My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

configuration_store.cpp 30KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Configuration and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V24"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. #define MAX_EXTRUDERS 4
  41. /**
  42. * V24 EEPROM Layout:
  43. *
  44. * 100 Version (char x4)
  45. * 104 EEPROM Checksum (uint16_t)
  46. *
  47. * 106 M92 XYZE planner.axis_steps_per_mm (float x4)
  48. * 122 M203 XYZE planner.max_feedrate_mm_s (float x4)
  49. * 138 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4)
  50. * 154 M204 P planner.acceleration (float)
  51. * 158 M204 R planner.retract_acceleration (float)
  52. * 162 M204 T planner.travel_acceleration (float)
  53. * 166 M205 S planner.min_feedrate_mm_s (float)
  54. * 170 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 174 M205 B planner.min_segment_time (ulong)
  56. * 178 M205 X planner.max_xy_jerk (float)
  57. * 182 M205 Z planner.max_z_jerk (float)
  58. * 186 M205 E planner.max_e_jerk (float)
  59. * 190 M206 XYZ home_offset (float x3)
  60. *
  61. * Mesh bed leveling:
  62. * 202 M420 S status (uint8)
  63. * 203 z_offset (float)
  64. * 207 mesh_num_x (uint8 as set in firmware)
  65. * 208 mesh_num_y (uint8 as set in firmware)
  66. * 209 G29 S3 XYZ z_values[][] (float x9, by default, up to float x 81)
  67. *
  68. * AUTO BED LEVELING
  69. * 245 M851 zprobe_zoffset (float)
  70. *
  71. * DELTA:
  72. * 249 M666 XYZ endstop_adj (float x3)
  73. * 261 M665 R delta_radius (float)
  74. * 265 M665 L delta_diagonal_rod (float)
  75. * 269 M665 S delta_segments_per_second (float)
  76. * 273 M665 A delta_diagonal_rod_trim_tower_1 (float)
  77. * 277 M665 B delta_diagonal_rod_trim_tower_2 (float)
  78. * 281 M665 C delta_diagonal_rod_trim_tower_3 (float)
  79. *
  80. * Z_DUAL_ENDSTOPS:
  81. * 285 M666 Z z_endstop_adj (float)
  82. *
  83. * ULTIPANEL:
  84. * 289 M145 S0 H preheatHotendTemp1 (int)
  85. * 291 M145 S0 B preheatBedTemp1 (int)
  86. * 293 M145 S0 F preheatFanSpeed1 (int)
  87. * 295 M145 S1 H preheatHotendTemp2 (int)
  88. * 297 M145 S1 B preheatBedTemp2 (int)
  89. * 299 M145 S1 F preheatFanSpeed2 (int)
  90. *
  91. * PIDTEMP:
  92. * 301 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  93. * 317 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  94. * 333 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  95. * 349 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  96. * 365 M301 L lpq_len (int)
  97. *
  98. * PIDTEMPBED:
  99. * 367 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
  100. *
  101. * DOGLCD:
  102. * 379 M250 C lcd_contrast (int)
  103. *
  104. * SCARA:
  105. * 381 M365 XYZ axis_scaling (float x3)
  106. *
  107. * FWRETRACT:
  108. * 393 M209 S autoretract_enabled (bool)
  109. * 394 M207 S retract_length (float)
  110. * 398 M207 W retract_length_swap (float)
  111. * 402 M207 F retract_feedrate_mm_s (float)
  112. * 406 M207 Z retract_zlift (float)
  113. * 410 M208 S retract_recover_length (float)
  114. * 414 M208 W retract_recover_length_swap (float)
  115. * 418 M208 F retract_recover_feedrate_mm_s (float)
  116. *
  117. * Volumetric Extrusion:
  118. * 422 M200 D volumetric_enabled (bool)
  119. * 423 M200 T D filament_size (float x4) (T0..3)
  120. *
  121. * 439 This Slot is Available!
