12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
- /**
- * temperature.cpp - temperature control
- */
-
- #include "Marlin.h"
- #include "temperature.h"
- #include "thermistortables.h"
- #include "ultralcd.h"
- #include "planner.h"
- #include "language.h"
-
- #if ENABLED(HEATER_0_USES_MAX6675)
- #include "spi.h"
- #endif
-
- #if ENABLED(BABYSTEPPING)
- #include "stepper.h"
- #endif
-
- #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
- #include "endstops.h"
- #endif
-
- #if ENABLED(USE_WATCHDOG)
- #include "watchdog.h"
- #endif
-
- #ifdef K1 // Defined in Configuration.h in the PID settings
- #define K2 (1.0-K1)
- #endif
-
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- static void* heater_ttbl_map[2] = {(void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE };
- static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
- #else
- static void* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS((void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE, (void*)HEATER_2_TEMPTABLE, (void*)HEATER_3_TEMPTABLE, (void*)HEATER_4_TEMPTABLE);
- static uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN, HEATER_4_TEMPTABLE_LEN);
- #endif
-
- Temperature thermalManager;
-
- // public:
-
- float Temperature::current_temperature[HOTENDS] = { 0.0 },
- Temperature::current_temperature_bed = 0.0;
- int16_t Temperature::current_temperature_raw[HOTENDS] = { 0 },
- Temperature::target_temperature[HOTENDS] = { 0 },
- Temperature::current_temperature_bed_raw = 0,
- Temperature::target_temperature_bed = 0;
-
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- float Temperature::redundant_temperature = 0.0;
- #endif
-
- #if ENABLED(PIDTEMP)
- #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
- float Temperature::Kp[HOTENDS] = ARRAY_BY_HOTENDS1(DEFAULT_Kp),
- Temperature::Ki[HOTENDS] = ARRAY_BY_HOTENDS1((DEFAULT_Ki) * (PID_dT)),
- Temperature::Kd[HOTENDS] = ARRAY_BY_HOTENDS1((DEFAULT_Kd) / (PID_dT));
- #if ENABLED(PID_EXTRUSION_SCALING)
- float Temperature::Kc[HOTENDS] = ARRAY_BY_HOTENDS1(DEFAULT_Kc);
- #endif
- #else
- float Temperature::Kp = DEFAULT_Kp,
- Temperature::Ki = (DEFAULT_Ki) * (PID_dT),
- Temperature::Kd = (DEFAULT_Kd) / (PID_dT);
- #if ENABLED(PID_EXTRUSION_SCALING)
- float Temperature::Kc = DEFAULT_Kc;
- #endif
- #endif
- #endif
-
- #if ENABLED(PIDTEMPBED)
- float Temperature::bedKp = DEFAULT_bedKp,
- Temperature::bedKi = ((DEFAULT_bedKi) * PID_dT),
- Temperature::bedKd = ((DEFAULT_bedKd) / PID_dT);
- #endif
-
- #if ENABLED(BABYSTEPPING)
- volatile int Temperature::babystepsTodo[XYZ] = { 0 };
- #endif
-
- #if WATCH_HOTENDS
- int Temperature::watch_target_temp[HOTENDS] = { 0 };
- millis_t Temperature::watch_heater_next_ms[HOTENDS] = { 0 };
- #endif
-
- #if WATCH_THE_BED
- int Temperature::watch_target_bed_temp = 0;
- millis_t Temperature::watch_bed_next_ms = 0;
- #endif
-
- #if ENABLED(PREVENT_COLD_EXTRUSION)
- bool Temperature::allow_cold_extrude = false;
- float Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
- #endif
-
- // private:
-
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- int Temperature::redundant_temperature_raw = 0;
- float Temperature::redundant_temperature = 0.0;
- #endif
-
- volatile bool Temperature::temp_meas_ready = false;
-
- #if ENABLED(PIDTEMP)
- float Temperature::temp_iState[HOTENDS] = { 0 },
- Temperature::temp_dState[HOTENDS] = { 0 },
- Temperature::pTerm[HOTENDS],
- Temperature::iTerm[HOTENDS],
- Temperature::dTerm[HOTENDS];
-
- #if ENABLED(PID_EXTRUSION_SCALING)
- float Temperature::cTerm[HOTENDS];
- long Temperature::last_e_position;
- long Temperature::lpq[LPQ_MAX_LEN];
- int Temperature::lpq_ptr = 0;
- #endif
-
- float Temperature::pid_error[HOTENDS];
- bool Temperature::pid_reset[HOTENDS];
- #endif
-
- #if ENABLED(PIDTEMPBED)
- float Temperature::temp_iState_bed = { 0 },
- Temperature::temp_dState_bed = { 0 },
- Temperature::pTerm_bed,
- Temperature::iTerm_bed,
- Temperature::dTerm_bed,
- Temperature::pid_error_bed;
- #else
- millis_t Temperature::next_bed_check_ms;
- #endif
-
- uint16_t Temperature::raw_temp_value[MAX_EXTRUDERS] = { 0 },
- Temperature::raw_temp_bed_value = 0;
-
- // Init min and max temp with extreme values to prevent false errors during startup
- int16_t Temperature::minttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP, HEATER_4_RAW_LO_TEMP),
- Temperature::maxttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP, HEATER_4_RAW_HI_TEMP),
- Temperature::minttemp[HOTENDS] = { 0 },
- Temperature::maxttemp[HOTENDS] = ARRAY_BY_HOTENDS1(16383);
-
- #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
- uint8_t Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
- #endif
-
- #ifdef MILLISECONDS_PREHEAT_TIME
- millis_t Temperature::preheat_end_time[HOTENDS] = { 0 };
- #endif
-
- #ifdef BED_MINTEMP
- int16_t Temperature::bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
- #endif
-
- #ifdef BED_MAXTEMP
- int16_t Temperature::bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
- #endif
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- int16_t Temperature::meas_shift_index; // Index of a delayed sample in buffer
- #endif
-
- #if HAS_AUTO_FAN
- millis_t Temperature::next_auto_fan_check_ms = 0;
- #endif
-
- uint8_t Temperature::soft_pwm_amount[HOTENDS],
- Temperature::soft_pwm_amount_bed;
-
- #if ENABLED(FAN_SOFT_PWM)
- uint8_t Temperature::soft_pwm_amount_fan[FAN_COUNT],
- Temperature::soft_pwm_count_fan[FAN_COUNT];
- #endif
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- int Temperature::current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
- #endif
-
- #if ENABLED(PROBING_HEATERS_OFF)
- bool Temperature::paused;
- int16_t Temperature::paused_hotend_temp[HOTENDS];
- #if HAS_TEMP_BED
- int16_t Temperature::paused_bed_temp;
- #endif
- #endif
-
- #if HAS_PID_HEATING
-
- void Temperature::PID_autotune(float temp, int hotend, int ncycles, bool set_result/*=false*/) {
- float input = 0.0;
- int cycles = 0;
- bool heating = true;
-
- millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
- long t_high = 0, t_low = 0;
-
- long bias, d;
- float Ku, Tu;
- float workKp = 0, workKi = 0, workKd = 0;
- float max = 0, min = 10000;
-
- #if HAS_AUTO_FAN
- next_auto_fan_check_ms = temp_ms + 2500UL;
- #endif
-
- if (hotend >=
- #if ENABLED(PIDTEMP)
- HOTENDS
- #else
- 0
- #endif
- || hotend <
- #if ENABLED(PIDTEMPBED)
- -1
- #else
- 0
- #endif
- ) {
- SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
- return;
- }
-
- SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
-
- disable_all_heaters(); // switch off all heaters.
