My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

planner.cpp 38KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. //===========================================================================
  43. //=============================public variables ============================
  44. //===========================================================================
  45. unsigned long minsegmenttime;
  46. float max_feedrate[4]; // set the max speeds
  47. float axis_steps_per_unit[4];
  48. unsigned long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
  49. float minimumfeedrate;
  50. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  51. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  52. float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
  53. float max_z_jerk;
  54. float max_e_jerk;
  55. float mintravelfeedrate;
  56. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  57. #ifdef ENABLE_AUTO_BED_LEVELING
  58. // this holds the required transform to compensate for bed level
  59. matrix_3x3 plan_bed_level_matrix = {
  60. 1.0, 0.0, 0.0,
  61. 0.0, 1.0, 0.0,
  62. 0.0, 0.0, 1.0,
  63. };
  64. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  65. // The current position of the tool in absolute steps
  66. long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  67. static float previous_speed[4]; // Speed of previous path line segment
  68. static float previous_nominal_speed; // Nominal speed of previous path line segment
  69. #ifdef AUTOTEMP
  70. float autotemp_max=250;
  71. float autotemp_min=210;
  72. float autotemp_factor=0.1;
  73. bool autotemp_enabled=false;
  74. #endif
  75. //===========================================================================
  76. //=================semi-private variables, used in inline functions =====
  77. //===========================================================================
  78. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  79. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  80. volatile unsigned char block_buffer_tail; // Index of the block to process now
  81. //===========================================================================
  82. //=============================private variables ============================
  83. //===========================================================================
  84. #ifdef PREVENT_DANGEROUS_EXTRUDE
  85. float extrude_min_temp=EXTRUDE_MINTEMP;
  86. #endif
  87. #ifdef XY_FREQUENCY_LIMIT
  88. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  89. // Used for the frequency limit
  90. static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
  91. static long x_segment_time[3]={MAX_FREQ_TIME + 1,0,0}; // Segment times (in us). Used for speed calculations
  92. static long y_segment_time[3]={MAX_FREQ_TIME + 1,0,0};
  93. #endif
  94. // Returns the index of the next block in the ring buffer
  95. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  96. static int8_t next_block_index(int8_t block_index) {
  97. block_index++;
  98. if (block_index == BLOCK_BUFFER_SIZE) {
  99. block_index = 0;
  100. }
  101. return(block_index);
  102. }
  103. // Returns the index of the previous block in the ring buffer
  104. static int8_t prev_block_index(int8_t block_index) {
  105. if (block_index == 0) {
  106. block_index = BLOCK_BUFFER_SIZE;
  107. }
  108. block_index--;
  109. return(block_index);
  110. }
  111. //===========================================================================
  112. //=============================functions ============================
  113. //===========================================================================
  114. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  115. // given acceleration:
  116. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  117. {
  118. if (acceleration!=0) {
  119. return((target_rate*target_rate-initial_rate*initial_rate)/
  120. (2.0*acceleration));
  121. }
  122. else {
  123. return 0.0; // acceleration was 0, set acceleration distance to 0
  124. }
  125. }
  126. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  127. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  128. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  129. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  130. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  131. {
  132. if (acceleration!=0) {
  133. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  134. (4.0*acceleration) );
  135. }
  136. else {
  137. return 0.0; // acceleration was 0, set intersection distance to 0
  138. }
  139. }
  140. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  141. void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
  142. unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
  143. unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
  144. // Limit minimal step rate (Otherwise the timer will overflow.)
  145. if(initial_rate <120) {
  146. initial_rate=120;
  147. }
  148. if(final_rate < 120) {
  149. final_rate=120;
  150. }
  151. long acceleration = block->acceleration_st;
  152. int32_t accelerate_steps =
  153. ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  154. int32_t decelerate_steps =
  155. floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  156. // Calculate the size of Plateau of Nominal Rate.
  157. int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
  158. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  159. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  160. // in order to reach the final_rate exactly at the end of this block.
  161. if (plateau_steps < 0) {
  162. accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  163. accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
  164. accelerate_steps = min((uint32_t)accelerate_steps,block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  165. plateau_steps = 0;
  166. }
  167. #ifdef ADVANCE
  168. volatile long initial_advance = block->advance*entry_factor*entry_factor;
  169. volatile long final_advance = block->advance*exit_factor*exit_factor;
  170. #endif // ADVANCE
  171. // block->accelerate_until = accelerate_steps;
  172. // block->decelerate_after = accelerate_steps+plateau_steps;
  173. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  174. if(block->busy == false) { // Don't update variables if block is busy.