  122. *
  123. */
  124. #include "Marlin.h"
  125. #include "language.h"
  126. #include "endstops.h"
  127. #include "planner.h"
  128. #include "temperature.h"
  129. #include "ultralcd.h"
  130. #include "configuration_store.h"
  131. #if ENABLED(MESH_BED_LEVELING)
  132. #include "mesh_bed_leveling.h"
  133. #endif
  134. uint16_t eeprom_checksum;
  135. const char version[4] = EEPROM_VERSION;
  136. void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
  137. uint8_t c;
  138. while (size--) {
  139. eeprom_write_byte((unsigned char*)pos, *value);
  140. c = eeprom_read_byte((unsigned char*)pos);
  141. if (c != *value) {
  142. SERIAL_ECHO_START;
  143. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  144. }
  145. eeprom_checksum += c;
  146. pos++;
  147. value++;
  148. };
  149. }
  150. void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
  151. do {
  152. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  153. *value = c;
  154. eeprom_checksum += c;
  155. pos++;
  156. value++;
  157. } while (--size);
  158. }
  159. /**
  160. * Post-process after Retrieve or Reset
  161. */
  162. void Config_Postprocess() {
  163. // steps per s2 needs to be updated to agree with units per s2
  164. planner.reset_acceleration_rates();
  165. // Make sure delta kinematics are updated before refreshing the
  166. // planner position so the stepper counts will be set correctly.
  167. #if ENABLED(DELTA)
  168. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  169. #endif
  170. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  171. // and init stepper.count[], planner.position[] with current_position
  172. planner.refresh_positioning();
  173. #if ENABLED(PIDTEMP)
  174. thermalManager.updatePID();
  175. #endif
  176. calculate_volumetric_multipliers();
  177. // Software endstops depend on home_offset
  178. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  179. }
  180. #if ENABLED(EEPROM_SETTINGS)
  181. #define DUMMY_PID_VALUE 3000.0f
  182. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  183. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  184. #define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  185. #define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  186. /**
  187. * M500 - Store Configuration
  188. */
  189. void Config_StoreSettings() {
  190. float dummy = 0.0f;
  191. char ver[4] = "000";
  192. EEPROM_START();
  193. EEPROM_WRITE(ver); // invalidate data first
  194. EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
  195. eeprom_checksum = 0; // clear before first "real data"
  196. EEPROM_WRITE(planner.axis_steps_per_mm);
  197. EEPROM_WRITE(planner.max_feedrate_mm_s);
  198. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  199. EEPROM_WRITE(planner.acceleration);
  200. EEPROM_WRITE(planner.retract_acceleration);
  201. EEPROM_WRITE(planner.travel_acceleration);
  202. EEPROM_WRITE(planner.min_feedrate_mm_s);
  203. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  204. EEPROM_WRITE(planner.min_segment_time);
  205. EEPROM_WRITE(planner.max_xy_jerk);
  206. EEPROM_WRITE(planner.max_z_jerk);
  207. EEPROM_WRITE(planner.max_e_jerk);
  208. EEPROM_WRITE(home_offset);
  209. #if ENABLED(MESH_BED_LEVELING)
  210. // Compile time test that sizeof(mbl.z_values) is as expected
  211. typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
  212. uint8_t mesh_num_x = MESH_NUM_X_POINTS,
  213. mesh_num_y = MESH_NUM_Y_POINTS,
  214. dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
  215. EEPROM_WRITE(dummy_uint8);
  216. EEPROM_WRITE(mbl.z_offset);
  217. EEPROM_WRITE(mesh_num_x);
  218. EEPROM_WRITE(mesh_num_y);
  219. EEPROM_WRITE(mbl.z_values);
  220. #else
  221. // For disabled MBL write a default mesh
  222. uint8_t mesh_num_x = 3,
  223. mesh_num_y = 3,
  224. dummy_uint8 = 0;
  225. dummy = 0.0f;
  226. EEPROM_WRITE(dummy_uint8);
  227. EEPROM_WRITE(dummy);