-
- #if HAS_PID_FOR_BOTH
- if (hotend < 0)
- soft_pwm_amount_bed = bias = d = (MAX_BED_POWER) >> 1;
- else
- soft_pwm_amount[hotend] = bias = d = (PID_MAX) >> 1;
- #elif ENABLED(PIDTEMP)
- soft_pwm_amount[hotend] = bias = d = (PID_MAX) >> 1;
- #else
- soft_pwm_amount_bed = bias = d = (MAX_BED_POWER) >> 1;
- #endif
-
- wait_for_heatup = true;
-
- // PID Tuning loop
- while (wait_for_heatup) {
-
- millis_t ms = millis();
-
- if (temp_meas_ready) { // temp sample ready
- updateTemperaturesFromRawValues();
-
- input =
- #if HAS_PID_FOR_BOTH
- hotend < 0 ? current_temperature_bed : current_temperature[hotend]
- #elif ENABLED(PIDTEMP)
- current_temperature[hotend]
- #else
- current_temperature_bed
- #endif
- ;
-
- NOLESS(max, input);
- NOMORE(min, input);
-
- #if HAS_AUTO_FAN
- if (ELAPSED(ms, next_auto_fan_check_ms)) {
- checkExtruderAutoFans();
- next_auto_fan_check_ms = ms + 2500UL;
- }
- #endif
-
- if (heating && input > temp) {
- if (ELAPSED(ms, t2 + 5000UL)) {
- heating = false;
- #if HAS_PID_FOR_BOTH
- if (hotend < 0)
- soft_pwm_amount_bed = (bias - d) >> 1;
- else
- soft_pwm_amount[hotend] = (bias - d) >> 1;
- #elif ENABLED(PIDTEMP)
- soft_pwm_amount[hotend] = (bias - d) >> 1;
- #elif ENABLED(PIDTEMPBED)
- soft_pwm_amount_bed = (bias - d) >> 1;
- #endif
- t1 = ms;
- t_high = t1 - t2;
- max = temp;
- }
- }
-
- if (!heating && input < temp) {
- if (ELAPSED(ms, t1 + 5000UL)) {
- heating = true;
- t2 = ms;
- t_low = t2 - t1;
- if (cycles > 0) {
- long max_pow =
- #if HAS_PID_FOR_BOTH
- hotend < 0 ? MAX_BED_POWER : PID_MAX
- #elif ENABLED(PIDTEMP)
- PID_MAX
- #else
- MAX_BED_POWER
- #endif
- ;
- bias += (d * (t_high - t_low)) / (t_low + t_high);
- bias = constrain(bias, 20, max_pow - 20);
- d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
-
- SERIAL_PROTOCOLPAIR(MSG_BIAS, bias);
- SERIAL_PROTOCOLPAIR(MSG_D, d);
- SERIAL_PROTOCOLPAIR(MSG_T_MIN, min);
- SERIAL_PROTOCOLPAIR(MSG_T_MAX, max);
- if (cycles > 2) {
- Ku = (4.0 * d) / (M_PI * (max - min) * 0.5);
- Tu = ((float)(t_low + t_high) * 0.001);
- SERIAL_PROTOCOLPAIR(MSG_KU, Ku);
- SERIAL_PROTOCOLPAIR(MSG_TU, Tu);
- workKp = 0.6 * Ku;
- workKi = 2 * workKp / Tu;
- workKd = workKp * Tu * 0.125;
- SERIAL_PROTOCOLLNPGM("\n" MSG_CLASSIC_PID);
- SERIAL_PROTOCOLPAIR(MSG_KP, workKp);
- SERIAL_PROTOCOLPAIR(MSG_KI, workKi);
- SERIAL_PROTOCOLLNPAIR(MSG_KD, workKd);
- /**
- workKp = 0.33*Ku;
- workKi = workKp/Tu;
- workKd = workKp*Tu/3;
- SERIAL_PROTOCOLLNPGM(" Some overshoot");
- SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
- SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
- SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
- workKp = 0.2*Ku;
- workKi = 2*workKp/Tu;
- workKd = workKp*Tu/3;
- SERIAL_PROTOCOLLNPGM(" No overshoot");
- SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
- SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
- SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
- */
- }
- }
- #if HAS_PID_FOR_BOTH
- if (hotend < 0)
- soft_pwm_amount_bed = (bias + d) >> 1;
- else
- soft_pwm_amount[hotend] = (bias + d) >> 1;
- #elif ENABLED(PIDTEMP)
- soft_pwm_amount[hotend] = (bias + d) >> 1;
- #else
- soft_pwm_amount_bed = (bias + d) >> 1;
- #endif
- cycles++;
- min = temp;
- }
- }
- }
- #define MAX_OVERSHOOT_PID_AUTOTUNE 20
- if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) {
- SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
- return;
- }
- // Every 2 seconds...
- if (ELAPSED(ms, temp_ms + 2000UL)) {
- #if HAS_TEMP_HOTEND || HAS_TEMP_BED
- print_heaterstates();
- SERIAL_EOL;
- #endif
-
- temp_ms = ms;
- } // every 2 seconds
- // Over 2 minutes?
- if (((ms - t1) + (ms - t2)) > (10L * 60L * 1000L * 2L)) {
- SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
- return;
- }
- if (cycles > ncycles) {
- SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
-
- #if HAS_PID_FOR_BOTH
- const char* estring = hotend < 0 ? "bed" : "";
- SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kp ", workKp); SERIAL_EOL;
- SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Ki ", workKi); SERIAL_EOL;
- SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kd ", workKd); SERIAL_EOL;
- #elif ENABLED(PIDTEMP)
- SERIAL_PROTOCOLPAIR("#define DEFAULT_Kp ", workKp); SERIAL_EOL;
- SERIAL_PROTOCOLPAIR("#define DEFAULT_Ki ", workKi); SERIAL_EOL;
- SERIAL_PROTOCOLPAIR("#define DEFAULT_Kd ", workKd); SERIAL_EOL;
- #else
- SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKp ", workKp); SERIAL_EOL;
- SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKi ", workKi); SERIAL_EOL;
- SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKd ", workKd); SERIAL_EOL;
- #endif
-
- #define _SET_BED_PID() do { \
- bedKp = workKp; \
- bedKi = scalePID_i(workKi); \
- bedKd = scalePID_d(workKd); \
- updatePID(); } while(0)
-
- #define _SET_EXTRUDER_PID() do { \
- PID_PARAM(Kp, hotend) = workKp; \
- PID_PARAM(Ki, hotend) = scalePID_i(workKi); \
- PID_PARAM(Kd, hotend) = scalePID_d(workKd); \
- updatePID(); } while(0)
-
- // Use the result? (As with "M303 U1")
- if (set_result) {
- #if HAS_PID_FOR_BOTH
- if (hotend < 0)
- _SET_BED_PID();
- else
- _SET_EXTRUDER_PID();
- #elif ENABLED(PIDTEMP)
- _SET_EXTRUDER_PID();
- #else
- _SET_BED_PID();
- #endif
- }
- return;
- }
- lcd_update();
- }
- if (!wait_for_heatup) disable_all_heaters();
- }
-
- #endif // HAS_PID_HEATING
-
- /**
- * Class and Instance Methods
- */
-
- Temperature::Temperature() { }
-
- void Temperature::updatePID() {
- #if ENABLED(PIDTEMP)
- #if ENABLED(PID_EXTRUSION_SCALING)
- last_e_position = 0;
- #endif
- #endif
- }
-
- int Temperature::getHeaterPower(int heater) {
- return heater < 0 ? soft_pwm_amount_bed : soft_pwm_amount[heater];
- }
-
- #if HAS_AUTO_FAN
-
- void Temperature::checkExtruderAutoFans() {
- constexpr int8_t fanPin[] = { E0_AUTO_FAN_PIN, E1_AUTO_FAN_PIN, E2_AUTO_FAN_PIN, E3_AUTO_FAN_PIN, E4_AUTO_FAN_PIN };
- constexpr int fanBit[] = {
- 0,
- AUTO_1_IS_0 ? 0 : 1,
- AUTO_2_IS_0 ? 0 : AUTO_2_IS_1 ? 1 : 2,
- AUTO_3_IS_0 ? 0 : AUTO_3_IS_1 ? 1 : AUTO_3_IS_2 ? 2 : 3,
- AUTO_4_IS_0 ? 0 : AUTO_4_IS_1 ? 1 : AUTO_4_IS_2 ? 2 : AUTO_4_IS_3 ? 3 : 4
- };
- uint8_t fanState = 0;
-
- HOTEND_LOOP() {
- if (current_temperature[e] > EXTRUDER_AUTO_FAN_TEMPERATURE)
- SBI(fanState, fanBit[e]);
- }
-
- uint8_t fanDone = 0;
- for (uint8_t f = 0; f < COUNT(fanPin); f++) {
- int8_t pin = fanPin[f];
- if (pin >= 0 && !TEST(fanDone, fanBit[f])) {
- uint8_t newFanSpeed = TEST(fanState, fanBit[f]) ? EXTRUDER_AUTO_FAN_SPEED : 0;
- // this idiom allows both digital and PWM fan outputs (see M42 handling).
