My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin.pde 33KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111
  1. /*
  2. Reprap firmware based on Sprinter and grbl.
  3. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  4. This program is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 3 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <http://www.gnu.org/licenses/>.
  14. */
  15. /*
  16. This firmware is a mashup between Sprinter and grbl.
  17. (https://github.com/kliment/Sprinter)
  18. (https://github.com/simen/grbl/tree)
  19. It has preliminary support for Matthew Roberts advance algorithm
  20. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  21. */
  22. #include <EEPROM.h>
  23. #include "EEPROMwrite.h"
  24. #include "fastio.h"
  25. #include "Configuration.h"
  26. #include "pins.h"
  27. #include "Marlin.h"
  28. #include "ultralcd.h"
  29. #include "planner.h"
  30. #include "stepper.h"
  31. #include "temperature.h"
  32. #include "motion_control.h"
  33. #include "cardreader.h"
  34. #include "watchdog.h"
  35. #define VERSION_STRING "1.0.0 Beta 1"
  36. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  37. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  38. //Implemented Codes
  39. //-------------------
  40. // G0 -> G1
  41. // G1 - Coordinated Movement X Y Z E
  42. // G2 - CW ARC
  43. // G3 - CCW ARC
  44. // G4 - Dwell S<seconds> or P<milliseconds>
  45. // G28 - Home all Axis
  46. // G90 - Use Absolute Coordinates
  47. // G91 - Use Relative Coordinates
  48. // G92 - Set current position to cordinates given
  49. //RepRap M Codes
  50. // M104 - Set extruder target temp
  51. // M105 - Read current temp
  52. // M106 - Fan on
  53. // M107 - Fan off
  54. // M109 - Wait for extruder current temp to reach target temp.
  55. // M114 - Display current position
  56. //Custom M Codes
  57. // M17 - Enable/Power all stepper motors
  58. // M18 - Disable all stepper motors; same as M84
  59. // M20 - List SD card
  60. // M21 - Init SD card
  61. // M22 - Release SD card
  62. // M23 - Select SD file (M23 filename.g)
  63. // M24 - Start/resume SD print
  64. // M25 - Pause SD print
  65. // M26 - Set SD position in bytes (M26 S12345)
  66. // M27 - Report SD print status
  67. // M28 - Start SD write (M28 filename.g)
  68. // M29 - Stop SD write
  69. // M30 - Output time since last M109 or SD card start to serial
  70. // M42 - Change pin status via gcode
  71. // M80 - Turn on Power Supply
  72. // M81 - Turn off Power Supply
  73. // M82 - Set E codes absolute (default)
  74. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  75. // M84 - Disable steppers until next move,
  76. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  77. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  78. // M92 - Set axis_steps_per_unit - same syntax as G92
  79. // M114 - Output current position to serial port
  80. // M115 - Capabilities string
  81. // M119 - Output Endstop status to serial port
  82. // M140 - Set bed target temp
  83. // M190 - Wait for bed current temp to reach target temp.
  84. // M200 - Set filament diameter
  85. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  86. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  87. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  88. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  89. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  90. // M220 - set speed factor override percentage S:factor in percent
  91. // M301 - Set PID parameters P I and D
  92. // M400 - Finish all moves
  93. // M500 - stores paramters in EEPROM
  94. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  95. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  96. //Stepper Movement Variables
  97. //===========================================================================
  98. //=============================imported variables============================
  99. //===========================================================================
  100. extern float HeaterPower;
  101. //===========================================================================
  102. //=============================public variables=============================
  103. //===========================================================================
  104. #ifdef SDSUPPORT
  105. CardReader card;
  106. #endif
  107. float homing_feedrate[] = HOMING_FEEDRATE;
  108. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  109. volatile int feedmultiply=100; //100->1 200->2
  110. int saved_feedmultiply;
  111. volatile bool feedmultiplychanged=false;
  112. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  113. //===========================================================================
  114. //=============================private variables=============================
  115. //===========================================================================
  116. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  117. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  118. static float offset[3] = {0.0, 0.0, 0.0};
  119. static bool home_all_axis = true;
  120. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  121. static long gcode_N, gcode_LastN;
  122. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  123. static bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
  124. static uint8_t fanpwm=0;
  125. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  126. static bool fromsd[BUFSIZE];
  127. static int bufindr = 0;
  128. static int bufindw = 0;
  129. static int buflen = 0;
  130. static int i = 0;
  131. static char serial_char;
  132. static int serial_count = 0;
  133. static boolean comment_mode = false;
  134. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  135. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  136. static float tt = 0, bt = 0;
  137. //Inactivity shutdown variables
  138. static unsigned long previous_millis_cmd = 0;
  139. static unsigned long max_inactive_time = 0;
  140. static unsigned long stepper_inactive_time = 0;
  141. static unsigned long starttime=0;
  142. static unsigned long stoptime=0;
  143. //===========================================================================
  144. //=============================ROUTINES=============================
  145. //===========================================================================
  146. void get_arc_coordinates();
  147. extern "C"{
  148. extern unsigned int __bss_end;
  149. extern unsigned int __heap_start;
  150. extern void *__brkval;
  151. int freeMemory() {
  152. int free_memory;
  153. if((int)__brkval == 0)
  154. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  155. else
  156. free_memory = ((int)&free_memory) - ((int)__brkval);
  157. return free_memory;
  158. }
  159. }
  160. //adds an command to the main command buffer
  161. //thats really done in a non-safe way.