  228. EEPROM_WRITE(mesh_num_x);
  229. EEPROM_WRITE(mesh_num_y);
  230. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE(dummy);
  231. #endif // MESH_BED_LEVELING
  232. #if !HAS_BED_PROBE
  233. float zprobe_zoffset = 0;
  234. #endif
  235. EEPROM_WRITE(zprobe_zoffset);
  236. // 9 floats for DELTA / Z_DUAL_ENDSTOPS
  237. #if ENABLED(DELTA)
  238. EEPROM_WRITE(endstop_adj); // 3 floats
  239. EEPROM_WRITE(delta_radius); // 1 float
  240. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  241. EEPROM_WRITE(delta_segments_per_second); // 1 float
  242. EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
  243. EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
  244. EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
  245. #elif ENABLED(Z_DUAL_ENDSTOPS)
  246. EEPROM_WRITE(z_endstop_adj); // 1 float
  247. dummy = 0.0f;
  248. for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
  249. #else
  250. dummy = 0.0f;
  251. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  252. #endif
  253. #if DISABLED(ULTIPANEL)
  254. int preheatHotendTemp1 = PREHEAT_1_TEMP_HOTEND, preheatBedTemp1 = PREHEAT_1_TEMP_BED, preheatFanSpeed1 = PREHEAT_1_FAN_SPEED,
  255. preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND, preheatBedTemp2 = PREHEAT_2_TEMP_BED, preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
  256. #endif // !ULTIPANEL
  257. EEPROM_WRITE(preheatHotendTemp1);
  258. EEPROM_WRITE(preheatBedTemp1);
  259. EEPROM_WRITE(preheatFanSpeed1);
  260. EEPROM_WRITE(preheatHotendTemp2);
  261. EEPROM_WRITE(preheatBedTemp2);
  262. EEPROM_WRITE(preheatFanSpeed2);
  263. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  264. #if ENABLED(PIDTEMP)
  265. if (e < HOTENDS) {
  266. EEPROM_WRITE(PID_PARAM(Kp, e));
  267. EEPROM_WRITE(PID_PARAM(Ki, e));
  268. EEPROM_WRITE(PID_PARAM(Kd, e));
  269. #if ENABLED(PID_EXTRUSION_SCALING)
  270. EEPROM_WRITE(PID_PARAM(Kc, e));
  271. #else
  272. dummy = 1.0f; // 1.0 = default kc
  273. EEPROM_WRITE(dummy);
  274. #endif
  275. }
  276. else
  277. #endif // !PIDTEMP
  278. {
  279. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  280. EEPROM_WRITE(dummy); // Kp
  281. dummy = 0.0f;
  282. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  283. }
  284. } // Hotends Loop
  285. #if DISABLED(PID_EXTRUSION_SCALING)
  286. int lpq_len = 20;
  287. #endif
  288. EEPROM_WRITE(lpq_len);
  289. #if DISABLED(PIDTEMPBED)
  290. dummy = DUMMY_PID_VALUE;
  291. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  292. #else
  293. EEPROM_WRITE(thermalManager.bedKp);
  294. EEPROM_WRITE(thermalManager.bedKi);
  295. EEPROM_WRITE(thermalManager.bedKd);
  296. #endif
  297. #if !HAS_LCD_CONTRAST
  298. const int lcd_contrast = 32;
  299. #endif
  300. EEPROM_WRITE(lcd_contrast);
  301. #if ENABLED(SCARA)
  302. EEPROM_WRITE(axis_scaling); // 3 floats
  303. #else
  304. dummy = 1.0f;
  305. EEPROM_WRITE(dummy);
  306. #endif
  307. #if ENABLED(FWRETRACT)
  308. EEPROM_WRITE(autoretract_enabled);
  309. EEPROM_WRITE(retract_length);
  310. #if EXTRUDERS > 1
  311. EEPROM_WRITE(retract_length_swap);
  312. #else
  313. dummy = 0.0f;
  314. EEPROM_WRITE(dummy);
  315. #endif
  316. EEPROM_WRITE(retract_feedrate_mm_s);
  317. EEPROM_WRITE(retract_zlift);
  318. EEPROM_WRITE(retract_recover_length);
  319. #if EXTRUDERS > 1
  320. EEPROM_WRITE(retract_recover_length_swap);
  321. #else
  322. dummy = 0.0f;
  323. EEPROM_WRITE(dummy);
  324. #endif
  325. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  326. #endif // FWRETRACT
  327. EEPROM_WRITE(volumetric_enabled);
  328. // Save filament sizes
  329. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  330. if (q < COUNT(filament_size)) dummy = filament_size[q];
  331. EEPROM_WRITE(dummy);
  332. }
  333. uint16_t final_checksum = eeprom_checksum,
  334. eeprom_size = eeprom_index;
  335. eeprom_index = EEPROM_OFFSET;
  336. EEPROM_WRITE(version);