- digitalWrite(pin, newFanSpeed);
- analogWrite(pin, newFanSpeed);
- SBI(fanDone, fanBit[f]);
- }
- }
- }
-
- #endif // HAS_AUTO_FAN
-
- //
- // Temperature Error Handlers
- //
- void Temperature::_temp_error(int e, const char* serial_msg, const char* lcd_msg) {
- static bool killed = false;
- if (IsRunning()) {
- SERIAL_ERROR_START;
- serialprintPGM(serial_msg);
- SERIAL_ERRORPGM(MSG_STOPPED_HEATER);
- if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED);
- }
- #if DISABLED(BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE)
- if (!killed) {
- Running = false;
- killed = true;
- kill(lcd_msg);
- }
- else
- disable_all_heaters(); // paranoia
- #endif
- }
-
- void Temperature::max_temp_error(int8_t e) {
- #if HAS_TEMP_BED
- _temp_error(e, PSTR(MSG_T_MAXTEMP), e >= 0 ? PSTR(MSG_ERR_MAXTEMP) : PSTR(MSG_ERR_MAXTEMP_BED));
- #else
- _temp_error(HOTEND_INDEX, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
- #if HOTENDS == 1
- UNUSED(e);
- #endif
- #endif
- }
- void Temperature::min_temp_error(int8_t e) {
- #if HAS_TEMP_BED
- _temp_error(e, PSTR(MSG_T_MINTEMP), e >= 0 ? PSTR(MSG_ERR_MINTEMP) : PSTR(MSG_ERR_MINTEMP_BED));
- #else
- _temp_error(HOTEND_INDEX, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
- #if HOTENDS == 1
- UNUSED(e);
- #endif
- #endif
- }
-
- float Temperature::get_pid_output(int e) {
- #if HOTENDS == 1
- UNUSED(e);
- #define _HOTEND_TEST true
- #else
- #define _HOTEND_TEST e == active_extruder
- #endif
- float pid_output;
- #if ENABLED(PIDTEMP)
- #if DISABLED(PID_OPENLOOP)
- pid_error[HOTEND_INDEX] = target_temperature[HOTEND_INDEX] - current_temperature[HOTEND_INDEX];
- dTerm[HOTEND_INDEX] = K2 * PID_PARAM(Kd, HOTEND_INDEX) * (current_temperature[HOTEND_INDEX] - temp_dState[HOTEND_INDEX]) + K1 * dTerm[HOTEND_INDEX];
- temp_dState[HOTEND_INDEX] = current_temperature[HOTEND_INDEX];
- if (pid_error[HOTEND_INDEX] > PID_FUNCTIONAL_RANGE) {
- pid_output = BANG_MAX;
- pid_reset[HOTEND_INDEX] = true;
- }
- else if (pid_error[HOTEND_INDEX] < -(PID_FUNCTIONAL_RANGE) || target_temperature[HOTEND_INDEX] == 0) {
- pid_output = 0;
- pid_reset[HOTEND_INDEX] = true;
- }
- else {
- if (pid_reset[HOTEND_INDEX]) {
- temp_iState[HOTEND_INDEX] = 0.0;
- pid_reset[HOTEND_INDEX] = false;
- }
- pTerm[HOTEND_INDEX] = PID_PARAM(Kp, HOTEND_INDEX) * pid_error[HOTEND_INDEX];
- temp_iState[HOTEND_INDEX] += pid_error[HOTEND_INDEX];
- iTerm[HOTEND_INDEX] = PID_PARAM(Ki, HOTEND_INDEX) * temp_iState[HOTEND_INDEX];
-
- pid_output = pTerm[HOTEND_INDEX] + iTerm[HOTEND_INDEX] - dTerm[HOTEND_INDEX];
-
- #if ENABLED(PID_EXTRUSION_SCALING)
- cTerm[HOTEND_INDEX] = 0;
- if (_HOTEND_TEST) {
- long e_position = stepper.position(E_AXIS);
- if (e_position > last_e_position) {
- lpq[lpq_ptr] = e_position - last_e_position;
- last_e_position = e_position;
- }
- else {
- lpq[lpq_ptr] = 0;
- }
- if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
- cTerm[HOTEND_INDEX] = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
- pid_output += cTerm[HOTEND_INDEX];
- }
- #endif // PID_EXTRUSION_SCALING
-
- if (pid_output > PID_MAX) {
- if (pid_error[HOTEND_INDEX] > 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
- pid_output = PID_MAX;
- }
- else if (pid_output < 0) {
- if (pid_error[HOTEND_INDEX] < 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
- pid_output = 0;
- }
- }
- #else
- pid_output = constrain(target_temperature[HOTEND_INDEX], 0, PID_MAX);
- #endif // PID_OPENLOOP
-
- #if ENABLED(PID_DEBUG)
- SERIAL_ECHO_START;
- SERIAL_ECHOPAIR(MSG_PID_DEBUG, HOTEND_INDEX);
- SERIAL_ECHOPAIR(MSG_PID_DEBUG_INPUT, current_temperature[HOTEND_INDEX]);
- SERIAL_ECHOPAIR(MSG_PID_DEBUG_OUTPUT, pid_output);
- SERIAL_ECHOPAIR(MSG_PID_DEBUG_PTERM, pTerm[HOTEND_INDEX]);
- SERIAL_ECHOPAIR(MSG_PID_DEBUG_ITERM, iTerm[HOTEND_INDEX]);
- SERIAL_ECHOPAIR(MSG_PID_DEBUG_DTERM, dTerm[HOTEND_INDEX]);
- #if ENABLED(PID_EXTRUSION_SCALING)
- SERIAL_ECHOPAIR(MSG_PID_DEBUG_CTERM, cTerm[HOTEND_INDEX]);
- #endif
- SERIAL_EOL;
- #endif // PID_DEBUG
-
- #else /* PID off */
- pid_output = (current_temperature[HOTEND_INDEX] < target_temperature[HOTEND_INDEX]) ? PID_MAX : 0;
- #endif
-
- return pid_output;
- }
-
- #if ENABLED(PIDTEMPBED)
- float Temperature::get_pid_output_bed() {
- float pid_output;
- #if DISABLED(PID_OPENLOOP)
- pid_error_bed = target_temperature_bed - current_temperature_bed;
- pTerm_bed = bedKp * pid_error_bed;
- temp_iState_bed += pid_error_bed;
- iTerm_bed = bedKi * temp_iState_bed;
-
- dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
- temp_dState_bed = current_temperature_bed;
-
- pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
- if (pid_output > MAX_BED_POWER) {
- if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
- pid_output = MAX_BED_POWER;
- }
- else if (pid_output < 0) {
- if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
- pid_output = 0;
- }
- #else
- pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
- #endif // PID_OPENLOOP
-
- #if ENABLED(PID_BED_DEBUG)
- SERIAL_ECHO_START;
- SERIAL_ECHOPGM(" PID_BED_DEBUG ");
- SERIAL_ECHOPGM(": Input ");
- SERIAL_ECHO(current_temperature_bed);
- SERIAL_ECHOPGM(" Output ");
- SERIAL_ECHO(pid_output);
- SERIAL_ECHOPGM(" pTerm ");
- SERIAL_ECHO(pTerm_bed);
- SERIAL_ECHOPGM(" iTerm ");
- SERIAL_ECHO(iTerm_bed);
- SERIAL_ECHOPGM(" dTerm ");
- SERIAL_ECHOLN(dTerm_bed);
- #endif // PID_BED_DEBUG
-
- return pid_output;
- }
- #endif // PIDTEMPBED
-
- /**
- * Manage heating activities for extruder hot-ends and a heated bed
- * - Acquire updated temperature readings
- * - Also resets the watchdog timer
- * - Invoke thermal runaway protection
- * - Manage extruder auto-fan
- * - Apply filament width to the extrusion rate (may move)
- * - Update the heated bed PID output value
- */
-
- /**
- * The following line SOMETIMES results in the dreaded "unable to find a register to spill in class 'POINTER_REGS'"
- * compile error.
- * thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
- *
- * This is due to a bug in the C++ compiler used by the Arduino IDE from 1.6.10 to at least 1.8.1.
- *
- * The work around is to add the compiler flag "__attribute__((__optimize__("O2")))" to the declaration for manage_heater()
- */
- //void Temperature::manage_heater() __attribute__((__optimize__("O2")));
- void Temperature::manage_heater() {
-
- if (!temp_meas_ready) return;
-
- updateTemperaturesFromRawValues(); // also resets the watchdog
-
- #if ENABLED(HEATER_0_USES_MAX6675)
- if (current_temperature[0] > min(HEATER_0_MAXTEMP, MAX6675_TMAX - 1)) max_temp_error(0);
- if (current_temperature[0] < max(HEATER_0_MINTEMP, MAX6675_TMIN + 0.01)) min_temp_error(0);
- #endif
-
- #if WATCH_HOTENDS || WATCH_THE_BED || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN
- millis_t ms = millis();
- #endif
-
- // Loop through all hotends
- HOTEND_LOOP() {
-
- #if ENABLED(THERMAL_PROTECTION_HOTENDS)
- thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
- #endif
-
- float pid_output = get_pid_output(e);
-
- // Check if temperature is within the correct range
- soft_pwm_amount[e] = (current_temperature[e] > minttemp[e] || is_preheating(e)) && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
-
- // Check if the temperature is failing to increase
- #if WATCH_HOTENDS
-
- // Is it time to check this extruder's heater?
- if (watch_heater_next_ms[e] && ELAPSED(ms, watch_heater_next_ms[e])) {
- // Has it failed to increase enough?
- if (degHotend(e) < watch_target_temp[e]) {
- // Stop!
- _temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
- }
- else {
- // Start again if the target is still far off
- start_watching_heater(e);
- }
- }
-
- #endif // THERMAL_PROTECTION_HOTENDS
-
- // Check if the temperature is failing to increase
- #if WATCH_THE_BED
-
- // Is it time to check the bed?
- if (watch_bed_next_ms && ELAPSED(ms, watch_bed_next_ms)) {
- // Has it failed to increase enough?
- if (degBed() < watch_target_bed_temp) {
- // Stop!