  175. block->accelerate_until = accelerate_steps;
  176. block->decelerate_after = accelerate_steps+plateau_steps;
  177. block->initial_rate = initial_rate;
  178. block->final_rate = final_rate;
  179. #ifdef ADVANCE
  180. block->initial_advance = initial_advance;
  181. block->final_advance = final_advance;
  182. #endif //ADVANCE
  183. }
  184. CRITICAL_SECTION_END;
  185. }
  186. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  187. // acceleration within the allotted distance.
  188. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  189. return sqrt(target_velocity*target_velocity-2*acceleration*distance);
  190. }
  191. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  192. // This method will calculate the junction jerk as the euclidean distance between the nominal
  193. // velocities of the respective blocks.
  194. //inline float junction_jerk(block_t *before, block_t *after) {
  195. // return sqrt(
  196. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  197. //}
  198. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  199. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  200. if(!current) {
  201. return;
  202. }
  203. if (next) {
  204. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  205. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  206. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  207. if (current->entry_speed != current->max_entry_speed) {
  208. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  209. // for max allowable speed if block is decelerating and nominal length is false.
  210. if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
  211. current->entry_speed = min( current->max_entry_speed,
  212. max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
  213. }
  214. else {
  215. current->entry_speed = current->max_entry_speed;
  216. }
  217. current->recalculate_flag = true;
  218. }
  219. } // Skip last block. Already initialized and set for recalculation.
  220. }
  221. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  222. // implements the reverse pass.
  223. void planner_reverse_pass() {
  224. uint8_t block_index = block_buffer_head;
  225. //Make a local copy of block_buffer_tail, because the interrupt can alter it
  226. CRITICAL_SECTION_START;
  227. unsigned char tail = block_buffer_tail;
  228. CRITICAL_SECTION_END
  229. if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
  230. block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
  231. block_t *block[3] = {
  232. NULL, NULL, NULL };
  233. while(block_index != tail) {
  234. block_index = prev_block_index(block_index);
  235. block[2]= block[1];
  236. block[1]= block[0];
  237. block[0] = &block_buffer[block_index];
  238. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  239. }
  240. }
  241. }
  242. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  243. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  244. if(!previous) {
  245. return;
  246. }
  247. // If the previous block is an acceleration block, but it is not long enough to complete the
  248. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  249. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  250. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  251. if (!previous->nominal_length_flag) {
  252. if (previous->entry_speed < current->entry_speed) {
  253. double entry_speed = min( current->entry_speed,
  254. max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
  255. // Check for junction speed change
  256. if (current->entry_speed != entry_speed) {
  257. current->entry_speed = entry_speed;
  258. current->recalculate_flag = true;
  259. }
  260. }
  261. }
  262. }
  263. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  264. // implements the forward pass.
  265. void planner_forward_pass() {
  266. uint8_t block_index = block_buffer_tail;
  267. block_t *block[3] = {
  268. NULL, NULL, NULL };
  269. while(block_index != block_buffer_head) {
  270. block[0] = block[1];
  271. block[1] = block[2];
  272. block[2] = &block_buffer[block_index];
  273. planner_forward_pass_kernel(block[0],block[1],block[2]);
  274. block_index = next_block_index(block_index);
  275. }
  276. planner_forward_pass_kernel(block[1], block[2], NULL);
  277. }
  278. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  279. // entry_factor for each junction. Must be called by planner_recalculate() after
  280. // updating the blocks.
  281. void planner_recalculate_trapezoids() {
  282. int8_t block_index = block_buffer_tail;
  283. block_t *current;
  284. block_t *next = NULL;
  285. while(block_index != block_buffer_head) {
  286. current = next;
  287. next = &block_buffer[block_index];
  288. if (current) {
  289. // Recalculate if current block entry or exit junction speed has changed.
  290. if (current->recalculate_flag || next->recalculate_flag) {
  291. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  292. calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
  293. next->entry_speed/current->nominal_speed);
  294. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  295. }
  296. }
  297. block_index = next_block_index( block_index );
  298. }
  299. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  300. if(next != NULL) {
  301. calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
  302. MINIMUM_PLANNER_SPEED/next->nominal_speed);
  303. next->recalculate_flag = false;
  304. }
  305. }
  306. // Recalculates the motion plan according to the following algorithm:
  307. //
  308. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  309. // so that:
  310. // a. The junction jerk is within the set limit
  311. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  312. // acceleration.