  337. EEPROM_WRITE(final_checksum);
  338. // Report storage size
  339. SERIAL_ECHO_START;
  340. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size);
  341. SERIAL_ECHOLNPGM(" bytes)");
  342. }
  343. /**
  344. * M501 - Retrieve Configuration
  345. */
  346. void Config_RetrieveSettings() {
  347. EEPROM_START();
  348. char stored_ver[4];
  349. EEPROM_READ(stored_ver);
  350. uint16_t stored_checksum;
  351. EEPROM_READ(stored_checksum);
  352. // SERIAL_ECHOPAIR("Version: [", ver);
  353. // SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
  354. // SERIAL_ECHOLNPGM("]");
  355. if (strncmp(version, stored_ver, 3) != 0) {
  356. Config_ResetDefault();
  357. }
  358. else {
  359. float dummy = 0;
  360. eeprom_checksum = 0; // clear before reading first "real data"
  361. // version number match
  362. EEPROM_READ(planner.axis_steps_per_mm);
  363. EEPROM_READ(planner.max_feedrate_mm_s);
  364. EEPROM_READ(planner.max_acceleration_mm_per_s2);
  365. EEPROM_READ(planner.acceleration);
  366. EEPROM_READ(planner.retract_acceleration);
  367. EEPROM_READ(planner.travel_acceleration);
  368. EEPROM_READ(planner.min_feedrate_mm_s);
  369. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  370. EEPROM_READ(planner.min_segment_time);
  371. EEPROM_READ(planner.max_xy_jerk);
  372. EEPROM_READ(planner.max_z_jerk);
  373. EEPROM_READ(planner.max_e_jerk);
  374. EEPROM_READ(home_offset);
  375. uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
  376. EEPROM_READ(dummy_uint8);
  377. EEPROM_READ(dummy);
  378. EEPROM_READ(mesh_num_x);
  379. EEPROM_READ(mesh_num_y);
  380. #if ENABLED(MESH_BED_LEVELING)
  381. mbl.status = dummy_uint8;
  382. mbl.z_offset = dummy;
  383. if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
  384. // EEPROM data fits the current mesh
  385. EEPROM_READ(mbl.z_values);
  386. }
  387. else {
  388. // EEPROM data is stale
  389. mbl.reset();
  390. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
  391. }
  392. #else
  393. // MBL is disabled - skip the stored data
  394. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
  395. #endif // MESH_BED_LEVELING
  396. #if !HAS_BED_PROBE
  397. float zprobe_zoffset = 0;
  398. #endif
  399. EEPROM_READ(zprobe_zoffset);
  400. #if ENABLED(DELTA)
  401. EEPROM_READ(endstop_adj); // 3 floats
  402. EEPROM_READ(delta_radius); // 1 float
  403. EEPROM_READ(delta_diagonal_rod); // 1 float
  404. EEPROM_READ(delta_segments_per_second); // 1 float
  405. EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float
  406. EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float
  407. EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float
  408. #elif ENABLED(Z_DUAL_ENDSTOPS)
  409. EEPROM_READ(z_endstop_adj);
  410. dummy = 0.0f;
  411. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  412. #else
  413. dummy = 0.0f;
  414. for (uint8_t q=9; q--;) EEPROM_READ(dummy);
  415. #endif
  416. #if DISABLED(ULTIPANEL)
  417. int preheatHotendTemp1, preheatBedTemp1, preheatFanSpeed1,
  418. preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2;
  419. #endif
  420. EEPROM_READ(preheatHotendTemp1);
  421. EEPROM_READ(preheatBedTemp1);
  422. EEPROM_READ(preheatFanSpeed1);
  423. EEPROM_READ(preheatHotendTemp2);
  424. EEPROM_READ(preheatBedTemp2);
  425. EEPROM_READ(preheatFanSpeed2);
  426. #if ENABLED(PIDTEMP)
  427. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  428. EEPROM_READ(dummy); // Kp
  429. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  430. // do not need to scale PID values as the values in EEPROM are already scaled
  431. PID_PARAM(Kp, e) = dummy;
  432. EEPROM_READ(PID_PARAM(Ki, e));
  433. EEPROM_READ(PID_PARAM(Kd, e));
  434. #if ENABLED(PID_EXTRUSION_SCALING)
  435. EEPROM_READ(PID_PARAM(Kc, e));
  436. #else
  437. EEPROM_READ(dummy);
  438. #endif
  439. }
  440. else {
  441. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  442. }