- _temp_error(-1, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
- }
- else {
- // Start again if the target is still far off
- start_watching_bed();
- }
- }
-
- #endif // THERMAL_PROTECTION_HOTENDS
-
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
- _temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
- }
- #endif
-
- } // HOTEND_LOOP
-
- #if HAS_AUTO_FAN
- if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently
- checkExtruderAutoFans();
- next_auto_fan_check_ms = ms + 2500UL;
- }
- #endif
-
- // Control the extruder rate based on the width sensor
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- if (filament_sensor) {
- meas_shift_index = filwidth_delay_index[0] - meas_delay_cm;
- if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
- meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
-
- // Get the delayed info and add 100 to reconstitute to a percent of
- // the nominal filament diameter then square it to get an area
- const float vmroot = measurement_delay[meas_shift_index] * 0.01 + 1.0;
- volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vmroot <= 0.1 ? 0.01 : sq(vmroot);
- }
- #endif // FILAMENT_WIDTH_SENSOR
-
- #if DISABLED(PIDTEMPBED)
- if (PENDING(ms, next_bed_check_ms)) return;
- next_bed_check_ms = ms + BED_CHECK_INTERVAL;
- #endif
-
- #if TEMP_SENSOR_BED != 0
-
- #if HAS_THERMALLY_PROTECTED_BED
- thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
- #endif
-
- #if ENABLED(PIDTEMPBED)
- float pid_output = get_pid_output_bed();
-
- soft_pwm_amount_bed = WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP) ? (int)pid_output >> 1 : 0;
-
- #elif ENABLED(BED_LIMIT_SWITCHING)
- // Check if temperature is within the correct band
- if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
- if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
- soft_pwm_amount_bed = 0;
- else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS))
- soft_pwm_amount_bed = MAX_BED_POWER >> 1;
- }
- else {
- soft_pwm_amount_bed = 0;
- WRITE_HEATER_BED(LOW);
- }
- #else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
- // Check if temperature is within the correct range
- if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
- soft_pwm_amount_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
- }
- else {
- soft_pwm_amount_bed = 0;
- WRITE_HEATER_BED(LOW);
- }
- #endif
- #endif // TEMP_SENSOR_BED != 0
- }
-
- #define PGM_RD_W(x) (short)pgm_read_word(&x)
-
- // Derived from RepRap FiveD extruder::getTemperature()
- // For hot end temperature measurement.
- float Temperature::analog2temp(int raw, uint8_t e) {
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- if (e > HOTENDS)
- #else
- if (e >= HOTENDS)
- #endif
- {
- SERIAL_ERROR_START;
- SERIAL_ERROR((int)e);
- SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
- kill(PSTR(MSG_KILLED));
- return 0.0;
- }
-
- #if ENABLED(HEATER_0_USES_MAX6675)
- if (e == 0) return 0.25 * raw;
- #endif
-
- if (heater_ttbl_map[e] != NULL) {
- float celsius = 0;
- uint8_t i;
- short(*tt)[][2] = (short(*)[][2])(heater_ttbl_map[e]);
-
- for (i = 1; i < heater_ttbllen_map[e]; i++) {
- if (PGM_RD_W((*tt)[i][0]) > raw) {
- celsius = PGM_RD_W((*tt)[i - 1][1]) +
- (raw - PGM_RD_W((*tt)[i - 1][0])) *
- (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i - 1][1])) /
- (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i - 1][0]));
- break;
- }
- }
-
- // Overflow: Set to last value in the table
- if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i - 1][1]);
-
- return celsius;
- }
- return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
- }
-
- // Derived from RepRap FiveD extruder::getTemperature()
- // For bed temperature measurement.
- float Temperature::analog2tempBed(int raw) {
- #if ENABLED(BED_USES_THERMISTOR)
- float celsius = 0;
- byte i;
-
- for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
- if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
- celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]) +
- (raw - PGM_RD_W(BEDTEMPTABLE[i - 1][0])) *
- (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i - 1][1])) /
- (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i - 1][0]));
- break;
- }
- }
-
- // Overflow: Set to last value in the table
- if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]);
-
- return celsius;
-
- #elif defined(BED_USES_AD595)
-
- return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
-
- #else
-
- UNUSED(raw);
- return 0;
-
- #endif
- }
-
- /**
- * Get the raw values into the actual temperatures.
- * The raw values are created in interrupt context,
- * and this function is called from normal context
- * as it would block the stepper routine.
- */
- void Temperature::updateTemperaturesFromRawValues() {
- #if ENABLED(HEATER_0_USES_MAX6675)
- current_temperature_raw[0] = read_max6675();
- #endif
- HOTEND_LOOP()
- current_temperature[e] = Temperature::analog2temp(current_temperature_raw[e], e);
- current_temperature_bed = Temperature::analog2tempBed(current_temperature_bed_raw);
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- redundant_temperature = Temperature::analog2temp(redundant_temperature_raw, 1);
- #endif
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- filament_width_meas = analog2widthFil();
- #endif
-
- #if ENABLED(USE_WATCHDOG)
- // Reset the watchdog after we know we have a temperature measurement.
- watchdog_reset();
- #endif
-
- CRITICAL_SECTION_START;
- temp_meas_ready = false;
- CRITICAL_SECTION_END;
- }
-
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
-
- // Convert raw Filament Width to millimeters
- float Temperature::analog2widthFil() {
- return current_raw_filwidth / 16383.0 * 5.0;
- //return current_raw_filwidth;
- }
-
- // Convert raw Filament Width to a ratio
- int Temperature::widthFil_to_size_ratio() {
- float temp = filament_width_meas;
- if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
- else NOMORE(temp, MEASURED_UPPER_LIMIT);
- return filament_width_nominal / temp * 100;
- }
-
- #endif
-
- #if ENABLED(HEATER_0_USES_MAX6675)
- #ifndef MAX6675_SCK_PIN
- #define MAX6675_SCK_PIN SCK_PIN
- #endif
- #ifndef MAX6675_DO_PIN
- #define MAX6675_DO_PIN MISO_PIN
- #endif
- Spi<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
- #endif
-
- /**
- * Initialize the temperature manager
- * The manager is implemented by periodic calls to manage_heater()
- */
- void Temperature::init() {
-
- #if MB(RUMBA) && (TEMP_SENSOR_0 == -1 || TEMP_SENSOR_1 == -1 || TEMP_SENSOR_2 == -1 || TEMP_SENSOR_BED == -1)
- // Disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
- MCUCR = _BV(JTD);
- MCUCR = _BV(JTD);
- #endif
-
- // Finish init of mult hotend arrays
- HOTEND_LOOP() maxttemp[e] = maxttemp[0];
-
- #if ENABLED(PIDTEMP) && ENABLED(PID_EXTRUSION_SCALING)
- last_e_position = 0;
- #endif
-
- #if HAS_HEATER_0
- SET_OUTPUT(HEATER_0_PIN);
- #endif
- #if HAS_HEATER_1
- SET_OUTPUT(HEATER_1_PIN);
- #endif
- #if HAS_HEATER_2
- SET_OUTPUT(HEATER_2_PIN);
- #endif
- #if HAS_HEATER_3
- SET_OUTPUT(HEATER_3_PIN);
- #endif
- #if HAS_HEATER_4
- SET_OUTPUT(HEATER_3_PIN);
- #endif
- #if HAS_HEATER_BED
- SET_OUTPUT(HEATER_BED_PIN);
- #endif
-
- #if HAS_FAN0
- SET_OUTPUT(FAN_PIN);
- #if ENABLED(FAST_PWM_FAN)
- setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
- #endif
- #endif
-
- #if HAS_FAN1
- SET_OUTPUT(FAN1_PIN);
- #if ENABLED(FAST_PWM_FAN)
- setPwmFrequency(FAN1_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
- #endif
- #endif
-
- #if HAS_FAN2
- SET_OUTPUT(FAN2_PIN);
- #if ENABLED(FAST_PWM_FAN)
- setPwmFrequency(FAN2_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