  313. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  314. // a. The speed increase within one block would require faster accelleration than the one, true
  315. // constant acceleration.
  316. //
  317. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  318. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  319. // the set limit. Finally it will:
  320. //
  321. // 3. Recalculate trapezoids for all blocks.
  322. void planner_recalculate() {
  323. planner_reverse_pass();
  324. planner_forward_pass();
  325. planner_recalculate_trapezoids();
  326. }
  327. void plan_init() {
  328. block_buffer_head = 0;
  329. block_buffer_tail = 0;
  330. memset(position, 0, sizeof(position)); // clear position
  331. previous_speed[0] = 0.0;
  332. previous_speed[1] = 0.0;
  333. previous_speed[2] = 0.0;
  334. previous_speed[3] = 0.0;
  335. previous_nominal_speed = 0.0;
  336. }
  337. #ifdef AUTOTEMP
  338. void getHighESpeed()
  339. {
  340. static float oldt=0;
  341. if(!autotemp_enabled){
  342. return;
  343. }
  344. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  345. return; //do nothing
  346. }
  347. float high=0.0;
  348. uint8_t block_index = block_buffer_tail;
  349. while(block_index != block_buffer_head) {
  350. if((block_buffer[block_index].steps_x != 0) ||
  351. (block_buffer[block_index].steps_y != 0) ||
  352. (block_buffer[block_index].steps_z != 0)) {
  353. float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
  354. //se; mm/sec;
  355. if(se>high)
  356. {
  357. high=se;
  358. }
  359. }
  360. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  361. }
  362. float g=autotemp_min+high*autotemp_factor;
  363. float t=g;
  364. if(t<autotemp_min)
  365. t=autotemp_min;
  366. if(t>autotemp_max)
  367. t=autotemp_max;
  368. if(oldt>t)
  369. {
  370. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  371. }
  372. oldt=t;
  373. setTargetHotend0(t);
  374. }
  375. #endif
  376. void check_axes_activity()
  377. {
  378. unsigned char x_active = 0;
  379. unsigned char y_active = 0;
  380. unsigned char z_active = 0;
  381. unsigned char e_active = 0;
  382. unsigned char tail_fan_speed = fanSpeed;
  383. #ifdef BARICUDA
  384. unsigned char tail_valve_pressure = ValvePressure;
  385. unsigned char tail_e_to_p_pressure = EtoPPressure;
  386. #endif
  387. block_t *block;
  388. if(block_buffer_tail != block_buffer_head)
  389. {
  390. uint8_t block_index = block_buffer_tail;
  391. tail_fan_speed = block_buffer[block_index].fan_speed;
  392. #ifdef BARICUDA
  393. tail_valve_pressure = block_buffer[block_index].valve_pressure;
  394. tail_e_to_p_pressure = block_buffer[block_index].e_to_p_pressure;
  395. #endif
  396. while(block_index != block_buffer_head)
  397. {
  398. block = &block_buffer[block_index];
  399. if(block->steps_x != 0) x_active++;
  400. if(block->steps_y != 0) y_active++;
  401. if(block->steps_z != 0) z_active++;
  402. if(block->steps_e != 0) e_active++;
  403. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  404. }
  405. }
  406. if((DISABLE_X) && (x_active == 0)) disable_x();
  407. if((DISABLE_Y) && (y_active == 0)) disable_y();
  408. if((DISABLE_Z) && (z_active == 0)) disable_z();
  409. if((DISABLE_E) && (e_active == 0))
  410. {
  411. disable_e0();
  412. disable_e1();
  413. disable_e2();
  414. }
  415. #if defined(FAN_PIN) && FAN_PIN > -1
  416. #ifdef FAN_KICKSTART_TIME
  417. static unsigned long fan_kick_end;
  418. if (tail_fan_speed) {
  419. if (fan_kick_end == 0) {
  420. // Just starting up fan - run at full power.
  421. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  422. tail_fan_speed = 255;
  423. } else if (fan_kick_end > millis())
  424. // Fan still spinning up.