  443. }
  444. #else // !PIDTEMP
  445. // 4 x 4 = 16 slots for PID parameters
  446. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  447. #endif // !PIDTEMP
  448. #if DISABLED(PID_EXTRUSION_SCALING)
  449. int lpq_len;
  450. #endif
  451. EEPROM_READ(lpq_len);
  452. #if ENABLED(PIDTEMPBED)
  453. EEPROM_READ(dummy); // bedKp
  454. if (dummy != DUMMY_PID_VALUE) {
  455. thermalManager.bedKp = dummy;
  456. EEPROM_READ(thermalManager.bedKi);
  457. EEPROM_READ(thermalManager.bedKd);
  458. }
  459. #else
  460. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  461. #endif
  462. #if !HAS_LCD_CONTRAST
  463. int lcd_contrast;
  464. #endif
  465. EEPROM_READ(lcd_contrast);
  466. #if ENABLED(SCARA)
  467. EEPROM_READ(axis_scaling); // 3 floats
  468. #else
  469. EEPROM_READ(dummy);
  470. #endif
  471. #if ENABLED(FWRETRACT)
  472. EEPROM_READ(autoretract_enabled);
  473. EEPROM_READ(retract_length);
  474. #if EXTRUDERS > 1
  475. EEPROM_READ(retract_length_swap);
  476. #else
  477. EEPROM_READ(dummy);
  478. #endif
  479. EEPROM_READ(retract_feedrate_mm_s);
  480. EEPROM_READ(retract_zlift);
  481. EEPROM_READ(retract_recover_length);
  482. #if EXTRUDERS > 1
  483. EEPROM_READ(retract_recover_length_swap);
  484. #else
  485. EEPROM_READ(dummy);
  486. #endif
  487. EEPROM_READ(retract_recover_feedrate_mm_s);
  488. #endif // FWRETRACT
  489. EEPROM_READ(volumetric_enabled);
  490. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  491. EEPROM_READ(dummy);
  492. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  493. }
  494. if (eeprom_checksum == stored_checksum) {
  495. Config_Postprocess();
  496. SERIAL_ECHO_START;
  497. SERIAL_ECHO(version);
  498. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index);
  499. SERIAL_ECHOLNPGM(" bytes)");
  500. }
  501. else {
  502. SERIAL_ERROR_START;
  503. SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
  504. Config_ResetDefault();
  505. }
  506. }
  507. #if ENABLED(EEPROM_CHITCHAT)
  508. Config_PrintSettings();
  509. #endif
  510. }
  511. #endif // EEPROM_SETTINGS
  512. /**
  513. * M502 - Reset Configuration
  514. */
  515. void Config_ResetDefault() {
  516. float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
  517. float tmp2[] = DEFAULT_MAX_FEEDRATE;
  518. long tmp3[] = DEFAULT_MAX_ACCELERATION;
  519. LOOP_XYZE(i) {
  520. planner.axis_steps_per_mm[i] = tmp1[i];
  521. planner.max_feedrate_mm_s[i] = tmp2[i];
  522. planner.max_acceleration_mm_per_s2[i] = tmp3[i];
  523. #if ENABLED(SCARA)
  524. if (i < COUNT(axis_scaling))
  525. axis_scaling[i] = 1;
  526. #endif
  527. }
  528. planner.acceleration = DEFAULT_ACCELERATION;
  529. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  530. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  531. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  532. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  533. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  534. planner.max_xy_jerk = DEFAULT_XYJERK;
  535. planner.max_z_jerk = DEFAULT_ZJERK;
  536. planner.max_e_jerk = DEFAULT_EJERK;
  537. home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
  538. #if ENABLED(MESH_BED_LEVELING)
  539. mbl.reset();
  540. #endif
  541. #if HAS_BED_PROBE
  542. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  543. #endif
  544. #if ENABLED(DELTA)
  545. endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
  546. delta_radius = DELTA_RADIUS;
  547. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  548. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  549. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  550. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  551. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  552. #elif ENABLED(Z_DUAL_ENDSTOPS)
  553. z_endstop_adj = 0;
  554. #endif
  555. #if ENABLED(ULTIPANEL)