- #endif
- #endif
-
- #if ENABLED(HEATER_0_USES_MAX6675)
-
- OUT_WRITE(SCK_PIN, LOW);
- OUT_WRITE(MOSI_PIN, HIGH);
- SET_INPUT_PULLUP(MISO_PIN);
-
- max6675_spi.init();
-
- OUT_WRITE(SS_PIN, HIGH);
- OUT_WRITE(MAX6675_SS, HIGH);
-
- #endif // HEATER_0_USES_MAX6675
-
- #ifdef DIDR2
- #define ANALOG_SELECT(pin) do{ if (pin < 8) SBI(DIDR0, pin); else SBI(DIDR2, pin - 8); }while(0)
- #else
- #define ANALOG_SELECT(pin) do{ SBI(DIDR0, pin); }while(0)
- #endif
-
- // Set analog inputs
- ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIF) | 0x07;
- DIDR0 = 0;
- #ifdef DIDR2
- DIDR2 = 0;
- #endif
- #if HAS_TEMP_0
- ANALOG_SELECT(TEMP_0_PIN);
- #endif
- #if HAS_TEMP_1
- ANALOG_SELECT(TEMP_1_PIN);
- #endif
- #if HAS_TEMP_2
- ANALOG_SELECT(TEMP_2_PIN);
- #endif
- #if HAS_TEMP_3
- ANALOG_SELECT(TEMP_3_PIN);
- #endif
- #if HAS_TEMP_4
- ANALOG_SELECT(TEMP_4_PIN);
- #endif
- #if HAS_TEMP_BED
- ANALOG_SELECT(TEMP_BED_PIN);
- #endif
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- ANALOG_SELECT(FILWIDTH_PIN);
- #endif
-
- #if HAS_AUTO_FAN_0
- #if E0_AUTO_FAN_PIN == FAN1_PIN
- SET_OUTPUT(E0_AUTO_FAN_PIN);
- #if ENABLED(FAST_PWM_FAN)
- setPwmFrequency(E0_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
- #endif
- #else
- SET_OUTPUT(E0_AUTO_FAN_PIN);
- #endif
- #endif
- #if HAS_AUTO_FAN_1 && !AUTO_1_IS_0
- #if E1_AUTO_FAN_PIN == FAN1_PIN
- SET_OUTPUT(E1_AUTO_FAN_PIN);
- #if ENABLED(FAST_PWM_FAN)
- setPwmFrequency(E1_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
- #endif
- #else
- SET_OUTPUT(E1_AUTO_FAN_PIN);
- #endif
- #endif
- #if HAS_AUTO_FAN_2 && !AUTO_2_IS_0 && !AUTO_2_IS_1
- #if E2_AUTO_FAN_PIN == FAN1_PIN
- SET_OUTPUT(E2_AUTO_FAN_PIN);
- #if ENABLED(FAST_PWM_FAN)
- setPwmFrequency(E2_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
- #endif
- #else
- SET_OUTPUT(E2_AUTO_FAN_PIN);
- #endif
- #endif
- #if HAS_AUTO_FAN_3 && !AUTO_3_IS_0 && !AUTO_3_IS_1 && !AUTO_3_IS_2
- #if E3_AUTO_FAN_PIN == FAN1_PIN
- SET_OUTPUT(E3_AUTO_FAN_PIN);
- #if ENABLED(FAST_PWM_FAN)
- setPwmFrequency(E3_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
- #endif
- #else
- SET_OUTPUT(E3_AUTO_FAN_PIN);
- #endif
- #endif
- #if HAS_AUTO_FAN_4 && !AUTO_4_IS_0 && !AUTO_4_IS_1 && !AUTO_4_IS_2 && !AUTO_4_IS_3
- #if E4_AUTO_FAN_PIN == FAN1_PIN
- SET_OUTPUT(E4_AUTO_FAN_PIN);
- #if ENABLED(FAST_PWM_FAN)
- setPwmFrequency(E4_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
- #endif
- #else
- SET_OUTPUT(E4_AUTO_FAN_PIN);
- #endif
- #endif
-
- // Use timer0 for temperature measurement
- // Interleave temperature interrupt with millies interrupt
- OCR0B = 128;
- SBI(TIMSK0, OCIE0B);
-
- // Wait for temperature measurement to settle
- delay(250);
-
- #define TEMP_MIN_ROUTINE(NR) \
- minttemp[NR] = HEATER_ ##NR## _MINTEMP; \
- while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ##NR## _MINTEMP) { \
- if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
- minttemp_raw[NR] += OVERSAMPLENR; \
- else \
- minttemp_raw[NR] -= OVERSAMPLENR; \
- }
- #define TEMP_MAX_ROUTINE(NR) \
- maxttemp[NR] = HEATER_ ##NR## _MAXTEMP; \
- while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ##NR## _MAXTEMP) { \
- if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
- maxttemp_raw[NR] -= OVERSAMPLENR; \
- else \
- maxttemp_raw[NR] += OVERSAMPLENR; \
- }
-
- #ifdef HEATER_0_MINTEMP
- TEMP_MIN_ROUTINE(0);
- #endif
- #ifdef HEATER_0_MAXTEMP
- TEMP_MAX_ROUTINE(0);
- #endif
- #if HOTENDS > 1
- #ifdef HEATER_1_MINTEMP
- TEMP_MIN_ROUTINE(1);
- #endif
- #ifdef HEATER_1_MAXTEMP
- TEMP_MAX_ROUTINE(1);
- #endif
- #if HOTENDS > 2
- #ifdef HEATER_2_MINTEMP
- TEMP_MIN_ROUTINE(2);
- #endif
- #ifdef HEATER_2_MAXTEMP
- TEMP_MAX_ROUTINE(2);
- #endif
- #if HOTENDS > 3
- #ifdef HEATER_3_MINTEMP
- TEMP_MIN_ROUTINE(3);
- #endif
- #ifdef HEATER_3_MAXTEMP
- TEMP_MAX_ROUTINE(3);
- #endif
- #if HOTENDS > 4
- #ifdef HEATER_4_MINTEMP
- TEMP_MIN_ROUTINE(4);
- #endif
- #ifdef HEATER_4_MAXTEMP
- TEMP_MAX_ROUTINE(4);
- #endif
- #endif // HOTENDS > 4
- #endif // HOTENDS > 3
- #endif // HOTENDS > 2
- #endif // HOTENDS > 1
-
- #ifdef BED_MINTEMP
- while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
- #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
- bed_minttemp_raw += OVERSAMPLENR;
- #else
- bed_minttemp_raw -= OVERSAMPLENR;
- #endif
- }
- #endif // BED_MINTEMP
- #ifdef BED_MAXTEMP
- while (analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
- #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
- bed_maxttemp_raw -= OVERSAMPLENR;
- #else
- bed_maxttemp_raw += OVERSAMPLENR;
- #endif
- }
- #endif // BED_MAXTEMP
-
- #if ENABLED(PROBING_HEATERS_OFF)
- paused = false;
- ZERO(paused_hotend_temp);
- #if HAS_TEMP_BED
- paused_bed_temp = 0;
- #endif
- #endif
- }
-
- #if WATCH_HOTENDS
- /**
- * Start Heating Sanity Check for hotends that are below
- * their target temperature by a configurable margin.
- * This is called when the temperature is set. (M104, M109)
- */
- void Temperature::start_watching_heater(uint8_t e) {
- #if HOTENDS == 1
- UNUSED(e);
- #endif
- if (degHotend(HOTEND_INDEX) < degTargetHotend(HOTEND_INDEX) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
- watch_target_temp[HOTEND_INDEX] = degHotend(HOTEND_INDEX) + WATCH_TEMP_INCREASE;
- watch_heater_next_ms[HOTEND_INDEX] = millis() + (WATCH_TEMP_PERIOD) * 1000UL;
- }
- else
- watch_heater_next_ms[HOTEND_INDEX] = 0;
- }
- #endif
-
- #if WATCH_THE_BED
- /**
- * Start Heating Sanity Check for hotends that are below
- * their target temperature by a configurable margin.
- * This is called when the temperature is set. (M140, M190)
- */
- void Temperature::start_watching_bed() {
- if (degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) {
- watch_target_bed_temp = degBed() + WATCH_BED_TEMP_INCREASE;
- watch_bed_next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL;
- }
- else
- watch_bed_next_ms = 0;
- }
- #endif
-
- #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
-
- #if ENABLED(THERMAL_PROTECTION_HOTENDS)
- Temperature::TRState Temperature::thermal_runaway_state_machine[HOTENDS] = { TRInactive };
- millis_t Temperature::thermal_runaway_timer[HOTENDS] = { 0 };
- #endif
-
- #if HAS_THERMALLY_PROTECTED_BED
- Temperature::TRState Temperature::thermal_runaway_bed_state_machine = TRInactive;
- millis_t Temperature::thermal_runaway_bed_timer;
- #endif
-
- void Temperature::thermal_runaway_protection(Temperature::TRState* state, millis_t* timer, float current, float target, int heater_id, int period_seconds, int hysteresis_degc) {
-
- static float tr_target_temperature[HOTENDS + 1] = { 0.0 };
-
- /**
- SERIAL_ECHO_START;
- SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
- if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id);
- SERIAL_ECHOPAIR(" ; State:", *state);
- SERIAL_ECHOPAIR(" ; Timer:", *timer);
- SERIAL_ECHOPAIR(" ; Temperature:", current);
- SERIAL_ECHOPAIR(" ; Target Temp:", target);
- SERIAL_EOL;
- */
-
- int heater_index = heater_id >= 0 ? heater_id : HOTENDS;
-
- // If the target temperature changes, restart
- if (tr_target_temperature[heater_index] != target) {
- tr_target_temperature[heater_index] = target;
- *state = target > 0 ? TRFirstHeating : TRInactive;
- }
-
- switch (*state) {
- // Inactive state waits for a target temperature to be set
- case TRInactive: break;
- // When first heating, wait for the temperature to be reached then go to Stable state
- case TRFirstHeating:
- if (current < tr_target_temperature[heater_index]) break;
- *state = TRStable;
- // While the temperature is stable watch for a bad temperature
- case TRStable:
- if (current >= tr_target_temperature[heater_index] - hysteresis_degc) {