  425. tail_fan_speed = 255;
  426. } else {
  427. fan_kick_end = 0;
  428. }
  429. #endif//FAN_KICKSTART_TIME
  430. #ifdef FAN_SOFT_PWM
  431. fanSpeedSoftPwm = tail_fan_speed;
  432. #else
  433. analogWrite(FAN_PIN,tail_fan_speed);
  434. #endif//!FAN_SOFT_PWM
  435. #endif//FAN_PIN > -1
  436. #ifdef AUTOTEMP
  437. getHighESpeed();
  438. #endif
  439. #ifdef BARICUDA
  440. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  441. analogWrite(HEATER_1_PIN,tail_valve_pressure);
  442. #endif
  443. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  444. analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
  445. #endif
  446. #endif
  447. }
  448. float junction_deviation = 0.1;
  449. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  450. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  451. // calculation the caller must also provide the physical length of the line in millimeters.
  452. #ifdef ENABLE_AUTO_BED_LEVELING
  453. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  454. #else
  455. void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
  456. #endif //ENABLE_AUTO_BED_LEVELING
  457. {
  458. // Calculate the buffer head after we push this byte
  459. int next_buffer_head = next_block_index(block_buffer_head);
  460. // If the buffer is full: good! That means we are well ahead of the robot.
  461. // Rest here until there is room in the buffer.
  462. while(block_buffer_tail == next_buffer_head)
  463. {
  464. manage_heater();
  465. manage_inactivity();
  466. lcd_update();
  467. }
  468. #ifdef ENABLE_AUTO_BED_LEVELING
  469. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  470. #endif // ENABLE_AUTO_BED_LEVELING
  471. // The target position of the tool in absolute steps
  472. // Calculate target position in absolute steps
  473. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  474. long target[4];
  475. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  476. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  477. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  478. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  479. #ifdef PREVENT_DANGEROUS_EXTRUDE
  480. if(target[E_AXIS]!=position[E_AXIS])
  481. {
  482. if(degHotend(active_extruder)<extrude_min_temp)
  483. {
  484. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  485. SERIAL_ECHO_START;
  486. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  487. }
  488. #ifdef PREVENT_LENGTHY_EXTRUDE
  489. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  490. {
  491. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  492. SERIAL_ECHO_START;
  493. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  494. }
  495. #endif
  496. }
  497. #endif
  498. // Prepare to set up new block
  499. block_t *block = &block_buffer[block_buffer_head];
  500. // Mark block as not busy (Not executed by the stepper interrupt)
  501. block->busy = false;
  502. // Number of steps for each axis
  503. #ifndef COREXY
  504. // default non-h-bot planning
  505. block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
  506. block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  507. #else
  508. // corexy planning
  509. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  510. block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  511. block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  512. #endif
  513. block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  514. block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  515. block->steps_e *= volumetric_multiplier[active_extruder];
  516. block->steps_e *= extrudemultiply;
  517. block->steps_e /= 100;
  518. block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
  519. // Bail if this is a zero-length block
  520. if (block->step_event_count <= dropsegments)
  521. {
  522. return;
  523. }
  524. block->fan_speed = fanSpeed;
  525. #ifdef BARICUDA
  526. block->valve_pressure = ValvePressure;
  527. block->e_to_p_pressure = EtoPPressure;
  528. #endif
  529. // Compute direction bits for this block
  530. block->direction_bits = 0;
  531. #ifndef COREXY
  532. if (target[X_AXIS] < position[X_AXIS])
  533. {
  534. block->direction_bits |= (1<<X_AXIS);
  535. }
  536. if (target[Y_AXIS] < position[Y_AXIS])
  537. {
  538. block->direction_bits |= (1<<Y_AXIS);
  539. }
  540. #else
  541. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  542. {
  543. block->direction_bits |= (1<<X_AXIS);
  544. }
  545. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  546. {
  547. block->direction_bits |= (1<<Y_AXIS);
  548. }
  549. #endif
  550. if (target[Z_AXIS] < position[Z_AXIS])
  551. {
  552. block->direction_bits |= (1<<Z_AXIS);
  553. }
  554. if (target[E_AXIS] < position[E_AXIS])
  555. {
  556. block->direction_bits |= (1<<E_AXIS);
  557. }
  558. block->active_extruder = extruder;
  559. //enable active axes
  560. #ifdef COREXY
  561. if((block->steps_x != 0) || (block->steps_y != 0))
  562. {
  563. enable_x();
  564. enable_y();
  565. }
  566. #else
  567. if(block->steps_x != 0) enable_x();
  568. if(block->steps_y != 0) enable_y();
  569. #endif
  570. #ifndef Z_LATE_ENABLE
  571. if(block->steps_z != 0) enable_z();
  572. #endif
  573. // Enable all
  574. if(block->steps_e != 0)
  575. {
  576. enable_e0();
  577. enable_e1();
  578. enable_e2();
  579. }
  580. if (block->steps_e == 0)
  581. {
  582. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  583. }
  584. else
  585. {
  586. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  587. }
  588. float delta_mm[4];
  589. #ifndef COREXY
  590. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  591. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  592. #else
  593. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
  594. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
