* Intentionally left empty */ } // Wait for reset
  3209. }
  3210. void Stop()
  3211. {
  3212. disable_heater();
  3213. if(Stopped == false) {
  3214. Stopped = true;
  3215. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3216. SERIAL_ERROR_START;
  3217. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3218. LCD_MESSAGEPGM(MSG_STOPPED);
  3219. }
  3220. }
  3221. bool IsStopped() { return Stopped; };
  3222. #ifdef FAST_PWM_FAN
  3223. void setPwmFrequency(uint8_t pin, int val)
  3224. {
  3225. val &= 0x07;
  3226. switch(digitalPinToTimer(pin))
  3227. {
  3228. #if defined(TCCR0A)
  3229. case TIMER0A:
  3230. case TIMER0B:
  3231. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3232. // TCCR0B |= val;
  3233. break;
  3234. #endif
  3235. #if defined(TCCR1A)
  3236. case TIMER1A:
  3237. case TIMER1B:
  3238. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3239. // TCCR1B |= val;
  3240. break;
  3241. #endif
  3242. #if defined(TCCR2)
  3243. case TIMER2:
  3244. case TIMER2:
  3245. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3246. TCCR2 |= val;
  3247. break;
  3248. #endif
  3249. #if defined(TCCR2A)
  3250. case TIMER2A:
  3251. case TIMER2B:
  3252. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3253. TCCR2B |= val;
  3254. break;
  3255. #endif
  3256. #if defined(TCCR3A)
  3257. case TIMER3A:
  3258. case TIMER3B:
  3259. case TIMER3C:
  3260. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3261. TCCR3B |= val;
  3262. break;
  3263. #endif
  3264. #if defined(TCCR4A)
  3265. case TIMER4A:
  3266. case TIMER4B:
  3267. case TIMER4C:
  3268. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3269. TCCR4B |= val;
  3270. break;
  3271. #endif
  3272. #if defined(TCCR5A)
  3273. case TIMER5A:
  3274. case TIMER5B:
  3275. case TIMER5C:
  3276. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3277. TCCR5B |= val;
  3278. break;
  3279. #endif
  3280. }
  3281. }
  3282. #endif //FAST_PWM_FAN
  3283. bool setTargetedHotend(int code){
  3284. tmp_extruder = active_extruder;
  3285. if(code_seen('T')) {
  3286. tmp_extruder = code_value();
  3287. if(tmp_extruder >= EXTRUDERS) {
  3288. SERIAL_ECHO_START;
  3289. switch(code){
  3290. case 104:
  3291. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3292. break;
  3293. case 105:
  3294. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3295. break;
  3296. case 109:
  3297. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3298. break;
  3299. case 218:
  3300. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3301. break;
  3302. case 221:
  3303. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  3304. break;
  3305. }
  3306. SERIAL_ECHOLN(tmp_extruder);
  3307. return true;
  3308. }
  3309. }
  3310. return false;
  3311. }