  162. //needs overworking someday
  163. void enquecommand(const char *cmd)
  164. {
  165. if(buflen < BUFSIZE)
  166. {
  167. //this is dangerous if a mixing of serial and this happsens
  168. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  169. SERIAL_ECHO_START;
  170. SERIAL_ECHOPGM("enqueing \"");
  171. SERIAL_ECHO(cmdbuffer[bufindw]);
  172. SERIAL_ECHOLNPGM("\"");
  173. bufindw= (bufindw + 1)%BUFSIZE;
  174. buflen += 1;
  175. }
  176. }
  177. void setup()
  178. {
  179. Serial.begin(BAUDRATE);
  180. SERIAL_ECHO_START;
  181. SERIAL_ECHOLNPGM(VERSION_STRING);
  182. SERIAL_PROTOCOLLNPGM("start");
  183. SERIAL_ECHO_START;
  184. SERIAL_ECHOPGM("Free Memory:");
  185. SERIAL_ECHOLN(freeMemory());
  186. for(int8_t i = 0; i < BUFSIZE; i++)
  187. {
  188. fromsd[i] = false;
  189. }
  190. RetrieveSettings(); // loads data from EEPROM if available
  191. for(int8_t i=0; i < NUM_AXIS; i++)
  192. {
  193. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  194. }
  195. tp_init(); // Initialize temperature loop
  196. plan_init(); // Initialize planner;
  197. st_init(); // Initialize stepper;
  198. wd_init();
  199. }
  200. void loop()
  201. {
  202. if(buflen<3)
  203. get_command();
  204. #ifdef SDSUPPORT
  205. card.checkautostart(false);
  206. #endif
  207. if(buflen)
  208. {
  209. #ifdef SDSUPPORT
  210. if(card.saving)
  211. {
  212. if(strstr(cmdbuffer[bufindr],"M29") == NULL)
  213. {
  214. card.write_command(cmdbuffer[bufindr]);
  215. SERIAL_PROTOCOLLNPGM("ok");
  216. }
  217. else
  218. {
  219. card.closefile();
  220. SERIAL_PROTOCOLLNPGM("Done saving file.");
  221. }
  222. }
  223. else
  224. {
  225. process_commands();
  226. }
  227. #else
  228. process_commands();
  229. #endif //SDSUPPORT
  230. buflen = (buflen-1);
  231. bufindr = (bufindr + 1)%BUFSIZE;
  232. }
  233. //check heater every n milliseconds
  234. manage_heater();
  235. manage_inactivity(1);
  236. checkHitEndstops();
  237. checkStepperErrors();
  238. LCD_STATUS;
  239. }
  240. inline void get_command()
  241. {
  242. while( Serial.available() > 0 && buflen < BUFSIZE) {
  243. serial_char = Serial.read();
  244. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
  245. {
  246. if(!serial_count) return; //if empty line
  247. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  248. if(!comment_mode){
  249. fromsd[bufindw] = false;
  250. if(strstr(cmdbuffer[bufindw], "N") != NULL)
  251. {
  252. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  253. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  254. if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
  255. SERIAL_ERROR_START;
  256. SERIAL_ERRORPGM("Line Number is not Last Line Number+1, Last Line:");
  257. SERIAL_ERRORLN(gcode_LastN);
  258. //Serial.println(gcode_N);
  259. FlushSerialRequestResend();
  260. serial_count = 0;
  261. return;
  262. }
  263. if(strstr(cmdbuffer[bufindw], "*") != NULL)
  264. {
  265. byte checksum = 0;
  266. byte count = 0;
  267. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  268. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  269. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  270. SERIAL_ERROR_START;
  271. SERIAL_ERRORPGM("checksum mismatch, Last Line:");
  272. SERIAL_ERRORLN(gcode_LastN);
  273. FlushSerialRequestResend();
  274. serial_count = 0;
  275. return;
  276. }
  277. //if no errors, continue parsing
  278. }
  279. else
  280. {