  595. #endif
  596. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  597. delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
  598. if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
  599. {
  600. block->millimeters = fabs(delta_mm[E_AXIS]);
  601. }
  602. else
  603. {
  604. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  605. }
  606. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  607. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  608. float inverse_second = feed_rate * inverse_millimeters;
  609. int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  610. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  611. #ifdef OLD_SLOWDOWN
  612. if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)
  613. feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
  614. #endif
  615. #ifdef SLOWDOWN
  616. // segment time im micro seconds
  617. unsigned long segment_time = lround(1000000.0/inverse_second);
  618. if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))
  619. {
  620. if (segment_time < minsegmenttime)
  621. { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  622. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  623. #ifdef XY_FREQUENCY_LIMIT
  624. segment_time = lround(1000000.0/inverse_second);
  625. #endif
  626. }
  627. }
  628. #endif
  629. // END OF SLOW DOWN SECTION
  630. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  631. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  632. // Calculate and limit speed in mm/sec for each axis
  633. float current_speed[4];
  634. float speed_factor = 1.0; //factor <=1 do decrease speed
  635. for(int i=0; i < 4; i++)
  636. {
  637. current_speed[i] = delta_mm[i] * inverse_second;
  638. if(fabs(current_speed[i]) > max_feedrate[i])
  639. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  640. }
  641. // Max segement time in us.
  642. #ifdef XY_FREQUENCY_LIMIT
  643. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  644. // Check and limit the xy direction change frequency
  645. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  646. old_direction_bits = block->direction_bits;
  647. segment_time = lround((float)segment_time / speed_factor);
  648. if((direction_change & (1<<X_AXIS)) == 0)
  649. {
  650. x_segment_time[0] += segment_time;
  651. }
  652. else
  653. {
  654. x_segment_time[2] = x_segment_time[1];
  655. x_segment_time[1] = x_segment_time[0];
  656. x_segment_time[0] = segment_time;
  657. }
  658. if((direction_change & (1<<Y_AXIS)) == 0)
  659. {
  660. y_segment_time[0] += segment_time;
  661. }
  662. else
  663. {
  664. y_segment_time[2] = y_segment_time[1];
  665. y_segment_time[1] = y_segment_time[0];
  666. y_segment_time[0] = segment_time;
  667. }
  668. long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
  669. long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
  670. long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
  671. if(min_xy_segment_time < MAX_FREQ_TIME)
  672. speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
  673. #endif
  674. // Correct the speed
  675. if( speed_factor < 1.0)
  676. {
  677. for(unsigned char i=0; i < 4; i++)
  678. {
  679. current_speed[i] *= speed_factor;
  680. }
  681. block->nominal_speed *= speed_factor;
  682. block->nominal_rate *= speed_factor;
  683. }
  684. // Compute and limit the acceleration rate for the trapezoid generator.
  685. float steps_per_mm = block->step_event_count/block->millimeters;
  686. if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
  687. {
  688. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  689. }
  690. else
  691. {
  692. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  693. // Limit acceleration per axis
  694. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  695. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  696. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  697. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  698. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  699. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  700. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  701. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  702. }
  703. block->acceleration = block->acceleration_st / steps_per_mm;
  704. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  705. #if 0 // Use old jerk for now
  706. // Compute path unit vector
  707. double unit_vec[3];
  708. unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
  709. unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
  710. unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
  711. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  712. // Let a circle be tangent to both previous and current path line segments, where the junction
  713. // deviation is defined as the distance from the junction to the closest edge of the circle,
  714. // colinear with the circle center. The circular segment joining the two paths represents the
  715. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  716. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  717. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  718. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  719. // nonlinearities of both the junction angle and junction velocity.
  720. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  721. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  722. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  723. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  724. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  725. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  726. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  727. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  728. // Skip and use default max junction speed for 0 degree acute junction.