  556. preheatHotendTemp1 = PREHEAT_1_TEMP_HOTEND;
  557. preheatBedTemp1 = PREHEAT_1_TEMP_BED;
  558. preheatFanSpeed1 = PREHEAT_1_FAN_SPEED;
  559. preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND;
  560. preheatBedTemp2 = PREHEAT_2_TEMP_BED;
  561. preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
  562. #endif
  563. #if HAS_LCD_CONTRAST
  564. lcd_contrast = DEFAULT_LCD_CONTRAST;
  565. #endif
  566. #if ENABLED(PIDTEMP)
  567. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  568. HOTEND_LOOP()
  569. #else
  570. int e = 0; UNUSED(e); // only need to write once
  571. #endif
  572. {
  573. PID_PARAM(Kp, e) = DEFAULT_Kp;
  574. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  575. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  576. #if ENABLED(PID_EXTRUSION_SCALING)
  577. PID_PARAM(Kc, e) = DEFAULT_Kc;
  578. #endif
  579. }
  580. #if ENABLED(PID_EXTRUSION_SCALING)
  581. lpq_len = 20; // default last-position-queue size
  582. #endif
  583. #endif // PIDTEMP
  584. #if ENABLED(PIDTEMPBED)
  585. thermalManager.bedKp = DEFAULT_bedKp;
  586. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  587. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  588. #endif
  589. #if ENABLED(FWRETRACT)
  590. autoretract_enabled = false;
  591. retract_length = RETRACT_LENGTH;
  592. #if EXTRUDERS > 1
  593. retract_length_swap = RETRACT_LENGTH_SWAP;
  594. #endif
  595. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  596. retract_zlift = RETRACT_ZLIFT;
  597. retract_recover_length = RETRACT_RECOVER_LENGTH;
  598. #if EXTRUDERS > 1
  599. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  600. #endif
  601. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  602. #endif
  603. volumetric_enabled = false;
  604. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  605. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  606. endstops.enable_globally(
  607. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  608. (true)
  609. #else
  610. (false)
  611. #endif
  612. );
  613. Config_Postprocess();
  614. SERIAL_ECHO_START;
  615. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  616. }
  617. #if DISABLED(DISABLE_M503)
  618. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
  619. /**
  620. * M503 - Print Configuration
  621. */
  622. void Config_PrintSettings(bool forReplay) {
  623. // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
  624. CONFIG_ECHO_START;
  625. if (!forReplay) {
  626. SERIAL_ECHOLNPGM("Steps per unit:");
  627. CONFIG_ECHO_START;
  628. }
  629. SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
  630. SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
  631. SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
  632. SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
  633. SERIAL_EOL;
  634. CONFIG_ECHO_START;
  635. #if ENABLED(SCARA)
  636. if (!forReplay) {
  637. SERIAL_ECHOLNPGM("Scaling factors:");
  638. CONFIG_ECHO_START;
  639. }
  640. SERIAL_ECHOPAIR(" M365 X", axis_scaling[X_AXIS]);
  641. SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]);
  642. SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]);
  643. SERIAL_EOL;
  644. CONFIG_ECHO_START;
  645. #endif // SCARA
  646. if (!forReplay) {
  647. SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
  648. CONFIG_ECHO_START;
  649. }
  650. SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
  651. SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
  652. SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
  653. SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
  654. SERIAL_EOL;
  655. CONFIG_ECHO_START;
  656. if (!forReplay) {
  657. SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
  658. CONFIG_ECHO_START;
  659. }
  660. SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
  661. SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
  662. SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