  281. SERIAL_ERROR_START;
  282. SERIAL_ERRORPGM("No Checksum with line number, Last Line:");
  283. SERIAL_ERRORLN(gcode_LastN);
  284. FlushSerialRequestResend();
  285. serial_count = 0;
  286. return;
  287. }
  288. gcode_LastN = gcode_N;
  289. //if no errors, continue parsing
  290. }
  291. else // if we don't receive 'N' but still see '*'
  292. {
  293. if((strstr(cmdbuffer[bufindw], "*") != NULL))
  294. {
  295. SERIAL_ERROR_START;
  296. SERIAL_ERRORPGM("No Line Number with checksum, Last Line:");
  297. SERIAL_ERRORLN(gcode_LastN);
  298. serial_count = 0;
  299. return;
  300. }
  301. }
  302. if((strstr(cmdbuffer[bufindw], "G") != NULL)){
  303. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  304. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  305. case 0:
  306. case 1:
  307. case 2:
  308. case 3:
  309. #ifdef SDSUPPORT
  310. if(card.saving)
  311. break;
  312. #endif //SDSUPPORT
  313. SERIAL_PROTOCOLLNPGM("ok");
  314. break;
  315. default:
  316. break;
  317. }
  318. }
  319. bufindw = (bufindw + 1)%BUFSIZE;
  320. buflen += 1;
  321. }
  322. comment_mode = false; //for new command
  323. serial_count = 0; //clear buffer
  324. }
  325. else
  326. {
  327. if(serial_char == ';') comment_mode = true;
  328. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  329. }
  330. }
  331. #ifdef SDSUPPORT
  332. if(!card.sdprinting || serial_count!=0){
  333. return;
  334. }
  335. while( !card.eof() && buflen < BUFSIZE) {
  336. int16_t n=card.get();
  337. serial_char = (char)n;
  338. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  339. {
  340. if(card.eof()){
  341. card.sdprinting = false;
  342. SERIAL_PROTOCOLLNPGM("Done printing file");
  343. stoptime=millis();
  344. char time[30];
  345. unsigned long t=(stoptime-starttime)/1000;
  346. int sec,min;
  347. min=t/60;
  348. sec=t%60;
  349. sprintf(time,"%i min, %i sec",min,sec);
  350. SERIAL_ECHO_START;
  351. SERIAL_ECHOLN(time);
  352. LCD_MESSAGE(time);
  353. card.checkautostart(true);
  354. }
  355. if(serial_char=='\n')
  356. comment_mode = false; //for new command
  357. if(!serial_count)
  358. {
  359. return; //if empty line
  360. }
  361. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  362. if(!comment_mode){
  363. fromsd[bufindw] = true;
  364. buflen += 1;
  365. bufindw = (bufindw + 1)%BUFSIZE;
  366. }
  367. serial_count = 0; //clear buffer
  368. }
  369. else
  370. {
  371. if(serial_char == ';') comment_mode = true;
  372. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  373. }
  374. }
  375. #endif //SDSUPPORT
  376. }
  377. inline float code_value()
  378. {
  379. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  380. }
  381. inline long code_value_long()
  382. {
  383. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  384. }
  385. inline bool code_seen(char code_string[]) //Return True if the string was found
  386. {
  387. return (strstr(cmdbuffer[bufindr], code_string) != NULL);
  388. }
  389. inline bool code_seen(char code)
  390. {
  391. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  392. return (strchr_pointer != NULL); //Return True if a character was found
  393. }
  394. #define HOMEAXIS(LETTER) \
  395. if ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))\
  396. { \
  397. current_position[LETTER##_AXIS] = 0; \
  398. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); \