  729. if (cos_theta < 0.95) {
  730. vmax_junction = min(previous_nominal_speed,block->nominal_speed);
  731. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  732. if (cos_theta > -0.95) {
  733. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  734. double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
  735. vmax_junction = min(vmax_junction,
  736. sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
  737. }
  738. }
  739. }
  740. #endif
  741. // Start with a safe speed
  742. float vmax_junction = max_xy_jerk/2;
  743. float vmax_junction_factor = 1.0;
  744. if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)
  745. vmax_junction = min(vmax_junction, max_z_jerk/2);
  746. if(fabs(current_speed[E_AXIS]) > max_e_jerk/2)
  747. vmax_junction = min(vmax_junction, max_e_jerk/2);
  748. vmax_junction = min(vmax_junction, block->nominal_speed);
  749. float safe_speed = vmax_junction;
  750. if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
  751. float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
  752. // if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
  753. vmax_junction = block->nominal_speed;
  754. // }
  755. if (jerk > max_xy_jerk) {
  756. vmax_junction_factor = (max_xy_jerk/jerk);
  757. }
  758. if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
  759. vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
  760. }
  761. if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
  762. vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
  763. }
  764. vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  765. }
  766. block->max_entry_speed = vmax_junction;
  767. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  768. double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
  769. block->entry_speed = min(vmax_junction, v_allowable);
  770. // Initialize planner efficiency flags
  771. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  772. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  773. // the current block and next block junction speeds are guaranteed to always be at their maximum
  774. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  775. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  776. // the reverse and forward planners, the corresponding block junction speed will always be at the
  777. // the maximum junction speed and may always be ignored for any speed reduction checks.
  778. if (block->nominal_speed <= v_allowable) {
  779. block->nominal_length_flag = true;
  780. }
  781. else {
  782. block->nominal_length_flag = false;
  783. }
  784. block->recalculate_flag = true; // Always calculate trapezoid for new block
  785. // Update previous path unit_vector and nominal speed
  786. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  787. previous_nominal_speed = block->nominal_speed;
  788. #ifdef ADVANCE
  789. // Calculate advance rate
  790. if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
  791. block->advance_rate = 0;
  792. block->advance = 0;
  793. }
  794. else {
  795. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  796. float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
  797. (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
  798. block->advance = advance;
  799. if(acc_dist == 0) {
  800. block->advance_rate = 0;
  801. }
  802. else {
  803. block->advance_rate = advance / (float)acc_dist;
  804. }
  805. }
  806. /*
  807. SERIAL_ECHO_START;
  808. SERIAL_ECHOPGM("advance :");
  809. SERIAL_ECHO(block->advance/256.0);
  810. SERIAL_ECHOPGM("advance rate :");
  811. SERIAL_ECHOLN(block->advance_rate/256.0);
  812. */
  813. #endif // ADVANCE
  814. calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
  815. safe_speed/block->nominal_speed);
  816. // Move buffer head
  817. block_buffer_head = next_buffer_head;
  818. // Update position
  819. memcpy(position, target, sizeof(target)); // position[] = target[]
  820. planner_recalculate();
  821. st_wake_up();
  822. }
  823. #ifdef ENABLE_AUTO_BED_LEVELING
  824. vector_3 plan_get_position() {
  825. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  826. //position.debug("in plan_get position");
  827. //plan_bed_level_matrix.debug("in plan_get bed_level");
  828. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  829. //inverse.debug("in plan_get inverse");
  830. position.apply_rotation(inverse);
  831. //position.debug("after rotation");
  832. return position;
  833. }
  834. #endif // ENABLE_AUTO_BED_LEVELING
  835. #ifdef ENABLE_AUTO_BED_LEVELING
  836. void plan_set_position(float x, float y, float z, const float &e)
  837. {
  838. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  839. #else
  840. void plan_set_position(const float &x, const float &y, const float &z, const float &e)
  841. {
  842. #endif // ENABLE_AUTO_BED_LEVELING
  843. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  844. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  845. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  846. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  847. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  848. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  849. previous_speed[0] = 0.0;
  850. previous_speed[1] = 0.0;
  851. previous_speed[2] = 0.0;
  852. previous_speed[3] = 0.0;
  853. }
  854. void plan_set_e_position(const float &e)
  855. {
  856. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  857. st_set_e_position(position[E_AXIS]);
  858. }
  859. uint8_t movesplanned()
  860. {
  861. return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  862. }
  863. #ifdef PREVENT_DANGEROUS_EXTRUDE
  864. void set_extrude_min_temp(float temp)
  865. {
  866. extrude_min_temp=temp;
  867. }
  868. #endif
  869. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  870. void reset_acceleration_rates()
  871. {
  872. for(int8_t i=0; i < NUM_AXIS; i++)
  873. {
  874. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  875. }
  876. }