  663. SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
  664. SERIAL_EOL;
  665. CONFIG_ECHO_START;
  666. if (!forReplay) {
  667. SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
  668. CONFIG_ECHO_START;
  669. }
  670. SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
  671. SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
  672. SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
  673. SERIAL_EOL;
  674. CONFIG_ECHO_START;
  675. if (!forReplay) {
  676. SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
  677. CONFIG_ECHO_START;
  678. }
  679. SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
  680. SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
  681. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  682. SERIAL_ECHOPAIR(" X", planner.max_xy_jerk);
  683. SERIAL_ECHOPAIR(" Z", planner.max_z_jerk);
  684. SERIAL_ECHOPAIR(" E", planner.max_e_jerk);
  685. SERIAL_EOL;
  686. CONFIG_ECHO_START;
  687. if (!forReplay) {
  688. SERIAL_ECHOLNPGM("Home offset (mm)");
  689. CONFIG_ECHO_START;
  690. }
  691. SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
  692. SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
  693. SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
  694. SERIAL_EOL;
  695. #if ENABLED(MESH_BED_LEVELING)
  696. if (!forReplay) {
  697. SERIAL_ECHOLNPGM("Mesh bed leveling:");
  698. CONFIG_ECHO_START;
  699. }
  700. SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
  701. SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS);
  702. SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS);
  703. SERIAL_EOL;
  704. for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
  705. for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
  706. CONFIG_ECHO_START;
  707. SERIAL_ECHOPAIR(" G29 S3 X", px);
  708. SERIAL_ECHOPAIR(" Y", py);
  709. SERIAL_ECHOPGM(" Z");
  710. SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
  711. SERIAL_EOL;
  712. }
  713. }
  714. #endif
  715. #if ENABLED(DELTA)
  716. CONFIG_ECHO_START;
  717. if (!forReplay) {
  718. SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
  719. CONFIG_ECHO_START;
  720. }
  721. SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
  722. SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
  723. SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
  724. SERIAL_EOL;
  725. CONFIG_ECHO_START;
  726. if (!forReplay) {
  727. SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
  728. CONFIG_ECHO_START;
  729. }
  730. SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
  731. SERIAL_ECHOPAIR(" R", delta_radius);
  732. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  733. SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
  734. SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
  735. SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
  736. SERIAL_EOL;
  737. #elif ENABLED(Z_DUAL_ENDSTOPS)
  738. CONFIG_ECHO_START;
  739. if (!forReplay) {
  740. SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
  741. CONFIG_ECHO_START;
  742. }
  743. SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
  744. SERIAL_EOL;
  745. #endif // DELTA
  746. #if ENABLED(ULTIPANEL)
  747. CONFIG_ECHO_START;
  748. if (!forReplay) {
  749. SERIAL_ECHOLNPGM("Material heatup parameters:");
  750. CONFIG_ECHO_START;
  751. }
  752. SERIAL_ECHOPAIR(" M145 S0 H", preheatHotendTemp1);
  753. SERIAL_ECHOPAIR(" B", preheatBedTemp1);
  754. SERIAL_ECHOPAIR(" F", preheatFanSpeed1);
  755. SERIAL_EOL;
  756. CONFIG_ECHO_START;
  757. SERIAL_ECHOPAIR(" M145 S1 H", preheatHotendTemp2);
  758. SERIAL_ECHOPAIR(" B", preheatBedTemp2);
  759. SERIAL_ECHOPAIR(" F", preheatFanSpeed2);
  760. SERIAL_EOL;
  761. #endif // ULTIPANEL
  762. #if HAS_PID_HEATING
  763. CONFIG_ECHO_START;
  764. if (!forReplay) {
  765. SERIAL_ECHOLNPGM("PID settings:");
  766. }
  767. #if ENABLED(PIDTEMP)