  399. destination[LETTER##_AXIS] = 1.5 * LETTER##_MAX_LENGTH * LETTER##_HOME_DIR; \
  400. feedrate = homing_feedrate[LETTER##_AXIS]; \
  401. prepare_move(); \
  402. \
  403. current_position[LETTER##_AXIS] = 0;\
  404. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  405. destination[LETTER##_AXIS] = -LETTER##_HOME_RETRACT_MM * LETTER##_HOME_DIR;\
  406. prepare_move(); \
  407. \
  408. destination[LETTER##_AXIS] = 2*LETTER##_HOME_RETRACT_MM * LETTER##_HOME_DIR;\
  409. feedrate = homing_feedrate[LETTER##_AXIS]/2 ; \
  410. prepare_move(); \
  411. \
  412. current_position[LETTER##_AXIS] = (LETTER##_HOME_DIR == -1) ? 0 : LETTER##_MAX_LENGTH;\
  413. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  414. destination[LETTER##_AXIS] = current_position[LETTER##_AXIS];\
  415. feedrate = 0.0;\
  416. st_synchronize();\
  417. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  418. endstops_hit_on_purpose();\
  419. }
  420. inline void process_commands()
  421. {
  422. unsigned long codenum; //throw away variable
  423. char *starpos = NULL;
  424. if(code_seen('G'))
  425. {
  426. switch((int)code_value())
  427. {
  428. case 0: // G0 -> G1
  429. case 1: // G1
  430. get_coordinates(); // For X Y Z E F
  431. prepare_move();
  432. previous_millis_cmd = millis();
  433. //ClearToSend();
  434. return;
  435. //break;
  436. case 2: // G2 - CW ARC
  437. get_arc_coordinates();
  438. prepare_arc_move(true);
  439. previous_millis_cmd = millis();
  440. return;
  441. case 3: // G3 - CCW ARC
  442. get_arc_coordinates();
  443. prepare_arc_move(false);
  444. previous_millis_cmd = millis();
  445. return;
  446. case 4: // G4 dwell
  447. LCD_MESSAGEPGM("DWELL...");
  448. codenum = 0;
  449. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  450. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  451. st_synchronize();
  452. codenum += millis(); // keep track of when we started waiting
  453. while(millis() < codenum ){
  454. manage_heater();
  455. }
  456. break;
  457. case 28: //G28 Home all Axis one at a time
  458. saved_feedrate = feedrate;
  459. saved_feedmultiply = feedmultiply;
  460. feedmultiply = 100;
  461. for(int8_t i=0; i < NUM_AXIS; i++) {
  462. destination[i] = current_position[i];
  463. }
  464. feedrate = 0.0;
  465. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  466. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  467. {
  468. HOMEAXIS(X);
  469. }
  470. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  471. HOMEAXIS(Y);
  472. }
  473. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  474. HOMEAXIS(Z);
  475. }
  476. feedrate = saved_feedrate;
  477. feedmultiply = saved_feedmultiply;
  478. previous_millis_cmd = millis();
  479. endstops_hit_on_purpose();
  480. break;
  481. case 90: // G90
  482. relative_mode = false;
  483. break;
  484. case 91: // G91
  485. relative_mode = true;
  486. break;
  487. case 92: // G92
  488. if(!code_seen(axis_codes[E_AXIS]))
  489. st_synchronize();
  490. for(int8_t i=0; i < NUM_AXIS; i++) {
  491. if(code_seen(axis_codes[i])) {
  492. current_position[i] = code_value();
  493. if(i == E_AXIS) {
  494. plan_set_e_position(current_position[E_AXIS]);
  495. }
  496. else {
  497. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  498. }
  499. }
  500. }
  501. break;
  502. }
  503. }
  504. else if(code_seen('M'))
  505. {
  506. switch( (int)code_value() )
  507. {
  508. case 17:
  509. LCD_MESSAGEPGM("No move.");