- *timer = millis() + period_seconds * 1000UL;
- break;
- }
- else if (PENDING(millis(), *timer)) break;
- *state = TRRunaway;
- case TRRunaway:
- _temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
- }
- }
-
- #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
-
- void Temperature::disable_all_heaters() {
-
- #if ENABLED(AUTOTEMP)
- planner.autotemp_enabled = false;
- #endif
-
- HOTEND_LOOP() setTargetHotend(0, e);
- setTargetBed(0);
-
- // Unpause and reset everything
- #if ENABLED(PROBING_HEATERS_OFF)
- paused = false;
- ZERO(paused_hotend_temp);
- #if HAS_TEMP_BED
- paused_bed_temp = 0;
- #endif
- #endif
-
- // If all heaters go down then for sure our print job has stopped
- print_job_timer.stop();
-
- #define DISABLE_HEATER(NR) { \
- setTargetHotend(0, NR); \
- soft_pwm_amount[NR] = 0; \
- WRITE_HEATER_ ##NR (LOW); \
- }
-
- #if HAS_TEMP_HOTEND
- DISABLE_HEATER(0);
- #if HOTENDS > 1
- DISABLE_HEATER(1);
- #if HOTENDS > 2
- DISABLE_HEATER(2);
- #if HOTENDS > 3
- DISABLE_HEATER(3);
- #if HOTENDS > 4
- DISABLE_HEATER(4);
- #endif // HOTENDS > 4
- #endif // HOTENDS > 3
- #endif // HOTENDS > 2
- #endif // HOTENDS > 1
- #endif
-
- #if HAS_TEMP_BED
- target_temperature_bed = 0;
- soft_pwm_amount_bed = 0;
- #if HAS_HEATER_BED
- WRITE_HEATER_BED(LOW);
- #endif
- #endif
- }
-
- #if ENABLED(PROBING_HEATERS_OFF)
-
- void Temperature::pause(const bool p) {
- if (p != paused) {
- paused = p;
- if (p) {
- HOTEND_LOOP() {
- paused_hotend_temp[e] = degTargetHotend(e);
- setTargetHotend(0, e);
- }
- #if HAS_TEMP_BED
- paused_bed_temp = degTargetBed();
- setTargetBed(0);
- #endif
- }
- else {
- HOTEND_LOOP() setTargetHotend(paused_hotend_temp[e], e);
- #if HAS_TEMP_BED
- setTargetBed(paused_bed_temp);
- #endif
- }
- }
- }
-
- #endif // PROBING_HEATERS_OFF
-
- #if ENABLED(HEATER_0_USES_MAX6675)
-
- #define MAX6675_HEAT_INTERVAL 250u
-
- #if ENABLED(MAX6675_IS_MAX31855)
- uint32_t max6675_temp = 2000;
- #define MAX6675_ERROR_MASK 7
- #define MAX6675_DISCARD_BITS 18
- #define MAX6675_SPEED_BITS (_BV(SPR1)) // clock ÷ 64
- #else
- uint16_t max6675_temp = 2000;
- #define MAX6675_ERROR_MASK 4
- #define MAX6675_DISCARD_BITS 3
- #define MAX6675_SPEED_BITS (_BV(SPR0)) // clock ÷ 16
- #endif
-
- int Temperature::read_max6675() {
-
- static millis_t next_max6675_ms = 0;
-
- millis_t ms = millis();
-
- if (PENDING(ms, next_max6675_ms)) return (int)max6675_temp;
-
- next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
-
- CBI(
- #ifdef PRR
- PRR
- #elif defined(PRR0)
- PRR0
- #endif
- , PRSPI);
- SPCR = _BV(MSTR) | _BV(SPE) | MAX6675_SPEED_BITS;
-
- WRITE(MAX6675_SS, 0); // enable TT_MAX6675
-
- // ensure 100ns delay - a bit extra is fine
- asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
- asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
-
- // Read a big-endian temperature value
- max6675_temp = 0;
- for (uint8_t i = sizeof(max6675_temp); i--;) {
- max6675_temp |= max6675_spi.receive();
- if (i > 0) max6675_temp <<= 8; // shift left if not the last byte
- }
-
- WRITE(MAX6675_SS, 1); // disable TT_MAX6675
-
- if (max6675_temp & MAX6675_ERROR_MASK) {
- SERIAL_ERROR_START;
- SERIAL_ERRORPGM("Temp measurement error! ");
- #if MAX6675_ERROR_MASK == 7
- SERIAL_ERRORPGM("MAX31855 ");
- if (max6675_temp & 1)
- SERIAL_ERRORLNPGM("Open Circuit");
- else if (max6675_temp & 2)
- SERIAL_ERRORLNPGM("Short to GND");
- else if (max6675_temp & 4)
- SERIAL_ERRORLNPGM("Short to VCC");
- #else
- SERIAL_ERRORLNPGM("MAX6675");
- #endif
- max6675_temp = MAX6675_TMAX * 4; // thermocouple open
- }
- else
- max6675_temp >>= MAX6675_DISCARD_BITS;
- #if ENABLED(MAX6675_IS_MAX31855)
- // Support negative temperature
- if (max6675_temp & 0x00002000) max6675_temp |= 0xFFFFC000;
- #endif
-
- return (int)max6675_temp;
- }
-
- #endif // HEATER_0_USES_MAX6675
-
- /**
- * Get raw temperatures
- */
- void Temperature::set_current_temp_raw() {
- #if HAS_TEMP_0 && DISABLED(HEATER_0_USES_MAX6675)
- current_temperature_raw[0] = raw_temp_value[0];
- #endif
- #if HAS_TEMP_1
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- redundant_temperature_raw = raw_temp_value[1];
- #else
- current_temperature_raw[1] = raw_temp_value[1];
- #endif
- #if HAS_TEMP_2
- current_temperature_raw[2] = raw_temp_value[2];
- #if HAS_TEMP_3
- current_temperature_raw[3] = raw_temp_value[3];
- #if HAS_TEMP_4
- current_temperature_raw[4] = raw_temp_value[4];
- #endif
- #endif
- #endif
- #endif
- current_temperature_bed_raw = raw_temp_bed_value;
- temp_meas_ready = true;
- }
-
- #if ENABLED(PINS_DEBUGGING)
- /**
- * monitors endstops & Z probe for changes
- *
- * If a change is detected then the LED is toggled and
- * a message is sent out the serial port
- *
- * Yes, we could miss a rapid back & forth change but
- * that won't matter because this is all manual.
- *
- */
- void endstop_monitor() {
- static uint16_t old_endstop_bits_local = 0;
- static uint8_t local_LED_status = 0;
- uint16_t current_endstop_bits_local = 0;
- #if HAS_X_MIN
- if (READ(X_MIN_PIN)) SBI(current_endstop_bits_local, X_MIN);
- #endif
- #if HAS_X_MAX
- if (READ(X_MAX_PIN)) SBI(current_endstop_bits_local, X_MAX);
- #endif
- #if HAS_Y_MIN
- if (READ(Y_MIN_PIN)) SBI(current_endstop_bits_local, Y_MIN);
- #endif
- #if HAS_Y_MAX
- if (READ(Y_MAX_PIN)) SBI(current_endstop_bits_local, Y_MAX);
- #endif
- #if HAS_Z_MIN
- if (READ(Z_MIN_PIN)) SBI(current_endstop_bits_local, Z_MIN);
- #endif
- #if HAS_Z_MAX
- if (READ(Z_MAX_PIN)) SBI(current_endstop_bits_local, Z_MAX);
- #endif
- #if HAS_Z_MIN_PROBE_PIN
- if (READ(Z_MIN_PROBE_PIN)) SBI(current_endstop_bits_local, Z_MIN_PROBE);
- #endif
- #if HAS_Z2_MIN
- if (READ(Z2_MIN_PIN)) SBI(current_endstop_bits_local, Z2_MIN);
- #endif
- #if HAS_Z2_MAX
- if (READ(Z2_MAX_PIN)) SBI(current_endstop_bits_local, Z2_MAX);
- #endif
-
- uint16_t endstop_change = current_endstop_bits_local ^ old_endstop_bits_local;
-
- if (endstop_change) {
- #if HAS_X_MIN
- if (TEST(endstop_change, X_MIN)) SERIAL_PROTOCOLPAIR("X_MIN:", !!TEST(current_endstop_bits_local, X_MIN));
- #endif
- #if HAS_X_MAX
- if (TEST(endstop_change, X_MAX)) SERIAL_PROTOCOLPAIR(" X_MAX:", !!TEST(current_endstop_bits_local, X_MAX));
- #endif
- #if HAS_Y_MIN
- if (TEST(endstop_change, Y_MIN)) SERIAL_PROTOCOLPAIR(" Y_MIN:", !!TEST(current_endstop_bits_local, Y_MIN));
- #endif
- #if HAS_Y_MAX
- if (TEST(endstop_change, Y_MAX)) SERIAL_PROTOCOLPAIR(" Y_MAX:", !!TEST(current_endstop_bits_local, Y_MAX));
- #endif
- #if HAS_Z_MIN
- if (TEST(endstop_change, Z_MIN)) SERIAL_PROTOCOLPAIR(" Z_MIN:", !!TEST(current_endstop_bits_local, Z_MIN));
- #endif
- #if HAS_Z_MAX
- if (TEST(endstop_change, Z_MAX)) SERIAL_PROTOCOLPAIR(" Z_MAX:", !!TEST(current_endstop_bits_local, Z_MAX));
- #endif
- #if HAS_Z_MIN_PROBE_PIN
- if (TEST(endstop_change, Z_MIN_PROBE)) SERIAL_PROTOCOLPAIR(" PROBE:", !!TEST(current_endstop_bits_local, Z_MIN_PROBE));
- #endif
- #if HAS_Z2_MIN
- if (TEST(endstop_change, Z2_MIN)) SERIAL_PROTOCOLPAIR(" Z2_MIN:", !!TEST(current_endstop_bits_local, Z2_MIN));
- #endif
- #if HAS_Z2_MAX
- if (TEST(endstop_change, Z2_MAX)) SERIAL_PROTOCOLPAIR(" Z2_MAX:", !!TEST(current_endstop_bits_local, Z2_MAX));
- #endif
- SERIAL_PROTOCOLPGM("\n\n");
- analogWrite(LED_PIN, local_LED_status);
- local_LED_status ^= 255;
- old_endstop_bits_local = current_endstop_bits_local;
- }
- }
- #endif // PINS_DEBUGGING
-
- /**
- * Timer 0 is shared with millies so don't change the prescaler.
- *
- * This ISR uses the compare method so it runs at the base
- * frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
- * in OCR0B above (128 or halfway between OVFs).