  768. #if HOTENDS > 1
  769. if (forReplay) {
  770. HOTEND_LOOP() {
  771. CONFIG_ECHO_START;
  772. SERIAL_ECHOPAIR(" M301 E", e);
  773. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  774. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  775. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  776. #if ENABLED(PID_EXTRUSION_SCALING)
  777. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  778. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  779. #endif
  780. SERIAL_EOL;
  781. }
  782. }
  783. else
  784. #endif // HOTENDS > 1
  785. // !forReplay || HOTENDS == 1
  786. {
  787. CONFIG_ECHO_START;
  788. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  789. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  790. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  791. #if ENABLED(PID_EXTRUSION_SCALING)
  792. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  793. SERIAL_ECHOPAIR(" L", lpq_len);
  794. #endif
  795. SERIAL_EOL;
  796. }
  797. #endif // PIDTEMP
  798. #if ENABLED(PIDTEMPBED)
  799. CONFIG_ECHO_START;
  800. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  801. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  802. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  803. SERIAL_EOL;
  804. #endif
  805. #endif // PIDTEMP || PIDTEMPBED
  806. #if HAS_LCD_CONTRAST
  807. CONFIG_ECHO_START;
  808. if (!forReplay) {
  809. SERIAL_ECHOLNPGM("LCD Contrast:");
  810. CONFIG_ECHO_START;
  811. }
  812. SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
  813. SERIAL_EOL;
  814. #endif
  815. #if ENABLED(FWRETRACT)
  816. CONFIG_ECHO_START;
  817. if (!forReplay) {
  818. SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
  819. CONFIG_ECHO_START;
  820. }
  821. SERIAL_ECHOPAIR(" M207 S", retract_length);
  822. #if EXTRUDERS > 1
  823. SERIAL_ECHOPAIR(" W", retract_length_swap);
  824. #endif
  825. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
  826. SERIAL_ECHOPAIR(" Z", retract_zlift);
  827. SERIAL_EOL;
  828. CONFIG_ECHO_START;
  829. if (!forReplay) {
  830. SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
  831. CONFIG_ECHO_START;
  832. }
  833. SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
  834. #if EXTRUDERS > 1
  835. SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
  836. #endif
  837. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
  838. SERIAL_EOL;
  839. CONFIG_ECHO_START;
  840. if (!forReplay) {
  841. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  842. CONFIG_ECHO_START;
  843. }
  844. SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  845. SERIAL_EOL;
  846. #endif // FWRETRACT
  847. /**
  848. * Volumetric extrusion M200
  849. */
  850. if (!forReplay) {
  851. CONFIG_ECHO_START;
  852. SERIAL_ECHOPGM("Filament settings:");
  853. if (volumetric_enabled)
  854. SERIAL_EOL;
  855. else
  856. SERIAL_ECHOLNPGM(" Disabled");
  857. }
  858. CONFIG_ECHO_START;
  859. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  860. SERIAL_EOL;
  861. #if EXTRUDERS > 1
  862. CONFIG_ECHO_START;
  863. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  864. SERIAL_EOL;
  865. #if EXTRUDERS > 2
  866. CONFIG_ECHO_START;
  867. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  868. SERIAL_EOL;
  869. #if EXTRUDERS > 3
  870. CONFIG_ECHO_START;
  871. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  872. SERIAL_EOL;
  873. #endif
  874. #endif
  875. #endif
  876. if (!volumetric_enabled) {
  877. CONFIG_ECHO_START;
  878. SERIAL_ECHOLNPGM(" M200 D0");
  879. }
  880. /**
  881. * Auto Bed Leveling
  882. */
  883. #if HAS_BED_PROBE
  884. if (!forReplay) {
  885. CONFIG_ECHO_START;
  886. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  887. }
  888. CONFIG_ECHO_START;
  889. SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
  890. SERIAL_EOL;
  891. #endif
  892. }
  893. #endif // !DISABLE_M503