  510. enable_x();
  511. enable_y();
  512. enable_z();
  513. enable_e();
  514. break;
  515. #ifdef SDSUPPORT
  516. case 20: // M20 - list SD card
  517. SERIAL_PROTOCOLLNPGM("Begin file list");
  518. card.ls();
  519. SERIAL_PROTOCOLLNPGM("End file list");
  520. break;
  521. case 21: // M21 - init SD card
  522. card.initsd();
  523. break;
  524. case 22: //M22 - release SD card
  525. card.release();
  526. break;
  527. case 23: //M23 - Select file
  528. starpos = (strchr(strchr_pointer + 4,'*'));
  529. if(starpos!=NULL)
  530. *(starpos-1)='\0';
  531. card.openFile(strchr_pointer + 4,true);
  532. break;
  533. case 24: //M24 - Start SD print
  534. card.startFileprint();
  535. starttime=millis();
  536. break;
  537. case 25: //M25 - Pause SD print
  538. card.pauseSDPrint();
  539. break;
  540. case 26: //M26 - Set SD index
  541. if(card.cardOK && code_seen('S')){
  542. card.setIndex(code_value_long());
  543. }
  544. break;
  545. case 27: //M27 - Get SD status
  546. card.getStatus();
  547. break;
  548. case 28: //M28 - Start SD write
  549. starpos = (strchr(strchr_pointer + 4,'*'));
  550. if(starpos != NULL){
  551. char* npos = strchr(cmdbuffer[bufindr], 'N');
  552. strchr_pointer = strchr(npos,' ') + 1;
  553. *(starpos-1) = '\0';
  554. }
  555. card.openFile(strchr_pointer+4,false);
  556. break;
  557. case 29: //M29 - Stop SD write
  558. //processed in write to file routine above
  559. //card,saving = false;
  560. break;
  561. #endif //SDSUPPORT
  562. case 30: //M30 take time since the start of the SD print or an M109 command
  563. {
  564. stoptime=millis();
  565. char time[30];
  566. unsigned long t=(stoptime-starttime)/1000;
  567. int sec,min;
  568. min=t/60;
  569. sec=t%60;
  570. sprintf(time,"%i min, %i sec",min,sec);
  571. SERIAL_ECHO_START;
  572. SERIAL_ECHOLN(time);
  573. LCD_MESSAGE(time);
  574. }
  575. break;
  576. case 42: //M42 -Change pin status via gcode
  577. if (code_seen('S'))
  578. {
  579. int pin_status = code_value();
  580. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  581. {
  582. int pin_number = code_value();
  583. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  584. {
  585. if (sensitive_pins[i] == pin_number)
  586. {
  587. pin_number = -1;
  588. break;
  589. }
  590. }
  591. if (pin_number > -1)
  592. {
  593. pinMode(pin_number, OUTPUT);
  594. digitalWrite(pin_number, pin_status);
  595. analogWrite(pin_number, pin_status);
  596. }
  597. }
  598. }
  599. break;
  600. case 104: // M104
  601. if (code_seen('S')) setTargetHotend0(code_value());
  602. setWatch();
  603. break;
  604. case 140: // M140 set bed temp
  605. if (code_seen('S')) setTargetBed(code_value());
  606. break;
  607. case 105 : // M105
  608. //SERIAL_ECHOLN(freeMemory());
  609. //test watchdog:
  610. //delay(20000);
  611. #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
  612. SERIAL_PROTOCOLPGM("ok T:");
  613. SERIAL_PROTOCOL( degHotend0());
  614. #if TEMP_1_PIN > -1
  615. SERIAL_PROTOCOLPGM(" B:");
  616. SERIAL_PROTOCOL(degBed());
  617. #endif //TEMP_1_PIN
  618. #else
  619. SERIAL_ERROR_START;
  620. SERIAL_ERRORLNPGM("No thermistors - no temp");
  621. #endif
  622. #ifdef PIDTEMP
  623. SERIAL_PROTOCOLPGM(" @:");
  624. SERIAL_PROTOCOL( HeaterPower);
  625. #endif
  626. SERIAL_PROTOCOLLN("");
  627. return;
  628. break;
  629. case 109:
  630. {// M109 - Wait for extruder heater to reach target.