- *
- * - Manage PWM to all the heaters and fan
- * - Prepare or Measure one of the raw ADC sensor values
- * - Check new temperature values for MIN/MAX errors (kill on error)
- * - Step the babysteps value for each axis towards 0
- * - For PINS_DEBUGGING, monitor and report endstop pins
- * - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
- */
- ISR(TIMER0_COMPB_vect) { Temperature::isr(); }
-
- volatile bool Temperature::in_temp_isr = false;
-
- void Temperature::isr() {
- // The stepper ISR can interrupt this ISR. When it does it re-enables this ISR
- // at the end of its run, potentially causing re-entry. This flag prevents it.
- if (in_temp_isr) return;
- in_temp_isr = true;
-
- // Allow UART and stepper ISRs
- CBI(TIMSK0, OCIE0B); //Disable Temperature ISR
- sei();
-
- static int8_t temp_count = -1;
- static ADCSensorState adc_sensor_state = StartupDelay;
- static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
- // avoid multiple loads of pwm_count
- uint8_t pwm_count_tmp = pwm_count;
-
- // Static members for each heater
- #if ENABLED(SLOW_PWM_HEATERS)
- static uint8_t slow_pwm_count = 0;
- #define ISR_STATICS(n) \
- static uint8_t soft_pwm_count_ ## n, \
- state_heater_ ## n = 0, \
- state_timer_heater_ ## n = 0
- #else
- #define ISR_STATICS(n) static uint8_t soft_pwm_count_ ## n = 0
- #endif
-
- // Statics per heater
- ISR_STATICS(0);
- #if HOTENDS > 1
- ISR_STATICS(1);
- #if HOTENDS > 2
- ISR_STATICS(2);
- #if HOTENDS > 3
- ISR_STATICS(3);
- #if HOTENDS > 4
- ISR_STATICS(4);
- #endif // HOTENDS > 4
- #endif // HOTENDS > 3
- #endif // HOTENDS > 2
- #endif // HOTENDS > 1
- #if HAS_HEATER_BED
- ISR_STATICS(BED);
- #endif
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- static unsigned long raw_filwidth_value = 0;
- #endif
-
- #if DISABLED(SLOW_PWM_HEATERS)
- constexpr uint8_t pwm_mask =
- #if ENABLED(SOFT_PWM_DITHER)
- _BV(SOFT_PWM_SCALE) - 1
- #else
- 0
- #endif
- ;
-
- /**
- * Standard PWM modulation
- */
- if (pwm_count_tmp >= 127) {
- pwm_count_tmp -= 127;
- soft_pwm_count_0 = (soft_pwm_count_0 & pwm_mask) + soft_pwm_amount[0];
- WRITE_HEATER_0(soft_pwm_count_0 > pwm_mask ? HIGH : LOW);
- #if HOTENDS > 1
- soft_pwm_count_1 = (soft_pwm_count_1 & pwm_mask) + soft_pwm_amount[1];
- WRITE_HEATER_1(soft_pwm_count_1 > pwm_mask ? HIGH : LOW);
- #if HOTENDS > 2
- soft_pwm_count_2 = (soft_pwm_count_2 & pwm_mask) + soft_pwm_amount[2];
- WRITE_HEATER_2(soft_pwm_count_2 > pwm_mask ? HIGH : LOW);
- #if HOTENDS > 3
- soft_pwm_count_3 = (soft_pwm_count_3 & pwm_mask) + soft_pwm_amount[3];
- WRITE_HEATER_3(soft_pwm_count_3 > pwm_mask ? HIGH : LOW);
- #if HOTENDS > 4
- soft_pwm_count_4 = (soft_pwm_count_4 & pwm_mask) + soft_pwm_amount[4];
- WRITE_HEATER_4(soft_pwm_count_4 > pwm_mask ? HIGH : LOW);
- #endif // HOTENDS > 4
- #endif // HOTENDS > 3
- #endif // HOTENDS > 2
- #endif // HOTENDS > 1
-
- #if HAS_HEATER_BED
- soft_pwm_count_BED = (soft_pwm_count_BED & pwm_mask) + soft_pwm_amount_bed;
- WRITE_HEATER_BED(soft_pwm_count_BED > pwm_mask ? HIGH : LOW);
- #endif
-
- #if ENABLED(FAN_SOFT_PWM)
- #if HAS_FAN0
- soft_pwm_count_fan[0] = (soft_pwm_count_fan[0] & pwm_mask) + soft_pwm_amount_fan[0] >> 1;
- WRITE_FAN(soft_pwm_count_fan[0] > pwm_mask ? HIGH : LOW);
- #endif
- #if HAS_FAN1
- soft_pwm_count_fan[1] = (soft_pwm_count_fan[1] & pwm_mask) + soft_pwm_amount_fan[1] >> 1;
- WRITE_FAN1(soft_pwm_count_fan[1] > pwm_mask ? HIGH : LOW);
- #endif
- #if HAS_FAN2
- soft_pwm_count_fan[2] = (soft_pwm_count_fan[2] & pwm_mask) + soft_pwm_amount_fan[2] >> 1;
- WRITE_FAN2(soft_pwm_count_fan[2] > pwm_mask ? HIGH : LOW);
- #endif
- #endif
- }
- else {
- if (soft_pwm_count_0 <= pwm_count_tmp) WRITE_HEATER_0(0);
- #if HOTENDS > 1
- if (soft_pwm_count_1 <= pwm_count_tmp) WRITE_HEATER_1(0);
- #if HOTENDS > 2
- if (soft_pwm_count_2 <= pwm_count_tmp) WRITE_HEATER_2(0);
- #if HOTENDS > 3
- if (soft_pwm_count_3 <= pwm_count_tmp) WRITE_HEATER_3(0);
- #if HOTENDS > 4
- if (soft_pwm_count_4 <= pwm_count_tmp) WRITE_HEATER_4(0);
- #endif // HOTENDS > 4
- #endif // HOTENDS > 3
- #endif // HOTENDS > 2
- #endif // HOTENDS > 1
-
- #if HAS_HEATER_BED
- if (soft_pwm_count_BED <= pwm_count_tmp) WRITE_HEATER_BED(0);
- #endif
-
- #if ENABLED(FAN_SOFT_PWM)
- #if HAS_FAN0
- if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(0);
- #endif
- #if HAS_FAN1
- if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(0);
- #endif
- #if HAS_FAN2
- if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(0);
- #endif
- #endif
- }
-
- // SOFT_PWM_SCALE to frequency:
- //
- // 0: 16000000/64/256/128 = 7.6294 Hz
- // 1: / 64 = 15.2588 Hz
- // 2: / 32 = 30.5176 Hz
- // 3: / 16 = 61.0352 Hz
- // 4: / 8 = 122.0703 Hz
- // 5: / 4 = 244.1406 Hz
- pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
-
- #else // SLOW_PWM_HEATERS
-
- /**
- * SLOW PWM HEATERS
- *
- * For relay-driven heaters
- */
- #ifndef MIN_STATE_TIME
- #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
- #endif
-
- // Macros for Slow PWM timer logic
- #define _SLOW_PWM_ROUTINE(NR, src) \
- soft_pwm_ ##NR = src; \
- if (soft_pwm_ ##NR > 0) { \
- if (state_timer_heater_ ##NR == 0) { \
- if (state_heater_ ##NR == 0) state_timer_heater_ ##NR = MIN_STATE_TIME; \
- state_heater_ ##NR = 1; \
- WRITE_HEATER_ ##NR(1); \
- } \
- } \
- else { \
- if (state_timer_heater_ ##NR == 0) { \
- if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
- state_heater_ ##NR = 0; \
- WRITE_HEATER_ ##NR(0); \
- } \
- }
- #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm_amount[n])
-
- #define PWM_OFF_ROUTINE(NR) \
- if (soft_pwm_ ##NR < slow_pwm_count) { \
- if (state_timer_heater_ ##NR == 0) { \
- if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
- state_heater_ ##NR = 0; \
- WRITE_HEATER_ ##NR (0); \
- } \
- }
-
- if (slow_pwm_count == 0) {
-
- SLOW_PWM_ROUTINE(0);
- #if HOTENDS > 1
- SLOW_PWM_ROUTINE(1);
- #if HOTENDS > 2
- SLOW_PWM_ROUTINE(2);
- #if HOTENDS > 3
- SLOW_PWM_ROUTINE(3);
- #if HOTENDS > 4
- SLOW_PWM_ROUTINE(4);
- #endif // HOTENDS > 4
- #endif // HOTENDS > 3
- #endif // HOTENDS > 2
- #endif // HOTENDS > 1
- #if HAS_HEATER_BED
- _SLOW_PWM_ROUTINE(BED, soft_pwm_amount_bed); // BED
- #endif
-
- } // slow_pwm_count == 0
-
- PWM_OFF_ROUTINE(0);
- #if HOTENDS > 1
- PWM_OFF_ROUTINE(1);
- #if HOTENDS > 2
- PWM_OFF_ROUTINE(2);
- #if HOTENDS > 3
- PWM_OFF_ROUTINE(3);
- #if HOTENDS > 4
- PWM_OFF_ROUTINE(4);
- #endif // HOTENDS > 4
- #endif // HOTENDS > 3
- #endif // HOTENDS > 2
- #endif // HOTENDS > 1
- #if HAS_HEATER_BED
- PWM_OFF_ROUTINE(BED); // BED
- #endif
-
- #if ENABLED(FAN_SOFT_PWM)
- if (pwm_count_tmp >= 127) {
- pwm_count_tmp = 0;
- #if HAS_FAN0
- soft_pwm_count_fan[0] = soft_pwm_amount_fan[0] >> 1;
- WRITE_FAN(soft_pwm_count_fan[0] > 0 ? HIGH : LOW);
- #endif
- #if HAS_FAN1
- soft_pwm_count_fan[1] = soft_pwm_amount_fan[1] >> 1;
- WRITE_FAN1(soft_pwm_count_fan[1] > 0 ? HIGH : LOW);
- #endif
- #if HAS_FAN2
- soft_pwm_count_fan[2] = soft_pwm_amount_fan[2] >> 1;
- WRITE_FAN2(soft_pwm_count_fan[2] > 0 ? HIGH : LOW);
- #endif
- }
- #if HAS_FAN0
- if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(0);
- #endif
- #if HAS_FAN1
- if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(0);
- #endif
- #if HAS_FAN2
- if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(0);
- #endif
- #endif // FAN_SOFT_PWM
-
- // SOFT_PWM_SCALE to frequency:
- //
- // 0: 16000000/64/256/128 = 7.6294 Hz
- // 1: / 64 = 15.2588 Hz
- // 2: / 32 = 30.5176 Hz
- // 3: / 16 = 61.0352 Hz
- // 4: / 8 = 122.0703 Hz
- // 5: / 4 = 244.1406 Hz
- pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
-
- // increment slow_pwm_count only every 64th pwm_count,
- // i.e. yielding a PWM frequency of 16/128 Hz (8s).