  631. LCD_MESSAGEPGM("Heating...");
  632. #ifdef AUTOTEMP
  633. autotemp_enabled=false;
  634. #endif
  635. if (code_seen('S')) setTargetHotend0(code_value());
  636. #ifdef AUTOTEMP
  637. if (code_seen('S')) autotemp_min=code_value();
  638. if (code_seen('T')) autotemp_max=code_value();
  639. if (code_seen('F'))
  640. {
  641. autotemp_factor=code_value();
  642. autotemp_enabled=true;
  643. }
  644. #endif
  645. setWatch();
  646. codenum = millis();
  647. /* See if we are heating up or cooling down */
  648. bool target_direction = isHeatingHotend0(); // true if heating, false if cooling
  649. #ifdef TEMP_RESIDENCY_TIME
  650. long residencyStart;
  651. residencyStart = -1;
  652. /* continue to loop until we have reached the target temp
  653. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  654. while((target_direction ? (isHeatingHotend0()) : (isCoolingHotend0())) ||
  655. (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
  656. #else
  657. while ( target_direction ? (isHeatingHotend0()) : (isCoolingHotend0()&&(CooldownNoWait==false)) ) {
  658. #endif //TEMP_RESIDENCY_TIME
  659. if( (millis() - codenum) > 1000 )
  660. { //Print Temp Reading every 1 second while heating up/cooling down
  661. SERIAL_PROTOCOLPGM("T:");
  662. SERIAL_PROTOCOLLN( degHotend0() );
  663. codenum = millis();
  664. }
  665. manage_heater();
  666. LCD_STATUS;
  667. #ifdef TEMP_RESIDENCY_TIME
  668. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  669. or when current temp falls outside the hysteresis after target temp was reached */
  670. if ((residencyStart == -1 && target_direction && !isHeatingHotend0()) ||
  671. (residencyStart == -1 && !target_direction && !isCoolingHotend0()) ||
  672. (residencyStart > -1 && labs(degHotend0() - degTargetHotend0()) > TEMP_HYSTERESIS) )
  673. {
  674. residencyStart = millis();
  675. }
  676. #endif //TEMP_RESIDENCY_TIME
  677. }
  678. LCD_MESSAGEPGM("Heating done.");
  679. starttime=millis();
  680. }
  681. break;
  682. case 190: // M190 - Wait bed for heater to reach target.
  683. #if TEMP_1_PIN > -1
  684. LCD_MESSAGEPGM("Bed Heating.");
  685. if (code_seen('S')) setTargetBed(code_value());
  686. codenum = millis();
  687. while(isHeatingBed())
  688. {
  689. if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  690. {
  691. float tt=degHotend0();
  692. SERIAL_PROTOCOLPGM("T:");
  693. SERIAL_PROTOCOLLN(tt );
  694. SERIAL_PROTOCOLPGM("ok T:");
  695. SERIAL_PROTOCOL(tt );
  696. SERIAL_PROTOCOLPGM(" B:");
  697. SERIAL_PROTOCOLLN(degBed() );
  698. codenum = millis();
  699. }
  700. manage_heater();
  701. }
  702. LCD_MESSAGEPGM("Bed done.");
  703. #endif
  704. break;
  705. #if FAN_PIN > -1
  706. case 106: //M106 Fan On
  707. if (code_seen('S')){
  708. WRITE(FAN_PIN,HIGH);
  709. fanpwm=constrain(code_value(),0,255);
  710. analogWrite(FAN_PIN, fanpwm);
  711. }
  712. else {
  713. WRITE(FAN_PIN,HIGH);
  714. fanpwm=255;
  715. analogWrite(FAN_PIN, fanpwm);
  716. }
  717. break;
  718. case 107: //M107 Fan Off
  719. WRITE(FAN_PIN,LOW);
  720. analogWrite(FAN_PIN, 0);
  721. break;
  722. #endif //FAN_PIN
  723. #if (PS_ON_PIN > -1)
  724. case 80: // M80 - ATX Power On
  725. SET_OUTPUT(PS_ON_PIN); //GND
  726. break;
  727. case 81: // M81 - ATX Power Off
  728. SET_INPUT(PS_ON_PIN); //Floating
  729. break;
  730. #endif
  731. case 82:
  732. axis_relative_modes[3] = false;
  733. break;
  734. case 83:
  735. axis_relative_modes[3] = true;
  736. break;
  737. case 18: //compatibility
  738. case 84: // M84
  739. if(code_seen('S')){
  740. stepper_inactive_time = code_value() * 1000;
  741. }
  742. else
  743. {
  744. finishAndDisableSteppers();
  745. }
  746. break;
  747. case 85: // M85
  748. code_seen('S');
  749. max_inactive_time = code_value() * 1000;
  750. break;
  751. case 92: // M92
  752. for(int8_t i=0; i < NUM_AXIS; i++)
  753. {