- if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) {
- slow_pwm_count++;
- slow_pwm_count &= 0x7F;
-
- if (state_timer_heater_0 > 0) state_timer_heater_0--;
- #if HOTENDS > 1
- if (state_timer_heater_1 > 0) state_timer_heater_1--;
- #if HOTENDS > 2
- if (state_timer_heater_2 > 0) state_timer_heater_2--;
- #if HOTENDS > 3
- if (state_timer_heater_3 > 0) state_timer_heater_3--;
- #if HOTENDS > 4
- if (state_timer_heater_4 > 0) state_timer_heater_4--;
- #endif // HOTENDS > 4
- #endif // HOTENDS > 3
- #endif // HOTENDS > 2
- #endif // HOTENDS > 1
- #if HAS_HEATER_BED
- if (state_timer_heater_BED > 0) state_timer_heater_BED--;
- #endif
- } // ((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0
-
- #endif // SLOW_PWM_HEATERS
-
- //
- // Update lcd buttons 488 times per second
- //
- static bool do_buttons;
- if ((do_buttons ^= true)) lcd_buttons_update();
-
- /**
- * One sensor is sampled on every other call of the ISR.
- * Each sensor is read 16 (OVERSAMPLENR) times, taking the average.
- *
- * On each Prepare pass, ADC is started for a sensor pin.
- * On the next pass, the ADC value is read and accumulated.
- *
- * This gives each ADC 0.9765ms to charge up.
- */
-
- #define SET_ADMUX_ADCSRA(pin) ADMUX = _BV(REFS0) | (pin & 0x07); SBI(ADCSRA, ADSC)
- #ifdef MUX5
- #define START_ADC(pin) if (pin > 7) ADCSRB = _BV(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
- #else
- #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
- #endif
-
- switch (adc_sensor_state) {
-
- case SensorsReady: {
- // All sensors have been read. Stay in this state for a few
- // ISRs to save on calls to temp update/checking code below.
- constexpr int extra_loops = MIN_ADC_ISR_LOOPS - (int)SensorsReady;
- static uint8_t delay_count = 0;
- if (extra_loops > 0) {
- if (delay_count == 0) delay_count = extra_loops; // Init this delay
- if (--delay_count) // While delaying...
- adc_sensor_state = (ADCSensorState)(int(SensorsReady) - 1); // retain this state (else, next state will be 0)
- break;
- }
- else
- adc_sensor_state = (ADCSensorState)0; // Fall-through to start first sensor now
- }
-
- #if HAS_TEMP_0
- case PrepareTemp_0:
- START_ADC(TEMP_0_PIN);
- break;
- case MeasureTemp_0:
- raw_temp_value[0] += ADC;
- break;
- #endif
-
- #if HAS_TEMP_BED
- case PrepareTemp_BED:
- START_ADC(TEMP_BED_PIN);
- break;
- case MeasureTemp_BED:
- raw_temp_bed_value += ADC;
- break;
- #endif
-
- #if HAS_TEMP_1
- case PrepareTemp_1:
- START_ADC(TEMP_1_PIN);
- break;
- case MeasureTemp_1:
- raw_temp_value[1] += ADC;
- break;
- #endif
-
- #if HAS_TEMP_2
- case PrepareTemp_2:
- START_ADC(TEMP_2_PIN);
- break;
- case MeasureTemp_2:
- raw_temp_value[2] += ADC;
- break;
- #endif
-
- #if HAS_TEMP_3
- case PrepareTemp_3:
- START_ADC(TEMP_3_PIN);
- break;
- case MeasureTemp_3:
- raw_temp_value[3] += ADC;
- break;
- #endif
-
- #if HAS_TEMP_4
- case PrepareTemp_4:
- START_ADC(TEMP_4_PIN);
- break;
- case MeasureTemp_4:
- raw_temp_value[4] += ADC;
- break;
- #endif
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- case Prepare_FILWIDTH:
- START_ADC(FILWIDTH_PIN);
- break;
- case Measure_FILWIDTH:
- if (ADC > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read.
- raw_filwidth_value -= (raw_filwidth_value >> 7); // Subtract 1/128th of the raw_filwidth_value
- raw_filwidth_value += ((unsigned long)ADC << 7); // Add new ADC reading, scaled by 128
- }
- break;
- #endif
-
- case StartupDelay: break;
-
- } // switch(adc_sensor_state)
-
- if (!adc_sensor_state && ++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
-
- temp_count = 0;
-
- // Update the raw values if they've been read. Else we could be updating them during reading.
- if (!temp_meas_ready) set_current_temp_raw();
-
- // Filament Sensor - can be read any time since IIR filtering is used
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
- #endif
-
- ZERO(raw_temp_value);
- raw_temp_bed_value = 0;
-
- #define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) > (HEATER_##N##_RAW_HI_TEMP) ? -1 : 1)
-
- int constexpr temp_dir[] = {
- #if ENABLED(HEATER_0_USES_MAX6675)
- 0
- #else
- TEMPDIR(0)
- #endif
- #if HOTENDS > 1
- , TEMPDIR(1)
- #if HOTENDS > 2
- , TEMPDIR(2)
- #if HOTENDS > 3
- , TEMPDIR(3)
- #if HOTENDS > 4
- , TEMPDIR(4)
- #endif // HOTENDS > 4
- #endif // HOTENDS > 3
- #endif // HOTENDS > 2
- #endif // HOTENDS > 1
- };
-
- for (uint8_t e = 0; e < COUNT(temp_dir); e++) {
- const int16_t tdir = temp_dir[e], rawtemp = current_temperature_raw[e] * tdir;
- if (rawtemp > maxttemp_raw[e] * tdir && target_temperature[e] > 0) max_temp_error(e);
- if (rawtemp < minttemp_raw[e] * tdir && !is_preheating(e) && target_temperature[e] > 0) {
- #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
- if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
- #endif
- min_temp_error(e);
- }
- #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
- else
- consecutive_low_temperature_error[e] = 0;
- #endif
- }
-
- #if HAS_TEMP_BED
- #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
- #define GEBED <=
- #else
- #define GEBED >=
- #endif
- if (current_temperature_bed_raw GEBED bed_maxttemp_raw && target_temperature_bed > 0) max_temp_error(-1);
- if (bed_minttemp_raw GEBED current_temperature_bed_raw && target_temperature_bed > 0) min_temp_error(-1);
- #endif
-
- } // temp_count >= OVERSAMPLENR
-
- // Go to the next state, up to SensorsReady
- adc_sensor_state = (ADCSensorState)((int(adc_sensor_state) + 1) % int(StartupDelay));
-
- #if ENABLED(BABYSTEPPING)
- LOOP_XYZ(axis) {
- const int curTodo = babystepsTodo[axis]; // get rid of volatile for performance
- if (curTodo > 0) {
- stepper.babystep((AxisEnum)axis, /*fwd*/true);
- babystepsTodo[axis]--;
- }
- else if (curTodo < 0) {
- stepper.babystep((AxisEnum)axis, /*fwd*/false);
- babystepsTodo[axis]++;
- }
- }
- #endif // BABYSTEPPING
-
- #if ENABLED(PINS_DEBUGGING)
- extern bool endstop_monitor_flag;
- // run the endstop monitor at 15Hz
- static uint8_t endstop_monitor_count = 16; // offset this check from the others
- if (endstop_monitor_flag) {
- endstop_monitor_count += _BV(1); // 15 Hz
- endstop_monitor_count &= 0x7F;
- if (!endstop_monitor_count) endstop_monitor(); // report changes in endstop status
- }
- #endif
-
- #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
-
- extern volatile uint8_t e_hit;
-
- if (e_hit && ENDSTOPS_ENABLED) {
- endstops.update(); // call endstop update routine
- e_hit--;
- }
- #endif
-
- cli();
- in_temp_isr = false;
- SBI(TIMSK0, OCIE0B); //re-enable Temperature ISR
- }
|