  754. if(code_seen(axis_codes[i]))
  755. axis_steps_per_unit[i] = code_value();
  756. }
  757. break;
  758. case 115: // M115
  759. SerialprintPGM("FIRMWARE_NAME:Marlin; Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
  760. break;
  761. case 114: // M114
  762. SERIAL_PROTOCOLPGM("X:");
  763. SERIAL_PROTOCOL(current_position[X_AXIS]);
  764. SERIAL_PROTOCOLPGM("Y:");
  765. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  766. SERIAL_PROTOCOLPGM("Z:");
  767. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  768. SERIAL_PROTOCOLPGM("E:");
  769. SERIAL_PROTOCOL(current_position[E_AXIS]);
  770. SERIAL_PROTOCOLPGM(" Count X:");
  771. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  772. SERIAL_PROTOCOLPGM("Y:");
  773. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  774. SERIAL_PROTOCOLPGM("Z:");
  775. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  776. SERIAL_PROTOCOLLN("");
  777. break;
  778. case 119: // M119
  779. #if (X_MIN_PIN > -1)
  780. SERIAL_PROTOCOLPGM("x_min:");
  781. SERIAL_PROTOCOL(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?"H ":"L "));
  782. #endif
  783. #if (X_MAX_PIN > -1)
  784. SERIAL_PROTOCOLPGM("x_max:");
  785. SERIAL_PROTOCOL(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?"H ":"L "));
  786. #endif
  787. #if (Y_MIN_PIN > -1)
  788. SERIAL_PROTOCOLPGM("y_min:");
  789. SERIAL_PROTOCOL(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?"H ":"L "));
  790. #endif
  791. #if (Y_MAX_PIN > -1)
  792. SERIAL_PROTOCOLPGM("y_max:");
  793. SERIAL_PROTOCOL(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?"H ":"L "));
  794. #endif
  795. #if (Z_MIN_PIN > -1)
  796. SERIAL_PROTOCOLPGM("z_min:");
  797. SERIAL_PROTOCOL(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?"H ":"L "));
  798. #endif
  799. #if (Z_MAX_PIN > -1)
  800. SERIAL_PROTOCOLPGM("z_max:");
  801. SERIAL_PROTOCOL(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?"H ":"L "));
  802. #endif
  803. SERIAL_PROTOCOLLN("");
  804. break;
  805. //TODO: update for all axis, use for loop
  806. case 201: // M201
  807. for(int8_t i=0; i < NUM_AXIS; i++)
  808. {
  809. if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  810. }
  811. break;
  812. #if 0 // Not used for Sprinter/grbl gen6
  813. case 202: // M202
  814. for(int8_t i=0; i < NUM_AXIS; i++) {
  815. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  816. }
  817. break;
  818. #endif
  819. case 203: // M203 max feedrate mm/sec
  820. for(int8_t i=0; i < NUM_AXIS; i++) {
  821. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  822. }
  823. break;
  824. case 204: // M204 acclereration S normal moves T filmanent only moves
  825. {
  826. if(code_seen('S')) acceleration = code_value() ;
  827. if(code_seen('T')) retract_acceleration = code_value() ;
  828. }
  829. break;
  830. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  831. {
  832. if(code_seen('S')) minimumfeedrate = code_value();
  833. if(code_seen('T')) mintravelfeedrate = code_value();
  834. if(code_seen('B')) minsegmenttime = code_value() ;
  835. if(code_seen('X')) max_xy_jerk = code_value() ;
  836. if(code_seen('Z')) max_z_jerk = code_value() ;
  837. }
  838. break;
  839. case 220: // M220 S<factor in percent>- set speed factor override percentage
  840. {
  841. if(code_seen('S'))
  842. {
  843. feedmultiply = code_value() ;
  844. feedmultiplychanged=true;
  845. }
  846. }
  847. break;
  848. #ifdef PIDTEMP
  849. case 301: // M301
  850. {
  851. if(code_seen('P')) Kp = code_value();
  852. if(code_seen('I')) Ki = code_value()*PID_dT;
  853. if(code_seen('D')) Kd = code_value()/PID_dT;
  854. #ifdef PID_ADD_EXTRUSION_RATE
  855. if(code_seen('C')) Kc = code_value();
  856. #endif
  857. updatePID();
  858. SERIAL_PROTOCOL("ok p:");
  859. SERIAL_PROTOCOL(Kp);
  860. SERIAL_PROTOCOL(" i:");
  861. SERIAL_PROTOCOL(Ki/PID_dT);
  862. SERIAL_PROTOCOL(" d:");
  863. SERIAL_PROTOCOL(Kd*PID_dT);
  864. #ifdef PID_ADD_EXTRUSION_RATE
  865. SERIAL_PROTOCOL(" c:");
  866. SERIAL_PROTOCOL(Kc*PID_dT);
  867. #endif
  868. SERIAL_PROTOCOLLN("");
  869. }
  870. break;
  871. #endif //PIDTEMP
  872. case 400: // finish all moves
  873. {
  874. st_synchronize();
  875. }
  876. break;
  877. case 500: // Store settings in EEPROM
  878. {
  879. StoreSettings();
  880. }
  881. break;
  882. case 501: // Read settings from EEPROM
  883. {
  884. RetrieveSettings();
  885. }
  886. break;
  887. case 502: // Revert to default settings
  888. {
  889. RetrieveSettings(true);
  890. }
  891. break;
  892. }
  893. }
  894. else
  895. {
  896. SERIAL_ECHO_START;
  897. SERIAL_ECHOPGM("Unknown command:\"");
  898. SERIAL_ECHO(cmdbuffer[bufindr]);
  899. SERIAL_ECHOLNPGM("\"");
  900. }
  901. ClearToSend();
  902. }
  903. void FlushSerialRequestResend()
  904. {
  905. //char cmdbuffer[bufindr][100]="Resend:";
  906. Serial.flush();
  907. SERIAL_PROTOCOLPGM("Resend:");
  908. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  909. ClearToSend();
  910. }
  911. void ClearToSend()
  912. {
  913. previous_millis_cmd = millis();
  914. #ifdef SDSUPPORT
  915. if(fromsd[bufindr])
  916. return;
  917. #endif //SDSUPPORT
  918. SERIAL_PROTOCOLLNPGM("ok");
  919. }
  920. inline void get_coordinates()
  921. {
  922. for(int8_t i=0; i < NUM_AXIS; i++) {
  923. if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  924. else destination[i] = current_position[i]; //Are these else lines really needed?
  925. }
  926. if(code_seen('F')) {
  927. next_feedrate = code_value();
  928. if(next_feedrate > 0.0) feedrate = next_feedrate;
  929. }
  930. }
  931. inline void get_arc_coordinates()
  932. {
  933. get_coordinates();
  934. if(code_seen('I')) offset[0] = code_value();
  935. if(code_seen('J')) offset[1] = code_value();
  936. }
  937. void prepare_move()
  938. {
  939. if (min_software_endstops) {
  940. if (destination[X_AXIS] < 0) destination[X_AXIS] = 0.0;
  941. if (destination[Y_AXIS] < 0) destination[Y_AXIS] = 0.0;
  942. if (destination[Z_AXIS] < 0) destination[Z_AXIS] = 0.0;
  943. }
  944. if (max_software_endstops) {
  945. if (destination[X_AXIS] > X_MAX_LENGTH) destination[X_AXIS] = X_MAX_LENGTH;
  946. if (destination[Y_AXIS] > Y_MAX_LENGTH) destination[Y_AXIS] = Y_MAX_LENGTH;
  947. if (destination[Z_AXIS] > Z_MAX_LENGTH) destination[Z_AXIS] = Z_MAX_LENGTH;
  948. }
  949. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0);
  950. for(int8_t i=0; i < NUM_AXIS; i++) {
  951. current_position[i] = destination[i];
  952. }
  953. }
  954. void prepare_arc_move(char isclockwise) {
  955. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  956. // Trace the arc
  957. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise);
  958. // As far as the parser is concerned, the position is now == target. In reality the
  959. // motion control system might still be processing the action and the real tool position
  960. // in any intermediate location.
  961. for(int8_t i=0; i < NUM_AXIS; i++) {
  962. current_position[i] = destination[i];
  963. }
  964. }
  965. void manage_inactivity(byte debug)
  966. {
  967. if( (millis()-previous_millis_cmd) > max_inactive_time )
  968. if(max_inactive_time)
  969. kill();
  970. if( (millis()-previous_millis_cmd) > stepper_inactive_time )
  971. if(stepper_inactive_time)
  972. {
  973. disable_x();
  974. disable_y();
  975. disable_z();
  976. disable_e();
  977. }
  978. check_axes_activity();
  979. }
  980. void kill()
  981. {
  982. disable_heater();
  983. disable_x();
  984. disable_y();
  985. disable_z();
  986. disable_e();
  987. if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  988. SERIAL_ERROR_START;
  989. SERIAL_ERRORLNPGM("Printer halted. kill() called !!");
  990. LCD_MESSAGEPGM("KILLED. ");
  991. while(1); // Wait for reset
  992. }